WorldWideScience

Sample records for vertical water mass

  1. A mass conservative numerical solution of vertical water flow and mass transport equations in unsaturated porous media

    International Nuclear Information System (INIS)

    Lim, S.C.; Lee, K.J.

    1993-01-01

    The Galerkin finite element method is used to solve the problem of one-dimensional, vertical flow of water and mass transport of conservative-nonconservative solutes in unsaturated porous media. Numerical approximations based on different forms of the governing equation, although they are equivalent in continuous forms, can result in remarkably different solutions in an unsaturated flow problem. Solutions given by a simple Galerkin method based on the h-based Richards equation yield a large mass balance error and an underestimation of the infiltration depth. With the employment of the ROMV (restoration of main variable) concept in the discretization step, the mass conservative numerical solution algorithm for water flow has been derived. The resulting computational schemes for water flow and mass transport are applied to sandy soil. The ROMV method shows good mass conservation in water flow analysis, whereas it seems to have a minor effect on mass transport. However, it may relax the time-step size restriction and so ensure an improved calculation output. (author)

  2. Thermobaricity, cabbeling, and water-mass conversion

    Science.gov (United States)

    McDougall, Trevor J.

    1987-05-01

    The efficient mixing of heat and salt along neutral surfaces (by mesoscale eddies) is shown to lead to vertical advection through these neutral surfaces. This is due to the nonlinearities of the equation of state of seawater through terms like ∂2ρ/∂θ∂p (thermobaric effect) and ∂2ρ/∂ θ2 (cabbeling). Cabbeling always causes a sinking or downwelling of fluid through neutral surfaces, whereas thermobaricity can lead to a vertical velocity (relative to neutral surfaces) of either sign. In this paper it is shown that for reasonable values of the lateral scalar diffusivity (especially below a depth of 1000 m), these two processes cause vertical velocities of the order of 10-7 m s-1 through neutral surfaces (usually downward!) and cause water-mass conversion of a magnitude equal to that caused by a vertical diffusivity of 10-4 m2 s-1 (often equivalent to a negative diffusivity). Both thermobaricity and cabbeling can occur in the presence of any nonzero amount of small-scale turbulence and so will not be detected by microstructure measurements. The conservation equations for tracers are considered in a nonorthogonal coordinate frame that moves with neutral surfaces in the ocean. Since only mixing processes cause advection across neutral surfaces, it is useful to regard this vertical advection as a symptom of various mixing processes rather than as a separate physical process. It is possible to derive conservative equations for scalars that do not contain the vertical advective term explicity. In these conservation equations, the terms that represent mixing processes are substantially altered. It is argued that this form of the conservation equations is the most appropriate when considering water-mass transformation, and some examples are given of its application in the North Atlantic. It is shown that the variation of the vertical diffusivity with height does not cause water-mass transformation. Also, salt fingering is often 3-4 times more effective at

  3. Heat transfer to sub- and supercritical water flowing upward in a vertical tube at low mass fluxes: numerical analysis and experimental validation

    NARCIS (Netherlands)

    Odu, Samuel Obarinu; Koster, P.; van der Ham, Aloysius G.J.; van der Hoef, Martin Anton; Kersten, Sascha R.A.

    2016-01-01

    Heat transfer to supercritical water (SCW) flowing upward in a vertical heated tube at low mass fluxes (G ≤ 20 kg/m2 s) has been numerically investigated in COMSOL Multiphysics and validated with experimental data. The turbulence models, essential to describing local turbulence, in COMSOL have been

  4. Water masses in the Humboldt Current System: Properties, distribution, and the nitrate deficit as a chemical water mass tracer for Equatorial Subsurface Water off Chile

    Science.gov (United States)

    Silva, Nelson; Rojas, Nora; Fedele, Aldo

    2009-07-01

    Three sections are used to analyze the physical and chemical characteristics of the water masses in the eastern South Pacific and their distributions. Oceanographic data were taken from the SCORPIO (May-June 1967), PIQUERO (May-June 1969), and KRILL (June 1974) cruises. Vertical sections of temperature, salinity, σ θ, dissolved oxygen, nitrate, nitrite, phosphate, and silicate were used to analyze the water column structure. Five water masses were identified in the zone through T- S diagrams: Subantarctic Water, Subtropical Water, Equatorial Subsurface Water, Antarctic Intermediate Water, and Pacific Deep Water. Their proportions in the sea water mixture are calculated using the mixing triangle method. Vertical sections were used to describe the geographical distributions of the water mass cores in the upper 1500 m. Several characteristic oceanographic features in the study area were analyzed: the shallow salinity minimum displacement towards the equator, the equatorial subsurface salinity maximum associated with a dissolved oxygen minimum zone and a high nutrient content displacement towards the south, and the equatorward intermediate Antarctic salinity minimum associated with a dissolved oxygen maximum. The nitrate deficit generated in the denitrification area off Peru and northern Chile is proposed as a conservative chemical tracer for the Equatorial Subsurface Waters off the coast of Chile, south of 25°S.

  5. Enhancement of combined heat and mass transfer in a vertical-tube heat and mass exchanger

    International Nuclear Information System (INIS)

    Webb, R.L.; Perez-Blanco, H.

    1986-01-01

    This paper studies enhancement of heat and mass transfer between a countercurrent, gravity-drained water film and air flowing in a vertical tube. The enhancement technique employed is spaced, transverse wires placed in the air boundary layer, near the air--water interface. Heat transfer correlations for turbulent, single-phase heat transfer in pipes having wall-attached spaced ribs are used to select the preferred wire diameter, and to predict the gas phase heat and mass transfer coefficients. Tests were run with two different radial placements of the rib roughness: (1) at the free surface of the liquid film, and (2) the base of the roughness displaced 0.51 mm into the air flow. The authors hypothesize that the best heat/mass transfer and friction performance will be obtained with the roughness at the surface of the water film. Experiments conducted with both roughness placements show that the authors' hypothesis is correct. The measured heat/mass transfer enhancement agreed very closely with the predicted values. A unique feature of the enhancement concept is that it does not require surface wetting of the enhancement device to provide enhancement

  6. Momentum, heat, and mass transfer analogy for vertical hydraulic transport of inert particles

    Directory of Open Access Journals (Sweden)

    Jaćimovski Darko R.

    2014-01-01

    Full Text Available Wall-to-bed momentum, heat and mass transfer in vertical liquid-solids flow, as well as in single phase flow, were studied. The aim of this investigation was to establish the analogy among those phenomena. Also, effect of particles concentration on momentum, heat and mass transfer was studied. The experiments in hydraulic transport were performed in a 25.4 mm I.D. cooper tube equipped with a steam jacket, using spherical glass particles of 1.94 mm in diameter and water as a transport fluid. The segment of the transport tube used for mass transfer measurements was inside coated with benzoic acid. In the hydraulic transport two characteristic flow regimes were observed: turbulent and parallel particle flow regime. The transition between two characteristic regimes (γ*=0, occurs at a critical voidage ε≈0.85. The vertical two-phase flow was considered as the pseudofluid, and modified mixture-wall friction coefficient (fw and modified mixture Reynolds number (Rem were introduced for explanation of this system. Experimental data show that the wall-to-bed momentum, heat and mass transfer coefficients, in vertical flow of pseudofluid, for the turbulent regime are significantly higher than in parallel regime. Wall-to-bed, mass and heat transfer coefficients in hydraulic transport of particles were much higher then in single-phase flow for lower Reynolds numbers (Re15000, there was not significant difference. The experimental data for wall-to-bed momentum, heat and mass transfer in vertical flow of pseudofluid in parallel particle flow regime, show existing analogy among these three phenomena. [Projekat Ministarstva nauke Republike Srbije, br. 172022

  7. Characteristics of low-mass-velocity vertical gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Adachi, Hiromichi; Abe, Yutaka; Kimura, Ko-ji

    1995-01-01

    In the present paper, characteristics of low mass velocity two-phase flow was analyzed based on a concept that pressure energy of two-phase flow is converted into acceleration work, gravitational work and frictional work, and the pressure energy consumption rate should be minimum at the stable two-phase flow condition. Experimental data for vertical upward air-water two-phase flow at atmospheric pressure was used to verify this concept and the turbulent model used in this method is optimized with the data. (author)

  8. Experimental study of supercritical water flow and heat transfer in vertical tube

    International Nuclear Information System (INIS)

    Li Hongbo; Yang Jue; Lu Donghua; Gu Hanyang; Zhao Meng

    2012-01-01

    The experiment of flow and heat transfer of supercritical water has been performed on the supercritical water multipurpose test loop co-constructed by China Guangdong Nuclear Power Group and Shanghai Jiao Tong University with a 7.6 mm vertical tube. Heat transfer experimental data is obtained. The results of experimental research of thermal-hydraulic parameters on flow and heat transfer of supercritical water show that: (1) Heat transfer enhancement occurs when the bulk temperature reaches pseudo-critical point with low mass flow velocity; (2) The heat transfer co- efficient and Nusselt number are decreased with the increasing of heat flux; (3) The wall temperature is decreased, but the heat transfer coefficient and Nusselt number are increased with the increasing of mass flow velocity; (4) The wall temperature is increased, but the heat transfer coefficient and Nusselt number are decreased with the increasing of sys- tem pressure. (authors)

  9. Water masses and general hydrography along the west coast of India during early March

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Varkey, M.J.; Das, V.K.; Gouveia, A.D.

    Structure of water masses along the west coast of India from Bombay to Trivandrum has been studied through vertical sections of temperature, salinity and density during 3-17 March 1977. The Arabian Sea high salinity water spreads south as a core...

  10. simulation of vertical water flow through vadose zone

    African Journals Online (AJOL)

    HOD

    Simulation of vertical water flow representing the release of water from the vadose zone to the aquifer of surroundings ... ground water pollution from agricultural, industrial and municipal .... Peak Flow Characteristics of Wyoming. Streams: US ...

  11. Investigation for vertical, two-phase steam-water flow of three turbine models

    International Nuclear Information System (INIS)

    Silverman, S.; Goodrich, L.D.

    1977-01-01

    One of the basic quantities of interest during a loss-of-coolant experiment (LOCE) is the primary system mass flow rate. Presently, there are no transducers commercially available which continuously measure this parameter. Therefore, a transducer was designed at EG and G Idaho, Inc. which combines a drag-disc and turbine into a single unit. The basis for the design was that the drag-disc would measure momentum flux (rhoV 2 ), the turbine would measure velocity and the mass flow rate could then be calculated from the two quantities by assuming a flow profile. For two-phase flow, the outputs are approximately proportional to the desired parameter, but rather large errors can be expected under those assumptions. Preliminary evaluation of the experimental two- and single-phase calibration data has resulted in uncertainty estimates of +-8% of range for the turbine and +-20% of range for the drag-disc. In an effort to reduce the errors, further investigations were made to determine what the drag-disc and turbine really measure. In the present paper, three turbine models for vertical, two-phase, steam/water flow are investigated; the Aya Model, the Rouhani Model, and a volumetric flow model. Theoretical predictions are compared with experimental data for vertical, two-phase steam/water flow. For the purposes of the mass flow calculation, velocity profiles were assumed to be flat for the free-field condition. It is appreciated that this may not be true for all cases investigated, but for an initial inspection, flat profiles were assumed

  12. Mass Transfer Process by Magneto-convection at a Solid-liquid Interface in a Heterogeneous Vertical Magnetic Field

    Science.gov (United States)

    Sugiyama, Atsushi; Morisaki, Shigeyoshi; Aogaki, Ryoichi

    2003-08-01

    When an external magnetic field is vertically imposed on a solid-liquid interface, the mass transfer process of a solute dissolving from or depositing on the interface was theoretically examined. In a heterogeneous vertical magnetic field, a material receives a magnetic force in proportion to the product of the magnetic susceptibility, the magnetic flux density B and its gradient (dB/dz). As the reaction proceeds, a diffusion layer of the solute with changing susceptibility is formed at the interface because of the difference of the the magnetic susceptibility on the concentration of the solute. In the case of an unstable condition where the dimensionless number of magneto-convection S takes a positive value, the magnetic force is applied to the layer and induces numerous minute convection cells. The mass transfer of the solute is thus accelerated, so that it is predicted that the mass flux increases with the 1/3rd order of B(dB/dz) and the 4/3rd order of the concentration. The experiment was then performed by measuring the rate of the dissolution of copper sulfate pentahydrate crystal in water.

  13. Seasonal Mass Changes and Crustal Vertical Deformations Constrained by GPS and GRACE in Northeastern Tibet

    Directory of Open Access Journals (Sweden)

    Yuanjin Pan

    2016-08-01

    Full Text Available Surface vertical deformation includes the Earth’s elastic response to mass loading on or near the surface. Continuous Global Positioning System (CGPS stations record such deformations to estimate seasonal and secular mass changes. We used 41 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs, in northeastern Tibet. The first common mode shows clear seasonal changes, indicating seasonal surface mass re-distribution around northeastern Tibet. The GPS-derived result is then assessed in terms of the mass changes observed in northeastern Tibet. The GPS-derived common mode vertical change and the stacked Gravity Recovery and Climate Experiment (GRACE mass change are consistent, suggesting that the seasonal surface mass variation is caused by changes in the hydrological, atmospheric and non-tidal ocean loads. The annual peak-to-peak surface mass changes derived from GPS and GRACE results show seasonal oscillations in mass loads, and the corresponding amplitudes are between 3 and 35 mm/year. There is an apparent gradually increasing gravity between 0.1 and 0.9 μGal/year in northeast Tibet. Crustal vertical deformation is determined after eliminating the surface load effects from GRACE, without considering Glacial Isostatic Adjustment (GIA contribution. It reveals crustal uplift around northeastern Tibet from the corrected GPS vertical velocity. The unusual uplift of the Longmen Shan fault indicates tectonically sophisticated processes in northeastern Tibet.

  14. Determining vertical bar Vub vertical bar from the B-bar→Xulν-bar dilepton invariant mass spectrum

    International Nuclear Information System (INIS)

    Bauer, Christian W.; Ligeti, Zoltan; Luke, Michael

    2001-01-01

    The invariant mass spectrum of the lepton pair in inclusive semileptonic B-bar→X u lν-bar decay yields a model independent determination of vertical bar V ub vertical bar. Unlike the lepton energy and hadronic invariant mass spectra, nonperturbative effects are only important in the resonance region, and play a parametrically suppressed role when dΓ/dq 2 is integrated over q 2 >(m B -m D ) 2 , which is required to eliminate the B-bar→X c lν-bar background. We discuss these backgrounds for q 2 slightly below (m B -m D ) 2 , and point out that instead of q 2 >(m B -m D ) 2 =11.6 GeV 2 , the cut can be lowered to q 2 > or approx. 10.5 GeV 2 . This is important experimentally, particularly when effects of a finite neutrino reconstruction resolution are included

  15. STRESS DISTRIBUTION IN THE STRATIFIED MASS CONTAINING VERTICAL ALVEOLE

    Directory of Open Access Journals (Sweden)

    Bobileva Tatiana Nikolaevna

    2017-08-01

    Full Text Available Almost all subsurface rocks used as foundations for various types of structures are stratified. Such heterogeneity may cause specific behaviour of the materials under strain. Differential equations describing the behaviour of such materials contain rapidly fluctuating coefficients, in view of this, solution of such equations is more time-consuming when using today’s computers. The method of asymptotic averaging leads to getting homogeneous medium under study to averaged equations with fixed factors. The present article is concerned with stratified soil mass consisting of pair-wise alternative isotropic elastic layers. In the results of elastic modules averaging, the present soil mass with horizontal rock stratification is simulated by homogeneous transversal-isotropic half-space with isotropy plane perpendicular to the standing axis. Half-space is loosened by a vertical alveole of circular cross-section, and virgin ground is under its own weight. For horizontal parting planes of layers, the following two types of surface conditions are set: ideal contact and backlash without cleavage. For homogeneous transversal-isotropic half-space received with a vertical alveole, the analytical solution of S.G. Lekhnitsky, well known in scientific papers, is used. The author gives expressions for stress components and displacements in soil mass for different marginal conditions on the alveole surface. Such research problems arise when constructing and maintaining buildings and when composite materials are used.

  16. Moonlight Drives Ocean-Scale Mass Vertical Migration of Zooplankton during the Arctic Winter.

    Science.gov (United States)

    Last, Kim S; Hobbs, Laura; Berge, Jørgen; Brierley, Andrew S; Cottier, Finlo

    2016-01-25

    In extreme high-latitude marine environments that are without solar illumination in winter, light-mediated patterns of biological migration have historically been considered non-existent [1]. However, diel vertical migration (DVM) of zooplankton has been shown to occur even during the darkest part of the polar night, when illumination levels are exceptionally low [2, 3]. This paradox is, as yet, unexplained. Here, we present evidence of an unexpected uniform behavior across the entire Arctic, in fjord, shelf, slope and open sea, where vertical migrations of zooplankton are driven by lunar illumination. A shift from solar-day (24-hr period) to lunar-day (24.8-hr period) vertical migration takes place in winter when the moon rises above the horizon. Further, mass sinking of zooplankton from the surface waters and accumulation at a depth of ∼50 m occurs every 29.5 days in winter, coincident with the periods of full moon. Moonlight may enable predation of zooplankton by carnivorous zooplankters, fish, and birds now known to feed during the polar night [4]. Although primary production is almost nil at this time, lunar vertical migration (LVM) may facilitate monthly pulses of carbon remineralization, as they occur continuously in illuminated mesopelagic systems [5], due to community respiration of carnivorous and detritivorous zooplankton. The extent of LVM during the winter suggests that the behavior is highly conserved and adaptive and therefore needs to be considered as "baseline" zooplankton activity in a changing Arctic ocean [6-9]. VIDEO ABSTRACT. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Discriminant analysis of maintaining a vertical position in the water

    Directory of Open Access Journals (Sweden)

    Bratuša Zoran

    2015-01-01

    Full Text Available Water polo is the only sports game that takes place in the water. During the outplay, a vertical body position with the two basic mechanisms of the leg work - a breaststroke leg kick and an eggbeater leg kick, prevails. Starting from the significance of a vertical position during the game play, the methods of assessing physical preparedness of the athletes of all the categories also include the evaluation of maintaining a vertical position and consequently the load of the leg muscles. The measurements are performed during the maintenance of a vertical position (swimming in place through one of the specified mechanisms of leg work, i.e. a vertical position technique. The aim of this paper was to determine the application of different mechanisms of the leg kicks in maintaining a vertical position with young water polo players in relation to their position. The study included 29 selected junior water polo players (age_15.8 ± 0.8 years; BH_185.2 ± 5.3cm and BW_81.7 ± 7.7kg. The measurements were performed during the tests of swimming in place at the maximum intensity lasting 10 seconds, by the breaststroke and eggbeater leg kicks. The isometric tensiometry tests were used for the measurements. The results were analysed by the application of descriptive statistics, and the kinetic selection characteristic was defined by the application of discriminant analysis. Higher average values were achieved with the breaststroke leg kick technique Fmax, ImpF and RFD (avgFmaxLEGGBK =157.46±19.93N; avgImpF_LEGGBK =45.43±10.64Ns; avgRFD_LEGGBK=337.85±80.73N/s; avgFmaxLBKICK=227.18±49.17N; avgImpF_LBKICK=55.99±14.59Ns; avgRFD_LBKICK=545.47±159.15N/s. After discriminant analysis, the results have shown that the eggbeater leg kick is a selection technique, whereas the force - Fmax is a kinetic selection variable. Based on the obtained results and the analyses performed it may be concluded that a training factor dominant for maintaining a vertical position by

  18. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Rod Clusters

    International Nuclear Information System (INIS)

    Becker, Kurt M.

