WorldWideScience

Sample records for vertical water mass

  1. Water and mass budgets of a vertical-flow constructed wetland used for wastewater treatment

    NARCIS (Netherlands)

    Meuleman, Arthur F M; Van Logtestijn, Richard; Rijs, Gerard B J; Verhoeven, Jos T A

    To estimate the nutrient and organic matter (Biological Oxygen Demand (BODs) and Chemical Oxygen Demand (COD)) removal capacity of a constructed vertical-flow wetland in The Netherlands, a water and nutrient budget study was conducted. Also bacterial water quality enhancement was measured. The

  2. An analytical study on heat and mass transfer for ammonia-water system in a vertical falling-film type of absorber and generator

    Science.gov (United States)

    Honda, Katsumi; Matsuda, Akira

    A numerical analysis on simultaneous heat and mass transfer for ammonia-water air-conditioning with a vertical falling-film type of absorber and generator was performed by the one-dimensional difference method which takes into account only the change of flow direction. In the calculation, the geometries of absorber/generator and the temperature conditions were taken like as those in our previous works for water-lithium bromide system. Therefore, the liquid and vapor concentrations ranged 53-55 and 99-l00mass%NH3, respectively. The ratio of the liquid mass flow rate to the vapor mass flow rate, L/V, ranged up to 18000. For these thermal conditions, it was found that the vapor-phase mass transfer resistance is negligibly small, and the absorption/generation rates are almost constant regardless of the vapor flow rate, but increase with increasing liquid flow rate. It was also found that the calculated values of heat fluxes in the absorber/generator for ammonia-water system are equivalent or superior to those for water-lithium bromide system.

  3. The see-saw a vertical-lift incubator designed for channel catfish egg masses

    Science.gov (United States)

    Channel catfish egg masses are typically incubated in baskets that are suspended in water that is agitated with rotating or oscillating paddles. We designed and tested a new vertical-lift incubator (the “See-Saw”) to incubate channel catfish egg masses. Preliminary research in commercial hatcheries...

  4. Vertical Distribution of Water at Phoenix

    Science.gov (United States)

    Tamppari, L. K.; Lemmon, M. T.

    2011-01-01

    Phoenix results, combined with coordinated observations from the Mars Reconnaissance Orbiter of the Phoenix lander site, indicate that the water vapor is nonuniform (i.e., not well mixed) up to a calculated cloud condensation level. It is important to understand the mixing profile of water vapor because (a) the assumption of a well-mixed atmosphere up to a cloud condensation level is common in retrievals of column water abundances which are in turn used to understand the seasonal and interannual behavior of water, (b) there is a long history of observations and modeling that conclude both that water vapor is and is not well-mixed, and some studies indicate that the water vapor vertical mixing profile may, in fact, change with season and location, (c) the water vapor in the lowest part of the atmosphere is the reservoir that can exchange with the regolith and higher amounts may have an impact on the surface chemistry, and (d) greater water vapor abundances close to the surface may enhance surface exchange thereby reducing regional transport, which in turn has implications to the net transport of water vapor over seasonal and annual timescales.

  5. STRESS DISTRIBUTION IN THE STRATIFIED MASS CONTAINING VERTICAL ALVEOLE

    Directory of Open Access Journals (Sweden)

    Bobileva Tatiana Nikolaevna

    2017-08-01

    Full Text Available Almost all subsurface rocks used as foundations for various types of structures are stratified. Such heterogeneity may cause specific behaviour of the materials under strain. Differential equations describing the behaviour of such materials contain rapidly fluctuating coefficients, in view of this, solution of such equations is more time-consuming when using today’s computers. The method of asymptotic averaging leads to getting homogeneous medium under study to averaged equations with fixed factors. The present article is concerned with stratified soil mass consisting of pair-wise alternative isotropic elastic layers. In the results of elastic modules averaging, the present soil mass with horizontal rock stratification is simulated by homogeneous transversal-isotropic half-space with isotropy plane perpendicular to the standing axis. Half-space is loosened by a vertical alveole of circular cross-section, and virgin ground is under its own weight. For horizontal parting planes of layers, the following two types of surface conditions are set: ideal contact and backlash without cleavage. For homogeneous transversal-isotropic half-space received with a vertical alveole, the analytical solution of S.G. Lekhnitsky, well known in scientific papers, is used. The author gives expressions for stress components and displacements in soil mass for different marginal conditions on the alveole surface. Such research problems arise when constructing and maintaining buildings and when composite materials are used.

  6. Diel vertical migration of zooplankton in the Tanzanian waters of ...

    African Journals Online (AJOL)

    The diel vertical migration of zooplankton was studied in the Southern part of Lake Victoria in January and July 2002. A van dorn water sampler was used to collect zooplankton. In January 2002, zooplankton showed a pronounced diel vertical migration whereby zooplankton were moving upward at around sunset and ...

  7. The vertical distribution of Mars water vapor

    Science.gov (United States)

    Davies, D. W.

    1979-01-01

    Analysis of observations made from the Viking 1 Orbiter indicates that the water vapor over the Viking 1 landing site is uniformly mixed with the atmosphere and not concentrated near the surface. The analysis incorporates the effects of atmospheric scattering and explains why previous earth-based observations showed a strong diurnal variation in water content. It also explains the lack of an early morning fog and removes the necessity of daily exchange of large amounts of water between the surface and the atmosphere. A water vapor volume mixing ratio of 1.5 x 10 to the -4th is inferred for the Viking 1 site in late summer.

  8. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  9. Discriminant analysis of maintaining a vertical position in the water

    Directory of Open Access Journals (Sweden)

    Bratuša Zoran

    2015-01-01

    Full Text Available Water polo is the only sports game that takes place in the water. During the outplay, a vertical body position with the two basic mechanisms of the leg work - a breaststroke leg kick and an eggbeater leg kick, prevails. Starting from the significance of a vertical position during the game play, the methods of assessing physical preparedness of the athletes of all the categories also include the evaluation of maintaining a vertical position and consequently the load of the leg muscles. The measurements are performed during the maintenance of a vertical position (swimming in place through one of the specified mechanisms of leg work, i.e. a vertical position technique. The aim of this paper was to determine the application of different mechanisms of the leg kicks in maintaining a vertical position with young water polo players in relation to their position. The study included 29 selected junior water polo players (age_15.8 ± 0.8 years; BH_185.2 ± 5.3cm and BW_81.7 ± 7.7kg. The measurements were performed during the tests of swimming in place at the maximum intensity lasting 10 seconds, by the breaststroke and eggbeater leg kicks. The isometric tensiometry tests were used for the measurements. The results were analysed by the application of descriptive statistics, and the kinetic selection characteristic was defined by the application of discriminant analysis. Higher average values were achieved with the breaststroke leg kick technique Fmax, ImpF and RFD (avgFmaxLEGGBK =157.46±19.93N; avgImpF_LEGGBK =45.43±10.64Ns; avgRFD_LEGGBK=337.85±80.73N/s; avgFmaxLBKICK=227.18±49.17N; avgImpF_LBKICK=55.99±14.59Ns; avgRFD_LBKICK=545.47±159.15N/s. After discriminant analysis, the results have shown that the eggbeater leg kick is a selection technique, whereas the force - Fmax is a kinetic selection variable. Based on the obtained results and the analyses performed it may be concluded that a training factor dominant for maintaining a vertical position by

  10. Moonlight Drives Ocean-Scale Mass Vertical Migration of Zooplankton during the Arctic Winter.

    Science.gov (United States)

    Last, Kim S; Hobbs, Laura; Berge, Jørgen; Brierley, Andrew S; Cottier, Finlo

    2016-01-25

    In extreme high-latitude marine environments that are without solar illumination in winter, light-mediated patterns of biological migration have historically been considered non-existent [1]. However, diel vertical migration (DVM) of zooplankton has been shown to occur even during the darkest part of the polar night, when illumination levels are exceptionally low [2, 3]. This paradox is, as yet, unexplained. Here, we present evidence of an unexpected uniform behavior across the entire Arctic, in fjord, shelf, slope and open sea, where vertical migrations of zooplankton are driven by lunar illumination. A shift from solar-day (24-hr period) to lunar-day (24.8-hr period) vertical migration takes place in winter when the moon rises above the horizon. Further, mass sinking of zooplankton from the surface waters and accumulation at a depth of ∼50 m occurs every 29.5 days in winter, coincident with the periods of full moon. Moonlight may enable predation of zooplankton by carnivorous zooplankters, fish, and birds now known to feed during the polar night [4]. Although primary production is almost nil at this time, lunar vertical migration (LVM) may facilitate monthly pulses of carbon remineralization, as they occur continuously in illuminated mesopelagic systems [5], due to community respiration of carnivorous and detritivorous zooplankton. The extent of LVM during the winter suggests that the behavior is highly conserved and adaptive and therefore needs to be considered as "baseline" zooplankton activity in a changing Arctic ocean [6-9]. VIDEO ABSTRACT. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Numerical simulation of water evaporation inside vertical circular tubes

    Science.gov (United States)

    Ocłoń, Paweł; Nowak, Marzena; Majewski, Karol

    2013-10-01

    In this paper the results of simplified numerical analysis of water evaporation in vertical circular tubes are presented. The heat transfer in fluid domain (water or wet steam) and solid domain (tube wall) is analyzed. For the fluid domain the temperature field is calculated solving energy equation using the Control Volume Method and for the solid domain using the Finite Element Method. The heat transfer between fluid and solid domains is conjugated using the value of heat transfer coefficient from evaporating liquid to the tube wall. It is determined using the analytical Steiner-Taborek correlation. The pressure changes in fluid are computed using Friedel model.

  12. Calculating mass transfer from vertical wet fabrics using a free convection heat transfer correlation

    Energy Technology Data Exchange (ETDEWEB)

    Tafreshi, H. Vahedi; Ercan, E.; Pourdeyhimi, B. [North Carolina State University, Nonwovens Cooperative Research Center, Raleigh, NC (United States)

    2006-07-15

    In this note, the evaporation rate from a vertical wet fabric sheet is calculated using a free convection heat transfer correlation. Chilton-Colburn analogy is used to derive a mass transfer correlation from a heat transfer correlation proposed by Churchill and Chu for free convection from a vertical isothermal plate. The mass transfer rate obtained from this expression has shown excellent agreement with experimental data. (orig.)

  13. Thermal structure of a lake with water in vertical motion

    Energy Technology Data Exchange (ETDEWEB)

    Zito, G.; Mongelli, F. (Bari Univ. (Italy). Ist. di Geodesia e Geofisica)

    The vertical temperature structures of the seasonal thermocline of two lakes in temperate latitude with different feedings have been examined experimentally and reproduced theoretically by the basic equation of heat diffusion. One of these lakes is fed mainly from springs emerging from the lake bottom: as a consequence a vertical motion of water is established. The other lake is fed from the former by a small superficial channel. It is argued that the observed quantitative features of the stratification cycle agree with the theoretical calculations in both lakes with the same value of the molecular thermal diffusivity. Moreover, the seasonal thermocline of the lake with the bottom feeding is reduced: this involves a faster drop in the temperature amplitude of the annual cycle.

  14. Water Absorbing Plantation Clay for Vertical Greenery System

    Directory of Open Access Journals (Sweden)

    Yu Lih-Jiun

    2016-01-01

    Full Text Available With the arises of environmental conscious, the usage of vertical garden system has become more popular in urban cities. Citizens can enjoys the benefits of energy and cost saving besides ornamental effect. More investigations have been conducted on green facades led to the cities ecological enhancement.However, limited plants species can be planted for green facades systems as this system does not provide sufficient soil and nutrients for common plants. Alternative plantation methods such as planted box and felt system required additional maintenance attention. The idea of using clay composite which consists of nutritious soil, water absorbing polymer and flexible cement clay potentially become alternative vertical greenery systems that offers economic and sustainable plantation platform for more variety of plants.The fabricating of clay composite involved three processes, they are: mixing, moulding and drying. Physical properties characterisation (density, pH, compression test, aging test and water immersion test were tested on the dried fabricated clay composite to ensure their sustainability in tropical climate. The results showed that clay composite with 1.5 wt% of cement and 0.3 wt% superabsorbent polymer shows optimum water absorbing properties. This system are expected to enable more agriculture activities in urban living.

  15. Seasonal Mass Changes and Crustal Vertical Deformations Constrained by GPS and GRACE in Northeastern Tibet

    Directory of Open Access Journals (Sweden)

    Yuanjin Pan

    2016-08-01

    Full Text Available Surface vertical deformation includes the Earth’s elastic response to mass loading on or near the surface. Continuous Global Positioning System (CGPS stations record such deformations to estimate seasonal and secular mass changes. We used 41 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs, in northeastern Tibet. The first common mode shows clear seasonal changes, indicating seasonal surface mass re-distribution around northeastern Tibet. The GPS-derived result is then assessed in terms of the mass changes observed in northeastern Tibet. The GPS-derived common mode vertical change and the stacked Gravity Recovery and Climate Experiment (GRACE mass change are consistent, suggesting that the seasonal surface mass variation is caused by changes in the hydrological, atmospheric and non-tidal ocean loads. The annual peak-to-peak surface mass changes derived from GPS and GRACE results show seasonal oscillations in mass loads, and the corresponding amplitudes are between 3 and 35 mm/year. There is an apparent gradually increasing gravity between 0.1 and 0.9 μGal/year in northeast Tibet. Crustal vertical deformation is determined after eliminating the surface load effects from GRACE, without considering Glacial Isostatic Adjustment (GIA contribution. It reveals crustal uplift around northeastern Tibet from the corrected GPS vertical velocity. The unusual uplift of the Longmen Shan fault indicates tectonically sophisticated processes in northeastern Tibet.

  16. Painful vertical diplopia as a presentation of a pituitary mass

    Directory of Open Access Journals (Sweden)

    Mandal Kaveri

    2007-03-01

    Full Text Available Abstract Background Pituitary tumours may present with a variety of neurological and endocrinological signs and symptoms. It is very rare however for them to present with sudden onset painful diplopia. The current literature and possible mechanisms for this are discussed. Case presentation We describe a case of a pituitary mass which presented with sudden onset painful diplopia with an associated restricted pattern on Lees Chart testing. This led to an initial working diagnosis of orbital myositis. Conclusion Awareness of different modes of presentation of pituitary lesions is important so that appropriate imaging may be requested and delay in diagnosis prevented.

  17. Natural Convection Heat and Mass Transfer from Falling Films in Vertical Channels

    Science.gov (United States)

    Buck, Gregory Allen

    1990-01-01

    In the design of solar collector/regenerators for use in open cycle absorption refrigeration (OCAR) units, the problem of predicting evaporation rates and solution temperatures is of paramount importance in determining overall cycle performance. This transport of heat and mass is dominated by natural convection with buoyant forces primarily generated as a result of film heating by the solar flux, but aided by the evaporation of water (the lighter species) into the rising moist air stream. In order to better understand the mechanism of these combined buoyant interactions, the governing equations for natural convection flow in a vertical channel bounded by a heated falling film (simulating a glazed collector/regenerator) were solved using several different finite difference techniques. The numerical results were validated against existing experimental and numerical results for simplified boundary conditions. The appropriate nondimensionalization for the falling film boundary condition was established, ostensibly for the first time, and a parametric study for an air-water vapor mixture has been presented. Curve fits to the numerical results were determined for engineering design applications. To further confirm the validity of the numerical solutions, an experimental apparatus was constructed using electric resistance heat to simulate the constant heat flux of the solar source. Water was introduced at the top of this heated vertical surface at various flow rates and under various supplied heat fluxes, and a natural convection channel flow generated between the heated falling film and a parallel, plexiglass surface. Film temperatures and moist air velocity profiles were measured at various streamwise (vertical) locations for comparison with the numerical results. In general, measured film temperatures were 15 to 20 percent lower than the predicted values, but came to within 3 percent of the predictions when experimental uncertainty was incorporated into the numerical

  18. Heat and mass transfer in a vertical flue ring furnace

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Mona

    1997-12-31

    The main emphasis of this thesis was the design of a mathematical simulation model for studying details in the baking of anodes in the Hydro Aluminium anode baking furnace. The change of thermal conductivity, density, porosity and permeability during heat treatment was investigated. The Transient Plane Source technique for measuring thermal conductivity of solids was used on green carbon materials during the baking process in the temperature range 20-600 {sup o}C. Next, change of mass, density, porosity and permeability of anode samples were measured after being baked to temperatures between 300 and 1200 {sup o}C. The experimental data were used for parameter estimation and verification of property models for use in the anode baking models. Two distinct mathematical models have been modified to study the anode baking. A transient one-dimensional model for studying temperature, pressure and gas evolution in porous anodes during baking was developed. This was extended to a two-dimensional model incorporating the flue gas flow. The mathematical model which included porous heat and mass transfer, pitch pyrolysis, combustion of volatiles, radiation and turbulent channel flow, was developed by source code modification of the Computational Fluid Dynamics code FLUENT. The two-dimensional geometry of a flue gas channel adjacent to a porous flue gas wall, packing coke and anode was used for studying the effect of different firing strategies, raw materials properties and packing coke thickness. The model proved useful for studying the effects of heating rate, geometry and anode properties. 152 refs., 73 figs, 11 tabs.

  19. Finescale Water-Mass Variability from ARGO Profiling Floats

    Science.gov (United States)

    2015-09-30

    assessment of water-mass (aka thermohaline or spice) variability as a measure of stirring along isopycnals, as well as density ratio Rρ statistics, from the...Schmitt 1990) or double-diffusively-driven thermohaline interleaving. The coarse temporal and vertical sampling of the data are unlikely to allow...us to distinguish between these 2 mechanisms though persistent thermohaline intrusions spanning O(1000 km) have been reported in the equatorial

  20. An Analysis of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M.; Persson, P.

    1963-06-15

    A method of predicting the burnout conditions for flow of boiling water in vertical round ducts is presented. The analysis predicts that the burnout conditions are independent of the L/d-ratio and the inlet temperature, and that the burnout steam quality decreases with increasing surface heat flux and increasing mass velocity. It was also found that the burnout steam quality at low pressures increases with the pressure and reaches a maximum at approximately 70 kg/cm, and thereafter decreases with a further increase of the pressure. The theoretical result compares very well with experimental data from different sources.

  1. Features of Red Sea Water Masses

    KAUST Repository

    Kartadikaria, Aditya R.

    2015-04-01

    Features of Red Sea water mass can be divided into three types but best to be grouped into two different classes that are split at the potential density line σθ=27.4. The surface water (0-50 m) and the intermediate water (50-200 m) have nearly identical types of water mass. They appear as a maxima salinity layer for the water mass that has σθ > 26.0, and as a minimum salinity layer for water mass that has σθ < 26.0. These types of water masses are strongly affected by mixing that is controlled by seasonal variability, fresh water intrusion of the Gulf of Aden Intermediate Water (GAIW), and eddies variability. Two types of mixing; isopycnal and diapycnal mixing are part of important physical phenomena that explain the change of water mass in the Red Sea. The isopycnal mixing occurs at the neutral potential density line, connecting the Red Sea with its adjacent channel, the Gulf of Aden. Diapycnal mixing is found as a dominant mixing mode in the surface of the Red Sea Water and mainly due to energetic eddy activity. Density gradients, across which diapycnal mixing occurs, in the Red Sea are mainly due to large variations in salinity. The isolation of an extreme haline water mass below the thermocline contributes to the generation of the latitudinal shift and low diapycnal mixing. This finding further explains the difference of spatial kinetic mixing between the RSW and the Indian Ocean basin.

  2. The relationship between vertical cup‑disc ratio and body mass ...

    African Journals Online (AJOL)

    Only 102 (10.6%) had cupped discs. There was no statistically significant relationship between BMI and VCDR (P= 0.947; R2 = 0.01). Conclusion: Obesity was not associated with a larger VCDR. Keywords: Body mass index, relationship, vertical cup/disc ratio. Nigerian Journal of Clinical Practice • Oct-Dec 2013 • Vol 16 ...

  3. Simultaneous heat and mass transfer inside a vertical channel in evaporating a heated falling glycols liquid film

    Science.gov (United States)

    Nait Alla, Abderrahman; Feddaoui, M'barek; Meftah, Hicham

    2015-12-01

    The interactive effects of heat and mass transfer in the evaporation of ethylene and propylene glycol flowing as falling films on vertical channel was investigated. The liquid film falls along a left plate which is externally subjected to a uniform heat flux while the right plate is the dry wall and is kept thermally insulated. The model solves the coupled governing equations in both phases together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by Tridiagonal Matrix Algorithm. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied glycols and water in the same conditions is made. The results indicate that water evaporates in more intense way in comparison to glycols and the increase of gas flow rate tends to improve slightly the evaporation.

  4. Modeling of Kinetics of Air Entrainment in Water Produced by Vertically Falling Water Flow

    Directory of Open Access Journals (Sweden)

    Adelė VAIDELIENĖ

    2014-09-01

    Full Text Available This study analyzes the process of air entrainment in water caused by vertically falling water flow in the free water surface. The new kinetic model of air entrainment in water was developed. This model includes the process of air entrapment, as well as air removal, water sputtering and resorption. For the experimental part of this study a new method based on digital image processing was developed. Theoretical and experimental methods were used for determining air concentration and its distribution in water below the air-water interface. A new presented mathematical model of air entrainment process allows determining of air bubbles and water droplets concentrations distribution. The obtained theoretical and experimental results were in good agreement. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4871

  5. Water masses in the Gulf of Aden

    Digital Repository Service at National Institute of Oceanography (India)

    Al Saafani, M.A.; Shenoi, S.S.C.

    Hydrographic data collected from Gulf of Aden since 1920 have been compiled to identify and refine the definitions of water masses in the Gulf of Aden (GA) and to describe their spatio-temporal variability. Four water masses have been identified...

  6. A Lightweight Vertical Rosette for Deployment in Ice Covered Water

    Science.gov (United States)

    Smethie, W. M.; Chayes, D. N.; Perry, R. S.; Schlosser, P.

    2009-12-01

    clamped shut. The modules are returned to the base camp where a variety of water samples are drawn and processed. We routinely measure samples for salinity, oxygen, nutrients, tritium, helium isotopes, CFCs, SF6, oxygen isotopes, barium and I-129, but the rosette sampler can be used for a wide range of substances. The water temperature of each bottle is measured when the oxygen sample is drawn and the average warming during the 6 - 10 hour transit time back to the base camp and during the sampling process is 2.5°C. There is no evidence in the gas samples of degassing or contamination with air and all samples are of very high quality. Vertical profiles will be presented to demonstrate data quality.

  7. Investigation of vertical mass changes in the south of Izmir (Turkey ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 1. Investigation of vertical mass changes in the south of Izmir (Turkey) by monitoring microgravity and GPS/GNSS methods. Oya Pamukçu Tolga Gönenç Ayça Çirmik Petek Sindirgi İlknur Kaftan Özer Akdemir. Volume 124 Issue 1 February 2015 pp 137- ...

  8. Mass Transfer Process by Magneto-convection at a Solid-liquid Interface in a Heterogeneous Vertical Magnetic Field

    Science.gov (United States)

    Sugiyama, Atsushi; Morisaki, Shigeyoshi; Aogaki, Ryoichi

    2003-08-01

    When an external magnetic field is vertically imposed on a solid-liquid interface, the mass transfer process of a solute dissolving from or depositing on the interface was theoretically examined. In a heterogeneous vertical magnetic field, a material receives a magnetic force in proportion to the product of the magnetic susceptibility, the magnetic flux density B and its gradient (dB/dz). As the reaction proceeds, a diffusion layer of the solute with changing susceptibility is formed at the interface because of the difference of the the magnetic susceptibility on the concentration of the solute. In the case of an unstable condition where the dimensionless number of magneto-convection S takes a positive value, the magnetic force is applied to the layer and induces numerous minute convection cells. The mass transfer of the solute is thus accelerated, so that it is predicted that the mass flux increases with the 1/3rd order of B(dB/dz) and the 4/3rd order of the concentration. The experiment was then performed by measuring the rate of the dissolution of copper sulfate pentahydrate crystal in water.

  9. Thermal diffusion effects on free convection and mass transfer flow for an infinite vertical plate

    CERN Document Server

    Abdel-Khalek, M M

    2003-01-01

    A theoretical study is performed to examine the effects of thermal diffusion on free convection and mass transfer flow for an infinite vertical plate. The governing equations for the fluid flow and the heat transfer are solved subject to the relevant boundary conditions. A perturbation technique is used to obtain expressions for the velocity field and skin friction. An analysis of the effects of the parameters on the concentration, velocity and temperature profiles as well as skin friction and the rate of mass and heat transfer is done with the aid of graphs.

  10. Water masses and general hydrography along the west coast of India during early March

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Varkey, M.J.; Das, V.K.; Gouveia, A.D.

    Structure of water masses along the west coast of India from Bombay to Trivandrum has been studied through vertical sections of temperature, salinity and density during 3-17 March 1977. The Arabian Sea high salinity water spreads south as a core...

  11. Vertical and horizontal transport of mesospheric Na: Implications for the mass influx of cosmic dust

    Science.gov (United States)

    Gardner, Chester S.; Liu, Alan Z.; Guo, Yafang

    2017-09-01

    The mesospheric metal layers are formed by the vaporization of high-speed cosmic dust particles as they enter the Earth's upper atmosphere. We show that the downward fluxes of these metal atoms, induced locally by waves and turbulence, are related in a straightforward way to the meteoric influxes of the metals, their chemical losses and their advective transport by the large-scale vertical and horizontal motions associated with the meridional circulation system. Above the peak of the metal layers where chemical losses and large-scale vertical motions are small, the wave-induced flux is insensitive to changes in local wave activity. If the downward transport velocity increases, because wave activity increases, then in response, the metal densities will decrease to maintain a constant vertical flux. By fitting the theoretical Na flux profile to the annual mean vertical flux profile measured during the night at the Starfire Optical Range, NM, we derive improved estimates for the global influxes of both Na and cosmic dust. The mean Na influx is 22,500±1050 atoms/cm2/s, which equals 389±18 kg/d for the global input of Na vapor. If the Na composition of the dust particles is identical to CI chondritic meteorites (4990 ppm by mass), then the global influx of cosmic dust is 176±38 t/d. If the composition is identical to ordinary chondrites (7680 ppm), the global dust influx is 107±22 t/d.

  12. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.

    1999-01-01

    - The flow structure in vertical mantle heat exchangers was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the mantle were measured using a particle Image Velocimetry (PIV) system. A CFD simulation model of vertical mantle heat...... exchangers was also developed for detailed evaluation of the heat flux distribution over the mantle surface. Both the experimental and simulation results indicate that distribution of the flow around the mantle gap is governed by buoyancy driven recirculation in the mantle. The operation of the mantle...

  13. MASS TRANSFER EFFECTS ON ACCELERATED VERTICAL PLATE IN A ROTATING FLUID WITH FIRST ORDER CHEMICAL REACTION

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2012-12-01

    Full Text Available The precise analysis of the rotation effects on the unsteady flow of an incompressible fluid past a uniformly accelerated infinite vertical plate with variable temperature and mass diffusion has been undertaken, in the presence of a homogeneous first order chemical reaction. The dimensionless governing equations are solved using the Laplace-transform technique. The plate temperature as well as the concentration near the plate increase linearly with time. The velocity profiles, temperature and concentration are studied for different physical parameters, like the chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that the velocity increases with increasing values of thermal Grashof number or mass Grashof number. It is also observed that the velocity increases with decreasing rotation parameter Ω.

  14. Using Vertical Structure to Infer the Total Mass Hidden in a Debris Disk

    Science.gov (United States)

    Daley, Cail; Hughes, A. Meredith; Carter, Evan; Flaherty, Kevin; Stafford Lambros, Zachary; Pan, Margaret; Schlichting, Hilke; Chiang, Eugene; Wilner, David; Dent, Bill; Carpenter, John; Andrews, Sean; MacGregor, Meredith Ann; Moor, Attila; Kospal, Agnes

    2018-01-01

    Disks of optically thin debris dust surround ≥ 20% of main sequence stars and mark the final stage of planetary system evolution. The features of debris disks encode dynamical interactions between the dust and any unseen planets embedded in the disk. The vertical distribution of the dust is particularly sensitive to the total mass of planetesimal bodies in the disk, and is therefore well suited for constraining the prevalence of otherwise unobservable Uranus and Neptune analogs. Inferences of mass from debris disk vertical structure have previously been applied to infrared and optical observations of several systems, but the smaller particles traced by short-wavelength observations are ‘puffed up’ by radiation pressure, yielding only upper limits on the total embedded mass. The large grains that dominate the emission at millimeter wavelengths are essentially impervious to the effects of stellar radiation, and therefore trace the underlying mass distribution more directly. Here we present 1.3mm dust continuum observations of the debris disk around the nearby M star AU Mic with the Atacama Large Millimeter/submillimeter Array (ALMA). The 3 au spatial resolution of the observations, combined with the favorable edge-on geometry of the system, allows us to measure the vertical structure of a debris disk at millimeter wavelengths for the first time. We analyze the data using a ray-tracing code that translates a 2-D density and temperature structure into a model sky image of the disk. This model image is then compared directly to the interferometric data in the visibility domain, and the model parameters are explored using a Markov Chain Monte Carlo routine. We measure a scale height-to-radius ratio of 0.03, which we then compare to a theoretical model of steady-state, size-dependent velocity distributions in the collisional cascade to infer a total mass within the disk of ∼ 1.7 Earth masses. These measurements rule out the presence of a gas giant or Neptune

  15. Quantifying horizontal and vertical tracer mass fluxes in an idealized valley during daytime

    Directory of Open Access Journals (Sweden)

    D. Leukauf

    2016-10-01

    Full Text Available The transport and mixing of pollution during the daytime evolution of a valley boundary layer is studied in an idealized way. The goal is to quantify horizontal and vertical tracer mass fluxes between four different valley volumes: the convective boundary layer, the slope wind layer, the stable core, and the atmosphere above the valley. For this purpose, large eddy simulations (LES are conducted with the Weather Research and Forecasting (WRF model for a quasi-two-dimensional valley. The valley geometry consists of two slopes with constant slope angle and is homogeneous in the along-valley direction. The surface sensible heat flux is horizontally homogeneous and prescribed by a sine function. The initial sounding is characterized by an atmosphere at rest and a constant Brunt–Väisälä frequency. Various experiments are conducted for different combinations of surface heating amplitudes and initial stability conditions. A passive tracer is released with an arbitrary but constant rate at the valley floor and resulting tracer mass fluxes are evaluated between the aforementioned volumes.As a result of the surface heating, a convective boundary layer is established in the lower part of the valley with a stable layer on top – the so-called stable core. The height of the slope wind layer, as well as the wind speed within, decreases with height due to the vertically increasing stability. Hence, the mass flux within the slope wind layer decreases with height as well. Due to mass continuity, this along-slope mass flux convergence leads to a partial redirection of the flow from the slope wind layer towards the valley centre and the formation of a horizontal intrusion above the convective boundary layer. This intrusion is associated with a transport of tracer mass from the slope wind layer towards the valley centre. A strong static stability and/or weak forcing lead to large tracer mass fluxes associated with this phenomenon. The total export of tracer

  16. Quantifying horizontal and vertical tracer mass fluxes in an idealized valley during daytime

    Science.gov (United States)

    Leukauf, Daniel; Gohm, Alexander; Rotach, Mathias W.

    2016-10-01

    The transport and mixing of pollution during the daytime evolution of a valley boundary layer is studied in an idealized way. The goal is to quantify horizontal and vertical tracer mass fluxes between four different valley volumes: the convective boundary layer, the slope wind layer, the stable core, and the atmosphere above the valley. For this purpose, large eddy simulations (LES) are conducted with the Weather Research and Forecasting (WRF) model for a quasi-two-dimensional valley. The valley geometry consists of two slopes with constant slope angle and is homogeneous in the along-valley direction. The surface sensible heat flux is horizontally homogeneous and prescribed by a sine function. The initial sounding is characterized by an atmosphere at rest and a constant Brunt-Väisälä frequency. Various experiments are conducted for different combinations of surface heating amplitudes and initial stability conditions. A passive tracer is released with an arbitrary but constant rate at the valley floor and resulting tracer mass fluxes are evaluated between the aforementioned volumes.As a result of the surface heating, a convective boundary layer is established in the lower part of the valley with a stable layer on top - the so-called stable core. The height of the slope wind layer, as well as the wind speed within, decreases with height due to the vertically increasing stability. Hence, the mass flux within the slope wind layer decreases with height as well. Due to mass continuity, this along-slope mass flux convergence leads to a partial redirection of the flow from the slope wind layer towards the valley centre and the formation of a horizontal intrusion above the convective boundary layer. This intrusion is associated with a transport of tracer mass from the slope wind layer towards the valley centre. A strong static stability and/or weak forcing lead to large tracer mass fluxes associated with this phenomenon. The total export of tracer mass out of the valley

  17. Vertical gradients in water chemistry and age in the Northern High Plains Aquifer, Nebraska, 2003

    Science.gov (United States)

    McMahon, P.B.; Böhlke, J.K.; Carney, C.P.

    2007-01-01

    The northern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of Colorado, Kansas, Nebraska, South Dakota, and Wyoming. Despite the aquifer’s importance to the regional economy, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey’s National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the northern High Plains aquifer were analyzed for major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, dissolved gases, and other parameters to evaluate vertical gradients in water chemistry and age in the aquifer. Chemical data and tritium and radiocarbon ages show that water in the aquifer was chemically and temporally stratified in the study area, with a relatively thin zone of recently recharged water (less than 50 years) near the water table overlying a thicker zone of older water (1,800 to 15,600 radiocarbon years). In areas where irrigated agriculture was an important land use, the recently recharged ground water was characterized by elevated concentrations of major ions and nitrate and the detection of pesticide compounds. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions. The concentration increases were accounted for primarily by dissolved calcium, sodium, bicarbonate, sulfate, and silica. In general, the chemistry of ground water throughout the aquifer was of high quality. None of the approximately 90 chemical constituents analyzed in each sample exceeded primary drinking-water standards.Mass-balance models indicate that changes in groundwater chemistry along flow paths in the aquifer can be accounted for by small amounts of feldspar and calcite dissolution; goethite

  18. Effects of parabolic motion on an isothermal vertical plate with constant mass flux

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2014-12-01

    Full Text Available An analytical study of free convection flow near a parabolic started infinite vertical plate with isothermal in the presence of uniform mass flux was considered. The mathematical model is reduced to a system of linear partial differential equations for the velocity, the concentration and the temperature; the closed form exact solutions were obtained by the Laplace transform technique. The velocity, temperature and concentration profiles for the different parameters as thermal Grashof number Gr, mass Grashof number Gc, Prandtl number Pr, Schmidt number Sc and time t were graphed and the numerical values for the skin friction were as tabulated. It is observed that the velocity is enhanced as the time increased and the velocity is decreased as the Prandtl number increased.

  19. Vertical Mulching e manejo da água em semeadura direta Vertical Mulching and water management in no tillage system

    Directory of Open Access Journals (Sweden)

    Sandra Maria Garcia

    2008-04-01

    soil structure degradation, soil compaction below the arable layer, and decreased macroporosity. These changes resulted in reduced soil water infiltration rate and increased runoff, soil erosion and sedimentation in rivers and reservoirs. In the no tillage system the water erosion from the soil surface is practically controlled, and the terraces were eliminated by the farmers. Nevertheless, the surface flow is higher than it was in the conventional tillage system. With the objective of evaluating the hydrological behavior of vertical mulching in no tillage systems as related to runoff, this study was developed in the growing seasons of 2002/2003 and 2003/2004 on a Red Latosol (Oxisol in the Planalto Médio region of Rio Grande do Sul State, Brazil. A field experiment was installed using plots without vertical mulching, with vertical mulching at every 10 m and with vertical mulching at every 5 m. It was used a randomized block design with three replications. Leveled furrows of vertical mulching, perpendicular to the soil slope (0.08 m wide by 0.38 m deep were dug and filled with straw compacted enough to stabilize the furrow sides. Rainfall intensities of 70 and 106 mm h-1 were simulated on soybean and wheat to determine runoff, soil water infiltration rate, and nutrient and organic carbon concentration in the runoff. The results showed that vertical mulching in no tillage significantly reduces surface runoff and increases the water infiltration rate into the soil. It also reduces the total nutrient and organic carbon losses due to the reduction of water runoff.

  20. On the vertical exchange of heat, mass and momentum over complex, mountainous terrain

    Directory of Open Access Journals (Sweden)

    Mathias Walter Rotach

    2015-12-01

    Full Text Available The role of the atmospheric boundary layer (ABL in the atmosphere-climate system is the exchange of heat, mass and momentum between ‘the earth’s surface’ and the atmosphere. Traditionally, it is understood that turbulent transport is responsible for this exchange and hence the understanding and physical description of the turbulence structure of the boundary layer is key to assess the effectiveness of earth-atmosphere exchange. This understanding is rooted in the (implicit assumption of a scale separation or spectral gap between turbulence and mean atmospheric motions, which in turn leads to the assumption of a horizontally homogeneous and flat (HHF surface as a reference, for which both physical understanding and model parameterizations have successfully been developed over the years. Over mountainous terrain, however, the ABL is generically inhomogeneous due to both thermal (radiative and dynamic forcing. This inhomogeneity leads to meso-scale and even sub-meso-scale flows such as slope and valley winds or wake effects. It is argued here that these (submeso-scale motions can significantly contribute to the vertical structure of the boundary layer and hence vertical exchange of heat and mass between the surface and the atmosphere. If model grid resolution is not high enough the latter will have to be parameterized (in a similar fashion as gravity wave drag parameterizations take into account the momentum transport due to gravity waves in large-scale models. In this contribution we summarize the available evidence of the contribution of (submeso-scale motions to vertical exchange in mountainous terrain from observational and numerical modeling studies. In particular, a number of recent simulation studies using idealized topography will be summarized and put into perspective – so as to identify possible limitations and areas of necessary future research.

  1. Monitoring Vertical Crustal Deformation and Gravity Variations during Water Level Changes at the Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    WANG Wei

    2017-06-01

    Full Text Available Monitoring vertical crustal deformation and gravity changes during water level changes at the Three Gorges reservoir is important for the safe operation of the Three Gorges Dam and for the monitoring and prevention of a regional geological disaster. In this study, we determined vertical crustal deformation and gravity changes during water level variations of the Three Gorges reservoir from direct calculations and actual measurements and a comprehensive solution. We used water areas extracted image data from the ZY-3 satellite and water level data to calculate gravity changes and vertical crustal deformation caused by every 5 m change in the water level due to storage and drainage of the Three Gorges reservoir from 145 m to 175 m. The vertical crustal deformation was up to 30 mm. The location of gravity change above 20 μ Gal(1 Gal=10-2 m/s2 was less than 2 km from the centerline of the Yangtze River. The CORS ES13 in Badong, near the reservoir, measured the vertical crustal deformation during water level changes. Because of the small number of CORS and gravity stations in the Three Gorges reservoir area, monitoring deformation and gravity related to changes in the Three Gorges reservoir water level cannot be closely followed. Using 26 CORS and some of the gravity stations in the Three Gorges area and based on loading deformation and the spherical harmonic analysis method, an integrated solution of vertical deformation and gravity variations during water level changes of the reservoir was determined, which is consistent with the actual CORS monitoring results. By comparison, we found that an integrated solution based on a CORS network can effectively enhance the capability of monitoring vertical crustal deformation and gravity changes during water level variations of the reservoir.

  2. The Correlation of Coupled Heat and Mass Transfer Experimental Data for Vertical Falling Film Absorption

    Energy Technology Data Exchange (ETDEWEB)

    Keyhani, M; Miller, W A

    1999-11-14

    Absorption chillers are gaining global acceptance as quality comfort cooling systems. These machines are the central chilling plants and the supply for cotnfort cooling for many large commercial buildings. Virtually all absorption chillers use lithium bromide (LiBr) and water as the absorption fluids. Water is the refrigerant. Research has shown LiBr to he one of the best absorption working fluids because it has a high affinity for water, releases water vapor at relatively low temperatures, and has a boiling point much higher than that of water. The heart of the chiller is the absorber, where a process of simultaneous heat and mass transfer occurs as the refrigerant water vapor is absorbed into a falling film of aqueous LiBr. The more water vapor absorbed into the falling film, the larger the chiller's capacity for supporting comfort cooling. Improving the performance of the absorber leads directly to efficiency gains for the chiller. The design of an absorber is very empirical and requires experimental data. Yet design data and correlations are sparse in the open literature. The experimental data available to date have been derived at LiBr concentrations ranging from 0.30 to 0.60 mass fraction. No literature data are readily available for the design operating conditions of 0.62 and 0.64 mass fraction of LiBr and absorber pressures of 0.7 and 1.0 kPa.

  3. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts (Part 2)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M.; Persson, P.; Nilsson, L.; Eriksson, O.

    1963-06-15

    The present report deals with the results of the second phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. The following ranges of variables were studied and 809 burnout measurements were obtained. Pressure 5. 3 < p < 37. 3 kg/cm{sup 2}; Inlet subcooling 56 < {delta}t{sub sub} < 212 deg C; Steam quality 0. 20 < x{sub BO} < 0.95; Heat Flux 50 < q/A < 515 W/cm{sup 2}; Mass velocity 100 < m'/F < 1890 kg/m{sup 2}s; Heated length 600 < L < 2500 mm; Duct diameter d = 10 mm. The results are presented in diagrams, where for a certain geometry, the burnout steam qualities, x{sub BO} , were plotted against the pressure with the surface heat flux as parameter. The data have been correlated by curves, and the scatter around the curves is less than {+-} 5 per cent. In the ranges investigated, the observed steam quality at burnout, X{sub BO} generally decreases with increasing heat flux and mass velocity but increases with increasing pressure. The data have been compared with the empirical correlation by Tong, and excellent agreement was found for pressures higher than 10 kg/cm{sup 2}.

  4. Radiation and chemical reaction effects on isothermal vertical oscillating plate with variable mass diffusion

    Directory of Open Access Journals (Sweden)

    Manivannan Kaliappan

    2009-01-01

    Full Text Available The unsteady flow of a viscous incompressible flow past an infinite isothermal vertical oscillating plate, in the presence of thermal radiation and homogeneous chemical reaction of first order has been studied. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised to Tw and the concentration level near the plate is raised linearly with respect to time. An exact solution to the dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity, temperature, and concentration are studied for different physical parameters like phase angle, radiation parameter, chemical reaction parameter, Schmidt number, thermal Grashof number, mass Grashof number, and time are studied graphically. It is observed that the velocity increases with decreasing phase angle wt.

  5. Vertical Distribution of Dust and Water Ice Aerosols from CRISM Limb-geometry Observations

    Science.gov (United States)

    Smith, Michael Doyle; Wolff, Michael J.; Clancy, Todd; Kleinbohl, Armin; Murchie, Scott L.

    2013-01-01

    [1] Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (approx. 40-50km) during the perihelion season than during the aphelion season (<20km), and the Hellas region consistently shows more dust mixed to higher altitudes than other locations. Detached water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons.

  6. Arctic stratospheric dehydration - Part 1: Unprecedented observation of vertical redistribution of water

    Science.gov (United States)

    Khaykin, S. M.; Engel, I.; Vömel, H.; Formanyuk, I. M.; Kivi, R.; Korshunov, L. I.; Krämer, M.; Lykov, A. D.; Meier, S.; Naebert, T.; Pitts, M. C.; Santee, M. L.; Spelten, N.; Wienhold, F. G.; Yushkov, V. A.; Peter, T.

    2013-11-01

    We present high-resolution measurements of water vapour, aerosols and clouds in the Arctic stratosphere in January and February 2010 carried out by in situ instrumentation on balloon sondes and high-altitude aircraft combined with satellite observations. The measurements provide unparalleled evidence of dehydration and rehydration due to gravitational settling of ice particles. An extreme cooling of the Arctic stratospheric vortex during the second half of January 2010 resulted in a rare synoptic-scale outbreak of ice polar stratospheric clouds (PSCs) remotely detected by the lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite. The widespread occurrence of ice clouds was followed by sedimentation and consequent sublimation of ice particles, leading to vertical redistribution of water inside the vortex. A sequence of balloon and aircraft soundings with chilled mirror and Lyman- α hygrometers (Cryogenic Frostpoint Hygrometer, CFH; Fast In Situ Stratospheric Hygrometer, FISH; Fluorescent Airborne Stratospheric Hygrometer, FLASH) and backscatter sondes (Compact Optical Backscatter Aerosol Detector, COBALD) conducted in January 2010 within the LAPBIAT (Lapland Atmosphere-Biosphere Facility) and RECONCILE (Reconciliation of Essential Process Parameters for an Enhanced Predictability of Arctic Stratospheric Ozone Loss and its Climate Interactions) campaigns captured various phases of this phenomenon: ice formation, irreversible dehydration and rehydration. Consistent observations of water vapour by these independent measurement techniques show clear signatures of irreversible dehydration of the vortex air by up to 1.6 ppmv in the 20-24 km altitude range and rehydration by up to 0.9 ppmv in a 1 km thick layer below. Comparison with space-borne Aura MLS (Microwave Limb Sounder) water vapour observations allow the spatiotemporal evolution of dehydrated air masses within the Arctic vortex to be derived and upscaled.

  7. simulation of vertical water flow through vadose zone

    African Journals Online (AJOL)

    HOD

    hydrological cycle because it holds only a minute fraction of the earth's fresh water as investigated by. [1]. Vadose ... within this zone has applications in fields of hydrology, agriculture and soil engineering [2] and is critical to ... The vegetation cover is Sudan Savannah type, characterized by scattered short trees, shrubs and.

  8. Vertical Resolved Dust Mass Concentration and Backscatter Coefficient Retrieval of Asian Dust Plume Using Quartz Raman Channel in Lidar Measurements

    OpenAIRE

    Noh Young M.; Mueller Detlef; Shin Sungkyun

    2016-01-01

    In this work, we present a method for estimating vertical resolved mass concentration of dust immersed in Asian dust plume using Raman scattering of quartz (silicon dioxide, silica). During the Asian dust period of March 15, 16, and 21 in 2010, Raman lidar measurements detected the presence of quartz, and successfully showed the vertical profiles of the quartz backscatter coefficient. Since the Raman backscatter coefficient was connected with the Raman backscatter differential cross section a...

  9. Annual variations in GPS-measured vertical displacements near Upernavik Isstrøm (Greenland) and contributions from surface mass loading

    DEFF Research Database (Denmark)

    Liu, Lin; Khan, Shfaqat Abbas; van Dam, Tonie

    2017-01-01

    variability. Here we examine the annual changes of the vertical displacements measured at two GPS stations (SRMP and UPVK) near Upernavik Isstrøm in western Greenland. We model elastic loading displacements due to various surface mass loading including three non-ice components: atmospheric pressure, ocean...... bottom pressure, continental water storage, and one ice component, i.e., surface mass balance (SMB). We find that the contribution from atmospheric pressure changes can explain 46% and 78% of the annual amplitude observed in the GPS verticals at SRMP and UPVK, respectively. We also show that removing...... the predicted loading displacements due to SMB adversely increases the annual variance of the GPS residuals. However, using the GPS data alone, we cannot identify the exact cause(s) of this discrepancy because the annual loading displacements are sensitive to the SMB changes from over 85% of the ice sheet area...

  10. Vertical Resolved Dust Mass Concentration and Backscatter Coefficient Retrieval of Asian Dust Plume Using Quartz Raman Channel in Lidar Measurements

    Directory of Open Access Journals (Sweden)

    Noh Young M.

    2016-01-01

    Full Text Available In this work, we present a method for estimating vertical resolved mass concentration of dust immersed in Asian dust plume using Raman scattering of quartz (silicon dioxide, silica. During the Asian dust period of March 15, 16, and 21 in 2010, Raman lidar measurements detected the presence of quartz, and successfully showed the vertical profiles of the quartz backscatter coefficient. Since the Raman backscatter coefficient was connected with the Raman backscatter differential cross section and the number density of quartz molecules, the mass concentration of quartz in the atmosphere can be estimated from the quartz backscatter coefficient. The weight percentage from 40 to 70 % for quartz in the Asian dust was estimated from references. The vertical resolved mass concentration of dust was estimated by quartz mass concentration and weight percentage. We also present a retrieval method to obtain dust backscatter coefficient from the mixed Asian dust and pollutant layer. OPAC (Optical Properties of Aerosol and Clouds simulations were conducted to calculate dust backscatter coefficient. The retrieved dust mass concentration was used as an input parameter for the OPAC calculations. These approaches in the study will be useful for characterizing the quartz dominated in the atmospheric aerosols and estimating vertical resolved mass concentration of dust. It will be especially applicable for optically distinguishing the dust and non-dust aerosols in studies on the mixing state of Asian dust plume. Additionally, the presented method combined with satellite observations is enable qualitative and quantitative monitoring for Asian dust.

  11. Numerical case studies of vertical wall fire protection using water spray

    Directory of Open Access Journals (Sweden)

    L.M. Zhao

    2014-11-01

    Full Text Available Studies of vertical wall fire protection are evaluated with numerical method. Typical fire cases such as heated dry wall and upward flame spread have been validated. Results predicted by simulations are found to agree with experiment results. The combustion behavior and flame development of vertical polymethylmethacrylate slabs with different water flow rates are explored and discussed. Water spray is found to be capable of strengthening the fire resistance of combustible even under high heat flux radiation. Provided result and data are expected to provide reference for fire protection methods design and development of modern buildings.

  12. Measurements of the vertical profile of water vapor abundance in the Martian atmosphere from Mars Observer

    Science.gov (United States)

    Schofield, J. T.; Mccleese, Daniel J.

    1988-01-01

    An analysis is presented of the Pressure Modulator Infrared Radiometer (PMIRR) capabilities along with how the vertical profiles of water vapor will be obtained. The PMIRR will employ filter and pressure modulation radiometry using nine spectral channels, in both limb scanning and nadir sounding modes, to obtain daily, global maps of temperature, dust extinction, condensate extinction, and water vapor mixing ratio profiles as a function of pressure to half scale height or 5 km vertical resolution. Surface thermal properties will also be mapped, and the polar radiactive balance will be monitored.

  13. Mechanisms of flow and water mass variability in Denmark Strait

    Science.gov (United States)

    Moritz, Martin; Jochumsen, Kerstin; Quadfasel, Detlef; Mashayekh Poul, Hossein; Käse, Rolf H.

    2017-04-01

    The dense water export through Denmark Strait contributes significantly to the lower limb of the Atlantic Meridional Overturning Circulation. Overflow water is transported southwestward not only in the deep channel of the Strait, but also within a thin bottom layer on the Greenland shelf. The flow on the shelf is mainly weak and barotropic, exhibiting many recirculations, but may eventually contribute to the overflow layer in the Irminger Basin by spilling events in the northern Irminger Basin. Especially the circulation around Dohrn Bank and the Kangerdlussuaq Trough contribute to the shelf-basin exchange. Moored observations show the overflow in Denmark Strait to be stable during the last 20 years (1996-2016). Nevertheless, flow variability was noticed on time scales of eddies and beyond, i.e. on weekly and interannual scales. Here, we use a combination of mooring data and shipboard hydrographic and current data to address the dominant modes of variability in the overflow, which are (i) eddies, (ii) barotropic pulsations of the plume, (iii) lateral shifts of the plume core position, and (iv) variations in vertical extension, i.e. varying overflow thickness. A principle component analysis is carried out and related to variations in sea surface height and wind stress, derived from satellite measurements. Furthermore, a test for topographic waves is performed. Shelf contributions to the overflow core in the Irminger Basin are identified from measurements of temperature and salinity, as well as velocity, which were obtained during recent cruises in the region. The flow and water mass pattern obtained from the observational data is compared to simulations in a high resolution regional model (ROMS), where tracer release experiments and float deployments were carried out. The modelling results allow a separation between different atmospheric forcing modes (NAO+ vs NAO- situations), which impact the water mass distribution and alter the dense water pathways on the

  14. Vertical distribution and diel vertical migration of krill beneath snow-covered ice and in ice-free waters

    KAUST Repository

    Vestheim, Hege

    2013-11-11

    A bottom mounted upward looking Simrad EK60 120-kHz echo sounder was used to study scattering layers (SLs) and individuals of the krill Meganyctiphanes norvegica. The mooring was situated at 150-m depth in the Oslofjord, connected with an onshore cable for power and transmission of digitized data. Records spanned 5 months from late autumn to spring. A current meter and CTD was associated with the acoustic mooring and a shore-based webcam monitored ice conditions in the fjord. The continuous measurements were supplemented with intermittent krill sampling campaigns and their physical and biological environment.The krill carried out diel vertical migration (DVM) throughout the winter, regardless of the distribution of potential prey. The fjord froze over in mid-winter and the daytime distribution of a mid-water SL of krill immediately became shallower associated with snow fall after freezing, likely related to reduction of light intensities. Still, a fraction of the population always descended all the way to the bottom, so that the krill population by day seemed to inhabit waters with light levels spanning up to six orders of magnitude. Deep-living krill ascended in synchrony with the rest of the population in the afternoon, but individuals consistently reappeared in near-bottom waters already? 1 h after the ascent. Thereafter, the krill appeared to undertake asynchronous migrations, with some krill always being present in near-bottom waters even though the entire population appeared to undertake DVM. The Author 2013. Published by Oxford University Press. All rights reserved.

  15. Precipitation Recycling and the Vertical Distribution of Local and Remote Sources of Water for Precipitation

    Science.gov (United States)

    Bosilovich, Michael G.; Atlas, Robert (Technical Monitor)

    2002-01-01

    Precipitation recycling is defined as the amount of water that evaporates from a region that precipitates within the same region. This is also interpreted as the local source of water for precipitation. In this study, the local and remote sources of water for precipitation have been diagnosed through the use of passive constituent tracers that represent regional evaporative sources along with their transport and precipitation. We will discuss the differences between this method and the simpler bulk diagnostic approach to precipitation recycling. A summer seasonal simulation has been analyzed for the regional sources of the United States Great Plains precipitation. While the tropical Atlantic Ocean (including the Gulf of Mexico) and the local continental sources of precipitation are most dominant, the vertically integrated column of water contains substantial water content originating from the Northern Pacific Ocean, which is not precipitated. The vertical profiles of regional water sources indicate that local Great Plains source of water dominates the lower troposphere, predominantly in the PBL. However, the Pacific Ocean source is dominant over a large portion of the middle to upper troposphere. The influence of the tropical Atlantic Ocean is reasonably uniform throughout the column. While the results are not unexpected given the formulation of the model's convective parameterization, the analysis provides a quantitative assessment of the impact of local evaporation on the occurrence of convective precipitation in the GCM. Further, these results suggest that local source of water is not well mixed throughout the vertical column.

  16. Simplified calculation methods for all-vertical-piled wharf in offshore deep water

    Science.gov (United States)

    Wang, Yuan-zhan; He, Lin-lin

    2017-04-01

    All-vertical-piled wharf is a kind of high-piled wharf, but it is extremely different from the traditional ones in some aspects, such as the structural property, bearing characteristics, failure mechanism, and static or dynamic calculation methods. In this paper, the finite element method (FEM) and theoretical analysis method are combined to analyze the structural property, bearing behavior and failure mode of the all-vertical-piled wharf in offshore deep water, and to establish simplified calculation methods determining the horizontal static ultimate bearing capacity and the dynamic response for the all-vertical-piled wharf. Firstly, the bearing capability and failure mechanism for all-vertical-piled wharf are studied by use of FEM, and the failure criterion is put forward for all-vertical-piled wharf based on the `plastic hinge'. According to the failure criterion and P-Y curve method, the simplified calculation method of the horizontal static ultimate bearing capacity for all-vertical-piled wharf is proposed, and it is verified that the simplified method is reasonable by comparison with the FEM. Secondly, the displacement dynamic magnification factor for the all-vertical-piled wharf under wave cyclic loads and ship impact loads is calculated by the FEM and the theory formula based on the single degree of freedom (SDOF) system. The results obtained by the two methods are in good agreement with each other, and the simplified calculation method of the displacement dynamic magnification factor for all-vertical-piled wharf under dynamic loads is proposed. Then the simplified calculation method determining the dynamic response for the all-vertical-piled wharf is proposed in combination with P-Y curve method. That is, the dynamic response of the structure can be obtained through the static calculation results of P-Y curve method multiplied by the displacement dynamic magnification factor. The feasibility of the simplified dynamic response method is verified by

  17. Vertical Distribution of Bacterial Community Diversity and Water Quality during the Reservoir Thermal Stratification

    Directory of Open Access Journals (Sweden)

    Hai-Han Zhang

    2015-06-01

    Full Text Available Reservoir thermal stratification drives the water temperature and dissolved oxygen gradient, however, the characteristic of vertical water microbial community during thermal stratification is so far poorly understood. In this work, water bacterial community diversity was determined using the Illumina Miseq sequencing technique. The results showed that epilimnion, metalimnion and hypolimnion were formed steadily in the JINPEN drinking water reservoir. Water temperature decreased steadily from the surface (23.11 °C to the bottom (9.17 °C. Total nitrogen ranged from 1.07 to 2.06 mg/L and nitrate nitrogen ranged from 0.8 to 1.84 mg/L. The dissolved oxygen concentration decreased sharply below 50 m, and reached zero at 65 m. The Miseq sequencing revealed a total of 4127 operational taxonomic units (OTUs with 97% similarity, which were affiliated with 15 phyla including Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Caldiserica, Chlamydiae, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, and Verrucomicrobia. The highest Shannon diversity was 4.41 in 45 m, and the highest Chao 1 diversity was 506 in 5 m. Rhodobacter dominated in 55 m (23.24% and 65 m (12.58%. Prosthecobacter dominated from 0.5 to 50 m. The heat map profile and redundancy analysis (RDA indicated significant difference in vertical water bacterial community composition in the reservoir. Meanwhile, water quality properties including dissolved oxygen, conductivity, nitrate nitrogen and total nitrogen have a dramatic influence on vertical distribution of bacterial communities.

  18. Sensitivity of a mesoscale model to initial specification of relative humidity, liquid water and vertical motion

    Science.gov (United States)

    Kalb, M. W.; Perkey, D. J.

    1985-01-01

    The influence of synoptic scale initial conditions on the accuracy of mesoscale precipitation modeling is investigated. Attention is focused on the relative importance of the water vapor, cloud water, rain water, and vertical motion, with the analysis carried out using the Limited Area Mesoscale Prediction System (LAMPS). The fully moist primitive equation model has 15 levels and a terrain-following sigma coordinate system. A K-theory approach was implemented to model the planetary boundary layer. A total of 15 sensitivity simulations were run to investigate the effects of the synoptic initial conditions of the four atmospheric variables. The absence of synoptic cloud and rain water amounts in the initialization caused a 2 hr delay in the onset of precipitation. The delay was increased if synoptic-scale vertical motion was used instead of mesoscale values. Both the delays and a choice of a smoothed moisture field resulted in underestimations of the total rainfall.

  19. Treatment of fishpond water by recirculating horizontal and vertical flow constructed wetlands in the tropics

    DEFF Research Database (Denmark)

    Konnerup, Dennis; Trang, Ngo Thuy Diem; Brix, Hans

    2011-01-01

    Common practice of aquaculture in Vietnam and other countries in South East Asia involves frequent discharge of polluted water into rivers which results in eutrophication and degradation of receiving water bodies. There is therefore a need to develop improved aquaculture systems which have a more...... quantities of phytoplankton algae were removed in the CWs but abundance of toxic algae such as Microcystis was low. It is concluded that particularly vertical flow CWs have great potential for treatment of fishpond water in recirculating aquaculture systems in the tropics as the discharge of polluted water...

  20. Vertical distribution of water in the atmosphere of Venus - A simple thermochemical explanation

    Science.gov (United States)

    Lewis, John S.; Grinspoon, David H.

    1990-01-01

    Several lines of evidence concerning the vertical abundance profile of water in the atmosphere of Venus lead to strikingly unusual distributions (the water vapor abundance decreases sharply in the immediate vicinity of the surface) or to serious conflicts in the profiles (different IR bands suggest water abundances that are discrepant by a factor of 2.5 to 10). These data sets can be reconciled if (1) water molecules associate with carbon dioxide and sulfur trioxide to make gaseous carbonic acid and sulfuric acid in the lower atmosphere, and (2) the discrepant 0.94-micrometer water measurements are due to gaseous sulfuric acid, requiring it to be a somewhat stronger absorber than water vapor in this wavelength region. A mean total water abundance of 50 + or - 20 parts/million and a near-surface free water vapor abundance of 10 + or - 4 parts/million are derived.

  1. Simultaneous heat and mass transfer inside a vertical tube in evaporating a heated falling alcohols liquid film into a stream of dry air

    Science.gov (United States)

    Senhaji, S.; Feddaoui, M.; Mediouni, T.; Mir, A.

    2009-03-01

    A numerical study of the evaporation in mixed convection of a pure alcohol liquid film: ethanol and methanol was investigated. It is a turbulent liquid film falling on the internal face of a vertical tube. A laminar flow of dry air enters the vertical tube at constant temperature in the downward direction. The wall of the tube is subjected to a constant and uniform heat flux. The model solves the coupled parabolic governing equations in both phases including turbulent liquid film together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by TDMA method. A Van Driest model is adopted to simulate the turbulent liquid film flow. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied alcohols and water in the same conditions is made.

  2. Water masses and property distribution in the EEZ of Mauritius

    Digital Repository Service at National Institute of Oceanography (India)

    DeSousa, S.N.; Singbal, S.Y.S.; George, M.D.

    Water masses and their properties have been studied in the Mauritian during September-October, 1987. Surface water is characterizEd. by two water masses: 1) a warm (temp. 27 degrees C) and relatively saline water (salinity 35.3 x 10 sup(-3)) which...

  3. Three-phase flow (water, oil and gas in a vertical circular cylindrical duct with leaks: A theoretical study

    Directory of Open Access Journals (Sweden)

    W Santos

    2016-10-01

    Full Text Available This article describes the fluid dynamic behavior of a three-phase flow (water-oil-natural gas in a vertical pipe with or without leakage. The studied pipe has 8 meters in length, circular cross-section with 25 cm in diameter and a leak, which hole has a circular shape with 10mm diameter located in the center of pipe. The conservation equations of mass, momentum and energy for each phase (continuous phase - oil, dispersed phases - gas and water were numerically solved using ANSYS CFX software, in which the Eulerian-Eulerian model and the RNG - turbulence model were applied. Results of the pressure, velocity, temperature and volume fraction distributions of the involved phases are present and analyzed.

  4. Retrieval of vertical leaf water content using terrestrial full-waveform lidar

    Science.gov (United States)

    Zhu, Xi; Skidmore, Andrew K.; Darvishzadeh, Roshanak; Wang, Tiejun

    2016-10-01

    The vertical distribution of leaf water content (LWC) within plant canopy plays an important role in light penetration and scattering, thus affecting reflectance simulation with radiative transfer models. Although passive remote sensing techniques have been widely applied to estimate LWC, they are unable to retrieve the LWC vertical distribution within canopy. By providing vertical information, terrestrial LiDAR can potentially overcome this limitation. In this paper we investigated the applicability of the terrestrial full-waveform LiDAR to estimate the LWC vertical profile within the canopy of individual plants. A standard radiometric calibration was applied to convert the amplitude and the echo width to a physically well-defined radiometric quantity, namely the backscatter coefficient. However, the backscatter coefficient is strongly affected by the incidence angle between the laser beam and the leaf normal. In order to compensate for incidence angle effects, reference reflectors (Spectralon from Labsphere, Inc.) were used to build a look-up table to calibrated the backscatter coefficient. Our results showed that the backscatter coefficient had a strong correlation (R2 = 0.66) with LWC after correcting for the incidence angle effect. Good agreements were achieved between the predicted vertical profile of LWC and the measured vertical profile of LWC with a mean RMSE (root mean square error) value of 0.001 g/cm2 and a mean MAPE (mean absolute percent error) value of 4.46 %. Our study successfully demonstrated the feasibility of retrieving LWC vertical distribution within plant canopy from a terrestrial full-waveform LiDAR.

  5. Physical characteristics of the waters and water masses off the west coast of India during late spring

    Digital Repository Service at National Institute of Oceanography (India)

    Varadachari, V.V.R.; Murty, C.S.; Sankaranarayanan, V.N.

    Vertical profiles of currents of the coastal waters between Navapur and Umbharat were analysed. Dynamic stability as well as the diffusion capacity of the water columns were estimated from the vertical distribution of temperature, salinity...

  6. Study of dilution, height, and lateral spread of vertical dense jets in marine shallow water.

    Science.gov (United States)

    Ahmad, Nadeem; Suzuki, Takayuki

    2016-01-01

    This study provides information for the design of sea outfalls to dispose of brine from desalination plants into shallow lagoons of the sea. The behavior of vertical dense jets was studied experimentally by discharging cold saline water vertically upward into a tank filled with hot freshwater under stagnant ambient conditions. The minimum return point dilution, μmin, was determined using thermocouples, and the maximum height, Z(m), and the lateral spread, R(sp), of the fountains were determined by observing shadowgraph pictures. The flow was turbulent and the densimetric Froude number Fr(0) varied from 9 to 18.8. Three mixing regimes were identified: deep, intermediate, and impinging mixing regimes. In the intermediate mixing regime, μ(min) and Z(m) were analyzed and compared with the results of deep water studies. The μ(min) and Z(m) values of fountains at an intermediate water depth were found to be higher than those of fountains at deep water depths. In the impinging regime, μ(min) decreases rapidly when a fountain starts to continuously impinge on the water surface, showing a noticeable disturbance in the water surface. Therefore, a good rule of thumb is to reduce the flow through multiport diffusers from desalination plants when the noticeable disturbance is observed from the top water surface.

  7. Effects of water stress and seed mass on germination and ...

    African Journals Online (AJOL)

    enoh

    2012-03-01

    Mar 1, 2012 ... plant growth. X. sorbifolia seed varies greatly in mass. Thus, whether water and seed mass influence the germination of X. sorbifolia in this region must be determined. The primary objectives of this current study were as follows: (1) to analyze individually the effect of water stress and seed mass as well as ...

  8. Stable Walking of Humanoid Robots Using Vertical Center of Mass and Foot Motions by an Evolutionary Optimized Central Pattern Generator

    Directory of Open Access Journals (Sweden)

    Young-Dae Hong

    2016-02-01

    Full Text Available This paper proposes a method to produce the stable walking of humanoid robots by incorporating the vertical center of mass (COM and foot motions, which are generated by the evolutionary optimized central pattern generator (CPG, into the modifiable walking pattern generator (MWPG. The MWPG extends the conventional 3-D linear inverted pendulum model (3-D LIPM by allowing a zero moment point (ZMP variation. The disturbance caused by the vertical COM motion is compensated in real time by the sensory feedback in the CPG. In this paper, the vertical foot trajectory of the swinging leg, as well as the vertical COM trajectory of the 3-D LIPM, are generated by the CPG for the effective compensation of the disturbance. Consequently, using the proposed method, the humanoid robot is able to walk with a vertical COM and the foot motions generated by the CPG, while modifying its walking patterns by using the MWPG in real time. The CPG with the sensory feedback is optimized to obtain the desired output signals. The optimization of the CPG is formulated as a constrained optimization problem with equality constraints and is solved by two-phase evolutionary programming (TPEP. The validity of the proposed method is verified through walking experiments for the small-sized humanoid robot, HanSaRam-IX (HSR-IX.