    1962-01-01

    The present report deals with the results of the first phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. Data were obtained in the following ranges of variables. Pressure 2.4 sub 2 ; Mass velocity 144 2 /s; Heated length 1040 BO , were plotted against the pressure with the surface heat flux as parameter. The data have been correlated by curves. The scatter of the data around the curves is less than ± 5 per cent. In the ranges investigated the observed steam quality at burnout, x BO generally decreases with increasing heat flux; increases with increasing pressure and decreases with increasing mass velocity. The mass velocity effect has been explained on the basis of climbing film flow theory. Finally we have found that for engineering purposes the effects of inlet subcooling and channel length are negligible

  19. The relationship between vertical cup‑disc ratio and body mass ...

    African Journals Online (AJOL)

    Aim: To determine the relationship between vertical cup disc ratio (VCDR) and body mass index (BMI) in a population screened for glaucoma in Port Harcourt, Nigeria Materials and Method: This study was part of a one-day screening exercise for glaucoma at the University of Port Harcourt. Demographic data included age, ...

  20. Spatiotemporal Dynamics of Ammonia-Oxidizing Thaumarchaeota in Distinct Arctic Water Masses

    Directory of Open Access Journals (Sweden)

    Oliver Müller

    2018-01-01

    Full Text Available One of the most abundant archaeal groups on Earth is the Thaumarchaeota. They are recognized as major contributors to marine ammonia oxidation, a crucial step in the biogeochemical cycling of nitrogen. Their universal success is attributed to a high genomic flexibility and niche adaptability. Based on differences in the gene coding for ammonia monooxygenase subunit A (amoA, two different ecotypes with distinct distribution patterns in the water column have been identified. We used high-throughput sequencing of 16S rRNA genes combined with archaeal amoA functional gene clone libraries to investigate which environmental factors are driving the distribution of Thaumarchaeota ecotypes in the Atlantic gateway to the Arctic Ocean through an annual cycle in 2014. We observed the characteristic vertical pattern of Thaumarchaeota abundance with high values in the mesopelagic (>200 m water throughout the entire year, but also in the epipelagic (<200 m water during the dark winter months (January, March and November. The Thaumarchaeota community was dominated by three OTUs which on average comprised 76% ± 11 and varied in relative abundance according to water mass characteristics and not to depth or ammonium concentration, as suggested in previous studies. The ratios of the abundance of the different OTU types were similar to that of the functional amoA water cluster types. Together, this suggests a strong selection of ecotypes within different water masses, supporting the general idea of water mass characteristics as an important factor in defining microbial community structure. If indeed, as suggested in this study, Thaumarchaeota population dynamics are controlled by a set of factors, described here as water mass characteristics and not just depth alone, then changes in water mass flow will inevitably affect the distribution of the different ecotypes.

  1. Thermohaline structure and water masses in the north of Antarctic Peninsula from data collected in situ by southern elephant seals (Mirounga leonina

    Directory of Open Access Journals (Sweden)

    Ilana E. K. C. Wainer

    2013-04-01

    Full Text Available The Western Antarctic Peninsula is rapidly warming and exhibits high indices of biodiversity concentrated mostly along its continental shelf. This region has great importance due to the the mixing caused by the interaction of waters from Weddell Sea (MW, Bransfield Strait (EB and the Antarctic Circumpolar Current (CCA transmits thermohaline characteristics and nutrients of different sites and finally connects with all the world’s oceans. However, studies focusing on the temporal variability of the region’s oceanographic conditions that finally determine the water mass formation are sparse due to the logistical difficulties of conducting oceanographic surveys and traditional monitoring during the winter. For this study, variations of the thermohaline structure and water masses in the vicinity and below the sea ice in the North of the Antarctic Peninsula (AP and Scotia Sea (SS were recorded between February and November 2008 by two female southern elephant seals (SES, Mirounga leonina tagged with Conductivity–Temperature–Depth/Satellite-Relay Data Logger (CTD–SRDL. One thousand three hundred and thirty vertical profiles of temperature and salinity were collected by seals which were tagged by the MEOP-BR Project team at the Elephant Island, South Shetlands. These profiles, together with spread state diagrams allowed the identification of water masses and their variances in the ocean’s vertical structure. Among the set of identified water masses we cite: Antarctic Surface Water (AASW, Winter Water (WW, Warm Deep Water (WDW, Modified Warm Deep Water (MWDW, Circumpolar Deep Water (CDW, Upper Circumpolar Deep Water (UCDW, Lower Circumpolar Deep Water (LCDW and Ice Shelf Water (ISW. Our results show that the oceanic vertical structure undergoes changes that cannot be traditionally monitored, particularly during the Austral winter and that SES are important and modern oceanographic data collection platforms allowing for the improvement of our

  2. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  3. Diel vertical migration of zooplankton in the Tanzanian waters of ...

    African Journals Online (AJOL)

    The diel vertical migration of zooplankton was studied in the Southern part of Lake Victoria in January and July 2002. A van dorn water sampler was used to collect zooplankton. In January 2002, zooplankton showed a pronounced diel vertical migration whereby zooplankton were moving upward at around sunset and ...

  4. CFD-model of the mass transfer in the vertical settler

    Directory of Open Access Journals (Sweden)

    E. K. Nagornaya

    2013-02-01

    Full Text Available Purpose. Nowadays the mathematical models of the secondary settlers are intensively developed. As a rule the engineers use the 0-D models or 1-D models to design settlers. But these models do not take into account the hydrodynamics process inside the settler and its geometrical form. That is why the CFD-models based on Navier - Stokes equations are not widely used in practice now. The use of CFD-models based on Navier - Stokes equations needs to incorporate very refine grid. It is very actually now to develop the CFD-models which permit to take into account the geometrical form of the settler, the most important physical processes and needs small computer time for calculation. That is why the development of the 2-D numerical model for the investigation of the waste waters transfer in the vertical settlers which permits to take into account the geometrical form and the constructive features of the settler is essential. Methodology. The finite - difference schemes are applied. Findings. The new 2-D-CFD-model was developed, which permits to perform the CFD investigation of the vertical settler. This model takes into account the geometrical form of the settler, the central pipe inside it and others peculiarities. The method of «porosity technique» is used to create the geometrical form of the settler in the numerical model. This technique permits to build any geometrical form of the settler for CFD investigation. Originality. Making of CFD-model which permits on the one hand to take into account the geometrical form of the settler, basic physical processes of mass transfer in construction and on the other hand requiring the low time cost in order to obtain results. Practical value. CFD-model is designed and code which is constructed on its basis allows at low cost of computer time and about the same as in the calculation of the 1-D model to solve complex multiparameter problems that arise during the design of vertical settlers with their shape and

  5. Constraining the 0-20 km Vertical Profile of Water Vapor in the Martian Atmosphere with MGS-TES Limb Sounding

    Science.gov (United States)

    McConnochie, T. H.; Smith, M. D.; McDonald, G. D.

    2016-12-01

    The vertical profile of water vapor in the lower atmosphere of Mars is a crucial but poorly-measured detail of the water cycle. Most of our existing water vapor data sets (e.g. Smith, 2002, JGR 107; Smith et al., 2009, JGR 114; Maltagliati et al., 2011, Icarus 213) rely on the traditional assumption of uniform mass mixing from the surface up to a saturation level, but GCM models (Richardson et al., 2002, JGR 107; Navarro et al., 2014, JGR 119) imply that this is not the case in at least some important seasons and locations. For example at the equator during northern summer the water vapor mixing ratio in aforementioned GCMs increases upwards by a factor of two to three in the bottom scale height. This might influence the accuracy of existing precipitable water column (PWC) data sets. Even if not, the correct vertical distribution is critical for determining the extent to which high-altitude cold trapping interferes with inter-hemispheric transport, and its details in the lowest scale heights will be a critical test of the accuracy of modeled water vapor transport. Meanwhile attempts to understand apparent interactions of water vapor with surface soils (e.g. Ojha et al. 2015, Nature Geoscience 8; Savijärvi et al., 2016, Icarus 265) need an estimate for the amount of water vapor in the boundary layer, and existing PWC data sets can't provide this unless the lower atmospheric vertical distribution is known or constrained. Maltagliati et al. (2013, Icarus 223) have obtained vertical profiles of water vapor at higher altitudes with SPICAM on Mars Express, but these are commonly limited to altitudes greater 20 km and they never extend below 10 km. We have previously used Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) limb-sounding to measure the vertical profile of water vapor (e.g. McConnochie and Smith, 2009, Fall AGU #P54B-06), but these preliminary results were clearly not quantitatively accurate in the lower atmosphere. We will present improved TES

  6. Vertical Distribution of Water at Phoenix

    Science.gov (United States)

    Tamppari, L. K.; Lemmon, M. T.

    2011-01-01

    Phoenix results, combined with coordinated observations from the Mars Reconnaissance Orbiter of the Phoenix lander site, indicate that the water vapor is nonuniform (i.e., not well mixed) up to a calculated cloud condensation level. It is important to understand the mixing profile of water vapor because (a) the assumption of a well-mixed atmosphere up to a cloud condensation level is common in retrievals of column water abundances which are in turn used to understand the seasonal and interannual behavior of water, (b) there is a long history of observations and modeling that conclude both that water vapor is and is not well-mixed, and some studies indicate that the water vapor vertical mixing profile may, in fact, change with season and location, (c) the water vapor in the lowest part of the atmosphere is the reservoir that can exchange with the regolith and higher amounts may have an impact on the surface chemistry, and (d) greater water vapor abundances close to the surface may enhance surface exchange thereby reducing regional transport, which in turn has implications to the net transport of water vapor over seasonal and annual timescales.

  7. Sensitivity analysis of CFD code FLUENT-12 for supercritical water in vertical bare tubes

    Energy Technology Data Exchange (ETDEWEB)

    Farah, A.; Haines, P.; Harvel, G.; Pioro, I., E-mail: amjad.farah@yahoo.com, E-mail: patrickjhaines@gmail.com, E-mail: glenn.harvel@uoit.ca, E-mail: igor.pioro@uoit.ca [Univ. of Ontario Inst. of Technology, Faculty of Energy Systems and Nuclear Science,Oshawa, Ontario (Canada)

    2012-07-01

    The ability to use FLUENT 12 or other CFD software to accurately model supercritical water flow through various geometries in diabatic conditions is integral to research involving coal-fired power plants as well as Supercritical Water-cooled Reactors (SCWR). The cost and risk associated with constructing supercritical water test loops are far too great to use in a university setting. Previous work has shown that FLUENT 12, specifically realizable k-ε model, can reasonably predict the bulk and wall temperature distributions of externally heated vertical bare tubes for cases with relatively low heat and mass fluxes. However, sizeable errors were observed for other cases, often those which involved large heat fluxes that produce deteriorated heat transfer (DHT) regimes. The goal of this research is to gain a more complete understanding of how FLUENT 12 models supercritical water cases and where errors can be expected to occur. One control case is selected where expected changes in bulk and wall temperatures occur and they match empirical correlations' predictions, and the operating parameters are varied individually to gauge their effect on FLUENT's solution. The model used is the realizable k-ε, and the parameters altered are inlet pressure, mass flux, heat flux, and inlet temperature. (author)

  8. Large-Scale Ichthyoplankton and Water Mass Distribution along the South Brazil Shelf

    Science.gov (United States)

    de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique

    2014-01-01

    Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27′ and 34°51′S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients. PMID:24614798

  9. Large-scale ichthyoplankton and water mass distribution along the South Brazil Shelf.

    Directory of Open Access Journals (Sweden)

    Luis Carlos Pinto de Macedo-Soares

    Full Text Available Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27' and 34°51'S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients.

  10. Large-scale ichthyoplankton and water mass distribution along the South Brazil Shelf.

    Science.gov (United States)

    de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique

    2014-01-01

    Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27' and 34°51'S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients.

  11. An Analysis of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Persson, P

    1963-06-15

    A method of predicting the burnout conditions for flow of boiling water in vertical round ducts is presented. The analysis predicts that the burnout conditions are independent of the L/d-ratio and the inlet temperature, and that the burnout steam quality decreases with increasing surface heat flux and increasing mass velocity. It was also found that the burnout steam quality at low pressures increases with the pressure and reaches a maximum at approximately 70 kg/cm, and thereafter decreases with a further increase of the pressure. The theoretical result compares very well with experimental data from different sources.

  12. An Analysis of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Persson, P.

    1963-06-01

    A method of predicting the burnout conditions for flow of boiling water in vertical round ducts is presented. The analysis predicts that the burnout conditions are independent of the L/d-ratio and the inlet temperature, and that the burnout steam quality decreases with increasing surface heat flux and increasing mass velocity. It was also found that the burnout steam quality at low pressures increases with the pressure and reaches a maximum at approximately 70 kg/cm, and thereafter decreases with a further increase of the pressure. The theoretical result compares very well with experimental data from different sources

  13. Vertical Distribution of Dust and Water Ice Aerosols from CRISM Limb-geometry Observations

    Science.gov (United States)

    Smith, Michael Doyle; Wolff, Michael J.; Clancy, Todd; Kleinbohl, Armin; Murchie, Scott L.

    2013-01-01

    [1] Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (approx. 40-50km) during the perihelion season than during the aphelion season (water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons.

  14. Burnout Conditions for Flow of Boiling Water in Vertical Rod Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M

    1962-07-01

    The present report deals with the results of the first phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. Data were obtained in the following ranges of variables. Pressure 2.4Mass velocity 144mass velocity. The mass velocity effect has been explained on the basis of climbing film flow theory. Finally we have found that for engineering purposes the effects of inlet subcooling and channel length are negligible.

  15. Mass transfer effects on vertical oscillating plate with heat flux

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2007-01-01

    Full Text Available Theoretical solution of unsteady viscous incompressible flow past an infinite vertical oscillating plate with uniform heat flux and mass diffusion is presented here, taking into account of the homogeneous chemical reaction of first-order. The temperature from the plate to the fluid at an uniform rate and the mass is diffused uniformly. The dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity and concentration are studied for different parameters like phase angle chemical reaction parameter, thermal Grashof number, mass Grashof number Schmidt number and time are studied. The so­lutions are valid only for small values of time t. It is observed that the velocity increases with decreasing phase angle ωt or chemical reaction parameter.

  16. Using Vertical Structure to Infer the Total Mass Hidden in a Debris Disk

    Science.gov (United States)

    Daley, Cail; Hughes, A. Meredith; Carter, Evan; Flaherty, Kevin; Stafford Lambros, Zachary; Pan, Margaret; Schlichting, Hilke; Chiang, Eugene; Wilner, David; Dent, Bill; Carpenter, John; Andrews, Sean; MacGregor, Meredith Ann; Moor, Attila; Kospal, Agnes

    2018-01-01

    Disks of optically thin debris dust surround ≥ 20% of main sequence stars and mark the final stage of planetary system evolution. The features of debris disks encode dynamical interactions between the dust and any unseen planets embedded in the disk. The vertical distribution of the dust is particularly sensitive to the total mass of planetesimal bodies in the disk, and is therefore well suited for constraining the prevalence of otherwise unobservable Uranus and Neptune analogs. Inferences of mass from debris disk vertical structure have previously been applied to infrared and optical observations of several systems, but the smaller particles traced by short-wavelength observations are ‘puffed up’ by radiation pressure, yielding only upper limits on the total embedded mass. The large grains that dominate the emission at millimeter wavelengths are essentially impervious to the effects of stellar radiation, and therefore trace the underlying mass distribution more directly. Here we present 1.3mm dust continuum observations of the debris disk around the nearby M star AU Mic with the Atacama Large Millimeter/submillimeter Array (ALMA). The 3 au spatial resolution of the observations, combined with the favorable edge-on geometry of the system, allows us to measure the vertical structure of a debris disk at millimeter wavelengths for the first time. We analyze the data using a ray-tracing code that translates a 2-D density and temperature structure into a model sky image of the disk. This model image is then compared directly to the interferometric data in the visibility domain, and the model parameters are explored using a Markov Chain Monte Carlo routine. We measure a scale height-to-radius ratio of 0.03, which we then compare to a theoretical model of steady-state, size-dependent velocity distributions in the collisional cascade to infer a total mass within the disk of ∼ 1.7 Earth masses. These measurements rule out the presence of a gas giant or Neptune

  17. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  18. Saturated flow boiling heat transfer in water-heated vertical annulus

    International Nuclear Information System (INIS)

    Sun Licheng; Yan Changqi; Sun Zhonning

    2005-01-01

    This paper describes the saturated flow boiling heat transfer characteristics of water at 1 atm and low velocities in water-heated vertical annuli with equivalent diameters of 10 mm and 6 mm. Test section is consisted of two concentric circular tubes outer of which is made of quartz, so the whole test courses can be visualized. There are three main flow patterns of bubble flow, churn flow and churn-annular flow in the annuli, most important of which is churn flow. Flooding is the mechanism of churn flow and churn can enhance the heat transport between steam and water; Among the three factors of mass flux, inlet subcooling and annulus width, the last one has great effect on heat transport, moderately decreasing the annulus width can enhance the heat transfer; Combined annular flow model with theory of flooding and turbulent Prandtl Number, the numerical value of heat flux is given, the shape of test boiling curve and that of calculated by model is very alike, but there is large discrepancy between test data and calculated results, the most possible reason is that some parameters given by fluid flooding model are based on experimental data of common circular tubes, but not of annuli. Doing more research on flooding in annulus, particularly narrow annulus, is necessary for calculating the saturated boiling in annulus. (authors)

  19. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water

    Science.gov (United States)

    Kahre, Melinda A.; Haberle, Robert M.; Hollingsworth, Jeffery L.; Brecht, Amanda S.; Urata, Richard A.

    2015-11-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  20. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R.

    2015-01-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  1. Numerical case studies of vertical wall fire protection using water spray

    Directory of Open Access Journals (Sweden)

    L.M. Zhao

    2014-11-01

    Full Text Available Studies of vertical wall fire protection are evaluated with numerical method. Typical fire cases such as heated dry wall and upward flame spread have been validated. Results predicted by simulations are found to agree with experiment results. The combustion behavior and flame development of vertical polymethylmethacrylate slabs with different water flow rates are explored and discussed. Water spray is found to be capable of strengthening the fire resistance of combustible even under high heat flux radiation. Provided result and data are expected to provide reference for fire protection methods design and development of modern buildings.

  2. Monitoring Vertical Crustal Deformation and Gravity Variations during Water Level Changes at the Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    WANG Wei

    2017-06-01

    Full Text Available Monitoring vertical crustal deformation and gravity changes during water level changes at the Three Gorges reservoir is important for the safe operation of the Three Gorges Dam and for the monitoring and prevention of a regional geological disaster. In this study, we determined vertical crustal deformation and gravity changes during water level variations of the Three Gorges reservoir from direct calculations and actual measurements and a comprehensive solution. We used water areas extracted image data from the ZY-3 satellite and water level data to calculate gravity changes and vertical crustal deformation caused by every 5 m change in the water level due to storage and drainage of the Three Gorges reservoir from 145 m to 175 m. The vertical crustal deformation was up to 30 mm. The location of gravity change above 20 μ Gal(1 Gal=10-2 m/s2 was less than 2 km from the centerline of the Yangtze River. The CORS ES13 in Badong, near the reservoir, measured the vertical crustal deformation during water level changes. Because of the small number of CORS and gravity stations in the Three Gorges reservoir area, monitoring deformation and gravity related to changes in the Three Gorges reservoir water level cannot be closely followed. Using 26 CORS and some of the gravity stations in the Three Gorges area and based on loading deformation and the spherical harmonic analysis method, an integrated solution of vertical deformation and gravity variations during water level changes of the reservoir was determined, which is consistent with the actual CORS monitoring results. By comparison, we found that an integrated solution based on a CORS network can effectively enhance the capability of monitoring vertical crustal deformation and gravity changes during water level variations of the reservoir.

  3. Determination of the CKM matrix element vertical stroke V{sub cb} vertical stroke, the B {yields} X{sub s}{gamma} decay rate, and the b-quark mass

    Energy Technology Data Exchange (ETDEWEB)

    Bernlochner, Florian Urs

    2011-09-15

    In this work, the preliminary measurements of two fundamental parameters of the Standard Model of particles physics are presented: the CKM matrix element vertical stroke V{sub cb} vertical stroke, and the b-quark mass. The measurement of the absolute value of the CKM matrix element V{sub cb} uses the full set of recorded data of 429.06 fb{sup -1} of B anti B mesons of the BABAR experiment. The CKM matrix element is obtained by measuring the branching fractions and non-perturbative shape parameters of the two transitions into the charmed 1S ground states, B {yields} Dl{nu}{sub l} and B {yields} D{sup *}l {nu}{sub l}, respectively. The kinematic of the produced lepton is measured and the kinematics of the short-lived charmed mesons is reconstructed from kaon and pion candidates. By combining the reconstructed three-momenta of both particles with the angular information of the decay, three independent variables can be obtained. The measured distributions in these variables are analyzed in a three-dimensional global fit, which simultaneously extracts the decay parameters and branching fractions of both charmed transitions. We find that B {yields} Dl {nu}{sub l}: vertical stroke V{sub cb} vertical stroke =(36.14{+-}0.57{sub stat.}{+-}1.30{sub sys.}{+-}0.80{sub theo.}) x 10{sup -3}, B {yields} D{sup *}l {nu}{sub l}: vertical stroke V{sub cb} vertical stroke =(39.71{+-}0.26{sub stat.}{+-}0.73{sub sys.}{+-}0.74{sub theo.}) x 10{sup -3}, where the uncertainties are statistical, systematic, and theoretical, respectively. In the Standard Model, both measured values of vertical stroke V{sub cb} vertical stroke can be averaged to further minimize the uncertainties. We find Combined: vertical stroke V{sub cb} vertical stroke =(38.29{+-}0.26{sub stat.}{+-}0.64{sub sys.}{+-}0.52{sub theo.}) x 10{sup -3}. Furthermore, several scenarios are explored how possible future unquenched lattice QCD points can be incorporated into the measurement, to further reduce the uncertainty on

  4. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts (Part 2)

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Persson, P.; Nilsson, L.; Eriksson, O.

    1963-06-01

    The present report deals with the results of the second phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. The following ranges of variables were studied and 809 burnout measurements were obtained. Pressure 5. 3 2 ; Inlet subcooling 56 sub BO 2 ; Mass velocity 100 2 s; Heated length 600 BO , were plotted against the pressure with the surface heat flux as parameter. The data have been correlated by curves, and the scatter around the curves is less than ± 5 per cent. In the ranges investigated, the observed steam quality at burnout, X BO generally decreases with increasing heat flux and mass velocity but increases with increasing pressure. The data have been compared with the empirical correlation by Tong, and excellent agreement was found for pressures higher than 10 kg/cm 2

  5. Features of Red Sea Water Masses

    Science.gov (United States)

    Kartadikaria, Aditya; Hoteit, Ibrahim

    2015-04-01

    Features of Red Sea water mass can be divided into three types but best to be grouped into two different classes that are split at the potential density line σθ=27.4. The surface water (0-50 m) and the intermediate water (50-200 m) have nearly identical types of water mass. They appear as a maxima salinity layer for the water mass that has σθ > 26.0, and as a minimum salinity layer for water mass that has σθ water masses are strongly affected by mixing that is controlled by seasonal variability, fresh water intrusion of the Gulf of Aden Intermediate Water (GAIW), and eddies variability. Two types of mixing; isopycnal and diapycnal mixing are part of important physical phenomena that explain the change of water mass in the Red Sea. The isopycnal mixing occurs at the neutral potential density line, connecting the Red Sea with its adjacent channel, the Gulf of Aden. Diapycnal mixing is found as a dominant mixing mode in the surface of the Red Sea Water and mainly due to energetic eddy activity. Density gradients, across which diapycnal mixing occurs, in the Red Sea are mainly due to large variations in salinity. The isolation of an extreme haline water mass below the thermocline contributes to the generation of the latitudinal shift and low diapycnal mixing. This finding further explains the difference of spatial kinetic mixing between the RSW and the Indian Ocean basin.

  6. Features of Red Sea Water Masses

    KAUST Repository

    Kartadikaria, Aditya R.

    2015-04-01

    Features of Red Sea water mass can be divided into three types but best to be grouped into two different classes that are split at the potential density line σθ=27.4. The surface water (0-50 m) and the intermediate water (50-200 m) have nearly identical types of water mass. They appear as a maxima salinity layer for the water mass that has σθ > 26.0, and as a minimum salinity layer for water mass that has σθ < 26.0. These types of water masses are strongly affected by mixing that is controlled by seasonal variability, fresh water intrusion of the Gulf of Aden Intermediate Water (GAIW), and eddies variability. Two types of mixing; isopycnal and diapycnal mixing are part of important physical phenomena that explain the change of water mass in the Red Sea. The isopycnal mixing occurs at the neutral potential density line, connecting the Red Sea with its adjacent channel, the Gulf of Aden. Diapycnal mixing is found as a dominant mixing mode in the surface of the Red Sea Water and mainly due to energetic eddy activity. Density gradients, across which diapycnal mixing occurs, in the Red Sea are mainly due to large variations in salinity. The isolation of an extreme haline water mass below the thermocline contributes to the generation of the latitudinal shift and low diapycnal mixing. This finding further explains the difference of spatial kinetic mixing between the RSW and the Indian Ocean basin.

  7. Vertical Mulching e manejo da água em semeadura direta Vertical Mulching and water management in no tillage system

    Directory of Open Access Journals (Sweden)

    Sandra Maria Garcia

    2008-04-01

    soil structure degradation, soil compaction below the arable layer, and decreased macroporosity. These changes resulted in reduced soil water infiltration rate and increased runoff, soil erosion and sedimentation in rivers and reservoirs. In the no tillage system the water erosion from the soil surface is practically controlled, and the terraces were eliminated by the farmers. Nevertheless, the surface flow is higher than it was in the conventional tillage system. With the objective of evaluating the hydrological behavior of vertical mulching in no tillage systems as related to runoff, this study was developed in the growing seasons of 2002/2003 and 2003/2004 on a Red Latosol (Oxisol in the Planalto Médio region of Rio Grande do Sul State, Brazil. A field experiment was installed using plots without vertical mulching, with vertical mulching at every 10 m and with vertical mulching at every 5 m. It was used a randomized block design with three replications. Leveled furrows of vertical mulching, perpendicular to the soil slope (0.08 m wide by 0.38 m deep were dug and filled with straw compacted enough to stabilize the furrow sides. Rainfall intensities of 70 and 106 mm h-1 were simulated on soybean and wheat to determine runoff, soil water infiltration rate, and nutrient and organic carbon concentration in the runoff. The results showed that vertical mulching in no tillage significantly reduces surface runoff and increases the water infiltration rate into the soil. It also reduces the total nutrient and organic carbon losses due to the reduction of water runoff.

  8. An assessment of void fraction correlations for vertical upward steam-water flow

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Maruthi Ramesh, N.; Pilkhwal, D.S.; Saha, D.

    1997-01-01

    An assessment of sixteen void fraction correlations have been carried out using experimental void fraction data compiled from open literature for vertical upward steam-water flow. Nearly 80% of all the data pertained to natural circulation flow. This assessment showed that best prediction is obtained by Chexal et al. (1996) correlation followed by Hughmark (1965) and the Mochizuki and Ishii (1992) correlations. The Mochizuki-Ishii correlation is found to satisfy all the three limiting conditions whereas Chexal et al. (1996) correlation satisfies all the limiting conditions at moderately high mass fluxes (greater than 140 kg/m 2 s) while Hughmark correlation satisfies only one of the three limiting conditions. The available void fraction data in the open literature for steam-water two-phase flow lies predominantly in the low quality region. This is the reason why correlations like Hughmark which do not satisfy the upper limiting condition (i.e. at x=1, α=1) perform rather well in assessments. Additional work is required for the generation of high quality (greater than 40%) void fraction data. (author)

  9. Global vertical mass transport by clouds - A two-dimensional model study

    International Nuclear Information System (INIS)

    Olofsson, Mats

    1988-05-01

    A two-dimensional global dispersion model, where vertical transport in the troposphere carried out by convective as well as by frontal cloud systems is explicitly treated, is developed from an existing diffusion model. A parameterization scheme for the cloud transport, based on global cloud statistics, is presented. The model has been tested by using Kr-85, Rn-222 and SO 2 as tracers. Comparisons have been made with observed distributions of these tracers, but also with model results without the cloud transport, using eddy diffusion as the primary means of vertical transport. The model results indicate that for trace species with a turnover time of days to weeks, the introduction of cloud-transport gives much more realistic simulations of their vertical distribution. Layers of increased mixing ratio with height, which can be found in real atmosphere, are reproduced in our cloud-transport model profiles, but can never be simulated with a pure eddy diffusion model. The horizontal transport in the model, by advection and eddy diffusion, gives a realistic distribution between the hemispheres of the more long-lived tracers (Kr-85). A combination of vertical transport by convective and frontal cloud systems is shown to improve the model simulations, compared to limiting it to convective transport only. The importance of including cumulus clouds in the convective transport scheme, in addition to the efficient transport by cumulonimbus clouds, is discussed. The model results are shown to be more sensitive to the vertical detrainment distribution profile than to the absolute magnitude of the vertical mass transport. The scavenging processes for SO 2 are parameterized without the introduction of detailed chemistry. An enhanced removal, due to the increased contact with droplets in the in-cloud lifting process, is introduced in the model. (author)

  10. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting.

    Science.gov (United States)

    Zhu, Jixin; Sakaushi, Ken; Clavel, Guylhaine; Shalom, Menny; Antonietti, Markus; Fellinger, Tim-Patrick

    2015-04-29

    The synthesis of vertically aligned functional graphitic carbon nanosheets (CNS) is challenging. Herein, we demonstrate a general approach for the fabrication of vertically aligned CNS and metal carbide@CNS composites via a facile salt templating induced self-assembly. The resulting vertically aligned CNS and metal carbide@CNS structures possess ultrathin walls, good electrical conductivity, strong adhesion, excellent structural robustness, and small particle size. In electrochemical energy conversion and storage such unique features are favorable for providing efficient mass transport as well as a large and accessible electroactive surface. The materials were tested as electrodes in a lithium ion battery and in electrochemical water splitting. The vertically aligned nanosheets exhibit remarkable lithium ion storage properties and, concurrently, excellent properties as electrocatalysts for hydrogen evolution.

  11. Method of distillation of shale. [addition of water to vertical retort

    Energy Technology Data Exchange (ETDEWEB)

    Hultman, G H

    1915-09-11

    The method is characterized by adding water, finely distributed, to the warm shale being distilled in a vertical retort. By this procedure steam is generated which will drive out and protect the distilled oil vapors. The adding of finely distributed water, already mentioned, takes place in special chambers under the retort.

  12. Three-phase flow (water, oil and gas in a vertical circular cylindrical duct with leaks: A theoretical study

    Directory of Open Access Journals (Sweden)

    W Santos

    2016-10-01

    Full Text Available This article describes the fluid dynamic behavior of a three-phase flow (water-oil-natural gas in a vertical pipe with or without leakage. The studied pipe has 8 meters in length, circular cross-section with 25 cm in diameter and a leak, which hole has a circular shape with 10mm diameter located in the center of pipe. The conservation equations of mass, momentum and energy for each phase (continuous phase - oil, dispersed phases - gas and water were numerically solved using ANSYS CFX software, in which the Eulerian-Eulerian model and the RNG - turbulence model were applied. Results of the pressure, velocity, temperature and volume fraction distributions of the involved phases are present and analyzed.

  13. Vertical vibration and shape oscillation of acoustically levitated water drops

    International Nuclear Information System (INIS)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.

    2014-01-01

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  14. Vertical vibration and shape oscillation of acoustically levitated water drops

    Energy Technology Data Exchange (ETDEWEB)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-09-08

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  15. Heat Transfer to Supercritical Water in Gaseous State or Affected by Mixed Convection in Vertical Tubes

    International Nuclear Information System (INIS)

    Pis'menny, E.N.; Razumovskiy, V.G.; Maevskiy, E.M.; Koloskov, A.E.; Pioro, I.L.

    2006-01-01

    The results on heat transfer to supercritical water heated above the pseudo-critical temperature or affected by mixed convection flowing upward and downward in vertical tubes of 6.28-mm and 9.50-mm inside diameter are presented. Supercritical water heat-transfer data were obtained at a pressure of 23.5 MPa, mass flux within the range from 250 to 2200 kg/(m 2 s), inlet temperature from 100 to 415 deg. C and heat flux up to 3.2 MW/m 2 . Temperature regimes of the tubes cooled with supercritical water in a gaseous state (i.e., supercritical water at temperatures beyond the pseudo-critical temperature) were stable and easily reproducible within a wide range of mass and heat fluxes. An analysis of the heat-transfer data for upward and downward flows enabled to determine a range of Gr/Re 2 values corresponding to the maximum effect of free convection on the heat transfer. It was shown that: 1) the heat transfer coefficient at the downward flow of water can be higher by about 50% compared to that of the upward flow; and 2) the deteriorated heat-transfer regime is affected with the flow direction, i.e., at the same operating conditions, the deteriorated heat transfer may be delayed at the downward flow compared to that at the upward flow. These heat-transfer data are applicable as the reference dataset for future comparison with bundle data. (authors)

  16. Characterization of vertical mixing in oscillatory vegetated flows

    Science.gov (United States)

    Abdolahpour, M.; Ghisalberti, M.; Lavery, P.; McMahon, K.

    2016-02-01

    Seagrass meadows are primary producers that provide important ecosystem services, such as improved water quality, sediment stabilisation and trapping and recycling of nutrients. Most of these ecological services are strongly influenced by the vertical exchange of water across the canopy-water interface. That is, vertical mixing is the main hydrodynamic process governing the large-scale ecological and environmental impact of seagrass meadows. The majority of studies into mixing in vegetated flows have focused on steady flow environments whereas many coastal canopies are subjected to oscillatory flows driven by surface waves. It is known that the rate of mass transfer will vary greatly between unidirectional and oscillatory flows, necessitating a specific investigation of mixing in oscillatory canopy flows. In this study, we conducted an extensive laboratory investigation to characterise the rate of vertical mixing through a vertical turbulent diffusivity (Dt,z). This has been done through gauging the evolution of vertical profiles of concentration (C) of a dye sheet injected into a wave-canopy flow. Instantaneous measurement of the variance of the vertical concentration distribution ( allowed the estimation of a vertical turbulent diffusivity (). Two types of model canopies, rigid and flexible, with identical heights and frontal areas, were subjected to a wide and realistic range of wave height and period. The results showed two important mechanisms that dominate vertical mixing under different conditions: a shear layer that forms at the top of the canopy and wake turbulence generated by the stems. By allowing a coupled contribution of wake and shear layer mixing, we present a relationship that can be used to predict the rate of vertical mixing in coastal canopies. The results further showed that the rate of vertical mixing within flexible vegetation was always lower than the corresponding rigid canopy, confirming the impact of plant flexibility on canopy

  17. Water masses as a unifying framework for understanding the Southern Ocean Carbon Cycle

    Directory of Open Access Journals (Sweden)

    D. Iudicone

    2011-05-01

    Full Text Available The scientific motivation for this study is to understand the processes in the ocean interior controlling carbon transfer across 30° S. To address this, we have developed a unified framework for understanding the interplay between physical drivers such as buoyancy fluxes and ocean mixing, and carbon-specific processes such as biology, gas exchange and carbon mixing. Given the importance of density in determining the ocean interior structure and circulation, the framework is one that is organized by density and water masses, and it makes combined use of Eulerian and Lagrangian diagnostics. This is achieved through application to a global ice-ocean circulation model and an ocean biogeochemistry model, with both components being part of the widely-used IPSL coupled ocean/atmosphere/carbon cycle model.

    Our main new result is the dominance of the overturning circulation (identified by water masses in setting the vertical distribution of carbon transport from the Southern Ocean towards the global ocean. A net contrast emerges between the role of Subantarctic Mode Water (SAMW, associated with large northward transport and ingassing, and Antarctic Intermediate Water (AAIW, associated with a much smaller export and outgassing. The differences in their export rate reflects differences in their water mass formation processes. For SAMW, two-thirds of the surface waters are provided as a result of the densification of thermocline water (TW, and upon densification this water carries with it a substantial diapycnal flux of dissolved inorganic carbon (DIC. For AAIW, principal formatin processes include buoyancy forcing and mixing, with these serving to lighten CDW. An additional important formation pathway of AAIW is through the effect of interior processing (mixing, including cabelling that serve to densify SAMW.

    A quantitative evaluation of the contribution of mixing, biology and gas exchange to the DIC evolution per water mass reveals that

  18. Vertical nutrient fluxes, turbulence and the distribution of chlorophyll a in the north-eastern North Sea

    Science.gov (United States)

    Bendtsen, Jørgen; Richardson, Katherine

    2017-04-01

    During summer the northern North Sea is characterized by nutrient rich bottom water masses and nutrient poor surface layers. This explains the distribution of chlorophyll a in the water column where a subsurface maximum, referred to as the deep chlorophyll maximum (DCM), often is present during the growth season. Vertical transport of nutrients between bottom water masses and the well lit surface layer stimulates phytoplankton growth and this generally explains the location of the DCM. However, a more specific understanding of the interplay between vertical transports, nutrient fluxes and phytoplankton abundance is required for identifying the nature of the vertical transport processes, e.g the role of advection versus vertical turbulent diffusion or the role of localized mixing associated with mesoscale eddies. We present results from the VERMIX study in the north-eastern North Sea where nutrients, chlorophyll a and turbulence profiles were measured along five north-south directed transects in July 2016. A high-resolution sampling program, with horizontal distances of 1-10 km between CTD-stations, resolved the horizontal gradients of chlorophyll a across the steep bottom slope from the relatively shallow central North Sea ( 50-80 m) towards the deep Norwegian Trench (>700 m). Low oxygen concentrations in the bottom water masses above the slope indicated enhanced biological production where vertical mixing would stimulate phytoplankton growth around the DCM. Measurements of variable fluorescence (Fv/Fm) showed elevated values in the DCM which demonstrates a higher potential for electron transport in the Photosystem II in the phytoplankton cells, i.e. an indication of nutrient-rich conditions favorable for phytoplankton production. Profiles of the vertical shear and microstructure of temperature and salinity were measured by a VMP-250 turbulence profiler and the vertical diffusion of nutrients was calculated from the estimated vertical turbulent diffusivity and the

  19. Vertical gradients in water chemistry and age in the Northern High Plains Aquifer, Nebraska, 2003

    Science.gov (United States)

    McMahon, P.B.; Böhlke, J.K.; Carney, C.P.