  9. Vertical and temporal dynamics of cyanobacteria in the Carpina potable water reservoir in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    AN Moura

    Full Text Available This study analysed vertical and temporal variations of cyanobacteria in a potable water supply in northeastern Brazil. Samples were collected from four reservoir depths in the four months; September and December 2007; and March and June 2008. The water samples for the determination of nutrients and cyanobacteria were collected using a horizontal van Dorn bottle. The samples were preserved in 4% formaldehyde for taxonomic analysis using an optical microscope, and water aliquots were preserved in acetic Lugol solution for determination of density using an inverted microscope. High water temperatures, alkaline pH, low transparency, high phosphorous content and limited nitrogen content were found throughout the study. Dissolved oxygen stratification occurred throughout the study period whereas temperature stratification occurred in all sampling months, with the exception of June. No significant vertical differences were recorded for turbidity or total and dissolved forms of nutrients. There were high levels of biomass arising from Planktothrix agardhii, Cylindrospermopsis raciborskii, Geitlerinema amphibium and Pseudanabaena catenata. The study demonstrates that, in a tropical eutrophic environment with high temperatures throughout the water column, perennial multi-species cyanobacterial blooms, formed by species capable of regulating their position in the water column (those that have gas vesicles for buoyancy, are dominant in the photic and aphotic strata.

  10. Radiation and mass transfer effects on unsteady MHD convective flow past an infinite vertical plate with Dufour and Soret effects

    OpenAIRE

    N. Vedavathi; K Ramakrishna; K. Jayarami Reddy

    2015-01-01

    This paper deals with the effects of heat and mass transfer on two-dimensional unsteady MHD free convection flow past a vertical porous plate in a porous medium in the presence of thermal radiation under the influence of Dufour and Soret effects. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. The resulting equations are then solved numerically using shooting method along with ...

  11. On the Vertical Distribution of Local and Remote Sources of Water for Precipitation

    Science.gov (United States)

    Bosilovich, Michael G.

    2001-01-01

    The vertical distribution of local and remote sources of water for precipitation and total column water over the United States are evaluated in a general circulation model simulation. The Goddard Earth Observing System (GEOS) general circulation model (GCM) includes passive constituent tracers to determine the geographical sources of the water in the column. Results show that the local percentage of precipitable water and local percentage of precipitation can be very different. The transport of water vapor from remote oceanic sources at mid and upper levels is important to the total water in the column over the central United States, while the access of locally evaporated water in convective precipitation processes is important to the local precipitation ratio. This result resembles the conceptual formulation of the convective parameterization. However, the formulations of simple models of precipitation recycling include the assumption that the ratio of the local water in the column is equal to the ratio of the local precipitation. The present results demonstrate the uncertainty in that assumption, as locally evaporated water is more concentrated near the surface.

  12. The effects of a high dosage of creatine and caffeine supplementation on the lean body mass composition of rats submitted to vertical jumping training

    Directory of Open Access Journals (Sweden)

    Carneiro-Junior Miguel A

    2011-03-01

    Full Text Available Abstract Background The influences of creatine and caffeine supplementation associated with power exercise on lean body mass (LBM composition are not clear. The purpose of this research was to determine whether supplementation with high doses of creatine and caffeine, either solely or combined, affects the LBM composition of rats submitted to vertical jumping training. Methods Male Wistar rats were randomly divided into 8 groups: Sedentary (S or Exercised (E [placebo (Pl, creatine (Cr, caffeine (Caf or creatine plus caffeine (CrCaf]. The supplemented groups received creatine [load: 0.430 g/kg of body weight (BW for 7 days; and maintenance: 0.143 g/kg of BW for 35 days], caffeine (15 mg/kg of BW for 42 days or creatine plus caffeine. The exercised groups underwent a vertical jump training regime (load: 20 - 50% of BW, 4 sets of 10 jumps interspersed with 1 min resting intervals, 5 days/wk, for 6 weeks. LBM composition was evaluated by portions of water, protein and fat in the rat carcass. Data were submitted to ANOVA followed by the Tukey post hoc test and Student's t test. Results Exercised animals presented a lower carcass weight (10.9%; P = 0.01, as compared to sedentary animals. However, no effect of supplementation was observed on carcass weight (P > 0.05. There were no significant differences among the groups (P > 0.05 for percentage of water in the carcass. The percentage of fat in the group SCr was higher than in the groups SCaf and ECr (P Conclusions High combined doses of creatine and caffeine does not affect the LBM composition of either sedentary or exercised rats, however, caffeine supplementation alone reduces the percentage of fat. Vertical jumping training increases the percentages of water and protein and reduces the fat percentage in rats.

  13. Evaluation of the added mass for a spheroid-type unmanned underwater vehicle by vertical planar motion mechanism test

    Directory of Open Access Journals (Sweden)

    Seong-Keon Lee

    2011-09-01

    Full Text Available This paper shows added mass and inertia can be acquired from the pure heaving motion and pure pitching motion respectively. A Vertical Planar Motion Mechanism (VPMM test for the spheroid-type Unmanned Underwater Vehicle (UUV was compared with a theoretical calculation and Computational Fluid Dynamics (CFD analysis in this paper. The VPMM test has been carried out at a towing tank with specially manufactured equipment. The linear equations of motion on the vertical plane were considered for theoretical calculation, and CFD results were obtained by commercial CFD package. The VPMM test results show good agreement with theoretical calculations and the CFD results, so that the applicability of the VPMM equipment for an underwater vehicle can be verified with a sufficient accuracy.

  14. Water mass pathways to the North Atlantic oxygen minimum zone

    NARCIS (Netherlands)

    Peña-Izquierdo, Jesús; van Sebille, Erik; Pelegrí, Josep L.; Sprintall, Janet; Mason, Evan; Llanillo, Pedro J.; Machín, Francisco

    2015-01-01

    The water mass pathways to the North Atlantic Oxygen Minimum Zone (naOMZ) are traditionally sketched within the cyclonic tropical circulation via the poleward branching from the eastward flowing jets that lie south of 10°N. However, our water mass analysis of historic hydrographic observations

  15. Heat and mass transfer in a vertical channel under heat-gravitational convection conditions

    Science.gov (United States)

    Petrichenko, Michail; Nemova, Darya; Reich, Elisaveta; Subbotina, Svetlana; Khayrutdinova, Faina

    2016-03-01

    Heat-gravitational motion of an air flow in a vertical channel with one-sided heating in an area with low Reynolds number is stated in Boussinesq approximation. Hydraulic variables field in a heat-gravitational motion is modeled with the application of ANSYS-FLUENT. It is converted to average velocity and temperature values in a cross section of the channel. The value of an average velocity is determined by rate of heat supply in a barotropic flow with a polytropic coefficient nventilated vertical channel with free air access and in the absence of gaps. In a channel with closed air access inleakage of the cold air through gaps on an unheated side leads to decrease in an average speed at least twice in comparison to channel with free air access.

  16. Vertical distribution of major photosynthetic picoeukaryotic groups in stratified marine waters

    KAUST Repository

    Cabello, Ana M.

    2016-03-14

    Photosynthetic picoeukaryotes (PPEs) are fundamental contributors to oceanic primary production and form diverse communities dominated by prymnesiophytes, chlorophytes, pelagophytes and chrysophytes. Here, we studied the vertical distribution of these major groups in two offshore regions of the northern Iberian Peninsula during summer stratification. We performed a fine-scale vertical sampling (every ∼2 m) across the DCM and used fluorescence in situ hybridization (FISH) to determine the PPE composition and to explore the possible segregation of target groups in the light, nutrient and temperature gradients. Chlorophytes, pelagophytes and prymnesiophytes, in this order of abundance, accounted for the total PPEs recorded by flow cytometry in the Avilés canyon, and for more than half in the Galicia Bank, whereas chrysophytes were undetected. Among the three detected groups, often the prymnesiophytes were dominant in biomass. In general, all groups were present throughout the water column with abundance peaks around the DCM, but their distributions differed: pelagophytes were located deeper than the other two groups, chlorophytes presented two peaks and prymnesiophytes exhibited surface abundances comparable to those at the DCM. This study offers first indications that the vertical distribution of different PPE groups is heterogeneous within the DCM. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting

    KAUST Repository

    Li, Yanbo

    2012-09-18

    A vertically aligned Ta3N5 nanorod photoelectrode is fabricated by through-mask anodization and nitridation for water splitting. The Ta3N5 nanorods, working as photoanodes of a photoelectrochemical cell, yield a high photocurrent density of 3.8 mA cm -2 at 1.23 V versus a reversible hydrogen electrode under AM 1.5G simulated sunlight and an incident photon-to-current conversion efficiency of 41.3% at 440 nm, one of the highest activities reported for photoanodes so far. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Measurements of the Effects of Spacers on the Burnout Conditions for Flow of Boiling Water in a Vertical Annulus and a Vertical 7-Rod Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M.

    1965-03-15

    An analysis for predicting the burnout conditions for flow of boiling water in vertical round ducts is presented. The analysis which is based on the Vanderwater flow model predicts that the burnout conditions are independent of the inlet subcooling and the heated length, and depends only on the local values at the burnout position of pressure, heat flux, steam quality and, mass velocity and the duct diameter. The results of an experimental investigation covering 811 burnout measurements in the pressure range from 41 to 101 kg/cm{sup 2} is presented. These results together with 488 of our earlier burnout measurements at the pressures of 2, 7, 10, 20 and 30 kg/cm{sup 2} were used to determine two constants in the analytical results. The final correlation predicted the burnout heat fluxes of the 1299 measurements within 8 per cent and with an RMS error of 5.3 per cent. The measurements covered the following ranges of variables Diameter d, 3.93-24.95 mm; Heated length L 400-3,500 mm; L/d-ratio L/d 40-890; Pressure p, 2.7-101 kg/cm{sup 2}; Inlet sub-cooling {delta}t{sub sub} 30-240 deg C; Mass velocity G 120-5450 kg/m{sup 3}/s; Heat flux q/A 35-686 W/cm{sup 3}; Burnout steam quality X{sub BO} 0-1.00. The Columbia data and the Winfrith data were also analysed in terms of the measured and predicted burnout heat fluxes and enthalpies, and it was found, that a very good agreement existed between the present results and the Columbia and the Winfrith data. The Columbia data were on the average 3 per cent lower comparing the measured and predicted burnout heat fluxes. The scatter of the data was within + 10 and - 15 per cent and the RMS error was 8.4 per cent. The Winfrith data were on the average 6 per cent higher than the predicted heat fluxes and the deviations of the measured heat fluxes were within + 25 and - 15 per cent of the predictions. The RMS error was 10.8 per cent.

  19. Experimental study of heat transfer during pseudo-dropwise condensation of water-ethanol and water-isopropanol vapor mixtures on a vertical tube

    Science.gov (United States)

    Chindyakov, A. A.; Smirnov, Yu B.; Vinogradov, A. A.; Mikhailova, E. V.

    2017-11-01

    In the present study experimental heat transfer data on condensation of almost immobile water-ethanol and water-isopropanol vapor mixtures on the vertical smooth copper tube 100 mm long with an outer diameter of 12.0 mm were obtained. Experiments for water-ethanol mixture were carried out at mass concentrations of ethanol from 0.4 to 16% in the vapor phase, and for a water-isopropanol mixture - from 0.6 to 8.4%. The pressure was 0.12…0.13 MPa, vapor-to-surface temperature difference varied from 2 to 40K. The experimental data are represented as dependency of heat transfer coefficient and heat flux on the vapor-to-surface temperature difference. The results of high-speed photography of the condensation process are discussed. It is noted that the transition from film mode to pseudo-dropwise condensation occurs when vapor-to-surface temperature difference is close to dew point - bubble point temperature difference for a given composition of the mixture. According to experimental data, the diffusion thermal resistance and thermal resistance of the liquid phase at different concentrations of the mixture were calculated.

  20. Heat and mass transfer in a vertical channel under heat-gravitational convection conditions

    Directory of Open Access Journals (Sweden)

    Petrichenko Michail

    2016-01-01

    Full Text Available Heat-gravitational motion of an air flow in a vertical channel with one-sided heating in an area with low Reynolds number is stated in Boussinesq approximation. Hydraulic variables field in a heat-gravitational motion is modeled with the application of ANSYS-FLUENT. It is converted to average velocity and temperature values in a cross section of the channel. The value of an average velocity is determined by rate of heat supply in a barotropic flow with a polytropic coefficient nvertical channel with free air access and in the absence of gaps. In a channel with closed air access inleakage of the cold air through gaps on an unheated side leads to decrease in an average speed at least twice in comparison to channel with free air access.

  1. Heat and mass transfer effects on the mixed convective flow of chemically reacting nanofluid past a moving/stationary vertical plate

    Directory of Open Access Journals (Sweden)

    B. Mahanthesh

    2016-03-01

    Full Text Available The problem of conjugate effects of heat and mass transfer over a moving/stationary vertical plate has been studied under the influence of applied magnetic field, thermal radiation, internal heat generation/absorption and first order chemical reaction. The fluid is assumed to be electrically conducting water based Cu-nanofluid. The Tiwari and Das model is used to model the nanofluid, whereas Rosseland approximation is used for thermal radiation effect. Unified closed form solutions are obtained for the governing equations using Laplace transform method. The velocity, temperature and concentration profiles are expressed graphically for different flow pertinent parameters. The physical quantities of engineering interest such as skin friction, Nusselt number and Sherwood number are also computed. The obtained analytical solutions satisfy all imposed initial and boundary conditions and they can be reduced to known previous results in some limiting cases. It is found that, by varying nanoparticle volume fraction, the flow and heat transfer characteristics could be controlled.

  2. Vertically-resolved profiles of mass concentrations and particle backscatter coefficients of Asian dust plumes derived from lidar observations of silicon dioxide.

    Science.gov (United States)

    Noh, Youngmin; Müller, Detlef; Shin, Sung-Kyun; Shin, Dongho; Kim, Young J

    2016-01-01

    This study presents a method to retrieve vertically-resolved profiles of dust mass concentrations by analyzing Raman lidar signals of silicon dioxide (quartz) at 546nm. The observed particle plumes consisted of mixtures of East Asian dust with anthropogenic pollution. Our method for the first time allows for extracting the contribution of the aerosol component "pure dust" contained in the aerosol type "polluted dust". We also propose a method that uses OPAC (Optical Properties of Aerosols and Clouds) and the mass concentrations profiles of dust in order to derive profiles of backscatter coefficients of pure dust in mixed dust/pollution plumes. The mass concentration of silicon dioxide (quartz) in the atmosphere can be estimated from the backscatter coefficient of quartz. The mass concentration of dust is estimated by the weight percentage (38-77%) of mineral quartz in Asian dust. The retrieved dust mass concentrations are classified into water soluble, nucleation, accumulation, mineral-transported and coarse mode according to OPAC. The mass mixing ratio of 0.018, 0.033, 0.747, 0.130 and 0.072, respectively, is used. Dust extinction coefficients at 550nm were calculated by using OPAC and prescribed number concentrations for each of the 5 components. Dust backscatter coefficients were calculated from the dust extinction coefficients on the basis of a lidar ratio of 45±3sr at 532nm. We present results of quartz-Raman measurements carried out on the campus of the Gwangju Institute of Science and Technology (35.10°N, 126.53°E) on 15, 16, and 21 March 2010. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  4. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R.

    2015-01-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  5. Collecting a better water-quality sample: Reducing vertical stratification bias in open and closed channels

    Science.gov (United States)

    Selbig, William R.

    2017-01-01

    Collection of water-quality samples that accurately characterize average particle concentrations and distributions in channels can be complicated by large sources of variability. The U.S. Geological Survey (USGS) developed a fully automated Depth-Integrated Sample Arm (DISA) as a way to reduce bias and improve accuracy in water-quality concentration data. The DISA was designed to integrate with existing autosampler configurations commonly used for the collection of water-quality samples in vertical profile thereby providing a better representation of average suspended sediment and sediment-associated pollutant concentrations and distributions than traditional fixed-point samplers. In controlled laboratory experiments, known concentrations of suspended sediment ranging from 596 to 1,189 mg/L were injected into a 3 foot diameter closed channel (circular pipe) with regulated flows ranging from 1.4 to 27.8 ft3 /s. Median suspended sediment concentrations in water-quality samples collected using the DISA were within 7 percent of the known, injected value compared to 96 percent for traditional fixed-point samplers. Field evaluation of this technology in open channel fluvial systems showed median differences between paired DISA and fixed-point samples to be within 3 percent. The range of particle size measured in the open channel was generally that of clay and silt. Differences between the concentration and distribution measured between the two sampler configurations could potentially be much larger in open channels that transport larger particles, such as sand.

  6. Convective flow, heat and mass transfer of Ostwald-de Waele fluid over a vertical stretching sheet

    Directory of Open Access Journals (Sweden)

    K. Vajravelu

    2017-01-01

    Full Text Available In this paper we study the combined buoyancy (due to thermal and species diffusion effects on the flow, heat and mass transfer of a viscous, incompressible, Ostwald-de Waele fluid over a vertical stretching surface in the presence of a chemical reaction. The effects of variable thermal conductivity and the variable mass diffusivity are also considered. A similarity transformation is used to convert the partial differential equations into coupled nonlinear ordinary differential equations. Numerical solutions are obtained by the Keller-box method. The influences of sundry parameters on the velocity, temperature and the concentration fields are presented in figures and discussed in detail. The values of the skin friction coefficient, Nusselt number and the surface mass transfer for various values of the governing parameters are presented in tables. One of the interesting observations is that the influence of the buoyancy parameters increases the velocity. However, quite the opposite is true with the temperature and the mass concentration, for all values of the power law index and the reaction rate parameter. The results obtained reveal many interesting behaviors that warrant a further study of the non-Newtonian fluid phenomena, especially shear thinning phenomena. Shear thinning reduces the wall shear stress.

  7. How well can we measure the vertical wind speed? Implications for fluxes of energy and mass

    Science.gov (United States)

    John Kochendorfer; Tilden P. Meyers; John Frank; William J. Massman; Mark W. Heuer

    2012-01-01

    Sonic anemometers are capable of measuring the wind speed in all three dimensions at high frequencies (10­50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a nonorthogonal transducer...

  8. Internal hydraulic control in the Little Belt, Denmark - observations of flow configurations and water mass formation

    Science.gov (United States)

    Holtegaard Nielsen, Morten; Vang, Torben; Chresten Lund-Hansen, Lars

    2017-12-01

    Internal hydraulic control, which occurs when stratified water masses are forced through an abrupt constriction, plays an enormous role in nature on both large and regional scales with respect to dynamics, circulation, and water mass formation. Despite a growing literature on this subject surprisingly few direct observations have been made that conclusively show the existence of and the circumstances related to internal hydraulic control in nature. In this study we present observations from the Little Belt, Denmark, one of three narrow straits connecting the Baltic Sea and the North Sea. The observations (comprised primarily of along-strait, detailed transects of salinity and temperature; continuous observations of flow velocity, salinity, and temperature at a permanent station; and numerous vertical profiles of salinity, temperature, fluorescence, and flow velocity in various locations) show that internal hydraulic control is a frequently occurring phenomenon in the Little Belt. The observations, which are limited to south-going flows of approximately two-layered water masses, show that internal hydraulic control may take either of two configurations, i.e. the lower or the upper layer being the active, accelerating one. This is connected to the depth of the pycnocline on the upstream side and the topography, which is both deepening and contracting toward the narrow part of the Little Belt. The existence of two possible flow configurations is known from theoretical and laboratory studies, but we believe that this has never been observed in nature and reported before. The water masses formed by the intense mixing, which is tightly connected with the presence of control, may be found far downstream of the point of control. The observations show that these particular water masses are associated with chlorophyll concentrations that are considerably higher than in adjacent water masses, showing that control has a considerable influence on the primary production and

  9. Recent Advances in Water Analysis with Gas Chromatograph Mass Spectrometers

    Science.gov (United States)

    MacAskill, John A.; Tsikata, Edem

    2014-01-01

    We report on progress made in developing a water sampling system for detection and analysis of volatile organic compounds in water with a gas chromatograph mass spectrometer (GCMS). Two approaches are described herein. The first approach uses a custom water pre-concentrator for performing trap and purge of VOCs from water. The second approach uses a custom micro-volume, split-splitless injector that is compatible with air and water. These water sampling systems will enable a single GC-based instrument to analyze air and water samples for VOC content. As reduced mass, volume, and power is crucial for long-duration, manned space-exploration, these water sampling systems will demonstrate the ability of a GCMS to monitor both air and water quality of the astronaut environment, thereby reducing the amount of required instrumentation for long duration habitation. Laboratory prototypes of these water sampling systems have been constructed and tested with a quadrupole ion trap mass spectrometer as well as a thermal conductivity detector. Presented herein are details of these water sampling system with preliminary test results.

  10. Hydrodynamics of a Free Floating Vertical Axisymmetric Oscillating Water Column Device

    Directory of Open Access Journals (Sweden)

    S. A. Mavrakos

    2012-01-01

    Full Text Available This paper aims at presenting a general formulation of the hydrodynamic problem of a floating or restrained oscillating water column device. Three types of first-order boundary value problems are investigated in order to calculate the velocity potential of the flow field around the device. The horizontal and vertical exciting wave forces, the rolling moment, the hydrodynamic parameters, the volume flows, and the drift forces are obtained in order to find the loads on the structure. The efficiency rate of the device is calculated in connection with the absorbed power and the capture length of energy absorption. Finally, the resulting wave motion inside and outside the device and the inner air pressure are examined.

  11. Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring

    Science.gov (United States)

    Sosik, Heidi M.; Green, Rebecca E.; Pegau, W. Scott; Roesler, Collin S.

    2001-05-01

    Relationships between optical and physical properties were examined on the basis of intensive sampling at a site on the New England continental shelf during late summer 1996 and spring 1997. During both seasons, particles were found to be the primary source of temporal and vertical variability in optical properties since light absorption by dissolved material, though significant in magnitude, was relatively constant. Within the particle pool, changes in phytoplankton were responsible for much of the observed optical variability. Physical processes associated with characteristic seasonal patterns in stratification and mixing contributed to optical variability mostly through effects on phytoplankton. An exception to this generalization occurred during summer as the passage of a hurricane led to a breakdown in stratification and substantial resuspension of nonphytoplankton particulate material. Prior to the hurricane, conditions in summer were highly stratified with subsurface maxima in absorption and scattering coefficients. In spring, stratification was much weaker but increased over the sampling period, and a modest phytoplankton bloom caused surface layer maxima in absorption and scattering coefficients. These seasonal differences in the vertical distribution of inherent optical properties were evident in surface reflectance spectra, which were elevated and shifted toward blue wavelengths in the summer. Some seasonal differences in optical properties, including reflectance spectra, suggest that a significant shift toward a smaller particle size distribution occurred in summer. Shorter timescale optical variability was consistent with a variety of influences including episodic events such as the hurricane, physical processes associated with shelfbreak frontal dynamics, biological processes such as phytoplankton growth, and horizontal patchiness combined with water mass advection.

  12. Mathematical model of vertical mass transport in the mine dumps Western Donbass

    Directory of Open Access Journals (Sweden)

    Yevhrashkina T.P.

    2012-09-01

    Full Text Available The multivariate mathematical models of the recultivated, recultivated and dumping with dry system, recultivated in systematically irrigation conditions and free of overgrowth by wild plants are proposed, designed and quantified. The theory of physico-chemical hydrodynamics of pore space using analytical and numerical methods for solving the equations of motion and mass conservation of matter all models are based on. The adequacy of built models and man-maid processes that proceed inside the mine dumps is proved.

  13. Enhancement of nitrate removal at the sediment-water interface by carbon addition plus vertical mixing.

    Science.gov (United States)

    Chen, Xuechu; He, Shengbing; Zhang, Yueping; Huang, Xiaobo; Huang, Yingying; Chen, Danyue; Huang, Xiaochen; Tang, Jianwu

    2015-10-01

    Wetlands and ponds are frequently used to remove nitrate from effluents or runoffs. However, the efficiency of this approach is limited. Based on the assumption that introducing vertical mixing to water column plus carbon addition would benefit the diffusion across the sediment-water interface, we conducted simulation experiments to identify a method for enhancing nitrate removal. The results suggested that the sediment-water interface has a great potential for nitrate removal, and the potential can be activated after several days of acclimation. Adding additional carbon plus mixing significantly increases the nitrate removal capacity, and the removal of total nitrogen (TN) and nitrate-nitrogen (NO3(-)-N) is well fitted to a first-order reaction model. Adding Hydrilla verticillata debris as a carbon source increased nitrate removal, whereas adding Eichhornia crassipe decreased it. Adding ethanol plus mixing greatly improved the removal performance, with the removal rate of NO3(-)-N and TN reaching 15.0-16.5 g m(-2) d(-1). The feasibility of this enhancement method was further confirmed with a wetland microcosm, and the NO3(-)-N removal rate maintained at 10.0-12.0 g m(-2) d(-1) at a hydraulic loading rate of 0.5 m d(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Heat transfer regimes for a flow of water at supercritcal conditions in vertical channels

    Science.gov (United States)

    Deev, V. I.; Kharitonov, V. S.; Churkin, A. N.; Baisov, A. M.

    2017-11-01

    Heat transfer regimes observed in experiments with water at supercritical conditions flowing in vertical channels of various cross-sections (such as round pipes, annulus, or rod bundles) are analyzed. In accordance with the established practice, the normal and the deteriorated heat transfer regimes were singled out as the basic regimes specific for heat carriers with highly variable properties. At the same time, it has been established that most published experimental data on supercritical pressure water heat transfer along the length of test sections demonstrate combined (or transient) heat transfer regimes. The features can be presented as a superposition of characteristics of the above-mentioned basic regimes. The combined regimes are not stable in certain ranges of water flow conditions in which sudden transitions between the basic regimes can occur. A system of similarity criteria governing heat transfer rate in the vicinity of the critical point is examined. As applicable to cores of water-cooled reactors, due to a small hydraulic diameter of cooling channels, buoyancy forces acting in these channels are negligible as compared with the inertia effects caused by thermal acceleration of the flow and viscous force. This concept yields two integrated criteria whose use in the correction factors for the basic heat transfer equation, which we proposed previously for the normal regimes, adequately (with an error of 20-25%) describes the specific of the heat transfer coefficient in the normal, deteriorated, and combined regimes. A system of equations is proposed for design calculation of heat transfer in channels of nuclear reactors cooled with supercritical pressure water.

  15. Combined uses of water-table fluctuation (WTF), chloride mass ...

    African Journals Online (AJOL)

    Agadaga

    unconfined aquifer of Thiaroye zone using both water table fluctuation (WTF), chloride mass balance. (CMB) methods and environmental ... applied computes both infiltration from rainwater and domestic waste water, while the CMB method estimates potential recharge .... Piezometric map (mars 2008). Department, UCAD.

  16. Effects of water stress and seed mass on germination and ...

    African Journals Online (AJOL)

    The effects of water stress and seed mass on germination, as well as antioxidative enzymes, in Xanthoceras sorbifolia seed were studied. The germination percentage decreased gradually in all seeds with decreasing water potential. The reduction was more significant under -0.6 MPa treatment than under the -0.2 MPa ...

  17. An Experimental Study on the Solidification and Melting of Water around a Vertical Heat Transfer Plate with Pin Fins

    OpenAIRE

    平澤, 良男; 陳, 東; 渡邉, 弘毅; 竹越, 栄俊

    1997-01-01

    In the present study, the solidification and melting of water were investigated experimentally for the case of a vertical heat transfer plate with pin fins. In the experiment, temperature distributions, ice and water volume fractions, and heat flux changes were measured and the flow patterns in the water were observed for examination of the phase change process. In the solidification, the phase change rate increased monotonously with increasing number of fins. In the melting, the temperature ...

  18. Assessment of Mass Transfer Coefficients in Coalescing Slug Flow in Vertical Pipes and Applications to Tubular Airlift Membrane Bioreactors

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Berube, P.R.; Nopens, I.

    2011-01-01

    higher shear stresses near the membrane surface, which generate high mass transfer coefficients from the surface to the bulk region. However, measuring the mass transfer coefficient is difficult in complex heterogeneous mixtures like activated sludge and existing techniques (e.g. electrochemical methods......) cannot be applied directly. As an alternative, in this work, a multidisciplinary approach was selected, by exploiting dimensionless analysis using the Sherwood number. Mass transfer coefficients were measured at various superficial velocities of gas and liquid flow in a tubular system. Due......). A semi-empirical relationship based on the Lévêque relationship for the Sherwood number (mass transfer coefficient) was formulated for the laminar regime. A test case comparison between water and activated sludge was performed based on full-scale airlift MBR operational conditions. It was found...

  19. Large-Scale Ichthyoplankton and Water Mass Distribution along the South Brazil Shelf

    Science.gov (United States)

    de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique

    2014-01-01

    Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27′ and 34°51′S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients. PMID:24614798

  20. Large-scale ichthyoplankton and water mass distribution along the South Brazil Shelf.

    Directory of Open Access Journals (Sweden)

    Luis Carlos Pinto de Macedo-Soares

    Full Text Available Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27' and 34°51'S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients.

  1. Large-scale ichthyoplankton and water mass distribution along the South Brazil Shelf.

    Science.gov (United States)

    de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique

    2014-01-01

    Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27' and 34°51'S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients.

  2. A Comparison of Vertical Stiffness Values Calculated from Different Measures of Center of Mass Displacement in Single-Leg Hopping.

    Science.gov (United States)

    Mudie, Kurt L; Gupta, Amitabh; Green, Simon; Hobara, Hiroaki; Clothier, Peter J

    2017-02-01

    This study assessed the agreement between Kvert calculated from 4 different methods of estimating vertical displacement of the center of mass (COM) during single-leg hopping. Healthy participants (N = 38) completed a 10-s single-leg hopping effort on a force plate, with 3D motion of the lower limb, pelvis, and trunk captured. Derived variables were calculated for a total of 753 hop cycles using 4 methods, including: double integration of the vertical ground reaction force, law of falling bodies, a marker cluster on the sacrum, and a segmental analysis method. Bland-Altman plots demonstrated that Kvert calculated using segmental analysis and double integration methods have a relatively small bias (0.93 kN⋅m-1) and 95% limits of agreement (-1.89 to 3.75 kN⋅m-1). In contrast, a greater bias was revealed between sacral marker cluster and segmental analysis (-2.32 kN⋅m-1), sacral marker cluster and double integration (-3.25 kN⋅m-1), and the law of falling bodies compared with all methods (17.26-20.52 kN⋅m-1). These findings suggest the segmental analysis and double integration methods can be used interchangeably for the calculation of Kvert during single-leg hopping. The authors propose the segmental analysis method to be considered the gold standard for the calculation of Kvert during single-leg, on-the-spot hopping.

  3. Finite element modelling of human-seat interactions: vertical in-line and fore-and-aft cross-axis apparent mass when sitting on a rigid seat without backrest and exposed to vertical vibration.

    Science.gov (United States)

    Liu, Chi; Qiu, Yi; Griffin, Michael J

    2015-01-01

    Biodynamic models representing distributed human-seat interactions can assist seat design. This study sought to develop a finite element (FE) model representing the soft tissues of the body supported by seating and the vertical in-line apparent mass and the fore-and-aft cross-axis apparent mass of the seated human body during vertical vibration excitation. The model was developed with rigid parts representing the torso segments, skeletal structures (pelvis and femurs) and deformable parts representing the soft tissues of the buttocks and the thighs. The model had three vibration modes at frequencies less than 15 Hz and provided reasonable vertical in-line apparent mass and fore-and-aft cross-axis apparent mass. The model can be developed to represent dynamic interactions between the body and a seat over a seat surface (e.g. dynamic pressure distributions and variations in seat transmissibility over the seat surface). The three-dimensional FE model of the human body represents the in-line apparent mass and cross-axis apparent mass measured on a seat. With deformable soft tissues it can assist seat design by representing dynamic human-seat interactions, such as pressure distributions and variations in seat transmissibility over a seat surface.

  4. NUMERICAL STUDY OF MICROPOLAR FLUID FLOW HEAT AND MASS TRANSFER OVER VERTICAL PLATE: EFFECTS OF THERMAL RADIATION AND MAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    REDHA ALOUAOUI

    2015-06-01

    Full Text Available In this paper, we examine the thermal radiation effect on heat and mass transfer in steady laminar boundary layer flow of an incompressible viscous micropolar fluid over a vertical flat plate, with the presence of a magnetic field. Rosseland approximation is applied to describe the radiative heat flux in the energy equation. The resulting similarity equations are solved numerically. Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on different profiles. The conclusion is drawn that the flow field, temperature, concentration and microrotation  as well as the skin friction coefficient and the both  local Nusselt and Sherwood numbers  are significantly influenced by Magnetic parameter, material parameter  and thermal radiation parameter.

  5. Radiation and mass transfer effects on unsteady MHD convective flow past an infinite vertical plate with Dufour and Soret effects

    Directory of Open Access Journals (Sweden)

    N. Vedavathi

    2015-03-01

    Full Text Available This paper deals with the effects of heat and mass transfer on two-dimensional unsteady MHD free convection flow past a vertical porous plate in a porous medium in the presence of thermal radiation under the influence of Dufour and Soret effects. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. The resulting equations are then solved numerically using shooting method along with Runge–Kutta fourth order integration scheme. The numerical results are displayed graphically showing the effects of various parameters entering into the problem. Finally, the local values of the skin-friction coefficient, Nusselt number and Sherwood number are also shown in tabular form.

  6. Effects of Hall current, radiation and rotation on natural convection heat and mass transfer flow past a moving vertical plate

    Directory of Open Access Journals (Sweden)

    G.S. Seth

    2014-06-01

    Full Text Available An investigation of the effects of Hall current and rotation on unsteady hydromagnetic natural convection flow with heat and mass transfer of an electrically conducting, viscous, incompressible and optically thick radiating fluid past an impulsively moving vertical plate embedded in a fluid saturated porous medium, when temperature of the plate has a temporarily ramped profile, is carried out. Exact solution of the governing equations is obtained in closed form by Laplace transform technique. Exact solution is also obtained in case of unit Schmidt number. Expressions for skin friction due to primary and secondary flows and Nusselt number are derived for both ramped temperature and isothermal plates. Expression for Sherwood number is also derived. The numerical values of primary and secondary fluid velocities, fluid temperature and species concentration are displayed graphically whereas those of skin friction are presented in tabular form for various values of pertinent flow parameters.

  7. Radiation effects on unsteady MHD convective heat and mass transfer past a vertical plate with chemical reaction and viscous dissipation

    Directory of Open Access Journals (Sweden)

    Chandra Shekar Balla

    2015-09-01

    Full Text Available A numerical analysis is performed to study the unsteady magnetohydrodynamic convective flow of heat and mass transfer of a viscous, incompressible, electrically conducting Newtonian fluid along a vertical permeable plate in the presence of a homogeneous first order chemical reaction and taking into account thermal radiation effects. The porous plate was subjected to a constant suction velocity with variable surface temperature and concentration. The governing coupled non-linear boundary layer partial differential equations were solved by an efficient and unconditionally stable finite element method based on Galerkin weighted residual approach. A representative set of computational results for the velocity, temperature and concentration profiles as well as Local skin-friction coefficient, Local Nusselt number and Local Sherwood number are presented graphically for various governing parameters such as M,R,Ec,Sc,andK. In the present analysis various comparisons with previously published work are performed and the results are found to be in a good agreement.

  8. Rotation and Radiation Effects on MHD Flow through Porous Medium Past a Vertical Plate with Heat and Mass Transfer

    Directory of Open Access Journals (Sweden)

    Uday Singh Rajput

    2017-11-01

    Full Text Available Effects of rotation and radiation on unsteady MHD flow past a vertical plate with variable wall temperature and mass diffusion in the presence of Hall current is studied here. Earlier we studied chemical reaction effect on unsteady MHD flow past an exponentially accelerated inclined plate with variable temperature and mass diffusion in the presence of Hall current. We had obtained the results which were in agreement with the desired flow phenomenon. To study further, we are changing the model by considering radiation effect on fluid, and changing the geometry of the model. Here in this paper we are taking the plate positioned vertically upward and rotating with velocity Ω . Further, medium of the flow is taken as porous. The plate temperature and the concentration level near the plate increase linearly with time. The governing system of partial differential equations is transformed to dimensionless equations using dimensionless variables. The dimensionless equations under consideration have been solved by Laplace transform technique. The model contains equations of motion, diffusion equation and equation of energy. To analyze the solution of the model, desirable sets of the values of the parameters have been considered. The governing equations involved in the flow model are solved by the Laplace-transform technique. The results obtained have been analyzed with the help of graphs drawn for different parameters. The numerical values obtained for the drag at boundary and Nusselt number have been tabulated. We found that the values obtained for velocity, concentration and temperature are in concurrence with the actual flow of the fluid

  9. Application of subsurface vertical flow constructed wetlands to reject water treatment in dairy wastewater treatment plant.

    Science.gov (United States)

    Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa

    2017-01-01

    The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d-1 in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH4+ 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.

  10. Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells.

    Directory of Open Access Journals (Sweden)

    Francisco Feijó Delgado

    Full Text Available We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell's buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell's water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell's dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density - the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein, we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.

  11. Vertical radar profiles for the calibration of unsaturated flow models under dynamic water table conditions

    Science.gov (United States)

    Cassiani, G.; Gallotti, L.; Ventura, V.; Andreotti, G.

    2003-04-01

    The identification of flow and transport characteristics in the vadose zone is a fundamental step towards understanding the dynamics of contaminated sites and the resulting risk of groundwater pollution. Borehole radar has gained popularity for the monitoring of moisture content changes, thanks to its apparent simplicity and its high resolution characteristics. However, cross-hole radar requires closely spaced (a few meters), plastic-cased boreholes, that are rarely available as a standard feature in sites of practical interest. Unlike cross-hole applications, Vertical Radar Profiles (VRP) require only one borehole, with practical and financial benefits. High-resolution, time-lapse VRPs have been acquired at a crude oil contaminated site in Trecate, Northern Italy, on a few existing boreholes originally developed for remediation via bioventing. The dynamic water table conditions, with yearly oscillations of roughly 5 m from 6 to 11 m bgl, offers a good opportunity to observe via VRP a field scale drainage-imbibition process. Arrival time inversion has been carried out using a regularized tomographic algorithm, in order to overcome the noise introduced by first arrival picking. Interpretation of the vertical profiles in terms of moisture content has been based on standard models (Topp et al., 1980; Roth et al., 1990). The sedimentary sequence manifests itself as a cyclic pattern in moisture content over most of the profiles. We performed preliminary Richards' equation simulations with time varying later table boundary conditions, in order to estimate the unsaturated flow parameters, and the results have been compared with laboratory evidence from cores.

  12. Investigating spatial variability of vertical water fluxes through the streambed in distinctive stream morphologies using temperature and head data

    Science.gov (United States)

    Wang, Liping; Jiang, Weiwei; Song, Jinxi; Dou, Xinyi; Guo, Hongtao; Xu, Shaofeng; Zhang, Guotao; Wen, Ming; Long, Yongqing; Li, Qi

    2017-08-01

    Investigating the interaction of groundwater and surface water is key to understanding the hyporheic processes. The vertical water fluxes through a streambed were determined using Darcian flux calculations and vertical sediment temperature profiles to assess the pattern and magnitude of groundwater/surface-water interaction in Beiluo River, China. Field measurements were taken in January 2015 at three different stream morphologies including a meander bend, an anabranching channel and a straight stream channel. Despite the differences of flux direction and magnitude, flux directions based on vertical temperature profiles are in good agreement with results from Darcian flux calculations at the anabranching channel, and the Kruskal-Wallis tests show no significant differences between the estimated upward fluxes based on the two methods at each site. Also, the upward fluxes based on the two methods show similar spatial distributions on the streambed, indicating (1) that higher water fluxes at the meander bend occur from the center of the channel towards the erosional bank, (2) that water fluxes at the anabranching channel are higher near the erosional bank and in the center of the channel, and (3) that in the straight channel, higher water fluxes appear from the center of the channel towards the depositional bank. It is noted that higher fluxes generally occur at certain locations with higher streambed vertical hydraulic conductivity ( K v) or where a higher vertical hydraulic gradient is observed. Moreover, differences of grain size, induced by stream morphology and contrasting erosional and depositional conditions, have significant effects on streambed K v and water fluxes.

  13. Water masses as a unifying framework for understanding the Southern Ocean Carbon Cycle

    Directory of Open Access Journals (Sweden)

    D. Iudicone

    2011-05-01

    Full Text Available The scientific motivation for this study is to understand the processes in the ocean interior controlling carbon transfer across 30° S. To address this, we have developed a unified framework for understanding the interplay between physical drivers such as buoyancy fluxes and ocean mixing, and carbon-specific processes such as biology, gas exchange and carbon mixing. Given the importance of density in determining the ocean interior structure and circulation, the framework is one that is organized by density and water masses, and it makes combined use of Eulerian and Lagrangian diagnostics. This is achieved through application to a global ice-ocean circulation model and an ocean biogeochemistry model, with both components being part of the widely-used IPSL coupled ocean/atmosphere/carbon cycle model.

    Our main new result is the dominance of the overturning circulation (identified by water masses in setting the vertical distribution of carbon transport from the Southern Ocean towards the global ocean. A net contrast emerges between the role of Subantarctic Mode Water (SAMW, associated with large northward transport and ingassing, and Antarctic Intermediate Water (AAIW, associated with a much smaller export and outgassing. The differences in their export rate reflects differences in their water mass formation processes. For SAMW, two-thirds of the surface waters are provided as a result of the densification of thermocline water (TW, and upon densification this water carries with it a substantial diapycnal flux of dissolved inorganic carbon (DIC. For AAIW, principal formatin processes include buoyancy forcing and mixing, with these serving to lighten CDW. An additional important formation pathway of AAIW is through the effect of interior processing (mixing, including cabelling that serve to densify SAMW.

    A quantitative evaluation of the contribution of mixing, biology and gas exchange to the DIC evolution per water mass reveals that

  14. Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, James S.; Deng, Zhiqun; Weiland, Mark A.; Martinez, Jayson J.; Yuan, Yong

    2011-11-22

    Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by providing a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if they become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS) at the Bonneville Dam second powerhouse (B2) intended to increase the guidance of juvenile salmonids into the juvenile bypass system (JBS) have resulted in high mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters (ADV) in the gatewell slot at Units 12A and 14A of B2. From the measurements collected the average approach velocity, sweep velocity, and the root mean square (RMS) value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS varied but were mostly less than 0.3 m/s. The sweep velocities also showed large variances across the face of the VBS with most measurements being less than 1.5 m/s. This study revealed that the approach velocities exceeded criteria recommended by NOAA Fisheries and Washington State Department of Fish and Wildlife intended to improve fish passage conditions.

  15. Modal investigation of elastic anisotropy in shallow-water environments: anisotropy beyond vertical transverse isotropy.

    Science.gov (United States)

    Soukup, Darin J; Odom, Robert I; Park, Jeffrey

    2013-07-01

    Theoretical and numerical results are presented for modal characteristics of the seismo-acoustic wavefield in anisotropic range-independent media. General anisotropy affects the form of the elastic-stiffness tensor, particle-motion polarization, the frequency and angular dispersion curves, and introduces near-degenerate modes. Horizontally polarized particle motion (SH) cannot be ignored when anisotropy is present for low-frequency modes having significant bottom interaction. The seismo-acoustic wavefield has polarizations in all three coordinate directions even in the absence of any scattering or heterogeneity. Even weak anisotropy may have a significant impact on seismo-acoustic wave propagation. Unlike isotropic and transversely isotropic media with a vertical symmetry axis where acoustic signals comprise P-SV modes alone (in the absence of any scattering), tilted TI media allow both quasi-P-SV and quasi-SH modes to carry seismo-acoustic energy. Discrete modes for an anisotropic medium are best described as generalized P-SV-SH modes with polarizations in all three Cartesian directions. Conversion to SH is a loss that will mimic acoustic attenuation. An in-water explosion will excite quasi-SH.

  16. Numerical determination of vertical water flux based on soil temperature profiles

    Science.gov (United States)

    Tabbagh, Alain; Cheviron, Bruno; Henine, Hocine; Guérin, Roger; Bechkit, Mohamed-Amine

    2017-07-01

    High sensitivity temperature sensors (0.001 K sensitivity Pt100 thermistors), positioned at intervals of a few centimetres along a vertical soil profile, allow temperature measurements to be made which are sensitive to water flux through the soil. The development of high data storage capabilities now makes it possible to carry out in situ temperature recordings over long periods of time. By directly applying numerical models of convective and conductive heat transfer to experimental data recorded as a function of depth and time, it is possible to calculate Darcy's velocity from the convection transfer term, thus allowing water infiltration/exfiltration through the soil to be determined as a function of time between fixed depths. In the present study we consider temperature data recorded at the Boissy-le-Châtel (Seine et Marne, France) experimental station between April 16th, 2009 and March 8th, 2010, at six different depths and 10-min time intervals. We make use of two numerical finite element models to solve the conduction/convection heat transfer equation and compare their merits. These two models allow us to calculate the corresponding convective flux rate every day using a group of three sensors. The comparison of the two series of calculated values centred at 24 cm shows reliable results for periods longer than 8 days. These results are transformed in infiltration/exfiltration value after determining the soil volumetric heat capacity. The comparison with the rainfall and evaporation data for periods of ten days shows a close accordance with the behaviour of the system governed by rainfall evaporation rate during winter and spring.

  17. Numerical investigation of saturated upward flow boiling of water in a vertical tube using VOF model: effect of different boundary conditions

    Science.gov (United States)

    Hasanpour, B.; Irandoost, M. S.; Hassani, M.; Kouhikamali, R.

    2018-01-01

    In this paper a numerical simulation of upward two-phase flow evaporation in a vertical tube has been studied by considering water as working fluid. To this end, the computational fluid dynamic simulations of this system are performed with heat and mass transfer mechanisms due to energy transfer during the phase change interaction near the heat transfer surface. The volume of fluid model in an available Eulerian-Eulerian approach based on finite volume method is utilized and the mass source term in conservation of mass equation is implemented using a user defined function. The characteristics of water flow boiling such as void fraction and heat transfer coefficient distribution are investigated. The main cause of fluctuations on heat transfer coefficient and volume fraction is velocity increment in the vapor phase rather than the liquid phase. The case study of this research including convective heat transfer coefficient and tube diameter are considered as a parametric study. The operating conditions are considered at high pressure in saturation temperature and the physical properties of water are determined by considering system's inlet temperature and pressure in saturation conditions. Good agreement is achieved between the numerical and the experimental values of heat transfer coefficients.

  18. Transport and transformation of surface water masses across the ...

    African Journals Online (AJOL)

    In this article, we present the results of a survey conducted along the entire Mascarene Plateau during the Northeast Monsoon, in October–November 2008. In addition, data from Argo floats were used to determine the origin of water masses entering this region. The plateau contains three gaps through which branches of ...

  19. Determination of the CKM matrix element vertical stroke V{sub cb} vertical stroke, the B {yields} X{sub s}{gamma} decay rate, and the b-quark mass

    Energy Technology Data Exchange (ETDEWEB)

    Bernlochner, Florian Urs

    2011-09-15

    In this work, the preliminary measurements of two fundamental parameters of the Standard Model of particles physics are presented: the CKM matrix element vertical stroke V{sub cb} vertical stroke, and the b-quark mass. The measurement of the absolute value of the CKM matrix element V{sub cb} uses the full set of recorded data of 429.06 fb{sup -1} of B anti B mesons of the BABAR experiment. The CKM matrix element is obtained by measuring the branching fractions and non-perturbative shape parameters of the two transitions into the charmed 1S ground states, B {yields} Dl{nu}{sub l} and B {yields} D{sup *}l {nu}{sub l}, respectively. The kinematic of the produced lepton is measured and the kinematics of the short-lived charmed mesons is reconstructed from kaon and pion candidates. By combining the reconstructed three-momenta of both particles with the angular information of the decay, three independent variables can be obtained. The measured distributions in these variables are analyzed in a three-dimensional global fit, which simultaneously extracts the decay parameters and branching fractions of both charmed transitions. We find that B {yields} Dl {nu}{sub l}: vertical stroke V{sub cb} vertical stroke =(36.14{+-}0.57{sub stat.}{+-}1.30{sub sys.}{+-}0.80{sub theo.}) x 10{sup -3}, B {yields} D{sup *}l {nu}{sub l}: vertical stroke V{sub cb} vertical stroke =(39.71{+-}0.26{sub stat.}{+-}0.73{sub sys.}{+-}0.74{sub theo.}) x 10{sup -3}, where the uncertainties are statistical, systematic, and theoretical, respectively. In the Standard Model, both measured values of vertical stroke V{sub cb} vertical stroke can be averaged to further minimize the uncertainties. We find Combined: vertical stroke V{sub cb} vertical stroke =(38.29{+-}0.26{sub stat.}{+-}0.64{sub sys.}{+-}0.52{sub theo.}) x 10{sup -3}. Furthermore, several scenarios are explored how possible future unquenched lattice QCD points can be incorporated into the measurement, to further reduce the uncertainty on

  20. Increasing vertical resolution of three-dimensional atmospheric water vapor retrievals using a network of scanning compact microwave radiometers

    Science.gov (United States)

    Sahoo, Swaroop

    2011-12-01

    The thermodynamic properties of the troposphere, in particular water vapor content and temperature, change in response to physical mechanisms, including frictional drag, evaporation, transpiration, heat transfer and flow modification due to terrain. The planetary boundary layer (PBL) is characterized by a high rate of change in its thermodynamic state on time scales of typically less than one hour. Large horizontal gradients in vertical wind speed and steep vertical gradients in water vapor and temperature in the PBL are associated with high-impact weather. Observation of these gradients in the PBL with high vertical resolution and accuracy is important for improvement of weather prediction. Satellite remote sensing in the visible, infrared and microwave provide qualitative and quantitative measurements of many atmospheric properties, including cloud cover, precipitation, liquid water content and precipitable water vapor in the upper troposphere. However, the ability to characterize the thermodynamic properties of the PBL is limited by the confounding factors of ground emission in microwave channels and of cloud cover in visible and IR channels. Ground-based microwave radiometers are routinely used to measure thermodynamic profiles. The vertical resolution of such profiles retrieved from radiometric brightness temperatures depends on the number and choice of frequency channels, the scanning strategy and the accuracy of brightness temperature measurements. In the standard technique, which uses brightness temperatures from vertically pointing radiometers, the vertical resolution of the retrieved water vapor profile is similar to or larger than the altitude at which retrievals are performed. This study focuses on the improvement of the vertical resolution of water vapor retrievals by including scanning measurements at a variety of elevation angles. Elevation angle scanning increases the path length of the atmospheric emission, thus improving the signal-to-noise ratio

  1. The relationship of conodont biofacies to spatially variable water mass properties in the Late Pennsylvanian Midcontinent Sea

    Science.gov (United States)

    Herrmann, Achim D.; Barrick, James E.; Algeo, Thomas J.

    2015-03-01

    Molybdenum and uranium enrichment factors and nitrogen isotopes suggest that an interplay of open ocean upwelling and riverine runoff led to distinct spatial and secular variations in water mass properties within the epicontinental Late Pennsylvanian Midcontinent Sea of North America. In particular, the intensity of continental runoff influenced the flux of bulk organic matter to the sediment. Benthic anoxia appears to have been controlled by the vertical density gradient in the water column associated with continental runoff combined with the advection of basinal water. Anoxic conditions were stronger in proximal (i.e., more shoreward) areas of the Midcontinent Shelf, indicating that anoxia did not develop primarily due to upwelling of nutrient-rich waters along the southern shelf margin, as previously suggested. Changes in water mass redox conditions not only drove authigenic enrichment of redox-sensitive trace elements across the basin but also had a strong effect on the spatial distribution of various conodont taxa. Our analysis suggests that the widely accepted depth-stratification model for the distribution of conodonts is incomplete. Conodont biofacies distributions seem to have been controlled by physicochemical properties of the water mass (e.g., salinity, temperature, nutrients, turbidity, and/or dissolved oxygen levels) that may correspond less directly to water depth. The proximity to terrestrial freshwater influx and the strength of anoxia/euxinia in the subpycnoclinal water mass played significant roles in the spatial and temporal distributions of conodont taxa.

  2. A metabolism perspective on alternative urban water servicing options using water mass balance.

    Science.gov (United States)

    Farooqui, Tauheed A; Renouf, Marguerite A; Kenway, Steven J

    2016-12-01

    Urban areas will need to pursue new water servicing options to ensure local supply security. Decisions about how best to employ them are not straightforward due to multiple considerations and the potential for problem shifting among them. We hypothesise that urban water metabolism evaluation based a water mass balance can help address this, and explore the utility of this perspective and the new insights it provides about water servicing options. Using a water mass balance evaluation framework, which considers direct urban water flows (both 'natural' hydrological and 'anthropogenic' flows), as well as water-related energy, we evaluated how the use of alternative water sources (stormwater/rainwater harvesting, wastewater/greywater recycling) at different scales influences the 'local water metabolism' of a case study urban development. New indicators were devised to represent the water-related 'resource efficiency' and 'hydrological performance' of the urban area. The new insights gained were the extent to which alternative water supplies influence the water efficiency and hydrological performance of the urban area, and the potential energy trade-offs. The novel contribution is the development of new indicators of urban water resource performance that bring together considerations of both the 'anthropogenic' and 'natural' water cycles, and the interactions between them. These are used for the first time to test alternative water servicing scenarios, and to provide a new perspective to complement broader sustainability assessments of urban water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Mass-balance model for predicting nitrate in ground water

    Science.gov (United States)

    Frimpter, Michael H.; Donohue, John J.; Rapacz, Michael V.

    1990-01-01

    A mass-balance accounting model can be used to guide the management of septic systems and fertilizers to control the degradation of ground-water quality in zones of an aquifer that contribute water to public-supply wells. The nitrate concentration of the mixture in the well can be predicted for steady-state conditions by calculating the concentration that results from the total weight of nitrogen and total volume of water entering the zone of contribution to the well. These calculations will allow water-quality managers to predict the nitrate concentrations that would be produced by different types and levels of development, and to plan development accordingly. Computations for different development schemes provide a technical basis for planners and managers to compare water-quality effects and to select alternatives that limit nitrate concentration in wells.

  4. Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation.

    Science.gov (United States)

    Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C; Oppo, Delia W; Clark, Peter U; Jahn, Alexandra; Marcott, Shaun A; Lindsay, Keith

    2017-10-17

    The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that, in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by ∼1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.

  5. Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation

    Science.gov (United States)

    Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.; Oppo, Delia W.; Clark, Peter U.; Jahn, Alexandra; Marcott, Shaun A.; Lindsay, Keith

    2017-10-01

    The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that, in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by ˜1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.

  6. Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse

    Directory of Open Access Journals (Sweden)

    Yong Yuan

    2011-11-01

    Full Text Available Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by means of a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if the fish become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS in the gate wells at the Bonneville Dam second powerhouse (B2 were intended to increase the guidance of juvenile salmonids into the juvenile bypass system but have resulted in higher mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters in the gate well slots at turbine units 12A and 14A of B2. From the measurements collected, the average approach velocity, sweep velocity, and the root mean square value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS were variable and typically less than 0.3 m/s, but fewer than 50% were less than or equal to 0.12 m/s. There was also large variance in sweep velocities across the face of the VBS with most measurements recorded at less than 1.5 m/s. Results of this study revealed that the approach velocities in the gate wells exceeded criteria intended to improve fish passage conditions that were recommended by National Marine Fisheries Service and the Washington State Department of Fish and Wildlife. The turbulence measured in the gate well may also result in suboptimal fish passage conditions but no established guidelines to contrast those results have been published.

  7. Water mass evolution of the Greenland Sea since lateglacial times

    Science.gov (United States)

    Telesiński, M. M.; Spielhagen, R. F.; Bauch, H. A.

    2013-08-01

    Four sediment cores from the central and northern Greenland Sea, a crucial area for the global ocean circulation system, were analyzed for planktic foraminiferal fauna, planktic and benthic stable oxygen and carbon isotopes as well as ice-rafted debris. During the Last Glacial Maximum, the Greenland Sea was dominated by cold and ice-bearing water masses. Meltwater discharges from the surrounding ice sheets affected the area during the deglaciation, influencing the water mass circulation. The Younger Dryas was the last major freshwater event in the area. The onset of the Holocene interglacial was marked by an improvement of the environmental conditions and rising sea surface temperatures (SST). Although the thermal maximum was not reached simultaneously across the basin, due to the reorganization of the specific water mass configuration, benthic isotope data indicate that the overturning circulation reached a maximum in the central Greenland Sea around 7 ka. After 6-5 ka the SST cooling and increasing sea-ice cover is noted alongside with decreasing insolation. Conditions during this Neoglacial cooling, however, changed after 3 ka due to further sea-ice expansion which limited the deep convection. As a result, a well stratified upper water column amplified the warming of the subsurface waters in the central Greenland Sea which were fed by increased inflow of Atlantic Water from the eastern Nordic Seas. Our data reconstruct a variety of time- and space-dependent oceanographic conditions. These were the result of a complex interplay between overruling factors such as changing insolation, the relative influence of Atlantic, Polar and meltwater, sea-ice processes and deep water convection.

  8. Vertical Radar Profiling to Determine Dielectric Constant, Water Content and Porosity Values

    National Research Council Canada - National Science Library

    Knoll, Michael

    1999-01-01

    A vertical radar profiling (VRP) experiment was conducted at the Boise Hydrogeophysical Research Site to determine if direct arrivals and reflections can be recorded using the surface-to-borehole survey geometry...

  9. Preliminary results of algorithms to determine horizontal and vertical underwater visibilities of coastal waters

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Joshi, Shreya; Talaulikar, M.; Desa, E.J.

    Algorithms developed for underwater horizontal and vertical visibilities are presented. The algorithms have been developed to derive the underwater visibilities based on the contrast theory using the in-situ and Hydrolight derived optical parameters...

  10. Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M.; Hernborg, Gunnar; Bode, Manfred; Eriksson, O.

    1965-07-01

    The present report contains the tables of the burnout data obtained for flow in vertical channels at the Heat Engineering Laboratory of AB Atomenergi in Sweden. The data covers measurements in round ducts, annuli, 3-rod and 7-rod clusters.

  11. An Interval-Parameter Fuzzy Linear Programming with Stochastic Vertices Model for Water Resources Management under Uncertainty

    Directory of Open Access Journals (Sweden)

    Yan Han

    2013-01-01

    Full Text Available An interval-parameter fuzzy linear programming with stochastic vertices (IFLPSV method is developed for water resources management under uncertainty by coupling interval-parameter fuzzy linear programming (IFLP with stochastic programming (SP. As an extension of existing interval parameter fuzzy linear programming, the developed IFLPSV approach has advantages in dealing with dual uncertainty optimization problems, which uncertainty presents as interval parameter with stochastic vertices in both of the objective functions and constraints. The developed IFLPSV method improves upon the IFLP method by allowing dual uncertainty parameters to be incorporated into the optimization processes. A hybrid intelligent algorithm based on genetic algorithm and artificial neural network is used to solve the developed model. The developed method is then applied to water resources allocation in Beijing city of China in 2020, where water resources shortage is a challenging issue. The results indicate that reasonable solutions have been obtained, which are helpful and useful for decision makers. Although the amount of water supply from Guanting and Miyun reservoirs is declining with rainfall reduction, water supply from the South-to-North Water Transfer project will have important impact on water supply structure of Beijing city, particularly in dry year and extraordinary dry year.

  12. GEOTRACES Eastern South Pacific: Characterizing Water Mass Properties and Timescales

    Science.gov (United States)

    Martin, M.; Fine, R. A.; Happell, J. D.

    2014-12-01

    In the fall 2013 an eastern South Pacific GEOTRACES transect was occupied along about 12°S from the coast to 150°W. The objective is to characterize the water mass properties as compared with historical data and considering climate modes of variability. Tracer ages (CFCs and SF6) are used to provide constraints on time scales of physical and biogeochemical processes. The GEOTRACES transect contains eutrophic and oligotrophic stations. In between, there is a large oxygen minimum zone (OMZ) created by a shadow zone in the subtropical gyre circulation. The major water masses in the upper 1500 m are the Antarctic Intermediate Water (AAIW) found below the 27 σθ, Subantarctic Mode Water located above the AAIW and below the 26.5 σθ, South Pacific Eastern Subtropical Mode Water found along 25.5 σθ near 100°W, South Pacific Subtropical Under Water follows 25 σθ, and South Pacific Subtropical Water is located at the surface west of 110°W. Water with SF6 ages of less than 30 years are found above 26.5 σθ. The highest apparent oxygen utilization rates (AOUR) found in the coastal region are likely due to the upwelling in this region. The central gyre region shows the lowest AOUR, corresponding with the oligotrophic conditions. In between, the OMZ, ranging from 80⁰W to about 120⁰W, has a median AOUR. An analysis of our data compared to WOCE data at 4 co-locations shows changes in the water properties and biogeochemical processes over a 20 year time period. This analysis suggests an expansion and a strengthening of the OMZ in the past 20 years. While there is a decrease in oxygen content within the OMZ, there is a slight increase in AOU in the western part of the OMZ.

  13. Water profiles of Intermediate Mass YSOs from HIFI

    Science.gov (United States)

    McCoey, C.; Tisi, S.; Johnstone, D.; Fich, M.; van Kempen, T. A.; Fuente, A.; Caselli, P.; Cernicharo, J.; Kristensen, L. E.; van Dishoeck, E. F.

    2011-05-01

    We present H_2O and H_218O profiles observed toward Intermediate Mass YSOs with HIFI onboard Herschel. The data presented has unprecedented resolution at these wavelengths and constitute a part of the legacy of the Water in Star Forming Regions with Herschel (WISH) Key Program. Intermediate Mass YSOs exhibit properties common to both low- and high-mass stars and can, in some cases, act as a nearby, more easily observable proxy to high-mass star formation but can also elucidate the differences between low- and high-mass star formation, and under what conditions these differences occur. Our sources have been chosen to encompass a range of properties in order to investigate what water can tell us about these important objects and include; Class 0 and Class 1 objects; those forming in isolation and in clustered environments; and, sources with or without known outflow. In this presentation we compare and contrast water profiles among our sources. The observations were made toward the YSO but the H_2O profiles are dominated by the outflow rather than the central envelope and can be modelled as consisting of a broad component due to the outflow, a medium component due to the envelope and, in the case of the ground state lines a narrow component in absorption resulting from self-absorption by the cold outer envelope. Despite this commonality, the observed profiles are distinct from source to source, see the figure comparing the H_2O 110--101 among a sample of our sources.

  14. Unsteady Mass transfer Across the Sediment-Water Interface

    Science.gov (United States)

    McCluskey, Alexander; Grant, Stanley; Stewardson, Michael

    2017-04-01

    Fluxes across the sediment-water interface (SWI) are of high ecological significance, as they promote biogeochemical processes that support benthic ecosystems within the hyporheic zone. The SWI marks a boundary between the turbulent water column (typically modelled by Navier Stokes equations) and the interstitial pore fluids in the sediment column, which are typically laminar (and modelled by Darcy's law). Although models of these two flow regimes are generally not coupled, flow in the turbulent boundary layer is affected by the sediment permeability and a slip velocity at the SWI, which decays exponentially into the streambed across a characteristic mixing length. Momentum is transferred across this region (known as the Brinkman layer) through the penetration of coherent structures and turbulent mixing, however, these turbulent structures also promote turbulent mass transfer. Mass transfer within the hyporheic zone can be conceptualised in terms of: (1) the downwelling of solutes from the stream; (2) retention of solutes in the sediment; and (3) the upwelling of solutes back into the stream. Recent work by the authors has shown that a mass transfer coefficient can be defined where a downwelling-upwelling unit cell exists across a concentration gradient. Such unit cells are generated at the SWI by pressure variation from: (1) steady-state influences, such as stream geometry and velocity variation; and (2) unsteady pressure waves produced by coherent turbulent structures. With this definition, mass transfer coefficients can be defined for: steady exchange, by adopting the Elliott and Brooks [1997] advective pumping model; and unsteady exchange, induced by streamwise propagation of upwelling-downwelling unit cells migrating downstream with a characteristic celerity associated with turbulent eddies. We hypothesize that beneath the Brinkman layer (where Laplace equation applies) these mass transfer coefficients can be summed to yield the total mass flux. Although, it

  15. Thermohaline structure and water masses in the north of Antarctic Peninsula from data collected in situ by southern elephant seals (Mirounga leonina

    Directory of Open Access Journals (Sweden)

    Ilana E. K. C. Wainer

    2013-04-01

    Full Text Available The Western Antarctic Peninsula is rapidly warming and exhibits high indices of biodiversity concentrated mostly along its continental shelf. This region has great importance due to the the mixing caused by the interaction of waters from Weddell Sea (MW, Bransfield Strait (EB and the Antarctic Circumpolar Current (CCA transmits thermohaline characteristics and nutrients of different sites and finally connects with all the world’s oceans. However, studies focusing on the temporal variability of the region’s oceanographic conditions that finally determine the water mass formation are sparse due to the logistical difficulties of conducting oceanographic surveys and traditional monitoring during the winter. For this study, variations of the thermohaline structure and water masses in the vicinity and below the sea ice in the North of the Antarctic Peninsula (AP and Scotia Sea (SS were recorded between February and November 2008 by two female southern elephant seals (SES, Mirounga leonina tagged with Conductivity–Temperature–Depth/Satellite-Relay Data Logger (CTD–SRDL. One thousand three hundred and thirty vertical profiles of temperature and salinity were collected by seals which were tagged by the MEOP-BR Project team at the Elephant Island, South Shetlands. These profiles, together with spread state diagrams allowed the identification of water masses and their variances in the ocean’s vertical structure. Among the set of identified water masses we cite: Antarctic Surface Water (AASW, Winter Water (WW, Warm Deep Water (WDW, Modified Warm Deep Water (MWDW, Circumpolar Deep Water (CDW, Upper Circumpolar Deep Water (UCDW, Lower Circumpolar Deep Water (LCDW and Ice Shelf Water (ISW. Our results show that the oceanic vertical structure undergoes changes that cannot be traditionally monitored, particularly during the Austral winter and that SES are important and modern oceanographic data collection platforms allowing for the improvement of our

  16. Diel vertical interactions between Atlantic cod Gadus morhua and sprat Sprattus sprattus in a stratified water column

    DEFF Research Database (Denmark)

    Andersen, Niels Gerner; Lundgren, Bo; Neuenfeldt, Stefan

    2017-01-01

    , respectively. Cod resided close to the bottom outside these temporal predation windows. Sprat schools were located at the same depth as cod in the daylight hours, whereas at night dispersed sprat were situated higher in the water column. These vertical dynamics could be explained by fitness optimization using...... bioenergetics and trade-offs between temperature, oxygen saturation of the water and predation risk. This study forms a first step towards providing a mechanistic background for the predatory impact of cod at the basin scale and beyond...