    2007-01-01

    The northern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of Colorado, Kansas, Nebraska, South Dakota, and Wyoming. Despite the aquifer’s importance to the regional economy, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey’s National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the northern High Plains aquifer were analyzed for major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, dissolved gases, and other parameters to evaluate vertical gradients in water chemistry and age in the aquifer. Chemical data and tritium and radiocarbon ages show that water in the aquifer was chemically and temporally stratified in the study area, with a relatively thin zone of recently recharged water (less than 50 years) near the water table overlying a thicker zone of older water (1,800 to 15,600 radiocarbon years). In areas where irrigated agriculture was an important land use, the recently recharged ground water was characterized by elevated concentrations of major ions and nitrate and the detection of pesticide compounds. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions. The concentration increases were accounted for primarily by dissolved calcium, sodium, bicarbonate, sulfate, and silica. In general, the chemistry of ground water throughout the aquifer was of high quality. None of the approximately 90 chemical constituents analyzed in each sample exceeded primary drinking-water standards.Mass-balance models indicate that changes in groundwater chemistry along flow paths in the aquifer can be accounted for by small amounts of feldspar and calcite dissolution; goethite

  20. Measurements of Void Fractions for Flow of Boiling Heavy Water in a Vertical Round Duct

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Z; Becker, K M

    1963-09-15

    The present report deals with measurements of void fractions for flow of boiling heavy water in a vertical round duct with 6.10 mm inner diameter and a heated length of 2500 mm. The following ranges of variables were studied and 149 void fraction measurements were obtained. Pressure 7 < p < 60 bars; Steam quality 0 < x < 0.38; Surface heat flux 38 < q/A < 120 W/cm{sup 2}; Mass velocity 650 < m'/F < 2050 kg/m/s; Void fraction 0. 24 < {alpha} < 0.88. The measurements were performed by means of a method, which is based on the ({gamma}, n) reaction, occurring when heavy water is irradiated by gamma rays. The results are presented in diagrams, where the void fractions and the slip ratios are plotted against the steam quality with the pressure as a parameter. The data have been correlated by curves, and the scatter of the data around the curves is less than {+-} 5 per cent.

  1. Logs and completion data for water and mass balance wells in Mortandad and Ten Site Canyons

    International Nuclear Information System (INIS)

    McLin, S.G.; Koch, R.J.

    1997-10-01

    Twenty-four monitoring wells were drilled and completed in December 1994 as part of a water and mass balance study for the shallow perched aquifer in the Mortandad Canyon alluvium and in the lower part of Ten-Site Canyon. The wells penetrated the alluvium containing the aquifer and were completed into the top of the weathered tuff. Twelve of these wells encountered the Tshirege Member (Cooing Unit 1 g) of the Bandelier Tuff below the canyon alluvium, while ten wells made contact with the Cerro Toledo interval, which lies between the Tshirege and Otowi Members of the Bandelier Tuff. The remaining two wells were completed into the alluvium above the weathered tuff contact. These wells provide access for continuous water level measurement and water sampling. Data from these new wells will be used to determine changes in alluvial aquifer water storage, water quality sampling, and estimation of seepage into the unsaturated Bandelier Tuff below the alluvium. This report documents drilling activities and well completion logs for the water and mass balance study. These wells also provide critical new data for fourteen north-south vertical cross-sections constructed for the canyon alluvium

  2. Internal hydraulic control in the Little Belt, Denmark - observations of flow configurations and water mass formation

    Science.gov (United States)

    Holtegaard Nielsen, Morten; Vang, Torben; Chresten Lund-Hansen, Lars

    2017-12-01

    Internal hydraulic control, which occurs when stratified water masses are forced through an abrupt constriction, plays an enormous role in nature on both large and regional scales with respect to dynamics, circulation, and water mass formation. Despite a growing literature on this subject surprisingly few direct observations have been made that conclusively show the existence of and the circumstances related to internal hydraulic control in nature. In this study we present observations from the Little Belt, Denmark, one of three narrow straits connecting the Baltic Sea and the North Sea. The observations (comprised primarily of along-strait, detailed transects of salinity and temperature; continuous observations of flow velocity, salinity, and temperature at a permanent station; and numerous vertical profiles of salinity, temperature, fluorescence, and flow velocity in various locations) show that internal hydraulic control is a frequently occurring phenomenon in the Little Belt. The observations, which are limited to south-going flows of approximately two-layered water masses, show that internal hydraulic control may take either of two configurations, i.e. the lower or the upper layer being the active, accelerating one. This is connected to the depth of the pycnocline on the upstream side and the topography, which is both deepening and contracting toward the narrow part of the Little Belt. The existence of two possible flow configurations is known from theoretical and laboratory studies, but we believe that this has never been observed in nature and reported before. The water masses formed by the intense mixing, which is tightly connected with the presence of control, may be found far downstream of the point of control. The observations show that these particular water masses are associated with chlorophyll concentrations that are considerably higher than in adjacent water masses, showing that control has a considerable influence on the primary production and

  3. Multivariate multiscale complex network analysis of vertical upward oil-water two-phase flow in a small diameter pipe.

    Science.gov (United States)

    Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De

    2016-02-02

    High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow.

  4. Vertical motion and elastic light-scattering of a laser-levitated water droplet

    International Nuclear Information System (INIS)

    Chan, C. W.; Lee, W. K.

    2001-01-01

    We report the vertical motion and elastic scattered light of a single laser-levitated water microdroplet as it slowly evaporated. The vertical displacement as a function of time exhibited peaks of a variety of widths. Morphology-dependent resonances (MDRs) that induced the displacement peaks were identified. We found that the Stokes equation is adequate to describe the vertical motions driven by broad MDRs. For motions driven by relatively narrow MDRs, significant deviations from results predicted by the Stokes equation were found. The elastic scattered light intensity as a function of the size of the droplet showed sudden increases attributable to deformations of the droplet as its size parameter scanned through narrow MDRs. Copyright 2001 Optical Society of America

  5. Field evaluation of a direct push deployed sensor probe for vertical soil water content profiling

    Science.gov (United States)

    Vienken, Thomas; Reboulet, Ed; Leven, Carsten; Kreck, Manuel; Zschornack, Ludwig; Dietrich, Peter

    2015-04-01

    Reliable high-resolution information about vertical variations in soil water content, i.e. total porosity in the saturated zone, is essential for flow and transport predictions within the subsurface. However, porosity measurements are often associated with high efforts and high uncertainties, e.g. caused by soil disturbance during sampling or sensor installation procedures. In hydrogeological practice, commonly applied tools for the investigation of vertical soil water content distribution include gravimetric laboratory analyses of soil samples and neutron probe measurements. A yet less well established technique is the use of direct push-deployed sensor probes. Each of these methods is associated with inherent advantages and limitations due to their underlying measurement principles and operation modes. The presented study describes results of a joint field evaluation of the individual methods under different depositional and hydrogeological conditions with special focus on the performance on the direct push-deployed water content profiler. Therefore, direct push-profiling results from three different test sites are compared with results obtained from gravimetric analysis of soil cores and neutron probe measurements. In direct comparison, the applied direct push-based sensor probe proved to be a suitable alternative for vertical soil water content profiling to neutron probe technology, and, in addition, proved to be advantageous over gravimetric analysis in terms vertical resolution and time efficiency. Results of this study identify application-specific limitations of the methods and thereby highlight the need for careful data evaluation, even though neutron probe measurements and gravimetric analyses of soil samples are well established techniques (see Vienken et al. 2013). Reference: Vienken, T., Reboulet, E., Leven, C., Kreck, M., Zschornack, L., Dietrich, P., 2013. Field comparison of selected methods for vertical soil water content profiling. Journal of

  6. Inlet effects on vertical-downward air–water two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Shouxu; Mena, Daniel; Kim, Seungjin, E-mail: skim@psu.edu

    2017-02-15

    Highlights: • Inlet effects on two-phase flow parameters in vertical-downward flow are studied. • Flow regimes in the vertical-downward two-phase flow are defined. • Vertical-downward flow regime maps for three inlet configurations are developed. • Frictional pressure loss analysis for three different inlets is performed. • Database of local two-phase flow parameters for each inlet configuration. - Abstract: This paper focuses on investigating the geometric effects of inlets on global and local two-phase flow parameters in vertical-downward air–water two-phase flow. Flow visualization, frictional pressure loss analysis, and local experiments are performed in a test facility constructed from 50.8 mm inner diameter acrylic pipes. Three types of inlets of interest are studied: (1) two-phase flow injector without a flow straightener (Type A), (2) two-phase flow injector with a flow straightener (Type B), and (3) injection through a horizontal-to-vertical-downward 90° vertical elbow (Type C). A detailed flow visualization study is performed to characterize flow regimes including bubbly, slug, churn-turbulent, and annular flow. Flow regime maps for each inlet are developed and compared to identify the effects of each inlet. Frictional pressure loss analysis shows that the Lockhart–Martinelli method is capable of correlating the frictional loss data acquired for Type B and Type C inlets with a coefficient value of C = 25, but additional data may be needed to model the Type A inlet. Local two-phase flow parameters measured by a four-sensor conductivity probe in four bubbly and near bubbly flow conditions are analyzed. It is observed that vertical-downward two-phase flow has a characteristic center-peaked void profile as opposed to a wall-peaked profile as seen in vertical-upward flow. Furthermore, it is shown that the Type A inlet results in the most pronounced center-peaked void fraction profile, due to the coring phenomenon. Type B and Type C inlets

  7. Mass imbalances in EPANET water-quality simulations

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    2018-04-06

    EPANET is widely employed to simulate water quality in water distribution systems. However, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results, in general, only for small water-quality time steps; use of an adequately short time step may not be feasible. Overly long time steps can yield errors in concentrations and result in situations in which constituent mass is not conserved. Mass may not be conserved even when EPANET gives no errors or warnings. This paper explains how such imbalances can occur and provides examples of such cases; it also presents a preliminary event-driven approach that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, to those obtained using the new approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations.

  8. Vertical Distribution of Aersols and Water Vapor Using CRISM Limb Observations

    Science.gov (United States)

    Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd

    2011-01-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of C02 (or surface pressure) and H20 gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 run for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal

  9. Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests.

    Science.gov (United States)

    J.M. Warren; F.C. Meinzer; J.R. Brooks; J.C. Domec

    2005-01-01

    We characterized vertical variation in the seasonal release of stored soil moisture in old-growth ponderosa pine (OG-PP, xeric), and young and old-growth Douglas-fir (Y-DF, OG-DF, mesic) forests to evaluate changes in water availability for root uptake. Soil water potential (ψ) and volumetric water content (θ...

  10. Seismic Characterization of Oceanic Water Masses, Water Mass Boundaries, and Mesoscale Eddies SE of New Zealand

    Science.gov (United States)

    Gorman, Andrew R.; Smillie, Matthew W.; Cooper, Joanna K.; Bowman, M. Hamish; Vennell, Ross; Holbrook, W. Steven; Frew, Russell

    2018-02-01

    The Subtropical and Subantarctic Fronts, which separate Subtropical, Subantarctic, and Antarctic Intermediate Waters, are diverted to the south of New Zealand by the submerged continental landmass of Zealandia. In the upper ocean of this region, large volumes of dissolved or suspended material are intermittently transported across the Subtropical Front; however, the mechanisms of such transport processes are enigmatic. Understanding these oceanic boundaries in three dimensions generally depends on measurements collected from stationary vessels and moorings. The details of these data sets, which are critical for understanding how water masses interact and mix at the fine-scale (seismic reflection images of oceanic water masses have been produced using petroleum industry data. These seismic sections clearly show three main water masses, the boundary zones (fronts) between them, and associated thermohaline fine structure that may be related to the mixing of water masses in this region. Interpretations of the data suggest that the Subtropical Front in this region is a landward-dipping zone, with a width that can vary between 20 and 40 km. The boundary zone between Subantarctic Waters and the underlying Antarctic Intermediate Waters is also observed to dip landward. Several isolated lenses have been identified on the three data sets, ranging in size from 9 to 30 km in diameter. These lenses are interpreted to be mesoscale eddies that form at relatively shallow depths along the south side of the Subtropical Front.

  11. Water masses transform at mid-depths over the Antarctic Continental Slope

    Science.gov (United States)

    Mead Silvester, Jess; Lenn, Yueng-Djern; Polton, Jeffrey; Phillips, Helen E.; Morales Maqueda, Miguel

    2017-04-01

    The Meridional Overturning Circulation (MOC) controls the oceans' latitudinal heat distribution, helping to regulate the Earth's climate. The Southern Ocean is the primary place where cool, deep waters return to the surface to complete this global circulation. While water mass transformations intrinsic to this process predominantly take place at the surface following upwelling, recent studies implicate vertical mixing in allowing transformation at mid-depths over the Antarctic continental slope. We deployed an EM-Apex float near Elephant Island, north of the Antarctic Peninsula's tip, to profile along the slope and use potential vorticity to diagnose observed instabilities. The float captures direct heat exchange between a lens of Upper Circumpolar Deep Water (UCDW) and surrounding Lower Circumpolar Deep Waters (LCDW) at mid-depths and over the course of several days. Heat fluxes peak across the top and bottom boundaries of the UCDW lens and peak diffusivities across the bottom boundary are associated with shear instability. Estimates of diffusivity from shear-strain finestructure parameterisation and heat fluxes are found to be in reasonable agreement. The two-dimensional Ertel potential vorticity is elevated both inside the UCDW lens and along its bottom boundary, with a strong contribution from the shear term in these regions and instabilities are associated with gravitational and symmetric forcing. Thus, shear instabilities are driving turbulent mixing across the lower boundary between these two water masses, leading to the observed heat exchange and transformation at mid-depths over the Antarctic continental slope. This has implications for our understanding of the rates of upwelling and ocean-atmosphere exchanges of heat and carbon at this critical location.

  12. Steam condensation induced water hammer in a vertical up-fill configuration within an integral test facility. Experiments and computational simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dirndorfer, Stefan

    2017-01-17

    Condensation induced water hammer is a source of danger and unpredictable loads in pipe systems. Studies concerning condensation induced water hammer were predominantly made for horizontal pipes, studies concerning vertical pipe geometries are quite rare. This work presents a new integral test facility and an analysis of condensation induced water hammer in a vertical up-fill configuration. Thanks to the state of the art technology, the phenomenology of vertical condensation induced water hammer can be analysed by means of sufficient high-sampled experimental data. The system code ATHLET is used to simulate UniBw condensation induced water hammer experiments. A newly developed and implemented direct contact condensation model enables ATHLET to calculate condensation induced water hammer. Selected experiments are validated by the modified ATHLET system code. A sensitivity analysis in ATHLET, together with the experimental data, allows to assess the performance of ATHLET to compute condensation induced water hammer in a vertical up-fill configuration.

  13. Steam condensation induced water hammer in a vertical up-fill configuration within an integral test facility. Experiments and computational simulations

    International Nuclear Information System (INIS)

    Dirndorfer, Stefan

    2017-01-01

    Condensation induced water hammer is a source of danger and unpredictable loads in pipe systems. Studies concerning condensation induced water hammer were predominantly made for horizontal pipes, studies concerning vertical pipe geometries are quite rare. This work presents a new integral test facility and an analysis of condensation induced water hammer in a vertical up-fill configuration. Thanks to the state of the art technology, the phenomenology of vertical condensation induced water hammer can be analysed by means of sufficient high-sampled experimental data. The system code ATHLET is used to simulate UniBw condensation induced water hammer experiments. A newly developed and implemented direct contact condensation model enables ATHLET to calculate condensation induced water hammer. Selected experiments are validated by the modified ATHLET system code. A sensitivity analysis in ATHLET, together with the experimental data, allows to assess the performance of ATHLET to compute condensation induced water hammer in a vertical up-fill configuration.

  14. The testing of a steam-water separating device used for vertical steam generators

    International Nuclear Information System (INIS)

    Ding Xunshen; Cui Baoyuan; Xue Yunkui; Liu Shixun

    1989-01-01

    The air-water screening tests of a steam-water separating device used for vertical steam generators at low pressure are introduced. The article puts emphasis on the qualification test of the steam-water separating device at hot conditions in a high temperature and pressure water test rig. The performance of the comprehensive test of the steam-water separating device indicates that the humidity of the steam at the drier exit is much less than the specified amount of 0.25%

  15. Mass imbalances in EPANET water-quality simulations

    Science.gov (United States)

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    2018-04-01

    EPANET is widely employed to simulate water quality in water distribution systems. However, in general, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results only for short water-quality time steps. Overly long time steps can yield errors in concentration estimates and can result in situations in which constituent mass is not conserved. The use of a time step that is sufficiently short to avoid these problems may not always be feasible. The absence of EPANET errors or warnings does not ensure conservation of mass. This paper provides examples illustrating mass imbalances and explains how such imbalances can occur because of fundamental limitations in the water-quality routing algorithm used in EPANET. In general, these limitations cannot be overcome by the use of improved water-quality modeling practices. This paper also presents a preliminary event-driven approach that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, toward those obtained using the preliminary event-driven approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations. The results presented in this paper should be of value to those who perform water-quality simulations using EPANET or use the results of such simulations, including utility managers and engineers.

  16. Flow reversal in combined laminar mixed convection heat and mass transfer with phase change in a vertical channel

    International Nuclear Information System (INIS)

    Oulaid, Othmane; Benhamou, Brahim; Galanis, Nicolas

    2010-01-01

    This paper, deals with a numerical study of the effects of buoyancy forces on an upward, steady state, laminar flow of humid air in a vertical parallel-plate channel. The plates are wetted by a thin liquid water film and maintained at a constant temperature which is lower than that of the air entering the channel. A 2D fully elliptical model, associated with the Boussinesq assumption, is used to take into account axial diffusion. The solution of this mathematical model is based on the finite volume method and the velocity-pressure coupling is handled by the SIMPLER algorithm. Numerical results show that buoyancy forces have a significant effect on the hydrodynamic, thermal and mass fraction fields. Additionally, these forces induce flow reversal for high air temperatures and mass fractions at the channel entrance. It is established that heat transfer associated with phase change is, sometimes, more significant than sensible heat transfer. Furthermore, this importance depends on the mass fraction gradient. The conditions for the existence of flow reversal are presented in charts and analytical expressions specifying the critical thermal Grashof number as a function of the Reynolds number for different values of the solutal Grashof number and different aspect ratios of the channel.