  17. Thermal stratification in vertical mantle heat-exchangers with application to solar domestic hot-water systems

    DEFF Research Database (Denmark)

    Knudsen, Søren; Furbo, Simon

    2004-01-01

    Experimental and numerical investigations of vertical mantle heat exchangers for solar domestic hot water (SDHW) systems have been carried out. Two different inlet positions are investigated. Experiments based on typical operation conditions are carried out to investigate how the thermal...... stratification is affected by different positions of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the tank is analysed by CFD-simulations. Furthermore, side-by-side laboratory tests have been carried out with SDHW systems with different mantle...

  18. A Study on Distribution Measurement and Mechanism of Deformation due to Water Loss of Overburden Layer in Vertical Shaft

    Directory of Open Access Journals (Sweden)

    Chunde Piao

    2015-01-01

    Full Text Available Based on FBG fiber Bragg grating technology and BOTDA distributed optical fiber sensing technology, this study uses fine sand to simulate overburden layer in vertical shaft model equipment. It studies the placing technique and test method for optical fiber sensors in the overburden layer, combined with MODFLOW software to simulate the change of the water head value when the overburden layer is losing water, and obtains the deformation features of overburden layer. The results show, at the beginning of water loss, the vertical deformation increases due to larger hydraulic pressure drop, while the deformation decreases gradually and tends to be stable with the hydraulic pressure drop reducing. The circumferential deformation is closely related to such factors as the distance between each drainage outlet, the variations of water head value, and the method of drainage. The monitoring result based on optical fiber sensing technology is consistent with the characteristics of water loss in overburden layer simulated by MODFLOW software, which shows that the optical fiber sensing technology applied to monitor shaft overburden layer is feasible.

  19. Energy-water nexus for mass cultivation of algae.

    Science.gov (United States)

    Murphy, Cynthia Folsom; Allen, David T

    2011-07-01

    Microalgae are currently considered a potential feedstock for the production of biofuels. This work addresses the energy needed to manage the water used in the mass cultivation of saline, eukaryotic algae grown in open pond systems. Estimates of both direct and upstream energy requirements for obtaining, containing, and circulating water within algae cultivation systems are developed. Potential productivities are calculated for each of the 48 states within the continental U.S. based on theoretical photosynthetic efficiencies, growing season, and total available land area. Energy output in the form of algal biodiesel and the total energy content of algal biomass are compared to energy inputs required for water management. The analysis indicates that, for current technologies, energy required for water management alone is approximately seven times greater than energy output in the form of biodiesel and more than double that contained within the entire algal biomass. While this analysis addresses only currently identified species grown in an open-pond system, the water management requirements of any algae system will be substantial; therefore, it is critical that an energy assessment of water management requirements be performed for any cultivation technology and algal type in order to fully understand the energy balance of algae-derived biofuels.

  20. Fingerprinting Northeast Atlantic water masses using neodymium isotopes

    Science.gov (United States)

    Dubois-Dauphin, Quentin; Colin, Christophe; Bonneau, Lucile; Montagna, Paolo; Wu, Qiong; Van Rooij, David; Reverdin, Gilles; Douville, Eric; Thil, François; Waldner, Astrid; Frank, Norbert

    2017-08-01

    Dissolved neodymium (Nd) isotopic composition (expressed as εNd) has been analysed for 82 seawater samples collected from 13 stations stretching from the Alboran Sea to the Iceland Basin. The distribution of the εNd values of water masses was thus investigated for the first time along the western European margin in order to explore whether the water masses flowing in the eastern subpolar and subtropical Atlantic reveal distinct isotopic patterns. The Modified Atlantic Water (MAW) in the Alboran Sea displays εNd values (between -9.2 ± 0.2 and -8.9 ± 0.2) that are significantly more radiogenic than those reported in previous studies (-10.8 ± 0.2 to -9.7 ± 0.2), suggesting temporal variations in the Nd isotopic composition of the water that enters the Mediterranean Sea from the Strait of Gibraltar. The εNd value of the underlying modified Winter Intermediate Water (WIW) has been established for the first time (-9.8 ± 0.3) and is compatible with a Nd signature acquired from the sinking of MAW in the northwestern Mediterranean Sea. Within the Gulf of Cádiz, southern Mediterranean Sea Water (MSW) (-10.6 ± 0.2) differs slightly from the northern MSW (-9.9 ± 0.4) owing to a significant contribution of modified East Antarctic Intermediate Water (EAAIW) (-10.9 ± 0.2). In the northeast Atlantic, the North Atlantic Current surface water located in the inter-gyre region (north of 46°N) displays εNd values of between -14.0 ± 0.3 and -15.1 ± 0.3, reflecting the subpolar gyre signature. Along the western European margin, εNd values of surface water decrease toward the north (from -10.4 ± 1.6 to -13.7 ± 1.0) in agreement with the gradual mixing between subtropical and subpolar water. At intermediate depth, εNd values decrease from -9.9 ± 0.4 within the Gulf of Cádiz to -12.1 ± 0.2 within the Porcupine Seabight, indicating a strong dilution of the MSW with subpolar water. Within the Rockall Trough and the Iceland Basin, the more negative εNd values at mid

  1. LPMLE3: A New Analytical Approach to Determine Vertical Groundwater-Surface Water Exchange Flux under Uncertainty and Heterogeneity

    Science.gov (United States)

    Schneidewind, Uwe; van Berkel, Matthijs; Anibas, Christian; Vandersteen, Gerd; Joris, Ingeborg; Seuntjens, Piet; Batelaan, Okke

    2015-04-01

    Quantifying groundwater-surface water exchange flux has become an integral part in the study of hyporheic zone processes as well as in the evaluation of the transport and fate of contaminants and nutrients. Several methods have been developed to quantify vertical exchange fluxes from field measurements. One possibility is to use temperature measurements obtained from the top of a porous medium such as a streambed and at some depth and quantify water fluxes by solving the partial differential equation for coupled water flow and heat transport. To determine purely vertical flux from temperature-time series, various analytical 1D procedures have been devised (e.g. Hatch et al., 2006; Keery et al., 2007) that make use of information regarding amplitude attenuation and phase shift between two temperature measurements with a certain vertical spacing and one specific frequency. Other methods (Vandersteen et al., 2014; Wörman et al., 2012) solve for vertical water flow and heat transport in the frequency domain and can use more information from the recorded temperature signals. All of these analytical approaches assume the subsurface to be a semi-infinite homogeneous halfspace. Here we introduce the LPMLE3 method (Local Polynomial Maximum Likelihood Estimator using three measurements), a new analytical approach that quantifies vertical fluxes in the frequency domain without being constrained by this assumption. By using multilevel temperature lances we collected temperature data from seven depths simultaneously at one location in the Slootbeek, a small Belgian lowland stream. Information from these seven sensors was used with the LPMLE3 method to calculate fluxes for finite domains. Each finite domain has a temperature boundary condition (sensor) at its top and bottom, while the flux is estimated for a third temperature signal (sensor) within this domain. The LPML3 method makes use of a local polynomial systems model and a maximum-likelihood estimator to estimate fluxes

  2. Uniform and non-uniform inlet temperature of a vertical hot water jet injected into a rectangular tank

    KAUST Repository

    El-Amin, Mohamed

    2010-12-01

    In most of real-world applications, such as the case of heat stores, inlet is not kept at a constant temperature but it may vary with time during charging process. In this paper, a vertical water jet injected into a rectangular storage tank is measured experimentally and simulated numerically. Two cases of study are considered; one is a hot water jet with uniform inlet temperature (UIT) injected into a cold water tank, and the other is a cold water jet with non-uniform inlet temperature (NUIT) injected into a hot water tank. Three different temperature differences and three different flow rates are studied for the hot water jet with UIT which is injected into a cold water tank. Also, three different initial temperatures with constant flow rate as well as three different flow rates with constant initial temperature are considered for the cold jet with NUIT which is injected into a hot water tank. Turbulence intensity at the inlet as well as Reynolds number for the NUIT cases are therefore functions of inlet temperature and time. Both experimental measurements and numerical calculations are carried out for the same measured flow and thermal conditions. The realizable k-ε model is used for modeling the turbulent flow. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank are analyzed. The simulated results are compared to the measured results, and they show a good agreement at low temperatures. © 2010 IEEE.

  3. Pathways and hydrography in the Mesoamerican Barrier Reef System Part 2: Water masses and thermohaline structure

    Science.gov (United States)

    Carrillo, L.; Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Largier, J. L.

    2016-06-01

    Hydrographic data from two oceanographic cruises conducted during March 2006 and January/February 2007 are used to investigate the thermohaline structure related to the observed circulation along the Mesoamerican Barrier Reef System (MBRS). From our observations we identify three water masses in the MBRS: the Caribbean Surface Water (CSW), North Atlantic Subtropical Underwater (SUW), and Tropical Atlantic Central Water (TACW). Little vertical structure in temperature is observed in the upper 100 m of the water column, but important differences are observed in the salinity distribution both horizontally and with depth. Freshwater inputs to the system from the mainland can be traced in the surface layer, with two possible sources: one from surface rivers located along the southern portion of the MBRS, and the other originating from an underground river system located along the northern portion of the MBRS. The thermohaline structure in the MBRS reflects the dynamics of the observed circulation. Uplifted isopycnals along most of the central and northern coastline of the MBRS reflect the effects of the strong geostrophic circulation flowing northward, i.e. the Yucatan Current. To the south along the MBRS, much weaker velocities are observed, with the Honduras Gyre dominating the flow in this region as presented during January/February 2007. These two regions are separated by onshore and divergent alongshore flow associated with the impingement of the Cayman Current on the shore and the MBRS.

  4. Water masses transform at mid-depths over the Antarctic Continental Slope

    Science.gov (United States)

    Mead Silvester, Jess; Lenn, Yueng-Djern; Polton, Jeffrey; Phillips, Helen E.; Morales Maqueda, Miguel

    2017-04-01

    The Meridional Overturning Circulation (MOC) controls the oceans' latitudinal heat distribution, helping to regulate the Earth's climate. The Southern Ocean is the primary place where cool, deep waters return to the surface to complete this global circulation. While water mass transformations intrinsic to this process predominantly take place at the surface following upwelling, recent studies implicate vertical mixing in allowing transformation at mid-depths over the Antarctic continental slope. We deployed an EM-Apex float near Elephant Island, north of the Antarctic Peninsula's tip, to profile along the slope and use potential vorticity to diagnose observed instabilities. The float captures direct heat exchange between a lens of Upper Circumpolar Deep Water (UCDW) and surrounding Lower Circumpolar Deep Waters (LCDW) at mid-depths and over the course of several days. Heat fluxes peak across the top and bottom boundaries of the UCDW lens and peak diffusivities across the bottom boundary are associated with shear instability. Estimates of diffusivity from shear-strain finestructure parameterisation and heat fluxes are found to be in reasonable agreement. The two-dimensional Ertel potential vorticity is elevated both inside the UCDW lens and along its bottom boundary, with a strong contribution from the shear term in these regions and instabilities are associated with gravitational and symmetric forcing. Thus, shear instabilities are driving turbulent mixing across the lower boundary between these two water masses, leading to the observed heat exchange and transformation at mid-depths over the Antarctic continental slope. This has implications for our understanding of the rates of upwelling and ocean-atmosphere exchanges of heat and carbon at this critical location.

  5. Chemical reaction and radiation effects on mixed convection heat and mass transfer over a vertical plate in power-law fluid saturated porous medium

    Directory of Open Access Journals (Sweden)

    D. Srinivasacharya

    2016-01-01

    Full Text Available Mixed convection heat and mass transfer along a vertical plate embedded in a power-law fluid saturated Darcy porous medium with chemical reaction and radiation effects is studied. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations and then solved numerically using shooting method. A parametric study of the physical parameters involved in the problem is conducted and a representative set of numerical results is illustrated graphically.

  6. Vertical gradients in water chemistry in the central High Plains aquifer, southwestern Kansas and Oklahoma panhandle, 1999

    Science.gov (United States)

    McMahon, Peter B.

    2001-01-01

    The central High Plains aquifer is the primary source of water for domestic, industrial, and irrigation uses in parts of Colorado, Kansas, New Mexico, Oklahoma, and Texas. Water-level declines of more than 100 feet in some areas of the aquifer have increased the demand for water deeper in the aquifer. The maximum saturated thickness of the aquifer ranged from 500 to 600 feet in 1999. As the demand for deeper water increases, it becomes increasingly important for resource managers to understand how the quality of water in the aquifer changes with depth. In 1998?99, 18 monitoring wells at nine sites in southwestern Kansas and the Oklahoma Panhandle were completed at various depths in the central High Plains aquifer, and one monitoring well was completed in sediments of Permian age underlying the aquifer. Water samples were collected once from each well in 1999 to measure vertical gradients in water chemistry in the aquifer. Tritium concentrations measured in ground water indicate that water samples collected in the upper 30 feet of the aquifer were generally recharged within the last 50 years, whereas all of the water samples collected at depths more than 30 feet below the water table were recharged more than 50 years ago. Dissolved oxygen was present throughout the aquifer, with concentrations ranging from 1.7 to 8.4 mg/L. Water in the central High Plains aquifer was predominantly a calcium-bicarbonate type that exhibited little variability in concentrations of dissolved solids with depth (290 to 642 mg/L). Exceptions occurred in some areas where there had been upward movement of mineralized water from underlying sediments of Permian age and areas where there had been downward movement of mineralized Arkansas River water to the aquifer. Calcium-sulfate and sodium-chloride waters dominated and concentrations of dissolved solids were elevated (862 to 4,030 mg/L) near the base of the aquifer in the areas of upward leakage. Dissolution of gypsum or anhydrite and halite

  7. Magnetohydrodynamic free convection heat and mass transfer of a heat generating fluid past an impulsively started infinite vertical porous plate with Hall current and radiation absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kinyanjui, M.; Kwanza, J.K.; Uppal, S.M. [Jomo Kenyatta University of Agriculture and Technology, Nairobi (Cayman Islands). Dept. of Mathematics and Statistics

    2001-05-01

    Simultaneous heat and mass transfer in unsteady free convection flow with radiation absorption past an impulsively started infinite vertical porous plate subjected to a strong magnetic field is presented. The governing equations for the problem are solved by a finite difference scheme. The influence of the various parameters on the convectively cooled or convectively heated plate in the laminar boundary layer are considered. An analysis of the effects of the parameters on the concentration, velocity and temperature profiles, as well as skin friction and the rates of mass and heat transfer, is done with the aid of graphs and tables. (author)

  8. Numerical study of heat and mass transfer of ammonia-water in falling film evaporator

    Science.gov (United States)

    Bu, Xianbiao; Ma, Weibin; Huang, Yuanfeng

    2012-05-01

    To investigate the performance of the heat and mass transfer of ammonia water during the process of falling film evaporation in vertical tube evaporator, a mathematical model of evaporation process was developed and solved based on stream function. Then an experimental study of falling film evaporation was carried out in order to validate the mathematical model. A series of parameters, such as velocity, film thickness and concentration, etc., were obtained from the mathematical model. The calculated results show that the average velocity and the film thickness change sharp at the entrance region when x 100 mm. The film thickness depends largely on the flow rate of solution. It is observed that the heating power and mass flow of solution significantly affect the concentration difference between the inlet and outlet of evaporation tube. The calculated results reveal that the tube length has a significant impact on the amounts of ammonia vapor evaporated. It is suggested that the roll-worked enhanced tube should be used in order to decrease the concentration gradient in the film thickness direction and enhance the heat and mass transfer rate. Furthermore, the experimental and calculated results indicate that the inlet solution concentration has a great influence on the heat exchange capacity, the amounts of ammonia vapor evaporated and the evaporation pressure.

  9. Deep water masses and sediments are main compartments for polychlorinated biphenyls in the Arctic Ocean.

    Science.gov (United States)

    Sobek, Anna; Gustafsson, Örjan

    2014-06-17

    There is a wealth of studies of polychlorinated biphenyls (PCB) in surface water and biota of the Arctic Ocean. Still, there are no observation-based assessments of PCB distribution and inventories in and between the major Arctic Ocean compartments. Here, the first water column distribution of PCBs in the central Arctic Ocean basins (Nansen, Amundsen, and Makarov) is presented, demonstrating nutrient-like vertical profiles with 5-10 times higher concentrations in the intermediate and deep water masses than in surface waters. The consistent vertical profiles in all three Arctic Ocean basins likely reflect buildup of PCBs transported from the shelf seas and from dissolution and/or mineralization of settling particles. Combined with measurement data on PCBs in other Arctic Ocean compartments collected over the past decade, the total Arctic Ocean inventory of ∑7PCB was estimated to 182 ± 40 t (±1 standard error of the mean), with sediments (144 ± 40 t), intermediate (5 ± 1 t) and deep water masses (30 ± 2 t) storing 98% of the PCBs in the Arctic Ocean. Further, we used hydrographic and carbon cycle parametrizations to assess the main pathways of PCBs into and out of the Arctic Ocean during the 20th century. River discharge appeared to be the major pathway for PCBs into the Arctic Ocean with 115 ± 11 t, followed by ocean currents (52 ± 17 t) and net atmospheric deposition (30 ± 28 t). Ocean currents provided the only important pathway out of the Arctic Ocean, with an estimated cumulative flux of 22 ± 10 t. The observation-based inventory of ∑7PCB of 182 ± 40 t is consistent with the contemporary inventory based on cumulative fluxes for ∑7PCB of 173 ± 36 t. Information on the concentration and distribution of PCBs in the deeper compartments of the Arctic Ocean improves our understanding of the large-scale fate of POPs in the Arctic and may also provide a means to test and improve models used to assess the fate of organic pollutants in the Arctic.

  10. Physical characteristics of the coastal waters between Navapur and Umbharat, West coast of India. Part 2. Vertical homogeneity of temperature and salinity

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Sarma, R.V.

    Vertical distribution of temperature and salinity at five stations in the coastal waters off Navapur-Umbharat (Maharashtra-Gujarat coast, India) was studied over different seasons during 1978. The results showed that inspite of large tidal...

  11. GOZCARDS Source Water Vapor 1 month L3 10 degree Zonal Means on a Vertical Pressure Grid V1 (GozSmlpH2O) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Water Vapor 1 month L3 10 degree Zonal Averages on a Vertical Pressure Grid product (GozSmlpH2O) contains zonal means and related...

  12. Vertical-Deformation, Water-Level, Microgravity, Geodetic, Water-Chemistry, and Flow-Rate Data Collected During Injection, Storage, and Recovery Tests at Lancaster, Antelope Valley, California, September 1995 Through September 1998

    National Research Council Canada - National Science Library

    Metzger, Loren F; Ikehara, Marti E; Howle, James F

    2002-01-01

    .... Monitoring networks were established at or in the vicinity of the test site to measure vertical deformation of the aquifer system, water-level fluctuations, land-surface deformation, water chemistry...

  13. Numerical simulation of vertical ground-water flux of the Rio Grande from ground-water temperature profiles, central New Mexico

    Science.gov (United States)

    Bartolino, James R.; Niswonger, Richard G.

    1999-01-01

    An important gap in the understanding of the hydrology of the Middle Rio Grande Basin, central New Mexico, is the rate at which water from the Rio Grande recharges the Santa Fe Group aquifer system. Several methodologies-including use of the Glover-Balmer equation, flood pulses, and channel permeameters- have been applied to this problem in the Middle Rio Grande Basin. In the work presented here, ground-water temperature profiles and ground-water levels beneath the Rio Grande were measured and numerically simulated at four sites. The direction and rate of vertical ground-water flux between the river and underlying aquifer was simulated and the effective vertical hydraulic conductivity of the sediments underlying the river was estimated through model calibration. Seven sets of nested piezometers were installed during July and August 1996 at four sites along the Rio Grande in the Albuquerque area, though only four of the piezometer nests were simulated. In downstream order, these four sites are (1) the Bernalillo site, upstream from the New Mexico State Highway 44 bridge in Bernalillo (piezometer nest BRN02); (2) the Corrales site, upstream from the Rio Rancho sewage treatment plant in Rio Rancho (COR01); (3) the Paseo del Norte site, upstream from the Paseo del Norte bridge in Albuquerque (PDN01); and (4) the Rio Bravo site, upstream from the Rio Bravo bridge in Albuquerque (RBR01). All piezometers were completed in the inner-valley alluvium of the Santa Fe Group aquifer system. Ground-water levels and temperatures were measured in the four piezometer nests a total of seven times in the 24-month period from September 1996 through August 1998. The flux between the surface- and ground-water systems at each of the field sites was quantified by one-dimensional numerical simulation of the water and heat exchange in the subsurface using the heat and water transport model VS2DH. Model calibration was aided by the use of PEST, a model-independent computer program that uses

  14. Cotransport of clay colloids and viruses through water-saturated vertically oriented columns packed with glass beads: Gravity effects.

    Science.gov (United States)

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2016-03-01

    The cotransport of clay colloids and viruses in vertically oriented laboratory columns packed with glass beads was investigated. Bacteriophages MS2 and ΦX174 were used as model viruses, and kaolinite (ΚGa-1b) and montmorillonite (STx-1b) as model clay colloids. A steady flow rate of Q=1.5 mL/min was applied in both vertical up (VU) and vertical down (VD) flow directions. In the presence of KGa-1b, estimated mass recovery values for both viruses were higher for VD than VU flow direction, while in the presence of STx-1b the opposite was observed. However, for all cases examined, the produced mass of viruses attached onto suspended clay particles were higher for VD than VU flow direction, suggesting that the flow direction significantly influences virus attachment onto clays, as well as packed column retention of viruses attached onto suspended clays. KGa-1b hindered the transport of ΦX174 under VD flow, while STx-1b facilitated the transport of ΦX174 under both VU and VD flow directions. Moreover, KGa-1b and STx-1b facilitated the transport of MS2 in most of the cases examined except of the case where KGa-1b was present under VD flow. Also, the experimental data were used for the estimation of virus surface-coverages and virus surface concentrations generated by virus diffusion-limited attachment, as well as virus attachment due to sedimentation. Both sedimentation and diffusion limited virus attachment were higher for VD than VU flow, except the case of MS2 and STx-1b cotransport. The diffusion-limited attachment was higher for MS2 than ΦΧ174 for all cases examined. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The Slug and Churn Turbulence Characteristics of Oil-Gas-Water Flows in a Vertical Small Pipe

    Science.gov (United States)

    Liu, Weixin; Han, Yunfeng; Wang, Dayang; Zhao, An; Jin, Ningde

    2017-08-01

    The intention of the present study was to investigate the slug and churn turbulence characteristics of a vertical upward oil-gas-water three-phase flow. We firstly carried out a vertical upward oil-gas-water three-phase flow experiment in a 20-mm inner diameter (ID) pipe to measure the fluctuating signals of a rotating electric field conductance sensor under different flow patterns. Afterwards, typical flow patterns were identified with the aid of the texture structures in a cross recurrence plot. Recurrence quantitative analysis and multi-scale cross entropy (MSCE) algorithms were applied to investigate the turbulence characteristics of slug and churn flows with the varying flow parameters. The results suggest that with cross nonlinear analysis, the underlying dynamic characteristics in the evolution from slug to churn flow can be well understood. The present study provides a novel perspective for the analysis of the spatial-temporal evolution instability and complexity in oil-gas-water three-phase flow.

  16. Modeling rapid mass movements using the shallow water equations

    Science.gov (United States)

    Hergarten, S.; Robl, J.

    2014-11-01

    We propose a new method to model rapid mass movements on complex topography using the shallow water equations in Cartesian coordinates. These equations are the widely used standard approximation for the flow of water in rivers and shallow lakes, but the main prerequisite for their application - an almost horizontal fluid table - is in general not satisfied for avalanches and debris flows in steep terrain. Therefore, we have developed appropriate correction terms for large topographic gradients. In this study we present the mathematical formulation of these correction terms and their implementation in the open source flow solver GERRIS. This novel approach is evaluated by simulating avalanches on synthetic and finally natural topographies and the widely used Voellmy flow resistance law. The results are tested against analytical solutions and the commercial avalanche model RAMMS. The overall results are in excellent agreement with the reference system RAMMS, and the deviations between the different models are far below the uncertainties in the determination of the relevant fluid parameters and involved avalanche volumes in reality. As this code is freely available and open source, it can be easily extended by additional fluid models or source areas, making this model suitable for simulating several types of rapid mass movements. It therefore provides a valuable tool assisting regional scale natural hazard studies.

  17. Vertical flow soil filter for the elimination of micro pollutants from storm and waste water

    DEFF Research Database (Denmark)

    Janzen, Niklas; Banzhaf, Stefan; Scheytt, Traugott

    2009-01-01

    A technical scale activated soil filter has been used to study the elimination rates of diverse environmentally relevant micro pollutants from storm and waste water. The filter was made of layers of peat, sand and gravel. The upper (organic) layer was planted with reed (phragmites australis......, synthetic waste water spiked to 3000 ng L−1 with the selected compounds was used. Elimination rates with low hydraulic load (61 L m−2 d−1, water retention time: 2 d) were higher than 96%. During a storm water simulation experiment (hydraulic load: 255 L m−2, water retention time:

  18. Towards an estimation of water masses formation areas from SMOS-based TS diagrams

    Science.gov (United States)

    Klockmann, Marlene; Sabia, Roberto; Fernandez-Prieto, Diego; Donlon, Craig; Font, Jordi

    2014-05-01

    density flux (i.e., the change in density induced by surface heat and freshwater fluxes) is computed, characterizing how the buoyancy of a water parcel is being transformed, by increasing or decreasing its density. Afterwards, integrating over a certain time/space and deriving with respect to density, the formation (in Sv) of water masses themselves can be computed, pinpointing the range of SST and SSS in the TS diagrams where a specific water mass is formed. A geographical representation of these points, ultimately, allows to provide a relevant temporal series of the spatial extent of the water masses formation areas (in the specific test zones chosen). This can be then extended over challenging ocean regions, also evaluating the sensitivity of the performances to the datasets used. With this approach, known water masses can be identified and their formation traced in time and space. Longer time series will give further insights by helping to identify inter-annual water mass formation variability and trends in the TS/geographical domains. Future work aims at exploring additional datasets and at connecting the surface information to the vertical structure and to buoyancy-driven ocean circulation processes. References [1] Sabia, R., J. Ballabrera, G. Lagerloef, E. Bayler, M. Talone, Y. Chao, C. Donlon, D. Fernández-Prieto, J. Font, "Derivation of an Experimental Satellite-based T-S Diagram", In Proceedings of IGARSS '12 , Munich, Germany, pp. 5760-5763, 2012. [2] Font, J., A. Camps, A. Borges, M. Martín-Neira, J. Boutin, N. Reul, Y. H. Kerr, A. Hahne, and S. Mecklenburg, "SMOS: The challenging sea surface salinity measurement from space," Proceedings of the IEEE, vol. 98, pp. 649-665, 2010. [3] Le Vine, D.M.; Lagerloef, G.S.E.; Torrusio, S.E.; "Aquarius and Remote Sensing of Sea Surface Salinity from Space," Proceedings of the IEEE , vol.98, no.5, pp.688-703, May 2010, doi: 10.1109/JPROC.2010.2040550. [4] Sabia, R., M. Klockmann, D. Fernández-Prieto, C. Donlon, E

  19. Vertically resolved concentration and liquid water content of atmospheric nanoparticles at the US DOE Southern Great Plains site

    Directory of Open Access Journals (Sweden)

    H. Chen

    2018-01-01

    Full Text Available Most prior field studies of new particle formation (NPF have been performed at or near ground level, leaving many unanswered questions regarding the vertical extent of NPF. To address this, we measured concentrations of 11–16 nm diameter particles from ground level to 1000 m during the 2013 New Particle Formation Study at the Atmospheric Radiation Measurement Southern Great Plains site in Lamont, Oklahoma. The measurements were performed using a tethered balloon carrying two condensation particle counters that were configured for two different particle cut-off diameters. These observations were compared to data from three scanning mobility particle sizers at the ground level. We observed that 11–16 nm diameter particles were generated at the top region of the boundary layer, and were then rapidly mixed throughout the boundary layer. We also estimate liquid water content of nanoparticles using ground-based measurements of particle hygroscopicity obtained with a Humidified Tandem Differential Mobility Analyzer and vertically resolved relative humidity (RH and temperature measured with a Raman lidar. Our analyses of these observations lead to the following conclusions regarding nanoparticles formed during NPF events at this site: (1 ground-based observations may not always accurately represent the timing, distribution, and meteorological conditions associated with the onset of NPF; (2 nanoparticles are highly hygroscopic and typically contain up to 50 % water by volume, and during conditions of high RH combined with high particle hygroscopicity, particles can be up to 95 % water by volume; (3 increased liquid water content of nanoparticles at high RH greatly enhances the partitioning of water-soluble species like organic acids into ambient nanoparticles.

  20. HEAT AND MASS TRANSFER EFFECTS ON FLOW PAST PARABOLIC STARTING MOTION OF ISOTHERMAL VERTICAL PLATE IN THE PRESENCE OF FIRST ORDER CHEMICAL REACTION

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2013-06-01

    Full Text Available An exact solution of unsteady flow past a parabolic starting motion of the infinite isothermal vertical plate with uniform mass diffusion, in the presence of a homogeneous chemical reaction of the first order, has been studied. The plate temperature and the concentration level near the plate are raised uniformly. The dimensionless governing equations are solved using the Laplace transform technique. The effect of velocity profiles are studied for different physical parameters, such as chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, and time. It is observed that velocity increases with increasing values of thermal Grashof number or mass Grashof number. The trend is reversed with respect to the chemical reaction parameter.

  1. {sup 137}Cs airborne levels in the vertical plane from observations taken at high altitude European locations, after the arrival of the Fukushima-labeled air masses

    Energy Technology Data Exchange (ETDEWEB)

    Masson, O. [IRSN - Institut de Radioprotection et de Surete Nucleaire (France); Estier, S. [Federal Office of Public Health (Switzerland)

    2014-07-01

    The Fukushima-labeled air masses reached Europe at different times according to the location. Airborne levels of the released radionuclides also exhibited some discrepancies at local or regional scales, with a corridor of higher activity levels that extended along a NW to SE axis from Scandinavia, across eastern Germany, Poland, the Czech Republic and Belarus. These observations were mostly based on lowlands air samplings, We compare here the variations in the vertical plane by using the maximum airborne {sup 137}Cs levels registered at high altitude European locations with what was observed at the closest lowland location. {sup 137}Cs levels were systematically lower in altitude. The relation [{sup 137}Cs]max vs. altitude shows a linear relationship and thus the concentration of activity in the vertical plane was not homogenous even after a long travel time and that Document available in abstract form only. (authors)

  2. Radioactive Particle Tracking Technique with Concentrated {sup 68}Ga Source for Visualization of Water Flows in Digester with Vertical Impeller

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jang-Guen; Moon, Jinho; Lim, Jaecheong; Jung, Sung-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    It is very important to understand the dynamic behavior of mixing flow for operating digesters. Therefore, there have been incessant studies over the world to investigate hydrodynamic parameters of flows in digesters experimentally. In Korea, researchers at the Korea Atomic Energy Research Institute (KAERI) have been studying radioactive particle tracking (RPT) technique to tracks the trajectory of a single radioactive particle flowing along with flow current and then, hydrodynamics parameters are calculated based on the trajectory of particle. In this study, the RPT technique was carried out for the digester mixed by a vertical impeller to visualize water flow. In this study, the RPT technique was carried out to investigate water flows in digester mixed by vertical impeller. We used a {sup 68}Ga generator source as a radioactive particle by concentrating eluate for RPT to be independent of reactors, and that is the first attempt in the world. The reconstructed particle trajectory will be used to calculate hydrodynamics parameters to understand the dynamic behavior of flows in digester.

  3. Prediction of vertical jump height. Role of mechanical impulse and leg muscle mass Predicción de la altura de salto vertical. Importancia del impulso mecánico y de la masa muscular de las extremidades inferiores

    Directory of Open Access Journals (Sweden)

    R. Arteaga

    2010-09-01

    Full Text Available

    The aim of this study was to find out if it is possible to predict the height of the vertical jump from kinematic, dynamometric and anthropometric variables using a multiple linear regression model. Fifty-three subjects, 21 male and 9 female volleyball players of first National categories (First National League and First League, as well as 23 Physical Education students (12 males and 11 females participated in this study. First, the height of the flight during the performance of a "squat jump" (SJ and "countermovement jump" (CMJ was determined. Then, the maximal isometric strength in the squat position was assessed with the knees bent at 90º, 120º and 140º while the electromyographic activity was simultaneously recorded on the vastus lateralis with surface electrodes. The muscle mass of the lower limbs was obtained by dual-energy X-ray absorptiometry (DEXA. The positive mechanical impulse explained on its own 77% of jumping height variability. Prediction power was increased to 82% by including in the model the percentage of body mass represented by de muscle mass of the lower limbs. The inclusion of the muscle mass of the lower limbs, as a third variable, raised the prediction power to 98% of jumping height variability. The same variables allowed for a similar level of prediction during the squat jumps.
    KEY WORDS: Vertical jump, DEXA, muscle mass, strength.

    El objetivo de este estudio ha sido determinar si es posible predecir la altura de vuelo en el salto vertical a partir de variables cinemáticas, dinamométricas y antropométricas, mediante un modelo de regresión múltiple lineal. Participaron en el estudio 53 sujetos, 21 hombres jugadores de voleibol de categorías nacionales (División de Honor y Primera División y 9 mujeres jugadoras de voleibol de División de Honor, así como 23 estudiantes de Educación Física, de los cuales 12 eran hombres y 11

  4. Water ice cloud property retrievals at Mars with OMEGA:Spatial distribution and column mass

    Science.gov (United States)

    Olsen, Kevin S.; Madeleine, Jean-Baptiste; Szantai, Andre; Audouard, Joachim; Geminale, Anna; Altieri, Francesca; Bellucci, Giancarlo; Montabone, Luca; Wolff, Michael J.; Forget, Francois

    2017-04-01

    Spectral images of Mars recorded by OMEGA (Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité) on Mars Express can be used to deduce the mean effective radius (r_eff) and optical depth (τ_i) of water ice particles in clouds. Using new data sets for a priori surface temperature, vertical profiles of atmospheric temperature, dust opacity, and multi-spectral surface albedo, we have analyzed over 40 OMEGA image cubes over the Tharsis, Arabia, and Syrtis Major quadrangles, and mapped the spatial distribution of r_eff, τ_i, and water ice column mass. We also explored the parameter space of r_eff and τ_i, which are inversely proportional, and the ice cloud index (ICI), which is the ratio of the reflectance at 3.4 and 3.52 μm, and indicates the thickness of water ice clouds. We found that the ICI, trivial to calculate for OMEGA image cubes, can be a proxy for column mass, which is very expensive to compute, requiring accurate retrievals of surface albedo, r_eff, and τ_i. Observing the spatial distribution, we find that within each cloud system, r_eff varies about a mean of 2.1 μm, that τi is closely related to r_eff, and that the values allowed for τ_i, given r_eff, are related to the ICI. We also observe areas where our retrieval detects very thin clouds made of very large particles (mean of 12.5 μm), which are still under investigation.

  5. Free Convection Heat and Mass Transfer MHD Flow in a Vertical Channel in the Presence of Chemical Reaction

    Directory of Open Access Journals (Sweden)

    R. N. Barik

    2013-09-01

    Full Text Available An analysis is made to study the effects of diffusion-thermo and chemical reaction on fully developed laminar MHD flow of electrically conducting viscous incompressible fluid in a vertical channel formed by two vertical parallel plates was taken into consideration with uniform temperature and concentration. The analytical solution by Laplace transform technique of partial differential equations is used to obtain the expressions for the velocity, temperature and concentration. It is interesting to note that during the course of computation, the transient solution at large time coincides with steady state solution derived separately and the diffusion-thermo effect creates an anomalous situation in temperature and velocity profiles for small Prandtl numbers. The study is restricted to only destructive reaction and non-conducting case cannot be derived as a particular case still it is quite interesting and more realistic than the earlier one.

  6. Air-sea fluxes and satellite-based estimation of water masses formation

    Science.gov (United States)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    and monthly water mass formation rates for different SST and SSS ranges are presented. The formation peaks are remapped geographically, to analyze the extent of the formation area. Water mass formation derived from SMOS and OSTIA compares well with the results obtained from in-situ data, although slight differences in magnitude and peak location occur. Known water masses can then be identified. Ongoing/future work aims at extending this study along different avenues by: 1) expand systematically the spatial and temporal domain of the study to additional ocean basins and to the entire time period of available SSS observations from SMOS/Aquarius; 2) perform a thorough error propagation to assess how errors in satellite SSS and SST translate into errors in water masses formation rates and geographical areas extent; and 3) explore the different options to connect the surface information to the vertical buoyancy structure to assess potential density instability (e.g., Turner angle). References [1] Sabia, R., M. Klockmann, D. Fernández-Prieto, and C. Donlon (2014), A first estimation of SMOS-based ocean surface T-S diagrams, J. Geophys. Res. Oceans, 119, 7357-7371, doi:10.1002/2014JC010120. [2] Klockmann, M., R. Sabia, D. Fernández-Prieto, C. Donlon, J. Font; Towards an estimation of water masses formation areas from SMOS-based T-S diagrams; EGU general assembly 2014, April 27-May 2, 2014. [3] Klockmann, M., R. Sabia, D. Fernández-Prieto, C. Donlon, Linking satellite SSS and SST to water mass formation; Ocean salinity science and salinity remote sensing workshop, Exeter, UK, November 26-28, 2014. [4] Font, J., A. Camps, A. Borges, M. Martín-Neira, J. Boutin, N. Reul, Y. H. Kerr, A. Hahne, and S. Mecklenburg, "SMOS: The challenging sea surface salinity measurement from space," Proceedings of the IEEE, vol. 98, pp. 649-665, 2010. [5] Le Vine, D.M.; Lagerloef, G.S.E.; Torrusio, S.E.; "Aquarius and Remote Sensing of Sea Surface Salinity from Space," Proceedings of the IEEE

  7. The unique chemistry of Eastern Mediterranean water masses selects for distinct microbial communities by depth.

    Directory of Open Access Journals (Sweden)

    Stephen M Techtmann

    Full Text Available The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbial community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly

  8. The unique chemistry of Eastern Mediterranean water masses selects for distinct microbial communities by depth.

    Science.gov (United States)

    Techtmann, Stephen M; Fortney, Julian L; Ayers, Kati A; Joyner, Dominique C; Linley, Thomas D; Pfiffner, Susan M; Hazen, Terry C

    2015-01-01

    The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbial community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial

  9. Radium-226 and barium as tracers of water masses in the North Atlantic (GA01-GEOTRACES)

    Science.gov (United States)

    Le Roy, Emilie; Sanial, Virginie; Charette, Matthew; Henderson, Paul; Jacquet, Stéphanie; García-Ibáñez, Maribel; Pérez, Fiz; Lherminer, Pascale; Souhaut, Marc; Jeandel, Catherine; Lacan, François; van Beek, Pieter

    2017-04-01

    In this study, we report concentrations of radium-226 (226Ra, t1/2=1602 y) and barium determined along the GEOVIDE section conducted in the North Atlantic (May-July 2014; Portugal-Greenland-Canda) in the framework of the international GEOTRACES program. A high vertical resolution (up to 22 depths per station) was achieved by analyzing small volumes (˜10 L) of seawater for 226Ra using a radon emanation technique. We will present the distribution of 226Ra activities and barium concentrations in contrasting biogeochemical regions of the North Atlantic (Iberian margin, West European Basin, Reykjanes Ridge, Irminger Sea, Greenland margin and Labrador Sea). These regions strongly differ in terms of boundary inputs, biogeochemistry and deep water formation. We observe a linear correlation between 226Ra and barium along the GEOVIDE section, which results from the dominantly conservative behavior of the two tracers. However, deviations from the linear correlation between 226Ra and Ba are found in several places. The potential causes for such deviations are investigated. Optimum multi-parameter (OMP) analysis was thus used to distinguish the relative importance of physical transport (i.e., water mass mixing) from non-conservative processes (sedimentary, river or hydrothermal inputs; uptake by particles) on the 226Ra and Ba distribution in the North Atlantic.

  10. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    Science.gov (United States)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2017-02-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  11. A Note on Variable Viscosity and Chemical Reaction Effects on Mixed Convection Heat and Mass Transfer Along a Semi-Infinite Vertical Plate

    Directory of Open Access Journals (Sweden)

    Mostafa A. A. Mahmoud

    2007-01-01

    Full Text Available In the present study, an analysis is carried out to study the variable viscosity and chemical reaction effects on the flow, heat, and mass transfer characteristics in a viscous fluid over a semi-infinite vertical porous plate. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically by using the shooting method. The effects of different parameters on the dimensionless velocity, temperature, and concentration profiles are shown graphically. In addition, tabulated results for the local skin-friction coefficient, the local Nusselt number, and the local Sherwood number are presented and discussed.

  12. Effect of radiation on free convection heat and mass transfer flow through porous medium in a vertical channel with heat absorption/generation and chemical reaction

    Science.gov (United States)

    Lavanya, B.

    2017-07-01

    The present paper analyses a solution for the transient free flow on a viscous and incompressible fluid between two vertical walls as a result of heta and mass transfer. The perturbation technique ahs been used to find the solutions for the velocity and temperature fields by solving the governing partial differential equations. The temperature of the one plate is assumed to be fluctuating. The effcets of the various parametrs entering into the problem, on the velocity and the temprature are depivted graphically. The impact of various parameters (Da, Rv, Pr, R and S) on velocity and temperature fields are shown graphically. The expressions for skin friction at both walls are also obtained.

  13. Technical Tools for Studying Structure and Dynamics of Water Masses

    Directory of Open Access Journals (Sweden)

    V.Z. Dykman

    2016-12-01

    Full Text Available The article gives a review of the technical tools designed to study structure and dynamics of water masses in the surface, bottom and deep-water sea layers, where the acting processes are not connected with wind waves. The process of adapting the measuring equipment to the requirements resulting from the expanding notions on physics of the marine environment phenomena is shown. Almost all the major designs are patented in the USSR, Ukraine and Russia. The experience in the development of different instruments enable adequately respond to the need for new methods and technical means intended for the organization of operational observations of the marine environment and land and sea interface zone. CTD-system experimental samples having a high degree of miniaturization and extremely low power consumption have already been created. They possess the necessary metrological characteristics and are intended for use in the drifters and lost (disposable probes. According to its metrological and operating characteristics, the autonomous electromagnetic current meter is able to provide reliable data in a variety of conditions (including collapse area of wind waves both being installed on a fixed base and hung on buoy stations. For wide manufacture of the new measurement tools it is necessary to create a complete set of design documentation on the basis of existing sketches, as well as to find the production base, equipped with machine tools of the corresponding class.

  14. Update on water mass composition in the Filchner Trough, Antarctica

    Science.gov (United States)

    Schröder, Michael; Hellmer, Hartmut

    2014-05-01

    Some coupled ice-ocean models predict that the Filchner-Ronne Ice Shelf will face dramatic changes in the second half of our century. These are related to a redirection of the slope current into the Filchner Trough (FT), causing an increase of basal mass loss by more than an order of magnitude. If the model results are to believed, it is important to monitor the variety of physical parameters of the present system in the 'pre-disturbed' case. The most recent 'Polarstern' expedition ANT XXIX/9 (19/12/2103 - 05/03/2014) is the first combined biological-oceanographic cruise into the southeastern Weddell Sea since 1998, designed to provide a marine census of the FT within the next 5 to 10 years. We will present the first oceanographic results from the FT, showing that the eastern branch of the southward propagating Modified Warm Deep Water (MWDW) was observed only north of 76°S more than 120 nm away from the ice shelf edge. Three moorings were deployed at that latitude for a period of two years to measure the time dependence and the characteristics of this warm water tongue with temperatures between -1.6°C to -1.4°C. The recovery of the moorings is planned for austral summer 2015/16.

  15. Impact of water mass mixing on the biogeochemistry and microbiology of the Northeast Atlantic Deep Water

    Science.gov (United States)

    Reinthaler, Thomas; Álvarez Salgado, Xosé Antón; Álvarez, Marta; van Aken, Hendrik M.; Herndl, Gerhard J.

    2013-12-01

    The extent to which water mass mixing contributes to the biological activity of the dark ocean is essentially unknown. Using a multiparameter water mass analysis, we examined the impact of water mass mixing on the nutrient distribution and microbial activity of the Northeast Atlantic Deep Water (NEADW) along an 8000 km long transect extending from 62°N to 5°S. Mixing of four water types (WT) and basin scale mineralization from the site where the WT where defined to the study area explained up to 95% of the variability in the distribution of inorganic nutrients and apparent oxygen utilization. Mixing-corrected average O2:N:P mineralization ratios of 127(±11):13.0(±0.7):1 in the core of the NEADW suggested preferential utilization of phosphorus compounds while dissolved organic carbon mineralization contributed a maximum of 20% to the oxygen demand of the NEADW. In conjunction with the calculated average mineralization ratios, our results indicate a major contribution of particulate organic matter to the biological activity in the NEADW. The variability in prokaryotic abundance, high nucleic acid containing cells, and prokaryotic heterotrophic production in the NEADW was explained by large scale (64-79%) and local mineralization processes (21-36%), consistent with the idea that deep-water prokaryotic communities are controlled by substrate supply. Overall, our results suggest a major impact of mixing on the distribution of inorganic nutrients and a weaker influence on the dissolved organic matter pool supporting prokaryotic activity in the NEADW.

  16. Radiocarbon Distribution of Atlantic Water Masses Over the Last 30 kyr - Results From a South Atlantic Sediment Depth Transect

    Science.gov (United States)

    Charles, C. D.; Kashgarian, M.; Slowey, N. C.

    2006-12-01

    Here we present the results of a field experiment to document the changes in mid-depth water masses in the mid-depth ocean. Our sediment cores are from the southeastern Atlantic, offshore Angola and Namibia, and range in water depth from 500 to 3200 meters, with a vertical spacing of approximately 200 meters. This is a region where, within a limited area, the seafloor intersects all the principal watermasses involved in the thermohaline circulation of the Atlantic — including those of northern and southern hemisphere origin, allowing the possibility for a detailed history of the intermediate water masses (Antarctic Intermediate Water and Labrador Sea Water) throughout the last deglaciation. These cores are all characterized by sediment rates in excess of 5 cm/kyr and can be correlated stratigraphically with each other to within a few cms on the basis of physical properties and isotopic profiles. We present a detailed calibration of the planktonic/benthic radiocarbon age difference from thirty sediment core tops that are younger than 3 ka (radiocarbon years). These analyses involve a mixed benthic foraminiferal radiocarbon determination, as well as planktonic foraminiferal dates from either or both Orbulina universa or Globigerina bulloides. These data allow an evaluation of the radiocarbon information in different planktonic foraminifera species: for example, there is a significant offset between O. universa and G. bulloides radiocarbon content that undoubtedly reflects habitat differences. The core top calibration also allows determination of the extent to which benthic and planktonic age pairs represent water column radiocarbon distribution. Using stringent selection criteria guided by the core top results, we analyze the radiocarbon distribution in ice age and deglacial water masses, deduced from over 100 planktonic-benthic foraminiferal age pairs. The reconstructed water column profiles can then be cross-checked with other tracers such as oxygen isotopes

  17. Heat transfer in vertical pipe flow at supercritical pressures of water; Waermeuebergang von Wasser in vertikalen Rohrstroemungen bei ueberkritischem Druck

    Energy Technology Data Exchange (ETDEWEB)

    Loewenberg, M.F.

    2007-05-15

    A new reactor concept with light water at supercritical conditions is investigated in the framework of the European project ''High Performance Light Water Reactor'' (HPLWR). Characteristics of this reactor are the system pressure and the coolant outlet temperature above the critical point of water. Water is regarded as a single phase fluid under these conditions with a high energy density. This high energy density should be utilized in a technical application. Therefore in comparison with up to date nuclear power plants some constructive savings are possible. For instance, steam dryers or steam separators can be avoided in contrast to boiling water reactors. A thermal efficiency of about 44% can be accomplished at a system pressure of 25MPa through a water heat-up from 280 C to 510 C. To ensure this heat-up within the core reliable predictions of the heat transfer are necessary. Water as the working fluid changes its fluid properties dramatically during the heat up in the core. As such; the density in the core varies by the factor of seven. The motivation to develop a look-up table for heat transfer predications in supercritical water is due to the significant temperature dependence of the fluid properties of water. A systematic consolidation of experimental data was performed. Together with further developments of the methods to derive a look-up table made it possible to develop a look-up table for heat transfer in supercritical water in vertical flows. A look-up table predicts the heat transfer for different boundary conditions (e.g. pressure or heat flux) with tabulated data. The tabulated wall temperatures for fully developed turbulent flows can be utilized for different geometries by applying hydraulic diameters. With the developed look-up table the difficulty of choosing one of the many published correlations can be avoided. In general, the correlations have problems with strong fluid property variations. Strong property variations

  18. A new method to assess long term small sea-bottom vertical displacement in shallow water from bottom pressure sensor: the case of Campi Flegrei, Southern Italy

    Science.gov (United States)

    Malservisi, R.; Chierici, F.; Iannaccone, G.; Guardato, S.; Pignagnoli, L.; Locritani, M.; Embriaco, D.; Donnarumma, G. P.; Rodgers, M.; Beranzoli, L.

    2016-12-01

    We present a new methodology aimed at assessing long term small vertical seafloor deformation in shallow water environments by using Bottom Pressure Recorder (BPR) measurements jointly with ancillary sea level, water column and barometric data. These measurements are presently acquired only in areas where the amount of vertical deformation is large and in deep water environment, where the noise induced by the sea state and other near surface disturbances is low. We applied the method to the data acquired in 2011 by a BPR deployed at about 96 m depth in the marine sector of the Campi Flegrei Caldera, during a quasi-symmetric seafloor uplift episode of a few centimeters amplitude. The method provides an estimation of the vertical uplift of the caldera of 2.5 +/- 1.3 cm achieving an unprecedented level of precision in the measurement of the seafloor vertical deformation in shallow water. We reached this result by taking into account the contribution of the BPR instrumental drift and the contribution of the sea water density variations, which can affect the measurement on the order of tens of centimeters. The estimation of the vertical deformation obtained in this way compares favorably with data acquired by a land based GPS station, which is located at the same distance from the area of maximum deformation as the BPR

  19. Phase change of First Wall in Water-Cooled Breeding Blankets of K-DEMO for Vertical

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo; Lee, Jeong Hun; Cho, Hyoung Kyu; Park, Goon Cherl [Seoul National University, Seoul (Korea, Republic of); Im, Ki Hak [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to simulate thermal-hydraulic behavior of a single blanket module when plasma disruption occurs. Plasma disruptions, such as vertical displacement events (VDE), with high heat flux can cause melting and vaporization of plasma facing materials and also burnout of coolant channels. The thermal design, evaluation and validation have been performed in order to establish the conceptual design guidelines of the water-cooled breeding blanket for the K-DEMO reactor. As a part of the NFRI research, Seoul National University (SNU) is conducting transient thermal-hydraulic analysis to confirm the integrity of blanket system for plasma disruption events. Vertical displacement events (VDE) with high heat flux can cause melting and vaporization of plasma facing materials (PFCs) and also burnout of coolant channels. In order to simulate melting of first wall in blanket module when VDE occurs, one-dimensional heat conduction equations were solved numerically with modification of the specific heat of the first wall materials using effective heat capacity method. Temperature profiles in first wall for VDE are shown in fig 7 - 9. At first, temperature of tungsten rapidly raised and even exceeded its melting temperature. When VDE just ended at 0.1 second, 0.83 mm thick of tungsten melted. But the other materials including vanadium and RAFM didn't exceed their melting temperatures after 500 seconds.

  20. Vertical Distribution of Ammonia-Oxidizing Crenarchaeota and Methanogens in the Epipelagic Waters of Lake Kivu (Rwanda-Democratic Republic of the Congo)▿ †

    Science.gov (United States)

    Llirós, Marc; Gich, Frederic; Plasencia, Anna; Auguet, Jean-Christophe; Darchambeau, François; Casamayor, Emilio O.; Descy, Jean-Pierre; Borrego, Carles

    2010-01-01

    Four stratified basins in Lake Kivu (Rwanda-Democratic Republic of the Congo) were sampled in March 2007 to investigate the abundance, distribution, and potential biogeochemical role of planktonic archaea. We used fluorescence in situ hybridization with catalyzed-reported deposition microscopic counts (CARD-FISH), denaturing gradient gel electrophoresis (DGGE) fingerprinting, and quantitative PCR (qPCR) of signature genes for ammonia-oxidizing archaea (16S rRNA for marine Crenarchaeota group 1.1a [MCG1] and ammonia monooxygenase subunit A [amoA]). Abundance of archaea ranged from 1 to 4.5% of total DAPI (4′,6-diamidino-2-phenylindole) counts with maximal concentrations at the oxic-anoxic transition zone (∼50-m depth). Phylogenetic analysis of the archaeal planktonic community revealed a higher level of richness of crenarchaeal 16S rRNA gene sequences (21 of the 28 operational taxonomic units [OTUs] identified [75%]) over euryarchaeotal ones (7 OTUs). Sequences affiliated with the kingdom Euryarchaeota were mainly recovered from the anoxic water compartment and mostly grouped into methanogenic lineages (Methanosarcinales and Methanocellales). In turn, crenarchaeal phylotypes were recovered throughout the sampled epipelagic waters (0- to 100-m depth), with clear phylogenetic segregation along the transition from oxic to anoxic water masses. Thus, whereas in the anoxic hypolimnion crenarchaeotal OTUs were mainly assigned to the miscellaneous crenarchaeotic group, the OTUs from the oxic-anoxic transition and above belonged to Crenarchaeota groups 1.1a and 1.1b, two lineages containing most of the ammonia-oxidizing representatives known so far. The concomitant vertical distribution of both nitrite and nitrate maxima and the copy numbers of both MCG1 16S rRNA and amoA genes suggest the potential implication of Crenarchaeota in nitrification processes occurring in the epilimnetic waters of the lake. PMID:20802065

  1. Vertical distribution of ammonia-oxidizing crenarchaeota and methanogens in the epipelagic waters of Lake Kivu (Rwanda-Democratic Republic of the Congo).

    Science.gov (United States)

    Llirós, Marc; Gich, Frederic; Plasencia, Anna; Auguet, Jean-Christophe; Darchambeau, François; Casamayor, Emilio O; Descy, Jean-Pierre; Borrego, Carles

    2010-10-01

    Four stratified basins in Lake Kivu (Rwanda-Democratic Republic of the Congo) were sampled in March 2007 to investigate the abundance, distribution, and potential biogeochemical role of planktonic archaea. We used fluorescence in situ hybridization with catalyzed-reported deposition microscopic counts (CARD-FISH), denaturing gradient gel electrophoresis (DGGE) fingerprinting, and quantitative PCR (qPCR) of signature genes for ammonia-oxidizing archaea (16S rRNA for marine Crenarchaeota group 1.1a [MCG1] and ammonia monooxygenase subunit A [amoA]). Abundance of archaea ranged from 1 to 4.5% of total DAPI (4',6-diamidino-2-phenylindole) counts with maximal concentrations at the oxic-anoxic transition zone (∼50-m depth). Phylogenetic analysis of the archaeal planktonic community revealed a higher level of richness of crenarchaeal 16S rRNA gene sequences (21 of the 28 operational taxonomic units [OTUs] identified [75%]) over euryarchaeotal ones (7 OTUs). Sequences affiliated with the kingdom Euryarchaeota were mainly recovered from the anoxic water compartment and mostly grouped into methanogenic lineages (Methanosarcinales and Methanocellales). In turn, crenarchaeal phylotypes were recovered throughout the sampled epipelagic waters (0- to 100-m depth), with clear phylogenetic segregation along the transition from oxic to anoxic water masses. Thus, whereas in the anoxic hypolimnion crenarchaeotal OTUs were mainly assigned to the miscellaneous crenarchaeotic group, the OTUs from the oxic-anoxic transition and above belonged to Crenarchaeota groups 1.1a and 1.1b, two lineages containing most of the ammonia-oxidizing representatives known so far. The concomitant vertical distribution of both nitrite and nitrate maxima and the copy numbers of both MCG1 16S rRNA and amoA genes suggest the potential implication of Crenarchaeota in nitrification processes occurring in the epilimnetic waters of the lake.

  2. Vertical gradients for particulate Cu fractions in estuarine water over tidal flats

    NARCIS (Netherlands)

    Gerringa, L.J.A.; Hummel, H.; Moerdijk-Poortvliet, T.C.W.

    1999-01-01

    The speciation of particulate copper was determined at several depths (0, 5 and 15 cm above the sediment surface) in the water column above intertidal flat systems in the polluted estuary Westerschelde (WS) and the relatively un-polluted Oosterschelde sea-arm (OS), in order to assess differences in

  3. Prediction of critical heat flux for water in uniformly heated vertical ...

    African Journals Online (AJOL)

    Accuracy of correlations was estimated by calculating both the average and RMS error with available experimental data, and a new correlation is presented. The new correlation predicts the CHF data with average error 0.07% and RMS error 7.91 %. Keywords: CHF - Heat transfer - Water vapor - Porous coated tubes.

  4. Myths and methodologies: Making sense of exercise mass and water balance.

    Science.gov (United States)

    Cheuvront, Samuel N; Montain, Scott J

    2017-09-01

    What is the topic of this review? There is a need to revisit the basic principles of exercise mass and water balance, the use of common equations and the practice of interpreting outcomes. What advances does it highlight? We propose use of the following equation as a way of simplifying exercise mass and water balance calculations in conditions where food is not consumed and waste is not excreted: ∆body mass - 0.20 g/kcal-1  = ∆body water. The relative efficacy of exercise drinking behaviours can be judged using the following equation: percentage dehydration = [(∆body mass - 0.20 g kcal-1 )/starting body mass] × 100. Changes in body mass occur because of flux in liquids, solids and gases. This knowledge is crucial for understanding metabolism, health and human water needs. In exercise science, corrections to observed changes in body mass to estimate water balance are inconsistently applied and often misinterpreted, particularly after prolonged exercise. Although acute body mass losses in response to exercise can represent a close surrogate for body water losses, the discordance between mass and water balance equivalence becomes increasingly inaccurate as more and more energy is expended. The purpose of this paper is briefly to clarify the roles that respiratory water loss, gas exchange and metabolic water production play in the correction of body mass changes for fluid balance determinations during prolonged exercise. Computations do not include waters of association with glycogen because any movement of water among body water compartments contributes nothing to water or mass flux from the body. Estimates of sweat loss from changes in body mass should adjust for non-sweat losses when possible. We propose use of the following equation as a way of simplifying the study of exercise mass and water balance: ∆body mass - 0.20 g kcal-1  = ∆body water. This equation directly controls for the influence of energy expenditure on body mass balance

  5. Vertical mass impact and features of Saharan dust intrusions derived from ground-based remote sensing in synergy with airborne in-situ measurements

    Science.gov (United States)

    Córdoba-Jabonero, Carmen; Andrey-Andrés, Javier; Gómez, Laura; Adame, José Antonio; Sorribas, Mar; Navarro-Comas, Mónica; Puentedura, Olga; Cuevas, Emilio; Gil-Ojeda, Manuel

    2016-10-01

    A study of the vertical mass impact of Saharan dust intrusions is presented in this work. Simultaneous ground-based remote-sensing and airborne in-situ measurements performed during the AMISOC-TNF campaign over the Tenerife area (Canary Islands) in summertime from 01 July to 11 August 2013 were used for that purpose. A particular dusty (DD) case, associated to a progressively arriving dust intrusion lasting for two days on 31 July (weak incidence) and 01 August (strong incidence), is especially investigated. AERONET AOD and AEx values were ranging, respectively, from 0.2 to 1.4 and 0.35 to 0.05 along these two days. Vertical particle size distributions within fine and coarse modes (0.16-2.8 μm range) were obtained from aircraft aerosol spectrometer measurements. Extinction profiles and Lidar Ratio (LR) values were derived from MPLNET/Micro Pulse Lidar observations. MAXDOAS measurements were also used to retrieve the height-resolved aerosol extinction for evaluation purposes in comparison to Lidar-derived profiles. The synergy between Lidar observations and airborne measurements is established in terms of the Mass Extinction Efficiency (MEE) to calculate the vertical mass concentration of Saharan dust particles. Both the optical and microphysical profilings show dust particles mostly confined in a layer of 4.3 km thickness from 1.7 to 6 km height. LR ranged between 50 and 55 sr, typical values for Saharan dust particles. In addition, this 2-day dust event mostly affected the Free Troposphere (FT), being less intense in the Boundary Layer (BL). In particular, rather high Total Mass Concentrations (TMC) were found on the stronger DD day (01 August 2013): 124, 70 and 21 μg m-3 were estimated, respectively, at FT and BL altitudes and on the near-surface level. This dust impact was enhanced due to the increase of large particles affecting the FT, but also the BL, likely due to their gravitational settling. However, the use of an assumed averaged MEE value can be

  6. Steering compensation for strong vertical refraction gradients in a long-distance free-space optical communication link over water

    Science.gov (United States)

    Suite, M. R.; Moore, C. I.; Burris, H. R., Jr.; Wasiczko, L.; Stell, M. F.; Rabinovich, W. S.; Scharpf, W. J.; Gilbreath, G. C.

    2005-08-01

    It is important to be able to characterize and compensate for refraction effects in free-space optical laser communication (FSO lasercom). The refractive index depends on various properties of the propagation medium such as temperature, pressure, and moisture, with temperature having the largest affect. Very strong but slow-varying thermal gradients have been observed at the NRL Chesapeake Bay lasercom testbed, which offers a 16 km one-way (32 km round-trip) FSO lasercom link over water. Thermal gradients affect the elevation-pointing angle, and their magnitudes are a function of the time of day and year and also the weather conditions. These vertical refraction errors are corrected by the use of a fiber positioner controlled by a position-sensing detector (PSD). This system is implemented into the receiver at the NRL Chesapeake Bay lasercom testbed. System test results will be presented.

  7. Determining Effects of Wagon Mass and Vehicle Velocity on Vertical Vibrations of a Rail Vehicle Moving with a Constant Acceleration on a Bridge Using Experimental and Numerical Methods

    Directory of Open Access Journals (Sweden)

    C. Mızrak

    2015-01-01

    Full Text Available Vibrations are vital for derailment safety and passenger comfort which may occur on rail vehicles due to the truck and nearby conditions. In particular, while traversing a bridge, dynamic interaction forces due to moving loads increase the vibrations even further. In this study, the vertical vibrations of a rail vehicle at the midpoint of a bridge, where the amount of deflection is expected to be maximum, were determined by means of a 1 : 5 scaled roller rig and Newmark-β numerical method. Simulations for different wagon masses and vehicle velocities were performed using both techniques. The results obtained from the numerical and experimental methods were compared and it was demonstrated that the former was accurate with an 8.9% error margin. Numerical simulations were performed by identifying different test combinations with Taguchi experiment design. After evaluating the obtained results by means of an ANOVA analysis, it was determined that the wagon mass had a decreasing effect on the vertical vibrations of the rail vehicle by 2.087%, while rail vehicle velocity had an increasing effect on the vibrations by 96.384%.

  8. Monitoring water masses properties by Glider in Sardinia Channel during summer 2014

    Science.gov (United States)

    Gana, Slim; Iudicone, Daniele; Ghenim, Leila; Mortier, Laurent; Testor, Pierre; Tintoré, Joaquin; Olita, Antonio

    2015-04-01

    characterization using altimetry and gliders: A case study in the Balearic Sea, J. Geophys. Res., 115, C10029, doi:10.1029/2009JC006087. • Garzoli S. and C. Maillard, Winter circulation in the Sicily and Sardinia straits region. Deep-Sea Research, vol. 26A, 933-954, 1979. • Hodges, B. A. and D. M. Fratantoni, 2009. A thin layer of phytoplankton observed in the Philippine Sea with a synthetic moored array of autonomous gliders. Journal of Geophysical Research - Oceans, 114, doi:10.1029/2009JC005294. • Millot, C. (1987a) Circulation in the Western Mediterranean. Oceanologica Acta 10(2), 143-149. • Ozturgut Erdogan, Temporal and spatial variability of water masses: the Strait of Sicily (Medmiloc 72). Saclantcen SM-65, pp 26, 1975. • Puillat I., I. Taupier-Letage, C. Millot, 2002: Algerian Eddies lifetime can near 3 years - Journal of Marine Systems 31, 245- 259 • Ruiz S., Pascual A., Garau B., Pujol I., Tintoré J. 2009. Vertical motion in the upper ocean from glider and altimetry data, Geophys. Res. Lett. 36(14): L14607. • Taupier-Letage et al, J.Geophys.Res., 108, 3245, 2003. • Testor P., K. Béranger and L. Mortier (2005). Modeling the deep eddy field in the southwestern Mediterranean: the life cycle of Sardinian Eddies. In Geophys. Res. Lett., Vol. 32(13):13602.

  9. Vertical wicking tester for monitoring water transportation behavior in fibrous assembly.

    Science.gov (United States)

    Singh, Pratibha; Chatterjee, Arobindo; Ghosh, Subrata

    2016-10-01

    An instrument based on the principle of change of resistance of fibrous assembly on wetting has been developed for precise monitoring of the water transportation behaviour in the fibrous assemblies. The conducting probes sense the change in resistance of a dry fibrous assembly on wetting. This change in resistance generates analog signals which trigger an amplifying circuit. This circuit produces an enlarged copy of the received signals which are further converted to digital signals by a Darlington pair and are encoded to measurable quantity with the help of a microcontroller. The data thus obtained are displayed on a suitable display device. Comparison between conventional strip test and experimental results obtained by the developed instrument shows its reliability. The developed instrument measures the initial rate of water transport with increased precision and hence could be used for detailed study of fluid flow in the fibrous structure.

  10. Thermal radiation and mass transfer effects on unsteady MHD free convection flow past a vertical oscillating plate

    Science.gov (United States)

    Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.

    2017-06-01

    Unsteady MHD free convection flow past a vertical porous plate in porous medium with radiation, diffusion thermo, thermal diffusion and heat source are analyzed. The governing non-linear, partial differential equations are transformed into dimensionless by using non-dimensional quantities. Then the resultant dimensionless equations are solved numerically by applying an efficient, accurate and conditionally stable finite difference scheme of explicit type with the help of a computer programming language Compaq Visual Fortran. The stability and convergence analysis has been carried out to establish the effect of velocity, temperature, concentration, skin friction, Nusselt number, Sherwood number, stream lines and isotherms line. Finally, the effects of various parameters are presented graphically and discussed qualitatively.

  11. Influence of the Pearl River estuary and vertical mixing in Victoria Harbor on water quality in relation to eutrophication impacts in Hong Kong waters.

    Science.gov (United States)

    Yin, Kedong; Harrison, Paul J

    2007-06-01

    This study presents water quality parameters such as nutrients, phytoplankton biomass and dissolved oxygen based on 11 years of water quality data in Victoria Harbor and examined how the Pearl River estuary discharge in summer and year round sewage discharge influenced these parameters. Nutrients in Victoria Harbor were strongly influenced by both the Pearl River and sewage effluent, as indicated by the high NO(3) inputs from the Pearl River in summer and higher NH(4) and PO(4) in Victoria Harbor than both its sides. N:P ratios were low in the dry season, but increased to >16:1 in the wet season, suggesting that P is potentially the most limiting nutrient in this area during the critical period in the summer. Although there were generally high nutrients, the phytoplankton biomass was not as high as one would expect in Victoria Harbor. In fact, there were high concentrations of chl near the bottom well below the photic zone. Salinity near the bottom was lower in Victoria Harbor than at the two entrances to Victoria Harbor, suggesting strong vertical mixing within Victoria Harbor. Therefore, strong vertical mixing and horizontal advection appear to play an important role in significantly reducing eutrophication impacts in Victoria Harbor. Consequently, dissolved oxygen near the bottom was low in summer, but only occasionally dipped to 2 mgL(-1) despite the high organic loading from sewage effluent.

  12. Moist convection and the vertical structure and water abundance of Jupiter's atmosphere

    Science.gov (United States)

    Del Genio, Anthony D.; Mcgrattan, Kevin B.

    1990-01-01

    The cumulative effects of an ensemble of moist convective plumes on a conditionally unstable atmosphere are predicted by a model of moist convection on Jupiter in which the heating/cooling and drying/moistening of the environment occur through (1) compensating subsidence, (2) detrainment of updraft air at cloud tops, and (3) the evaporation and melting of falling condensate. Parahydrogen is transported as a passive tracer. Pure moist convective, mixed moist-dry convective, and primarily dry convective regimes are possible, depending on the assumed deep-water abundance, efficiency of condensate evaporation, and initial temperature profile.

  13. In situ profiling of eastern Arabian Sea coastal waters using a new autonomous vertical profiler

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Madhan, R.; Dabholkar, N.A.; Prabhudesai, S.P.; Navelkar, G.S.; Mascarenhas, A.A.M.Q.; Afzulpurkar, S.; Phaldesai, M.; Maurya, P.

    and execute dives at programmed intervals as before, but now as a fully autonomous platform. The inherent buoyancy is of prac- tical use during deployment at sea, as it enables the user to see the AVP float away from the proximity of the ship. In contrast... by oceanographers in profiling the water column is the well-known rosette con- ductivity–temperature–depth (CTD) system which is lowered toward the seabed from a ship’s winch. Portable CTD logging instruments are now available for use from small boats...

  14. Seasonal low-degree changes in terrestrial water mass load from global GNSS measurements

    Science.gov (United States)

    Meyrath, Thierry; van Dam, Tonie; Collilieux, Xavier; Rebischung, Paul

    2017-11-01

    Large-scale mass redistribution in the terrestrial water storage (TWS) leads to changes in the low-degree spherical harmonic coefficients of the Earth's surface mass density field. Studying these low-degree fluctuations is an important task that contributes to our understanding of continental hydrology. In this study, we use global GNSS measurements of vertical and horizontal crustal displacements that we correct for atmospheric and oceanic effects, and use a set of modified basis functions similar to Clarke et al. (Geophys J Int 171:1-10, 2007) to perform an inversion of the corrected measurements in order to recover changes in the coefficients of degree-0 (hydrological mass change), degree-1 (centre of mass shift) and degree-2 (flattening of the Earth) caused by variations in the TWS over the period January 2003-January 2015. We infer from the GNSS-derived degree-0 estimate an annual variation in total continental water mass with an amplitude of (3.49 ± 0.19) × 103 Gt and a phase of 70° ± 3° (implying a peak in early March), in excellent agreement with corresponding values derived from the Global Land Data Assimilation System (GLDAS) water storage model that amount to (3.39 ± 0.10) × 103 Gt and 71° ± 2°, respectively. The degree-1 coefficients we recover from GNSS predict annual geocentre motion (i.e. the offset change between the centre of common mass and the centre of figure) caused by changes in TWS with amplitudes of 0.69 ± 0.07 mm for GX, 1.31 ± 0.08 mm for GY and 2.60 ± 0.13 mm for GZ. These values agree with GLDAS and estimates obtained from the combination of GRACE and the output of an ocean model using the approach of Swenson et al. (J Geophys Res 113(B8), 2008) at the level of about 0.5, 0.3 and 0.9 mm for GX, GY and GZ, respectively. Corresponding degree-1 coefficients from SLR, however, generally show higher variability and predict larger amplitudes for GX and GZ. The results we obtain for the degree-2 coefficients from GNSS are slightly

  15. Wave energy conversion utilizing vertical motion of water in the array of water chambers aligned in the direction of wave propagation

    Directory of Open Access Journals (Sweden)

    Kesayoshi Hadano

    2017-05-01

    Full Text Available As a new technical approach, wave energy converter by using vertical motion of water in the multiple water chambers were developed to realize actual wave power generation as eco-environmental renewable energy. And practical use of wave energy converter was actually to require the following conditions: (1 setting up of the relevant device and its application to wave power generation in case that severe wave loading is avoided; (2 workability in installation and maintenance operations; (3 high energy conversion potential; and (4 low cost. In this system, neither the wall(s of the chambers nor the energy conversion device(s are exposed to the impulsive load due to water wave. Also since this system is profitable when set along the jetty or along a long floating body, installation and maintenance are done without difficulty and the cost is reduced. In this paper, we describe the system which consists of a float, a shaft connected with another shaft, a rack and pinion arrangement, a ratchet mechanism, and rotary type generator(s. Then, we present the dynamics model for evaluating the output electric power, and the results of numerical calculation including the effect of the phase shift of up/down motion of the water in the array of water chambers aligned along the direction of wave propagation.

  16. The hydromedusae and water masses of the Indian Ocean

    Directory of Open Access Journals (Sweden)

    D. Navas-Pereira

    1991-01-01

    Full Text Available This analysis of distribution and abundance of species of Hydromedusae completes a report (Vannucci & Navas, 1973b on the ecology of Indian Ocean Hydromedusae based on the zooplankton collected during the International Indian Ocean Expedition (IIOE. Distribution and abundance are taken here to be the ecological expression of variability of species in space and time. The aim was to identify the biological signature of below surface water masses that cannot be identified by remote sensing techniques. Selected species were taken as biological units, the oceanic water masses as defined by their T-S and T-O2 diagrammes were taken as the non biological units. Taken together they define different ecosystems of the Indian Ocean. About 45,000 specimens of hydromedusae taken at 480 stations were sorted from 900 plankton samples and all specimens were determined and counted. Several hauls, mostly stratified, were taken with closing nets, but not all contained hydromedusae. The distribution of each species was studied in relation to water salinity, temperature and dissolved oxygen; the limits of ecological tolerance and preference were defined by the environmental characteristics of the layers sampled by the nets and are given for each species. These can be grouped as follows: 1. Deep water species, cold tolerant, often eurytopic; 2. Antarctic species, cold loving, usually stenothermal with preference for low salinity; 3. Indian Ocean Central Water species, with preference for temperature lower than 19ºC and salinity not much higher than 35%o, usually found at sub-surface or intermediate depths, they may spread into the Arabian Sea and Bay of Bengal in surface layers; 4. Indian Ocean Equatorial System species, warm tolerant, usually prefer comparatively low salinity, high temperature and high oxygen content; 5. Bay of Bengal Surface Water species, found in surface layers of the Bay, with preference for low salinity, high temperature and high oxygen content

  17. Estimation of the depth to the fresh-water/salt-water interface from vertical head gradients in wells in coastal and island aquifers

    Science.gov (United States)

    Izuka, Scot K.; Gingerich, Stephen B.

    An accurate estimate of the depth to the theoretical interface between fresh, water and salt water is critical to estimates of well yields in coastal and island aquifers. The Ghyben-Herzberg relation, which is commonly used to estimate interface depth, can greatly underestimate or overestimate the fresh-water thickness, because it assumes no vertical head gradients and no vertical flow. Estimation of the interface depth needs to consider the vertical head gradients and aquifer anisotropy that may be present. This paper presents a method to calculate vertical head gradients using water-level measurements made during drilling of a partially penetrating well; the gradient is then used to estimate interface depth. Application of the method to a numerically simulated fresh-water/salt-water system shows that the method is most accurate when the gradient is measured in a deeply penetrating well. Even using a shallow well, the method more accurately estimates the interface position than does the Ghyben-Herzberg relation where substantial vertical head gradients exist. Application of the method to field data shows that drilling, collection methods of water-level data, and aquifer inhomogeneities can cause difficulties, but the effects of these difficulties can be minimized. Résumé Une estimation précise de la profondeur de l'interface théorique entre l'eau douce et l'eau salée est un élément critique dans les estimations de rendement des puits dans les aquifères insulaires et littoraux. La relation de Ghyben-Herzberg, qui est habituellement utilisée pour estimer la profondeur de cette interface, peut fortement sous-estimer ou surestimer l'épaisseur de l'eau douce, parce qu'elle suppose l'absence de gradient vertical de charge et d'écoulement vertical. L'estimation de la profondeur de l'interface requiert de prendre en considération les gradients verticaux de charge et l'éventuelle anisotropie de l'aquifère. Cet article propose une méthode de calcul des

  18. Vertical distribution of zooplankton in the water column of Lago Amapá, Rio Branco, Acre, Brazil

    Directory of Open Access Journals (Sweden)

    Erlei Cassiano Keppeler

    2004-06-01

    Full Text Available The aim of investigation was to study the model of vertical distribution in Lago Amapá, taking into consideration the seasonality of its zooplanktonic composition. Lago Amapá (10º2'36"S and 67º50'24"W is located in the floodplain of the Rio Acre. Samplings were conducted at three different depths of the water column, to study the vertical distribution of zooplankton populations and determine some physico-chemical and biological parameters of Lago Amapá. Weekly samples were taken with a Van Dorn sampler. The species showed greater concentrations at the by means of water column. Thirty-eight zooplankton species were found in the samples represented by Rotifera (30, Cladocera (5 and Cyclopoida (3. The temperature of the water column showed a tendency toward relatively high values (about 30ºC with little variation, consequently resulting in low viscosity. Based of Jaccard's index, it was seen that during the low-water phase, S1 and S3 of the three sampling stations studied, had greater similarity (Cj = 0.7058 in the middle of the water column. Lago Amapá showed characteristics in line with the intermediate disturbance hypothesis model, favoring colonization by opportunistic species such as rotifers.O objetivo desta investigação foi observar a distribuição vertical da comunidade do zooplâncton no Lago Amapá (10º2'36"S e 67º50'24"W, localizado na planície de inundação do Rio Acre. Amostragens foram conduzidas em três diferentes profundidades da coluna da água, considerando aspectos sazonais do zooplâncton, parâmetros físicos, químicos e biológicos. Coletas foram realizadas semanalmente com Garrafa de Van Dorn. As espécies apresentaram maiores concentrações no meio da coluna da água. Foram encontradas 38 espécies, assim distribuídas: Rotifera (30, Cladocera (5 e Cyclopoida (3. A temperatura da coluna da água em geral apresentou-se alta, em torno de 30ºC, com pequena variação, resultando em baixa viscosidade. O

  19. Comparison of ALE and SPH Simulations of Vertical Drop Tests of a Composite Fuselage Section into Water

    Science.gov (United States)

    Jackson, Karen E.; Fuchs, Yvonne T.

    2008-01-01

    Simulation of multi-terrain impact has been identified as an important research area for improved prediction of rotorcraft crashworthiness within the NASA Subsonic Rotary Wing Aeronautics Program on Rotorcraft Crashworthiness. As part of this effort, two vertical drop tests were conducted of a 5-ft-diameter composite fuselage section into water. For the first test, the fuselage section was impacted in a baseline configuration without energy absorbers. For the second test, the fuselage section was retrofitted with a composite honeycomb energy absorber. Both tests were conducted at a nominal velocity of 25-ft/s. A detailed finite element model was developed to represent each test article and water impact was simulated using both Arbitrary Lagrangian Eulerian (ALE) and Smooth Particle Hydrodynamics (SPH) approaches in LS-DYNA, a nonlinear, explicit transient dynamic finite element code. Analytical predictions were correlated with experimental data for both test configurations. In addition, studies were performed to evaluate the influence of mesh density on test-analysis correlation.

  20. Vertical electrical sounding to delineate the potential aquifer zones for drinking water in Niamey city, Niger, Africa

    Science.gov (United States)

    Choudhury, Joy; Kumar, K. Lohith; Nagaiah, E.; Sonkamble, S.; Ahmed, Shakeel; Kumar, Venay

    2017-08-01

    Niger is a landlocked African country and the only source of surface water is the Niger River which flows in the western part of Niger and only few villages near to the river gets benefited from it, leaving most of the areas dependent on groundwater solely. The groundwater resources in Niger are mainly used for drinking, livestock and domestic needs. It can be observed that the water exploitation is minimal there due to several factors like undeveloped areas, less population, limited wells, rain-fed irrigation, etc. The delineation of potential aquifer zones is an important aspect for groundwater prospecting. Hence, the direct current (DC) resistivity soundings method also known as vertical electrical sounding (VES) is one of the most applied geophysical techniques for groundwater prospecting that was used in the capital city, Niamey of Niger. Twelve VES surveys, each of AB spacing 400 m were carried out in lateritic and granitic rock formations with a view to study the layer response and to delineate the potential zones. Potential aquifer zones were at shallow depth ranging from 10 to 25 m for the drilled borehole depth of 80-85 m in every village. Analysis of the result showed a good correlation between the acquired data and the lithologs.

  1. Absorption of water vapour in the falling film of water-(LiBr + LiI + LiNO{sub 3} + LiCl) in a vertical tube at air-cooling thermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bourouis, Mahmoud; Valles, Manel; Medrano, Marc; Coronas, Alberto [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, CREVER, Universitat Rovira i Virgili, Autovia de Salou, s/n, 43006, Tarragona (Spain)

    2005-05-01

    In air-cooled water-LiBr absorption chillers the working conditions in the absorber and condenser are shifted to higher temperatures and concentrations, thereby increasing the risk of crystallisation. To develop this technology, two main problems are to be addressed: the availability of new salt mixtures with wider range of solubility than water-LiBr, and advanced absorber configurations that enable to carry out simultaneously an appropriate absorption process and an effective air-cooling. One way of improving the solubility of LiBr aqueous solutions is to add other salts to create multicomponent salt solutions. The aqueous solution of the quaternary salt system (LiBr + LiI + LiNO{sub 3} + LiCl) presents favourable properties required for air-cooled absorption systems: less corrosive and crystallisation temperature about 35 K lower than that of water-LiBr.This paper presents an experimental study on the absorption of water vapour over a wavy laminar falling film of an aqueous solution of (LiBr + LiI + LiNO{sub 3} + LiCl) on the inner wall of a water-cooled smooth vertical tube. Cooling water temperatures in the range 30-45 C were selected to simulate air-cooling thermal conditions. The results are compared with those obtained in the same experimental set-up with water-LiBr solutions.The control variables for the experimental study were: absorber pressure, solution Reynolds number, solution concentration and cooling water temperature. The parameters considered to assess the absorber performance were: absorber thermal load, mass absorption flux, degree of subcooling of the solution leaving the absorber, and the falling film heat transfer coefficient.The higher solubility of the multicomponent salt solution makes possible the operation of the absorber at higher salt concentration than with the conventional working fluid water-LiBr. The absorption fluxes achieved with water-(LiBr + LiI + LiNO{sub 3} + LiCl) at a concentration of 64.2 wt% are around 60 % higher than

  2. On the Influence of Soret and Dufour Effects on MHD Free Convective Heat and Mass Transfer Flow over a Vertical Channel with Constant Suction and Viscous Dissipation

    Science.gov (United States)

    Uwanta, Ime Jimmy; Usman, Halima

    2014-01-01

    The present paper investigates the combined effects of Soret and Dufour on free convective heat and mass transfer on the unsteady one-dimensional boundary layer flow over a vertical channel in the presence of viscous dissipation and constant suction. The governing partial differential equations are solved numerically using the implicit Crank-Nicolson method. The velocity, temperature, and concentration distributions are discussed numerically and presented through graphs. Numerical values of the skin-friction coefficient, Nusselt number, and Sherwood number at the plate are discussed numerically for various values of physical parameters and are presented through tables. It has been observed that the velocity and temperature increase with the increase in the viscous dissipation parameter and Dufour number, while an increase in Soret number causes a reduction in temperature and a rise in the velocity and concentration. PMID:27419208

  3. Influence of fluctuating thermal and mass diffusion on unsteady MHD buoyancy-driven convection past a vertical surface with chemical reaction and Soret effects

    Science.gov (United States)

    Pal, Dulal; Talukdar, Babulal

    2012-04-01

    The influence of thermal radiation and first-order chemical reaction on unsteady MHD convective flow, heat and mass transfer of a viscous incompressible electrically conducting fluid past a semi-infinite vertical flat plate in the presence of transverse magnetic field under oscillatory suction and heat source in slip-flow regime is studied. The dimensionless governing equations for this investigation are formulated and solved analytically using two-term harmonic and non-harmonic functions. Comparisons with previously published work on special cases of the problem are performed and results are found to be in excellent agreement. A parametric study illustrating the effects of various physical parameters on the fluid velocity, temperature and concentration fields as well as skin-friction coefficient, the Nusselt and Sherwood numbers in terms of amplitude and phase is conducted. The numerical results of this parametric study are presented graphically and in tabular form to highlight the physical aspects of the problem.

  4. On the Influence of Soret and Dufour Effects on MHD Free Convective Heat and Mass Transfer Flow over a Vertical Channel with Constant Suction and Viscous Dissipation.

    Science.gov (United States)

    Uwanta, Ime Jimmy; Usman, Halima

    2014-01-01

    The present paper investigates the combined effects of Soret and Dufour on free convective heat and mass transfer on the unsteady one-dimensional boundary layer flow over a vertical channel in the presence of viscous dissipation and constant suction. The governing partial differential equations are solved numerically using the implicit Crank-Nicolson method. The velocity, temperature, and concentration distributions are discussed numerically and presented through graphs. Numerical values of the skin-friction coefficient, Nusselt number, and Sherwood number at the plate are discussed numerically for various values of physical parameters and are presented through tables. It has been observed that the velocity and temperature increase with the increase in the viscous dissipation parameter and Dufour number, while an increase in Soret number causes a reduction in temperature and a rise in the velocity and concentration.

  5. Radiation and porosity effects on the magnetohydrodynamic flow near a vertical plate that applies shear stress to the fluid with mass diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Arshad; Khan, Ilyas; Shafie, Sharidan [Faculty of Science, Universiti Teknologi Malaysia (Malaysia)

    2014-06-19

    This article studies the radiation and porosity effects on the unsteady magnetohydrodynamic free convection flow of an incompressible viscous fluid past an infinite vertical plate that applies a shear stress f(t) to the fluid. Conjugate phenomenon of heat and mass transfer is considered. General solutions of the dimensionless governing equations along with imposed initial and boundary conditions are determined using Laplace transform technique. The solution of velocity is presented as a sum of mechanical and non mechanical parts. These solutions satisfy all imposed initial and boundary conditions and reduce to some known solutions from the literature as special cases. The results for embedded parameters are shown graphically. Numerical results for skin friction, Nusselt number and Sherwood number are computed and presented in tabular forms.

  6. Radiation and mass transfer effects on an unsteady MHD free convection flow past a heated vertical plate in a porous medium with viscous dissipation

    Directory of Open Access Journals (Sweden)

    Prasad Ramachandra V.

    2007-01-01

    Full Text Available An unsteady, two-dimensional, hydromagnetic, laminar free convective boundary-layer flow of an incompressible, Newtonian, electrically-conducting and radiating fluid past an infinite heated vertical porous plate with heat and mass transfer is analyzed, by taking into account the effect of viscous dissipation. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and graphical results for velocity, temperature and concentration profiles within the boundary layer and tabulated results for the skin-friction coefficient, Nusselt number and Sherwood number are presented and discussed. It is observed that, when the radiation parameter increases, the velocity and temperature decrease in the boundary layer, whereas when thermal and solutal Grashof increases the velocity increases.

  7. Structure of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel with water

    Directory of Open Access Journals (Sweden)

    V. I. Solonin

    2014-01-01

    Full Text Available The article presents a research of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel filled with water. A purpose of the work is to obtain experimental data for further analysis of a character of the moving phases. Research activities used the optic methods PIV (Particle Image Visualization because of their noninvasiveness to obtain data without disturbing effect on the flow. A laser sheet illuminated the fluorescence particles, which were admixed in water along the channel length. A digital camera recorded their motion for a certain time interval that allowed building the velocity vector fields. As a result, gas phase velocity components typical for a steady area of the channel and their relations for various intensity of volume air rate were obtained. A character of motion both for an air bubble and for its surrounding liquid has been conducted. The most probable direction of phases moving in the channel under sparging regime is obtained by building the statistic scalar fields. The use of image processing enabled an analysis of the initial area of the air inlet into liquid. A characteristic curve of the bubbles offset from the axis for various intensity of volume gas rate and channel diameter is defined. A character of moving phases is obtained by building the statistic scalar fields. The values of vertical components of liquid velocity in the inlet part of channel are calculated. Using the obtained data of the gas phase velocities a true void fraction was calculated. It was compared with the values of void fraction, calculated according to the liquid level change in the channel. Obtained velocities were compared with those of the other researchers, and a small difference in their values was explained by experimental conditions. The article is one of the works to research the two-phase flows with no disturbing effect on them. Obtained data allow us to understand a character of moving the two-phase flows in

  8. Black sea annual and inter-annual water mass variations from space

    DEFF Research Database (Denmark)

    Yildiz, H.; Andersen, Ole Baltazar; Simav, M.

    2011-01-01

    This study evaluates the performance of two widely used GRACE solutions (CNES/GRGS RL02 and CSR RL04) in deriving annual and inter-annual water mass variations in the Black Sea for the period 2003–2007. It is demonstrated that the GRACE derived water mass variations in the Black Sea are heavily i...

  9. Differential optical absorption spectroscopy (DOAS and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration

    Directory of Open Access Journals (Sweden)

    V. V. Rozanov

    2010-06-01

    Full Text Available The Differential Optical Absorption Spectroscopy (DOAS technique is widely used to retrieve amounts of atmospheric species from measurements of the direct solar light transmitted through the Earth's atmosphere as well as of the solar light scattered in the atmosphere or reflected from the Earth's surface. For the transmitted direct solar light the theoretical basis of the DOAS technique represented by the Beer-Lambert law is well studied. In contrast, scarcely investigated is the theoretical basis and validity range of the DOAS method for those cases where the contribution of the multiple scattering processes is not negligible. Our study is intended to fill this gap by means of a theoretical investigation of the applicability of the DOAS technique for the retrieval of amounts of atmospheric species from observations of the scattered solar light with a non-negligible contribution of the multiple scattering.

    Starting from the expansion of the intensity logarithm in the functional Taylor series we formulate the general form of the DOAS equation. The thereby introduced variational derivative of the intensity logarithm with respect to the variation of the gaseous absorption coefficient, which is often referred to as the weighting function, is demonstrated to be closely related to the air mass factor. Employing some approximations we show that the general DOAS equation can be rewritten in the form of the weighting function (WFDOAS, the modified (MDOAS, and the standard DOAS equations. For each of these forms a specific equation for the air mass factor follows which, in general, is not suitable for other forms of the DOAS equation. Furthermore, the validity range of the standard DOAS equation is quantitatively investigated using a suggested criterion of a weak absorption.

    The results presented in this study are intended to provide a basis for a better understanding of the applicability range of different forms of the DOAS equation as

  10. Hydrography and water masses in the southeastern Arabian Sea ...

    Indian Academy of Sciences (India)

    The surface hydrography during March –April was dominated by the intrusion of low-salinity waters from the south;during May –June,the low-salinity waters were beginning to be replaced by the high- salinity waters from the north.There was considerable mixing at the bottom of the surface mixed layer,leading to interleaving ...

  11. Characterizing phosphorus removal from polluted urban river water by steel slags in a vertical flow constructed wetland.

    Science.gov (United States)

    Ge, Yuan; Wang, Xiaochang C; Dzakpasu, Mawuli; Zheng, Yucong; Zhao, Yaqian; Xiong, Jiaqing

    2016-01-01

    Phosphorus (P) removal in constructed wetlands (CWs) is often low unless special substrates with high sorption capacities are used. However, the use of special substrates in vertical flow (VF) CWs has not been proved to enhance P sorption. Thus, two VF wetlands were designed to evaluate the potential for enhanced P removal from polluted urban river water, one with slag as substrate and the other as a control with gravel as substrate. Findings from batch experiments showed P sorption capacities of 3.15 gP/kg and 0.81 gP/kg, respectively, for steel slag and gravel. Different organic matter fractions played different roles in P sorption, the effects of which were significant only at high concentrations. Over a 220 days' operation, the VF-slag removed 76.0% of the influent total phosphorus (TP) at 0.159 g/m(2)·d and PO4-P of 70.9% at 0.063 g/m(2)·d, whereas the VF-gravel removed 65.0% at 0.136 g/m(2)·d and 48.6% at 0.040 g/m(2)·d, respectively. Therefore, the merit of using a steel slag substrate in VF wetlands can be significant for the removal of PO4-P.

  12. Application of the Regional Water Mass Variations from GRACE Satellite Gravimetry to Large-Scale Water Management in Africa

    Directory of Open Access Journals (Sweden)

    Guillaume Ramillien

    2014-08-01

    Full Text Available Time series of regional 2° × 2° Gravity Recovery and Climate Experiment (GRACE solutions of surface water mass change have been computed over Africa from 2003 to 2012 with a 10-day resolution by using a new regional approach. These regional maps are used to describe and quantify water mass change. The contribution of African hydrology to actual sea level rise is negative and small in magnitude (i.e., −0.1 mm/y of equivalent sea level (ESL mainly explained by the water retained in the Zambezi River basin. Analysis of the regional water mass maps is used to distinguish different zones of important water mass variations, with the exception of the dominant seasonal cycle of the African monsoon in the Sahel and Central Africa. The analysis of the regional solutions reveals the accumulation in the Okavango swamp and South Niger. It confirms the continuous depletion of water in the North Sahara aquifer at the rate of −2.3 km3/y, with a decrease in early 2008. Synergistic use of altimetry-based lake water volume with total water storage (TWS from GRACE permits a continuous monitoring of sub-surface water storage for large lake drainage areas. These different applications demonstrate the potential of the GRACE mission for the management of water resources at the regional scale.

  13. Fracture zones in the Mid Atlantic Ridge lead to alterations in prokaryotic and viral parameters in deep-water masses

    Science.gov (United States)

    Muck, Simone; Griessler, Thomas; Köstner, Nicole; Klimiuk, Adam; Winter, Christian; Herndl, Gerhard J.

    2014-01-01

    We hypothesized that mixing zones of deep-water masses act as ecotones leading to alterations in microbial diversity and activity due to changes in the biogeochemical characteristics of these boundary systems. We determined the changes in prokaryotic and viral abundance and production in the Vema Fracture Zone (VFZ) of the subtropical North Atlantic Ocean, where North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) are funneled through this narrow canyon and therefore, are subjected to intense vertical mixing. Consequently, salinity, potential temperature, oxygen, PO4, SiO4, NO3 were altered in the NADW inside the VFZ as compared to the NADW outside of the VFZ. Also, viral abundance, lytic viral production (VP) and the virus-to-prokaryote ratio (VPR) were elevated in the NADW in the VFZ as compared to the NADW outside the VFZ. In contrast to lytic VP, lysogenic VP and both the frequency of lytically (FIC) and lysogenically infected cells (FLC) did not significantly differ between in- and outside the VFZ. Generally, FIC was higher than FLC throughout the water column. Prokaryotic (determined by T-RFLP) and viral (determined by RAPD-PCR) community composition was depth-stratified inside and outside the VFZ. The viral community was more modified both with depth and over distance inside the VFZ as compared to the northern section and to the prokaryotic communities. However, no clusters of prokaryotic and viral communities characteristic for the VFZ were identified. Based on our observations, we conclude that turbulent mixing of the deep water masses impacts not only the physico-chemical parameters of the mixing zone but also the interaction between viruses and prokaryotes due to a stimulation of the overall activity. However, only minor effects of deep water mixing were observed on the community composition of the dominant prokaryotes and viruses. PMID:24917857

  14. High-resolution Vertical Profiling of Ocean Velocity and Water Properties Under Hurricane Frances in September 2004

    Science.gov (United States)

    Sanford, T. B.; D'Asarp, E. A.; Girton, J. B.; Price, J. F.; Webb, D. C.

    2006-12-01

    In ONR's CBLAST Hurricane research program observations were made of the upper ocean's response to Hurricane Frances. Three EM-APEX floats (velocity sensing versions of Webb Research APEX floats) and two Lagrangian floats were deployed north of Hispaniola from a C-130 aircraft ahead of Hurricane Frances in September 2004. The EM-APEX floats measured T, S and V over the upper 500 m starting about a day before the storm's arrival. The Lagrangian floats measured temperature and salinity while following the three- dimensional boundary layer turbulence in the upper 40 m. One EM-APEX float was directly under the track of the storm's eye, another EM-APEX and two Lagrangian floats went in about 50 km to the right of the track (where the surface winds are strongest) and the third float was about 100 km to the right. The EM-APEX floats profiled for 10 hours from the surface to 200 m, then continued profiling between 35 and 200 m with excursions to 500 m every half inertial period. After 5 days, the EM-APEX floats surfaced and transmitted the accumulated processed observations, then the floats profiled to 500 m every half inertial period until recovered early in October aided by GPS and Iridium. The float array sampled in unprecedented detail the upper-ocean turbulence, momentum, and salt and heat changes in response to the hurricane. The buildup of surface gravity waves in advance of the storm was also observed in the velocity profiles, with significant wave heights of up to 11 m. Rapid acceleration of inertial currents in the surface mixing layer (SML) to over 1 m/s stimulated vertical mixing by shear instability at the SML base, as indicated by low Richardson numbers and SML deepening from about 40 m to 120 m under the strongest wind forcing. Surface cooling of about 2.5 C was primarily due to the SML deepening and entrainment of colder water, with a small contribution from surface heat flux. Intense inertial pumping was observed under the eye, with vertical excursions of

  15. MHD Heat and Mass Transfer of Chemical Reaction Fluid Flow over a Moving Vertical Plate in Presence of Heat Source with Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    B. R. Rout

    2013-01-01

    Full Text Available This paper aims to investigate the influence of chemical reaction and the combined effects of internal heat generation and a convective boundary condition on the laminar boundary layer MHD heat and mass transfer flow over a moving vertical flat plate. The lower surface of the plate is in contact with a hot fluid while the stream of cold fluid flows over the upper surface with heat source and chemical reaction. The basic equations governing the flow, heat transfer, and concentration are reduced to a set of ordinary differential equations by using appropriate transformation for variables and solved numerically by Runge-Kutta fourth-order integration scheme in association with shooting method. The effects of physical parameters on the velocity, temperature, and concentration profiles are illustrated graphically. A table recording the values of skin friction, heat transfer, and mass transfer at the plate is also presented. The discussion focuses on the physical interpretation of the results as well as their comparison with previous studies which shows good agreement as a special case of the problem.

  16. Relationships between rapid isometric torque characteristics and vertical jump performance in division I collegiate American football players: influence of body mass normalization.

    Science.gov (United States)

    Thompson, Brennan J; Ryan, Eric D; Sobolewski, Eric J; Smith, Doug B; Akehi, Kazuma; Conchola, Eric C; Buckminster, Tyler

    2013-10-01

    The purpose of the present study was to examine the relationships between absolute and body mass-normalized rapid isometric torque variables and vertical jump (VJ) performance of the leg extensors and flexors in elite National Collegiate Athletic Association Division I Football Bowl Subdivision collegiate American football players. Thirty-one players performed isometric maximal voluntary contractions of the leg extensor and flexor muscle groups and a countermovement VJ. Rate of torque development (RTD) and the contractile impulse (IMPULSE) were determined from 0 to 30, 0 to 50, 0 to 100, and 0 to 200 milliseconds from the onset of muscular contraction. The relationships between absolute and normalized rapid torque variables and VJ performance were assessed using correlation coefficients (r). There were no significant correlations (p > 0.05) observed between the absolute rapid torque variables and VJ performance, except for leg flexion RTD at 0-200 milliseconds (p = 0.024). All normalized rapid torque variables of the leg extensors and flexors were significantly correlated to VJ performance (p ≤ 0.001-0.026). These findings indicated that normalizing rapid torque variables to body mass improves the relationships between isometric rapid torque variables and VJ performance and normalized leg extension and flexion are both similarly related to VJ performance. Strength and conditioning professionals may use these findings in an attempt to identify and monitor dynamic sport performance. Furthermore, future studies examining the relationship between dynamic on the field performances and laboratory-based isometric strength testing may consider including normalized rapid torque variables.

  17. Evaluation of a mass-balance approach to determine consumptive water use in northeastern Illinois

    Science.gov (United States)

    Mills, Patrick C.; Duncker, James J.; Over, Thomas M.; Marian Domanski,; ,; Engel, Frank

    2014-01-01

    A principal component of evaluating and managing water use is consumptive use. This is the portion of water withdrawn for a particular use, such as residential, which is evaporated, transpired, incorporated into products or crops, consumed by humans or livestock, or otherwise removed from the immediate water environment. The amount of consumptive use may be estimated by a water (mass)-balance approach; however, because of the difficulty of obtaining necessary data, its application typically is restricted to the facility scale. The general governing mass-balance equation is: Consumptive use = Water supplied - Return flows.

  18. Circulation and water masses of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Gouveia, A.D.; Shenoi, S.S.C.

    -forcing or due to the arrival of Kelvin waves from the Bay of Bengal. The present speculation about flow of bottom water (deeper than about 3500 m) in the Arabian Sea is that it moves northward and upwells into the layer of North Indian Deep Water (approximately...

  19. The effects of thermal radiation and viscous dissipation on MHD heat and mass diffusion flow past an oscillating vertical plate embedded in a porous medium with variable surface conditions

    Directory of Open Access Journals (Sweden)

    Kishore P.M.

    2012-01-01

    Full Text Available This investigation is undertaken to study the hydromagnetic flow of a viscous incompressible fluid past an oscillating vertical plate embedded in a porous medium with radiation, viscous dissipation and variable heat and mass diffusion. Governing equations are solved by unconditionally stable explicit finite difference method of DuFort - Frankel’s type for concentration, temperature, vertical velocity field and skin - friction and they are presented graphically for different values of physical parameters involved. It is observed that plate oscillation, variable mass diffusion, radiation, viscous dissipation and porous medium affect the flow pattern significantly.

  20. Combined natural convection and mass transfer effects on unsteady flow past an infinite vertical porous plate embedded in a porous medium with heat source

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.S. [Department of Physics, K B D A V College, Nirakarpur, Khurda-752 019 (Orissa) (India); Tripathy, R.K. [Department of Physics, D R Nayapalli College, Bhubaneswar-751 012 (Orissa) (India); Padhy, R.K. [Department of Physics, D A V Public School, Chandrasekharpur, Bhubaneswar-751 021 (Orissa) (India); Sahu, M. [Department of Physics, Jupiter +2 Women’s Science College, IRC Village, Bhubaneswar-751 015 (Orissa) (India)

    2012-07-01

    This paper theoretically investigates the combined natural convection and mass transfer effects on unsteady flow of a viscous incompressible fluid past an infinite vertical porous plate embedded in a porous medium with heat source. The governing equations of the flow field are solved analytically for velocity, temperature, concentration distribution, skin friction and the rate of heat transfer using multi parameter perturbation technique and the effects of the flow parameters such as permeability parameter Kp, Grashof number for heat and mass transfer Gr, Gc; heat source parameter S, Schmidt number Sc, Prandtl number Pr etc. on the flow field are analyzed and discussed with the help of figures and tables. The permeability parameter Kp is reported to accelerate the transient velocity of the flow field at all points for small values of Kp (£1) and for higher values the effect reverses. The effect of increasing Grashof numbers for heat and mass transfer or heat source parameter is to enhance the transient velocity of the flow field at all points while a growing Schmidt number retards its effect at all points. A growing permeability parameter or heat source parameter increases the transient temperature of the flow field at all points, while a growing Prandtl number shows reverse effect. The effect of increasing Schmidt number is to decrease the concentration boundary layer thickness of the flow field at all points. Further, a growing permeability parameter enhances the skin friction at the wall and a growing Prandtl number shows reverse effect. The effect of increasing Prandtl number or permeability parameter leads to increase the magnitude of the rate of heat transfer at the wall.

  1. Combined uses of water-table fluctuation (WTF), chloride mass ...

    African Journals Online (AJOL)

    Agadaga

    unconfined aquifer of Thiaroye zone using both water table fluctuation (WTF), chloride ... Therefore, in the urban area, the CMB method cannot be .... contribution from other sources such as human activities ..... in India: What has been learned?

  2. Heavy water stratification in a low-mass protostar

    NARCIS (Netherlands)

    Coutens, A.; Vastel, C.; Cazaux, S.; Bottinelli, S.; Caux, E.; Ceccarelli, C.; Demyk, K.; Taquet, V.; Wakelam, V.

    Context. Despite the low elemental deuterium abundance in the Galaxy, enhanced molecular deuterium fractionation has been found in the environments of low-mass star-forming regions and, in particular, the Class 0 protostar IRAS 16293-2422. Aims. The key program Chemical HErschel Surveys of Star

  3. Water mass dynamics shape Ross Sea protist communities in mesopelagic and bathypelagic layers

    Science.gov (United States)

    Zoccarato, Luca; Pallavicini, Alberto; Cerino, Federica; Fonda Umani, Serena; Celussi, Mauro

    2016-12-01

    Deep-sea environments host the largest pool of microbes and represent the last largely unexplored and poorly known ecosystems on Earth. The Ross Sea is characterized by unique oceanographic dynamics and harbors several water masses deeply involved in cooling and ventilation of deep oceans. In this study the V9 region of the 18S rDNA was targeted and sequenced with the Ion Torrent high-throughput sequencing technology to unveil differences in protist communities (>2 μm) correlated with biogeochemical properties of the water masses. The analyzed samples were significantly different in terms of environmental parameters and community composition outlining significant structuring effects of temperature and salinity. Overall, Alveolata (especially Dinophyta), Stramenopiles and Excavata groups dominated mesopelagic and bathypelagic layers, and protist communities were shaped according to the biogeochemistry of the water masses (advection effect and mixing events). Newly-formed High Salinity Shelf Water (HSSW) was characterized by high relative abundance of phototrophic organisms that bloom at the surface during the austral summer. Oxygen-depleted Circumpolar Deep Water (CDW) showed higher abundance of Excavata, common bacterivores in deep water masses. At the shelf-break, Antarctic Bottom Water (AABW), formed by the entrainment of shelf waters in CDW, maintained the eukaryotic genetic signature typical of both parental water masses.

  4. Prediction of the critical heat flux for saturated upward flow boiling water in vertical narrow rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gil Sik, E-mail: choigs@kaist.ac.kr; Chang, Soon Heung; Jeong, Yong Hoon

    2016-07-15

    A study, on the theoretical method to predict the critical heat flux (CHF) of saturated upward flow boiling water in vertical narrow rectangular channels, has been conducted. For the assessment of this CHF prediction method, 608 experimental data were selected from the previous researches, in which the heated sections were uniformly heated from both wide surfaces under the high pressure condition over 41 bar. For this purpose, representative previous liquid film dryout (LFD) models for circular channels were reviewed by using 6058 points from the KAIST CHF data bank. This shows that it is reasonable to define the initial condition of quality and entrainment fraction at onset of annular flow (OAF) as the transition to annular flow regime and the equilibrium value, respectively, and the prediction error of the LFD model is dependent on the accuracy of the constitutive equations of droplet deposition and entrainment. In the modified Levy model, the CHF data are predicted with standard deviation (SD) of 14.0% and root mean square error (RMSE) of 14.1%. Meanwhile, in the present LFD model, which is based on the constitutive equations developed by Okawa et al., the entire data are calculated with SD of 17.1% and RMSE of 17.3%. Because of its qualitative prediction trend and universal calculation convergence, the present model was finally selected as the best LFD model to predict the CHF for narrow rectangular channels. For the assessment of the present LFD model for narrow rectangular channels, effective 284 data were selected. By using the present LFD model, these data are predicted with RMSE of 22.9% with the dryout criterion of zero-liquid film flow, but RMSE of 18.7% with rivulet formation model. This shows that the prediction error of the present LFD model for narrow rectangular channels is similar with that for circular channels.

  5. The role of each compartment in a two-compartment vertical flow reactor for ferruginous mine water treatment.

    Science.gov (United States)

    Yim, G J; Cheong, Y W; Hong, J H; Hur, W

    2014-10-01

    A vertical flow reactor (VFR) has been suggested for remediation of ferruginous mine drainage that passes down through an accreting bed of ochre. However, a VFR has a limited operation time until the system begins to overflow. In this study, a mathematical model was developed as a part of the effort to explore the operation of a VFR, showing dynamic changes in the head differences, ochre depths, and Fe(II)/Fe(III) concentrations in the effluent flow. The analysis showed that VFR operation time extended from 148.5 days to 163 days in an equally divided and to 168.4 days in asymmetrically (0.72:0.28) divided two-compartment VFR, suggesting that an optimum compartment ratio exists that maximizes the VFR operation time. A constant head filtration in the first compartment maximized filtration efficiency and thus prolonged VFR longevity in the two-compartment VFR. Fe(II) oxidation and ochre formation should be balanced with the permeability of the ochre bed to maximize the VFR operation time and minimize the residual Fe(II) in the effluent. Accelerated Fe(II) oxidation affected the optimum ratio of the compartment area and reduced the residual Fe(II) in the effluent. The VFR operation time can be prolonged significantly from 764 days to 3620 days by increasing the rate of ochre formation, much more than by accelerating the Fe(II) oxidation. During the prolonged VFR operation, ochre formed largely in the first compartment, while overflowing mine water with reduced iron content was effectively filtered in the second compartment. These results not only provide a better understanding of VFR operation but also suggest the direction of evolution of two-compartment VFR toward a compact and highly efficient facility integrated with an aerated cascade and with automatic coagulant feeding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Modeling the improvement of ultrafiltration membrane mass transfer when using biofiltration pretreatment in surface water applications.

    Science.gov (United States)

    Netcher, Andrea C; Duranceau, Steven J

    2016-03-01

    In surface water treatment, ultrafiltration (UF) membranes are widely used because of their ability to supply safe drinking water. Although UF membranes produce high-quality water, their efficiency is limited by fouling. Improving UF filtrate productivity is economically desirable and has been attempted by incorporating sustainable biofiltration processes as pretreatment to UF with varying success. The availability of models that can be applied to describe the effectiveness of biofiltration on membrane mass transfer are lacking. In this work, UF water productivity was empirically modeled as a function of biofilter feed water quality using either a quadratic or Gaussian relationship. UF membrane mass transfer variability was found to be governed by the dimensionless mass ratio between the alkalinity (ALK) and dissolved organic carbon (DOC). UF membrane productivity was optimized when the biofilter feed water ALK to DOC ratio fell between 10 and 14. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Rational designing of the internal water supply system in reconstructed residential buildings of mass standard series

    Directory of Open Access Journals (Sweden)

    Orlov Evgeny

    2018-01-01

    Full Text Available The issues of water supply system reconstruction in mass series buildings are reviewed with consideration of water- and resource saving. Principal points for location of plumbing cells in apartments, arrangement of water devices and wastewater receivers, selection of pipelines for reconstructed water line are described. Comparative analysis of design variants of inner water line before and following reconstruction are given. It was found that applying the developed system design approaches the head losses in the inner water supply line will be significantly decreased as well as the water mains length will be decreased with material and installation saving. Based on the data the conclusions on necessity to review standard arrangement solutions of water supply systems in the reconstructed buildings were made. Recommendations on water loss reduction in the system by installation of special water saving fittings on water devices and touchless faucets.

  8. Biomarker Pigment Divinyl Chlorophyll a as a Tracer of Water Masses?

    Science.gov (United States)

    Mejdandzic, Maja; Mihanovic, Hrvoje; Silovic, Tina; Henderiks, Jorijntje; Supraha, Luka; Polovic, Dorotea; Bosak, Suncica; Bosnjak, Ivana; Cetinic, Ivona; Olujic, Goran; hide

    2015-01-01

    The ecological preferences of different Phytoplankton types drive their temporal and spatial distributions, reflecting their dependence on certain temperature ranges, light levels, nutrient availability and other environmental gradients. Hence, some phytoplankton taxa can be used as water mass tracers (biotracers).

  9. On the implications of aerosol liquid water and phase separation for organic aerosol mass

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains data presented in the figures of the paper "On the implications of aerosol liquid water and phase separation for organic aerosol mass"...

  10. Effect of voluntary periodic muscular activity on nonlinearity in the apparent mass of the seated human body during vertical random whole-body vibration

    Science.gov (United States)

    Huang, Ya; Griffin, Michael J.

    2006-12-01

    The principal resonance frequency in the driving-point impedance of the human body decreases with increasing vibration magnitude—a nonlinear response. An understanding of the nonlinearities may advance understanding of the mechanisms controlling body movement and improve anthropodynamic modelling of responses to vibration at various magnitudes. This study investigated the effects of vibration magnitude and voluntary periodic muscle activity on the apparent mass resonance frequency using vertical random vibration in the frequency range 0.5-20 Hz. Each of 14 subjects was exposed to 14 combinations of two vibration magnitudes (0.25 and 2.0 m s -2 root-mean square (rms)) in seven sitting conditions: two without voluntary periodic movement (A: upright; B: upper-body tensed), and five with voluntary periodic movement (C: back-abdomen bending; D: folding-stretching arms from back to front; E: stretching arms from rest to front; F: folding arms from elbow; G: deep breathing). Three conditions with voluntary periodic movement significantly reduced the difference in resonance frequency at the two vibration magnitudes compared with the difference in a static sitting condition. Without voluntary periodic movement (condition A: upright), the median apparent mass resonance frequency was 5.47 Hz at the low vibration magnitude and 4.39 Hz at the high vibration magnitude. With voluntary periodic movement (C: back-abdomen bending), the resonance frequency was 4.69 Hz at the low vibration magnitude and 4.59 Hz at the high vibration magnitude. It is concluded that back muscles, or other muscles or tissues in the upper body, influence biodynamic responses of the human body to vibration and that voluntary muscular activity or involuntary movement of these parts can alter their equivalent stiffness.

  11. Numerical/Laplace transform analysis for MHD radiating heat/mass transport in a Darcian porous regime bounded by an oscillating vertical surfac

    Directory of Open Access Journals (Sweden)

    Sahin Ahmed

    2015-03-01

    Full Text Available Analytical and numerical solutions of a non-linear MHD flow with heat and mass transfer characteristics of an incompressible, viscous, electrically conducting and Boussinesq’s fluid over a vertical oscillating plate embedded in a Darcian porous medium in the presence of thermal radiation effect have been presented. The fluid considered here is gray, absorbing/emitting radiating, but non-scattering medium. At time t > 0, the plate temperature and concentration near the plate raised linearly with time t. The dimensionless governing coupled, non-linear boundary layer partial differential equations are solved by an efficient, accurate, extensively validated and unconditionally stable finite difference scheme of the Crank–Nicolson type as well as by the Laplace Transform technique. An increase in porosity parameter (K is found to depress fluid velocities and shear stress in the regime. Also it has been found that, when the conduction-radiation (R increased, the fluid velocity and the temperature profiles decreased. Applications of the study arise in materials processing and solar energy collector systems.

  12. Dissipative slip flow along heat and mass transfer over a vertically rotating cone by way of chemical reaction with Dufour and Soret effects

    Directory of Open Access Journals (Sweden)

    S. Bilal

    2016-12-01

    Full Text Available An attempt has been constructed in the communication to envision heat and mass transfer characteristics of viscous fluid over a vertically rotating cone. Thermal transport in the fluid flow is anticipated in the presence of viscous dissipation. Whereas, concentration of fluid particles is contemplated by incorporating the diffusion-thermo (Dufour and thermo-diffusion (Soret effects. The governing equations for concerning problem is first modelled and then nondimensionalized by implementing compatible transformations. The utilization of these transformations yields ordinary differential system which is computed analytically through homotopic procedure. Impact of velocity, temperature and concentration profiles are presented through fascinating graphics. The influence of various pertinent parameters on skin friction coefficient, Nusselt number and Sherwood number are interpreted through graphical and tabular display. After comprehensive examination of analysis, it is concluded that temperature of fluid deescalates for growing values of Soret parameter whereas it shows inciting attitude towards Dufour parameter and similar agreement is observed for the behavior of concentration profile with respect to these parameters. Furthermore, the affirmation of present work is established by developing comparison with previously published literature. An excellent agreement is found which shows the credibility and assurance of present analysis.

  13. Analysis of combined heat and mass transfer of water-vapor in a ...

    African Journals Online (AJOL)

    Jn this paper, the combined heat and mass transfer of water-vapor into a cylindrical zeolite adsorber has been numerically simulated The twodimensional heat and mass transfer equations are numerically solved using gPROMS program - a general Process Modeling System [J] program, inserting the proper initial and ...

  14. Analysis of combined heat and mass transfer of water- Vapor in a ...

    African Journals Online (AJOL)

    In this paper, the combined heat and mass transfer of water-vapor into a cylindrical zeolite adsorber has been numerically simulated The twodimensional heat and mass transfer equations are numerically solved using gPROMS program - a general Process Modeling System {lJ program, inserting the proper initial and ...

  15. Water vapor mass balance method for determining air infiltration rates in houses

    Science.gov (United States)

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  16. Contributions to flow techniques and mass spectrometry in water analysis

    OpenAIRE

    Santos, Inês Carvalho dos

    2015-01-01

    In this thesis, the use of different flow systems was exploited along with the use of different detection techniques for the development of simple, robust, and automated analytical procedures. With the purpose to perform in-line sample handling and pretreatment operations, different separation units were used. The main target for these methods was waters samples. The first procedure was based on a sequential injection analysis (SIA) system for carbon speciation (alkalinity, dis...

  17. Carbonate system in the water masses of the Southeast Atlantic sector of the Southern Ocean during February and March 2008

    Science.gov (United States)

    González-Dávila, M.; Santana-Casiano, J. M.; Fine, R. A.; Happell, J.; Delille, B.; Speich, S.

    2011-05-01

    Carbonate system variables were measured in the South Atlantic sector of the Southern Ocean along a transect from South Africa to the southern limit of the Antarctic Circumpolar Current (ACC) from February to March 2008. Eddies detached from the retroflection of the Agulhas Current increased the gradients observed along the fronts. Minima in the fugacity of CO2, fCO2, and maxima in pH on either side of the frontal zone were observed, noting that within the frontal zone fCO2 reached maximum values and pH was at a minimum. Vertical distributions of water masses were described by their carbonate system properties and their relationship to CFC concentrations. Upper Circumpolar Deep Water (UCDW) and Lower Circumpolar Deep Water (LCDW) offered pHT,25 values of 7.56 and 7.61, respectively. The UCDW also had higher concentrations of CFC-12 (>0.2 pmol kg-1) as compared to deeper waters, revealing that UCDW was mixed with recently ventilated waters. Calcite and aragonite saturation states (Ω) were also affected by the presence of these two water masses with high carbonate concentrations. The aragonite saturation horizon was observed at 1000 m in the subtropical area and north of the Subantarctic Front. At the position of the Polar Front, and under the influence of UCDW and LCDW, the aragonite saturation horizon deepened from 800 m to 1500 m at 50.37° S, and reached 700 m south of 57.5° S. High latitudes proved to be the most sensitive areas to predicted anthropogenic carbon increase. Buffer coefficients related to changes in [CO2], [H+] and Ω with changes in dissolved inorganic carbon (CT) and total alkalinity (AT) offered minima values in the Antarctic Intermediate Water and UCDW layers. These coefficients suggest that a small increase in CT will sharply decrease the status of pH and carbonate saturation. Here we present data that suggest that south of 55° S, surface water will be under-saturated with respect to aragonite within the next few decades.

  18. Carbonate system in the water masses of the Southeast Atlantic sector of the Southern Ocean during February and March 2008

    Directory of Open Access Journals (Sweden)

    M. González-Dávila

    2011-05-01

    Full Text Available Carbonate system variables were measured in the South Atlantic sector of the Southern Ocean along a transect from South Africa to the southern limit of the Antarctic Circumpolar Current (ACC from February to March 2008. Eddies detached from the retroflection of the Agulhas Current increased the gradients observed along the fronts. Minima in the fugacity of CO2, fCO2, and maxima in pH on either side of the frontal zone were observed, noting that within the frontal zone fCO2 reached maximum values and pH was at a minimum.

    Vertical distributions of water masses were described by their carbonate system properties and their relationship to CFC concentrations. Upper Circumpolar Deep Water (UCDW and Lower Circumpolar Deep Water (LCDW offered pHT,25 values of 7.56 and 7.61, respectively. The UCDW also had higher concentrations of CFC-12 (>0.2 pmol kg−1 as compared to deeper waters, revealing that UCDW was mixed with recently ventilated waters. Calcite and aragonite saturation states (Ω were also affected by the presence of these two water masses with high carbonate concentrations. The aragonite saturation horizon was observed at 1000 m in the subtropical area and north of the Subantarctic Front. At the position of the Polar Front, and under the influence of UCDW and LCDW, the aragonite saturation horizon deepened from 800 m to 1500 m at 50.37° S, and reached 700 m south of 57.5° S. High latitudes proved to be the most sensitive areas to predicted anthropogenic carbon increase. Buffer coefficients related to changes in [CO2], [H+] and Ω with changes in dissolved inorganic carbon (CT and total alkalinity (AT offered minima values in the Antarctic Intermediate Water and UCDW layers. These coefficients suggest that a small increase in CT will sharply decrease the status of pH and carbonate saturation

  19. Maintaining Atmospheric Mass and Water Balance Within Reanalysis

    Science.gov (United States)

    Takacs, Lawrence L.; Suarez, Max; Todling, Ricardo

    2015-01-01

    This report describes the modifications implemented into the Goddard Earth Observing System Version-5 (GEOS-5) Atmospheric Data Assimilation System (ADAS) to maintain global conservation of dry atmospheric mass as well as to preserve the model balance of globally integrated precipitation and surface evaporation during reanalysis. Section 1 begins with a review of these global quantities from four current reanalysis efforts. Section 2 introduces the modifications necessary to preserve these constraints within the atmospheric general circulation model (AGCM), the Gridpoint Statistical Interpolation (GSI) analysis procedure, and the Incremental Analysis Update (IAU) algorithm. Section 3 presents experiments quantifying the impact of the new procedure. Section 4 shows preliminary results from its use within the GMAO MERRA-2 Reanalysis project. Section 5 concludes with a summary.

  20. Water mass mixing shapes bacterial biogeography in a highly hydrodynamic region of the Southern Ocean.

    Science.gov (United States)

    Hernando-Morales, Víctor; Ameneiro, Julia; Teira, Eva

    2017-03-01

    Even though compelling evidences indicate that marine microbes show biogeographic patterns, very little is known on the mechanisms driving those patterns in aquatic ecosystems. In the present study, bacterial community structure was examined in epipelagic waters of a highly hydrodynamic area of the Southern Ocean to gain insight into the role that biogeochemical factors and water mass mixing (a proxy of dispersal) have on microbial biogeography. Four water masses that converge and mix around the South Shetland Islands (northern tip of the Antarctic Peninsula) were investigated. Bacterioplankton communities were water-mass specific, and were best explained by dispersal rather than by biogeochemical factors, which is attributed to the relatively reduced environmental gradients found in these cold and nutrient rich waters. These results support the notion that currents and water mixing may have a considerable effect in connecting and transforming different water bodies, and consequently, in shaping communities of microorganisms. Considering the multidimensional and dynamic nature of the ocean, analysis of water mass mixing is a more suitable approach to investigate the role of dispersal on the biogeography of planktonic microorganisms rather than geographical distance. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Water Masses in the Monterey Bay during the Summer of 2000

    Science.gov (United States)

    2007-01-19

    rights reserved. 1. Introduction There are very energetic shallow water features in the coastal transition zone ( CTZ ) around the The physical...2000; Flament, 2002), and variable shelf circulation and the wind-driven thus describe the various water masses in the CTZ upwelling processes. The

  2. Water mass characteristics and associated fauna of a recently discovered Lophelia pertusa (Scleractinia: Anthozoa) reef in Greenlandic waters

    DEFF Research Database (Denmark)

    Kenchington, Ellen; Yashayaev, Igor; Tendal, Ole Secher

    2017-01-01

    The first living sample of Lophelia pertusa from Greenlandic waters was inadvertently collected at 60.3675°, −48.45528°, entangled together with other corals to a seawater sampler and property sensor (CTD) package. We collected in situ photographs taken at two sites in the same area in order......, and in an area with exceptionally and persistently high currents of >15 cm s−1 at 1000 m. The intermediate-depth salinity maximum was found in the depth range where the corals were found. We discovered signals of consistent vertical and horizontal transports at 700–900 m over the reef area. Although this area...

  3. Experimental and Numerical Studies of Controlling Thermal Cracks in Mass Concrete Foundation by Circulating Water

    Directory of Open Access Journals (Sweden)

    Wenchao Liu

    2016-04-01

    Full Text Available This paper summarizes an engineering experience of solving the problem of thermal cracking in mass concrete by using a large project, Zhongguancun No.1 (Beijing, China, as an example. A new method is presented for controlling temperature cracks in the mass concrete of a foundation. The method involves controlled cycles of water circulating between the surface of mass concrete foundation and the atmospheric environment. The temperature gradient between the surface and the core of the mass concrete is controlled at a relatively stable state. Water collected from the well-points used for dewatering and from rainfall is used as the source for circulating water. Mass concrete of a foundation slab is experimentally investigated through field temperature monitoring. Numerical analyses are performed by developing a finite element model of the foundation with and without water circulation. The calculation parameters are proposed based on the experiment, and finite element analysis software MIDAS/CIVIL is used to calculate the 3D temperature field of the mass concrete during the entire process of heat of hydration. The numerical results are in good agreement with the measured results. The proposed method provides an alternative practical basis for preventing thermal cracks in mass concrete.

  4. Effect of water storage on ultimate tensile strength and mass changes of universal adhesives.

    Science.gov (United States)

    Bahrololumi, Nazanin; Beglou, Amirreza; Najafi-Abrandabadi, Ahmad; Sadr, Alireza; Sheikh-Al-Eslamian, Seyedeh-Mahsa; Ghasemi, Amir

    2017-01-01

    The aim of the present study was to evaluate the influence of water storage on micro tensile strength (µTS) and mass changes (MC) of two universal adhesives. 10 disk-shaped specimens were prepared for each adhesive; Scotchbond Universal (SCU) All-Bond Universal (ABU) and Adper Single Bond 2 (SB2). At the baseline and after 1 day and 28 days of water storage, their mass were measured and compared to estimate water sorption and solubility. For µTS test, 20 dumbbell shaped specimens were also prepared for each adhesive in two subgroups of 1 day and 28 days water storage. MC was significantly lower for SCU and ABU than SB2 (P water; both universal adhesives showed less water sorption and higher values of µTS than the control group. Key words:Absorption, dental adhesives, dentin-bonding agents, solubility, tensile strength.

  5. Effect of water storage on ultimate tensile strength and mass changes of universal adhesives

    OpenAIRE

    Bahrololumi, Nazanin; Beglou, Amirreza; Najafi-Abrandabadi, Ahmad; Sadr, Alireza; Sheikh-Al-Eslamian, Seyedeh-Mahsa; Ghasemi, Amir

    2017-01-01

    Background The aim of the present study was to evaluate the influence of water storage on micro tensile strength (?TS) and mass changes (MC) of two universal adhesives. Material and Methods 10 disk-shaped specimens were prepared for each adhesive; Scotchbond Universal (SCU) All-Bond Universal (ABU) and Adper Single Bond 2 (SB2). At the baseline and after 1 day and 28 days of water storage, their mass were measured and compared to estimate water sorption and solubility. For ?TS test, 20 dumbbe...

  6. Turbulent heat and mass transfers across a thermally stratified air-water interface

    Science.gov (United States)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1986-01-01

    Rates of heat and mass transfer across an air-water interface were measured in a wind-wave research facility, under various wind and thermal stability conditions (unless otherwise noted, mass refers to water vapor). Heat fluxes were obtained from both the eddy correlation and the profile method, under unstable, neutral, and stable conditions. Mass fluxes were obtained only under unstable stratification from the profile and global method. Under unstable conditions the turbulent Prandtl and Schmidt numbers remain fairly constant and equal to 0.74, whereas the rate of mass transfer varies linearly with bulk Richardson number. Under stable conditions the turbulent Prandtl number rises steadily to a value of 1.4 for a bulk Richardson number of about 0.016. Results of heat and mass transfer, expressed in the form of bulk aerodynamic coefficients with friction velocity as a parameter, are also compared with field data.

  7. Measuring Air-water Interfacial Area for Soils Using the Mass Balance Surfactant-tracer Method

    Science.gov (United States)

    Araujo, Juliana B.; Mainhagu, Jon; Brusseau, Mark L.

    2015-01-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. PMID:25950136

  8. Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method.

    Science.gov (United States)

    Araujo, Juliana B; Mainhagu, Jon; Brusseau, Mark L

    2015-09-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Sea Level Changes Due to Water Mass Variations in the Gulf of Mexico

    Science.gov (United States)

    Karpytchev, M.

    2016-12-01

    Previous studies have demonstrated that interannual sea level variations on the shelfof the Gulf of Mexico are weakly correlated with the sea level over the Gulf deep waters.This has been shown to be due to a complex interplay between the Loop Currentdriving sea level changes in the deeper part of the Gulf with the shelf waves propagatingfrom the North Atlantic. In this study, we, first, examine the relationship between the low-frequency sea levelfluctuations deduced from satellite altimetry observations and from tide gauge recordsand, then, focus on evaluating water mass changes in the Gulf of Mexico.We compare the estimates obtained from satellite altimetry corrected forthermosteric effects with the changes in water mass observed by GRACEand discuss the importance of water mass changes for the low-frequency sea level fluctuationsin the Gulf.

  10. Vertical distributions of late stage larval fishes in the nearshore waters of the San Bias Archipelago, Caribbean Panama

    NARCIS (Netherlands)

    Hendriks, IE; Wilson, DT; Meekan, MG

    Light traps were used to describe the vertical distribution of late larval stages of reef fishes in the San Blas Archipelago during three successive new moon periods. Traps were deployed in the lagoon and at an exposed site on the outer reef edge. At each site, two traps were anchored at the surface

  11. A High-Resolution Model of Water Mass Transformation and Transport in the Weddell Sea

    Science.gov (United States)

    Hazel, J.; Stewart, A.

    2016-12-01

    The ocean circulation around the Antarctic margins has a pronounced impact on the global ocean and climate system. One of these impacts includes closing the global meridional overturning circulation (MOC) via formation of dense Antarctic Bottom Water (AABW), which ventilates a large fraction of the subsurface ocean. AABW is also partially composed of modified Circumpolar Deep Water (CDW), a warm, mid-depth water mass whose transport towards the continent has the potential to induce rapid retreat of marine-terminating glaciers. Previous studies suggest that these water mass exchanges may be strongly influenced by high-frequency processes such as downslope gravity currents, tidal flows, and mesoscale/submesoscale eddy transport. However, evaluating the relative contributions of these processes to near-Antarctic water mass transports is hindered by the region's relatively small scales of motion and the logistical difficulties in taking measurements beneath sea ice.In this study we develop a regional model of the Weddell Sea, the largest established source of AABW. The model is forced by an annually-repeating atmospheric state constructed from the Antarctic Mesoscale Prediction System data and by annually-repeating lateral boundary conditions constructed from the Southern Ocean State Estimate. The model incorporates the full Filchner-Ronne cavity and simulates the thermodynamics and dynamics of sea ice. To analyze the role of high-frequency processes in the transport and transformation of water masses, we compute the model's overturning circulation, water mass transformations, and ice sheet basal melt at model horizontal grid resolutions ranging from 1/2 degree to 1/24 degree. We temporally decompose the high-resolution (1/24 degree) model circulation into components due to mean, eddy and tidal flows and discuss the geographical dependence of these processes and their impact on water mass transformation and transport.

  12. Heat and Mass Diffusions in the Absorption of Water Vapor by Aqueous Solution of Lithium Bromide

    Science.gov (United States)

    Kashiwagi, Takao; Kurosaki, Yasuo; Nikai, Isao

    The recent development of absorption-type heat pump is highly essential from the viewpoint of extracting the effective energy from waste heat or solar energy. To increase the efficiency of energy conversion, it is important to improve the performance of absorbers. The objective of this paper is to obtain an increased understanding of the fine mechanisms of vapor absorption. A system combining holographic interferometry wity thermometry is adopted to observe the progress of one-dimensional water vapor absorption by aqueous solution of lithium bromide (LiBr) and also to measure the unsteady temperature and concentration distributions in the absorption process. The experiments are carried out under the condition that the solution surface is exposed to the saturated water vapor at reduced pressure, and the effects of LiBr mass concentration on absorption mechanism are examined in the concentration range 20-60 mass%. The interference fringes are analyzed to distinguish between the layers of heat conduction and mass diffusion. The temperature and concentration distributions thus determined experimentally are compared with numerical solutions obtained by the equations for unsteady heat conduction and mass diffusion taking into consideration the effect of heat by dilution, to give reasonable values of mass diffusivity hitherto remaining unknown. Especially in the range of 40-60 mass%, the mass diffusivity decreases extremely with the increase of mass concentration of LiBr and it falls down to 0.7-0.8×10-9 m2/s in case of 60 mass% solution.