  17. Air-sea fluxes and satellite-based estimation of water masses formation

    Science.gov (United States)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    and monthly water mass formation rates for different SST and SSS ranges are presented. The formation peaks are remapped geographically, to analyze the extent of the formation area. Water mass formation derived from SMOS and OSTIA compares well with the results obtained from in-situ data, although slight differences in magnitude and peak location occur. Known water masses can then be identified. Ongoing/future work aims at extending this study along different avenues by: 1) expand systematically the spatial and temporal domain of the study to additional ocean basins and to the entire time period of available SSS observations from SMOS/Aquarius; 2) perform a thorough error propagation to assess how errors in satellite SSS and SST translate into errors in water masses formation rates and geographical areas extent; and 3) explore the different options to connect the surface information to the vertical buoyancy structure to assess potential density instability (e.g., Turner angle). References [1] Sabia, R., M. Klockmann, D. Fernández-Prieto, and C. Donlon (2014), A first estimation of SMOS-based ocean surface T-S diagrams, J. Geophys. Res. Oceans, 119, 7357-7371, doi:10.1002/2014JC010120. [2] Klockmann, M., R. Sabia, D. Fernández-Prieto, C. Donlon, J. Font; Towards an estimation of water masses formation areas from SMOS-based T-S diagrams; EGU general assembly 2014, April 27-May 2, 2014. [3] Klockmann, M., R. Sabia, D. Fernández-Prieto, C. Donlon, Linking satellite SSS and SST to water mass formation; Ocean salinity science and salinity remote sensing workshop, Exeter, UK, November 26-28, 2014. [4] Font, J., A. Camps, A. Borges, M. Martín-Neira, J. Boutin, N. Reul, Y. H. Kerr, A. Hahne, and S. Mecklenburg, "SMOS: The challenging sea surface salinity measurement from space," Proceedings of the IEEE, vol. 98, pp. 649-665, 2010. [5] Le Vine, D.M.; Lagerloef, G.S.E.; Torrusio, S.E.; "Aquarius and Remote Sensing of Sea Surface Salinity from Space," Proceedings of the IEEE

  18. Mechanism of falling water limitation in two-phase counter flow through single hole vertical channel

    International Nuclear Information System (INIS)

    Sudo, Yukio; Ohnuki, Akira

    1983-01-01

    In the safety evaluation at the time of loss coolant accident, which is a credible accident in LWRs, recently main effort has been concentrated to the optimum evaluation calculation, and the grasp of vapor-liquid two-phase flow phenomena has become important. As one of the important phenomena, there is the limitation of falling water in two-phase counter flow through a vertical channel. This phenomenon is divided into the limitation of falling water stored in an upper plenum to a core through an upper core-supporting plate and a tie plate at the time of reflooding, and the limitation of falling emergency core-cooling water in downcomer channels at the time of reflooding in PWRs, under the presence of rising steam flow. In both cases, the evaluation of the quantity of falling water is important, because it contributes directly to core cooling. In this research, in order to clarify the mechanism of limitation of falling water in two-phase vertical counter flow, first, two-phase flow of air-water system through a single-hole vertical channel was taken up, and the effect of main parameters was experimentally studied. At the same time, the theoretical investigation was performed, and the comparison with the experimental results obtained so far was carried out. The different mechanisms for short and long channels gave the good results. (Kako, I.)

  19. Experimental study of falling water limitation under counter-current flow in the vertical rectangular channel

    International Nuclear Information System (INIS)

    Usui, Tohru; Kaminaga, Masanori; Sudo, Yukio.

    1988-07-01

    Quantitative understanding of critical heat flux (CHF) in the narrow vertical rectangular channel is required for the thermo-hydroulic design and the safety analysis of research reactors in which flat-plate-type fuel is adopted. Especially, critical heat flux under low downward velocity has a close relation with falling water limitation under counter-current flow. Accordingly, CCFL (Counter-current Flow Limitation) experiments were carried out for both vertical rectangular channels and vertical circular tubes varried in their size and configuration of their cross sections, to make clear CCFL characteristics in the vertical rectangular channels. In the experiments, l/de of the rectangular channel was changed from 3.5 to 180. As the results, it was clear that different equivalent hydraulic diameter de, namely width or water gap of channel, gave different CCFL characteristics of rectangular channel. But the influence of channel length l on CCFL characteristics was not observed. Besides, a dimensionless correlation to estimate a relation between upward air velocity and downward water velocity was proposed based on the present experimental results. The difference of CCFL characteristics between rectangular channels and circular tubes was also investigated. Especially for the rectangular channels, dry-patches appearing condition was made clear as a flow-map. (author)

  20. Simulation of flooding waves in vertical churn flow

    Energy Technology Data Exchange (ETDEWEB)

    Tekavčič, Matej, E-mail: matej.tekavcic@ijs.si; Končar, Boštjan; Kljenak, Ivo

    2016-04-01

    Highlights: • Flooding waves in air–water churn flow in a vertical pipe were studied. • Simulations using two-fluid model with interface sharpening were performed. • Calculated wave amplitudes agree with existing experimental data. • Contributions of force terms in the liquid momentum balance equation are presented. - Abstract: A transient simulation of flooding waves in the churn flow of air and water in a vertical pipe is performed by the means of two-fluid modelling approach with interface sharpening. The gas and liquid phases are considered immiscible and incompressible with no mass transfer between them. Inter-phase coupling of momentum is realized via interface drag force which is based on the interface area density and the relative velocity between the phases. Surface tension effects are modelled with the Continuum Surface Model. The flow is assumed isothermal. Turbulence is modelled for each phase separately using the two-equation eddy viscosity approach. Results are compared with the reported experimental data for churn flow regime in a vertical pipe (Wang et al., 2011a). Reynolds numbers of the gas flow are in the range from 6000 to 10,000, while the liquid mass flow rate upwards ranges from 25 to 32 g/s. Prediction of critical and maximum amplitudes of the flooding waves show good agreement with experimental values. Results for wave frequencies indicate significant deviations, which can be attributed to the choice of the liquid inlet model.

  1. Simulation of flooding waves in vertical churn flow

    International Nuclear Information System (INIS)

    Tekavčič, Matej; Končar, Boštjan; Kljenak, Ivo

    2016-01-01

    Highlights: • Flooding waves in air–water churn flow in a vertical pipe were studied. • Simulations using two-fluid model with interface sharpening were performed. • Calculated wave amplitudes agree with existing experimental data. • Contributions of force terms in the liquid momentum balance equation are presented. - Abstract: A transient simulation of flooding waves in the churn flow of air and water in a vertical pipe is performed by the means of two-fluid modelling approach with interface sharpening. The gas and liquid phases are considered immiscible and incompressible with no mass transfer between them. Inter-phase coupling of momentum is realized via interface drag force which is based on the interface area density and the relative velocity between the phases. Surface tension effects are modelled with the Continuum Surface Model. The flow is assumed isothermal. Turbulence is modelled for each phase separately using the two-equation eddy viscosity approach. Results are compared with the reported experimental data for churn flow regime in a vertical pipe (Wang et al., 2011a). Reynolds numbers of the gas flow are in the range from 6000 to 10,000, while the liquid mass flow rate upwards ranges from 25 to 32 g/s. Prediction of critical and maximum amplitudes of the flooding waves show good agreement with experimental values. Results for wave frequencies indicate significant deviations, which can be attributed to the choice of the liquid inlet model.

  2. Adaptation of a Freon-12 critical heat flux correlation to correlate water data from uniformly heated vertical tubes. Part I: Based on critical heat flux data for water at pressures of 3 to 14 MPa

    International Nuclear Information System (INIS)

    Green, W.J.

    1981-12-01

    Comparisons have been made between experimental critical heat flux (CHF) data for upflow of water in uniformly heated vertical tubes and values calculated from an empirical CHF correlation developed from Freon-12 data. When this correlation is re-evaluated to account for vapour Prandtl number effects, very good agreement is obtained between experimental data and calculated values over a wide range of coolant conditions. Comparison of values calculated from the revised correlation with 2063 sets of CHF data obtained from experiments with water in vertical, uniformly heated tubes shows a mean ratio of the calculated to experimental CHF of 0.82 and an r.m.s. error of 5.8 per cent for the following coolant conditions: (1) local pressure of 3.4 to 12 MPa; (2) mass flux greater than approx. 300 kg s -1 m -2 , and (3) thermal equilibrium value of exit quality greater than 0.1

  3. On the vertical exchange of heat, mass and momentum over complex, mountainous terrain

    Directory of Open Access Journals (Sweden)

    Mathias Walter Rotach

    2015-12-01

    Full Text Available The role of the atmospheric boundary layer (ABL in the atmosphere-climate system is the exchange of heat, mass and momentum between ‘the earth’s surface’ and the atmosphere. Traditionally, it is understood that turbulent transport is responsible for this exchange and hence the understanding and physical description of the turbulence structure of the boundary layer is key to assess the effectiveness of earth-atmosphere exchange. This understanding is rooted in the (implicit assumption of a scale separation or spectral gap between turbulence and mean atmospheric motions, which in turn leads to the assumption of a horizontally homogeneous and flat (HHF surface as a reference, for which both physical understanding and model parameterizations have successfully been developed over the years. Over mountainous terrain, however, the ABL is generically inhomogeneous due to both thermal (radiative and dynamic forcing. This inhomogeneity leads to meso-scale and even sub-meso-scale flows such as slope and valley winds or wake effects. It is argued here that these (submeso-scale motions can significantly contribute to the vertical structure of the boundary layer and hence vertical exchange of heat and mass between the surface and the atmosphere. If model grid resolution is not high enough the latter will have to be parameterized (in a similar fashion as gravity wave drag parameterizations take into account the momentum transport due to gravity waves in large-scale models. In this contribution we summarize the available evidence of the contribution of (submeso-scale motions to vertical exchange in mountainous terrain from observational and numerical modeling studies. In particular, a number of recent simulation studies using idealized topography will be summarized and put into perspective – so as to identify possible limitations and areas of necessary future research.

  4. Vertical distributions of (99)Tc and the (99)Tc/(137)Cs activity ratio in the coastal water off Aomori, Japan.

    Science.gov (United States)

    Nakanishi, Takahiro; Zheng, Jian; Aono, Tatsuo; Yamada, Masatoshi; Kusakabe, Masashi

    2011-08-01

    Using a sector-field ICP-MS the vertical distributions of the (99)Tc concentration and (99)Tc/(137)Cs activity ratio were measured in the coastal waters off Aomori Prefecture, Japan, where a spent-nuclear-fuel reprocessing plant has begun test operation. The (99)Tc concentrations in surface water ranged from 1.8 to 2.4 mBq/m(3), no greater than the estimated background level. Relatively high (99)Tc/(137)Cs activity ratios (10-12 × 10(-4)) would be caused by the inflow of the high-(99)Tc/(137)Cs water mass from the Japan Sea. There is no observable contamination from the reprocessing plant in the investigated area. The (99)Tc concentration and the (99)Tc/(137)Cs activity ratio in water column showed gradual decreases with depth. Our results implied that (99)Tc behaves in a more conservative manner than (137)Cs in marine environments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Exact solution of thermal radiation on vertical oscillating plate with variable temperature and mass flux

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2010-01-01

    Full Text Available Thermal radiation effects on unsteady flow past an infinite vertical oscillating plate in the presence of variable temperature and uniform mass flux is considered. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised linearly with time and the mass is diffused from the plate to the fluid at an uniform rate. The dimensionless governing equations are solved using the Laplace transform technique. The velocity, concentration and temperature are studied for different physical parameters like the phase angle, radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time. It is observed that the velocity increases with decreasing phase angle ωt.

  6. MHD and radiation effects on moving isothermal vertical plate with variable mass diffusion

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2006-01-01

    Full Text Available An analysis is performed to study the effects of thermal radiation on unsteady free convective flow over a moving vertical plate with mass transfer in the presence of magnetic field. The fluid considered here is a gray, absorbing-emitting radiation but a non- scattering medium. The plate temperature is raised to T 0 and the concentration level near the plate is also raised linearly with time. The dimensionless governing equations are solved using the Laplace transform technique. The velocity, temperature and concentration are studied for different parameters like the magnetic field parameter, radiation parameter, thermal Grashof number, mass Grashof number and time. It is observed that the velocity decreases with increasing magnetic field parameter or radiation parameter. .

  7. Effects of parabolic motion on an isothermal vertical plate with constant mass flux

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2014-12-01

    Full Text Available An analytical study of free convection flow near a parabolic started infinite vertical plate with isothermal in the presence of uniform mass flux was considered. The mathematical model is reduced to a system of linear partial differential equations for the velocity, the concentration and the temperature; the closed form exact solutions were obtained by the Laplace transform technique. The velocity, temperature and concentration profiles for the different parameters as thermal Grashof number Gr, mass Grashof number Gc, Prandtl number Pr, Schmidt number Sc and time t were graphed and the numerical values for the skin friction were as tabulated. It is observed that the velocity is enhanced as the time increased and the velocity is decreased as the Prandtl number increased.

  8. Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells.

    Directory of Open Access Journals (Sweden)

    Francisco Feijó Delgado

    Full Text Available We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell's buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell's water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell's dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density - the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein, we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.

  9. Water masses in the Gulf of Aden

    Digital Repository Service at National Institute of Oceanography (India)

    Al Saafani, M.A.; Shenoi, S.S.C.

    Hydrographic data collected from Gulf of Aden since 1920 have been compiled to identify and refine the definitions of water masses in the Gulf of Aden (GA) and to describe their spatio-temporal variability. Four water masses have been identified...

  10. Investigating spatial variability of vertical water fluxes through the streambed in distinctive stream morphologies using temperature and head data

    Science.gov (United States)

    Wang, Liping; Jiang, Weiwei; Song, Jinxi; Dou, Xinyi; Guo, Hongtao; Xu, Shaofeng; Zhang, Guotao; Wen, Ming; Long, Yongqing; Li, Qi

    2017-08-01

    Investigating the interaction of groundwater and surface water is key to understanding the hyporheic processes. The vertical water fluxes through a streambed were determined using Darcian flux calculations and vertical sediment temperature profiles to assess the pattern and magnitude of groundwater/surface-water interaction in Beiluo River, China. Field measurements were taken in January 2015 at three different stream morphologies including a meander bend, an anabranching channel and a straight stream channel. Despite the differences of flux direction and magnitude, flux directions based on vertical temperature profiles are in good agreement with results from Darcian flux calculations at the anabranching channel, and the Kruskal-Wallis tests show no significant differences between the estimated upward fluxes based on the two methods at each site. Also, the upward fluxes based on the two methods show similar spatial distributions on the streambed, indicating (1) that higher water fluxes at the meander bend occur from the center of the channel towards the erosional bank, (2) that water fluxes at the anabranching channel are higher near the erosional bank and in the center of the channel, and (3) that in the straight channel, higher water fluxes appear from the center of the channel towards the depositional bank. It is noted that higher fluxes generally occur at certain locations with higher streambed vertical hydraulic conductivity ( K v) or where a higher vertical hydraulic gradient is observed. Moreover, differences of grain size, induced by stream morphology and contrasting erosional and depositional conditions, have significant effects on streambed K v and water fluxes.

  11. CFD study of convective heat transfer to carbon dioxide and water at supercritical pressures in vertical circular pipes

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F.; Novog, D.R. [McMaster Univ., Hamilton, ON (Canada)

    2014-07-01

    Computational simulations of convective heat transfer of both carbon dioxide and water at supercritical pressures have been carried out using the commercial Computational Fluid Dynamics code STAR-CCM+. Detailed comparisons between four turbulence models, including two low-Reynolds k-ε models, SST k-ω model and the Reynolds Stress Transport (RST) model, are made under different flow conditions against two independent experiments on upward flow in vertical circular pipes. The heat-flux effect and mass-flux effect on the occurrence of heat transfer deterioration (HTD) are discussed, along with sensitivity studies of the boundary conditions and turbulent Prandtl number. The thresholds and mechanisms of HTD are also investigated using selected turbulence models. (author)

  12. Heat and mass transfer effects on moving vertical plate in the presence of thermal radiation

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2004-01-01

    Full Text Available Thermal radiation effects on moving infinite vertical plate in the presence variable temperature and mass diffusion is considered. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature and the concentration level near the plate are raised linearly with time. The dimensionless governing equations are solved using the Laplace-transform technique. The velocity and skin-friction are studied for different parameters like thermal Grashof number, mass Grashof number, time and radiation parameter. It is observed that the velocity slightly decreases with increasing value of the radiation parameter.

  13. Intracellular Water Exchange for Measuring the Dry Mass, Water Mass and Changes in Chemical Composition of Living Cells

    Science.gov (United States)

    Hecht, Vivian C.; Son, Sungmin; Li, Yingzhong; Knudsen, Scott M.; Olcum, Selim; Higgins, John M.; Chen, Jianzhu; Grover, William H.; Manalis, Scott R.

    2013-01-01

    We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell’s buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell’s water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell’s dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density – the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein), we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell. PMID:23844039

  14. Mechanisms of flow and water mass variability in Denmark Strait

    Science.gov (United States)

    Moritz, Martin; Jochumsen, Kerstin; Quadfasel, Detlef; Mashayekh Poul, Hossein; Käse, Rolf H.

    2017-04-01

    The dense water export through Denmark Strait contributes significantly to the lower limb of the Atlantic Meridional Overturning Circulation. Overflow water is transported southwestward not only in the deep channel of the Strait, but also within a thin bottom layer on the Greenland shelf. The flow on the shelf is mainly weak and barotropic, exhibiting many recirculations, but may eventually contribute to the overflow layer in the Irminger Basin by spilling events in the northern Irminger Basin. Especially the circulation around Dohrn Bank and the Kangerdlussuaq Trough contribute to the shelf-basin exchange. Moored observations show the overflow in Denmark Strait to be stable during the last 20 years (1996-2016). Nevertheless, flow variability was noticed on time scales of eddies and beyond, i.e. on weekly and interannual scales. Here, we use a combination of mooring data and shipboard hydrographic and current data to address the dominant modes of variability in the overflow, which are (i) eddies, (ii) barotropic pulsations of the plume, (iii) lateral shifts of the plume core position, and (iv) variations in vertical extension, i.e. varying overflow thickness. A principle component analysis is carried out and related to variations in sea surface height and wind stress, derived from satellite measurements. Furthermore, a test for topographic waves is performed. Shelf contributions to the overflow core in the Irminger Basin are identified from measurements of temperature and salinity, as well as velocity, which were obtained during recent cruises in the region. The flow and water mass pattern obtained from the observational data is compared to simulations in a high resolution regional model (ROMS), where tracer release experiments and float deployments were carried out. The modelling results allow a separation between different atmospheric forcing modes (NAO+ vs NAO- situations), which impact the water mass distribution and alter the dense water pathways on the

  15. Tradeoffs between impact loading rate, vertical impulse and effective mass for walkers and heel strike runners wearing footwear of varying stiffness.

    Science.gov (United States)

    Addison, Brian J; Lieberman, Daniel E

    2015-05-01

    Humans experience repetitive impact forces beneath the heel during walking and heel strike running that cause impact peaks characterized by high rates and magnitudes of loading. Impact peaks are caused by the exchange of momentum between the ground and a portion of the body that comes to a full stop (the effective mass) during the period of the impact peak. A number of factors can influence this exchange of momentum, including footwear stiffness. This study presents and tests an impulse-momentum model of impact mechanics which predicts that effective mass and vertical impulse is greater in walkers and heel strike runners wearing less stiff footwear. The model also predicts a tradeoff between impact loading rate and effective mass, and between impact loading rate and vertical impulse among individuals wearing footwear of varying stiffness. We tested this model using 19 human subjects walking and running in minimal footwear and in two experimental footpads. Subjects walked and ran on an instrumented treadmill and 3D kinematic data were collected. As predicted, both vertical impulse (walking: F(2,54)=52.0, p=2.6E-13; running: F(2,54)=25.2, p=1.8E-8) and effective mass (walking: F(2,54)=12.1, p=4.6E-5; running: F(2,54)=15.5, p=4.7E-6) increase in less stiff footwear. In addition, there is a significant inverse relationship between impact loading rate and vertical impulse (walking: r=-0.88, pfootwear heels influence injury risk during human walking and running. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Mass-shell properties of the dynamical quark mass

    International Nuclear Information System (INIS)

    Reinders, L.J.; Stam, K.

    1986-07-01

    We discuss the running dynamical quark mass in the framework of the operator product expansion. It is shown that for vertical strokep 2 vertical stroke>m 2 the quark-condensate part of the quark self energy has no contributions of order m 2 or higher, and is frozen to its mass-shell value for smaller vertical strokep 2 vertical stroke. (orig.)

  17. Retrieval of water vapor vertical distributions in the upper troposphere and the lower stratosphere from SCIAMACHY limb measurements

    OpenAIRE

    Rozanov, A.; Weigel, K.; Bovensmann, H.; Dhomse, S.; Eichmann, K.-U.; Kivi, R.; Rozanov, V.; Vömel, H.; Weber, M.; Burrows, J. P.

    2011-01-01

    This study describes the retrieval of water vapor vertical distributions in the upper troposphere and lower stratosphere (UTLS) altitude range from space-borne observations of the scattered solar light made in limb viewing geometry. First results using measurements from SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY) aboard ENVISAT (Environmental Satellite) are presented here. In previous publications, the retrieval of water vapor vertical ...

  18. Transport and transformation of surface water masses across the ...

    African Journals Online (AJOL)

    Transport and transformation of surface water masses across the Mascarene Plateau during the Northeast Monsoon season. ... Mixing occurs in the central gap between intermediate water masses (Red Sea Water [RSW] and Antarctic Intermediate Water [AAIW]) as well as in the upper waters (Subtropical Surface Water ...

  19. Investigation of forced convection heat transfer of supercritical pressure water in a vertically upward internally ribbed tube

    International Nuclear Information System (INIS)

    Wang Jianguo; Li Huixiong; Guo Bin; Yu Shuiqing; Zhang Yuqian; Chen Tingkuan

    2009-01-01

    In the present paper, the forced convection heat transfer characteristics of water in a vertically upward internally ribbed tube at supercritical pressures were investigated experimentally. The six-head internally ribbed tube is made of SA-213T12 steel with an outer diameter of 31.8 mm and a wall thickness of 6 mm and the mean inside diameter of the tube is measured to be 17.6 mm. The experimental parameters were as follows. The pressure at the inlet of the test section varied from 25.0 to 29.0 MPa, and the mass flux was from 800 to 1200 kg/(m 2 s), and the inside wall heat flux ranged from 260 to 660 kW/m 2 . According to experimental data, the effects of heat flux and pressure on heat transfer of supercritical pressure water in the vertically upward internally ribbed tube were analyzed, and the characteristics and mechanisms of heat transfer enhancement, and also that of heat transfer deterioration, were also discussed in the so-called large specific heat region. The drastic changes in thermophysical properties near the pseudocritical points, especially the sudden rise in the specific heat of water at supercritical pressures, may result in the occurrence of the heat transfer enhancement, while the covering of the heat transfer surface by fluids lighter and hotter than the bulk fluid makes the heat transfer deteriorated eventually and explains how this lighter fluid layer forms. It was found that the heat transfer characteristics of water at supercritical pressures were greatly different from the single-phase convection heat transfer at subcritical pressures. There are three heat transfer modes of water at supercritical pressures: (1) normal heat transfer, (2) deteriorated heat transfer with low HTC but high wall temperatures in comparison to the normal heat transfer, and (3) enhanced heat transfer with high HTC and low wall temperatures in comparison to the normal heat transfer. It was also found that the heat transfer deterioration at supercritical pressures was

  20. Features of Red Sea Water Masses

    KAUST Repository

    Kartadikaria, Aditya R.; Hoteit, Ibrahim

    2015-01-01

    by seasonal variability, fresh water intrusion of the Gulf of Aden Intermediate Water (GAIW), and eddies variability. Two types of mixing; isopycnal and diapycnal mixing are part of important physical phenomena that explain the change of water mass in the Red

  1. Formation rate of water masses in the Japan Sea

    International Nuclear Information System (INIS)

    Kawamura, Hideyuki; Ito, Toshimichi; Yoon, Jong-Hwan

    2007-01-01

    Water masses in the subsurface and the intermediate layer are actively formed due to strong winter convection in the Japan Sea. It is probable that some fraction of pollution is carried into the layer below the sea surface together with these water masses, so it is important to estimate the formation rate and turnover time of water masses to study the fate of pollutants. The present study estimates the annual formation rate and the turnover time of water masses using a three-dimensional ocean circulation model and a particle chasing method. The total annual formation rate of water masses below the sea surface amounted to about 3.53±0.55 Sv in the Japan Sea. Regarding representative intermediate water masses, the annual formation rate of the Upper portion of the Japan Sea Proper Water (UJSPW) and the Japan Sea Intermediate Water (JSIW) were estimated to be about 0.38±0.11 and 1.43±0.16 Sv, respectively, although there was little evidence of the formation of deeper water masses below a depth of about 1500 m in a numerical experiment. An estimate of turnover time shows that the UJSPW and the JSIW circulate in the intermediate layer of the Japan Sea with timescales of about 22.1 and 2.2 years, respectively. (author)

  2. The effects of a high dosage of creatine and caffeine supplementation on the lean body mass composition of rats submitted to vertical jumping training

    Directory of Open Access Journals (Sweden)

    Carneiro-Junior Miguel A

    2011-03-01

    Full Text Available Abstract Background The influences of creatine and caffeine supplementation associated with power exercise on lean body mass (LBM composition are not clear. The purpose of this research was to determine whether supplementation with high doses of creatine and caffeine, either solely or combined, affects the LBM composition of rats submitted to vertical jumping training. Methods Male Wistar rats were randomly divided into 8 groups: Sedentary (S or Exercised (E [placebo (Pl, creatine (Cr, caffeine (Caf or creatine plus caffeine (CrCaf]. The supplemented groups received creatine [load: 0.430 g/kg of body weight (BW for 7 days; and maintenance: 0.143 g/kg of BW for 35 days], caffeine (15 mg/kg of BW for 42 days or creatine plus caffeine. The exercised groups underwent a vertical jump training regime (load: 20 - 50% of BW, 4 sets of 10 jumps interspersed with 1 min resting intervals, 5 days/wk, for 6 weeks. LBM composition was evaluated by portions of water, protein and fat in the rat carcass. Data were submitted to ANOVA followed by the Tukey post hoc test and Student's t test. Results Exercised animals presented a lower carcass weight (10.9%; P = 0.01, as compared to sedentary animals. However, no effect of supplementation was observed on carcass weight (P > 0.05. There were no significant differences among the groups (P > 0.05 for percentage of water in the carcass. The percentage of fat in the group SCr was higher than in the groups SCaf and ECr (P Conclusions High combined doses of creatine and caffeine does not affect the LBM composition of either sedentary or exercised rats, however, caffeine supplementation alone reduces the percentage of fat. Vertical jumping training increases the percentages of water and protein and reduces the fat percentage in rats.

  3. Effects of constrained arm swing on vertical center of mass displacement during walking.

    Science.gov (United States)

    Yang, Hyung Suk; Atkins, Lee T; Jensen, Daniel B; James, C Roger

    2015-10-01

    The purpose of this study was to determine the effects of constraining arm swing on the vertical displacement of the body's center of mass (COM) during treadmill walking and examine several common gait variables that may account for or mask differences in the body's COM motion with and without arm swing. Participants included 20 healthy individuals (10 male, 10 female; age: 27.8 ± 6.8 years). The body's COM displacement, first and second peak vertical ground reaction forces (VGRFs), and lowest VGRF during mid-stance, peak summed bilateral VGRF, lower extremity sagittal joint angles, stride length, and foot contact time were measured with and without arm swing during walking at 1.34 m/s. The body's COM displacement was greater with the arms constrained (arm swing: 4.1 ± 1.2 cm, arm constrained: 4.9 ± 1.2 cm, p reaction force data indicated that the COM displacement increased in both double limb and single limb stance. However, kinematic patterns visually appeared similar between conditions. Shortened stride length and foot contact time also were observed, although these do not seem to account for the increased COM displacement. However, a change in arm COM acceleration might have contributed to the difference. These findings indicate that a change in arm swing causes differences in vertical COM displacement, which could increase energy expenditure. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Numerical study of evaporation in a vertical annulus heated at the inner wall

    International Nuclear Information System (INIS)

    Ben Radhia, R.; Ben Jabrallah, S.; Ben Jabrallah, S.; Corriou, J.P.; Harmand, S.

    2011-01-01

    Mixed convection during evaporation of a water falling film in a vertical concentric annulus was studied numerically. The water thin film falls on the inner tube and is subjected to a constant heat flux density, whereas the outer cylinder is assumed to be insulated and dry. An imposed air flow circulates within the gap between the two concentric tubes. The objective of this work is to understand the evaporation phenomenon in order to improve the average evaporated mass flux density and heat and mass transfer. Conservative equations governing the gas phase are solved numerically using the finite volume method. In the liquid phase, a method based on local heat and mass balances on each level is used. Thus, the following liquid film parameters, feed water mass flow, feed temperature and heat flux density, are taken into account. The obtained results are analyzed to emphasize and evaluate the influence of the previous operating parameters and the annulus curvature on the effective evaporation surface and on the mass flux density of evaporated water. (authors)

  5. Heat transfer characteristics of supercritical pressure waster in vertical upward annular channels

    International Nuclear Information System (INIS)

    Wang Han; Bi Qincheng; Yang Zhendong; Wu Gang

    2013-01-01

    Within the range of pressure from 23 to 28 MPa, mass flux from 350 to 1000 kg/(m 2 · s), and outside wall heat flux from 200 to 1000 kW/m 2 , experimental investigation was conducted on the heat transfer characteristics of supercritical pressure water in vertical upward annular channels. The effects of heat flux, pressure, mass flux and spiral spacer on heat transfer were analyzed, and two types of heat transfer deterioration occurred in the experiments were compared. The experimental results show that the heat transfer of water can be enhanced by increasing the mass flux or decreasing the wall heat flux. The effect of pressure on heat transfer is not uniform and depends on heat transfer form. It was found that the spiral spacer not only enhances the heat transfer of water, but also delays the heat transfer deterioration which occurs in high heat flux and low mass flux conditions. (authors)

  6. Effects of chemical reaction on moving isothermal vertical plate with variable mass diffusion

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2003-01-01

    Full Text Available An exact solution to the problem of flow past an impulsively started infinite vertical isothermal plate with variable mass diffusion is presented here, taking into account of the homogeneous chemical reaction of first-order. The dimensionless governing equations are solved by using the Laplace - transform technique. The velocity and skin-friction are studied for different parameters like chemical reaction parameter, Schmidt number and buoyancy ratio parameter. It is observed that the veloc­ity increases with decreasing chemical reaction parameter and increases with increasing buoyancy ratio parameter.

  7. Experimental study on heat transfer to supercritical water flowing in 1- and 4-m-long vertical tubes

    International Nuclear Information System (INIS)

    Kirillov, Pavel; Pomet'ko, Richard; Smirnov, Aleksandr; Grabezhnaia, Vera; Pioro, Igor; Duffey, Romney; Khartabil, Hussam

    2005-01-01

    This paper presents selected on heat transfer to supercritical water flowing upward in 1- and 4-m-long vertical tubes. Supercritical water heat-transfer data were obtained at pressures of 24-25 MPa, mass fluxes of 200 - 1500 kg/m 2 s, heat fluxes up to 1050 kW/m 2 and inlet temperature from 300 to 380degC for several combinations of wall and bulk fluid temperatures that were below, at or above the pseudocritical temperature. In general, the experiments confirmed that there are three heat transfer modes for water at supercritical pressures: (1) normal heat transfer characterized in general with heat transfer coefficients (HTCs) similar to those of subcritical convective heat transfer far from critical or pseudocritical regions, which are calculated according to the Dittus-Boelter type correlations, (2) deteriorated heat transfer with lower values of the HTC and hence higher values of wall temperature within some part of a test section compared to those of normal heat transfer and (3) improved heat transfer with higher values of the HTC and hence lower values of wall temperature within some part of a test section compared to those of normal heat transfer. These new heat-transfer data are applicable as a reference dataset for future comparison with supercritical water bundle data and for the verification of scaling parameters between water and modelling fluids. (author)

  8. An experimental study for the interface shear stress of near vertical air-water separated flow on evaporation

    International Nuclear Information System (INIS)

    Kwon, H.; Park, G. C.

    2000-01-01

    The object of experiment is improved model of evaporative heat transfer coefficient using interfacial friction factor on evaporation. Experiments have been conducted with near-vertical(87 .deg.) flat plate on evaporation for air-water countercurrent stratified flow. Experiment facility is consisted of 1.7m length and 0.2 X 0.005m cross section, the one side direct heating system which have 10kw power capacity. The interfacial shear stress, pressure drop and temperatures in test section were measured. These parameters were measured by DP-103 pressure transducer, K-type thermocouple, RTD and Hot Wire Anemometer(HWA). Experimental results were inclination as increased interfacial shear stress with increased the evaporation rate. Interfacial shear stress was increased as increased water flow rate and air flow rate too. For the evaluation of the measured evaporative heat transfer coefficients and physical understanding of the evaporation phenomena, the evaporative heat transfer coefficients were obtained through the simple calculation process by the use of mass transfer coefficient correlation and the experimental data of wavy film surface effect on shear and on evaporation

  9. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts (Part 2)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Persson, P; Nilsson, L; Eriksson, O

    1963-06-15

    The present report deals with the results of the second phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. The following ranges of variables were studied and 809 burnout measurements were obtained. Pressure 5. 3 < p < 37. 3 kg/cm{sup 2}; Inlet subcooling 56 < {delta}t{sub sub} < 212 deg C; Steam quality 0. 20 < x{sub BO} < 0.95; Heat Flux 50 < q/A < 515 W/cm{sup 2}; Mass velocity 100 < m'/F < 1890 kg/m{sup 2}s; Heated length 600 < L < 2500 mm; Duct diameter d = 10 mm. The results are presented in diagrams, where for a certain geometry, the burnout steam qualities, x{sub BO} , were plotted against the pressure with the surface heat flux as parameter. The data have been correlated by curves, and the scatter around the curves is less than {+-} 5 per cent. In the ranges investigated, the observed steam quality at burnout, X{sub BO} generally decreases with increasing heat flux and mass velocity but increases with increasing pressure. The data have been compared with the empirical correlation by Tong, and excellent agreement was found for pressures higher than 10 kg/cm{sup 2}.

  10. Preliminary results of algorithms to determine horizontal and vertical underwater visibilities of coastal waters

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Joshi, Shreya; Talaulikar, M.; Desa, E.J.

    the underwater average cosine. These algorithms for vertical and horizontal visibilities have been validated for the coastal waters of Goa with the measured and those derived from the ocean color data of OCM-2 and MODIS...

  11. Myths and methodologies: Making sense of exercise mass and water balance.

    Science.gov (United States)

    Cheuvront, Samuel N; Montain, Scott J

    2017-09-01

    What is the topic of this review? There is a need to revisit the basic principles of exercise mass and water balance, the use of common equations and the practice of interpreting outcomes. What advances does it highlight? We propose use of the following equation as a way of simplifying exercise mass and water balance calculations in conditions where food is not consumed and waste is not excreted: ∆body mass - 0.20 g/kcal -1  = ∆body water. The relative efficacy of exercise drinking behaviours can be judged using the following equation: percentage dehydration = [(∆body mass - 0.20 g kcal -1 )/starting body mass] × 100. Changes in body mass occur because of flux in liquids, solids and gases. This knowledge is crucial for understanding metabolism, health and human water needs. In exercise science, corrections to observed changes in body mass to estimate water balance are inconsistently applied and often misinterpreted, particularly after prolonged exercise. Although acute body mass losses in response to exercise can represent a close surrogate for body water losses, the discordance between mass and water balance equivalence becomes increasingly inaccurate as more and more energy is expended. The purpose of this paper is briefly to clarify the roles that respiratory water loss, gas exchange and metabolic water production play in the correction of body mass changes for fluid balance determinations during prolonged exercise. Computations do not include waters of association with glycogen because any movement of water among body water compartments contributes nothing to water or mass flux from the body. Estimates of sweat loss from changes in body mass should adjust for non-sweat losses when possible. We propose use of the following equation as a way of simplifying the study of exercise mass and water balance: ∆body mass - 0.20 g kcal -1  = ∆body water. This equation directly controls for the influence of energy expenditure on body mass

  12. Steam Generator control in Nuclear Power Plants by water mass inventory

    Energy Technology Data Exchange (ETDEWEB)

    Dong Wei [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States); Doster, J. Michael [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States)], E-mail: doster@eos.ncsu.edu; Mayo, Charles W. [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States)

    2008-04-15

    Control of water mass inventory in Nuclear Steam Generators is important to insure sufficient cooling of the nuclear reactor. Since downcomer water level is measurable, and a reasonable indication of water mass inventory near steady-state, conventional feedwater control system designs attempt to maintain downcomer water level within a relatively narrow operational band. However, downcomer water level can temporarily react in a reverse manner to water mass inventory changes, commonly known as shrink and swell effects. These complications are accentuated during start-up or low power conditions. As a result, automatic or manual control of water level is difficult and can lead to high reactor trip rates. This paper introduces a new feedwater control strategy for Nuclear Steam Generators. The new method directly controls water mass inventory instead of downcomer water level, eliminating complications from shrink and swell all together. However, water mass inventory is not measurable, requiring an online estimator to provide a mass inventory signal based on measurable plant parameters. Since the thermal-hydraulic response of a Steam Generator is highly nonlinear, a linear state-observer is not feasible. In addition, difficulties in obtaining flow regime and density information within the Steam Generator make an estimator based on analytical methods impractical at this time. This work employs a water mass estimator based on feedforward neural networks. By properly choosing and training the neural network, mass signals can be obtained which are suitable for stable, closed-loop water mass inventory control. Theoretical analysis and simulation results show that water mass control can significantly improve the operation and safety of Nuclear Steam Generators.

  13. Steam Generator control in Nuclear Power Plants by water mass inventory

    International Nuclear Information System (INIS)

    Dong Wei; Doster, J. Michael; Mayo, Charles W.

    2008-01-01

    Control of water mass inventory in Nuclear Steam Generators is important to insure sufficient cooling of the nuclear reactor. Since downcomer water level is measurable, and a reasonable indication of water mass inventory near steady-state, conventional feedwater control system designs attempt to maintain downcomer water level within a relatively narrow operational band. However, downcomer water level can temporarily react in a reverse manner to water mass inventory changes, commonly known as shrink and swell effects. These complications are accentuated during start-up or low power conditions. As a result, automatic or manual control of water level is difficult and can lead to high reactor trip rates. This paper introduces a new feedwater control strategy for Nuclear Steam Generators. The new method directly controls water mass inventory instead of downcomer water level, eliminating complications from shrink and swell all together. However, water mass inventory is not measurable, requiring an online estimator to provide a mass inventory signal based on measurable plant parameters. Since the thermal-hydraulic response of a Steam Generator is highly nonlinear, a linear state-observer is not feasible. In addition, difficulties in obtaining flow regime and density information within the Steam Generator make an estimator based on analytical methods impractical at this time. This work employs a water mass estimator based on feedforward neural networks. By properly choosing and training the neural network, mass signals can be obtained which are suitable for stable, closed-loop water mass inventory control. Theoretical analysis and simulation results show that water mass control can significantly improve the operation and safety of Nuclear Steam Generators

  14. Water Mass Classification on a Highly Variable Arctic Shelf Region: Origin of Laptev Sea Water Masses and Implications for the Nutrient Budget

    Science.gov (United States)

    Bauch, D.; Cherniavskaia, E.