  13. Relationships among climatological vertical moisture structure, column water vapor, and precipitation over the central Amazon in observations and CMIP5 models

    Science.gov (United States)

    Lintner, Benjamin R.; Adams, David K.; Schiro, Kathleen A.; Stansfield, Alyssa M.; Amorim Rocha, Alciélio A.; Neelin, J. David

    2017-02-01

    Bias and spread in Coupled Model Intercomparison Project Phase 5 simulated vertical specific humidity (q) structure are examined and related to both precipitation and column water vapor (cwv) near Manaus, Brazil, site of the recent Green Ocean Amazon campaign. Simulated seasonal mean q profiles are typically too dry, especially at low levels and during the local dry season, consistent with previously identified surface hydroclimate biases in the Amazon. Multimodel empirical orthogonal function analysis of the models' monthly climatological q profiles indicates two significant modes of ensemble spread in moisture vertical structure, with the leading mode peaked at low levels and the second mode in the lower free troposphere (LFT). While both modes project onto simulated cwv spread, only the first projects on precipitation, suggesting inconsistent sensitivity of simulated rainfall to LFT moisture. Relative to observations, models with high cwv and low-level moisture errors tend to exhibit high precipitation error.

  14. Evidence of horizontal and vertical transport of water in the Southern Hemisphere tropical tropopause layer (TTL from high-resolution balloon observations

    Directory of Open Access Journals (Sweden)

    S. M. Khaykin

    2016-09-01

    Full Text Available High-resolution in situ balloon measurements of water vapour, aerosol, methane and temperature in the upper tropical tropopause layer (TTL and lower stratosphere are used to evaluate the processes affecting the stratospheric water budget: horizontal transport (in-mixing and hydration by cross-tropopause overshooting updrafts. The obtained in situ evidence of these phenomena are analysed using satellite observations by Aura MLS (Microwave Limb Sounder and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation together with trajectory and transport modelling performed using CLaMS (Chemical Lagrangian Model of the Stratosphere and HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory model. Balloon soundings were conducted during March 2012 in Bauru, Brazil (22.3° S in the frame of the TRO-Pico campaign for studying the impact of convective overshooting on the stratospheric water budget. The balloon payloads included two stratospheric hygrometers: FLASH-B (Fluorescence Lyman-Alpha Stratospheric Hygrometer for Balloon and Pico-SDLA instrument as well as COBALD (Compact Optical Backscatter Aerosol Detector sondes, complemented by Vaisala RS92 radiosondes. Water vapour vertical profiles obtained independently by the two stratospheric hygrometers are in excellent agreement, ensuring credibility of the vertical structures observed. A signature of in-mixing is inferred from a series of vertical profiles, showing coincident enhancements in water vapour (of up to 0.5 ppmv and aerosol at the 425 K (18.5 km level. Trajectory analysis unambiguously links these features to intrusions from the Southern Hemisphere extratropical stratosphere, containing more water and aerosol, as demonstrated by MLS and CALIPSO global observations. The in-mixing is successfully reproduced by CLaMS simulations, showing a relatively moist filament extending to 20° S. A signature of local cross-tropopause transport of water is observed in

  15. Analysis of hydraulic fracturing flowback and produced waters using accurate mass: identification of ethoxylated surfactants.

    Science.gov (United States)

    Thurman, E Michael; Ferrer, Imma; Blotevogel, Jens; Borch, Thomas

    2014-10-07

    Two series of ethylene oxide (EO) surfactants, polyethylene glycols (PEGs from EO3 to EO33) and linear alkyl ethoxylates (LAEs C-9 to C-15 with EO3-EO28), were identified in hydraulic fracturing flowback and produced water using a new application of the Kendrick mass defect and liquid chromatography/quadrupole-time-of-flight mass spectrometry. The Kendrick mass defect differentiates the proton, ammonium, and sodium adducts in both singly and doubly charged forms. A structural model of adduct formation is presented, and binding constants are calculated, which is based on a spherical cagelike conformation, where the central cation (NH4(+) or Na(+)) is coordinated with ether oxygens. A major purpose of the study was the identification of the ethylene oxide (EO) surfactants and the construction of a database with accurate masses and retention times in order to unravel the mass spectral complexity of surfactant mixtures used in hydraulic fracturing fluids. For example, over 500 accurate mass assignments are made in a few seconds of computer time, which then is used as a fingerprint chromatogram of the water samples. This technique is applied to a series of flowback and produced water samples to illustrate the usefulness of ethoxylate "fingerprinting", in a first application to monitor water quality that results from fluids used in hydraulic fracturing.

  16. Urban water metabolism indicators derived from a water mass balance - Bridging the gap between visions and performance assessment of urban water resource management.

    Science.gov (United States)

    Renouf, M A; Serrao-Neumann, S; Kenway, S J; Morgan, E A; Low Choy, D

    2017-10-01

    Improving resource management in urban areas has been enshrined in visions for achieving sustainable urban areas, but to date it has been difficult to quantify performance indicators to help identify more sustainable outcomes, especially for water resources. In this work, we advance quantitative indicators for what we refer to as the 'metabolic' features of urban water management: those related to resource efficiency (for water and also water-related energy and nutrients), supply internalisation, urban hydrological performance, sustainable extraction, and recognition of the diverse functions of water. We derived indicators in consultation with stakeholders to bridge this gap between visions and performance indicators. This was done by first reviewing and categorising water-related resource management objectives for city-regions, and then deriving indicators that can gauge performance against them. The ability for these indicators to be quantified using data from an urban water mass balance was also examined. Indicators of water efficiency, supply internalisation, and hydrological performance (relative to a reference case) can be generated using existing urban water mass balance methods. In the future, indicators for water-related energy and nutrient efficiencies could be generated by overlaying the urban water balance with energy and nutrient data. Indicators of sustainable extraction and recognising diverse functions of water will require methods for defining sustainable extraction rates and a water functionality index. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Osmotic-driven mass transport of water: impact on the adhesiveness of hydrophilic polymers.

    Science.gov (United States)

    Borde, Annika; Bergstrand, Anna; Gunnarsson, Cecilia; Larsson, Anette

    2010-01-15

    Adhesion is an important property for the functionality of many medical devices. One reason for the development of adhesive forces is dehydration caused by mass transport of water. Osmotic pressure is one main driving force for mass transport and the correlation between osmotic pressure and adhesive force has not been studied yet, which was the aim of the present study. A model system was used where a Carbopol tablet was lowered onto a 1% (w/w) agarose gel. The force required to detach the tablet (adhesive force) and the weight gain of the tablet (as a measure of transported water) were determined. Sodium chloride and mannitol were added to the agarose gel to decrease the osmotic pressure difference between the agarose gel and the partially hydrated Carbopol tablet. This resulted in a decrease of both mass transport and adhesive force. In addition, experiments with restricted water transport within the agarose gel were performed by preparing gels with different agarose concentrations. An increase of the agarose concentration resulted in decreased water transport and higher adhesive forces. Hence, the results confirmed our hypothesis that osmotic-driven mass transport and restricted mass transport of water correlate very well with the adhesive force.

  18. Effects of Buoyancy Forces on Immiscible Water/Oil Displacements in a Vertically Oriented Porous Medium Effets des facteurs de flottabilité sur les déplacements non-miscibles eau/huile dans un milieu poreux vertical

    Directory of Open Access Journals (Sweden)

    Thirunavu S. R.

    2006-11-01

    Full Text Available The effects of buoyancy forces on liquid-liquid displacement processes occurring in porous media are important in a variety of practical situations, in particular during the displacement of oil from partially-depleted underground reservoirs by means of aqueous solutions. Most previous studies involving the visualization of water/oil displacements in porous media have been undertaken in horizontal two-dimensional porous medium cells. The objective of the present work was to determine the effects of buoyancy forces; on the fingering pattern and oil recovery by conducting immiscible displacement experiments in two-dimensional consolidated porous medium cells aligned in the vertical plane. In order to obtain a clear understanding of the favourable and unfavourable effects of buoyancy forces, experiments were carried out in three different flow modes, namely horizontal, vertical upward, and vertical downward. As the effects of buoyancy forces are negligible for two-dimensional porous media in the horizontal flow mode, the recoveries obtained in this mode were used as a reference for comparison with those obtained in the two vertical modes. Displacements using five different density ratios were studied. The breakthrough time and percentage oil recovery were measured in each case. The effects of buoyancy forces, viscous forces, and capillary forces, as well as the injection flow rate, were also recorded. The results obtained indicate that the effects of buoyancy forces are very pronounced at low flow rates and low oil/water density ratios, and that even a slight increase in the flow rate causes the buoyancy forces to rapidly become less significant. Les facteurs de flottabilité exercent un effet important sur les déplacements liquide/liquide en milieu poreux dans toute une gamme de situations pratiques, en particulier lorsqu'on veut déplacer l'huile de roches réservoirs partiellement épuisées à l'aide de solutions aqueuses. La plupart des

  19. Seaglider surveys at Ocean Station Papa: Circulation and water mass properties in a meander of the North Pacific Current

    Science.gov (United States)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2016-09-01

    A Seaglider autonomous underwater vehicle augmented the Ocean Station Papa (OSP; 50°N, 145°W) surface mooring, measuring spatial structure on scales relevant to the monthly evolution of the moored time series. During each of three missions from June 2008 to January 2010, a Seaglider made biweekly 50 km × 50 km surveys in a bowtie-shaped survey track. Horizontal temperature and salinity gradients measured by these surveys were an order of magnitude stronger than climatological values and sometimes of opposite sign. Geostrophically inferred circulation was corroborated by moored acoustic Doppler current profiler measurements and AVISO satellite altimetry estimates of surface currents, confirming that glider surveys accurately resolved monthly scale mesoscale spatial structure. In contrast to climatological North Pacific Current circulation, upper-ocean flow was modestly northward during the first half of the 18 month survey period, and weakly westward during its latter half, with Rossby number O>(0.01>). This change in circulation coincided with a shift from cool and fresh to warm, saline, oxygen-rich water in the upper-ocean halocline, and an increase in vertical fine structure there and in the lower pycnocline. The anomalous flow and abrupt water mass transition were due to the slow growth of an anticyclonic meander within the North Pacific Current with radius comparable to the scale of the survey pattern, originating to the southeast of OSP.

  20. Amino acid and hexosamine in the equatorial western Pacific: vertical fluxes and individual preservation through water column to surface sediments

    Science.gov (United States)

    Kawahata, H.; Gupta, L. P.; Ishizuka, T.

    2002-12-01

    Amino acids (AA) and hexosamines (HA) are major constituents for all living organisms, constituting important fractions of labile organic carbon and nitrogen. They usually decompose rapidly than bulk OM and must be expected to be closely linked to biogeochemical processes. In spite of such importance, our understanding of degradation processes of labile components is still limited. Therefore vertical fluxes and preservation of AA and HA from water column to surface sediments are investigated at the western equatorial Pacific. The settling particles were composed of fairly fresh AA, which could be derived from siliceous diatom with less amount of calcareous plankton. In contrast, AA were degraded in sediments and porewaters. Each AA showed highly variable preservation ratio from settling to sedimentary particles. Compared with glycine, the calculated preservation ratio was the lowest (0%) for cysteine, followed by phenylalanine (6%), tyrosine (17%), methionine (47%), leucine (60%), isoleucine (65%), proline (67%), valine (91%), serine (99%), arginine (107%), threonine (112%), alanine (115%), glutamic acid (114%), aspartic acid (150%), lysine (166%) and histidine (186%). Beta-alanine and gamma-aminobutyric acid were the least labile AA. Probably they are so difficult to degrade for bacteria to get biochemical energy that the degradation proceeds fairly slowly. In contrast, after burial, even most labile, aromatic and sulfur-containing AA, degrade at a rate similar to the other protein AA. In spite of complicated reactions, most of the AA showed first-order reaction kinetics during the degradation in the sediments. The decomposition rate constant k (kyr-1) in this study was 2-3 orders lower than those in coastal marine environments. Better preservation of HA over AA in the sediments was probably due to the general incorporation of HA into structural biopolymer matrices, such as bacterial cell-walls and chitinous material. Abundant glycine in the AA in the sediments is

  1. Water-mass evolution in the Cretaceous Western Interior Seaway of North America and equatorial Atlantic

    Directory of Open Access Journals (Sweden)

    J. S. Eldrett

    2017-07-01

    Full Text Available The Late Cretaceous Epoch was characterized by major global perturbations in the carbon cycle, the most prominent occurring near the Cenomanian–Turonian (CT transition marked by Oceanic Anoxic Event 2 (OAE-2 at 94.9–93.7 Ma. The Cretaceous Western Interior Seaway (KWIS was one of several epicontinental seas in which a complex water-mass evolution was recorded in widespread sedimentary successions. This contribution integrates new data on the main components of organic matter, geochemistry, and stable isotopes along a north–south transect from the KWIS to the equatorial western Atlantic and Southern Ocean. In particular, cored sedimentary rocks from the Eagle Ford Group of west Texas (∼ 90–98 Ma demonstrate subtle temporal and spatial variations in palaeoenvironmental conditions and provide an important geographic constraint for interpreting water-mass evolution. High-latitude (boreal–austral, equatorial Atlantic Tethyan and locally sourced Western Interior Seaway water masses are distinguished by distinct palynological assemblages and geochemical signatures. The northward migration of an equatorial Atlantic Tethyan water mass into the KWIS occurred during the early–middle Cenomanian (98–95 Ma followed by a major re-organization during the latest Cenomanian–Turonian (95–94 Ma as a full connection with a northerly boreal water mass was established during peak transgression. This oceanographic change promoted de-stratification of the water column and improved oxygenation throughout the KWIS and as far south as the Demerara Rise off Suriname. In addition, the recorded decline in redox-sensitive trace metals during the onset of OAE-2 likely reflects a genuine oxygenation event related to open water-mass exchange and may have been complicated by variable contribution of organic matter from different sources (e.g. refractory/terrigenous material, requiring further investigation.

  2. Water-mass evolution in the Cretaceous Western Interior Seaway of North America and equatorial Atlantic

    Science.gov (United States)

    Eldrett, James S.; Dodsworth, Paul; Bergman, Steven C.; Wright, Milly; Minisini, Daniel

    2017-07-01

    The Late Cretaceous Epoch was characterized by major global perturbations in the carbon cycle, the most prominent occurring near the Cenomanian-Turonian (CT) transition marked by Oceanic Anoxic Event 2 (OAE-2) at 94.9-93.7 Ma. The Cretaceous Western Interior Seaway (KWIS) was one of several epicontinental seas in which a complex water-mass evolution was recorded in widespread sedimentary successions. This contribution integrates new data on the main components of organic matter, geochemistry, and stable isotopes along a north-south transect from the KWIS to the equatorial western Atlantic and Southern Ocean. In particular, cored sedimentary rocks from the Eagle Ford Group of west Texas (˜ 90-98 Ma) demonstrate subtle temporal and spatial variations in palaeoenvironmental conditions and provide an important geographic constraint for interpreting water-mass evolution. High-latitude (boreal-austral), equatorial Atlantic Tethyan and locally sourced Western Interior Seaway water masses are distinguished by distinct palynological assemblages and geochemical signatures. The northward migration of an equatorial Atlantic Tethyan water mass into the KWIS occurred during the early-middle Cenomanian (98-95 Ma) followed by a major re-organization during the latest Cenomanian-Turonian (95-94 Ma) as a full connection with a northerly boreal water mass was established during peak transgression. This oceanographic change promoted de-stratification of the water column and improved oxygenation throughout the KWIS and as far south as the Demerara Rise off Suriname. In addition, the recorded decline in redox-sensitive trace metals during the onset of OAE-2 likely reflects a genuine oxygenation event related to open water-mass exchange and may have been complicated by variable contribution of organic matter from different sources (e.g. refractory/terrigenous material), requiring further investigation.

  3. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus

    Directory of Open Access Journals (Sweden)

    FREDY A.A. AGUILAR

    Full Text Available ABSTRACT Knowledge on fasting heat production (HEf of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR of pacu (17 - 1,050 g at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10 for pacu (2.06 shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1 from body mass (W, kg and water temperature (T, °C, and can be used in bioenergetical models for the species.

  4. Water-mass transformation in the Atlantic Ocean in a Lagrangian frame work

    Science.gov (United States)

    Berglund, Sara; Döös, Kristofer; Nycander, Jonas

    2017-04-01

    The world ocean is constantly moving, mostly due to density differences and atmospheric winds. This circulation is commonly refereed to as the Conveyor Belt circulation. In the Southern parts of the Atlantic, around the tip of South Africa, warm and saline water is entering. The water travels northward towards the equator where it increases in salinity. After passing the equator and reaching the North Atlantic, the water becomes cold and fresh, due to heat release to the atmosphere. Previous studies has introduced and computed the thermohaline stream function to connect water-mass transformations to the Conveyor Belt circulation in a temperature and salinity space. It has been suggested that the northward flowing water mass in the Atlantic Ocean can be shown in the stream function as water that converts from warm and saline to cold and fresh, and that the conversion is due to air-sea interactions. In the present study, Lagrangian trajectories are used to quantify the northward flowing water masses in the Atlantic Oceans contribution to the Conveyor Belt circulation in TS-space by introducing the Lagrangian thermohaline stream function. The stream function shows the Atlantic water-mass transformation, where warm and saline water is converted to cold and fresh, as the water flows from 17°S to 58°N. This conversion is found to be both isopycnal and diapycnal. To connect the water-mass transformation to a geographical position in the Atlantic Ocean, the Lagrangian divergence of heat and salt flux is introduced. Conversions of temperature and salinity shown by the Lagrangian thermohaline stream function are found to occur in the same region of the domain, however, with a different spread. The conversion of temperature is found to take place in the Gulf Stream, the upper flank of the North Atlantic subtropical gyre, and in the North Atlantic Drift, whereas the conversion of salinity occurs over a narrower band in the same regions. To be able to study the processes

  5. Modeling and experimental validation of water mass balance in a PEM fuel cell stack

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Araya, Samuel Simon; Olesen, Anders Christian

    2016-01-01

    management in PEM fuel cell is crucial in order to avoid an imbalance between water production and water removal from the fuel cell. In the present study, a novel mathematical zero-dimensional model has been formulated for the water mass balance and hydration of a polymer electrolyte membrane. This model...... is validated against experimental data. In the results it is shown that the fuel cell water balance calculated by this model shows better fit with experimental data-points compared with model where only steady state operation were considered. We conclude that this discrepancy is due a different rate of water......Polymer electrolyte membrane (PEM) fuel cells require good hydration in order to deliver high performance and ensure long life operation. Water is essential for proton conductivity in the membrane which increases by nearly six orders of magnitude from dry to fully hydrated. Adequate water...

  6. A Physical Pre-Treatment Method (Vertical Weir Curtain for Mitigating Cyanobacteria and Some of Their Metabolites in a Drinking Water Reservoir

    Directory of Open Access Journals (Sweden)

    Chae-Hong Park

    2017-10-01

    Full Text Available Harmful cyanobacteria and their metabolites often contaminate drinking water resources, and effective control remains challenging. Here, we developed a physical algal pre-treatment method, the vertical weir curtain (VWC, to mitigate cyanobacteria and some of their metabolites (geosmin, 2-methylisoborneol (2-MIB, and microcystins in situ and evaluated its performance in a raw water reservoir used for drinking water supply. The VWC was manufactured with two fibrous polypropylene mats (0% and 92% porosity which were mounted to maintain a constant underwater depth. We installed the VWC to cover the entire epilimnion of the drinking water intake zone and monitored its efficiency during an algal bloom period (July–October 2015. Reduction rates were 40–59% for total algae, 60–75% for cyanobacteria, 23–55% for geosmin, 30–51% for 2-MIB, and 47–89% for microcystin-LR during the study period. Significant reductions were observed in the shallow layer of the water column (1–3 m water depth, particularly during August, when cyanobacterial density was the highest. The results indicate that the VWC can effectively mitigate harmful cyanobacteria and their metabolites when suitably applied, serving as a valuable reference for the algal reduction in raw drinking water resources.

  7. Application of vertical electrical sounding combined with induced polarization method in ground water exploration; IP koka wo koryoshita hiteikoho suichoku tansa no chikasui chosa eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, M.; Sakurada, H. [Sumiko Consultants Co. Ltd., Tokyo (Japan); Suzuki, T. [Hokkaido Development Bureau, Hokkaido Development Agency, Sapporo (Japan)

    1996-10-01

    For ground water exploration using vertical Schlumberger exploration method, measurement and analysis combined with induced polarization (IP) effect were conducted as trial. For the Schlumberger method, potential is measured at the center between potential electrodes during flow of dc current between current electrodes. In the case of vertical exploration, measurements are repeated with fixed potential electrodes by extending the distance between current electrodes. Ground water exploration was conducted using this method at Otaki village, Hokkaido. Geology of surveyed plateau consists of a basement of Pliocene tuffs and Quaternary Pleistocene sediments covering on the surface. For the results of analysis, four to seven beds were detected from the resistivity. The depth up to the lowest bed was between 25 and 85 m, the resistivity of each bed was between 9 and 8,000 ohm{times}m, and the polarizability was between 1 and 15 mV/V. Among these resistivity zones, it was judged that zones satisfying following three conditions correspond to coarse grain sediments saturated with ground water, and can be expected as aquifers; having resistivity ranging between 100 and 1,000 ohm{times}m, polarizability higher than 10 mV/V, and relatively large thickness. 11 refs., 6 figs.

  8. Annual and interannual variability of the Barents Sea water masses and polar front: 1980-2011

    Science.gov (United States)

    Oziel, Laurent; Sirven, Jerome; Gascard, Jean-Claude

    2015-04-01

    The Barents Sea (BS) is a transition area between the warm and saline Atlantic Waters (AW) and the cold and fresh Arctic Waters (ArW). The BS is characterized by a polar front structure separating AW from ArW. The mixing and cooling of these two water mass generates dense waters in winter. Dense waters are of prior importance because they cascade into the Arctic Ocean to form the Artic Intermediate Waters. This study will use a new hydrographic data set fulfilled by recent stations in the Russian area and a 3D model coupled with atmosphere and ice as a back up to investigate the link between fronts and water masses, as well as their variability over the last 30 years. This study suggests that the polar front structure is composed of two branches and that the dense waters are found in between. The BS, especially in the East, is experiencing an "Atlantification" accompanied with a drastic sea ice decline. These changes, amplified during the last decade, shift the southern branch of the polar front structure in the Norh-East direction and affect negatively the dense water formation. This could have major impacts on the Arctic Ocean ventilation and primary production.

  9. Nutrient characteristics of the water masses and their seasonal variability in the eastern equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Shetye, S.; Maya, M.V.; Mangala, K.R.; PrasannaKumar, S.

    zones in the north and gradually deepens towards the equator. Jensen (2003) also confirms southern Indian ocean sources in the mixed layer of the Arabian sea which includes ITF. The throughflow transport appears to vary seasonally with maximum values... changes. The water mass to the north of the equator with a salinity range of 35-35.1 is seen at 200 m to the south and spreads down to 1000 m to the north of the equator in all the three seasons. The low salinity water mass to the south of the equator...

  10. Feasibility of Onsite Residential Graywater Recycling Using a Semi-Batch Vertical Flow Wetland for Non-Potable Water Reuse

    OpenAIRE

    Yu, Zita Lai Ting

    2015-01-01

    Water sustainability has become a critical issue in various regions around the world given rapid population rise and the impact of climate change on water resources. In this regard, onsite treatment and reuse of graywater (defined as wastewater is not originated from toilets or urinals), for non-potable applications, can be an important element of the approach to water sustainability. Treatment of graywater prior to reuse is essential in order to enable effective product water reuse and stora...

  11. The Barents Sea polar front and water masses variability (1980-2011)

    Science.gov (United States)

    Oziel, L.; Sirven, J.; Gascard, J.-C.

    2015-03-01

    The polar front separates the warm and saline Atlantic Waters encountered in the western part of the Barents Sea from the cold and fresh Arctic Waters situated in the northern part. These water masses can mix together, mainly in the eastern part of the Barents Sea, generating dense waters in winter which can cascade into the Arctic Ocean to form the Artic Intermediate Waters. To study the interannual variability and evolution of these water masses and the fronts, we have merged data from the International Council for the Exploration of the Sea and the Arctic and Antarctic Research Institute and have built a new database which covers the period 1980-2011. The summer data is interpolated on a regular grid and a "Probability Density Function" method is used to show that the polar front splits into two branches east of 32° E where the topographic constraint weakens. Two fronts can then be defined: the "Northern Polar Front" is associated with strong salinity gradients and the "Southern Polar Front" with temperature gradients. They enclose the dense Barents Sea Water. The interannual variability of the water masses is apparent in the observed data and is linked to that of the ice cover. In contrast, the link with the Arctic Oscillation is not clear. However, results from a general circulation model suggest that such a link could be found if winter data were taken into account. A strong trend, which amplifies during the last decade, is also found: the Atlantic Water occupies a larger volume of the Barents Sea. This "Atlantification" could be accompanied by a northwards displacement of the southern polar front in the eastern part of the Barents Sea (which is suggested by a model based study) and a decrease of the volume occupied by the Arctic Waters.

  12. The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights

    Science.gov (United States)

    Sodemann, Harald; Aemisegger, Franziska; Pfahl, Stephan; Bitter, Mark; Corsmeier, Ulrich; Feuerle, Thomas; Graf, Pascal; Hankers, Rolf; Hsiao, Gregor; Schulz, Helmut; Wieser, Andreas; Wernli, Heini

    2017-05-01

    Stable isotopes of water vapour are powerful indicators of meteorological processes on a broad range of scales, reflecting evaporation, condensation, and air mass mixing processes. With the recent advent of fast laser-based spectroscopic methods, it has become possible to measure the stable isotopic composition of atmospheric water vapour in situ at a high temporal resolution. Here we present results from such comprehensive airborne spectroscopic isotope measurements in water vapour over the western Mediterranean at a high spatial and temporal resolution. Measurements have been acquired by a customized Picarro L2130-i cavity-ring down spectrometer deployed onboard the Dornier 128 D-IBUF aircraft together with a meteorological flux measurement package during the HyMeX SOP1 (Hydrological cycle in Mediterranean Experiment special observation period 1) field campaign in Corsica, France, during September and October 2012. Taking into account memory effects of the air inlet pipe, the typical time resolution of the measurements was about 15-30 s, resulting in an average horizontal resolution of about 1-2 km. Cross-calibration of the water vapour measurements from all humidity sensors showed good agreement under most flight conditions but the most turbulent ones. In total 21 successful stable isotope flights with 59 flight hours have been performed. Our data provide quasi-climatological autumn average conditions and vertical profiles of the stable isotope parameters δD, δ18O, and d-excess during the study period. A d-excess minimum in the overall average profile is reached in the region of the boundary-layer top, possibly caused by precipitation evaporation. This minimum is bracketed by higher d-excess values near the surface caused by non-equilibrium fractionation, and a maximum above the boundary layer related to the increasing d-excess in very depleted and dry high-altitude air masses. Repeated flights along the same pattern reveal pronounced day-to-day variability

  13. Bacterial flora analysis of coliforms in sewage, river water, and ground water using MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Suzuki, Yoshihiro; Niina, Kouki; Matsuwaki, Tomonori; Nukazawa, Kei; Iguchi, Atsushi

    2017-11-17

    The aim of this study was to rapidly and effectively analyze coliforms, which are the most fundamental indicators of water quality for fecal pollution, using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Coliform bacteria were isolated from municipal sewage, river water, and groundwater. For each sample, 100 isolates were determined by MALDI-TOF MS. In addition, these same 100 isolates were also identified via 16S rRNA gene sequence analysis. Obtained MALDI-TOF MS data were compared with the 16S rRNA sequencing analysis, and the validity of MALDI-TOF MS for classification of coliform bacteria was examined. The concordance rate of bacterial identification for the 100 isolates obtained by MALDI-TOF MS analysis and 16S rRNA gene sequence analysis for sewage, river water, and ground water were 96%, 74%, and 62% at the genus level, respectively. Among the sewage, river water, and ground water samples, the coliform bacterial flora were distinct. The dominant genus of coliforms in sewage, river water, and groundwater were Klebsiella spp., Enterobacter spp., and Serratia spp., respectively. We determined that MALDI-TOF MS is a rapid and accurate tool that can be used to identify coliforms. Therefore, without using conventional 16S rRNA sequencing, it is possible to rapidly and effectively classify coliforms in water using MALDI-TOF MS.

  14. Water Mass Variability at the Mid-Atlantic Ridge and in the Eastern North Atlantic

    Science.gov (United States)

    Köllner, Manuela; Klein, Birgit; Kieke, Dagmar; Klein, Holger; Roessler, Achim; Rhein, Monika

    2017-04-01

    The strong warming and salinification of the Eastern North Atlantic starting in the mid 1990s has been attributed to a westward contraction of the sub-polar gyre and stronger inflow of waters from the sub-tropical gyre. Temporal changes in the shape and strength of the two gyres have been related to the major mode of atmospheric variability in the Atlantic sector, the NAO. Hydrographic conditions along the Northwest European shelf are thus the result of different processes such as variations in transports, varying relative contributions of water masses from the two gyres and property trends in the source water masses. The North Atlantic Current (NAC) can be regarded as the southern border of the sub-polar gyre transporting water from the tropical regions northward. On its way towards the Mid Atlantic Ridge (MAR) the NAC has partly mixed with waters from the sub-polar gyre and crosses the MAR split into several branches. For the study we analyzed data of water mass variability and transport fluctuations from the RACE (Regional circulation and Global change) project (2012-2015) which provided time series of transports and hydrographic anomalies from moored instruments at the western flank of the MAR. The time depending positions of the NAC branches over the MAR were obtained from mooring time series and compared to sea surface velocities from altimeter data. The results show a high variability of NAC pathways over the MAR. Transition regimes with strong meandering and eddies could be observed as well as periods of strong NAC branches over the Fracture Zones affecting water mass exchange at all depth levels. A positive temperature trend at depths between 1000-2000 m was found at the Faraday Fracture Zone (FFZ). This warming trend was also detected by Argo floats crossing the MAR close to the FFZ region. During the second phase of RACE (RACE-II, 2016-2018) a mooring array across the eastern shelf break at Goban Spur was deployed to monitor the poleward Eastern Boundary

  15. Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 2. Aerosol effects on warm convective clouds: Center of Gravity Versus Water Mass 2

    Energy Technology Data Exchange (ETDEWEB)

    Heiblum, Reuven H. [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Altaratz, Orit [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Koren, Ilan [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Feingold, Graham [Chemical Sciences Division, NOAA Earth System Research Laboratory (ESRL), Boulder Colorado USA; Kostinski, Alexander B. [Department of Physics, Michigan Technological University, Houghton Michigan USA; Khain, Alexander P. [Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem Israel; Ovchinnikov, Mikhail [Atmosphere Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Fredj, Erick [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Dagan, Guy [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Pinto, Lital [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Yaish, Ricki [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Chen, Qian [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel

    2016-06-07

    In Part I of this work a 3D cloud tracking algorithm and phase-space of center of gravity altitude versus cloud liquid water mass (CvM space) were introduced and described in detail. We showed how new physical insight can be gained by following cloud trajectories in the CvM space. Here, this approach is used to investigate aerosol effects on cloud fields of warm cumuli. We show a clear effect of the aerosol loading on the shape and size of CvM clusters. We also find fundamental differences in the CvM space between simulations using bin versus bulk microphysical schemes, with the bin scheme precipitation expressing much higher sensitivity to changes in aerosol concentrations. Using the bin microphysical scheme, we find that the increase in cloud center of gravity altitude with increase in aerosol concentrations occurs for a wide range of cloud sizes. This is attributed to reduced sedimentation, increased buoyancy and vertical velocities, and increased environmental instability, all of which are tightly coupled to inhibition of precipitation processes and subsequent feedbacks of clouds on their environment. Many of the physical processes shown here are consistent with processes typically associated with cloud invigoration.

  16. First in situ measurement of the vertical distribution of ice volume in a mesospheric ice cloud during the ECOMA/MASS rocket-campaign

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, M.; Strelnikova, I.; Strelnikov, B. [Leibniz-Institute of Atmospheric Physics, Kuehlungsborn (DE)] (and others)

    2009-07-01

    We present in situ observations of mesospheric ice particles with a new particle detector which combines a classical Faraday cup with the active photoionization of particles and subsequent detection of photoelectrons. Our observations of charged particles and free electrons within a decaying PMSE-layer reveal that the presence of charged particles is a necessary but not sufficient condition for the presence of PMSE. That is, additional requirements like a sufficiently large electron density - which we here estimate to be on the order of {proportional_to}100 cm{sup -3} - and the presence of small scale structures (commonly assumed to be caused by turbulence) need to be satisfied. Our photoelectron measurements reveal a very strong horizontal structuring of the investigated ice layer, i.e., a very broad layer (82-88 km) seen on the upleg is replaced by a narrow layer from 84.5-86 km only 50 km apart on the downleg of the rocket flight. Importantly, the qualitative structure of these photoelectron profiles is in remarkable qualitative agreement with photometer measurements on the same rocket thus demonstrating the reliability of this new technique. We then show that the photoelectron currents are a unique function of the ice particle volume density (and hence ice mass) within an uncertainty of only 15% and we derive corresponding altitude profiles of ice volume densities. Derived values are in the range {proportional_to}2-8 x 10{sup -14} cm{sup 3}/cm{sup 3} (corresponding to mass densities of {proportional_to}20-80 ng/m{sup 3}, and water vapor mixing ratios of 3-12 ppm) and are the first such estimates with the unique spatial resolution of an in situ measurement. (orig.)

  17. First in situ measurement of the vertical distribution of ice volume in a mesospheric ice cloud during the ECOMA/MASS rocket-campaign

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2009-02-01

    Full Text Available We present in situ observations of mesospheric ice particles with a new particle detector which combines a classical Faraday cup with the active photoionization of particles and subsequent detection of photoelectrons. Our observations of charged particles and free electrons within a decaying PMSE-layer reveal that the presence of charged particles is a necessary but not sufficient condition for the presence of PMSE. That is, additional requirements like a sufficiently large electron density – which we here estimate to be on the order of ~100 cm−3 – and the presence of small scale structures (commonly assumed to be caused by turbulence need to be satisfied. Our photoelectron measurements reveal a very strong horizontal structuring of the investigated ice layer, i.e., a very broad layer (82–88 km seen on the upleg is replaced by a narrow layer from 84.5–86 km only 50 km apart on the downleg of the rocket flight. Importantly, the qualitative structure of these photoelectron profiles is in remarkable qualitative agreement with photometer measurements on the same rocket thus demonstrating the reliability of this new technique. We then show that the photoelectron currents are a unique function of the ice particle volume density (and hence ice mass within an uncertainty of only 15% and we derive corresponding altitude profiles of ice volume densities. Derived values are in the range ~2–8×10−14 cm3/cm3 (corresponding to mass densities of ~20–80 ng/m3, and water vapor mixing ratios of 3–12 ppm and are the first such estimates with the unique spatial resolution of an in situ measurement.

  18. First in situ measurement of the vertical distribution of ice volume in a mesospheric ice cloud during the ECOMA/MASS rocket-campaign

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2009-02-01

    Full Text Available We present in situ observations of mesospheric ice particles with a new particle detector which combines a classical Faraday cup with the active photoionization of particles and subsequent detection of photoelectrons. Our observations of charged particles and free electrons within a decaying PMSE-layer reveal that the presence of charged particles is a necessary but not sufficient condition for the presence of PMSE. That is, additional requirements like a sufficiently large electron density – which we here estimate to be on the order of ~100 cm−3 – and the presence of small scale structures (commonly assumed to be caused by turbulence need to be satisfied. Our photoelectron measurements reveal a very strong horizontal structuring of the investigated ice layer, i.e., a very broad layer (82–88 km seen on the upleg is replaced by a narrow layer from 84.5–86 km only 50 km apart on the downleg of the rocket flight. Importantly, the qualitative structure of these photoelectron profiles is in remarkable qualitative agreement with photometer measurements on the same rocket thus demonstrating the reliability of this new technique. We then show that the photoelectron currents are a unique function of the ice particle volume density (and hence ice mass within an uncertainty of only 15% and we derive corresponding altitude profiles of ice volume densities. Derived values are in the range ~2–8×10−14 cm3/cm3 (corresponding to mass densities of ~20–80 ng/m3, and water vapor mixing ratios of 3–12 ppm and are the first such estimates with the unique spatial resolution of an in situ measurement.

  19. Measurement of vertical oil-in-water two-phase flow using dual-modality ERT–EMF system

    OpenAIRE

    Faraj, Yousef; Wang, Mi; Jia, Jiabin; Wang, Qiang; Xie, Cheng-gang; Oddie, Gary; Primrose, Ken; Qiu, Changhua

    2015-01-01

    Oil-in-water two-phase flows are often encountered in the upstream petroleum industry. The measurement of phase flow rates is of particular importance for managing oil production and water disposal and/or water reinjection. The complexity of oil-in-water flow structures creates a challenge to flow measurement. This paper proposes a new method of two-phase flow metering, which is based on the use of dual-modality system and multidimensional data fusion. The Electrical Resistance Tomography sys...

  20. Water mass characteristics and associated fauna of a recently discovered Lophelia pertusa (Scleractinia: Anthozoa) reef in Greenlandic waters

    DEFF Research Database (Denmark)

    Kenchington, Ellen; Yashayaev, Igor; Tendal, Ole Secher

    2017-01-01

    , and in an area with exceptionally and persistently high currents of >15 cm s−1 at 1000 m. The intermediate-depth salinity maximum was found in the depth range where the corals were found. We discovered signals of consistent vertical and horizontal transports at 700–900 m over the reef area. Although this area......The first living sample of Lophelia pertusa from Greenlandic waters was inadvertently collected at 60.3675°, −48.45528°, entangled together with other corals to a seawater sampler and property sensor (CTD) package. We collected in situ photographs taken at two sites in the same area in order...... to determine whether a reef was present. We identified reef-like structures formed by living and dead L. pertusa at 886–932 m depth on a steep slope. We assembled and analyzed hydrographic data to characterize the reef environment in order to facilitate future localization of other reefs and predictions...

  1. Temperature Coefficient for Modeling Denitrification in Surface Water Sediments Using the Mass Transfer Coefficient

    Science.gov (United States)

    T. W. Appelboom; G. M. Chescheir; R. W. Skaggs; J. W. Gilliam; Devendra M. Amatya

    2006-01-01

    Watershed modeling has become an important tool for researchers with the high costs of water quality monitoring. When modeling nitrate transport within drainage networks, denitrification within the sediments needs to be accounted for. Birgand et. al. developed an equation using a term called a mass transfer coefficient to mathematically describe sediment...

  2. Formation and spreading of Arabian Sea high-salinity water mass

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Prasad, T.G.

    The formation and seasonal spreading of the Arabian Sea High-Salinity Water (ASHSW) mass were studied based on the monthly mean climatology of temperature and salinity in the Arabian Sea, north of the equator and west of 80 degrees E, on a 2 degrees...

  3. Northeast Atlantic Late Quaternary planktic Foraminifera as primary productivity and water mass indicators

    NARCIS (Netherlands)

    Kreveld, van S.A.

    1996-01-01

    Primary productivity and water mass reconstructions based on planktic Foraminifera reveal distinct interglacial/glacial variations for the past 208 ka in a mid-latitude Northeast Atlantic piston core. Average total planktic foraminiferal absolute frequencies and accumulation rates, which are

  4. Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting

    Czech Academy of Sciences Publication Activity Database

    Hreha, P.; Radvanská, A.; Hloch, Sergej; Peržel, V.; Krolczyk, G.; Monková, K.

    2014-01-01

    Roč. 77, 1-4 (2014), s. 763-774 ISSN 0268-3768 Institutional support: RVO:68145535 Keywords : Abrasive water jet * Abrasive mass flow rate * Vibration Subject RIV: JQ - Machines ; Tools Impact factor: 1.458, year: 2014 http://link.springer.com/article/10.1007%2Fs00170-014-6497-9#page-1

  5. Determination of decamethylcyclopentasiloxane in river water and final effluent by headspace gas chromatography/mass spectrometry.

    Science.gov (United States)

    Sparham, Chris; Van Egmond, Roger; O'Connor, Sean; Hastie, Colin; Whelan, Mick; Kanda, Rakesh; Franklin, Oliver

    2008-11-28

    A method is described for the analysis of decamethylcyclopentasiloxane (D(5)) in river water and treated waste water using headspace gas chromatography/mass spectrometry. Internal standard addition to samples and field blanks was carried out in the field to provide both a measure of recovery and to prevent any exposure of samples to laboratory air, which contained background levels of D(5). Measured levels of D(5) were typically in the range River Great Ouse (UK) with slightly higher levels in the River Nene (UK). The measured concentration of D(5) in treated waste water varied between 31 and 400ngL(-1), depending on the type of treatment process employed.

  6. Water in embedded low-mass protostars: cold envelopes and warm outflows

    Science.gov (United States)

    Kristensen, Lars E.; van Dishoeck, Ewine; Mottram, Joseph; Schmalzl, Markus; Visser, Ruud

    2015-08-01

    As stars form, gas from the parental cloud is transported through the molecular envelope to the protostellar disk from which planets eventually form. Water plays a crucial role in such systems: it forms the backbone of the oxygen chemistry, it is a unique probe of warm and hot gas, and it provides a unique link between the grain surface and gas-phase chemistries. The distribution of water, both as ice and gas, is a fundamental question to our understanding of how planetary systems, such as the Solar System, form.The Herschel Space Observatory observed many tens of embedded low-mass protostars in a suite of gas-phase water transitions in several programs (e.g. Water in Star-forming regions with Herschel, WISH, and the William Herschel Line Legacy Survey, WILL), and related species (e.g. CO in Protostars with HIFI, COPS-HIFI). I will summarize what Herschel has revealed about the water distribution in the cold outer molecular envelope of low-mass protostars, and the warm gas in outflows, the two components predominantly traced by Herschel observations. I will present our current understanding of where the water vapor is in protostellar systems and the underlying physical and chemical processes leading to this distribution. Through these dedicated observational surveys and complementary modeling efforts, we are now at a stage where we can quantify where the water is during the early stages of star formation.

  7. Determination of bromate in drinking water by ultraperformance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Alsohaimi, Ibrahim Hotan; Alothman, Zeid Abdullah; Khan, Mohammad Rizwan; Abdalla, Mohammad Abulhassan; Busquets, Rosa; Alomary, Ahmad Khodran

    2012-10-01

    Bromate is a byproduct formed as a result of disinfection of bromide-containing source water with ozone or hypochlorite. The International Agency for Research on Cancer has recognized bromate as a possible human carcinogen, thus it is essential to determine in drinking water. Present work highlights a development of sensitive and fast analytical method for bromate determination in drinking water by using ultraperformance liquid chromatography-tandem mass spectrometry. The quality parameters of the developed method were established, obtaining very low limit of detection (0.01 ng/mL), repeatability and reproducibility have been found to be less than 3% in terms of relative standard deviation when analyzing a bromate standard at 0.05 μg/mL with 0.4 min analysis time. Developed method was applied for the analysis of metropolitan and bottled water from Saudi Arabia; 22 samples have been analyzed. Bromate was detected in the metropolitan water samples (from desalinization source) at concentrations ranging between 3.43 and 75.04 ng/mL and in the bottled water samples at concentrations ranging between 2.07 and 21.90 ng/mL. Moreover, in comparison to established analytical methods such as liquid chromatography-tandem mass spectrometry, the proposed method was found to be very sensitive, selective and rapid for the routine analysis of bromate at low level in drinking water. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Optical teledetection of the vertical attenuation coefficient for downward quantum irradiance of photosynthetically available radiation in turbid inland waters

    NARCIS (Netherlands)

    Gons, H.J.; Ebert, J.; Kromkamp, J.C.

    1998-01-01

    Depth profiles of downward quantum irradiance of photosynthetically available radiation in situ and spectral subsurface irradiance reflectance, obtained from water-leaving radiance, were determined in different inland water types. These included the large, shallow and eutrophic IJssel lagoon in the

  9. Sensitive determination of bromate in ozonated and chlorinated water, and sea water by gas chromatography-mass spectrometry after derivatization.

    Science.gov (United States)

    Shin, Ho-Sang

    2012-02-03

    A sensitive gas chromatographic method has been established for the determination of bromate in ozonated and chlorinated water, and in sea water. With acidic conditions, bromate reacts with chloride to form bromine, which reacts with 2,6-dialkylphenol to form 4-bromo-2,6-dialkylphenol. The organic derivative was extracted with ethyl acetate after quenching remaining oxidants with ascorbic acid, and then measured by gas chromatography-mass spectrometry (GC-MS). The lowest detection limit and limit of quantification of bromate in drinking water were 0.02 and 0.07 μg/L, respectively, and the calibration curve showed good linearity with r²=0.998. The 32 common ions did not interfere even when present in 100-fold excess over the bromated ion. The accuracy was in a range of 102-106% and the precision of the assay was less than 6% in chlorinated and ozonated tap water, ozonated mineral water, and sea water. The method was sensitive, reproducible and simple enough to permit reliable analysis of bromate to the ng/L level in water. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. How to Detect Inclined Water Maser Disks (and Possibly Measure Black Hole Masses)

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Jeremy, E-mail: jdarling@colorado.edu [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences, University of Colorado, 389 UCB, Boulder, CO 80309-0389 (United States)

    2017-03-10

    We describe a method for identifying inclined water maser disks orbiting massive black holes and for potentially using them to measure black hole masses. Owing to the geometry of maser amplification pathways, the minority of water maser disks are observable: only those viewed nearly edge-on have been identified, suggesting that an order of magnitude additional maser disks exist. We suggest that inward-propagating masers are gravitationally deflected by the central black hole, thereby scattering water maser emission out of the disk plane and enabling detection. The signature of an inclined water maser disk would be narrow masers near the systemic velocity that appear to emit from the black hole position, as identified by the radio continuum core. To explore this possibility, we present high-resolution (0.″07–0.″17) Very Large Array line and continuum observations of 13 galaxies with narrow water maser emission and show that three are good inclined-disk candidates (five remain ambiguous). For the best case, CGCG 120−039, we show that the maser and continuum emission are coincident to within 3.5 ± 1.4 pc (6.7 ± 2.7 mas). Subsequent very long baseline interferometric maps can confirm candidate inclined disks and have the potential to show maser rings or arcs that provide a direct measurement of black hole mass, although the mass precision will rely on knowledge of the size of the maser disk.

  11. Total Land Water Storage Change over 2003 - 2013 Estimated from a Global Mass Budget Approach

    Science.gov (United States)

    Dieng, H. B.; Champollion, N.; Cazenave, A.; Wada, Y.; Schrama, E.; Meyssignac, B.

    2015-01-01

    We estimate the total land water storage (LWS) change between 2003 and 2013 using a global water mass budget approach. Hereby we compare the ocean mass change (estimated from GRACE space gravimetry on the one hand, and from the satellite altimetry-based global mean sea level corrected for steric effects on the other hand) to the sum of the main water mass components of the climate system: glaciers, Greenland and Antarctica ice sheets, atmospheric water and LWS (the latter being the unknown quantity to be estimated). For glaciers and ice sheets, we use published estimates of ice mass trends based on various types of observations covering different time spans between 2003 and 2013. From the mass budget equation, we derive a net LWS trend over the study period. The mean trend amounts to +0.30 +/- 0.18 mm/yr in sea level equivalent. This corresponds to a net decrease of -108 +/- 64 cu km/yr in LWS over the 2003-2013 decade. We also estimate the rate of change in LWS and find no significant acceleration over the study period. The computed mean global LWS trend over the study period is shown to be explained mainly by direct anthropogenic effects on land hydrology, i.e. the net effect of groundwater depletion and impoundment of water in man-made reservoirs, and to a lesser extent the effect of naturally-forced land hydrology variability. Our results compare well with independent estimates of human-induced changes in global land hydrology.

  12. Vertical water and DOC/DIC flux estimates in a hummocky soil landscape - from pedon to field scale

    Science.gov (United States)

    Rieckh, Helene; Gerke, Horst H.

    2017-04-01

    Arable hummocky soil landscapes of formerly glaciated terrains are characterized by 3D spatial patterns of soil types resulting from tillage and water erosion. Erosion and deposition processes have implication for the water and carbon (C) balance of the hummocky soil landscape. The objective of this study was to estimate the leaching of dissolved C as a crucial component to the terrestrial net ecosystem C balance for (i) pedon scale at different terrain positions and (ii) field scale. At pedon scale, the interactions between erosion affected soil properties, the water balances, and the crop growth and feedback effects of erosion on the leaching rates were studied. The 1D water movements were described using the Richards equation as implemented using the numerical solution in the HYDRUS program. Measured DOC/DIC concentrations were combined with calculated water fluxes to obtain the solute fluxes for certain depth and positions. For the field scale estimation dissolved carbon fluxes a weight average per soil type was chosen, whereas soil types were determined by characteristic multi-parameter delineating landform units and by soil soundings. For a typical section of the hummocky soil landscape, i.e. the CarboZALF-D plot, the average seepage water flux for the three years period 2010-2012 was 96 mm yr-1, the average leaching of DOC 0.6 g m-2 yr-1 and of DIC 7.0 g m-2 yr-1 below the root zone at approximately 200 cm depth. The water and dissolved carbon fluxes varied in direction and magnitude depending on terrain position and erosion history. The depth of the water table was identified as a major influential factor. The temporal variations of dissolved carbon fluxes seem to be dominantly controlled by water fluxes rather than by temporal varying dissolved carbon concentrations. The consideration of soil-crop interactions lead to more spatial differences of water and dissolved carbon fluxes as well as to faster soil development.

  13. Diffusive-dispersive mass transfer in the capillary fringe: Impact of water table fluctuations and heterogeneities

    DEFF Research Database (Denmark)

    Grathwohl, Peter; Haberer, Cristina; Ye, Yu

    and the dispersion coefficients are the same as below the water table. Water table fluctuations cause temporarily increased fluxes of oxygen into groundwater during draining conditions and entrapped air after water table rise. High-permeability inclusions in the capillary fringe enhance mass transfer of oxygen......Diffusive–dispersive mass transfer in the capillary fringe is important for many groundwater quality issues such as transfer of volatile compounds into (and out of) the groundwater, the supply of oxygen for aerobic degradation of hydrocarbons as well as for precipitation of minerals (e.g. iron...... to the underlying anoxic groundwater by increased dispersion due to flow focusing and by significant air trapping in the coarse material inclusions....

  14. Observation of water molecules bound to a protein using cold-spray ionization mass spectrometry.

    Science.gov (United States)

    Sei, Yoshihisa; Shimotakahara, Sakurako; Ishii, Juri; Shindo, Heisaburo; Seki, Hiroko; Yamaguchi, Kentaro; Tashiro, Mitsuru

    2005-04-01

    The characterization of water molecules bound to ribonuclease T1 (RNase T1) was carried out using cold-spray ionization mass spectrometry (CSI-MS). CSI-MS is a variant of electrospray ionization mass spectrometry (ESI-MS) operating at low temperature, and is particularly suitable for investigating the weaker molecular associations, since the temperature at the spray interface is much lower than that in the conventional ESI-MS. In this approach, ion peaks due to the addition of nine water molecules were identified at a spray temperature of 48 degrees C. This result showed good agreement with that inferred by the combinational analysis of NMR and X-ray crystallography, indicating that CSI-MS is capable of rapidly providing reliable information to characterize the number of water molecules bound to a macromolecule.

  15. Relating Ctenophore Population to Water Mass Indices in the Northeast U.S. Continental Shelf Ecosystem

    Directory of Open Access Journals (Sweden)

    Rebecca Sparks

    2015-01-01

    Full Text Available Ctenophores exist throughout the Northeast U.S. Continental Shelf Ecosystem, but the underlying mechanisms that control ctenophore populations at this scale are not clear. Ctenophore population data over the last 30 years coincides with changes in several water masses on the shelf, but discovering which water mass was most influential was problematic without mechanistic clarity. This paper strives to identify the relationship between oceanography and ctenophore populations over the last 30 years. Using a numerical modeling approach, we found a strong relationship between the North Atlantic Oscillation index, percent Labrador Subarctic Slope Water, and ctenophore population. We suggest these results might inform future efforts to develop a predictive capability for major changes in ctenophore population.

  16. Upper Arctic Ocean water masses harbor distinct communities of heterotrophic flagellates

    Directory of Open Access Journals (Sweden)

    A. Monier

    2013-06-01

    Full Text Available The ubiquity of heterotrophic flagellates (HFL in marine waters has been recognized for several decades, but the phylogenetic diversity of these small (ca. 0.8–20 μm cell diameter, mostly phagotrophic protists in the upper pelagic zone of the ocean is underappreciated. Community composition of microbes, including HFL, is the result of past and current environmental selection, and different taxa may be indicative of food webs that cycle carbon and energy very differently. While all oceanic water columns can be density stratified due to the temperature and salinity characteristics of different water masses, the Arctic Ocean is particularly well stratified, with nutrients often limiting in surface waters and most photosynthetic biomass confined to a subsurface chlorophyll maximum layer, where light and nutrients are both available. This physically well-characterized system provided an opportunity to explore the community diversity of HFL from different water masses within the water column. We used high-throughput DNA sequencing techniques as a rapid means of surveying the diversity of HFL communities in the southern Beaufort Sea (Canada, targeting the surface, the subsurface chlorophyll maximum layer (SCM and just below the SCM. In addition to identifying major clades and their distribution, we explored the micro-diversity within the globally significant but uncultivated clade of marine stramenopiles (MAST-1 to examine the possibility of niche differentiation within the stratified water column. Our results strongly suggested that HFL community composition was determined by water mass rather than geographical location across the Beaufort Sea. Future work should focus on the biogeochemical and ecological repercussions of different HFL communities in the face of climate-driven changes to the physical structure of the Arctic Ocean.

  17. WISHes coming true: water in low-mass star-forming regions with Herschel

    Science.gov (United States)

    Kristensen, L. E.; Visser, R.; van Dishoeck, E. F.; Yıldız, U. A.; Herczeg, G. J.; Doty, S.; Jørgensen, J. K.; van Kempen, T. A.; Brinch, C.; Wampfler, S.; Bruderer, S.; Benz, A. O.

    2011-11-01

    Water is a key molecule for tracing physical and chemical processes in star-forming regions. The key program "Water in star-forming regions with Herschel" is observing several water transitions towards low-mass protostars with HIFI. Results regarding the 557 GHz transition of water are reported here showing that the line is surprisingly broad, and consists of several different velocity components. The bulk of the emission comes from shocks, where the abundance is increased by several orders of magnitude to ~10-4. The abundance of water in the outer envelope is determined to ~10-8, whereas only an upper limit of 10-5 is derived for the inner, warm envelope.

  18. Study of the Internal Flow and Evaporation Characteristic Inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang-Seok; Lim, Hee-Chang [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-01-15

    Thermal Marangoni flow has been observed inside droplets on heated surfaces, finally resulting in a coffee stain effect. This study aims to visualize and control the thermal Marangoni flow by employing periodic vertical vibration. The variations in the contact angle and internal volume of the droplet as it evaporates is observed by using a combination of continuous light and a still camera. With regard to the internal velocity, the particle image velocimetry system is applied to visualize the internal thermal Marangoni flow. In order to estimate the internal temperature gradient and surface tension on the surface of a droplet, the theoretical model based on the conduction and convection theory of heat transfer is applied. Thus, the internal velocity increases with an increase in plate temperature. The flow directions of the Marangoni and gravitational flows are opposite, and hence, it may be possible to control the coffee stain effect.

  19. Phosphorus removal performance and biological dephosphorization process in treating reclaimed water by Integrated Vertical-flow Constructed Wetlands (IVCWs).

    Science.gov (United States)

    Du, Lu; Chen, Qianru; Liu, Panpan; Zhang, Xia; Wang, Huihui; Zhou, Qiaohong; Xu, Dong; Wu, Zhenbin

    2017-11-01

    Phosphorous removal in adsorption had been extensively researched; however, the biological dephosphorization process and optimum operating parameters have not been discussed or quantified in Integrated Vertical-flow Constructed Wetlands (IVCWs). In this study, IVCWs planted with different plants were employed to evaluate total phosphorus (TP) treatment performance under different hydraulic retention times (HRTs), in summer and autumn. The results showed that the systems planted with Canna generalis showed the highest TP removal efficiency (77%) under a three-day HRT in autumn. The activities of exopolyphosphatase (PPX) and polyphosphate kinase (PPK) were determined, and it was found that PPK activity was seasonably variable and had been more active in autumn than that in summer (premoval efficiency (pphosphorus aerobic biological adsorption in IVCWs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Glacial to Interglacial Changes in Southern Ocean Water Mass Geometry, the ACC, and the Southern Westerlies at Drake Passage

    Science.gov (United States)

    Ninnemann, U. S.

    2008-12-01

    Resolving ocean and atmospheric variability in the Drake Passage region is crucial for advancing our understanding of the role of the Southern Ocean in affecting ocean and climate change. Modeling studies suggest that altering the position or strength of the Southern Westerly Winds (SWW) and the Antarctic Circumpolar Current (ACC) relative to the Drake Passage could play a central role in driving observed glacial-interglacial changes in the atmospheric concentration of carbon dioxide and the global ocean circulation. The records of past ocean-atmosphere changes contained in sediment archives provide a natural testing ground for these hypotheses. Here we present high-resolution benthic and planktonic foraminiferal δ13C and δ18O records from new sediment cores recovered along both meridional (IMAGES PACHIDERME cruise onboard the R/V Marion Dufresne of IPEV) and zonal (IPY PALEODRAKE cruise) transects. Together with existing Southern Ocean cores, the new records provide constraints on the vertical and spatial gradients in surface and bottom water properties necessary to portray changes in the position of water masses and frontal systems relative to Drake Passage and Southern Chile. Our initial planktonic δ18O results over the last deglaciation show a greater magnitude change in the northern Drake Passage (2.0‰) and along the Chilean margin (2.5‰) than is generally observed in records which are either south or far to the North of the Subantarctic Front (SAF) today. These results are consistent in both sign and magnitude with a northward shift in the Subantarctic Front and an increase in the flux of polar and supbolar water northward along the coast of Chile during the glaciation. In addition, the large glacial decrease (>1.5‰) in benthic foraminiferal (C. wuellerstorfi) δ13C values in core MD07-3128 (52S, 1032m) suggests that the boundary between intermediate water (relatively high δ13C) and circumpolar deep water (low δ13C) was shifted northward (or

  1. Reply to comment by Mauder on "How well can we measure the vertical wind speed? Implications for fluxes of energy and mass"

    Science.gov (United States)

    John Kochendorfer; Tilden P. Meyers; John M. Frank; William J. Massman; Mark W. Heuer

    2013-01-01

    In Kochendorfer et al. (Boundary-Layer Meteorol 145:383-398, 2012, hereafter K2012) the vertical wind speed (w) measured by a non-orthogonal three-dimensional sonic anemometer was shown to be underestimated by 12%. Turbulent statistics and eddycovariance fluxes estimated using w were also affected by this underestimate in w. Methodologies used in K2012 are clarified...

  2. Transient turbid water mass reduces temperature-induced coral bleaching and mortality in Barbados.

    Science.gov (United States)

    Oxenford, Hazel A; Vallès, Henri

    2016-01-01

    Global warming is seen as one of the greatest threats to the world's coral reefs and, with the continued rise in sea surface temperature predicted into the future, there is a great need for further understanding of how to prevent and address the damaging impacts. This is particularly so for countries whose economies depend heavily on healthy reefs, such as those of the eastern Caribbean. Here, we compare the severity of bleaching and mortality for five dominant coral species at six representative reef sites in Barbados during the two most significant warm-water events ever recorded in the eastern Caribbean, i.e., 2005 and 2010, and describe prevailing island-scale sea water conditions during both events. In so doing, we demonstrate that coral bleaching and subsequent mortality were considerably lower in 2010 than in 2005 for all species, irrespective of site, even though the anomalously warm water temperature profiles were very similar between years. We also show that during the 2010 event, Barbados was engulfed by a transient dark green turbid water mass of riverine origin coming from South America. We suggest that reduced exposure to high solar radiation associated with this transient water mass was the primary contributing factor to the lower bleaching and mortality observed in all corals. We conclude that monitoring these episodic mesoscale oceanographic features might improve risk assessments of southeastern Caribbean reefs to warm-water events in the future.

  3. Direct Analysis and Quantification of Metaldehyde in Water using Reactive Paper Spray Mass Spectrometry

    Science.gov (United States)

    Maher, Simon; Jjunju, Fred P. M.; Damon, Deidre E.; Gorton, Hannah; Maher, Yosef S.; Syed, Safaraz U.; Heeren, Ron M. A.; Young, Iain S.; Taylor, Stephen; Badu-Tawiah, Abraham K.

    2016-10-01

    Metaldehyde is extensively used worldwide as a contact and systemic molluscicide for controlling slugs and snails in a wide range of agricultural and horticultural crops. Contamination of surface waters due to run-off, coupled with its moderate solubility in water, has led to increased concentration of the pesticide in the environment. In this study, for the first time, rapid analysis (residues in water is demonstrated using paper spray mass spectrometry (PS-MS). The observed precursor molecular ions of metaldehyde were confirmed from tandem mass spectrometry (MS/MS) experiments by studying the fragmentation patterns produced via collision-induced dissociation. The signal intensity ratios of the most abundant MS/MS transitions for metaldehyde (177 → 149 for protonated ion) and atrazine (221 → 179) were found to be linear in the range 0.01 to 5 ng/mL. Metaldehyde residues were detectable in environmental water samples at low concentration (LOD 0.99, without any pre-concentration/separation steps. This result is of particular importance for environmental monitoring and water quality analysis providing a potential means of rapid screening to ensure safe drinking water.

  4. Observing water in low-mass proto-stellar outflows: the case of L1448

    Science.gov (United States)

    Santangelo, G.; Nisini, B.; Antoniucci, S.; Giannini, T.; Benedettini, M.; Codella, C.; Liseau, R.; Lorenzani, A.; Tafalla, M.; Vasta, M.; van Dishoeck, E. F.; Kristensen, L.

    2011-05-01

    We will present Herschel observations of water emission towards the outflow driven by the L1448 low-mass proto-stellar system, located in the Perseus cloud (d=300 pc). This outflow has been mapped with the PACS and HIFI instruments, in the 557 GHz and 1670 GHz water lines, as part of the WISH (Water In Star-forming regions with Herschel) key project. Two bright shock spots along the outflow have been also observed in an additional set of ortho and para water lines having different excitation conditions. We present here the obtained maps, in comparison with the maps of other shock tracers, such as CO and SiO, discussing how water appears unique in tracing gas components at intermediate radial velocities (10-40 km/s). We will also discuss the analysis performed on the HIFI observations in the two shock spots, showing strong variations in the excitation as a function of velocity and strong chemical differences among the two investigated positions. These observations thus proved how water is a unique and crucial molecule for our understanding of the physical and chemical conditions in outflows driven by low-mass proto-stars.

  5. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  6. Dispersal of post-larval macrobenthos in subtidal sedimentary habitats: Roles of vertical diel migration, water column, bedload transport and biological traits' expression

    Science.gov (United States)

    Pacheco, Aldo S.; Uribe, Roberto A.; Thiel, Martin; Oliva, Marcelo E.; Riascos, Jose M.

    2013-03-01

    Post-larval dispersal along the sediment-water interface is an important process in the dynamics of macrobenthic populations and communities in marine sublittoral sediments. However, the modes of post-larval dispersal in low energy sublittoral habitats have been poorly documented. Herein we examined the specific dispersal mechanisms (diel vertical migration, water column, and bedload transport) and corresponding biological traits of the dispersing assemblage. At two sublittoral sites (sheltered and exposed) along the northern coast of Chile, we installed different trap types that capture benthic organisms with specific modes of dispersal (active emergence and passive water column drifting) and also by a combination of mechanisms (bedload transport, passive suspension and settlement from the water column). Our results show that even though there were common species in all types of traps, the post-larval macrobenthic assemblage depended on specific mechanisms of dispersal. At the sheltered site, abundant emerging taxa colonized sediments that were placed 0.5 m above the bottom and bedload-transported invertebrates appeared to be associated to the passive drifting of macroalgae. At the exposed site, assemblage dispersal was driven by specific mechanisms e.g. bedload transport and active emergence. At both sites the biological traits "small size, swimming, hard exoskeleton, free living and surface position" were associated to water column and bedload dispersal. This study highlights the importance of (i) the water-sediment interface for dispersal of post-larvae in sublittoral soft-bottom habitat, and (ii) a specific set of biological traits when dispersing either along the bottom or through the water column.

  7. Isotopic mass-dependence of metal cation diffusion coefficients in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Richter, F.M.; Christensen, J.N.; Sposito, G.

    2009-01-11

    Isotope distributions in natural systems can be highly sensitive to the mass (m) dependence of solute diffusion coefficients (D) in liquid water. Isotope geochemistry studies routinely have assumed that this mass dependence either is negligible (as predicted by hydrodynamic theories) or follows a kinetic-theory-like inverse square root relationship (D {proportional_to} m{sup -0.5}). However, our recent experimental results and molecular dynamics (MD) simulations showed that the mass dependence of D is intermediate between hydrodynamic and kinetic theory predictions (D {proportional_to} m{sup -{beta}} with 0 {<=} {beta} < 0.2 for Li{sup +}, Cl{sup -}, Mg{sup 2+}, and the noble gases). In this paper, we present new MD simulations and experimental results for Na{sup +}, K{sup +}, Cs{sup +}, and Ca{sup 2+} that confirm the generality of the inverse power-law relation D {proportional_to} m{sup -{beta}}. Our new findings allow us to develop a general description of the influence of solute valence and radius on the mass dependence of D for monatomic solutes in liquid water. This mass dependence decreases with solute radius and with the magnitude of solute valence. Molecular-scale analysis of our MD simulation results reveals that these trends derive from the exponent {beta} being smallest for those solutes whose motions are most strongly coupled to solvent hydrodynamic modes.

  8. Influence of relative air/water flow velocity on oxygen mass transfer in gravity sewers.

    Science.gov (United States)

    Carrera, Lucie; Springer, Fanny; Lipeme-Kouyi, Gislain; Buffiere, Pierre

    2017-04-01

    Problems related to hydrogen sulfide may be serious for both network stakeholders and the public in terms of health, sustainability of the sewer structure and urban comfort. H2S emission models are generally theoretical and simplified in terms of environmental conditions. Although air transport characteristics in sewers must play a role in the fate of hydrogen sulfide, only a limited number of studies have investigated this issue. The aim of this study was to better understand H2S liquid to gas transfer by highlighting the link between the mass transfer coefficient and the turbulence in the air flow and the water flow. For experimental safety reasons, O2 was taken as a model compound. The oxygen mass transfer coefficients were obtained using a mass balance in plug flow. The mass transfer coefficient was not impacted by the range of the interface air-flow velocity values tested (0.55-2.28 m·s-1) or the water velocity values (0.06-0.55 m·s-1). Using the ratio between kL,O2 to kL,H2S, the H2S mass transfer behavior in a gravity pipe in the same hydraulic conditions can be predicted.

  9. Water mass stability reconstructions from greenhouse (Eocene) to icehouse (Oligocene) for the northern Gulf Coast continental shelf (USA)

    Science.gov (United States)

    Kobashi, Takuro; Grossman, Ethan L.; Dockery, David T.; Ivany, Linda C.

    2004-03-01

    Shallow water mass characteristics such as temperature and density profile play a critical role in the climate system. We have developed a new method by which to reconstruct the ancient shallow water mass stability on the continental shelf using oxygen isotope variation within mollusc shells and fish otoliths and applied the method to an important interval in Earth history, the most recent transition from Greenhouse (Eocene) to Icehouse (Oligocene) climate modes. We define the slope of summer temperature (density) versus the seasonal range in temperature (density) as an indicator of water mass stability. In addition, extrapolation of the regression to zero seasonality is a proxy for temperature at the bottom of the seasonal thermocline (TBST). During the greenhouse world (the early Eocene and middle Eocene) the water mass plot shows an unstable water mass, agreeing with previous planktonic foraminiferal studies showing that temperature gradients at this time were much smaller than at present. During the middle to late Eocene transition, a substantial increase in water mass stability occurred. Significant cooling (˜5°C) of the TBST at this transition indicates that the greater cooling of deeper water relative to surface water caused the increase in water mass stability. The changes in water column structure at this transition were the most likely cause of a major extinction of planktonic foraminifera from warm to cold water taxa. The late Eocene T-ΔT profile is very similar to modern profiles, suggesting that shallow water mass structure became similar to that of the modern Gulf Coastal shelf by the late Eocene. At the Eocene/Oligocene (E/O) boundary, no major change in water mass structure is identified. This agrees with the observation that no major extinction of planktonic foraminifera is found at the E/O boundary.

  10. Inorganic carbon and water masses in the Irminger Sea since 1991

    Science.gov (United States)

    Fröb, Friederike; Olsen, Are; Pérez, Fiz F.; García-Ibáñez, Maribel I.; Jeansson, Emil; Omar, Abdirahman; Lauvset, Siv K.

    2018-01-01

    The subpolar region in the North Atlantic is a major sink for anthropogenic carbon. While the storage rates show large interannual variability related to atmospheric forcing, less is known about variability in the natural dissolved inorganic carbon (DIC) and the combined impact of variations in the two components on the total DIC inventories. Here, data from 15 cruises in the Irminger Sea covering the 24-year period between 1991 and 2015 were used to determine changes in total DIC and its natural and anthropogenic components. Based on the results of an extended optimum multiparameter analysis (eOMP), the inventory changes are discussed in relation to the distribution and evolution of the main water masses. The inventory of DIC increased by 1.43 ± 0.17 mol m-2 yr-1 over the period, mainly driven by the increase in anthropogenic carbon (1.84 ± 0.16 mol m-2 yr-1) but partially offset by a loss of natural DIC (-0.57 ± 0.22 mol m-2 yr-1). Changes in the carbon storage rate can be driven by concentration changes in the water column, for example due to the ageing of water masses, or by changes in the distribution of water masses with different concentrations either by local formation or advection. A decomposition of the trends into their main drivers showed that variations in natural DIC inventories are mainly driven by changes in the layer thickness of the main water masses, while anthropogenic carbon is most affected by concentration changes. The storage rates of anthropogenic carbon are sensitive to data selection, while changes in DIC inventory show a robust signal on short timescales associated with the strength of convection.

  11. Linking low- to high-mass young stellar objects with Herschel-HIFI observations of water

    Science.gov (United States)

    San José-García, I.; Mottram, J. C.; van Dishoeck, E. F.; Kristensen, L. E.; van der Tak, F. F. S.; Braine, J.; Herpin, F.; Johnstone, D.; van Kempen, T. A.; Wyrowski, F.

    2016-01-01

    Context. Water probes the dynamics in young stellar objects (YSOs) effectively, especially shocks in molecular outflows. It is therefore a key molecule for exploring whether the physical properties of low-mass protostars can be extrapolated to massive YSOs, an important step in understanding the fundamental mechanisms regulating star formation. Aims: As part of the WISH key programme, we investigate excited water line properties as a function of source luminosity, in particular the dynamics and the excitation conditions of shocks along the outflow cavity wall. Methods: Velocity-resolved Herschel-HIFI spectra of the H2O 202-111 (988 GHz), 211-202 (752 GHz) and 312-303 (1097 GHz) lines were analysed, together with 12CO J = 10-9 and 16-15, for 52 YSOs with bolometric luminosities ranging from 105 L⊙. The H2O and 12CO line profiles were decomposed into multiple Gaussian components which are related to the different physical structures of the protostellar system. The non-LTE radiative transfer code radex was used to constrain the excitation conditions of the shocks along the outflow cavity. Results: The profiles of the three excited water lines are similar, indicating that they probe the same gas. Two main emission components are seen in all YSOs: a broad component associated with non-dissociative shocks in the outflow cavity wall ("cavity shocks") and a narrow component associated with the quiescent envelope material. More than 60% of the total integrated intensity in the excited water lines comes from the broad cavity shock component, while the remaining emission comes mostly from the envelope for low-mass Class I, intermediate- and high-mass objects, and dissociative "spot shocks" for low-mass Class 0 protostars. The widths of the water lines are surprisingly similar from low- to high-mass YSOs, whereas 12CO J = 10-9 line widths increase slightly with Lbol. The excitation analysis of the cavity shock component shows stronger 752 GHz emission for high-mass YSOs

  12. Discrete-Time Dynamical Maximum Power Tracking Control for a Vertical Axis Water Turbine with Retractable Blades

    Directory of Open Access Journals (Sweden)

    Zhaoyong Mao

    2016-01-01

    Full Text Available This paper addresses the power generation control system of a new drag-type Vertical Axis Turbine with several retractable blades. The returning blades can be entirely hidden in the drum, and negative torques can then be considerably reduced as the drum shields the blades. Thus, the power efficiency increases. Regarding the control, a Linear Quadratic Tracking (LQT optimal control algorithm for Maximum Power Point Tracking (MPPT is proposed to ensure that the wave energy conversion system can operate highly effectively under fluctuating conditions and that the tracking process accelerates over time. Two-dimensional Computational Fluid Dynamics (CFD simulations are performed to obtain the maximum power points of the turbine’s output. To plot the tip speed ratio curve, the least squares method is employed. The efficacy of the steady and dynamic performance of the control strategy was verified using Matlab/Simulink software. These validation results show that the proposed system can compensate for power fluctuations and is effective in terms of power regulation.

  13. Vertical ground reaction force responses to different head-out aquatic exercises performed in water and on dry land.

    Science.gov (United States)

    Alberton, Cristine Lima; Finatto, Paula; Pinto, Stephanie Santana; Antunes, Amanda Haberland; Cadore, Eduardo Lusa; Tartaruga, Marcus Peikriszwili; Kruel, Luiz Fernando Martins

    2015-01-01

    The purpose was to analyse the vertical ground reaction forces (Fz) of head-out aquatic exercises [stationary running (SR), frontal kick (FK), cross-country skiing (CCS), jumping jacks (JJ), adductor hop (ADH) and abductor hop (ABH)] at two cadences in both aquatic and dry land environments. Twelve young women completed two sessions in each environment, each consisting of three exercises performed at two cadences (first and second ventilatory thresholds - C1 and C2, respectively). Two-way and three-way repeated measures analysis of variance were used to the statistical analysis. The results showed that the peak Fz and impulse were significantly lower in the aquatic environment, resulting in values from 28.2% to 58.5% and 60.4% to 72.8% from those obtained on dry land, respectively. In the aquatic environment, the peak Fz was lower and the impulse was higher at the C1 than at the C2. Furthermore, it was observed that SR and FK (0.9-1.1 BW) elicited a significantly higher peak Fz values compared to the ADH and JJ exercises (0.5-0.8 BW). It can be concluded that the aquatic environment reduces the Fz during head-out aquatic exercises. It should be noted that its magnitude is also dependent on the intensity and the identity of the exercise performed.

  14. Distribution and ventilation of water masses in the western Ross Sea inferred from CFC measurements

    Science.gov (United States)

    Rivaro, Paola; Ianni, Carmela; Magi, Emanuele; Massolo, Serena; Budillon, Giorgio; Smethie, William M.

    2015-03-01

    During the CLIMA Project (R.V. Italica cruise PNRA XVI, January-February 2001), hydrographic and chlorofluorocarbons (CFCs) observations were obtained, particularly in the western Ross Sea. Their distribution demonstrated water mass structure and ventilation processes in the investigated areas. In the surface waters (AASW) the CFC saturation levels varied spatially: CFCs were undersaturated in all the areas (range from 80 to 90%), with the exception of few stations sampled near Ross Island. In particular, the Terra Nova Bay polynya, where high salinity shelf water (HSSW) is produced, was a low-saturated surface area (74%) with respect to CFCs. Throughout most of the shelf area, the presence of modified circumpolar deep water (MCDW) was reflected in a mid-depth CFC concentration minima. Beneath the MCDW, CFC concentrations generally increased in the shelf waters towards the seafloor. We estimated that the corresponding CFCs saturation level in the source water region for HSSW was about 68-70%. Waters with high CFC concentrations were detected in the western Ross Sea on the down slope side of the Drygalski Trough, indicating that AABW was being supplied to the deep Antarctic Basin. Estimates of ventilation ages depend strongly on the saturation levels. We calculated ventilation ages using the saturation level calibrated tracer ratio, CFC11/CFC12. We deduced a mean residence time of the shelf waters of about 6-7 years between the western Ross Sea source and the shelf break.

  15. Analysis of bromate in drinking water using liquid chromatography-tandem mass spectrometry without sample pretreatment.

    Science.gov (United States)

    Kosaka, Koji; Asami, Mari; Takei, Kanako; Akiba, Michihiro

    2011-01-01

    An analytical method for determining bromate in drinking water was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The (18)O-enriched bromate was used as an internal standard. The limit of quantification (LOQ) of bromate was 0.2 µg/L. The peak of bromate was separated from those of coexisting ions (i.e., chloride, nitrate and sulfate). The relative and absolute recoveries of bromate in two drinking water samples and in a synthesized ion solution (100 mg/L chloride, 10 mg N/L nitrate, and 100 mg/L sulfate) were 99-105 and 94-105%, respectively. Bromate concentrations in 11 drinking water samples determined by LC-MS/MS were water without sample pretreatment.

  16. Differences between 1999 and 2010 across the Falkland Plateau: fronts and water masses

    Directory of Open Access Journals (Sweden)

    M. D. Pérez-Hernández

    2017-07-01

    Full Text Available Decadal differences in the Falkland Plateau are studied from the two full-depth hydrographic data collected during the ALBATROSS (April 1999 and MOC-Austral (February 2010 cruises. Differences in the upper 100 dbar are due to changes in the seasonal thermocline, as the ALBATROSS cruise took place in the austral fall and the MOC-Austral cruise in summer. The intermediate water masses seem to be very sensitive to the wind conditions existing in their formation area, showing cooling and freshening for the decade as a consequence of a higher Antarctic Intermediate Water (AAIW contribution and of a decrease in the Subantarctic Mode Water (SAMW stratum. The deeper layers do not exhibit any significant change in the water mass properties. The Subantarctic Front (SAF in 1999 is observed at 52.2–54.8° W with a relative mass transport of 32.6 Sv. In contrast, the SAF gets wider in 2010, stretching from 51.1 to 57.2° W (the Falkland Islands, and weakening to 17.9 Sv. Changes in the SAF can be linked with the westerly winds and mainly affect the northward flow of Subantarctic Surface Water (SASW, SAMW and AAIW/Antarctic Surface Water (AASW. The Polar Front (PF carries 24.9 Sv in 1999 (49.8–44.4° W, while in 2010 (49.9–49.2° W it narrows and strengthens to 37.3 Sv.

  17. Using precipitation, vertical root distribution, and satellite-retrieved vegetation information to parameterize water stress in a Penman-Monteith approach to evapotranspiration modeling under Mediterranean climate

    Science.gov (United States)

    Bai, Yun; Zhang, Jiahua; Zhang, Sha; Koju, Upama Ashish; Yao, Fengmei; Igbawua, Tertsea

    2017-03-01

    Recent studies have shown that global Penman-Monteith equation based (PM-based) models poorly simulate water stress when estimating evapotranspiration (ET) in areas having a Mediterranean climate (AMC). In this study, we propose a novel approach using precipitation, vertical root distribution (VRD), and satellite-retrieved vegetation information to simulate water stress in a PM-based model (RS-WBPM) to address this issue. A multilayer water balance module is employed to simulate the soil water stress factor (SWSF) of multiple soil layers at different depths. The water stress factor (WSF) for surface evapotranspiration is determined by VRD information and SWSF in each layer. Additionally, four older PM-based models (PMOV) are evaluated at 27 flux sites in AMC. Results show that PMOV fails to estimate the magnitude or capture the variation of ET in summer at most sites, whereas RS-WBPM is successful. The daily ET resulting from RS-WBPM incorporating recommended VI (NDVI for shrub and EVI for other biomes) agrees well with observations, with R2=0.60 (RMSE = 18.72 W m-2) for all 27 sites and R2=0.62 (RMSE = 18.21 W m-2) for 25 nonagricultural sites. However, combined results from the optimum older PM-based models at specific sites show R2 values of only 0.50 (RMSE = 20.74 W m-2) for all 27 sites. RS-WBPM is also found to outperform other ET models that also incorporate a soil water balance module. As all inputs of RS-WBPM are globally available, the results from RS-WBPM are encouraging and imply the potential of its implementation on a regional and global scale.

  18. Heat and mass transfer on unsteady MHD free convection rotating flow through a porous medium over an infinite vertical plate with hall effects

    Science.gov (United States)

    Babu, D. Dastagiri; Venkateswarlu, S.; Reddy, E. Keshava

    2017-07-01

    In this paper, we have considered the unsteady MHD free convection flow of an incompressible electrically conducting fluid through porous medium bounded by an infinite vertical porous surface in the presence of heat source and chemical reaction in a rotating system taking hall current into account. The flow through porous medium is governed by Brinkman's model for the momentum equation. In the undisturbed state, both the plate and fluid in porous medium are in solid body rotation with the same angular velocity about normal to the infinite vertical plane surface. The vertical surface is subjected to the uniform constant suction perpendicular to it and the temperature on the surface varies with time about a non-zero constant mean while the temperature of free stream is taken to be constant. The exact solutions for the velocity, temperature and concentration are obtained making use of perturbation technique. The velocity expression consists steady state and oscillatory state. It reveals that, the steady part of the velocity field has three layer characters while the oscillatory part of the fluid field exhibits a multi-layer character. The influence of various flow parameters on the velocity, temperature and concentration is analysed graphically, and computational results for the skin friction, Nusselt number and Sherwood number are also obtained in the tabular forms.

  19. Nutrient characteristics of the water masses and their seasonal variability in the eastern equatorial Indian Ocean.

    Science.gov (United States)

    Sardessai, S; Shetye, Suhas; Maya, M V; Mangala, K R; Prasanna Kumar, S

    2010-01-01

    Nutrient characteristics of four water masses in the light of their thermohaline properties are examined in the eastern Equatorial Indian Ocean during winter, spring and summer monsoon. The presence of low salinity water mass with "Surface enrichments" of inorganic nutrients was observed relative to 20 m in the mixed layer. Lowest oxygen levels of 19 microM at 3 degrees N in the euphotic zone indicate mixing of low oxygen high salinity Arabian Sea waters with the equatorial Indian Ocean. The seasonal variability of nutrients was regulated by seasonally varying physical processes like thermocline elevation, meridional and zonal transport, the equatorial undercurrent and biological processes of uptake and remineralization. Circulation of Arabian Sea high salinity waters with nitrate deficit could also be seen from low N/P ratio with a minimum of 8.9 in spring and a maximum of 13.6 in winter. This large deviation from Redfield N/P ratio indicates the presence of denitrified high salinity waters with a seasonal nitrate deficit ranging from -4.85 to 1.52 in the Eastern Equatorial Indian Ocean. 2010 Elsevier Ltd. All rights reserved.

  20. Impact of oxygen-depleted water on the vertical distribution of chaetognaths in the northeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Kusum, K.K.; Vineetha, G.; Raveendran, T.V.; Muraleedharan, K.R.; Nair, M.; Achuthankutty, C.T.

    The influence of a thick layer of oxygen-depleted water (<0.2 ml l sup(-1)) on the abundance and distribution of chaetognaths was investigated in the northeastern Arabian Sea (NEAS), a natural oxygen-deficient system in the global ocean. The species...

  1. Water mass distribution in Fram Strait and over the Yermak Plateau in summer 1997

    Directory of Open Access Journals (Sweden)

    B. Rudels

    2000-06-01

    Full Text Available The water mass distribution in northern Fram Strait and over the Yermak Plateau in summer 1997 is described using CTD data from two cruises in the area. The West Spitsbergen Current was found to split, one part recirculated towards the west, while the other part, on entering the Arctic Ocean separated into two branches. The main inflow of Atlantic Water followed the Svalbard continental slope eastward, while a second, narrower, branch stayed west and north of the Yermak Plateau. The water column above the southeastern flank of the Yermak Plateau was distinctly colder and less saline than the two inflow branches. Immediately west of the outer inflow branch comparatively high temperatures in the Atlantic Layer suggested that a part of the extraordinarily warm Atlantic Water, observed in the boundary current in the Eurasian Basin in the early 1990s, was now returning, within the Eurasian Basin, toward Fram Strait. The upper layer west of the Yermak Plateau was cold, deep and comparably saline, similar to what has recently been observed in the interior Eurasian Basin. Closer to the Greenland continental slope the salinity of the upper layer became much lower, and the temperature maximum of the Atlantic Layer was occasionally below  0.5 °C, indicating water masses mainly derived from the Canadian Basin. This implies that the warm pulse of Atlantic Water had not yet made a complete circuit around the Arctic Ocean. The Atlantic Water of the West Spitsbergen Current recirculating within the strait did not extend as far towards Greenland as in the 1980s, leaving a broader passage for waters from the Atlantic and intermediate layers, exiting the Arctic Ocean. A possible interpretation is that the circulation pattern alternates between a strong recirculation of the West Spitsbergen Current in the strait, and a larger exchange of Atlantic Water between the Nordic Seas and the inner parts of the Arctic Ocean.Key words: Oceanography: general (Arctic and

  2. Water mass distribution in Fram Strait and over the Yermak Plateau in summer 1997

    Directory of Open Access Journals (Sweden)

    B. Rudels

    Full Text Available The water mass distribution in northern Fram Strait and over the Yermak Plateau in summer 1997 is described using CTD data from two cruises in the area. The West Spitsbergen Current was found to split, one part recirculated towards the west, while the other part, on entering the Arctic Ocean separated into two branches. The main inflow of Atlantic Water followed the Svalbard continental slope eastward, while a second, narrower, branch stayed west and north of the Yermak Plateau. The water column above the southeastern flank of the Yermak Plateau was distinctly colder and less saline than the two inflow branches. Immediately west of the outer inflow branch comparatively high temperatures in the Atlantic Layer suggested that a part of the extraordinarily warm Atlantic Water, observed in the boundary current in the Eurasian Basin in the early 1990s, was now returning, within the Eurasian Basin, toward Fram Strait. The upper layer west of the Yermak Plateau was cold, deep and comparably saline, similar to what has recently been observed in the interior Eurasian Basin. Closer to the Greenland continental slope the salinity of the upper layer became much lower, and the temperature maximum of the Atlantic Layer was occasionally below 
    0.5 °C, indicating water masses mainly derived from the Canadian Basin. This implies that the warm pulse of Atlantic Water had not yet made a complete circuit around the Arctic Ocean. The Atlantic Water of the West Spitsbergen Current recirculating within the strait did not extend as far towards Greenland as in the 1980s, leaving a broader passage for waters from the Atlantic and intermediate layers, exiting the Arctic Ocean. A possible interpretation is that the circulation pattern alternates between a strong recirculation of the West Spitsbergen Current in the strait, and a larger exchange of Atlantic Water between the Nordic Seas and the inner parts of the Arctic Ocean.

    Key words: Oceanography: general

  3. Water in low-mass star-forming regions with Herschel: HIFI spectroscopy of NGC 1333

    OpenAIRE

    Kristensen, L. E.; Dominik, C.; Whyborn, N.

    2010-01-01

    Water In Star-forming regions with Herschel” (WISH) is a key programme dedicated to studying the role of water and related species during the star-formation process and constraining the physical and chemical properties of young stellar objects. The Heterodyne Instrument for the Far-Infrared (HIFI) on the Herschel Space Observatory observed three deeply embedded protostars in the low-mass star-forming region NGC 1333 in several H_(2)^(16)O, H_(2)^(18)O, and CO transitions. Line profiles are r...

  4. A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes

    Science.gov (United States)

    Naudts, K.; Ryder, J.; McGrath, M. J.; Otto, J.; Chen, Y.; Valade, A.; Bellasen, V.; Berhongaray, G.; Bönisch, G.; Campioli, M.; Ghattas, J.; De Groote, T.; Haverd, V.; Kattge, J.; MacBean, N.; Maignan, F.; Merilä, P.; Penuelas, J.; Peylin, P.; Pinty, B.; Pretzsch, H.; Schulze, E. D.; Solyga, D.; Vuichard, N.; Yan, Y.; Luyssaert, S.

    2015-07-01

    Since 70 % of global forests are managed and forests impact the global carbon cycle and the energy exchange with the overlying atmosphere, forest management has the potential to mitigate climate change. Yet, none of the land-surface models used in Earth system models, and therefore none of today's predictions of future climate, accounts for the interactions between climate and forest management. We addressed this gap in modelling capability by developing and parametrising a version of the ORCHIDEE land-surface model to simulate the biogeochemical and biophysical effects of forest management. The most significant changes between the new branch called ORCHIDEE-CAN (SVN r2290) and the trunk version of ORCHIDEE (SVN r2243) are the allometric-based allocation of carbon to leaf, root, wood, fruit and reserve pools; the transmittance, absorbance and reflectance of radiation within the canopy; and the vertical discretisation of the energy budget calculations. In addition, conceptual changes were introduced towards a better process representation for the interaction of radiation with snow, the hydraulic architecture of plants, the representation of forest management and a numerical solution for the photosynthesis formalism of Farquhar, von Caemmerer and Berry. For consistency reasons, these changes were extensively linked throughout the code. Parametrisation was revisited after introducing 12 new parameter sets that represent specific tree species or genera rather than a group of often distantly related or even unrelated species, as is the case in widely used plant functional types. Performance of the new model was compared against the trunk and validated against independent spatially explicit data for basal area, tree height, canopy structure, gross primary production (GPP), albedo and evapotranspiration over Europe. For all tested variables, ORCHIDEE-CAN outperformed the trunk regarding its ability to reproduce large-scale spatial patterns as well as their inter

  5. Second-order velocity slip with axisymmetric stagnation point flow and heat transfer due to a stretching vertical plate in a Copper-water nanofluid

    Science.gov (United States)

    Kardri, M. A.; Bachok, N.; Arifin, N. M.; Ali, F. M.

    2017-09-01

    The steady axisymmetric stagnation point flow with second-order velocity slip due to a stretching vertical plate with the existence of copper-water nanofluid was investigated. Similarity transformation has been applied to reduce the governing partial differential equations to ordinary differential equations. Then the self-similar equations are solved numerically using solver bvp4c available in Matlab with Prandtl number, Pr = 6.2. It is found that the dual solutions exist for the certain range of mixed convection parameter. The effects of the governing parameters on the velocity and temperature profile, skin friction coefficient and the local Nusselt number are observed. The results show that the inclusion of nanoparticle copper, will increase the shear stress on the stretching sheet and decrease the heat transfer rate for the slip parameters.

  6. A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach

    Directory of Open Access Journals (Sweden)

    E. Todini

    2007-10-01

    Full Text Available The variable parameter Muskingum-Cunge (MC flood routing approach, together with several variants proposed in the literature, does not fully preserve the mass balance, particularly when dealing with very mild slopes (<10−3. This paper revisits the derivation of the MC and demonstrates (i that the loss of mass balance in MC is caused by the use of time variant parameters which violate the implicit assumption embedded in the original derivation of the Muskingum scheme, which implies constant parameters and at the same time (ii that the parameters estimated by means of the Cunge approach violate the two basic equations of the Muskingum formulation. The paper also derives the modifications needed to allow the MC to fully preserve the mass balance and, at the same time, to comply with the original Muskingum formulation in terms of water storage. The properties of the proposed algorithm have been assessed by varying the cross section, the slope, the roughness, the space and the time integration steps. The results of all the tests also show that the new algorithm is always mass conservative. Finally, it is also shown that the proposed approach closely approaches the full de Saint Venant equation solution, both in terms of water levels and discharge, when the parabolic approximation holds.

  7. Floral Mass per Area and Water Maintenance Traits Are Correlated with Floral Longevity in Paphiopedilum (Orchidaceae).

    Science.gov (United States)

    Zhang, Feng-Ping; Yang, Ying-Jie; Yang, Qiu-Yun; Zhang, Wei; Brodribb, Tim J; Hao, Guang-You; Hu, Hong; Zhang, Shi-Bao

    2017-01-01

    Floral longevity (FL) determines the balance between pollination success and flower maintenance. While a longer floral duration enhances the ability of plants to attract pollinators, it can be detrimental if it negatively affects overall plant fitness. Longer-lived leaves display a positive correlation with their dry mass per unit area, which influences leaf construction costs and physiological functions. However, little is known about the association among FL and floral dry mass per unit area (FMA) and water maintenance traits. We investigated whether increased FL might incur similar costs. Our assessment of 11 species of Paphiopedilum (slipper orchids) considered the impact of FMA and flower water-maintenance characteristics on FL. We found a positive relationship between FL and FMA. Floral longevity showed significant correlations with osmotic potential at the turgor loss and bulk modulus of elasticity but not with FA. Neither the size nor the mass per area was correlated between leaves and flowers, indicating that flower and leaf economic traits evolved independently. Therefore, our findings demonstrate a clear relationship between FL and the capacity to maintain water status in the flower. These economic constraints also indicate that extending the flower life span can have a high physiological cost in Paphiopedilum.

  8. Study on diesel vertical migration characteristics and mechanism in water-bearing sand stratum using an automated resistivity monitoring system.

    Science.gov (United States)

    Pan, Yuying; Jia, Yonggang; Wang, Yuhua; Xia, Xin; Guo, Lei

    2017-11-24

    Oil spills frequently occur on both land and sea. Petroleum in mobile phase will cause serious pollution in the sediment and can form a secondary pollution source. Therefore, it is very important to study the migration of petroleum in sediments ideally in a rapid and simplified approach. The release of diesel was simulated using fine beach sand to construct a model aquifer, and dynamic monitoring was carried out using an automated monitoring system including a resistivity probe originally developed by our research group. The mobile phase migration fronts were determined accurately using wavelet analysis method combined with resistivity curve method. Then, a relationship between resistivity and the joint oil-water content was established. The main conclusions were as follows. The seepage velocity of the diesel with high mobility at the initial stage of infiltration was faster, followed by a period when gravity seepage was dominant, and finally a redistribution period at the later stage, which was mainly an oil-water displacement process. The resistivity trends for diesel infiltration in different water-saturated soil layers varied with depth. The resistivity in the vadose zone fluctuated significantly, increasing initially and later decreasing. The resistivity change in the capillary zone was relatively small and constant in the initial stage; then, it increased and subsequently decreased. The resistivity in the saturated zone was basically unchanged with depth, and the value became slightly larger than the background value over time. Overall, for a large volume of mobile phase diesel leakage, the arrival migration fronts can be detected by wavelet analysis combined with resistivity curves. The thickness of the oil slick in the capillary zone can be estimated by resistivity changes. The relationships between resistivity and both the moisture content and oil-water joint saturation are in agreement with the linear models. The research results provide basic data and a

  9. Distribution and activity of Bacteria and Archaea in the different water masses of the Tyrrhenian Sea

    Science.gov (United States)

    Tamburini, Christian; Garel, Marc; Al Ali, Badr; Mérigot, Bastien; Kriwy, Pascal; Charrière, Bruno; Budillon, Giorgio

    2009-05-01

    This study examines the abundance of the Bacteria, Crenarchaeota and Euryarchaeota and bulk activities (phosphatase and aminopeptidase activities, heterotrophic prokaryotic production and dark CO 2 fixation) in the major water masses of the Tyrrhenian Sea (from surface to bottom: Modified Atlantic Water (MAW); Levantine Intermediate Water (LIW) and Tyrrhenian Deep Water (TDW)) in July and December 2005. Data from the catalyzed reporter deposition coupled with fluorescence in situ hybridization (CARD-FISH) analyses indicate that the percentage of Bacteria was always higher than the percentage of Crenarchaeota and Euryarchaeota throughout the water column. While the percentage of Euryarchaeota was relatively homogeneous (˜10%) through the water column, the percentage of Crenarchaeota increased with depth (from 5% to 14% in July and from 7% to 17% in December in MAW and TDW, respectively). Regarding differences between July and December 2005, the percentage of Bacteria in the MAW was lower in July than in December (25% versus 43%, respectively) while quite constant (˜40%) in the TDW. The pattern of phosphatase and aminopeptidase activity varied according to the stations considered, but both ectoenzyme activities showed higher maximum velocity rates in July than in December in the deep-sea waters. Particularly, specific activity of phosphatase in the deep-sea waters (TDW) was 7 times higher (median value) than in surface waters (MAW). Prokaryotic production, aminopeptidase and phosphatase activity measurements were always higher under in situ pressure conditions than after decompression. For the first time, the measurement of the dark CO 2 fixation was investigated under in situ pressure conditions and its decompressed counterparts. These data give new information to understanding the role of prokaryotes (Bacteria and Archaea) in biogeochemical cycles of the meso- and batypelagic waters of the oceans.

  10. Wave propagation against current : a study of the effects of vertical shears of the mean current on the geometrical focusing of water waves

    Science.gov (United States)

    Charland, Jenna; Touboul, Julien; Rey, Vincent

    2013-04-01

    Wave propagation against current : a study of the effects of vertical shears of the mean current on the geometrical focusing of water waves J. Charland * **, J. Touboul **, V. Rey ** jenna.charland@univ-tln.fr * Direction Générale de l'Armement, CNRS Délégation Normandie ** Université de Toulon, 83957 La Garde, France Mediterranean Institute of Oceanography (MIO) Aix Marseille Université, 13288 Marseille, France CNRS/INSU, IRD, MIO, UM 110 In the nearshore area, both wave propagation and currents are influenced by the bathymetry. For a better understanding of wave - current interactions in the presence of a 3D bathymetry, a large scale experiment was carried out in the Ocean Basin FIRST, Toulon, France. The 3D bathymetry consisted of two symmetric underwater mounds on both sides in the mean wave direction. The water depth at the top the mounds was hm=1,5m, the slopes of the mounds were of about 1:3, the water depth was h=3 m elsewhere. For opposite current conditions (U of order 0.30m/s), a huge focusing of the wave up to twice its incident amplitude was observed in the central part of the basin for T=1.4s. Since deep water conditions are verified, the wave amplification is ascribed to the current field. The mean velocity fields at a water depth hC=0.25m was measured by the use of an electromagnetic current meter. The results have been published in Rey et al [4]. The elliptic form of the "mild slope" equation including a uniform current on the water column (Chen et al [1]) was then used for the calculations. The calculated wave amplification of factor 1.2 is significantly smaller than observed experimentally (factor 2). So, the purpose of this study is to understand the physical processes which explain this gap. As demonstrated by Kharif & Pelinovsky [2], geometrical focusing of waves is able to modify significantly the local wave amplitude. We consider this process here. Since vertical velocity profiles measured at some locations have shown significant

  11. Direct sampling of chemical weapons in water by photoionization mass spectrometry.

    Science.gov (United States)

    Syage, Jack A; Cai, Sheng-Suan; Li, Jianwei; Evans, Matthew D

    2006-05-01

    The vulnerability of water supplies to toxic contamination calls for fast and effective means for screening water samples for multiple threats. We describe the use of photoionization (PI) mass spectrometry (MS) for high-speed, high-throughput screening and molecular identification of chemical weapons (CW) threats and other hazardous compounds. The screening technology can detect a wide range of compounds at subacute concentrations with no sample preparation and a sampling cycle time of approximately 45 s. The technology was tested with CW agents VX, GA, GB, GD, GF, HD, HN1, and HN3, in addition to riot agents and precursors. All are sensitively detected and give simple PI mass spectra dominated by the parent ion. The target application of the PI MS method is as a routine, real-time early warning system for CW agents and other hazardous compounds in air and in water. In this work, we also present comprehensive measurements for water analysis and report on the system detection limits, linearity, quantitation accuracy, and false positive (FP) and false negative rates for concentrations at subacute levels. The latter data are presented in the form of receiver operating characteristic curves of the form of detection probability P(D) versus FP probability P(FP). These measurements were made using the CW surrogate compounds, DMMP, DEMP, DEEP, and DIMP. Method detection limits (3sigma) obtained using a capillary injection method yielded 1, 6, 3, and 2 ng/mL, respectively. These results were obtained using 1-microL injections of water samples without any preparation, corresponding to mass detection limits of 1, 6, 3, and 2 pg, respectively. The linear range was about 3-4 decades and the dynamic range about 4-5 decades. The relative standard deviations were generally <10% at CW subacute concentrations levels.

  12. Vertical stratification of bacterial communities driven by multiple environmental factors in the waters (0-5000 m) off the Galician coast (NW Iberian margin)

    Science.gov (United States)

    Dobal-Amador, Vladimir; Nieto-Cid, Mar; Guerrero-Feijoo, Elisa; Hernando-Morales, Victor; Teira, Eva; Varela-Rozados, Marta M.

    2016-08-01

    The processes mediated by microbial planktonic communities occur along the entire water column, yet the microbial activity and composition have been studied mainly in surface waters. This research examined the vertical variation in bacterial abundance, activity and community composition and structure from surface down to 5000 m depth following a longitudinal transect off the Galician coast (NW Iberian margin, from 43°N, 9°W to 43°N, 15°W). Community activity and composition changed with depth. The leucine incorporation rates decreased from the euphotic layer to the bathypelagic waters by three orders of magnitude, whereas prokaryotic abundance decreased only by one order of magnitude. The relative abundance of SAR11 and Alteromonas, determined by catalyzed reported deposition fluorescence in situ hybridization (CARD-FISH), decreased with depth. Meanwhile, the contribution of SAR 202 and SAR324 was significantly higher in the deeper layers (i.e. NEADW, North East Atlantic Deep Water and LDW, Lower Deep Water) than in the euphotic zone. Bacterial community structure, assessed by Automated Ribosomal Intergenic Spacer Analysis (ARISA), was depth-specific. A distance based linear model (DistLM) revealed that the variability found in bacterial community structure was mainly explained by temperature nitrate, phosphate, dissolved organic matter (DOM) fluorescence, prokaryotic abundance, leucine incorporation and to a lesser extent salinity, oxygen, CDOM absorbance and dissolved organic carbon concentration. Our results displayed a bacterial community structure shaped not only by depth-related physicochemical features but also by DOM quality, indicating that different prokaryotic taxa have the potential to metabolize particular DOM sources.

  13. On the Origin of Microheterogeneity : Mass Spectrometric Studies of Acetonitrile-Water and Dimethyl Sulfoxide-Water Binary Mixtures (Part 2)

    NARCIS (Netherlands)

    Shin, Dong Nam; Wijnen, Jan W.; Engberts, Jan B.F.N.; Wakisaka, Akihiro

    2002-01-01

    The microscopic structures of acetonitrile-water and DMSO-water binary mixed solvents and their influence on the solvation for solutes (some alcohols and phenol) have been studied on the basis of the cluster structures observed through a specially designed mass spectrometer. In acetonitrile-water

  14. The Bremen mass spectrometric facility for the measurement of helium isotopes, neon, and tritium in water.

    Science.gov (United States)

    Sültenfuss, Jürgen; Roether, Wolfgang; Rhein, Monika

    2009-06-01

    We describe the mass spectrometric facility for measuring helium isotopes, neon, and tritium that has been operative at this institute since 1989, and also the sampling and sample preparation steps that precede the mass spectrometric analysis. For water samples in a near-equilibrium with atmospheric air, the facility achieves precision for (3)He/(4)He ratios of+/-0.4% or better, and+/-0.8 % or better for helium and neon concentrations. Tritium precision is typically+/-3 % and the detection limit 10 mTU ( approximately 1.2.10(-3) Bq/kg of pure water). Sample throughputs can reach some thousands per year. These achievements are enabled, among other features, by automation of the measurement procedure and by elaborate calibration, assisted by continual development in detail. To date, we have measured more than 15,000 samples for tritium and 23,000 for helium isotopes and neon, mostly in the context of oceanographic and hydrologic work. Some results of such work are outlined. Even when atmospheric tritium concentrations have become rather uniform, tritium provides water ages if (3)He data are taken concurrently. The technique can resolve tritium concentrations in waters of the pre-nuclear era.

  15. Fingerprinting North Atlantic water masses near Iceland using Nd-isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Norbert [Institut fuer Umweltphysik, INF229, Heidelberg (Germany); Waldner, Astrid [Paul Scherrer Institute, Villigen (Switzerland); Montagna, Paolo [CNR - ISMAR, Bologna (Italy); Colin, Christophe [IDES, Universite de Paris-Sud, Orsay (France); Wu, Qiong [State Key Laboratory, Tongji University, Shanghai (China)

    2015-07-01

    The radiogenic {sup 143}Nd/{sup 144}Nd ratio of seawater is a valuable tracer of north Atlantic circulation pathways, driven by continental runoff (freshwater and Aeolian dust), boundary exchange and advection and thus mixing patterns. A region of particular interest in the North Atlantic is the overflow across the Iceland-Scotland Ridge injecting water from the Arctic Ocean into the Iceland basin (Iceland Scotland Overflow Water). However, Iceland itself constitutes a local source for Nd due to possible leaching of young volcanic basalts adding radiogenic {sup 143}Nd/{sup 144}Nd to seawater. We have conducted an intense survey of physical properties and Nd-isotope composition between Iceland and the Azores that allows to fingerprint different water masses of the North Atlantic through the {sup 143}Nd/{sup 144}Nd ratio and that demonstrates the very local influence of volcanic material to the seawater Nd cycle. A first local transect is achieved from the open ocean to the outflow of the Vatnajoekull glacier. Runoff influences seawater Nd in close vicinity (< 40 km near the outflow). A along shelf transect provide a similar observation. From Iceland to the Azores, however, water masses of the sub-tropical and sub-polar gyre are clearly distinguishable.

  16. Water Mass Analysis In The Canadian Basin: Results from the ODEN-2005 Transect

    Science.gov (United States)

    Newton, R.; Schlosser, P.; Mortlock, R.; Mauldin, A.; Wong, A.

    2009-12-01

    Freshwater (and therefore buoyancy) fluxes from the Arctic to the Nordic seas is a critical climate parameter on interannual to millennial time scales. The mechanisms of its variability remain an actively studied, but unsettled question. In the summer of 2005a trans-Arctic hydrography/tracer section was conducted aboard the Swedish icebreaker ODEN. The cruise occupied 53 stations at which full-depth CTD and bottle sampling was conducted. Coverage in the Canadian Basin and along the Lomonosov Ridge in the vicinity of the North Pole was unprecedented, yielding a detailed quasi-synoptic picture of the water column in the Canadian Basin. We report tracer data that are used, in combination with hydrographic and nutrient data, to elucidate sources of freshwater and its anomalies as observed along the cruise track. The ODEN 05 data significantly improve our understanding of the detailed structure of freshwater sources to the main Arctic Ocean reservoir. We present the 2005 water mass analysis in the context of several analytic methods, discussing their most important differences. We then compare the new data to water mass analyses from the 1990s. The sources of change in freshwater and buoyancy content of the upper 500 meters between 1994 and 2005 are quantified, resulting in new insights into the impact of the ongoing reorganization of the Arctic climate system below the water's surface.

  17. A Lagrangian Model Analysis of Arctic Water Mass Transformations and Exports.

    Science.gov (United States)

    Lique, C.; Treguier, A.; Blanke, B.; Grima, N.

    2008-12-01

    Many recent studies indicate that a change in the volume, heat or freshwater export from the Arctic Ocean to the North Atlantic could strongly affect the deep convection regions and thus the global thermohaline circulation. However, the origins of the exported water, mostly along both sides of Greenland through Davis Strait and Fram Strait, are still largely unknown, as strong incertitude remains about the dynamics in the Arctic Ocean and the water mass transformations that occur in this basin. An original approach is presented here to investigate these issues. A quantitative Lagrangian method is applied to Eulerian fields of a global high resolution model (around 12~km grid size in the Arctic). First, the simulated Arctic is validated against available observations. Then, the Lagrangian method allows to establish a quantitative circulation scheme. We quantify the relative contributions of the different branches of circulation to the export to the North Atlantic, as well as the related timescales and water mass transformations. The role of the Barents Sea in the modification of the different branches of Atlantic Water entering the Arctic is specially emphasized.

  18. Mass density fluctuations in quantum and classical descriptions of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Galib, Mirza [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA; Duignan, Timothy T. [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA; Misteli, Yannick [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA; Baer, Marcel D. [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA; Schenter, Gregory K. [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA; Hutter, Jürg [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA; Mundy, Christopher J. [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA

    2017-06-26

    First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density fluctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and both the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential.

  19. Total body water and lean body mass estimated by ethanol dilution

    Science.gov (United States)

    Loeppky, J. A.; Myhre, L. G.; Venters, M. D.; Luft, U. C.

    1977-01-01

    A method for estimating total body water (TBW) using breath analyses of blood ethanol content is described. Regression analysis of ethanol concentration curves permits determination of a theoretical concentration that would have existed if complete equilibration had taken place immediately upon ingestion of the ethanol; the water fraction of normal blood may then be used to calculate TBW. The ethanol dilution method is applied to 35 subjects, and comparison with a tritium dilution method of determining TBW indicates that the correlation between the two procedures is highly significant. Lean body mass and fat fraction were determined by hydrostatic weighing, and these data also prove compatible with results obtained from the ethanol dilution method. In contrast to the radioactive tritium dilution method, the ethanol dilution method can be repeated daily with its applicability ranging from diseased individuals to individuals subjected to thermal stress, strenuous exercise, water immersion, or the weightless conditions of space flights.

  20. Mass density fluctuations in quantum and classical descriptions of liquid water

    Science.gov (United States)

    Galib, Mirza; Duignan, Timothy T.; Misteli, Yannick; Baer, Marcel D.; Schenter, Gregory K.; Hutter, Jürg; Mundy, Christopher J.

    2017-06-01

    First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe the properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density fluctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and both the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential.

  1. Spatial Distributions of DDTs in the Water Masses of the Arctic Ocean.

    Science.gov (United States)

    Carrizo, Daniel; Sobek, Anna; Salvadó, Joan A; Gustafsson, Örjan

    2017-07-18

    There is a scarcity of data on the amount and distribution of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) and its metabolites in intermediate and deep ocean water masses. Here, the distribution and inventories of DDTs in water of the Arctic shelf seas and the interior basin are presented. The occurrence of ∑6DDT (0.10-66 pg L-1) in the surface water was dominated by 4,4'-DDE. In the Central Arctic Ocean increasing concentrations of DDE with depth were observed in the Makarov and Amundsen basins. The increasing concentrations down to 2500 m depth is in accordance with previous findings for PCBs and PBDEs. Similar concentrations of DDT and DDEs were found in the surface water, while the relative contribution of DDEs increased with depth, demonstrating a transformation over time and depth. Higher concentrations of DDTs were found in the European part of the Arctic Ocean; these distributions likely reflect a combination of different usage patterns, transport, and fate of these compounds. For instance, the elevated concentrations of DDTs in the Barents and Atlantic sectors of the Arctic Ocean indicate the northbound Atlantic current as a significant conveyor of DDTs. This study contributes to the very rare data on OCPs in the vast deep-water compartments and combined with surface water distribution across the Arctic Ocean helps to improve our understanding of the large-scale fate of DDTs in the Arctic.

  2. DETERMINATION OF AMMONIA MASS EMISSION FLUX FROM HOG WASTE EFFLUENT SPRAYING OPERATION USING OPEN PATH TUNABLE DIODE LASER SPECTROSCOPY WITH VERTICAL RADIAL PLUME MAPPING ANALYSIS

    Science.gov (United States)

    Emission of ammonia from concentrated animal feeding operations represents an increasingly important environmental issue. Determination of total ammonia mass emission flux from extended area sources such as waste lagoons and waste effluent spraying operations can be evaluated usi...

  3. Influence of non-integer order parameter and Hartmann number on the heat and mass transfer flow of a Jeffery fluid over an oscillating vertical plate via Caputo-Fabrizio time fractional derivatives

    Science.gov (United States)

    Butt, A. R.; Abdullah, M.; Raza, N.; Imran, M. A.

    2017-10-01

    In this work, semi analytical solutions for the heat and mass transfer of a fractional MHD Jeffery fluid over an infinite oscillating vertical plate with exponentially heating and constant mass diffusion via the Caputo-Fabrizio fractional derivative are obtained. The governing equations are transformed into dimensionless form by introducing dimensionless variables. A modern definition of the Caputo-Fabrizio derivative has been used to develop the fractional model for a Jeffery fluid. The expressions for temperature, concentration and velocity fields are obtained in the Laplace transformed domain. We have used the Stehfest's and Tzou's algorithm for the inverse Laplace transform to obtain the semi analytical solutions for temperature, concentration and velocity fields. In the end, in order to check the physical impact of flow parameters on temperature, concentration and velocity fields, results are presented graphically and in tabular forms.

  4. Oberbeck–Boussinesq free convection of water based nanoliquids in a vertical channel using Dirichlet, Neumann and Robin boundary conditions on temperature

    Directory of Open Access Journals (Sweden)

    Nur Asiah Mohd Makhatar

    2016-09-01

    Full Text Available A numerical investigation is carried out into the flow and heat transfer within a fully-developed mixed convection flow of water–alumina (Al2O3–water, water–titania (TiO2–water and water–copperoxide (CuO–water in a vertical channel by considering Dirichlet, Neumann and Robin boundary conditions. Actual values of thermophysical quantities are used in arriving at conclusions on the three nanoliquids. The Biot number influences on velocity and temperature distributions are opposite in regions close to the left wall and the right wall. Robin condition is seen to favour symmetry in the flow velocity whereas Dirichlet and Neumann conditions skew the flow distribution and push the point of maximum velocity to the right of the channel. A reversal of role is seen between them in their influence on the flow in the left-half and the right-half of the channel. This leads to related consequences in heat transport. Viscous dissipation is shown to aid flow and heat transport. The present findings reiterate the observation on heat transfer in other configurations that only low concentrations of nanoparticles facilitate enhanced heat transport for all three temperature conditions. Significant change was observed in Neumann condition, whereas the changes are too extreme in Dirichlet condition. It is found that Robin condition is the most stable condition. Further, it is also found that all three nanoliquids have enhanced heat transport compared to that by base liquid, with CuO–water nanoliquid shows higher enhancement in its Nusselt number, compared to Al2O3 and TiO2.

  5. Warming of the Global Ocean: Spatial Structure and Water-Mass Trends

    Science.gov (United States)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2016-01-01

    This study investigates the multidecadal warming and interannual-to-decadal heat content changes in the upper ocean (0-700 m), focusing on vertical and horizontal patterns of variability. These results support a nearly monotonic warming over much of the World Ocean, with a shift toward Southern Hemisphere warming during the well-observed past decade. This is based on objectively analyzed gridded observational datasets and on a modeled state estimate. Besides the surface warming, a warming climate also has a subsurface effect manifesting as a strong deepening of the midthermocline isopycnals, which can be diagnosed directly from hydrographic data. This deepening appears to be a result of heat entering via subduction and spreading laterally from the high-latitude ventilation regions of subtropical mode waters. The basin-average multidecadal warming mainly expands the subtropical mode water volume, with weak changes in the temperature-salinity (u-S) relationship (known as ''spice'' variability). However, the spice contribution to the heat content can be locally large, for example in Southern Hemisphere. Multidecadal isopycnal sinking has been strongest over the southern basins and weaker elsewhere with the exception of the Gulf Stream/North Atlantic Current/subtropical recirculation gyre. At interannual to decadal time scales, wind-driven sinking and shoaling of density surfaces still dominate ocean heat content changes, while the contribution from temperature changes along density surfaces tends to decrease as time scales shorten.

  6. Impact of Mass Bathing and Religious Activities on Water Quality Index of Prominent Water Bodies: A Multilocation Study in Haryana, India

    Directory of Open Access Journals (Sweden)

    Anita Bhatnagar

    2016-01-01

    Full Text Available The present study was designed to assess the impact of mass bathing and religious activities on water quality index (WQI of prominent water bodies (eight in Haryana, India. Water quality characteristics revealed significant increase in the values of nitrate, biochemical oxygen demand (BOD, turbidity, total dissolved solids (TDS, conductivity, total hardness, total alkalinity, and MPN count after the religious activities. The computed WQI at all the eight selected sites varied from 47.55 to 211.42. The results revealed that there was a significant increase in the value of WQI after mass bathing or any other ritual performed. Out of eight water bodies studied three (sites 3, 4, and 5 were found under good water quality status; four sites (1, 2, 6, and 7 depicted medium water quality but site 8 was found under poor water quality after the religious activities. The good water quality status of water bodies was correlated with larger size of the water bodies and less number of pilgrims; however, the poor WQI values may be attributed to smaller size of the water body and heavy load of pilgrims on such sites. Therefore, water of these religious water bodies needed to be regularly changed after mass bathing to protect the aquatic component from different contaminations.

  7. [Determination of aniline in water and fish by liquid chromatography-tandem mass spectrometry].

    Science.gov (United States)

    He, Dechun; Zhao, Bo; Tang, Caiming; Xu, Zhencheng; Zhang, Sukun; Han, Jinglei

    2014-09-01

    A fast analytical method for the determination of aniline in water and fish meat by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed. The water sample was mixed with acetonitrile by 4:1 (v/v) and the fish sample was extracted by 2.00 mL acetonitrile for each gram of sample, and then the extracts of water and fish samples were centrifuged at 5,000 r/min for 5 min. The separation was performed on a reversed-phase C18 column using mobile phases of acetonitrile-0.5% (v/v) formic acid aqueous solution (85:15, v/v). Aniline was separated within 3 min. The calibration curve was linear in the range of 0.5-500 pg/L with R2 > 0.999. The limits of detection (LODs) were 0.50 μg/L and 1.00 μg/kg and the limits of quantification (LOQs) were 1.00 μg/L and 2.00 μg/kg for aniline in water and fish meat, respectively. The average recoveries of aniline in water were 93.7% at the spiked level of 40 ng and 86.7% at the spiked level of 400 ng (n = 5). The average recoveries of aniline in fish were 96.8%, 92.6% and 81.8% at the spiked levels of 5, 50 and 500 ng respectively (n = 5). The relative standard deviations were 1.5%-9.2%. Thirteen water samples and twelve fish samples were collected from a reservoir polluted by aniline and the maximum contents found were 1,943. 6 μg/L in water and 60.8 μg/kg in fish. The method is suitable for the determination of aniline residues in water and fish with the characteristics of easy operation, high accuracy and precision.

  8. A comparative study of vertical flow and free-water surface constructed wetlands for low C/N ratio domestic wastewater treatment and its greenhouse gases emission

    Science.gov (United States)

    Xu, K.; Liu, C.; Ebie, Y.; Inamori, Y.

    2008-12-01

    Constructed wetland (CW) systems are reliable, flexible in design, and can be built, operated, and maintained at lower costs compared to conventional methods of chemical treatment. Therefore, CW systems are widely used for controlling water-body eutrophication as an ease-operation and cost-effective ecological technology in developing countries. However, growing attention has been directed to its greenhouse side-effect and global-warming potential in recent years. In this study, two typical constructed wetlands: Vertical flow (VF) and Free-water surface (FWS) constructed wetlands were used not only to compare the nutrients removal performance for treatment of low C/N ratio loading domestic wastewater, but also to investigate and compare their CH4 and N2O greenhouse gases emission characteristics. The results indicated that the VF CW showed a comparatively good performance for nitrogen and phosphorus removal than FWS constructed wetland, which was 98.5, 95.9, 93.2 and 90.7 percent for BOD5, SS, NH4-N and TP under 6 days HRT, respectively. It was found that the FWS CW had the higher tendency to emit CH4 than the VF CW during four seasons of one year.

  9. Melting and evaporation analysis of the first wall in a water-cooled breeding blanket module under vertical displacement event by using the MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Im, Kihak [National Fusion Research Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of)

    2017-05-15

    Highlights: • Material phase change of first wall was simulated for vertical displacement event. • An in-house first wall module was developed to simulate melting and evaporation. • Effective heat capacity method and evaporation model were proposed. • MARS code was proposed to predict two-phase phenomena in coolant channel. • Phase change simulation was performed by coupling MARS and in-house module. - Abstract: Plasma facing components of tokamak reactors such as ITER or the Korean fusion demonstration reactor (K-DEMO) can be subjected to damage by plasma instabilities. Plasma disruptions like vertical displacement event (VDE) with high heat flux, can cause melting and vaporization of plasma facing materials and burnout of coolant channels. In this study, to simulate melting and vaporization of the first wall in a water-cooled breeding blanket under VDE, one-dimensional heat equations were solved numerically by using an in-house first wall module, including phase change models, effective heat capacity method, and evaporation model. For thermal-hydraulics, the in-house first wall analysis module was coupled with the nuclear reactor safety analysis code, MARS, to take advantage of its prediction capability for two-phase flow and critical heat flux (CHF) occurrence. The first wall was proposed for simulation according to the conceptual design of the K-DEMO, and the heat flux of plasma disruption with a value of 600 MW/m{sup 2} for 0.1 s was applied. The phase change simulation results were analyzed in terms of the melting and evaporation thicknesses and the occurrence of CHF. The thermal integrity of the blanket first wall is discussed to confirm whether the structural material melts for the given conditions.

  10. Microbe biogeography tracks water masses in a dynamic oceanic frontal system.

    Science.gov (United States)

    Djurhuus, Anni; Boersch-Supan, Philipp H; Mikalsen, Svein-Ole; Rogers, Alex D

    2017-03-01

    Dispersal limitation, not just environmental selection, plays an important role in microbial biogeography. The distance-decay relationship is thought to be weak in habitats where dispersal is high, such as in the pelagic environment, where ocean currents facilitate microbial dispersal. Most studies of microbial community composition to date have observed little geographical heterogeneity on a regional scale (100 km). We present a study of microbial communities across a dynamic frontal zone in the southwest Indian Ocean and investigate the spatial structure of the microbes with respect to the different water masses separated by these fronts. We collected 153 samples of free-living microorganisms from five seamounts located along a gradient from subtropical to subantarctic waters and across three depth layers: (i) the sub-surface chlorophyll maximum (approx. 40 m), (ii) the bottom of the euphotic zone (approx. 200 m), and (iii) the benthic boundary layer (300-2000 m). Diversity and abundance of microbial operational taxonomic units (OTUs) were assessed by amplification and sequencing of the 16S rRNA gene on an Illumina MiSeq platform. Multivariate analyses showed that microbial communities were structured more strongly by depth than by latitude, with similar phyla occurring within each depth stratum across seamounts. The deep layer was homogeneous across the entire survey area, corresponding to the spread of Antarctic intermediate water. However, within both the sub-surface layer and the intermediate depth stratum there was evidence for OTU turnover across fronts. The microbiome of these layers appears to be divided into three distinct biological regimes corresponding to the subantarctic surface water, the convergence zone and subtropical. We show that microbial biogeography across depth and latitudinal gradients is linked to the water masses the microbes persist in, resulting in regional patterns of microbial biogeography that correspond to the regional

  11. Enhanced photoassisted water electrolysis using vertically oriented anodically fabricated Ti-Nb-Zr-O mixed oxide nanotube arrays.

    Science.gov (United States)

    Allam, Nageh K; Alamgir, Faisal; El-Sayed, Mostafa A

    2010-10-26

    Self-ordered, highly oriented arrays of titanium-niobium-zirconium mixed oxide nanotube films were fabricated by the anodization of Ti(35)Nb(5)Zr alloy in aqueous and formamide electrolytes containing NH(4)F at room temperature. The nanostructure topology was found to depend on the nature of the electrolyte and the applied voltage. Our results demonstrate the possibility to grow mixed oxide nanotube array films possessing several-micrometer-thick layers by a simple and straightforward electrochemical route. The fabricated Ti-Nb-Zr-O nanotubes showed a ∼17.5% increase in the photoelectrochemical water oxidation efficiency as compared to that measured for pure TiO(2) nanotubes under UV illumination (100 mW/cm(2), 320-400 nm, 1 M KOH). This enhancement could be related to a combination of the effect of the thin wall of the fabricated Ti-Nb-Zr-O nanotubes (10 ± 2 nm) and the formation of Zr oxide and Nb oxide layers on the nanotube surface, which seems to slow down the electron-hole recombination in a way similar to that reported for Grätzel solar cells.

  12. High-Resolution Vertical Profile Measurements for Carbon Dioxide and Water Vapour Concentrations Within and Above Crop Canopies

    Science.gov (United States)

    Ney, Patrizia; Graf, Alexander

    2017-10-01

    We present a portable elevator-based facility for measuring CO2 , water vapour, temperature and wind-speed profiles between the soil surface and the atmospheric surface layer above crop canopies. The end of a tube connected to a closed-path gas analyzer is continuously moved up and down over the profile range (in our case, approximately 2 m) while concentrations are logged at a frequency of 20 s^{-1} . Using campaign measurements in winter wheat, winter barley and a catch crop mixture (spring 2015 to autumn 2016) during different stages of crop development and different times of the day, we demonstrate a simple approach to correct for time lags, and the resulting profiles of 30-min mean mole fractions of CO2 and H2O over height increments of 0.025 m. The profiles clearly show the effects of soil respiration and photosynthetic carbon assimilation, varying both during the diurnal cycle and during the growing season. Profiles of temperature and wind speed are based on a ventilated finewire thermocouple and a hot-wire anemometer, respectively. Measurements over bare soil and a short plant canopy were analyzed in the framework of Monin-Obukhov similarity theory to check the validity of the measurements and raw-data-processing approach. Derived fluxes of CO2 , latent and sensible heat and momentum show good agreement with eddy-covariance measurements.

  13. Body mass, energy intake, and water consumption of rats and humans during space flight

    Science.gov (United States)

    Wade, C. E.; Miller, M. M.; Baer, L. A.; Moran, M. M.; Steele, M. K.; Stein, T. P.

    2002-01-01

    Alteration of metabolism has been suggested as a major limiting factor to long-term space flight. In humans and primates, a negative energy balance has been reported. The metabolic response of rats to space flight has been suggested to result in a negative energy balance. We hypothesized that rats flown in space would maintain energy balance as indicated by maintenance of caloric intake and body mass gain. Further, the metabolism of the rat would be similar to that of laboratory-reared animals. We studied the results from 15 space flights lasting 4 to 19 d. There was no difference in average body weight (206 +/- 13.9 versus 206 +/- 14.8 g), body weight gain (5.8 +/- 0.48 versus 5.9 +/- 0.56 g/d), caloric intake (309 +/- 21.0 versus 309 +/- 20.1 kcal/kg of body mass per day), or water intake (200 +/- 8.6 versus 199 +/- 9.3 mL/kg of body mass per day) between flight and ground control animals. Compared with standard laboratory animals of similar body mass, no differences were noted. The observations suggested that the negative balance observed in humans and non-human primates may be due to other factors in the space-flight environment.

  14. Circulation and water mass transports on the East Antarctic shelf in the Mertz Glacier region

    Science.gov (United States)

    Martin, Antoine; Houssais, Marie-Noëlle; Le Goff, Hervé; Marec, Claudie; Dausse, Denis

    2017-08-01

    The East Antarctic shelf off Adélie-George V Land is known to be an important region for Dense Shelf Water (DSW) formation as a result of intense sea ice production in the Mertz Glacier Polynya during the winter season. It is also a region where the warm modified Circumpolar Deep Water (mCDW) penetrates onto the shelf during the summer. Using hydrographic observations from a summer survey in 2008 we implement a box inverse model to propose a comprehensive view of the steady state circulation on this shelf in summer. Additional information from mooring observations collected on the depression slope is used to provide context to the retrieved circulation scheme. Over the depression slope, the summer baroclinic structure of the currents is found to contrast with the almost barotropic structure in winter. The summer circulation is strongly constrained by the DSW distribution and forms a clockwise circulation primarily transporting the fresh surface waters and the warm mCDW around the dome of DSW. Over the upper flank of the Mertz Bank, the inflow branch transports the mCDW towards the Mertz Glacier, while, over the lower part of the slope, the outflow branch returns to the sill a diluted mode of the same water mass. A total of 0.19 Sv of mCDW inflows at the sill and two-third reach the Mertz Glacier and recirculate in front of it, allowing the mCDW to penetrate into the deeper part of the depression. Possible scenarios of interaction between the mCDW and the DSW with the glacier are examined. It is shown that, despite the water mass pathways and transports suggest possible ice-ocean interaction, both lateral and basal melting were likely small in summer 2008. Finally, our results suggest that, in addition to bathymetric features, the distribution of the residual DSW which is left from the preceding winter sets up regional pressure gradients which provide a seasonal control on the shelf circulation. In particular, the spring collapse of the convective patch would

  15. Vertically aligned nitrogen doped (Sn,Nb)O{sub 2} nanotubes – Robust photoanodes for hydrogen generation by photoelectrochemical water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Prasad Prakash, E-mail: ppp4@pitt.edu [Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Hanumantha, Prashanth Jampani [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Velikokhatnyi, Oleg I.; Datta, Moni Kanchan [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261 (United States); Gattu, Bharat [Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Poston, James A.; Manivannan, Ayyakkannu [US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261 (United States); Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); School of Dental Medicine, University of Pittsburgh, PA 15217 (United States)

    2016-06-15

    Graphical abstract: - Highlights: • Nb and N co-doping provides excellent optoelectronic properties for SnO{sub 2} NTs. • The optoelectronic properties of doped SnO{sub 2} are studied by first principles study. • (Sn{sub 0.95}Nb{sub 0.05})O{sub 2}:N-600 NTs exhibits superior ABPE (4.1%) to date. • Excellent photoelectrochemical stability of (Sn{sub 0.95}Nb{sub 0.05})O{sub 2}:N-600 NTs. - Abstract: Hydrogen generation from photoelectrochemical (PEC) water splitting is on the forefront of clean energy generation landscape. The efficiency of PEC system is dependent on the engineering of semiconductors with tailored narrow band gap coupled with superior photoelectrochemical activity and desired stability vital for the commercialization of PEC water splitting cells. We report herein the study of vertically aligned Nb and N doped SnO{sub 2} nanotubes (NTs), i.e., (Sn{sub 0.95}Nb{sub 0.05})O{sub 2}:N NTs for PEC water splitting. (Sn{sub 0.95}Nb{sub 0.05})O{sub 2} NTs was selected for co-doping with nitrogen by systematic analysis of applied bias photon-to-current efficiency of various Nb doped SnO{sub 2} (x = 0–0.1) compositions. Consequently, excellent photoelectrochemical stability and the highest efficiency of 4.1% is obtained for (Sn{sub 0.95}Nb{sub 0.05})O{sub 2}:N-600 NTs never observed for other known TiO{sub 2}, ZnO, and Fe{sub 2}O{sub 3} systems to date. Additionally, theoretical first principles study provides understanding of Nb and N co-doping on the electronic structure and band gap of SnO{sub 2} semiconductor, further corroborating results of the experimental study.

  16. EPA Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry

    Science.gov (United States)

    SAM lists this method for preparation and analysis of aqueous liquid and drinking water samples. This method will determine metal-containing compounds only as the total metal (e.g., total arsenic), inductively coupled plasma-mass spectrometry.

  17. Reconstructing late Quaternary deep-water masses in the eastern Arctic Ocean using benthonic Ostracoda

    Science.gov (United States)

    Jones, R. Ll; Whatley, R.C.; Cronin, T. M.; Dowsett, H.J.

    1999-01-01

    The distribution of Ostracoda in three long cores from the deep eastern Arctic Ocean was studied to determine the palaeoceanographical history of the Eurasian Basin during the late Quaternary. The samples for this study were obtained from the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau during the Arctic 91 expedition. Ostracoda previously studied in coretops at the same sites as the present study have shown that individual species have a strong association with different water masses and bathymetry. Throughout the late Quaternary, cores exhibit ostracod-rich layers separated by barren intervals. On the basis of biostratigraphical, isotopic and palaeomagnetic data the fossiliferous levels are interpreted as representing interglacial stages. The twenty most significant species were selected for subsequent quantitative investigation using Cluster and Factor analyses, in order to determine similarity and variance between the assemblages. An additional statistical method employing Modern Analogues and the Squared Chord Distance dissimilarity coefficient was utilized to compare the present late Quaternary fossil samples with a modern Arctic database. The results reveal a major faunal division within the Arctic Ocean Deep Water (AODW). Highly abundant and diverse assemblages within the cores were found to group and have good analogues with the Recent bathyal depth (1000-2500 m) upper AODW assemblages. Conversely, assemblages with low abundance and diversity correlate well with abyssal depth (> 3000 m) lower AODW assemblages. The palaeoceanographical history is complicated by the influence of adjacent water masses such as Canada Basin Deep Water (CBDW), Greenland Sea Deep Water (GSDW) and most importantly, Arctic Intermediate Water (AIW), which all had an influence on the ostracod assemblages during the late Quaternary. An enhanced flow of warm saline AIW into the Eurasian Basin results in species-rich upper AODW assemblages having good analogues down to 2750 m

  18. Identifying and tracking evolving water masses in optically complex aquatic environments

    Science.gov (United States)

    Palacios, Sherry L.

    Earth's climate is intimately associated with biogeochemical processes of the sea. Biological Oceanography explores mechanisms controlling carbon uptake by phytoplankton, carbon transfer through biogeochemical processes, and energy flow through ecosystems. Satellite Oceanography affords a synoptic view of the sea surface and reveals underlying physical, chemical, and biological processes. Since the advent of ocean color satellites in 1978, ocean color algorithms evolved from quantifying phytoplankton biomass to addressing more complex bio-optical and oceanographic problems: characterizing inherent optical properties of the water column, estimating primary productivity, and detecting water masses. Locating a water mass, tracking its changes, and discriminating its constituents using bio-optical algorithms are the three objectives of this dissertation. The first objective identifies the location of the Columbia River Plume (CRP) by using light absorption by chromophoric dissolved organic matter (a CDOM) as an optical proxy for salinity. It relates in situ measurements of (a CDOM to salinity using linear regression analysis, then computes "synthetic" salinity using MODIS-Aqua satellite imagery. The algorithm is robust at predicting salinity of the CRP on the Oregon and Washington shelf. The second objective identifies sub-mesoscale features within the CRP and tracks their changes in space and time. It employs k-means clustering and discriminant function analysis to identify water types from bio-optical and environmental input variables using in situ and MODIS-Aqua satellite observations. The algorithm is robust at identifying features in satellite and mooring data, consistent with measured and modeled water masses in previous work. The third objective involves development of an optical model (PHYDOTax) that discriminates phytoplankton taxa contained within an algal bloom. A hyperspectral ocean color signature-library for known phytoplankton (dinoflagellates, diatoms

  19. Carbonate system buffering in the water masses of the Southwest Atlantic sector of the Southern Ocean during February-March 2008

    Science.gov (United States)

    González-Dávila, M.; Santana-Casiano, J. M.; Fine, R. A.; Happell, J.; Delille, B.; Speich, S.