    2018-03-01

    Large gradients and inter annual variations on the Laptev Sea shelf prevent the use of uniform property ranges for a classification of major water masses. The central Laptev Sea is dominated by predominantly marine waters, locally formed polynya waters and riverine summer surface waters. Marine waters enter the central Laptev Sea from the northwestern Laptev Sea shelf and originate from the Kara Sea or the Arctic Ocean halocline. Local polynya waters are formed in the Laptev Sea coastal polynyas. Riverine summer surface waters are formed from Lena river discharge and local melt. We use a principal component analysis (PCA) in order to assess the distribution and importance of water masses within the Laptev Sea. This mathematical method is applied to hydro-chemical summer data sets from the Laptev Sea from five years and allows to define water types based on objective and statistically significant criteria. We argue that the PCA-derived water types are consistent with the Laptev Sea hydrography and indeed represent the major water masses on the central Laptev Sea shelf. Budgets estimated for the thus defined major Laptev Sea water masses indicate that freshwater inflow from the western Laptev Sea is about half or in the same order of magnitude as freshwater stored in locally formed polynya waters. Imported water dominates the nutrient budget in the central Laptev Sea; and only in years with enhanced local polynya activity is the nutrient budget of the locally formed water in the same order as imported nutrients.

  15. Explicit wave action conservation for water waves on vertically sheared flows

    Science.gov (United States)

    Quinn, Brenda; Toledo, Yaron; Shrira, Victor

    2016-04-01

    Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical

  16. Vertical and temporal dynamics of cyanobacteria in the Carpina potable water reservoir in northeastern Brazil.

    Science.gov (United States)

    Moura, A N; Dantas, E W; Oliveira, H S B; Bittencourt-Oliveira, M C

    2011-05-01

    This study analysed vertical and temporal variations of cyanobacteria in a potable water supply in northeastern Brazil. Samples were collected from four reservoir depths in the four months; September and December 2007; and March and June 2008. The water samples for the determination of nutrients and cyanobacteria were collected using a horizontal van Dorn bottle. The samples were preserved in 4% formaldehyde for taxonomic analysis using an optical microscope, and water aliquots were preserved in acetic Lugol solution for determination of density using an inverted microscope. High water temperatures, alkaline pH, low transparency, high phosphorous content and limited nitrogen content were found throughout the study. Dissolved oxygen stratification occurred throughout the study period whereas temperature stratification occurred in all sampling months, with the exception of June. No significant vertical differences were recorded for turbidity or total and dissolved forms of nutrients. There were high levels of biomass arising from Planktothrix agardhii, Cylindrospermopsis raciborskii, Geitlerinema amphibium and Pseudanabaena catenata. The study demonstrates that, in a tropical eutrophic environment with high temperatures throughout the water column, perennial multi-species cyanobacterial blooms, formed by species capable of regulating their position in the water column (those that have gas vesicles for buoyancy), are dominant in the photic and aphotic strata.

  17. Vertical and temporal dynamics of cyanobacteria in the Carpina potable water reservoir in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    AN Moura

    Full Text Available This study analysed vertical and temporal variations of cyanobacteria in a potable water supply in northeastern Brazil. Samples were collected from four reservoir depths in the four months; September and December 2007; and March and June 2008. The water samples for the determination of nutrients and cyanobacteria were collected using a horizontal van Dorn bottle. The samples were preserved in 4% formaldehyde for taxonomic analysis using an optical microscope, and water aliquots were preserved in acetic Lugol solution for determination of density using an inverted microscope. High water temperatures, alkaline pH, low transparency, high phosphorous content and limited nitrogen content were found throughout the study. Dissolved oxygen stratification occurred throughout the study period whereas temperature stratification occurred in all sampling months, with the exception of June. No significant vertical differences were recorded for turbidity or total and dissolved forms of nutrients. There were high levels of biomass arising from Planktothrix agardhii, Cylindrospermopsis raciborskii, Geitlerinema amphibium and Pseudanabaena catenata. The study demonstrates that, in a tropical eutrophic environment with high temperatures throughout the water column, perennial multi-species cyanobacterial blooms, formed by species capable of regulating their position in the water column (those that have gas vesicles for buoyancy, are dominant in the photic and aphotic strata.

  18. Measuring of vertical stroke Vub vertical stroke in the forthcoming decade

    International Nuclear Information System (INIS)

    Kim, C.S.

    1997-01-01

    I first introduce the importance of measuring V ub precisely. Then, from a theoretician's point of view, I review (a) past history, (b) present trials, and (c) possible future alternatives on measuring vertical stroke V ub vertical stroke and/or vertical stroke V ub /V cb vertical stroke. As of my main topic, I introduce a model-independent method, which predicts Γ(B→X u lν)/Γ(B→X c lν)≡(γ u /γ c ) x vertical stroke V ub /V cb vertical stroke 2 ≅(1.83±0.28) x vertical stroke V ub /V cb vertical stroke 2 and vertical stroke V ub /V cb vertical stroke ≡(γ c /γ u ) 1/2 x [B(B→X u lν)/B(B→ X c lν]) 1/2 ≅(0.74±0.06) x [B(B→X u lν/)B(B→X c lν)] 1/2 , based on the heavy quark effective theory I also explore the possible experimental options to separate B→X u lν from the dominant B→X c lν: the measurement of inclusive hadronic invariant mass distributions, and the 'D-π' (and 'K-π') separation conditions I also clarify the relevant experimental backgrounds. (orig.)

  19. Experimental research on heat transfer performance of supercritical water in vertical tube

    International Nuclear Information System (INIS)

    Wang Fei; Yang Jue; Li Hongbo; Lu Donghua; Gu Hanyang; Zhao Meng

    2013-01-01

    Experimental research under supercritical pressure conditions was carried out on heat transfer performance in vertical tube of φ10 mm with a wide range of experimental parameters. The impacts of heat flux, mass flow rate and pressure on wall temperature and heat transfer coefficient were investigated. The experimental parameters are following: The pressures are 23, 25, 26 MPa, the mass flow rate range is 450 1200 kg/(m 2 ·s), and the heat flux range is 200-1200 kW/m 2 . Experimental results indicate that the wall temperature gradually increases with the bulk temperature, and heat transfer enhancement exists near the critical temperature as the drastic changes in physical properties. The increase in heat flux and the decrease in mass flow rate reduce heat transfer enhancement and lead to deterioration of heat transfer. The main effects of pressure are reflected in the difference of heat flux and bulk temperature of the start point where heat transfer deterioration and enhancement occur. (authors)

  20. The spatial distribution of silicoflagellates in the region of the Gulf Stream warm-core ring 82B: application to water mass tracer studies

    Science.gov (United States)

    Takahashi, Kozo; Blackwelder, Patricia L.

    1992-03-01

    To delineate potential water mass affinities, we investigated silicoflagellates from the region of Gulf Stream warm-core ring (WCR) 82B in the northwestern Atlantic. Silicoflagellates from 202 samples from N-S and an E-W transects across WCR 82B during late April were analysed. Shelf to Sargasso Sea transects, one completed in early May and the other in June 1982 were also examined. Eight to 11 vertical profiles to 200 m comprised each of the transects. Six taxa of silicoflagellates were found in the samples studied and a total of more than 8000 specimens were encountered. Three major taxa dominated standing stocks: Distephanus speculum, Dictyocha messanensis (intermediate-sized form) and D. mandrai. D. speculum, considered a cold-water taxon in the literature, showed a higher standing stock in the cooler high-velocity region (HVR) of the warm-core ring, continental shelf (SH) and slope (SL) waters. Fewer were present in the wanner ring center (RC), Gulf Stream (GS) and Sargasso Sea (SS). D. mandrai showed a similar distribution to that of D. speculum, but its preference for slightly warmer waters (>~10°C) was noted. In contrast, Dictyocha messanensis (intermediate-sized) and Distephanus pulchra, known to be warm-water taxa, were relatively abundant in the warm ring center. In contrast to standing stock data, ratios between cold- and warm-water taxa correlate well with temperature and salinity in the warm-core ring. Since these ratios are not effected by convective loss, they are excellent water mass tracers in this system. Distribution of the silicoflagellate taxa suggests that WCR82B April had a higher affinity with the Gulf Stream than the Sargasso Sea. Scores derived from factor analysis indicate that silicoflagellate species distributions are highly correlative with water masses. This was evident from correlations with temperature, salinity and with distance from ring center. Nutrients were generally not correlated with species data. This may be due to deep

  1. Mathematical Models for the Apparent Mass of the Seated Human Body Exposed to Vertical Vibration

    Science.gov (United States)

    Wei, L.; Griffin, M. J.

    1998-05-01

    Alternative mathematical models of the vertical apparent mass of the seated human body are developed. The optimum parameters of four models (two single-degree-of-freedom models and two two-degree-of-freedom models) are derived from the mean measured apparent masses of 60 subjects (24 men, 24 women, 12 children) previously reported. The best fits were obtained by fitting the phase data with single-degree-of-freedom and two-degree-of-freedom models having rigid support structures. For these two models, curve fitting was performed on each of the 60 subjects (so as to obtain optimum model parameters for each subject), for the averages of each of the three groups of subjects, and for the entire group of subjects. The values obtained are tabulated. Use of a two-degree-of-freedom model provided a better fit to the phase of the apparent mass at frequencies greater than about 8 Hz and an improved fit to the modulus of the apparent mass at frequencies around 5 Hz. It is concluded that the two-degree-of-freedom model provides an apparent mass similar to that of the human body, but this does not imply that the body moves in the same manner as the masses in this optimized two-degree-of-freedom model.

  2. Vertical distribution of water in the atmosphere of Venus - A simple thermochemical explanation

    Science.gov (United States)

    Lewis, John S.; Grinspoon, David H.

    1990-01-01

    Several lines of evidence concerning the vertical abundance profile of water in the atmosphere of Venus lead to strikingly unusual distributions (the water vapor abundance decreases sharply in the immediate vicinity of the surface) or to serious conflicts in the profiles (different IR bands suggest water abundances that are discrepant by a factor of 2.5 to 10). These data sets can be reconciled if (1) water molecules associate with carbon dioxide and sulfur trioxide to make gaseous carbonic acid and sulfuric acid in the lower atmosphere, and (2) the discrepant 0.94-micrometer water measurements are due to gaseous sulfuric acid, requiring it to be a somewhat stronger absorber than water vapor in this wavelength region. A mean total water abundance of 50 + or - 20 parts/million and a near-surface free water vapor abundance of 10 + or - 4 parts/million are derived.

  3. Water-mass dynamics of an Arctic cold-water coral reef: First results from a new ocean observatory system

    Science.gov (United States)

    Flögel, Sascha; Karstensen, Johannes; Linke, Peter; Pfannkuche, Olaf; Ashastina, Kseniia; Dullo, Christian

    2015-04-01

    Cold-water coral reefs occur at various sites along the European continental margin, like in the Mediterranean Sea, on carbonate mounds West off Ireland, or at shallower depths between 100 and 350 m on the Norwegian shelf. Their occurrence is related to different physical parameters like temperature, salinity, seawater density, dissolved oxygen, and to other environmental parameters such as internal wave activity, nutrient supply, strong currents, which keep sediment input low, etc. Here, we present first results from a long-term observation in one of the nortnermost cold-water coral reefs at 70.5°N - the Stjernsund in northern Norway. The Stjernsund is a 30 km long and up to 3.5 km wide sound connecting the open North Atlantic with a fjord system. A deep-seated SW-NE oriented morainic sill with varying depths (203-236 m) splits the more than 400 m deep sound into two troughs. Living Lophelia pertusa dominated reef complexes occur on the NW slope between 235 and 305 m water depths and on the SE slope between 245 and 280 m. To investigate the dominating physical and biogeochemical boundary conditions a new modular seafloor observatory, MoLab, consisting of five sea-floor observatories and two moorings was deployed for 100 days during the summer of 2012. The various lander systems and moorimgs were equipped with sensors to measure current velocities and directions, temperature, salinity, pressure, pH, turbidity, fluorescence, oxygen concentration and saturation. Results showed that near-bottom salinities, temperature and current velocities are dominated by a semi-diurnal tidal forcing (pronounced M2 constituent), which cause vertical water mass movements of up to 100 m. These influence large parts of the living reef. Closer examination revealed overturning cells on the south-eastern slope of the sill during high tide, when Atlantic Water flows over the sill. The appearance of living cold-water corals is limited to a density envelope of sigma-theta=27.25-27.50 kg/m-3

  4. Vertical distribution of major photosynthetic picoeukaryotic groups in stratified marine waters

    KAUST Repository

    Cabello, Ana M.

    2016-03-14

    Photosynthetic picoeukaryotes (PPEs) are fundamental contributors to oceanic primary production and form diverse communities dominated by prymnesiophytes, chlorophytes, pelagophytes and chrysophytes. Here, we studied the vertical distribution of these major groups in two offshore regions of the northern Iberian Peninsula during summer stratification. We performed a fine-scale vertical sampling (every ∼2 m) across the DCM and used fluorescence in situ hybridization (FISH) to determine the PPE composition and to explore the possible segregation of target groups in the light, nutrient and temperature gradients. Chlorophytes, pelagophytes and prymnesiophytes, in this order of abundance, accounted for the total PPEs recorded by flow cytometry in the Avilés canyon, and for more than half in the Galicia Bank, whereas chrysophytes were undetected. Among the three detected groups, often the prymnesiophytes were dominant in biomass. In general, all groups were present throughout the water column with abundance peaks around the DCM, but their distributions differed: pelagophytes were located deeper than the other two groups, chlorophytes presented two peaks and prymnesiophytes exhibited surface abundances comparable to those at the DCM. This study offers first indications that the vertical distribution of different PPE groups is heterogeneous within the DCM. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Water masses and property distribution in the EEZ of Mauritius

    Digital Repository Service at National Institute of Oceanography (India)

    DeSousa, S.N.; Singbal, S.Y.S.; George, M.D.

    Water masses and their properties have been studied in the Mauritian during September-October, 1987. Surface water is characterizEd. by two water masses: 1) a warm (temp. 27 degrees C) and relatively saline water (salinity 35.3 x 10 sup(-3)) which...

  6. Water transport through tall trees: A vertically-explicit, analytical model of xylem hydraulic conductance in stems.

    Science.gov (United States)

    Couvreur, Valentin; Ledder, Glenn; Manzoni, Stefano; Way, Danielle A; Muller, Erik B; Russo, Sabrina E

    2018-05-08

    Trees grow by vertically extending their stems, so accurate stem hydraulic models are fundamental to understanding the hydraulic challenges faced by tall trees. Using a literature survey, we showed that many tree species exhibit continuous vertical variation in hydraulic traits. To examine the effects of this variation on hydraulic function, we developed a spatially-explicit, analytical water transport model for stems. Our model allows Huber ratio, stem-saturated conductivity, pressure at 50% loss of conductivity, leaf area, and transpiration rate to vary continuously along the hydraulic path. Predictions from our model differ from a matric flux potential model parameterized with uniform traits. Analyses show that cavitation is a whole-stem emergent property resulting from nonlinear pressure-conductivity feedbacks that, with gravity, cause impaired water transport to accumulate along the path. Because of the compounding effects of vertical trait variation on hydraulic function, growing proportionally more sapwood and building tapered xylem with height, as well as reducing xylem vulnerability only at branch tips while maintaining transport capacity at the stem base, can compensate for these effects. We therefore conclude that the adaptive significance of vertical variation in stem hydraulic traits is to allow trees to grow tall and tolerate operating near their hydraulic limits. This article is protected by copyright. All rights reserved.

  7. Vertical Motion Changes Related to North-East Brazil Rainfall Variability: a GCM Simulation

    Science.gov (United States)

    Roucou, Pascal; Oribe Rocha de Aragão, José; Harzallah, Ali; Fontaine, Bernard; Janicot, Serge

    1996-08-01

    The atmospheric structure over north-east Brazil during anomalous rainfall years is studied in the 11 levels of the outputs of the Laboratoire de Météorologie Dynamique atmospheric general circulation model (LMD AGCM). Seven 19-year simulations were performed using observed sea-surface temperature (SST) corresponding to the period 1970- 1988. The ensemble mean is calculated for each month of the period, leading to an ensemble-averaged simulation. The simulated March-April rainfall is in good agreement with observations. Correlations of simulated rainfall and three SST indices relative to the equatorial Pacific and northern and southern parts of the Atlantic Ocean exhibit stronger relationships in the simulation than in the observations. This is particularly true with the SST gradient in the Atlantic (Atlantic dipole). Analyses on 200 ;hPa velocity potential, vertical velocity, and vertical integral of the zonal component of mass flux are performed for years of abnormal rainfall and positive/negative SST anomalies in the Pacific and Atlantic oceans in March-April during the rainy season over the Nordeste region. The results at 200 hPa show a convergence anomaly over Nordeste and a divergence anomaly over the Pacific concomitant with dry seasons associated with warm SST anomalies in the Pacific and warm (cold) waters in the North (South) Atlantic. During drought years convection inside the ITCZ indicated by the vertical velocity exhibits a displacement of the convection zone corresponding to a northward migration of the ITCZ. The east-west circulation depicted by the zonal divergent mass flux shows subsiding motion over Nordeste and ascending motion over the Pacific in drought years, accompanied by warm waters in the eastern Pacific and warm/cold waters in northern/southern Atlantic. Rainfall variability of the Nordeste rainfall is linked mainly to vertical motion and SST variability through the migration of the ITCZ and the east-west circulation.

  8. Vertical steam generator

    International Nuclear Information System (INIS)

    Cuda, F.; Kondr, M.; Kresta, M.; Kusak, V.; Manek, O.; Turon, S.

    1982-01-01

    A vertical steam generator for nuclear power plants and dual purpose power plants consists of a cylindrical vessel in which are placed heating tubes in the form upside-down U. The heating tubes lead to the jacket of the cylindrical collector placed in the lower part of the steam generator perpendicularly to its vertical axis. The cylindrical collector is divided by a longitudinal partition into the inlet and outlet primary water sections of the heating tubes. One ends of the heating tube leads to the jacket of the collector for primary water feeding and the second ends of the heating tubes into the jacket of the collector which feeds and offtakes primary water from the heating tubes. (B.S.)

  9. An Interval-Parameter Fuzzy Linear Programming with Stochastic Vertices Model for Water Resources Management under Uncertainty

    Directory of Open Access Journals (Sweden)

    Yan Han

    2013-01-01

    Full Text Available An interval-parameter fuzzy linear programming with stochastic vertices (IFLPSV method is developed for water resources management under uncertainty by coupling interval-parameter fuzzy linear programming (IFLP with stochastic programming (SP. As an extension of existing interval parameter fuzzy linear programming, the developed IFLPSV approach has advantages in dealing with dual uncertainty optimization problems, which uncertainty presents as interval parameter with stochastic vertices in both of the objective functions and constraints. The developed IFLPSV method improves upon the IFLP method by allowing dual uncertainty parameters to be incorporated into the optimization processes. A hybrid intelligent algorithm based on genetic algorithm and artificial neural network is used to solve the developed model. The developed method is then applied to water resources allocation in Beijing city of China in 2020, where water resources shortage is a challenging issue. The results indicate that reasonable solutions have been obtained, which are helpful and useful for decision makers. Although the amount of water supply from Guanting and Miyun reservoirs is declining with rainfall reduction, water supply from the South-to-North Water Transfer project will have important impact on water supply structure of Beijing city, particularly in dry year and extraordinary dry year.

  10. Measurements of the Effects of Spacers on the Burnout Conditions for Flow of Boiling Water in a Vertical Annulus and a Vertical 7-Rod Cluster

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Hernborg, G.