    2011-01-01

    Carbonate system variables were measured in the South Atlantic sector of the Southern Ocean along a transect from South Africa to the southern limit of the Antarctic Circumpolar Current (ACC) in February-March 2008. Eddies detach from retroflection of the Agulhas Current located north of the Subantarctic Front (SAF). The eddies increase the gradients observed at the fronts so that minima in fCO2 and maxima in pH in situ on either side of the frontal zone are observed, while within the frontal zone fCO2 reached maximum values and pH in situ was a minimum. Mixing at the frontal zones, in particular where cyclonic rings were located, brought up CO2-rich water (low pH and high nutrient) that spread out the fronts where recent biological production favored by the nutrient input increases the pH in situ and decreases the fCO2 levels. Vertical distributions of water masses were described by their carbonate system properties and their relationship to CFC concentrations. Upper Circumpolar Deep Water (UCDW) and Lower Circumpolar Deep Water (LCDW) had pHT,25 values of 7.56 and 7.61, respectively. UCDW also had higher concentrations of CFC-12 (>0.2 pmol kg-1) as compared to deeper waters, revealing the mixing with recently ventilated waters. Calcite and aragonite saturation states (Ω) were also affected by the presence of these two water masses with high carbonate concentration. Ωarag = 1 was observed at 1000 m in the subtropical area and north of the SAF. At the position of the Polar front and under the influence of UCDW and LCDW Ωarag = 1 deepen from 600 m to 1500 m at 50.37° S, and it reaches to 700 m south of 57.5° S. High latitudes are the most sensitive areas under future anthropogenic carbon increase. Buffer coefficients related to changes in [CO2], [H+] and Ω with changes in CT and AT showed the minimum values are found in the Antarctic Intermediate Water (AAIW), and UCDW layers. These coefficients suggest that a small increase in CT will sharply decrease the p

  20. The nepheloid bottom layer and water masses at the shelf break of the western Ross Sea

    Science.gov (United States)

    Capello, Marco; Budillon, Giorgio; Cutroneo, Laura; Tucci, Sergio

    2009-06-01

    In the austral summers of 2000/2001 and 2002/2003 the Italian CLIMA Project carried out two oceanographic cruises along the northwestern margin of the Ross Sea, where the Antarctic Bottom Water forms. Here there is an interaction between the water masses on the sea floor of the outer shelf and slope with a consequent evolution of benthic nepheloid layers and an increase in total particulate matter. We observed three different situations: (a) the presence of triads (bottom structures characterized by a concomitant jump in turbidity, temperature, and salinity data) and high re-suspension phenomena related to the presence of the Circumpolar Deep Water and its mixing with cold, salty shelf waters associated with gravity currents; (b) the absence of triads with high re-suspension, implying that when the gravity currents are no longer active the benthic nepheloid layer may persist until the suspended particles settle to the sea floor, suggesting that the turbidity data can be used to study recent gravity current events; and (c) the absence of turbidity and sediment re-suspension phenomena supports the theory that a steady situation had been re-established and the current interaction no longer occurred or had finished sometime before.

  1. Introduction of Mass Spectrometry in an First-Semester General Chemistry Laboratory Course: Quantification of Mtbe or Dmso in Water

    Science.gov (United States)

    Solow, Mike

    2004-01-01

    Quantification of a contaminant in water provides the first-year general chemistry students with a tangible application of mass spectrometry. The relevance of chemistry to assessing and solving environmental problems is highlighted for students when they perform mass spectroscopy experiments.

  2. Brief communication: The global signature of post-1900 land ice wastage on vertical land motion

    Directory of Open Access Journals (Sweden)

    R. E. M. Riva

    2017-06-01

    Full Text Available Melting glaciers, ice caps and ice sheets have made an important contribution to sea-level rise through the last century. Self-attraction and loading effects driven by shrinking ice masses cause a spatially varying redistribution of ocean waters that affects reconstructions of past sea level from sparse observations. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have been strongly varying through the last century, which implies that they should be properly modelled before interpreting and extrapolating recent observations of vertical land motion and sea-level change.

  3. Brief communication: The global signature of post-1900 land ice wastage on vertical land motion

    Science.gov (United States)

    Riva, Riccardo E. M.; Frederikse, Thomas; King, Matt A.; Marzeion, Ben; van den Broeke, Michiel R.

    2017-06-01

    Melting glaciers, ice caps and ice sheets have made an important contribution to sea-level rise through the last century. Self-attraction and loading effects driven by shrinking ice masses cause a spatially varying redistribution of ocean waters that affects reconstructions of past sea level from sparse observations. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have been strongly varying through the last century, which implies that they should be properly modelled before interpreting and extrapolating recent observations of vertical land motion and sea-level change.

  4. Modelling rapid mass movements using the shallow water equations in Cartesian coordinates

    Science.gov (United States)

    Hergarten, S.; Robl, J.

    2015-03-01

    We propose a new method to model rapid mass movements on complex topography using the shallow water equations in Cartesian coordinates. These equations are the widely used standard approximation for the flow of water in rivers and shallow lakes, but the main prerequisite for their application - an almost horizontal fluid table - is in general not satisfied for avalanches and debris flows in steep terrain. Therefore, we have developed appropriate correction terms for large topographic gradients. In this study we present the mathematical formulation of these correction terms and their implementation in the open-source flow solver GERRIS. This novel approach is evaluated by simulating avalanches on synthetic and finally natural topographies and the widely used Voellmy flow resistance law. Testing the results against analytical solutions and the proprietary avalanche model RAMMS, we found a very good agreement. As the GERRIS flow solver is freely available and open source, it can be easily extended by additional fluid models or source areas, making this model suitable for simulating several types of rapid mass movements. It therefore provides a valuable tool for assisting regional-scale natural hazard studies.

  5. Mass Transfer From Nonaqueous Phase Organic Liquids in Water-Saturated Porous Media

    Science.gov (United States)

    Geller, J. T.; Hunt, J. R.

    2010-01-01

    Results of dissolution experiments with trapped nonaqueous phase liquids (NAPLs) are modeled by a mass transfer analysis. The model represents the NAPL as isolated spheres that shrink with dissolution and uses a mass transfer coefficient correlation reported in the literature for dissolving spherical solids. The model accounts for the reduced permeability of a region of residual NAPL relative to the permeability of the surrounding clean media that causes the flowing water to partially bypass the residual NAPL. The dissolution experiments with toluene alone and a benzene-toluene mixture were conducted in a water-saturated column of homogeneous glass beads over a range of Darcy velocities from 0.5 to 10 m d−1. The model could represent the observed effluent concentrations as the NAPL underwent complete dissolution. The changing pressure drop across the column was predicted following an initial period of NAPL reconfiguration. The fitted NAPL sphere diameters of 0.15 to 0.40 cm are consistent with the size of NAPL ganglia observed by others and are the smallest at the largest flow velocity. PMID:20336189

  6. Vertical distribution of archaeal communities associated with anaerobic degradation of pentabromodiphenyl ether (BDE-99) in river-based groundwater recharge with reclaimed water.

    Science.gov (United States)

    Yan, Yulin; Ma, Mengsi; Liu, Xiang; Ma, Weifang; Li, Yangyao

    2018-02-01

    When groundwater is recharged with reclaimed water, the presence of trace amounts of biorefractory pentabromodiphenyl ether (PBDE, specifically BDE-99) might cause potential groundwater pollution. A laboratory-scale column was designed to investigate the distribution of the community of archaea in this scenario and the associated anaerobic degradation of BDE-99. The concentration of BDE-99 decreased significantly as soil depth increased, and fluorescence in situ hybridization (FISH) analysis suggested that archaea exerted significant effects on the biodegradation of PBDE. Through 454 pyrosequencing of 16s rRNA genes, we found that the distribution and structure of the archaeal community associated with anaerobic degradation of BDE-99 in the river-based aquifer media changed significantly between different soil depths. The primary debrominated metabolites varied with changes in the vertically distributed archaeal community. The archaea in the surface layer were dominated by Methanomethylovorans, and the middle layer was mainly composed of Nitrososphaera. Nitrosopumilus and Nitrososphaera were equally abundant in the bottom layer. In addition, Methanomethylovorans abundance depended on the depth of soil, and the relative abundance of Nitrosopumilus increased with increasing depth, which was associated with the oxidation-reduction potential and the content of intermediate metabolites. We propose that Nitrososphaera and Nitrosopumilus might be the key archaeal taxa mediating the biodegradation of BDE-99.

  7. Vertical-deformation, water-level, microgravity, geodetic, water-chemistry, and flow-rate data collected during injection, storage, and recovery tests at Lancaster, Antelope Valley, California, September 1995 through September 1998

    Science.gov (United States)

    Metzger, Loren F.; Ikehara, Marti E.; Howle, James F.

    2001-01-01

    A series of freshwater injection, storage, and recovery tests were conducted from September 1995 through September 1998 to evaluate the feasibility of artificially recharging ground water in the Lancaster area of the Antelope Valley, California. The tests used two production wells at a well field located in the southern part of the city of Lancaster. Monitoring networks were established at or in the vicinity of the test site to measure vertical deformation of the aquifer system, water-level fluctuations, land-surface deformation, water chemistry, and injection well flow rates during water injection and recovery. Data presented in this report were collected from a dual extensometer; 10 piezometers; 1 barometer; 27 active or abandoned production wells; 31 gravity stations; 124 bench marks; 1 permanent and 1 temporary continuous Global Positioning System (GPS) station; 3 tiltmeters; and 2 electromagnetic flowmeters from September 1995 through September 1998. This report discusses the location and design of the monitoring networks and the methods used to collect and process the data, and presents the data in tables and graphs.

  8. A consistent structure of phytoplankton communities across the warm-cold regions of the water mass on a meridional transect in the East/Japan Sea

    Science.gov (United States)

    Kwak, Jung Hyun; Han, Eunah; Lee, Sang Heon; Park, Hyun Je; Kim, Kyung-Ryul; Kang, Chang-Keun

    2017-09-01

    Three cruises were undertaken along a meridional transect in the East/Japan Sea (EJS) in spring (May 2007), summer (July 2009), and fall (October 2012) to determine the geographic variations in phytoplankton biomass and community composition. This study revealed a gradient of surface temperature and a fluctuation of hydrographic conditions along the transect. Although a subpolar front (SPF) formed between the warm- and cold-water masses (37-40°N), no significant differences in phytoplankton biomass and community composition were detected between the southern and northern parts of the EJS. These results disprove our initial hypothesis that different water masses may contain differently structured phytoplankton communities. In the present study, isothermal layers (≤ 12 °C) fluctuated over a depth of 50 m in both warm- and cold-water masses, depending on the SPF. In contrast, the nitracline (i.e. 2.5 μM nitrate isopleth) depth was recorded within a limited range of 20-40 m in spring, 30-50 m in summer, and 40-60 m in fall. The chlorophyll a concentrations at the subsurface chlorophyll maxima (SCM) were significantly higher in spring and summer (356 ± 233 and 270 ± 182 ng L-1, respectively) than in fall (117 ± 89 ng L-1). The relative contributions of individual phytoplankton groups to the depth-integrated chlorophyll a concentration conformed to the composition of the phytoplankton community in the SCM layer, showing a dominance of diatoms (58 ± 19% in spring, 48 ± 11% in summer, and 30 ± 20% in fall). Canonical correspondence analysis revealed that the geographic structures of phytoplankton communities were strongly associated with the vertical structures of water temperature and nutrient concentration in the water column rather than with horizontal gradients of hydrographic conditions. Finally, our findings suggest that water column stability and light-nutrient availability in the euphotic zone play a key role in determining geographical consistency of

  9. Water mass transformation in the Greenland Sea during the period 1986-2016

    Science.gov (United States)

    Brakstad, Ailin; Våge, Kjetil; Håvik, Lisbeth; Moore, Kent

    2017-04-01

    The Greenland Sea is among the few regions of the global ocean where deep convection, forming dense intermediate and deep water masses, takes place during winter. This process replenishes the deep ocean with oxygen and is important for maintaining its thermohaline properties. Several studies have documented significant changes in the convective activity in the Greenland Sea during the past few decades. In particular, the convection has been limited to the upper 2000 m since the cessation of deep and bottom convection in the 1980s. By analyzing historical hydrographic measurements from ships, autonomous profiling floats, and instrumented seals for the period 1986 to 2016, we find that a new, less dense class of intermediate water started forming in the Greenland Sea gyre in winters 1993-94 and 1994-95. The preceding winters were characterized by shallow (< 300 m) convection that resulted from a combination of anomalously fresh near-surface layers that increased the stability of the upper part of the water column and weak atmospheric forcing. The subsequent deeper convection marked the beginning of a pronounced change in the hydrographic structure of the upper 2000 m in the Greenland Sea that is still ongoing. Sensitivity studies, using a one-dimensional mixed-layer model, suggest that the deeper convection was primarily a result of reduced water column stability due to higher near-surface salinities. Since it first started forming in winter 1993-94, this less dense class of intermediate water has been the main product of convection in the Greenland Sea, and its volume has expanded in line with generally increased depths of convection over the past 10-15 years.

  10. Multicomponent mass transport model: a model for simulating migration of radionuclides in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Washburn, J.F.; Kaszeta, F.E.; Simmons, C.S.; Cole, C.R.

    1980-07-01

    This report presents the results of the development of a one-dimensional radionuclide transport code, MMT2D (Multicomponent Mass Transport), for the AEGIS Program. Multicomponent Mass Transport is a numerical solution technique that uses the discrete-parcel-random-wald (DPRW) method to directly simulate the migration of radionuclides. MMT1D accounts for: convection;dispersion; sorption-desorption; first-order radioactive decay; and n-membered radioactive decay chains. Comparisons between MMT1D and an analytical solution for a similar problem show that: MMT1D agrees very closely with the analytical solution; MMT1D has no cumulative numerical dispersion like that associated with solution techniques such as finite differences and finite elements; for current AEGIS applications, relatively few parcels are required to produce adequate results; and the power of MMT1D is the flexibility of the code in being able to handle complex problems for which analytical solution cannot be obtained. Multicomponent Mass Transport (MMT1D) codes were developed at Pacific Northwest Laboratory to predict the movement of radiocontaminants in the saturated and unsaturated sediments of the Hanford Site. All MMT models require ground-water flow patterns that have been previously generated by a hydrologic model. This report documents the computer code and operating procedures of a third generation of the MMT series: the MMT differs from previous versions by simulating the mass transport processes in systems with radionuclide decay chains. Although MMT is a one-dimensional code, the user is referred to the documentation of the theoretical and numerical procedures of the three-dimensional MMT-DPRW code for discussion of expediency, verification, and error-sensitivity analysis.

  11. Ownership relations and the right to water in the epoch of mass migrations

    Directory of Open Access Journals (Sweden)

    Nikolić Dušan Ž.

    2016-01-01

    and legal persons. This view, inter alia, is supported by different forms of public-private partnerships. The right of an immovable property owner to use the water resources could additionally be restricted by recognising the universal human right to water. Connected therewith, the legal theory abounds with dilemmas. The most prominent is the one concerning the existence of such a universal human right. Some authors argue that it does not exist, but that it has been emerging. Other writers contend that it is implicitly contained, id est, derived from the exiting human rights, whereas some take a stand that it is a sui generis right. The paper offers a comprehensive analyses of the documents adopted by the United Nations and the Council of Europe, jurisprudence of the European Court of Human Rights along with the regulation of the European Union and the Republic of Serbia on that matter. Introducing the universal human right to water has a special significance in the present time. There are two main reasons for that. The first one presents the possibility of horizontal application of human rights in civil law relations (constitutionalisation, which may cause narrowing of the ownership right in the interest of other persons. The second one are mass migrations triggered by climate change, global warming and water scarcity. In such circumstances, an adequate legal policy shall be identified, based on an all-encompassing scientific research, followed by adopting the corresponding regulation.

  12. Salinity maxima associated with some sub-surface water masses in the upper layers of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Varadachari, V.V.R.; Murty, C.S.; Reddy, C.V.G.

    The distribution of some sub-surface water masses in the western bay of Bengal during the south-west monsoon period is presented. Based on the salinity maxima and sigma t values the existence of waters of Persian Gulf and Red Sea origin could...

  13. Chemical mass transport between fluid fine tailings and the overlying water cover of an oil sands end pit lake

    Science.gov (United States)

    Dompierre, Kathryn A.; Barbour, S. Lee; North, Rebecca L.; Carey, Sean K.; Lindsay, Matthew B. J.

    2017-06-01

    Fluid fine tailings (FFT) are a principal by-product of the bitumen extraction process at oil sands mines. Base Mine Lake (BML)—the first full-scale demonstration oil sands end pit lake (EPL)—contains approximately 1.9 × 108 m3 of FFT stored under a water cover within a decommissioned mine pit. Chemical mass transfer from the FFT to the water cover can occur via two key processes: (1) advection-dispersion driven by tailings settlement; and (2) FFT disturbance due to fluid movement in the water cover. Dissolved chloride (Cl) was used to evaluate the water cover mass balance and to track mass transport within the underlying FFT based on field sampling and numerical modeling. Results indicated that FFT was the dominant Cl source to the water cover and that the FFT is exhibiting a transient advection-dispersion mass transport regime with intermittent disturbance near the FFT-water interface. The advective pore water flux was estimated by the mass balance to be 0.002 m3 m-2 d-1, which represents 0.73 m of FFT settlement per year. However, the FFT pore water Cl concentrations and corresponding mass transport simulations indicated that advection rates and disturbance depths vary between sample locations. The disturbance depth was estimated to vary with location between 0.75 and 0.95 m. This investigation provides valuable insight for assessing the geochemical evolution of the water cover and performance of EPLs as an oil sands reclamation strategy.

  14. Longevity of Mass-Produced Bactrocera tryoni (Diptera: Tephritidae) Held Without Food or Water.

    Science.gov (United States)

    Dominiak, Bernard C; Sundaralingam, Selliah; Jiang, Laura; Nicol, Helen I

    2014-12-01

    The sterile insect technique is used to manage or control fruit flies throughout the world. The technique relies on large scale production before delivery to release managers. As part of the mass production phase, there are many quality control tests to demonstrate and maintain high quality pupae and flies. One highly desirable characteristic is adults with a long life so that these adults can reach sexual maturity and sterile males mate with wild fertile flies in the field and thus produce no viable offspring. Originally longevity was assessed allowing adults to have unlimited access to food and water. As quality and longevity increased, this methodology added significantly to workload and space demands and many facilities moved to testing longevity under stress where no food or water was provided. Here we examined >27,000 Queensland fruit fly Bactrocera tryoni (Froggatt) from 160 weekly production batches from July 2004 to October 2009 where flies were not provided food or water. The mean longevity was 54.4 ± SE hours. Longevity was significantly shorter from August to March, and the longevity was significantly longer in June. Longevity was not related to pupal weight, contrary to expectations. Weights were significantly lower in June and highest in summer. © 2014 Entomological Society of America.

  15. A total internal reflection fluorescence microscopy study of mass diffusion enhancement in water-based alumina nanofluids

    Science.gov (United States)

    Veilleux, Jocelyn; Coulombe, Sylvain

    2010-11-01

    Mass diffusion of rhodamine 6G (R6G) in water-based alumina nanofluids is studied by means of total internal reflection fluorescence (TIRF) microscopy. We report a mass diffusivity enhancement that reaches an order of magnitude in a 2 vol % nanofluid when compared to the value in deionized water. Since experiments were performed with positively charged R6G, interfacial complexation between the dye and the nanoparticles was not observed. The effect of local density variations on mass diffusivity measurements is also addressed. An explanation for the enhancement of mass diffusion is presented using arguments based on dispersion, and it is shown that it correctly describes the order of magnitude differences between the thermal conductivity and mass diffusivity enhancements reported in the literature.

  16. Ice Generation and the Heat and Mass Transfer Phenomena of Introducing Water to a Cold Bath of Brine.

    Science.gov (United States)

    Yun, Xiao; Quarini, Giuseppe L

    2017-03-13

    We demonstrate a method for the study of the heat and mass transfer and of the freezing phenomena in a subcooled brine environment. Our experiment showed that, under the proper conditions, ice can be produced when water is introduced to a bath of cold brine. To make ice form, in addition to having the brine and water mix, the rate of heat transfer must bypass that of mass transfer. When water is introduced in the form of tiny droplets to the brine surface, the mode of heat and mass transfer is by diffusion. The buoyancy stops water from mixing with the brine underneath, but as the ice grows thicker, it slows down the rate of heat transfer, making ice more difficult to grow as a result. When water is introduced inside the brine in the form of a flow, a number of factors are found to influence how much ice can form. Brine temperature and concentration, which are the driving forces of heat and mass transfer, respectively, can affect the water-to-ice conversion ratio; lower bath temperatures and brine concentrations encourage more ice to form. The flow rheology, which can directly affect both the heat and mass transfer coefficients, is also a key factor. In addition, the flow rheology changes the area of contact of the flow with the bulk fluid.

  17. Gas chromatography-mass spectrometry with headspace for the analysis of volatile organic compounds in waste water.

    Science.gov (United States)

    Safarova, V I; Sapelnikova, S V; Djazhenko, E V; Teplova, G I; Shajdulina, G F; Kudasheva, F Kh

    2004-02-05

    Headspace analysis combined with high-resolution gas chromatography and detection by mass spectrometry was evaluated for the analysis of 53 volatile organic compounds (VOCs) in river waters, waste waters and treated water samples down to 0.1 microgl(-1) concentration levels. The conditions optimised included sample thermostatting time and temperature, autosampler parameters and the nature of salt, added to the sample. The pollutions origin and their seasonal rippling have been done. It was shown that the content of VOCs in river water mainly correlates to the content of these compounds in waste waters, which shows the anthropogenic character of the pollutions.

  18. Heat and Mass Transfer of Unsteady Hydromagnetic Free Convection Flow Through Porous Medium Past a Vertical Plate with Uniform Surface Heat Flux

    Science.gov (United States)

    El-Aziz, Mohamed Abd; Yahya, Aishah S.

    2017-09-01

    Simultaneous effects of thermal and concentration diffusions in unsteady magnetohydrodynamic free convection flow past a moving plate maintained at constant heat flux and embedded in a viscous fluid saturated porous medium is presented. The transport model employed includes the effects of thermal radiation, heat sink, Soret and chemical reaction. The fluid is considered as a gray absorbing-emitting but non-scattering medium and the Rosseland approximation in the energy equations is used to describe the radiative heat flux for optically thick fluid. The dimensionless coupled linear partial differential equations are solved by using Laplace transform technique. Numerical results for the velocity, temperature, concentration as well as the skin friction coefficient and the rates of heat and mass transfer are shown graphically for different values of physical parameters involved.

  19. Insights on Clusters Formation Mechanism by Time of Flight Mass Spectrometry. 1. The Case of Ethanol-Water Clusters

    Science.gov (United States)

    Li, Xinling; Wang, Xuan; Passaro, Maria dell'Arco; Spinelli, Nicola; Apicella, Barbara

    2015-07-01

    In the present work, water clusters with the addition of an electrophilic molecule such as ethanol have been studied by time of flight mass spectrometry (TOFMS). Mass distributions of molecular clusters of ethanol, water, and ethanol-water mixed clusters were obtained by two different ionization methods: electron ionization (EI) and picosecond laser photo-ionization (PI) at a wavelength of 355 nm. It was shown that short pulse laser ionization increases the signal intensity and promotes the extension of the detected mass range of the clusters in comparison with EI. Much larger clusters were detected in our experiments with respect to the current literature. The autocorrelation function (AF) was introduced in the analysis of the composition of the water clusters in terms of fundamental periodicities for obtaining information on clusters formation mechanisms. Besides, it was found that ethanol molecules are capable of substitutional interaction with hydrogen-bonded water clusters in ethanol-water binary mixtures but the self-association of ethanol was the dominant process. Moreover, the increase of ethanol concentration promotes both the formation of hydrated ethanol clusters and the self-association of ethanol clusters in ethanol-water binary mixtures. The formation of water-rich clusters and subsequent metastable fragmentation were found to be the dominant processes determining the water-rich cluster distribution, irrespective of the ionization process, while the ionization process significantly affects the ethanol-rich cluster distribution.

  20. 33 CFR 118.85 - Lights on vertical lift bridges.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of the...

  1. Determination of seven pyrethroids and six pyrethrins in water by liquid chromatography/mass spectrometry

    Science.gov (United States)

    ccanccapa, alexander; Masia, Ana; Pico, Yolanda

    2016-04-01

    Pyrethroids are the synthetic analogues of pyrethrins which were developed as pesticides from the extracts of dried and powdered flower heads of Chrysanthemum cinerariaefolium. They are increasingly used in agriculture due to their broad biological activity and slow development of pest resistance. Contamination of fresh-water ecosystems appears either because of the direct discharge of industrial and agricultural effluents or as a result of effluents from sewage treatment works; residues can thus accumulate in the surrounding biosphere [1, 2]. These substances, mostly determined by gas chromatography mass spectrometry (GC-MS) can be difficult to analyse due to their volatility and degradability. The purpose of this study is, as an alternative, to develop a fast and sensitive multi-residue method for the target analysis of 7 pyrethroids and the 6 natural pyrethrins currently used in water samples by liquid chromatography tandem mass spectrometry (LC-MS/MS). The compounds included in the study were acrinathrin, etofenprox, cyfluthrin, esfenvalerate, cyhalothrin, cypermethrin and flumethrin as pyrethroids and a commercial mix of pyrethrins containing Cinerin I, Jasmolin I, pyrethrin I, cinerin II, jasmolin II, pyrethrins II in different percentages. As a preliminary step, the ionization and fragmentation of the compounds were optimized injecting individual solutions of each analyte at 10 ppm in the system, using a gradient elution profile of water-methanol both with 10 mM ammonium formate. The ESI conditions were: capillary voltage 4000 V, nebulizer15 psi, source temperature 300◦C and gas flow 10 L min-1. [M+H]+, [M+Na]+ ,[M+NH3]+ ,[M+NH4+]+ were tested as precursor ions. The most intense signal was for ammonium adduct for all compounds. The optimal fragmentor range for product ions were between 20 to 80 ev and the collision energy ranged between 5 to 86 ev. The efficiency of the method was tested in water samples from Turia River without any known exposure to

  2. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    Science.gov (United States)

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  3. Mass fractionation during transonic escape and implications for loss of water from Mars and Venus

    Science.gov (United States)

    Zahnle, Kevin J.; Kasting, James F.

    1986-01-01

    Hydrodynamic escape of hydrogen from a planetary atmosphere can remove heavier gases as well as hydrogen, provided that the escape rate is sufficiently large. Analytic approximations for the degree of mass fractionation of a trace species during hydrodynamic escape are compared with accurate numerical solutions for the case of transonic outflow. The analytic approximations are most accurate when the ratio of molecular weights of the heavier and lighter constituents is large so that nonlinear terms in the momentum equation for the heavy constituent become small. The simplest analytic formula is readily generalized to the case where a heavy constituent is also a major species. Application of the generalized formula to hypothetical episodes of hydrodynamic escape from Venus and Mars suggests that both hydrogen and oxygen could have escaped; thus, substantial quantities of water may have been lost without the need to oxidize large amounts of the crust.

  4. Green-energy, water-autonomous greenhouse system: an alternative-technology approach towards sustainable smart-green vertical greening in smart cities

    OpenAIRE

    Paiyao, Hung; Kuanghui, Peng

    2017-01-01

    By means of “going greener”, “getting smarter” and “converging smart-green”, an innovation-driven smart city could address the steps toward more sustainability and aim toward improved human well-being. A vertical greening means a vertical triumph of greenery in a high density urban area, in some ways it displays the level of smartness and greenness in a city. Researchers have suggested the use of vertical greening in urban areas to improve sustainability of the environment. However, conventio...

  5. Reconciling satellite aerosol optical thickness and surface fine particle mass through aerosol liquid water: ALW AND AOT

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thien Khoi V. [Department of Environmental Sciences, Rutgers University, New Brunswick New Jersey USA; Ghate, Virendra P. [Environmental Science Division, Argonne National Laboratory, Argonne Illinois USA; Carlton, Annmarie G. [Department of Chemistry, University of California, Irvine California USA

    2016-11-22

    Summertime aerosol optical thickness (AOT) over the Southeast U.S. is sharply enhanced over wintertime values. This seasonal pattern is unique and of particular interest because temperatures there have not warmed over the past 100 years. Patterns in surface fine particle mass are inconsistent with satellite reported AOT. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with particle mass measurements at the surface by examining trends in aerosol liquid water (ALW), a particle constituent that scatters radiation affecting the satellite AOT, but is removed in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIAv2.1 to estimate ALW mass concentrations at IMRPOVE sites using measured ion mass concentrations and NARR meteorological data. Our findings suggest ALW provides a plausible explanation for the geographical and seasonal patterns in AOT and can reconcile previously noted discrepancies with surface mass measurements.

  6. Distribution and mass inventory of total dichlorodiphenyldichloroethylene in the water column of the southern California bight.

    Science.gov (United States)

    Zeng, Eddy Y; Tsukada, David; Diehl, Dario W; Peng, Jian; Schiff, Kenneth; Noblet, James A; Maruya, Keith A

    2005-11-01

    A large-scale survey on the area and depth stratified distribution of dichlorodiphenyltrichloroethane (DDT; mainly p,p'- and o,p'-dichlorodiphenyldichloroethylene (DDE)) contamination in the water column of the Southern California Bight (SCB) was conducted in 2003-2004 using a solid-phase microextraction-based sampling technique. Dissolved-phase DDEs were clearly widespread, with the central SCB containing the highest levels, and the Palos Verdes Shelf sediments have remained the dominant source of DDT compounds to the SCB. The p,p'- and o,p'-DDE concentrations ranged from Verdes Shelf to other areas via a repeated process of sediment resuspension/deposition and short-range advection. Total mass inventories were estimated at 14 and 0.86 kg for p,p'- and o,p'-DDE, respectively, for the sampled area, resulting in p,p'- and o,p'-DDE mass inventories for the entire SCB of 230 and 14 kg, respectively. Furthermore, total fluxes of p,p'-DDE were estimated to be in the range of 0.8 to 2.3 metric tons per year. These results suggest that the SCB has been and continues to be a significant source of DDT contamination to the global oceans.

  7. Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze drying.

    Science.gov (United States)

    Gieseler, Henning; Kessler, William J; Finson, Michael; Davis, Steven J; Mulhall, Phillip A; Bons, Vincent; Debo, David J; Pikal, Michael J

    2007-07-01

    The goal of this work was to demonstrate the use of Tunable Diode Laser Absorption Spectroscopy (TDLAS) as a noninvasive method to continuously measure the water vapor concentration and the vapor flow velocity in the spool connecting a freeze-dryer chamber and condenser. The instantaneous measurements were used to determine the water vapor mass flow rate (g/s). The mass flow determinations provided a continuous measurement of the total amount of water removed. Full load runs of pure water at different pressure and shelf temperature settings and a 5% (w/w) mannitol product run were performed in both laboratory and pilot scale freeze dryers. The ratio of "gravimetric/TDLAS" measurements of water removed was 1.02 +/- 0.06. A theoretical heat transfer model was used to predict the mass flow rate and the model results were compared to both the gravimetric and TDLAS data. Good agreement was also observed in the "gravimetric/TDLAS" ratio for the 5% mannitol runs dried in both freeze dryers. The endpoints of primary and secondary drying for the product runs were clearly identified. Comparison of the velocity and mass flux profiles between the laboratory and pilot dryers indicated a higher restriction to mass flow for the lab scale freeze dryer. Copyright 2007 Wiley-Liss, Inc.

  8. Seasonal spreading of the Persian Gulf water mass in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Prasad, T.G.; Ikeda, M.; PrasannaKumar, S.

    accounts for changes in the characteristics of PGW along these paths. Associated with the Findlater Jet during summer, the entire thermohaline structure is vertically displaced along the coasts of Somalia and Arabia. Ekman convergence in the central Arabian...

  9. Similar muscles contribute to horizontal and vertical acceleration of center of mass in forward and backward walking: implications for neural control.

    Science.gov (United States)

    Jansen, Karen; De Groote, Friedl; Massaad, Firas; Meyns, Pieter; Duysens, Jacques; Jonkers, Ilse

    2012-06-01

    Leg kinematics during backward walking (BW) are very similar to the time-reversed kinematics during forward walking (FW). This suggests that the underlying muscle activation pattern could originate from a simple time reversal, as well. Experimental electromyography studies have confirmed that this is the case for some muscles. Furthermore, it has been hypothesized that muscles showing a time reversal should also exhibit a reversal in function [from accelerating the body center of mass (COM) to decelerating]. However, this has not yet been verified in simulation studies. In the present study, forward simulations were used to study the effects of muscles on the acceleration of COM in FW and BW. We found that a reversal in function was indeed present in the muscle control of the horizontal movement of COM (e.g., tibialis anterior and gastrocnemius). In contrast, muscles' antigravity contributions maintained their function for both directions of movement. An important outcome of the present study is therefore that similar muscles can be used to achieve opposite functional demands at the level of control of the COM when walking direction is reversed. However, some muscles showed direction-specific contributions (i.e., dorsiflexors). We concluded that the changes in muscle contributions imply that a simple time reversal would be insufficient to produce BW from FW. We therefore propose that BW utilizes extra elements, presumably supraspinal, in addition to a common spinal drive. These additions are needed for propulsion and require a partial reconfiguration of lower level common networks.

  10. Salinity minima, water masses and surface circulation in the Eastern Tropical Pacific off Mexico and surrounding areas

    Science.gov (United States)

    Portela, Esther; Beier, Emilio; Godínez, Victor; Castro, Rubén; Desmond Barton, Eric

    2016-04-01

    The seasonal variations of the water masses and their interactions are analyzed in the Tropical Pacific off Mexico (TPOM) and four contiguous areas of on the basis of new extensive hydrographic database. The regional water masses intervals are redefined in terms of Absolute Salinity (SA) in g kg-1 and Conservative Temperature (Θ) according to TEOS - 10. The California Current System Water (CCSW) mass is introduced as an improved description of the former California Current Water (CCW) together with the Subarctic Water (SAW) to describe better the characteristics of the components of the California Current System. Hydrographic data, Precipitation-Evaporation balance and geostrophic currents were used to investigate the origin and seasonality of two salinity minima in the area. The shallow salinity minimum of around 33.5 g kg-1 originated in the California Current System and became saltier but less dense water as it traveled to the southeast. It can be identified as a mixture of CCSW and tropical waters. The surface salinity minimum of 32 - 33 g kg-1 was seen as a sharp surface feature in the TPOM from August to November. It was produced by the arrival of tropical waters from the south in combination with the net precipitation in the area during these months. This result provides new evidence of the presence of the poleward-flowing Mexican Coastal Current and, for the first time, of its seasonal pattern of variation.

  11. Estimating ground-water inflow to lakes in central Florida using the isotope mass-balance approach

    Science.gov (United States)

    Sacks, Laura A.

    2002-01-01

    The isotope mass-balance approach was used to estimate ground-water inflow to 81 lakes in the central highlands and coastal lowlands of central Florida. The study area is characterized by a subtropical climate and numerous lakes in a mantled karst terrain. Ground-water inflow was computed using both steady-state and transient formulations of the isotope mass-balance equation. More detailed data were collected from two study lakes, including climatic, hydrologic, and isotopic (hydrogen and oxygen isotope ratio) data. For one of these lakes (Lake Starr), ground-water inflow was independently computed from a water-budget study. Climatic and isotopic data collected from the two lakes were similar even though they were in different physiographic settings about 60 miles apart. Isotopic data from all of the study lakes plotted on an evaporation trend line, which had a very similar slope to the theoretical slope computed for Lake Starr. These similarities suggest that data collected from the detailed study lakes can be extrapolated to the rest of the study area. Ground-water inflow computed using the isotope mass-balance approach ranged from 0 to more than 260 inches per year (or 0 to more than 80 percent of total inflows). Steady-state and transient estimates of ground-water inflow were very similar. Computed ground-water inflow was most sensitive to uncertainty in variables used to calculate the isotopic composition of lake evaporate (isotopic compositions of lake water and atmospheric moisture and climatic variables). Transient results were particularly sensitive to changes in the isotopic composition of lake water. Uncertainty in ground-water inflow results is considerably less for lakes with higher ground-water inflow than for lakes with lower ground-water inflow. Because of these uncertainties, the isotope mass-balance approach is better used to distinguish whether ground-water inflow quantities fall within certain ranges of values, rather than for precise

  12. Tribocorrosion in pressurized high temperature water: a mass flow model based on the third body approach

    Energy Technology Data Exchange (ETDEWEB)

    Guadalupe Maldonado, S.

    2014-07-01

    Pressurized water reactors (PWR) used for power generation are operated at elevated temperatures (280-300 °C) and under higher pressure (120-150 bar). In addition to these harsh environmental conditions some components of the PWR assemblies are subject to mechanical loading (sliding, vibration and impacts) leading to undesirable and hardly controllable material degradation phenomena. In such situations wear is determined by the complex interplay (tribocorrosion) between mechanical, material and physical-chemical phenomena. Tribocorrosion in PWR conditions is at present little understood and models need to be developed in order to predict component lifetime over several decades. The goal of this project, carried out in collaboration with the French company AREVA NP, is to develop a predictive model based on the mechanistic understanding of tribocorrosion of specific PWR components (stainless steel control assemblies, stellite grippers). The approach taken here is to describe degradation in terms of electro-chemical and mechanical material flows (third body concept of tribology) from the metal into the friction film (i.e. the oxidized film forming during rubbing on the metal surface) and from the friction film into the environment instead of simple mass loss considerations. The project involves the establishment of mechanistic models for describing the single flows based on ad-hoc tribocorrosion measurements operating at low temperature. The overall behaviour at high temperature and pressure in investigated using a dedicated tribometer (Aurore) including electrochemical control of the contact during rubbing. Physical laws describing the individual flows according to defined mechanisms and as a function of defined physical parameters were identified based on the obtained experimental results and from literature data. The physical laws were converted into mass flow rates and solved as differential equation system by considering the mass balance in compartments

  13. The potential of sedimentary foraminiferal rare earth element patterns to trace water masses in the past

    Science.gov (United States)

    Osborne, Anne H.; Hathorne, Ed C.; Schijf, Johan; Plancherel, Yves; Böning, Philipp; Frank, Martin

    2017-04-01

    Dissolved rare earth element (REE) concentration data from intermediate and deep seawater form an array characterized by higher middle-REE enrichments (MREE/MREE*) in the North Atlantic and a progressive increase in heavy-to-light REE ratios (HREE/LREE) as water masses age. The REEs in foraminifera are fractionated toward higher MREE/MREE* and lower HREE/LREE relative to seawater. Calculations based on a scavenging model show that the REE patterns in uncleaned core-top foraminifera resemble those adsorbed onto calcite, particulate organic material, and hydrous ferric oxides but the full extent of the REE fractionation measured in foraminifera was not reproduced by the model. However, differences in the HREE/LREE and MREE/MREE* ratios and the cerium anomaly between ocean basins are preserved and are in agreement with the seawater REE distribution. Under oxic conditions, the HREE/LREE and MREE/MREE* compositions of uncleaned foraminifera at the sediment/seawater boundary are preserved during burial but the cerium anomaly is sensitive to burial depth. In suboxic sedimentary environments, all uncleaned foraminiferal REE concentrations are elevated relative to core-top values indicating addition of REEs from pore waters. The HREE/LREE ratio is highest when sedimentation rates were greatest and when high Fe/Ca ratios in the uncleaned foraminifera indicate that Fe was mobile. In sediments that have not experienced suboxic conditions during burial, uncleaned foraminifera preserve the seawater signal taken up at the sediment/seawater interface and are therefore suggested to be a suitable archive of changes in the REE signal of past bottom waters.

  14. Sacrococcygeal teratoma excision: a vertical rather than transverse ...

    African Journals Online (AJOL)

    2017-04-07

    Apr 7, 2017 ... (a) Pelvic MRI (axial T2WI) showing the mass displacing the anorectum. (black arrow). (b) The patient placed in the prone (face down) position. (c) Dissection of the mass off the rectum. (d) After excision of the mass, the pelvic floor muscles are closed vertically in the midline from below upwards. (e) Vertical ...

  15. Application of a contaminant mass balance method at an old landfill to assess the impact on water resources

    DEFF Research Database (Denmark)

    Thomsen, Nanna Isbak; Milosevic, Nemanja; Bjerg, Poul Løgstrup

    2012-01-01

    linking soil and groundwater contamination to surface water pollution are required. This paper presents a method which provides an estimate of the contaminant mass discharge, using a combination of a historical investigation and contaminant mass balance approach. The method works at the screening level......Old and unlined landfill sites pose a risk to groundwater and surface water resources. While landfill leachate plumes in sandy aquifers have been studied, landfills in clay till settings and their impact on receiving water bodies are not well understood. In addition, methods for quantitatively...... of chloride to the small Risby Stream down gradient of the landfill was approximately 31kg/year. The contaminant mass balance method worked well for chloride and dissolved organic carbon, but the uncertainties were elevated for ammonium due to substantial spatial variability in the source composition...

  16. Influence of dissolved humic substances on the mass transfer of organic compounds across the air-water interface.

    Science.gov (United States)

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-01-01

    The effect of dissolved humic substances (DHS) on the rate of water-gas exchange of two volatile organic compounds was studied under various conditions of agitation intensity, solution pH and ionic strength. Mass-transfer coefficients were determined from the rate of depletion of model compounds from an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution (dynamic system). Under these conditions, the overall transfer rate is controlled by the mass-transfer resistance on the water side of the water-gas interface. The experimental results show that the presence of DHS hinders the transport of the organic molecules from the water into the gas phase under all investigated conditions. Mass-transfer coefficients were significantly reduced even by low, environmentally relevant concentrations of DHS. The retardation effect increased with increasing DHS concentration. The magnitude of the retardation effect on water-gas exchange was compared for Suwannee River fulvic and humic acids, a commercially available leonardite humic acid and two synthetic surfactants. The observed results are in accordance with the concept of hydrodynamic effects. Surface pressure forces due to surface film formation change the hydrodynamic characteristics of water motion at the water-air interface and thus impede surface renewal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Modeling coupled heat and mass transfer during drying in tape casting with a simple ceramics-water system

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Hattel, Jesper

    2016-01-01

    process of thin sheets produced by the tape casting process. The rate of mass loss in the drying process is a key factor that often is of interest, as it affects the final properties of the tapes. The 1D heat conduction equation is solved numerically to obtain the temperature field in a ceramic sheet...... dominant since the fraction of water approaches zero. The developed model is used to simulate a simple test for the drying process. The drying rate is simply calculated by examining the water content in each time step. It is found that the mass loss due to the evaporation is increasing close to linearly...

  18. Investigation of the coolability of a continuous mass of relocated debris to a water-filled lower plenum. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Wolf, J.R.; Chavez, S.A.; Condie, K.G.; Hagrman, D.L.; Carmack, W.J.

    1994-09-01

    This report documents work performed to support the development of an analytical and experimental program to investigate the coolability of a continuous mass of debris that relocates to a water-filled lower plenum. The objective of this program is to provide an adequate data base for developing and validating a model to predict the coolability of a continuous mass of debris relocating to a water-filled lower plenum. The model must address higher pressure scenarios, such as the TMI-2 accident, and lower pressure scenarios, which recent calculations indicate are more likely for most operating LWR plants. The model must also address a range of possible debris compositions.

  19. Water deuterium fractionation in the low-mass protostar NGC1333-IRAS2A

    Science.gov (United States)

    Liu, F.-C.; Parise, B.; Kristensen, L.; Visser, R.; van Dishoeck, E. F.; Güsten, R.

    2011-03-01

    Context. Although deuterium enrichment of water may provide an essential piece of information in the understanding of the formation of comets and protoplanetary systems, only a few studies up to now have aimed at deriving the HDO/H2O ratio in low-mass star forming regions. Previous studies of the molecular deuteration toward the solar-type class 0 protostar, IRAS 16293-2422, have shown that the D/H ratio of water is significantly lower than other grain-surface-formed molecules. It is not clear if this property is general or particular to this source. Aims: In order to see if the results toward IRAS 16293-2422 are particular, we aimed at studying water deuterium fractionation in a second low-mass solar-type protostar, NGC1333-IRAS2A. Methods: Using the 1-D radiative transfer code RATRAN, we analyzed five HDO transitions observed with the IRAM 30 m, JCMT, and APEX telescopes. We assumed that the abundance profile of HDO in the envelope is a step function, with two different values in the inner warm (T > 100 K) and outer cold (T < 100 K) regions of the protostellar envelope. Results: The inner and outer abundance of HDO is found to be well constrained at the 3σ level. The obtained HDO inner and outer fractional abundances are xHDO_in = 6.6 × 10-8-1.0 × 10-7(3σ) and x^{HDO}out=9×10-11= 9 × 10-11-1.0-1.8 × 10-9(3σ). These values are close to those in IRAS 16293-2422, which suggests that HDO may be formed by the same mechanisms in these two solar-type protostars. Taking into account the (rather poorly onstrained) H2O abundance profile deduced from Herschel observations, the derived HDO/H2O in the inner envelope is ≥1% and in the outer envelope it is 0.9%-18%. These values are more than one order of magnitude higher than what is measured in comets. If the same ratios apply to the protosolar nebula, this would imply that there is some efficient reprocessing of the material between the protostellar and cometary phases. Conclusions: The H2O inner fractional

  20. Acquired vertical accommodative vergence.

    Science.gov (United States)

    Klein-Scharff, Ulrike; Kommerell, Guntram; Lagrèze, Wolf A

    2008-03-08

    Vertical accommodative vergence is an unusual synkinesis in which vertical vergence is modulated together with accommodation. It results from a supranuclear miswiring of the network normally conveying accommodative convergence. So far, it is unknown whether this condition is congenital or acquired. We identified an otherwise healthy girl who gradually developed vertical accommodative vergence between five to 13 years of age. Change of accommodation by 3 diopters induced a vertical vergence of 10 degrees. This observation proves that the miswiring responsible for vertical accommodative vergence must not necessarily be congenital, but can be acquired. The cause and the mechanism leading to vertical accommodative vergence are yet unknown.

  1. Analysis of antithyroid drugs in surface water by using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Pérez-Fernández, Virginia; Marchese, Stefano; Gentili, Alessandra; García, María Ángeles; Curini, Roberta; Caretti, Fulvia; Perret, Daniela

    2014-11-07

    This paper describes development and validation of a new method for the simultaneous determination of six antithyroid drugs (ATDs) in surface waters by using liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS). Target compounds include two ATD classes: thiouracil derivatives (thiouracil (TU), methyl-thiouracil (MTU), propyl-thiouracil (PTU), phenyl-thiouracil (PhTU)) and imidazole derivatives (tapazole (TAP), and mercaptobenzimidazole (MBI)). Sensitivity and selectivity of the LC-multiple reaction monitoring (MRM) analysis allowed applying a simple pre-concentration procedure and "shooting" the concentrated sample into the LC-MS/MS system without any other treatment. Recoveries were higher than 75% for all analytes. Intra-day precision and inter-day precision, calculated as relative standard deviation (RSD), were below 19 and 22%, respectively. Limits of detection (LODs) ranged from 0.05 to 0.25 μg/L; limits of quantitation (LOQs) varied between 0.15 and 0.75 μg/L. The validated method was successfully applied to the analysis of ATD residues in surface water samples collected from the Tiber River basin and three lakes of Lazio (central Italy). The analytes were quantified based on matrix-matched calibration curves with mercaptobenzimidazole-d4 (MBI-d4) as the internal standard (IS). The most widespread compound was TAP, one of the most common ATDs used in human medicine, but also TU and MBI were often detected in the analysed samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Water in low-mass star-forming regions with Herschel . HIFI spectroscopy of NGC 1333

    Science.gov (United States)

    Kristensen, L. E.; Visser, R.; van Dishoeck, E. F.; Yıldız, U. A.; Doty, S. D.; Herczeg, G. J.; Liu, F.-C.; Parise, B.; Jørgensen, J. K.; van Kempen, T. A.; Brinch, C.; Wampfler, S. F.; Bruderer, S.; Benz, A. O.; Hogerheijde, M. R.; Deul, E.; Bachiller, R.; Baudry, A.; Benedettini, M.; Bergin, E. A.; Bjerkeli, P.; Blake, G. A.; Bontemps, S.; Braine, J.; Caselli, P.; Cernicharo, J.; Codella, C.; Daniel, F.; de Graauw, Th.; di Giorgio, A. M.; Dominik, C.; Encrenaz, P.; Fich, M.; Fuente, A.; Giannini, T.; Goicoechea, J. R.; Helmich, F.; Herpin, F.; Jacq, T.; Johnstone, D.; Kaufman, M. J.; Larsson, B.; Lis, D.; Liseau, R.; Marseille, M.; McCoey, C.; Melnick, G.; Neufeld, D.; Nisini, B.; Olberg, M.; Pearson, J. C.; Plume, R.; Risacher, C.; Santiago-García, J.; Saraceno, P.; Shipman, R.; Tafalla, M.; Tielens, A. G. G. M.; van der Tak, F.; Wyrowski, F.; Beintema, D.; de Jonge, A.; Dieleman, P.; Ossenkopf, V.; Roelfsema, P.; Stutzki, J.; Whyborn, N.

    2010-10-01

    Water In Star-forming regions with Herschel” (WISH) is a key programme dedicated to studying the role of water and related species during the star-formation process and constraining the physical and chemical properties of young stellar objects. The Heterodyne Instrument for the Far-Infrared (HIFI) on the Herschel Space Observatory observed three deeply embedded protostars in the low-mass star-forming region NGC 1333 in several H_216O, H_218O, and CO transitions. Line profiles are resolved for five H_216O transitions in each source, revealing them to be surprisingly complex. The line profiles are decomposed into broad (>20 km s-1), medium-broad (~5-10 km s-1), and narrow (20 km s-1), indicating that its physical origin is the same as for the broad H_216O component. In one of the sources, IRAS4A, an inverse P Cygni profile is observed, a clear sign of infall in the envelope. From the line profiles alone, it is clear that the bulk of emission arises from shocks, both on small (⪉1000 AU) and large scales along the outflow cavity walls (~10 000 AU). The H2O line profiles are compared to CO line profiles to constrain the H2O abundance as a function of velocity within these shocked regions. The H2O/CO abundance ratios are measured to be in the range of ~0.1-1, corresponding to H2O abundances of ~10-5-10-4 with respect to H2. Approximately 5-10% of the gas is hot enough for all oxygen to be driven into water in warm post-shock gas, mostly at high velocities. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Tables 2 and 3 (page 6) are only available in electronic form at http://www.aanda.org

  3. Climate and Water Contents on Rocky Planets Near the Inner Boundary of Habitable Zones (IHZ) Around Low Mass Star

    Science.gov (United States)

    Bin, Jiayu; Tian, Feng

    2017-04-01

    Exoplanets around low mass stars are the focus of the search for habitable exoplanets. Previous general circulation models (GCM) studied the locations of the IHZ around stars with effective temperature from 3300 to 4500K (Yang et al. 2014, Kopparapu et al. 2016). However, water vapor mixing ratios at 3 hPa pressure level do not satisfy what is required for scenarios of rapid water loss in the "last converged solution" for stars cooler than 4000 K. In this work we use the Community Earth System Model (CESM) to investigate the IHZ problem for low mass stars. The model includes atmospheres with 1 bar of N2, 1 ppm of CO2, and slab oceans with thermodynamic sea ice. Rotation period is determined by the mass and luminosity of the star and planet orbital distance. Black body spectra of low mass stars are used to obtain top-of-atmosphere incident short wavelength radiation. Our model results are qualitatively consistent but quantitatively different from those in earlier works. Specifically, water vapor mixing ratios required by rapid water loss are found at 3 hPa for hosts star warmer than 3650 K.

  4. Investigating the permeability of fractured rock masses and the origin of water in a mine tunnel in Shandong Province, China.

    Science.gov (United States)

    Guo, Jie; Zhao, Haijun; Ma, Fengshan; Li, Kepeng; Zhao, Chunhu

    2015-01-01

    The coastal Sanshandao mine is threatened by the overlying Quaternary water and seawater. Following an introduction to the geology and hydrogeological conditions in the mine area, a detailed hydrogeological survey and sampling were conducted and hydrochemical and stable isotopic (δ2H and δ18O) tests on various waters were carried out to characterize the origin of water in the mine tunnels. Investigation and statistical analysis indicated that the northwest-trending fractures with large dip angles and long trace lengths are well developed in the northeast compared with those in the southwest of the mine. The permeability coefficients of the rock masses are in the range 4.19×10(-8)-2.25×10(-5) m/s, indicating that the fractured rock masses have generally low permeability. The seepage water had higher values of EC, total dissolved solids, and concentrations of most elements than the seawater and saline groundwater. Besides, the isotope composition of the waters indicated that the seepage water was more isotopically enriched than seawater but less than brine. The proportions of the three different sources were calculated based on hydrochemical and isotopic analyses. Overall, the mine water was composed of 72% seawater, 14.8% brine, and 13.2% atmospheric precipitation, respectively. Therefore, some preventive measures are essential to avoid the probability of seawater inrush.

  5. Determination of Endocrine Disrupting Compounds in surface waters by means of chromatographic techniques coupled to mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. Di Carro

    2011-01-01

    Full Text Available Two analytical methods were developed to study five endocrine disrupting compounds (4-n-nonylphenol, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol in waters. One method includes a fast liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS analysis, while the second comprise a Stir Bar Sorptive Extraction (SBSE followed by a headspace derivatization and gaschromatography-mass spectrometry (GC-MS analysis. Passive samplers POCIS (Polar Organic Chemical Integrative Samplers were used as sampling and preconcentration steps in order to reach the very low levels of the analytes in environmental waters. Both methods were then applied to the determination of the analytes in different water samples.

  6. Flow Boiling Heat Transfer in Two-Phase Micro Channel Heat Sink at Low Water Mass Flux

    Science.gov (United States)

    Kuznetsov, Vladimir V.; Shamirzaev, Alisher S.

    2009-08-01

    Boiling heat transfer at water flow with low mass flux in heat sink which contained rectangular microchannels was studied. The stainless steel heat sink contained ten parallel microchannels with a size of 640 × 2050 μm in cross-section with typical wall roughness of 10-15 μm. The local flow boiling heat transfer coefficients were measured at mass velocity of 17 and 51 kg/m2s, heat flux on 30 to 150 kW/m2 and vapor quality of up to 0.8 at pressure in the channels closed to atmospheric one. It was observed that Kandlikar nucleate boiling correlation is in good agreement with the experimental data at mass flow velocity of 85 kg/m2s. At smaller mass flux the Kandlikar model and Zhang, Hibiki and Mishima model demonstrate incorrect trend of heat transfer coefficients variation with vapor quality.

  7. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  8. Occurrence and simulation of trihalomethanes in swimming pool water: A simple prediction method based on DOC and mass balance.

    Science.gov (United States)

    Peng, Di; Saravia, Florencia; Abbt-Braun, Gudrun; Horn, Harald

    2016-01-01

    Trihalomethanes (THM) are the most typical disinfection by-products (DBPs) found in public swimming pool water. DBPs are produced when organic and inorganic matter in water reacts with chemical disinfectants. The irregular contribution of substances from pool visitors and long contact time with disinfectant make the forecast of THM in pool water a challenge. In this work occurrence of THM in a public indoor swimming pool was investigated and correlated with the dissolved organic carbon (DOC). Daily sampling of pool water for 26 days showed a positive correlation between DOC and THM with a time delay of about two days, while THM and DOC didn't directly correlate with the number of visitors. Based on the results and mass-balance in the pool water, a simple simulation model for estimating THM concentration in indoor swimming pool water was proposed. Formation of THM from DOC, volatilization into air and elimination by pool water treatment were included in the simulation. Formation ratio of THM gained from laboratory analysis using native pool water and information from field study in an indoor swimming pool reduced the uncertainty of the simulation. The simulation was validated by measurements in the swimming pool for 50 days. The simulated results were in good compliance with measured results. This work provides a useful and simple method for predicting THM concentration and its accumulation trend for long term in indoor swimming pool water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Modeling the source contribution of heavy metals in surficial sediment and analysis of their historical changes in the vertical sediments of a drinking water reservoir

    Science.gov (United States)

    Wang, Guoqiang; A, Yinglan; Jiang, Hong; Fu, Qing; Zheng, Binghui

    2015-01-01

    Increasing water pollution in developing countries poses a significant threat to environmental health and human welfare. Understanding the spatial distribution and apportioning the sources of pollution are important for the efficient management of water resources. In this study, ten types of heavy metals were detected during 2010-2013 for all ambient samples and point sources samples. A pollution assessment based on the surficial sediment dataset by Enrichment Factor (EF) showed the surficial sediment was moderately contaminated. A comparison of the multivariate approach (principle components analysis/absolute principle component score, PCA/APCS) and the chemical mass balance model (CMB) shows that the identification of sources and calculation of source contribution based on the CMB were more objective and acceptable when source profiles were known and source composition was complex. The results of source apportionment for surficial heavy metals, both from PCA/APCS and CMB model, showed that the natural background (30%) was the most dominant contributor to the surficial heavy metals, followed by mining activities (29%). The contribution percentage of the natural background was negatively related to the degree of contamination. The peak concentrations of many heavy metals (Cu, Ba, Fe, As and Hg) were found in the middle layer of sediment, which is most likely due to the result of development of industry beginning in the 1970s. However, the highest concentration of Pb appeared in the surficial sediment layer, which was most likely due to the sharp increase in the traffic volume. The historical analysis of the sources based on the CMB showed that mining and the chemical industry are stable sources for all of the sections. The comparing of change rates of source contribution versus years indicated that the composition of the materials in estuary site (HF1) is sensitive to the input from the land, whereas center site (HF4) has a buffering effect on the materials from

  10. Development of a Water and Enthalpy Budget-based Glacier mass balance Model (WEB-GM) and its preliminary validation

    Science.gov (United States)

    Ding, Baohong; Yang, Kun; Yang, Wei; He, Xiaobo; Chen, Yingying; Lazhu; Guo, Xiaofeng; Wang, Lei; Wu, Hui; Yao, Tandong

    2017-04-01

    This paper presents a new water and energy budget-based glacier mass balance model. Enthalpy, rather than temperature, is used in the energy balance equations to simplify the computation of the energy transfers through the water phase change and the movement of liquid water in the snow. A new parameterization for albedo estimation and state-of-the-art parameterization schemes for rainfall/snowfall type identification and surface turbulent heat flux calculations are implemented in the model. This model was driven with meteorological data and evaluated using mass balance and turbulent flux data collected during a field experiment implemented in the ablation zone of the Parlung No. 4 Glacier on the Southeast Tibetan Plateau during 2009 and 2015-2016. The evaluation shows that the model can reproduce the observed glacier ablation depth, surface albedo, surface temperature, sensible heat flux, and latent heat flux with high accuracy. Comparing with a traditional energy budget-based glacier mass balance model, this enthalpy-based model shows a superior capacity in simulation accuracy. Therefore, this model can reasonably simulate the energy budget and mass balance of glacier melting in this region and be used as a component of land surface models and hydrological models.

  11. Investigating the presence of omeprazole in waters by liquid chromatography coupled to low and high resolution mass spectrometry: degradation experiments.

    Science.gov (United States)

    Boix, C; Ibáñez, M; Sancho, J V; Niessen, W M A; Hernández, F

    2013-10-01

    Omeprazole is one of the most consumed pharmaceuticals around the world. However, this compound is scarcely detected in urban wastewater and surface water. The absence of this pharmaceutical in the aquatic ecosystem might be due to its degradation in wastewater treatment plants, as well as in receiving water. In this work, different laboratory-controlled degradation experiments have been carried out on surface water in order to elucidate generated omeprazole transformation products (TPs). Surface water spiked with omeprazole was subjected to hydrolysis, photo-degradation under both sunlight and ultraviolet radiation and chlorination. Analyses by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF MS) permitted identification of up to 17 omeprazole TPs. In a subsequent step, the TPs identified were sought in surface water and urban wastewater by LC-QTOF MS and by LC coupled to tandem mass spectrometry with triple quadrupole. The parent omeprazole was not detected in any of the samples, but four TPs were found in several water samples. The most frequently detected compound was OTP 5 (omeprazole sulfide), which might be a reasonable candidate to be included in monitoring programs rather than the parent omeprazole. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Analysis of sucralose and other sweeteners in water and beverage samples by liquid chromatography/time-of-flight mass spectrometry.

    Science.gov (United States)

    Ferrer, Imma; Thurman, E Michael

    2010-06-18

    A methodology for the chromatographic separation and analysis of three of the most popular artificial sweeteners (aspartame, saccharin, and sucralose) in water and beverage samples was developed using liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS). The sweeteners were extracted from water samples using solid-phase extraction (SPE) cartridges. Furthermore, several beverages were analyzed by a rapid and simple method without SPE, and the presence of the sweeteners was confirmed by accurate mass measurements below 2-ppm error. The unambiguous confirmation of the compounds was based on accurate mass measurements of the protonated molecules [M+H](+), their sodium adducts and their main fragment ions. Quantitation was carried out using matrix-matched standard calibration and linearity of response over 2 orders of magnitude was demonstrated (r>0.99). A detailed fragmentation study for sucralose was carried out by time-of-flight and a characteristic spectrum fingerprint pattern was obtained for the presence of this compound in water samples. Finally, the analysis of several wastewater, surface water and groundwater samples from the US showed that sucralose can be found in the aquatic environment at concentrations up to 2.4microg/L, thus providing a good indication of wastewater input from beverage sources. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. Coupling the Mars Dust and Water Cycles: Investigating the Role of Clouds in Controlling the Vertical Distribution of Dust During N. H. Summer

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Wilson, R. J.

    2014-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere (Gierasch and Goody, 1968; Haberle et al., 1982; Zurek et al., 1992). Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer (Smith, 2004). Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across (Cantor et al., 2001). During some years, regional storms combine to produce hemispheric or planet encircling dust clouds that obscure the surface and raise atmospheric temperatures by as much as 40 K (Smith et al., 2002). Key recent observations of the vertical distribution of dust indicate that elevated layers of dust exist in the tropics and sub-tropics throughout much of the year (Heavens et al., 2011). These observations have brought particular focus on the processes that control the vertical distribution of dust in the Martian atmosphere. The goal of this work is to further our understanding of how clouds in particular control the vertical distribution of dust, particularly during N. H. spring and summer

  14. Vertical nutrient fluxes, turbulence and the distribution of chlorophyll a in the north-eastern North Sea

    Science.gov (United States)

    Bendtsen, Jørgen; Richardson, Katherine

    2017-04-01

    During summer the northern North Sea is characterized by nutrient rich bottom water masses and nutrient poor surface layers. This explains the distribution of chlorophyll a in the water column where a subsurface maximum, referred to as the deep chlorophyll maximum (DCM), often is present during the growth season. Vertical transport of nutrients between bottom water masses and the well lit surface layer stimulates phytoplankton growth and this generally explains the location of the DCM. However, a more specific understanding of the interplay between vertical transports, nutrient fluxes and phytoplankton abundance is required for identifying the nature of the vertical transport processes, e.g the role of advection versus vertical turbulent diffusion or the role of localized mixing associated with mesoscale eddies. We present results from the VERMIX study in the north-eastern North Sea where nutrients, chlorophyll a and turbulence profiles were measured along five north-south directed transects in July 2016. A high-resolution sampling program, with horizontal distances of 1-10 km between CTD-stations, resolved the horizontal gradients of chlorophyll a across the steep bottom slope from the relatively shallow central North Sea ( 50-80 m) towards the deep Norwegian Trench (>700 m). Low oxygen concentrations in the bottom water masses above the slope indicated enhanced biological production where vertical mixing would stimulate phytoplankton growth around the DCM. Measurements of variable fluorescence (Fv/Fm) showed elevated values in the DCM which demonstrates a higher potential for electron transport in the Photosystem II in the phytoplankton cells, i.e. an indication of nutrient-rich conditions favorable for phytoplankton production. Profiles of the vertical shear and microstructure of temperature and salinity were measured by a VMP-250 turbulence profiler and the vertical diffusion of nutrients was calculated from the estimated vertical turbulent diffusivity and the

  15. Composition of the body mass overshoot in European barn owl nestlings (Tyto alba): insurance against scarcity of energy or water?

    Science.gov (United States)

    Durant, Joël M; Landys, Meta M; Handrich, Yves

    2008-07-01

    European barn owl chicks (Tyto alba) show a body mass overshoot prior to fledging that has been predicted to serve as an energy reservoir during periods of stochastic food availability. However, the composition of the mass overshoot has heretofore not been directly examined in nestlings of this or any other species displaying a body mass overshoot during growth (e.g., raptors and seabirds). To experimentally determine whether the overshoot in body mass in juvenile European barn owls (Tyto alba) may act as an energy reservoir, we compared the body composition of owl chicks raised on an ad libitum diet to those fed a restricted diet designed to eliminate the overshoot. Chicks raised on the two diets were also compared for differences in maturation of diverse functions (e.g., locomotion) and tissues (e.g., skeletal development). Contrary to expectations, our results on body composition in juvenile barn owls indicate that the mass overshoot prior to fledging is primarily comprised of an increased water compartment. Thus, we suggest that the mass overshoot in owls (and possibly in other species) does not serve as an energy reservoir but, rather, may function as an insurance against dehydration when hot in-nest conditions force chicks to rely on evaporative cooling: temperatures in barn owl nests can reach up to 43 degrees C. We found no significant differences in maturation indexes between diet treatments at the time of fledging.

  16. Water masses, ocean fronts, and the structure of Antarctic seabird communities: putting the eastern Bellingshausen Sea in perspective

    Science.gov (United States)

    Ribic, Christine A.; Ainley, David G.; Ford, R. Glenn; Fraser, William R.; Tynan, Cynthia T.; Woehler, Eric J.

    2015-01-01

    Waters off the western Antarctic Peninsula (i.e., the eastern Bellingshausen Sea) are unusually complex owing to the convergence of several major fronts. Determining the relative influence of fronts on occurrence patterns of top-trophic species in that area, therefore, has been challenging. In one of the few ocean-wide seabird data syntheses, in this case for the Southern Ocean, we analyzed ample, previously collected cruise data, Antarctic-wide, to determine seabird species assemblages and quantitative relationships to fronts as a way to provide context to the long-term Palmer LTER and the winter Southern Ocean GLOBEC studies in the eastern Bellingshausen Sea. Fronts investigated during both winter (April–September) and summer (October–March) were the southern boundary of the Antarctic Circumpolar Current (ACC), which separates the High Antarctic from the Low Antarctic water mass, and within which are embedded the marginal ice zone and Antarctic Shelf Break Front; and the Antarctic Polar Front, which separates the Low Antarctic and the Subantarctic water masses. We used clustering to determine species' groupings with water masses, and generalized additive models to relate species' densities, biomass and diversity to distance to respective fronts. Antarctic-wide, in both periods, highest seabird densities and lowest species diversity were found in the High Antarctic water mass. In the eastern Bellingshausen, seabird density in the High Antarctic water mass was lower (as low as half that of winter) than found in other Antarctic regions. During winter, Antarctic-wide, two significant species groups were evident: one dominated by Adélie penguins (Pygoscelis adeliae) (High Antarctic water mass) and the other by petrels and prions (no differentiation among water masses); in eastern Bellingshausen waters during winter, the one significant species group was composed of species from both Antarctic-wide groups. In summer, Antarctic-wide, a High Antarctic group

  17. Circulation of water masses in the Baltic Proper revealed through iodine isotopes

    DEFF Research Database (Denmark)

    Yi, P.; Chen, X.G.; Aldahan, A.

    2013-01-01

    Tracer technology has been used to understand water circulation in marine systems where the tracer dose is commonly injected into the marine waters through controlled experiments, accidental releases or waste discharges. Anthropogenic discharges of 129I have been used to trace water circulation...

  18. Latitudinal trends of Crenarchaeota and Bacteria in the meso- and bathypelagic water masses of the Eastern North Atlantic.

    Science.gov (United States)

    Varela, Marta M; van Aken, Hendrik M; Sintes, Eva; Herndl, Gerhard J

    2008-01-01

    The distribution and activity of the bulk picoplankton community and, using microautoradiography combined with catalysed reported deposition fluorescence in situ hybridization (MICRO-CARD-FISH), of the major prokaryotic groups (Bacteria, marine Crenarchaeota Group I and marine Euryarchaeota Group II) were determined in the water masses of the subtropical North Atlantic. The bacterial contribution to total picoplankton abundance was fairly constant, comprising approximately 50% of DAPI-stainable cells. Marine Euryarchaeota Group II accounted always for Crenarchaeota Group I was approximately 5% in subsurface waters (100 m depth) and between 10% and 20% in the oxygen minimum layer (250-500 m) and deep waters [North East Atlantic Deep Water (NEADW) and Lower Deep Water (LDW), 2750-4800 m depth]. Single-cell activity, determined via a quantitative MICRO-CARD-FISH approach and taking only substrate-positive cells into account, ranged from 0.05 to 0.5 amol D-aspartic acid (Asp) cell(-1) day(-1) and 0.1-2 amol L-Asp cell(-1) day(-1), slightly decreasing with depth. In contrast, the D-Asp:L-Asp cell-specific uptake ratio increased with depth. By combining data reported previously using the same method as applied here and data reported here, we found a decreasing relative abundance of marine Crenarchaeota Group I throughout the meso- and bathypelagic water column from 65 degrees N to 5 degrees N in the eastern basin of the North Atlantic. Thus, the relative contribution of marine Crenarchaeota Group I to deep-water prokaryotic communities might be more variable than previous studies have suggested. This apparent variability in the contribution of marine Crenarchaeota Group I to total picoplankton abundance might be related to successions and ageing of deep-water masses in the large-scale meridional ocean circulation and possibly, the appearance of crenarchaeotal clusters other than the marine Crenarchaeota Group I in the (sub)tropical North Atlantic.

  19. Determination of MS-222 in Water Samples by Solid-phase Extraction Coupled with Liquid Chromatography/Tandem Mass Spectrometry.

    Science.gov (United States)

    Zhao, Dong-Hao; Wang, Qiang; Wang, Xu-Feng; Li, Zhi-Guang; Li, Yong-Xian; Huang, Ke; Li, Liu-Dong

    2017-09-01

    A practical solid-phase extraction (SPE) method coupled with liquid chromatography/tandem mass spectrometry (LC-MS/MS) has been developed for the determination of the fish anesthetic MS-222 in water. Water samples were concentrated and purified using three SPE cartridges of different specifications. Elution curves of MS-222 were constructed using various methanol-water solutions on the different cartridges, and SPE conditions were optimized in accordance with the elution curves. The mobile phase containing methanol and 0.1% formic acid solution with a linear gradient elution was utilized to separate MS-222 on a C18 column. Detection was carried out by a triple-quadrupole mass spectrometry with an electrospray ion source in positive mode. Recoveries of three MS-222 fortified levels of 0.05, 0.5 and 5 μg/L ranged of 82.6-101% with relative standard deviations (RSDs) below 9.36%. The limit of detection (LOD) and limit of quantification (LOQ) of MS-222 were 0.01 μg/L and 0.03 μg/L, respectively. This method was satisfactorily applied to the determination of MS-222 in actual water samples collected from aquatic product transportation vehicles or from the natural water catchments. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Simplified analysis of glyphosate and aminomethylphosphonic acid in water, vegetation and soil by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Marek, LeEtta J; Koskinen, William C

    2014-07-01

    There is a need for a simple, fast, efficient and sensitive method for analysis of glyphosate and its degradate aminomethylphosphonic acid (AMPA) in diverse matrices such as water, vegetation and soil. Aqueous extracts from water, vegetation and soil were passed through reverse-phase and cation-exchange columns and directly injected into a tandem mass spectrometer using only a guard column for separation. Extraction efficiencies from the three matrices were >80% for both glyphosate and AMPA. The method reporting levels (MRLs) for glyphosate in water, vegetation and soil were 3.04 µg L(-1) , 0.05 mg kg(-1) and 0.37 mg kg(-1) respectively. AMPA MRLs were 5.06 µg L(-1) for water, 0.08 mg kg(-1) for vegetation and 0.61 mg kg(-1) for soil. A validated, simple and efficient liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for routine analysis of glyphosate and AMPA in water, vegetation and soil that uses minimal sample handling and clean-up will facilitate the additional environmental research needed to address the continuing concerns related to increasing glyphosate use. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  1. Comparison between Spectral perturbation and Spectral relaxation approach for unsteady heat and mass transfer by MHD mixed convection flow over an impulsively stretched vertical surface with chemical reaction effect

    Directory of Open Access Journals (Sweden)

    T. M. Agbaje

    2015-06-01

    Full Text Available In this study, the spectral perturbation method (SPM is utilized to solve the momentum, heat and mass transfer equations describing the unsteady MHD mixed convection flow over an impulsively stretched vertical surface in the presence of chemical reaction effect. The governing partial differential equations are reduced into a set of coupled non similar equations and then solved numerically using the SPM. The SPM combines the standard perturbation method idea with the Chebyshev pseudo-spectral collocation method. In order to demonstrate the accuracy and efficiency of the proposed method, the spectral perturbation (SPM numerical results are compared with numerical results generated using the spectral relaxation method (SRM and a good agreement between the two methods is observed up to a minimum of eight decimal digits. Several simulation are conducted to ascertain the accuracy of the SPM and the SRM. The computational speed of the SPM is demonstrated by comparing the SPM computational time with the SRM computational time. A residual error analysis is also conducted for the SPM and the SRM in order to further assess the accuracy of the SPM. The study shows that the spectral perturbation method (SPM is more efficient in terms of computational speed when compared with the SRM. The study also shows that the SPM can be used as an efficient and reliable tool for solving strongly nonlinear boundary value partial differential equation problems that are defined under the Williams and Rhyne [3] transformation. In addition, the study shows that accurate results can be obtained using the perturbation method and thus, the conclusions earlier drawn by researchers regarding the accuracy of perturbation methods is corrected.

  2. Distribution and arrest of vertical through-going joints in shallow-water carbonates: Insights from an integrated virtual outcrop - field structural analysis of a reservoir-scale exposure (Sorrento Peninsula, Italy)

    Science.gov (United States)

    Corradetti, Amerigo; Tavani, Stefano; Parente, Mariano; Iannace, Alessandro; Vinci, Francesco; Pirmez, Carlos; Torrieri, Stefano; Giorgioni, Maurizio; Pignalosa, Antonio; Mazzoli, Stefano

    2017-04-01

    Through-going joints cutting across several beds are often invoked to match large-scale permeability patterns in tight carbonate reservoirs. However, despite the importance of these structures for fluid flow, only few field studies focused on the understanding and estimation of through-going joint dimensional parameters, including spacing and vertical extent in relation to stratigraphy. Recent improvements in the construction of virtual models of outcrops can greatly help to overcome many logistic issues, favoring the evaluation of relationships between jointing and stratigraphy at the reservoir scale. In this study, we present the results obtained from integrating field measurements and stratigraphic logs with a virtual outcrop model of a carbonate platform reservoir analogue in the Sorrento peninsula (Italy). The outcrop consists of a nearly vertical cliff exposing a monocline of alternating gently-dipping shallow-water limestones and dolostones, crossed by several vertical joints of different size. This study allowed us to define how major through-going joints pass across thick beds (bed thickness > 30 cm), while they arrest against packages made of thinly stratified layers. In essence, through-going joints arrest on "weak" levels, consisting of thinly bedded layers interposed between packages made of thick beds, in the same manner as bed-confined joints arrest on less competent interlayers.

  3. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China

    Directory of Open Access Journals (Sweden)

    Y. Cheng

    2011-11-01

    Full Text Available The mass absorption efficiency (MAE of elemental carbon (EC in Beijing was quantified using a thermal-optical carbon analyzer. The MAE measured at 632 nm was 8.45±1.71 and 9.41±1.92 m2 g−1 during winter and summer respectively. The daily variation of MAE was found to coincide with the abundance of organic carbon (OC, especially the OC to EC ratio, perhaps due to the enhancement by coating with organic aerosol (especially secondary organic aerosol, SOA or the artifacts resulting from the redistribution of liquid-like organic particles during the filter-based absorption measurements. Using a converting approach that accounts for the discrepancy caused by measurements methods of both light absorption and EC concentration, previously published MAE values were converted to the equivalent-MAE, which is the estimated value if using the same measurement methods as used in this study. The equivalent-MAE was found to be much lower in the regions heavily impacted by biomass burning (e.g., below 2.7 m2 g−1 for two Indian cities. Results from source samples (including diesel exhaust samples and biomass smoke samples also demonstrated that emissions from biomass burning would decrease the MAE of EC. Moreover, optical properties of water-soluble organic carbon (WSOC in Beijing were presented. Light absorption by WSOC exhibited strong wavelength (λ dependence such that absorption varied approximately as λ−7, which was characteristic of the brown carbon spectra. The MAE of WSOC (measured at 365 nm was 1.79±0.24 and 0.71±0.20 m2 g−1 during winter and summer respectively. The large discrepancy between the MAE of WSOC during winter and summer was attributed to the difference in the precursors of SOA such that anthropogenic volatile organic compounds (AVOCs should be more important as the precursors of SOA in winter. The MAE of WSOC in Beijing was much higher than results from

  4. Water in low-mass star-forming regions with Herschel. The link between water gas and ice in protostellar envelopes

    Science.gov (United States)

    Schmalzl, M.; Visser, R.; Walsh, C.; Albertsson, T.; van Dishoeck, E. F.; Kristensen, L. E.; Mottram, J. C.

    2014-12-01

    Aims: Our aim is to determine the critical parameters in water chemistry and the contribution of water to the oxygen budget by observing and modelling water gas and ice for a sample of eleven low-mass protostars, for which both forms of water have been observed. Methods: A simplified chemistry network, which is benchmarked against more sophisticated chemical networks, is developed that includes the necessary ingredients to determine the water vapour and ice abundance profiles in the cold, outer envelope in which the temperature increases towards the protostar. Comparing the results from this chemical network to observations of water emission lines and previously published water ice column densities, allows us to probe the influence of various agents (e.g., far-ultraviolet (FUV) field, initial abundances, timescales, and kinematics). Results: The observed water ice abundances with respect to hydrogen nuclei in our sample are 30-80 ppm, and therefore contain only 10-30% of the volatile oxygen budget of 320 ppm. The keys to reproduce this result are a low initial water ice abundance after the pre-collapse phase together with the fact that atomic oxygen cannot freeze-out and form water ice in regions with Tdust ≳ 15 K. This requires short prestellar core lifetimes ≲0.1 Myr. The water vapour profile is shaped through the interplay of FUV photodesorption, photodissociation, and freeze-out. The water vapour line profiles are an invaluable tracer for the FUV photon flux and envelope kinematics. Conclusions: The finding that only a fraction of the oxygen budget is locked in water ice can be explained either by a short pre-collapse time of ≲0.1 Myr at densities of nH ~ 104 cm-3, or by some other process that resets the initial water ice abundance for the post-collapse phase. A key for the understanding of the water ice abundance is the binding energy of atomic oxygen on ice. Herschel is an ESA space observatory with science instruments provided by European

  5. Waves, circulation and vertical dependence

    Science.gov (United States)

    Mellor, George

    2013-04-01

    Longuet-Higgins and Stewart (J Fluid Mech 13:481-504, 1962; Deep-Sea Res 11:529-562, 1964) and later Phillips (1977) introduced the problem of waves incident on a beach, from deep to shallow water. From the wave energy equation and the vertically integrated continuity equation, they inferred velocities to be Stokes drift plus a return current so that the vertical integral of the combined velocities was nil. As a consequence, it can be shown that velocities of the order of Stokes drift rendered the advective term in the momentum equation negligible resulting in a simple balance between the horizontal gradients of the vertically integrated elevation and wave radiation stress terms; the latter was first derived by Longuet-Higgins and Stewart. Mellor (J Phys Oceanogr 33:1978-1989, 2003a), noting that vertically integrated continuity and momentum equations were not able to deal with three-dimensional numerical or analytical ocean models, derived a vertically dependent theory of wave-circulation interaction. It has since been partially revised and the revisions are reviewed here. The theory is comprised of the conventional, three-dimensional, continuity and momentum equations plus a vertically distributed, wave radiation stress term. When applied to the problem of waves incident on a beach with essentially zero turbulence momentum mixing, velocities are very large and the simple balance between elevation and radiation stress gradients no longer prevails. However, when turbulence mixing is reinstated, the vertically dependent radiation stresses produce vertical velocity gradients which then produce turbulent mixing; as a consequence, velocities are reduced, but are still larger by an order of magnitude compared to Stokes drift. Nevertheless, the velocity reduction is sufficient so that elevation set-down obtained from a balance between elevation gradient and radiation stress gradients is nearly coincident with that obtained by the aforementioned papers. This paper

  6. Fat-free mass and total body water of infants estimated from total body electrical conductivity measurements.

    Science.gov (United States)

    Fiorotto, M L; Cochran, W J; Klish, W J

    1987-10-01

    Total body electrical conductivity measurements can be used in conjunction with suitable calibration curves to quantitate fat-free mass and total body water. A study was designed to evaluate whether calibration curves, derived from miniature piglets, can be used to translate total body electrical conductivity measurements of human infants into estimates of total body water and fat-free mass. Thirty-four, healthy 2-, 4-, 8-, and 12-wk-old infants were studied. A comparison of the physical dimensions of infants and piglets indicated no large discrepancies in their body geometries that would invalidate the calibration from this standpoint. Estimates of fat-free mass, fat, and total body water were evaluated by comparison with the body composition of reference infants of comparable description. There was excellent agreement between the total body electrical conductivity-derived estimates and reference body composition values, suggesting that the calibration procedure is adequate. Thus, the total body electrical conductivity technique can be used to estimate the body composition of normal young infants without subjecting them to risk or discomfort.

  7. Thermocline circulation and ventilation of the Japan/East Sea, part II: A source water-mass mixing (SWAM) model

    Science.gov (United States)

    You, Yuzhu

    2010-09-01

    The recently obtained high resolution conductivity-temperature-depth (CTD), Argo and bottle data combined with historical geochemical data are used in a source water-mass mixing (SWAM) model for the Japan/East Sea (JES) thermocline. The water-mass properties for resolving model source water types include two physical conservative tracers: potential temperature θ (°C) and salinity S (psu), a dynamical tracer: fN2 (10 6 s -3) (where f is the Coriolis frequency and N2 is the squared buoyancy frequency), dissolved oxygen, O2 (μmol kg -1), and nutrient silicate, H4SiO4 (μmol kg -1) and two conservative chemical tracers: initial phosphate, PO40 (μmol kg -1) and NO (μmol kg -1). The mixing scheme comprises three source water masses: North Pacific Subtropical Water (NPSW) which is the only invasion water mass from the open North Pacific and two locally formed water masses, Tatar Strait Water (TSW) and Peter the Great Bay Water (PGBW). The SWAM model is performed on three neutral density surfaces σN=25.8, 26.4 and 27.0 encompassing the thermocline from about 50 to 180 dbar. The model-derived mixing fraction provides a quantitative description of the source water masses. Results show that NPSW contributes to only about one third of the mixing ratio while PGBW mixing proportion is more than 50%. This implies that most of NPSW is actually transformed and renewed in the JES by winter convection and probable brine rejection when NPSW is considered as a sole input source and PGBW and TSW are the transformed end-members of NPSW. Also it means that what we see the JES recirculation is actually the dominant PGBW water recirculation rather than the NPSW. The high mixing fraction of PGBW explains why JES water content is highly ventilated and has a very high oxygen and renewal rate. It is found that the JES transport is contributed by NPSW for 0.72±0.13 and 1.11±0.16 Sv by PGBW and 0.27±0.05 Sv by TSW, respectively. A total annual mean transport with an error bar is thus 2

  8. A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach

    National Research Council Canada - National Science Library

    Todini, E

    2007-01-01

    The variable parameter Muskingum-Cunge (MC) flood routing approach, together with several variants proposed in the literature, does not fully preserve the mass balance, particularly when dealing with very mild slopes (<10 −3...

  9. Disentangling the counteracting effects of water content and carbon mass on zooplankton growth

    DEFF Research Database (Denmark)

    Mcconville, Kristian; Atkinson, Angus; Fileman, Elaine S.

    2017-01-01

    Zooplankton vary widely in carbon percentage (carbon mass as a percentage of wet mass), but are often described as either gelatinous or non-gelatinous. Here we update datasets of carbon percentage and growth rate to investigate whether carbon percentage is a continuous trait, and whether its...... time series at station L4 off Plymouth, UK. This showed separate biomass peaks for gelatinous and crustacean taxa, however, carbon percentage varied 8-fold within the gelatinous group. Species with high carbon mass had lower carbon percentage, allowing separation of the counteracting effects...... of these two variables on growth rate. Specific growth rates, g (d -1) were negatively related to carbon percentage and carbon mass, even in the gelatinous taxa alone, suggesting that the trend is not driven by a categorical difference between these groups. The addition of carbon percentage doubled...

  10. Break-through of Mass Integration in Textile Industry through Development of Generic Water Recycle Schemes

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2003-01-01

    As a result of a long term South African – Danish research co-operation on Cleaner Production in textile industry, a number of generic and widely applicable water recycle schemes for textile wet processing has been developed, and the first break-through of water recycling has been achieved. Textile...... processing is one of the largest and oldest industries world-wide and responsible for a substantial resource consumption and pollution. Especially the wet processing part of the industry, i.e. pre-treatment, dyeing, printing and finishing, is polluting and resource consuming in terms of both water, energy...... and chemicals. It entails a vast variety of water consuming processes, and like in most industries, fresh water is used in all processes with almost no exceptions. Between researchers, it was known for many years that fresh water is not needed by all processes taking place in textile wet treatment. But sound...

  11. Multiresidue analysis of 24 Water Framework Directive priority substances by on-line solid phase extraction-liquid chromatography tandem mass spectrometry in environmental waters.

    Science.gov (United States)

    Rubirola, Adrià; Boleda, Mª Rosa; Galceran, Mª Teresa

    2017-04-14

    This paper reports the development of a fully multiresidue and automated on-line solid phase extraction (SPE) - liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the determination of 24 priority substances (PS) belonging to different classes (pesticides, hormones or pharmaceuticals) included in the Directive 2013/39/UE and the recent Watch List (Decision 2015/495) in water samples (drinking water, surface water, and effluent wastewaters). LC-MS/MS conditions and on-line SPE parameters such as sorbent type, sample and wash volumes were optimized. The developed method is highly sensitive (limits of detection between 0.1 and 1.4ngL -1 ) and precise (relative standard deviations lower than 8%). As part of the method validation studies, linearity, accuracy and matrix effects were assessed. The main advantage of this method over traditional off-line procedures is the minimization of tedious sample preparation increasing productivity and sample throughput. The optimized method was applied to the analysis of water samples and the results revealed the presence of 16 PS in river water and effluent water of wastewater treatment plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Elemental Mass Size Distribution for Characterization, Quantification and Identification of Trace Nanoparticles in Serum and Environmental Waters.

    Science.gov (United States)

    Zhou, Xiao-Xia; Liu, Jing-Fu; Jiang, Gui-Bin

    2017-04-04

    Accurate characterization, quantification, and identification of nanoparticles (NPs) are essential to fully understand the environmental processes and effects of NPs. Herein, the elemental mass size distribution (EMSD), which measures particle size, mass, and composition, is proposed for the direct size characterization, mass quantification, and composition identification of trace NPs in complex matrixes. A one-step method for the rapid measurement of EMSDs in 8 min was developed through the online coupling of size-exclusion chromatography (SEC) with inductively coupled plasma mass spectrometry (ICP-MS). The use of a mobile phase with a relatively high ionic strength (a mixture of 2% FL-70 and 2 mM Na2S2O3) ensured the complete elution of different-sized NPs from the column and, therefore, a size-independent response. After application of a correction for instrumental broadening by a method developed in this study, the size distribution of NPs by EMSD determination agreed closely with that obtained from transmission electron microscopy (TEM) analysis. Compared with TEM, EMSD allows a more rapid determination with a higher mass sensitivity (1 pg for gold and silver NPs) and comparable size discrimination (0.27 nm). The proposed EMSD-based method was capable of identifying trace Ag2S NPs and core-shell nanocomposite Au@Ag, as well as quantitatively tracking the dissolution and size transformation of silver nanoparticles in serum and environmental waters.

  13. Increased Power in Sediment Microbial Fuel Cell: Facilitated Mass Transfer via a Water-Layer Anode Embedded in Sediment.

    Science.gov (United States)

    Lee, Yoo Seok; An, Junyeong; Kim, Bongkyu; Park, HyunJun; Kim, Jisu; Chang, In Seop

    2015-01-01

    We report a methodology for enhancing the mass transfer at the anode electrode of sediment microbial fuel cells (SMFCs), by employing a fabric baffle to create a separate water-layer for installing the anode electrode in sediment. The maximum power in an SMFC with the anode installed in the separate water-layer (SMFC-wFB) was improved by factor of 6.6 compared to an SMFC having the anode embedded in the sediment (SMFC-woFB). The maximum current density in the SMFC-wFB was also 3.9 times higher (220.46 mA/m2) than for the SMFC-woFB. We found that the increased performance in the SMFC-wFB was due to the improved mass transfer rate of organic matter obtained by employing the water-layer during anode installation in the sediment layer. Acetate injection tests revealed that the SMFC-wFB could be applied to natural water bodies in which there is frequent organic contamination, based on the acetate flux from the cathode to the anode.

  14. Scaling concept II rowing ergometer performance for differences in body mass to better reflect rowing in water.

    Science.gov (United States)

    Nevill, A M; Beech, C; Holder, R L; Wyon, M

    2010-02-01

    We investigated whether the concept II indoor rowing ergometer accurately reflects rowing on water. Forty-nine junior elite male rowers from a Great Britain training camp completed a 2000 m concept II model C indoor rowing ergometer test and a water-based 2000 m single-scull rowing test. Rowing speed in water (3.66 m/s) was significantly slower than laboratory-based rowing performance (4.96 m/s). The relationship between the two rowing performances was found to be R2=28.9% (r=0.538). We identified that body mass (m) made a positive contribution to concept II rowing ergometer performance (r=0.68, Prowing performance (r=0.039, P=0.79). The contribution that m made to single-scull rowing in addition to ergometer rowing speed (using allometric modeling) was found to be negative (Prowing speed. The optimal allometric model to predict single-scull rowing speed was the ratio (ergometer speed xm(-0.23))1.87 that increased R2 from 28.2% to 59.2%. Simply by dividing the concept II rowing ergometer speed by body mass (m0.23), the resulting "power-to-weight" ratio (ergometer speed xm(-0.23)) improves the ability of the concept II rowing performance to reflect rowing on water.

  15. Mixed Flow and Oxygen Transfer Characteristics of Vertical Orifice Ejector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Jun; Park, Sang Kyoo; Yang, Hei Cheon [Chonnam National University, Gwangju (Korea, Republic of)

    2015-01-15

    The objective of this study is to experimentally investigate the mixed flow behaviors and oxygen transfer characteristics of a vertical orifice ejector. The experimental apparatus consisted of an electric motor-pump, an orifice ejector, a circulation water tank, an air compressor, a high speed camera unit and control or measurement accessories. The mass ratio was calculated using the measured primary flow rate and suction air flow rate with experimental parameters. The visualization images of vertically injected mixed jet issuing from the orifice ejector were qualitatively analyzed. The volumetric oxygen transfer coefficient was calculated using the measured dissolved oxygen concentration. At a constant primary flow rate, the mass ratio and oxygen transfer coefficient increase with the air pressure of compressor. At a constant air pressure of the compressor, the mass ratio decreases and the oxygen transfer coefficient increases as the primary flow rate increases. The residence time and dispersion of fine air bubbles and the penetration of mixed flow were found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.

  16. Environmental complexity of a port: Evidence from circulation of the water masses, and composition and contamination of bottom sediments.

    Science.gov (United States)

    Cutroneo, L; Carbone, C; Consani, S; Vagge, G; Canepa, G; Capello, M

    2017-06-15

    Ports are complex environments due to their complicated geometry (quays, channels, and piers), the presence of human activities (vessel traffic, shipyards, industries, and discharges), and natural factors (stream and torrent inputs, sea action, and currents). Taking these factors into consideration, we have examined the marine environment of a port from the point of view of the circulation of the water masses, hydrological characteristics, distribution of the sediment grain-size, mineralogical characteristics, and metal concentrations of the bottom sediments. Our results show that, in the case of the Port of Genoa (north-western Italy), the impact of human activities (such as a coal power-plant, oil depots, shipyards, dredging of the bottom sediments, etc.), natural processes (such as currents, fresh water and sediment inputs from the torrents), and the morphology of the basin, are important factors in the sediment, water, and metal distributions that have given rise to a complex environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A rapid method for simultaneous determination of arsenic, cadmium and lead in drinking water by inductively coupled plasma mass spectrometry

    Directory of Open Access Journals (Sweden)

    Joshua Rey P. Torres

    Full Text Available The raw water source of drinking water in most areas in the Philippines is typically river water and in some cases groundwater. These sources are prone to elevated levels of metals and metalloids that may cause exposure of the general population when the treatment of the water is inadequate. This work presents a simple method based on EPA Method 200.8 for the determination of total concentrations of arsenic (As, cadmium (Cd and lead (Pb in drinking water using inductively coupled plasma-mass spectrometry (ICP-MS as the element-selective detector. This was applied in the determination of these elements in the water supply in Metro Manila, Philippines. The method detection limits were 0.095 μg L-1, 0.043 μg L-1, and 0.114 μg L-1 for total As, Cd and Pb, respectively.The method was validated using National Institute of Standards and Technology (NIST 1643e certified reference material for trace elements in water and determined values were 60.4 ± 0.5 μg L-1, 6.7 ± 0.1 μg L-1, and 19.6 ± 0.5 μg L-1 for As, Cd and Pb, respectively. These determined values were in good agreement with the certified values in the reference material. Analysis of actual drinking water samples showed that most samples did not exceed the limit of the Philippine drinking water standard for the elements.

  18. Modeling the water line emission from the high-mass star-forming region AFGL 2591

    NARCIS (Netherlands)

    Poelman, D. R.; van der Tak, F. F. S.

    2007-01-01

    Context. Observations of water lines are a sensitive probe of the geometry, dynamics and chemical structure of dense molecular gas. The launch of Herschel with on board HIFI and PACS allows to probe the behaviour of multiple water lines with unprecedented sensitivity and resolution. Aims. We

  19. Water emission from the high-mass star-forming region IRAS 17233-3606

    NARCIS (Netherlands)

    Leurini, S.; Gusdorf, A.; Wyrowski, F.; Codella, C.; Csengeri, T.; van der Tak, F.; Beuther, H.; Flower, D. R.; Comito, C.; Schilke, P.

    We investigate the physical and chemical processes at work during the formation of a massive protostar based on the observation of water in an outflow from a very young object previously detected in H2 and SiO in the IRAS 17233-3606 region. We estimated the abundance of water to understand its

  20. Water in low-mass star-forming regions with Herschel

    DEFF Research Database (Denmark)

    Kristensen, L. E.; Visser, R.; Van Dishoeck, E. F.

    2010-01-01

    "Water In Star-forming regions with Herschel" (WISH) is a key programme dedicated to studying the role of water and related species during the star-formation process and constraining the physical and chemical properties of young stellar objects. The Heterodyne Instrument for the Far-Infrared (HIF...

  1. Hydrodynamics and mass transfer deaeration of water on thermal power plants when used natural gas as a desorbing agent

    Science.gov (United States)

    Sharapov, V. I.; Kudryavtseva, E. V.

    2017-11-01

    The technology of low-temperature deaeration of water in thermal power plants was developed. It is proposed to use natural gas supplied to the furnace as desorbing agent in the deaerator instead steam or superheated water. Natural gas has low, often - negative temperature after reducing installs. At the same time, it contains virtually no corrosive gases, oxygen and carbon dioxide, thereby successfully may be used as a stripping agent in water deaeration. The calculation of the energy efficiency of the technology for a typical unit of CHP has shown that achieved a significant annual saving of fuel equivalent in the transition from the traditional method of deaeration of water in the low temperature deaeration. Hydrodynamic and mass transfer indicators were determined for the deaerator thermal power plants using as stripping medium natural gas supplied to the boiler burners. Theoretically required amount and the real specific consumption of natural gas were estimated for deaeration of water standard quality. The calculation of the hydrodynamic characteristics was presented for jet-bubbling atmospheric deaerator with undescended perforated plate when operating on natural gas. The calculation shows the possibility of using commercially available atmospheric deaerators for the application of the new low-temperature water deaeration technology.

  2. Alternating irrigation water quality as a method to control solute concentrations and mass fluxes below irrigated fields: A numerical study

    Science.gov (United States)

    Russo, David

    2016-05-01

    The aim of the present numerical study was to extend the data-driven protocol for the control of soil salinity, to control chloride and nitrate concentrations and mass fluxes below agricultural fields irrigated with treated waste water (TWW). The protocol is based on alternating irrigation water quality between TWW and desalinized water (DSW), guided by solute concentrations at soil depth, zs. Two different schemes, the first requires measurements of soil solution concentrations of chloride and nitrate at zs, while, the second scheme requires only measurements of soil solution EC at zs, were investigated. For this purpose, 3-D numerical simulations of flow and transport were performed for variably saturated, spatially heterogeneous, flow domains located at two different field sites. The sites differ in crop type, irrigation method, and in their lithology; these differences, in turn, considerably affect the performance of the proposed schemes, expressed in terms of their ability to reduce solute concentrations that drained below the root zone. Results of the analyses suggest that the proposed data-driven schemes allow the use of low-quality water for irrigation, while minimizing the consumption of high-quality water to a level, which, for given climate, soil, crop, irrigation method, and water quality, may be determined by the allowable nitrate and chloride concentrations in the groundwater. The results of the present study indicate that with respect to the diminution of groundwater contamination by chloride and nitrate, the more data demanding, first scheme is superior the second scheme.

  3. Optimization of Analytical Conditions for a Rapid Determination of Aniline in Environmental Water by Liquid Chromatography/Tandem Mass Spectrometry.

    Science.gov (United States)

    Furukawa, Koji; Hashimoto, Makoto; Kaneco, Satoshi

    2017-01-01

    A rapid determination of aniline in environmental water was examined based on liquid chromatography/tandem mass spectrometry (LC/MS/MS). Environmental water samples were diluted 20-fold with Mill-Q water and measured by LC/MS/MS after adding a surrogate substance (aniline-d5). In the results of the present study, the calibration curve of aniline showed good linearity in the range of 0.05 - 2.0 μg/L. Since the RSD (repeatability) by measuring repeatedly an aniline standard solution (0.05 μg/L, n = 7) was 3.2%, the repeatability of this work was very excellent. In addition, the recovery rate of aniline in environmental water was in the range of 99.0 - 102% with RSD 3.4 - 7.7%, and very good recovery test results were obtained. From these results, this analytical method was confirmed to be effective for aniline measurements of environmental water samples. Also, it is possible to conduct rapid analyses of aniline in environmental water without any solid-phase extraction process, compared to the solid-phase extraction-GC/MS method.

  4. Identification of thyroid receptor ant/agonists in water sources using mass balance analysis and monte carlo simulation.

    Science.gov (United States)

    Shi, Wei; Wei, Si; Hu, Xin-Xin; Hu, Guan-Jiu; Chen, Cu-Lan; Wang, Xin-Ru; Giesy, John P; Yu, Hong-Xia

    2013-01-01

    Some synthetic chemicals, which have been shown to disrupt thyroid hormone (TH) function, have been detected in surface waters and people have the potential to be exposed through water-drinking. Here, the presence of thyroid-active chemicals and their toxic potential in drinking water sources in Yangtze River Delta were investigated by use of instrumental analysis combined with cell-based reporter gene assay. A novel approach was developed to use Monte Carlo simulation, for evaluation of the potential risks of measured concentrations of TH agonists and antagonists and to determine the major contributors to observed thyroid receptor (TR) antagonist potency. None of the extracts exhibited TR agonist potency, while 12 of 14 water samples exhibited TR antagonistic potency. The most probable observed antagonist equivalents ranged from 1.4 to 5.6 µg di-n-butyl phthalate (DNBP)/L, which posed potential risk in water sources. Based on Monte Carlo simulation related mass balance analysis, DNBP accounted for 64.4% for the entire observed antagonist toxic unit in water sources, while diisobutyl phthalate (DIBP), di-n-octyl phthalate (DNOP) and di-2-ethylhexyl phthalate (DEHP) also contributed. The most probable observed equivalent and most probable relative potency (REP) derived from Monte Carlo simulation is useful for potency comparison and responsible chemicals screening.

  5. A membrane inlet mass spectrometry system for noble gases at natural abundances in gas and water samples.

    Science.gov (United States)

    Visser, Ate; Singleton, Michael J; Hillegonds, Darren J; Velsko, Carol A; Moran, Jean E; Esser, Bradley K

    2013-11-15

    Noble gases dissolved in groundwater can reveal paleotemperatures, recharge conditions, and precise travel times. The collection and analysis of noble gas samples are cumbersome, involving noble gas purification, cryogenic separation and static mass spectrometry. A quicker and more efficient sample analysis method is required for introduced tracer studies and laboratory experiments. A Noble Gas Membrane Inlet Mass Spectrometry (NG-MIMS) system was developed to measure noble gases at natural abundances in gas and water samples. The NG-MIMS system consists of a membrane inlet, a dry-ice water trap, a carbon-dioxide trap, two getters, a gate valve, a turbomolecular pump and a quadrupole mass spectrometer equipped with an electron multiplier. Noble gases isotopes (4)He, (22)Ne, (38)Ar, (84)Kr and (132)Xe are measured every 10 s. The NG-MIMS system can reproduce measurements made on a traditional noble gas mass spectrometer system with precisions of 2%, 8%, 1%, 1% and 3% for He, Ne, Ar, Kr and Xe, respectively. Noble gas concentrations measured in an artificial recharge pond were used to monitor an introduced xenon tracer and to reconstruct temperature variations to within 2 °C. Additional experiments demonstrated the capability to measure noble gases in gas and in water samples, in real time. The NG-MIMS system is capable of providing analyses sufficiently accurate and precise for introduced noble gas tracers at managed aquifer recharge facilities, groundwater fingerprinting based on excess air and noble gas recharge temperature, and field and laboratory studies investigating ebullition and diffusive exchange. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Occurrence of UV filter compounds from sunscreens in surface waters: regional mass balance in two Swiss lakes.

    Science.gov (United States)

    Poiger, Thomas; Buser, Hans-Rudolf; Balmer, Marianne E; Bergqvist, Per-Anders; Müller, Markus D

    2004-05-01

    Consumer care products often contain UV filters, organic compounds which absorb ultraviolet light. These compounds may enter surface waters directly (when released from the skin during swimming and bathing) or indirectly via wastewater treatment plants (when released during showering or washed from textiles). Predicted and measured UV filter concentrations were compared in a regional mass balance study for two Swiss lakes: Lake Zurich, a typical midland lake which is also an important drinking water resource, and Hüttnersee, a small bathing lake. Both lakes are extensively used for recreational activities and considerable direct input of UV filters is thus expected. This input was estimated from the number of visitors at swimming areas around the lakes and a survey of the usage of sunscreen products among these visitors. Possible additional indirect input via wastewater treatment plants was not considered in this study. The quantitatively most important UV filters, as indicated by the survey data, ethylhexyl methoxycinnamate, octocrylene, 4-methylbenzylidene camphor, butyl methoxydibenzoylmethane, and benzophenone-3, all lipophilic compounds, were selected for analysis by gas chromatography-mass spectrometry. Concentrations of individual UV filters in water from Lake Zurich were low, ranging from filters assumed to occur during swimming), and (ii) some removal of these compounds from the lakes by degradation and/or sorption/sedimentation. UV filters were also detected in semipermeable membrane devices (SPMDs) deployed at Lake Zurich and Greifensee, another midland lake, at concentrations of 80-950 ng SPMD(-1), confirming the presence of the compounds in surface waters and indicating a certain potential for bioaccumulation. SPMD-derived water concentrations were in the range of 1-10 ng l(-1) and thus corresponded well with those determined in water directly. No UV filters were detected above blank levels in SPMDs deployed at a remote mountain lake used for

  7. Vertical diffuse attenuation coefficient (Kd) based optical ...

    Indian Academy of Sciences (India)

    The optical classification of the different water types provides vital input for studies related to primary productivity, water clarity and determination of euphotic depth. Image data of the IRS- P3 MOS-B, for Path 90 of 27th February, 1998 was used for deriving vertical diffuse attenuation Coeffcient () and an optical ...

  8. Vertical diffuse attenuation coefficient (Kd) based optical ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The optical classification of the different water types provides vital input for studies related to primary productivity, water clarity and determination of euphotic depth. Image data of the IRS-. P3 MOS-B, for Path 90 of 27th February, 1998 was used for deriving vertical diffuse attenuation coefficient (Kd) and an optical ...

  9. Thermocline circulation and ventilation of the East/Japan Sea, part I: Water-mass characteristics and transports

    Science.gov (United States)

    You, Yuzhu; Chang, Kyung-Il; Yun, Jae-Yul; Kim, Kyung-Ryul

    2010-07-01

    The East/Japan Sea (EJS) has unique water-mass characteristics in the western Pacific marginal seas due to limited exchange with the open North Pacific. The major inflow of source water mass is North Pacific Subtropical Water (NPSW) carried by the Kuroshio branching and Tsushima Current. The locally formed cold/fresh waters from the Tatar Strait and Russia coast by winter convection mix with NPSW contributing to water-mass transformation, especially during winter when upper isopycnal surfaces outcrop and thermocline is ventilated. The geographic limit of the Korea/Tsushima Strait (KTS) with a sill depth of about 120-140 dbar confines the inflow of lower NPSW, and so the EJS thermocline layer is somewhat truncated with a rather thin layer for about 100 dbar. This study uses high resolution conductivity-temperature-depth (CTD) and Argo data with a third decimal or higher accuracy for temperature and salinity obtained mainly by Research Institute of Oceanography, Seoul National University through domestic and international collaboration with several Korean ocean research institutes and Russia and USA partners since early 1990s. The basin covered data were divided into summer and winter half-year representing seasonal difference since most CTD surveys were conducted purposely in summer and winter. Analysis is made for the upper layer, about 50-70 dbar, from the surface to the upper main thermocline and the thermocline layer down to about 150-180 dbar south of the subpolar front (SPF). The lower thermocline is defined slightly below the sill depth of the KTS, considering the deepening of NPSW after passing through the KTS. The thermocline layer is encompassed by three selected neutral density surfaces σN=25.8, 26.4 and 27.0 with a distance of about 40 dbar between two neighboring surfaces. The core of thermocline is followed by the σN=25.8 surface characterized by a salinity maximum and a minimum of potential vorticity. Winter convection is discussed and compared with

  10. Loading effects in GPS vertical displacement time series

    Science.gov (United States)

    Memin, A.; Boy, J. P.; Santamaría-Gómez, A.; Watson, C.; Gravelle, M.; Tregoning, P.

    2015-12-01

    Surface deformations due to loading, with yet no comprehensive representation, account for a significant part of the variability in geodetic time series. We assess effects of loading in GPS vertical displacement time series at several frequency bands. We compare displacement derived from up-to-date loading models to two global sets of positioning time series, and investigate how they are reduced looking at interannual periods (> 2 months), intermediate periods (> 7 days) and the whole spectrum (> 1day). We assess the impact of interannual loading on estimating velocities. We compute atmospheric loading effects using surface pressure fields from the ECMWF. We use the inverted barometer (IB) hypothesis valid for periods exceeding a week to describe the ocean response to the pressure forcing. We used general circulation ocean model (ECCO and GLORYS) to account for wind, heat and fresh water flux. We separately use the Toulouse Unstructured Grid Ocean model (TUGO-m), forced by air pressure and winds, to represent the dynamics of the ocean response at high frequencies. The continental water storage is described using GLDAS/Noah and MERRA-land models. Non-hydrology loading reduces the variability of the observed vertical displacement differently according to the frequency band. The hydrology loading leads to a further reduction mostly at annual periods. ECMWF+TUGO-m better agrees with vertical surface motion than the ECMWF+IB model at all frequencies. The interannual deformation is time-correlated at most of the locations. It is adequately described by a power-law process of spectral index varying from -1.5 to -0.2. Depending on the power-law parameters, the predicted non-linear deformation due to mass loading variations leads to vertical velocity biases up to 0.7 mm/yr when estimated from 5 years of continuous observations. The maximum velocity bias can reach up to 1 mm/yr in regions around the southern Tropical band.

  11. Numerical modeling and experimental analysis of volatile contaminant removal from vertical flow filters

    NARCIS (Netherlands)

    De Biase, C.

    2012-01-01

    Vertical flow filters (unplanted) and vertical flow constructed wetlands (planted), simple and inexpensive technologies to treat effectively volatile organic compounds (VOCs) contaminated water, consist of containers filled with granular material which is intermittently fed with contaminated water.

  12. Sensitive and robotic determination of bromate in sea water and drinking deep-sea water by headspace solid-phase micro extraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Lim, Hyun-Hee; Shin, Ho-Sang

    2012-09-05

    A robotic method has been established for the determination of bromate in sea water and drinking deep-sea water. Bromate in water was converted into volatile derivative, which was measured with headspace solid-phase micro extraction and gas chromatography-mass spectrometry (HS-SPME GC-MS). Derivatization reagent and the HS-SPME parameters (selection of fibre, extraction/derivatization temperature, heating time and; the morality of HCl) were optimized and selected. Under the established conditions, the detection and the quantification limits were 0.016 μg L(-1) and 0.051 μg L(-1), respectively, and the intra- and inter-day relative standard deviation was less than 7% at concentrations of 1.0 and 10.0 μg L(-1). The calibration curve showed good linearity with r(2)=0.9998. The common ions Cl(-), NO(3)(-), SO(4)(2-), HPO(4)(2-), H(2)PO(4)(-), K(+), Na(+), NH(4)(+), Ca(2+), Mg(2+), Ba(2+), Mn(4+), Mn(2+), Fe(3+) and Fe(2+) did not interfere even when present in 1000-fold excess over the active species. The method was successfully applied to the determination of bromate in sea water and drinking deep-sea water. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Hotel water consumption at a seasonal mass tourist destination. The case of the island of Mallorca.

    Science.gov (United States)

    Deyà Tortella, Bartolomé; Tirado, Dolores

    2011-10-01

    While it is true that tourism is one of the main driving forces behind economic growth in several world regions, it is also true that tourism can have serious negative environmental impacts, especially with regard to water resources. The tourist water demand can generate big problems of sustainability, mainly in those regions where water is scarce, as occurs in most coastal and small island destinations where a large part of world tourism is concentrated. Given the shortage of literature on the subject, further research into the tourist water demand is required, with particular attention to the hotel sector, since hotels are the most popular option for tourists, displaying higher levels of water consumption. The main purpose of this study is to develop a model to analyse hotel water consumption at a mature sun and sand destination with a strong seasonal pattern and scarcity of water; characteristics shared by some of the world's main tourist destinations. Our model includes a set of different hotel variables associated with physical, seasonal and management-related factors and it improves on the capacity to explain water consumption at such destinations. Following a hierarchical regression methodology, the model is empirically tested through a survey distributed to managers of a representative sample of hotels on the island of Mallorca. From the obtained results, interesting recommendations can be made for both hotel managers and policy makers. Among these, it should be highlighted that the strategic move contemplated by many mature destinations towards a higher quality, low-season model could have significant negative effects in terms of the sustainability of water resources. Our results also conclude that managerial decisions, like the system of accommodation that is offered (i.e. the proliferation of the "all-inclusive" formula, both at mature and new destinations), could give rise to the same negative effect. Development of water saving initiatives (usually

  14. Unusual Deep Water sponge assemblage in South China-Witness of the end-Ordovician mass extinction.

    Science.gov (United States)

    Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim

    2015-11-05

    There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.

  15. Unusual Deep Water sponge assemblage in South China—Witness of the end-Ordovician mass extinction

    Science.gov (United States)

    Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim

    2015-11-01

    There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.

  16. Vertical distribution and temporal dynamics of dissolved137Cs concentrations in soil water after the Fukushima Dai-ichi Nuclear Power Plant accident.

    Science.gov (United States)

    Iwagami, Sho; Onda, Yuichi; Tsujimura, Maki; Hada, Manami; Pun, Ishwar

    2017-11-01

    Radiocesium ( 137 Cs) migration from headwater forested areas to downstream rivers has been investigated in many studies since the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, which was triggered by a catastrophic earthquake and tsunami on 11 March 2011. The accident resulted in the release of a huge amount of radioactivity and its subsequent deposition in the environment. A large part of the radiocesium released has been shown to remain in the forest. The dissolved 137 Cs concentration and its temporal dynamics in river water, stream water, and groundwater have been reported, but reports of dissolved 137 Cs concentration in soil water remain sparse. In this study, soil water was sampled, and the dissolved 137 Cs concentrations were measured at five locations with different land-use types (mature/young cedar forest, broadleaf forest, meadow land, and pasture land) in Yamakiya District, located 35 km northwest of FDNPP from July 2011 to October 2012. Soil water samples were collected by suction lysimeters installed at three different depths at each site. Dissolved 137 Cs concentrations were analyzed using a germanium gamma ray detector. The dissolved 137 Cs concentrations in soil water were high, with a maximum value of 2.5 Bq/L in July 2011, and declined to less than 0.32 Bq/L by 2012. The declining trend of dissolved 137 Cs concentrations in soil water was fitted to a two-component exponential model. The rate of decline in dissolved 137 Cs concentrations in soil water (k 1 ) showed a good correlation with the radiocesium interception potential (RIP) of topsoil (0-5 cm) at the same site. Accounting for the difference of 137 Cs deposition density, we found that normalized dissolved 137 Cs concentrations of soil water in forest (mature/young cedar forest and broadleaf forest) were higher than those in grassland (meadow land and pasture land). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Temperature coefficient for modeling denitrification in surface water sediments using the mass transfer coefficient

    Science.gov (United States)

    T.W. Appelboom; G.M. Chescheir; F. Birgand; R.W. Skaggs; J.W. Gilliam; D. Amatya

    2010-01-01

    Watershed modeling has become an important tool for researchers. Modeling nitrate transport within drainage networks requires quantifying the denitrification within the sediments in canals and streams. In a previous study, several of the authors developed an equation using a term called a mass transfer coefficient to mathematically describe sediment denitrification....

  18. Characterization of Bacteria in Ballast Water Using MALDI-TOF Mass Spectrometry

    Digital Repository Service at National Institute of Oceanography (India)

    Emami, K.; Askari, V.; Ullrich, M.; Mohinudeen, K.; Anil, A.C.; Khandeparker, L.; Burgess, J.G.; Mesbahi, E.

    the protein samples. MALDI-TOF Parameters For database construction and validation, measurements were performed in the auto execute mode using an UltraFlex II mass spectrometer (Bruker Daltonik, Leipzig, Germany) with fuzzy control of laser intensity and a 1...

  19. Sea?level fingerprint of continental water and ice mass change from GRACE

    NARCIS (Netherlands)

    Riva, R.E.M.; Bamber, J.L.; Lavallée, D.A.; Wouters, B.

    2010-01-01

    The Gravity Recovery and Climate Experiment satellites (GRACE) provide, for the first time, a method to directly measure mass exchange between the land and oceans over time. The dominant components of this exchange are due to continental ice loss/gain and land hydrology. Here, we determine the

  20. Modelling the water mass circulation in the Aegean Sea. Part I: wind stresses, thermal and haline fluxes

    Directory of Open Access Journals (Sweden)

    I. A. Valioulis

    Full Text Available The aim of this work is to develop a computer model capable of simulating the water mass circulation in the Aegean Sea. There is historical, phenomenological and recent experimental evidence of important hydrographical features whose causes have been variably identified as the highly complex bathymetry, the extreme seasonal variations in temperature, the considerable fresh water fluxes, and the large gradients in salinity or temperature across neighbouring water masses (Black Sea and Eastern Mediterranean. In the approach taken here, physical processes are introduced into the model one by one. This method reveals the parameters responsible for permanent and seasonal features of the Aegean Sea circulation. In the first part of the work reported herein, wind-induced circulation appears to be seasonally invariant. This yearly pattern is overcome by the inclusion of baroclinicity in the model in the form of surface thermohaline fluxes. The model shows an intricate pattern of sub-basin gyres and locally strong currents, permanent or seasonal, in accord with the experimental evidence.

  1. Modelling the water mass circulation in the Aegean Sea. Part I: wind stresses, thermal and haline fluxes

    Directory of Open Access Journals (Sweden)

    I. A. Valioulis

    1994-07-01

    Full Text Available The aim of this work is to develop a computer model capable of simulating the water mass circulation in the Aegean Sea. There is historical, phenomenological and recent experimental evidence of important hydrographical features whose causes have been variably identified as the highly complex bathymetry, the extreme seasonal variations in temperature, the considerable fresh water fluxes, and the large gradients in salinity or temperature across neighbouring water masses (Black Sea and Eastern Mediterranean. In the approach taken here, physical processes are introduced into the model one by one. This method reveals the parameters responsible for permanent and seasonal features of the Aegean Sea circulation. In the first part of the work reported herein, wind-induced circulation appears to be seasonally invariant. This yearly pattern is overcome by the inclusion of baroclinicity in the model in the form of surface thermohaline fluxes. The model shows an intricate pattern of sub-basin gyres and locally strong currents, permanent or seasonal, in accord with the experimental evidence.

  2. Gas chromatograph–mass spectrometry determination of carcinogenic naphthalene, anthracene, phenanthrene and fluorene in the Bangsai river water of Bangladesh

    Directory of Open Access Journals (Sweden)

    M. Amzad Hossain

    2016-09-01

    Full Text Available A sensitive and fast method is described that solid phase extraction (SPE using dichloromethane, followed by gas chromatograph-mass spectrometry for the determination of environmentally carcinogenic naphthalene, anthracene, phenanthrene and fluorene (NAPF from the Bangsai river water near the Dhaka mega city of Bangladesh. The method was applied to identify and quantify the carcinogenic NAPF in water samples collected from surface and 30 cm depth of water. Methanol (50 ml pretreated and filtered water samples were applied directly to a C18 SPE column. The carcinogenic NAPF were extracted with dichloromethane and the NAPF concentration was obtained to be 0.39 to 54.98 ppm. The factors influencing SPE e.g., absorbent types, sample load volume, eluting solvent and temperature, were investigated. A cartridge containing a C18 absorbent and using solvent gave a better performance for the extraction of NAPF from the Bangsai river water samples. Average recoveries exceeding 75% could be achieved for toluene at 25 °C with a 2.6% RSD.

  3. Determination of microcystin-LR in drinking water using UPLC tandem mass spectrometry-matrix effects and measurement.

    Science.gov (United States)

    Li, Wei; Duan, Jinming; Niu, Chaoying; Qiang, Naichen; Mulcahy, Dennis

    2011-10-01

    A simple detection method using ultra-performance liquid chromatography electrospray ionisation tandem mass spectrometry (UPLC-ESI-MS-MS) coupled with the sample dilution method for determining trace microcystin-LR (MC-LR) in drinking water is presented. The limit of detection (LOD) was 0.04 µg/L and the limit of quantitation (LOQ) was 0.1 µg/L. Water matrix effects of ionic strength, dissolved organic carbon (DOC) and pH were examined. The results indicate that signal detection intensity for MC-LR was significantly suppressed as the ionic strength increased from ultrapure water condition, whereas it increased slightly with solution pH and DOC at low concentrations. However, addition of methanol (MeOH) into the sample was able to counter the signal suppression effects. In this study, dilution of the tap water sample by adding 4% MeOH (v/v) was observed to be adequate to compensate for the signal suppression. The recoveries of the samples fortified with MC-LR (0.2, 1, and 10 µg/L) for three different tap water samples ranged from 84.4% to 112.9%.

  4. Determination of membrane degradation products in the product water of polymer electrolyte membrane fuel cells using liquid chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zedda, Marco

    2011-05-12

    The predominant long term failure of polymer electrolyte membranes (PEM) is caused by hydroxyl radicals generated during fuel cell operation. These radicals attack the polymer, leading to chain scission, unzipping and consequently to membrane decomposition products. The present work has investigated decomposition products of novel sulfonated aromatic hydrocarbon membranes on the basis of a product water analysis. Degradation products from the investigated membrane type and the possibility to detect these compounds in the product water for diagnostic purposes have not been discovered yet. This thesis demonstrates the potential of solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) for the extraction, separation, characterization, identification and quantification of membrane degradation products in the product water of fuel cells. For this purpose, several polar aromatic hydrocarbons with different functional groups were selected as model compounds for the development of reliable extraction, separation and detection methods. The results of this thesis have shown that mixed mode sorbent materials with both weak anion exchange and reversed phase retention properties are well suited for reproducible extraction of both molecules and ions from the product water. The chromatographic separation of various polar aromatic hydrocarbons was achieved by means of phase optimized liquid chromatography using a solvent gradient and on a C18 stationary phase. Sensitive and selective detection of model compounds could be successfully demonstrated by the analysis of the product water using tandem mass spectrometry. The application of a hybrid mass spectrometer (Q Trap) for the characterization of unknown polar aromatic hydrocarbons has led to the identification and confirmation of 4-hydroxybenzoic acid in the product water. In addition, 4-HBA could be verified as a degradation product resulting from PEM decomposition by hydroxyl radicals using an

  5. Concentration fields near air-water interfaces during interfacial mass transport: oxygen transport and random square wave analysis

    Directory of Open Access Journals (Sweden)

    H. E. Schulz

    2009-09-01

    Full Text Available Mass transfer across a gas-liquid interface was studied theoretically and experimentally, using transfer of oxygen into water as the gas-liquid system. The experimental results support the conclusions of a theoretical description of the concentration field that uses random square waves approximations. The effect of diffusion over the concentration records was quantified. It is shown that the peak of the normalized rms concentration fluctuation profiles must be lower than 0.5, and that the position of the peak of the rms value is an adequate measure of the thickness of the diffusive layer. The position of the peak is the boundary between the regions more subject to molecular diffusion or to turbulent transport of dissolved mass.

  6. Microbial degradation. Mass transfer in the system pollutant - water - sediment; Mikrobieller Abbau. Massentransfer im System Schadstoff - Wasser - Sediment

    Energy Technology Data Exchange (ETDEWEB)

    Tiehm, Andreas [Technologiezentrum Wasser (TZW), Karlsruhe (Germany). Abt. Umweltbiotechnologie und Altlasten; Kranzioch, Irene; Stoll, Claudia

    2011-09-15

    The microbial degradation of pollutants in the aquatic environment essentially is influenced by the prevailing redox conditions and mass exchange processes (bioavailability). Within a new project, the Technologiezentrum Wasser TZW (Karlsruhe, Federal Republic of Germany) deals with the microbial conversion under dynamic conditions such as those expected in the area of the Three Gorges Dam at the Yangtze River. In particular, molecular-biological methods (PCR, polymerase chain reaction and DGGE Denatured gradient gel electrophoresis) are used for a targeted monitoring and further developed. The focus of the investigation initially focuses on the degradation of halogenated substances which are used as main substances for understanding the mass exchange between sediment and water as well as the microbial conversion processes. An enhanced understanding of the process and the compilation of the dynamic sales performance can be defined as a target.

  7. Study of heat and mass transfer of water evaporation in a gypsum board subjected to natural convection

    Science.gov (United States)

    Zannouni, K.; El Abrach, H.; Dhahri, H.; Mhimid, A.

    2017-06-01

    The present paper reports a numerical study to investigate the drying of rectangular gypsum sample based on a diffusive model. Both vertical and low sides of the porous media are treated as adiabatic and impermeable surfaces plate. The upper face of the plate represents the permeable interface. The energy equation model is based on the local thermal equilibrium assumption between the fluid and the solid phases. The lattice Boltzmann method (LBM) is used for solving the governing differential equations system. The obtained numerical results concerning the moisture content and the temperature within a gypsum sample were discussed. A comprehensive analysis of the influence of the mass transfer coefficient, the convective heat transfer coefficient, the external temperature, the relative humidity and the diffusion coefficient on macroscopic fields are also investigated. They all presented results in this paper and obtained in the stable regime correspond to time superior than 4000 s. Therefore the numerical error is inferior to 2%. The experimental data and the descriptive information of the approach indicate an excellent agreement between the results of our developed numerical code based on the LBM and the published ones.

  8. Cambios en la viabilidad de dos bacterias marinas antárticas expuestas a la radiación solar en la columna de agua: influencia de la mezcla vertical Changes in viability of two Antarctic marine bacteria exposed to solar radiation in the water column: influence of vertical mixing

    Directory of Open Access Journals (Sweden)

    E. A. Hernández

    2007-09-01

    Full Text Available Se estudió el efecto de la radiación ultravioleta (RUV sobre dos cepas bacterianas marinas antárticas (UVps y UVvi en la columna de agua de la caleta Potter (Shetland del Sur, Antártida. Frascos de cuarzo con las cepas en estudio fueron expuestos a la radiación solar en superficie, a 1 m y a 3 m de profundidad. Se realizaron ensayos con exposición directa y con filtros interferenciales que discriminaron la radiación UVA y la UVB. En otros ensayos se simuló una mezcla vertical de 4 m/h. Ambas cepas mostraron una disminución significativa del número de unidades formadoras de colonias, tanto en superficie como a 1 m de profundidad, luego de exponerlas a dosis superficiales de UVB de 8,4 kJ m-2. El estudio con filtros interferenciales mostró una disminución significativa de la viabilidad en ambos tratamientos UV en superficie y a 1 m. La cepa UVps mostró mayor sensibilidad a la UVB que a la UVA. La mezcla vertical amortiguó el daño causado por la UVB cuando la dosis en superficie fue de 4,8 kJ m-2. Este efecto amortiguador no se observó cuando la dosis en superficie fue de 7,7 kJ m-2. Estos resultados muestran que el efecto negativo de la RUV sobre el bacterioplancton sería particularmente importante en el primer metro de profundidad de las aguas costeras antárticas con abundante material particulado en suspensión.The effect of UV radiation on two Antarctic marine bacterial strains (UVps and UVvi was studied in the water column of Potter Cove (South Shetland, Antarctica. Quartz flasks were filled with the bacterial suspensions and exposed to solar radiation at 0 m, 1 m and 3 m depth. Assays using flasks exposed to direct solar radiation and others using flasks covered with/by interferential filters which discriminate between UVA and UVB, were performed. In other assays, a vertical mixing of 4 m/h was simulated. Both strains showed a significant decrease in viability (expressed as colony - forming units when exposed to a surface

  9. The effect of water temperature and flow on respiration in barnacles: patterns of mass transfer versus kinetic limitation.

    Science.gov (United States)

    Nishizaki, Michael T; Carrington, Emily

    2014-06-15

    In aquatic systems, physiological processes such as respiration, photosynthesis and calcification are potentially limited by the exchange of dissolved materials between organisms and their environment. The nature and extent of physiological limitation is, therefore, likely to be dependent on environmental conditions. Here, we assessed the metabolic sensitivity of barnacles under a range of water temperatures and velocities, two factors that influence their distribution. Respiration rates increased in response to changes in temperature and flow, with an interaction where flow had less influence on respiration at low temperatures, and a much larger effect at high temperatures. Model analysis suggested that respiration is mass transfer limited under conditions of low velocity (temperature (20-25°C). In contrast, limitation by uptake reaction kinetics, when the biotic capacity of barnacles to absorb and process oxygen is slower than its physical delivery by mass transport, prevailed at high flows (40-150 cm s(-1)) and low temperatures (5-15°C). Moreover, there are intermediate flow-temperature conditions where both mass transfer and kinetic limitation are important. Behavioral monitoring revealed that barnacles fully extend their cirral appendages at low flows and display abbreviated 'testing' behaviors at high flows, suggesting some form of mechanical limitation. In low flow-high temperature treatments, however, barnacles displayed distinct 'pumping' behaviors that may serve to increase ventilation. Our results suggest that in slow-moving waters, respiration may become mass transfer limited as temperatures rise, whereas faster flows may serve to ameliorate the effects of elevated temperatures. Moreover, these results underscore the necessity for approaches that evaluate the combined effects of multiple environmental factors when examining physiological and behavioral performance. © 2014. Published by The Company of Biologists Ltd.

  10. Water and methanol in low-mass protostellar outflows: gas-phase synthesis, ice sputtering and destruction

    Science.gov (United States)

    Suutarinen, A. N.; Kristensen, L. E.; Mottram, J. C.; Fraser, H. J.; van Dishoeck, E. F.

    2014-05-01

    Water in outflows from protostars originates either as a result of gas-phase synthesis from atomic oxygen at T ≳ 200 K, or from sputtered ice mantles containing water ice. We aim to quantify the contribution of the two mechanisms that lead to water in outflows, by comparing observations of gas-phase water to methanol (a grain surface product) towards three low-mass protostars in NGC 1333. In doing so, we also quantify the amount of methanol destroyed in outflows. To do this, we make use of James Clerk Maxwell Telescope and Herschel-Heterodyne Instrument for the Far-Infrared data of H2O, CH3OH and CO emission lines and compare them to RADEX non-local thermodynamic equilibrium excitation simulations. We find up to one order of magnitude decrease in the column density ratio of CH3OH over H2O as the velocity increases in the line wings up to ˜15 km s-1. An independent decrease in X(CH3OH) with respect to CO of up to one order of magnitude is also found in these objects. We conclude that gas-phase formation of H2O must be active at high velocities (above 10 km s-1 relative to the source velocity) to re-form the water destroyed during sputtering. In addition, the transition from sputtered water at low velocities to form water at high velocities must be gradual. We place an upper limit of two orders of magnitude on the destruction of methanol by sputtering effects.

  11. Analysis of haloacetic acids, bromate, and dalapon in natural waters by ion chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Wu, Shimin; Anumol, Tarun; Gandhi, Jay; Snyder, Shane A

    2017-03-03

    The addition of oxidants for disinfecting water can lead to the formation of potentially carcinogenic compounds referred to as disinfection byproducts (DBPs). Haloacetic acids (HAAs) are one of the most widely detected DBPs in US water utilities and some of them are regulated by the US Environmental Protection Agency (USEPA). The present study developed a method to analyze all the compounds in the USEPA method 557 (nine HAAs, bromate and dalapon) plus four potentially more toxic iodinated HAAs in water by coupling ion chromatography with tandem mass spectrometry (IC-MS/MS). This aqueous direct injection method has significant advantages over traditional GC methods, which require a derivatization and sample extraction that are laborious, time-consuming, and can negatively impact reproducibility. The method developed in this study requires half the time of the current USEPA method 557 on IC-MS/MS while including more compounds and achieving sub-μg/L level method detection limits (MDLs) for all 15 target analytes. The single laboratory lowest concentration minimum reporting level (LCMRL) has also been determined in reagent water, which ranged from 0.011 to 0.62μg/L for the analytes. The mean recoveries of the analytes during matrix spike recovery tests were 77-125% in finished drinking water and 81-112% in surface water. This method was then applied to untreated, chlorinated, and chloraminated groundwater and surface water samples. Bromate and 9 HAAs were detected at different levels in some of these samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Alternating Influence of Northern Versus Southern-Sourced Water Masses on the Equatorial Pacific Subthermocline During the Past 240 ka

    Science.gov (United States)

    Rippert, Nadine; Max, Lars; Mackensen, Andreas; Cacho, Isabel; Povea, Patricia; Tiedemann, Ralf

    2017-11-01

    The eastern equatorial Pacific (EEP) is a key area to understand past oceanic processes that control atmospheric CO2 concentrations. Many studies argue for higher nutrient concentrations by enhanced nutrient transfer via Southern Ocean Intermediate Water (SOIW) to the low-latitude Pacific during glacials. Recent studies, however, argue against SOIW as the primary nutrient source, at least during early Marine Isotope Stage 2 (MIS 2), as proxy data indicate that nutrients are better utilized in the Southern Ocean under glacial conditions. New results from the subarctic Pacific suggest that enhanced convection of nutrient-rich Glacial North Pacific Intermediate Water (GNPIW) contributes to changes in nutrient concentrations in equatorial subthermocline water masses during MIS 2. However, the interplay between SOIW versus GNPIW and its influence on the nutrient distribution in the EEP spanning more than one glacial cycle are still not understood. We present a carbon isotope (δ13C) record of subthermocline waters derived from deep-dwelling planktonic foraminifera Globorotaloides hexagonus in the EEP, which is compared with published δ13C records around the Pacific. Results indicate enhanced influence of GNPIW during MIS 6 and MIS 2 compared to today with largest contributions of northern-sourced intermediate waters during glacial maxima. These observations suggest a mechanistic link between relative contributions of northern and southern intermediate waters and past EEP nutrient concentrations. A switch from increased GNPIW (decreased SOIW) to diminished GNPIW (enhanced SOIW) influence on equatorial subthermocline waters is recognized during glacial terminations and marks changes to modern-like conditions in nutrient concentrations and biological productivity i