    1964-11-01

    The present report deals with measurements of the effects of spacers on the burnout conditions in a vertical annulus and a vertical 7-rod cluster. The following ranges of variables were studied and 162 burnout measurements were obtained. Pressure p = 31 kg/cm; Inlet sub-cooling 35 sub 2 ; Mass velocity 94 2 /s; Burnout steam quality 0.10 BO < 0.56. The experimental results showed that the type of spacers employed during the present investigation had negligible effects on the burnout conditions and that the measured burnout heat fluxes could be predicted within ± 5 per cent by means of the correlation by Becker et al for flow in smooth channels

  11. Long-term post-Chernobyl 90Sr and 137Cs profiles as the indicators of the large scale vertical water mixing in the Black Sea

    International Nuclear Information System (INIS)

    Egorov, V.N.; Stokozov, N.A.; Mirzoyeva, N.Y.

    2002-01-01

    The radioactive and chemical pollutions, eutrophic elements come to the surface water layer of the Black Sea from the territory of 22 countries. The self-purification of the surface water layer essentially depends from the vertical water mixing. The atmospheric fallout in the May 1986 after Chernobyl NPP accident were main source of the 137 Cs input in the Black Sea. The 90 Sr input to the Black Sea was caused by atmospheric fallout as well as the Dnieper River and Danube River runoff during of consequent years. 90 Sr and 137 Cs are conservative elements in a marine environment and could be used as tracers of the hydrological processes, including vertical water mixing. The aim of our investigations was an assessment of the large-scale vertical water exchange in the Black Sea on base of analysis time-series 90 Sr and 137 Cs vertical profiles

  12. The effects of a high dosage of creatine and caffeine supplementation on the lean body mass composition of rats submitted to vertical jumping training.

    Science.gov (United States)

    Franco, Frederico Sc; Costa, Neuza Mb; Ferreira, Susana A; Carneiro-Junior, Miguel A; Natali, Antônio J

    2011-03-01

    The influences of creatine and caffeine supplementation associated with power exercise on lean body mass (LBM) composition are not clear. The purpose of this research was to determine whether supplementation with high doses of creatine and caffeine, either solely or combined, affects the LBM composition of rats submitted to vertical jumping training. Male Wistar rats were randomly divided into 8 groups: Sedentary (S) or Exercised (E) [placebo (Pl), creatine (Cr), caffeine (Caf) or creatine plus caffeine (CrCaf)]. The supplemented groups received creatine [load: 0.430 g/kg of body weight (BW) for 7 days; and maintenance: 0.143 g/kg of BW for 35 days], caffeine (15 mg/kg of BW for 42 days) or creatine plus caffeine. The exercised groups underwent a vertical jump training regime (load: 20 - 50% of BW, 4 sets of 10 jumps interspersed with 1 min resting intervals), 5 days/wk, for 6 weeks. LBM composition was evaluated by portions of water, protein and fat in the rat carcass. Data were submitted to ANOVA followed by the Tukey post hoc test and Student's t test. Exercised animals presented a lower carcass weight (10.9%; P = 0.01), as compared to sedentary animals. However, no effect of supplementation was observed on carcass weight (P > 0.05). There were no significant differences among the groups (P > 0.05) for percentage of water in the carcass. The percentage of fat in the group SCr was higher than in the groups SCaf and ECr (P < 0.05). A higher percentage of protein was observed in the groups EPl and ECaf when compared to the groups SPl and SCaf (P < 0.001). The percentage of fat in the carcass decreased (P < 0.001), while those of water and protein increased (P < 0.05) in exercised animals, compared to sedentary animals. Caffeine groups presented reduced percentage of fat when compared to creatine supplemented groups (P < 0.05). High combined doses of creatine and caffeine does not affect the LBM composition of either sedentary or exercised rats, however, caffeine

  13. In situ profiling of eastern Arabian Sea coastal waters using a new autonomous vertical profiler

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Madhan, R.; Dabholkar, N.A.; Prabhudesai, S.P.; Navelkar, G.S.; Mascarenhas, A.A.M.Q.; Afzulpurkar, S.; Phaldesai, M.; Maurya, P.

    The autonomous vertical profiler (AVP) presented here offers a fast, cost-effective, optimized approach to profiling in coastal waters. It consists of a hands-free, slightly buoyant, motor-driven in situ robot profiler that requires no operator...

  14. Annual variations in GPS-measured vertical displacements near Upernavik Isstrøm (Greenland) and contributions from surface mass loading

    DEFF Research Database (Denmark)

    Liu, Lin; Khan, Shfaqat Abbas; van Dam, Tonie

    2017-01-01

    variability. Here we examine the annual changes of the vertical displacements measured at two GPS stations (SRMP and UPVK) near Upernavik Isstrøm in western Greenland. We model elastic loading displacements due to various surface mass loading including three non-ice components: atmospheric pressure, ocean...

  15. Radiation effects on flow past an impulsively started vertical plate with variable temperature and mass flux

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2005-01-01

    Full Text Available An analysis is performed to study the thermal radiation effects on unsteady free convective flow over a moving vertical plate in the presence of variable temperature and uniform mass flux. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The temperature is raised linearly with time and the concentration level near the plate are raised linearly with time. The dimensionless governing equations are solved using the Laplace transform technique. The velocity and skinfriction are studied for different parameters like the radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time. It is observed that the velocity increases with decreasing radiation parameter.

  16. The Slug and Churn Turbulence Characteristics of Oil-Gas-Water Flows in a Vertical Small Pipe

    Science.gov (United States)

    Liu, Weixin; Han, Yunfeng; Wang, Dayang; Zhao, An; Jin, Ningde

    2017-08-01

    The intention of the present study was to investigate the slug and churn turbulence characteristics of a vertical upward oil-gas-water three-phase flow. We firstly carried out a vertical upward oil-gas-water three-phase flow experiment in a 20-mm inner diameter (ID) pipe to measure the fluctuating signals of a rotating electric field conductance sensor under different flow patterns. Afterwards, typical flow patterns were identified with the aid of the texture structures in a cross recurrence plot. Recurrence quantitative analysis and multi-scale cross entropy (MSCE) algorithms were applied to investigate the turbulence characteristics of slug and churn flows with the varying flow parameters. The results suggest that with cross nonlinear analysis, the underlying dynamic characteristics in the evolution from slug to churn flow can be well understood. The present study provides a novel perspective for the analysis of the spatial-temporal evolution instability and complexity in oil-gas-water three-phase flow.

  17. Leaf water 18 O and 2 H enrichment along vertical canopy profiles in a broadleaved and a conifer forest tree.

    Science.gov (United States)

    Bögelein, Rebekka; Thomas, Frank M; Kahmen, Ansgar

    2017-07-01

    Distinguishing meteorological and plant-mediated drivers of leaf water isotopic enrichment is prerequisite for ecological interpretations of stable hydrogen and oxygen isotopes in plant tissue. We measured input and leaf water δ 2 H and δ 18 O as well as micrometeorological and leaf morpho-physiological variables along a vertical gradient in a mature angiosperm (European beech) and gymnosperm (Douglas fir) tree. We used these variables and different enrichment models to quantify the influence of Péclet and non-steady state effects and of the biophysical drivers on leaf water enrichment. The two-pool model accurately described the diurnal variation of leaf water enrichment. The estimated unenriched water fraction was linked to leaf dry matter content across the canopy heights. Non-steady state effects and reduced stomatal conductance caused a higher enrichment of Douglas fir compared to beech leaf water. A dynamic effect analyses revealed that the light-induced vertical gradients of stomatal conductance and leaf temperature outbalanced each other in their effects on evaporative enrichment. We conclude that neither vertical canopy gradients nor the Péclet effect is important for estimates and interpretation of isotopic leaf water enrichment in hypostomatous trees. Contrarily, species-specific non-steady state effects and leaf temperatures as well as the water vapour isotope composition need careful consideration. © 2017 John Wiley & Sons Ltd.

  18. Regional Quasi-Three-Dimensional Unsaturated-Saturated Water Flow Model Based on a Vertical-Horizontal Splitting Concept

    Directory of Open Access Journals (Sweden)

    Yan Zhu

    2016-05-01

    Full Text Available Due to the high nonlinearity of the three-dimensional (3-D unsaturated-saturated water flow equation, using a fully 3-D numerical model is computationally expensive for large scale applications. A new unsaturated-saturated water flow model is developed in this paper based on the vertical/horizontal splitting (VHS concept to split the 3-D unsaturated-saturated Richards’ equation into a two-dimensional (2-D horizontal equation and a one-dimensional (1-D vertical equation. The horizontal plane of average head gradient in the triangular prism element is derived to split the 3-D equation into the 2-D equation. The lateral flow in the horizontal plane of average head gradient represented by the 2-D equation is then calculated by the water balance method. The 1-D vertical equation is discretized by the finite difference method. The two equations are solved simultaneously by coupling them into a unified nonlinear system with a single matrix. Three synthetic cases are used to evaluate the developed model code by comparing the modeling results with those of Hydrus1D, SWMS2D and FEFLOW. We further apply the model to regional-scale modeling to simulate groundwater table fluctuations for assessing the model applicability in complex conditions. The proposed modeling method is found to be accurate with respect to measurements.

  19. Critical mass variation of 239Pu with water dilution

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1996-01-01

    The critical mass of an unreflected solid sphere of 239 Pu is ∼ 10 kg. The increase in critical mass observed for small water dilutions of unreflected 239 Pu spheres is paradoxical. Introducing small amounts of water uniformly throughout the sphere increases the spherical volume containing the same amount of 239 Pu as the critical solid sphere. The increase in radius decreases the surface-to-volume ratio of the sphere, which has the effect to first order of decreasing the neutron leakage, which is proportional to the surface, relative to the fissions, which are proportional to the volume. The reduction in neutron leakage is expected to reduce the critical mass, but instead, the critical mass is observed to increase. It is discussed how changes in the fast neutron spectrum with corresponding changes in the nuclear parameters result in an increase in critical mass for small water dilutions

  20. Internal flow and evaporation characteristic inside a water droplet on a vertical vibrating hydrophobic surface

    International Nuclear Information System (INIS)

    Kim Hun; Lim, Hee Chang

    2015-01-01

    This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4

  1. Internal flow and evaporation characteristic inside a water droplet on a vertical vibrating hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim Hun; Lim, Hee Chang [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2015-07-15

    This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4.

  2. Vertical water mass structure in the North Atlantic influences the bathymetric distribution of species in the deep-sea coral genus Paramuricea

    Science.gov (United States)

    Radice, Veronica Z.; Quattrini, Andrea M.; Wareham, Vonda E.; Edinger, Evan N.; Cordes, Erik E.

    2016-10-01

    Deep-sea corals are the structural foundation of their ecosystems along continental margins worldwide, yet the factors driving their broad distribution are poorly understood. Environmental factors, especially depth-related variables including water mass properties, are thought to considerably affect the realized distribution of deep-sea corals. These factors are governed by local and regional oceanographic conditions that directly influence the dispersal of larvae, and therefore affect the ultimate distribution of adult corals. We used molecular barcoding of mitochondrial and nuclear sequences to identify species of octocorals in the genus Paramuricea collected from the Labrador Sea to the Grand Banks of Newfoundland, Canada at depths of 150-1500 m. The results of this study revealed overlapping bathymetric distributions of the Paramuricea species present off the eastern Canadian coast, including the presence of a few cryptic species previously designated as Paramuricea placomus. The distribution of Paramuricea species in the western North Atlantic differs from the Gulf of Mexico, where five Paramuricea species exhibit strong segregation by depth. The different patterns of Paramuricea species in these contrasting biogeographic regions provide insight into how water mass structure may shape species distribution. Investigating Paramuricea prevalence and distribution in conjunction with oceanographic conditions can help demonstrate the factors that generate and maintain deep-sea biodiversity.

  3. Seasonal variation in vertical flux of biogenic matter in the marginal ice zone and the central Barents Sea

    Science.gov (United States)

    Olli, Kalle; Wexels Riser, Christian; Wassmann, Paul; Ratkova, Tatjana; Arashkevich, Elena; Pasternak, Anna

    2002-12-01

    The spatial and seasonal variations in the vertical flux of particulate biogenic matter were investigated in the Barents Sea in winter and spring 1998 and summer 1999. Arrays of simple cylindrical sediment traps were moored for 24 h between 30 and 200 m along a transect from the ice-free Atlantic water to Arctic water with up to 80% ice cover. Large gradients in the quantity and composition of the sinking particles were observed in the south-north direction, and in relation to water column structure and stability, which depend on the processes of ice retreat. The magnitude of the vertical flux of particulate organic carbon (POC) out of the upper mixed layer ranged from background winter values (30-70 mg C m -2 day -1) to 150-300 mg C m -2 day -1 in summer and 500-1500 mg C m -2 day -1 in spring. Vertical flux of chlorophyll a (CHL) was negligible in winter, generally balticum and single-celled P. pouchetii). The magnitude of the vertical flux to the bottom in spring was comparable in the Arctic and Atlantic waters (ca. 200 mg C m -2 day -1), but the composition and C/N ratio of the particles were different. The regulation of biogenic particle sedimentation took place in the upper layers and over very short vertical distances, and varied with season and water mass. The vertical flux was mainly shaped by the water column stratification (strong salinity stratification in the Arctic water; no stratification in the Atlantic water) and also by the activity of plankton organisms. Zooplankton faecal pellets were an important constituent of the vertical flux (up to 250 mg C m -2 day -1), but their significance varied widely between stations. The daily sedimentation loss rates of POC in spring exceeded the loss rates in summer on the average of 1.7 times. The complexity of the planktonic community during summer suggested the prevalence of a retention food chain with a higher capacity of resource recycling compared to spring.

  4. Low mass planets in protoplanetary disks with net vertical magnetic fields: the Planetary Wake and Gap Opening

    OpenAIRE

    Zhu, Zhaohuan; Stone, James M.; Rafikov, Roman R.

    2013-01-01

    We study wakes and gap opening by low mass planets in gaseous protoplanetary disks threaded by net vertical magnetic fields which drive magnetohydrodynamical (MHD) turbulence through the magnetorotational instabilty (MRI), using three dimensional simulations in the unstratified local shearing box approximation. The wakes, which are excited by the planets, are damped by shocks similar to the wake damping in inviscid hydrodynamic (HD) disks. Angular momentum deposition by shock damping opens ga...

  5. Heat transfer and carryover of low pressure water in a heated vertical tube

    International Nuclear Information System (INIS)

    Smith, T.A.

    1976-01-01

    Local heat transfer coefficients in the stable film boiling and dispersed flow regimes were studied for the upward flow of low pressure water in a heated vertical tube. Wall temperatures were maintained constant with time and along the tube so that both axial and time temperature gradients approached zero. Heat flux along the tube was not constant but was applied so as to maintain a steady state temperature profile. A preheater was used to bring the liquid to saturation before it entered the main portion of the test section and in some cases the equilibrium quality was greater than zero at the entrance to the main test section. The test section was made of stainless steel, and the lower portion, the preheater, was heated directly by dc current. Copper block heat spikes were clamped to the upper test section and were used to apply the heat flux to maintain the wall temperature constant with time. Several theories for the different possible types of flow (laminar or turbulent, tube or film) were compared with the experimental data. The carry-over point for low flooding rates (1 inch/sec or less) was inferred from these comparisons and gave good agreement with the Plummer critical mass criterion for liquid carry-over

  6. The interaction of thermal radiation on vertical oscillating plate with variable temperature and mass diffusion

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2006-01-01

    Full Text Available Thermal radiation effects on unsteady free convective flow of a viscous incompressible flow past an infinite vertical oscillating plate with variable temperature and mass diffusion has been studied. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised linearly with respect to time and the concentration level near the plate is also raised linearly with respect to time. An exact solution to the dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity, temperature and concentration are studied for different parameters like phase angle, radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time are studied. It is observed that the velocity increases with decreasing phase angle ωt. .

  7. Vertical Distribution of Temperature in Transitional Season II and West Monsoon in Western Pacific

    Science.gov (United States)

    Pranoto, Hikari A. H.; Kunarso; Soeyanto, Endro

    2018-02-01

    Western Pacific is the water mass intersection from both the Northern Pacific and Southern Pacific ocean. The Western Pacific ocean is warm pool area which formed by several warm surface currents. As a warm pool area and also the water mass intersection, western Pacific ocean becomes an interesting study area. The object of this study is to describe the temperature vertical distribution by mooring buoy and temporally in transitional season II (September - November 2014) and west monsoon (December 2014 - February 2015) in Western Pacific. Vertical temperature and wind speed data that was used in this study was recorded by INA-TRITON mooring instrument and obtained from Laboratory of Marine Survey, BPPT. Supporting data of this study was wind vector data from ECMWF to observe the relation between temperature distribution and monsoon. The quantitative approach was used in this study by processing temperature and wind data from INA-TRITON and interpreted graphically. In the area of study, it was found that in transitional season II the range of sea surface temperature to 500-meter depth was about 8.29 - 29.90 °C while in west monsoon was 8.12 - 29.45 °C. According to the research result, the sea SST of western Pacific ocean was related to monsoonal change with SST and wind speed correlation coefficient was 0.78. While the deep layer temperature was affected by water mass flow which passes through the western Pacific Ocean.

  8. Black sea annual and inter-annual water mass variations from space

    DEFF Research Database (Denmark)

    Yildiz, H.; Andersen, Ole Baltazar; Simav, M.

    2011-01-01

    influenced by the leakage of hydrological signals from the surrounding land. After applying the corresponding correction, we found a good agreement with water mass variations derived from steric-corrected satellite altimetry observations. Both GRACE and altimetry show significant annual water mass variations......This study evaluates the performance of two widely used GRACE solutions (CNES/GRGS RL02 and CSR RL04) in deriving annual and inter-annual water mass variations in the Black Sea for the period 2003–2007. It is demonstrated that the GRACE derived water mass variations in the Black Sea are heavily...

  9. Combined natural convection heat and mass transfer from vertical fin arrays

    International Nuclear Information System (INIS)

    Giri, A.; Narasimham, G.S.V.L.; Krishna Murthy, M.V.

    2003-01-01

    Natural convection transport processes play an important role in many applications like ice-storage air-conditioning. A mathematical formulation of natural convection heat and mass transfer over a shrouded vertical fin array is developed. The base plate is maintained at a temperature below the dew point of the surrounding moist air. Hence there occurs condensation of moisture on the base plate, while the fins may be partially or fully wet. A numerical study is performed by varying the parameters of the problem. The local and average Nusselt numbers decrease in streamwise direction and tend to approach fully developed values for sufficiently large values of the fin length. The results show that beyond a certain streamwise distance, further fin length does not improve the sensible and latent heat transfer performance, and that if dry fin analysis is used under moisture condensation conditions, the overall heat transfer will be underestimated by about 50% even at low buoyancy ratios

  10. Experimental research on flow instability in vertical narrow annuli

    Institute of Scientific and Technical Information of China (English)

    WU Geping; QIU Suizheng; SU Guanghui; JIA Dounan

    2007-01-01

    A narrow annular test section of 1.5mm gap and 1800mm length was designed and manufactured, with good tightness and insulation. Experiments were carried out to investigate characteristics of flow instability of forced-convection in vertical narrow annuli. Using distilled water as work fluid, the experiments were conducted at pressures of 1.0~3.0 MPa, mass flow rates of 3.0~25 kg/h, heating power of 3.0~ 6.5kW and inlet fluid temperature of 20 ℃, 40 ℃ or 60℃. It was found that flow instability occured with fixed inlet condition and heating power when mass flow rate was below a special value. Effects of inlet subcooling, system pressure and mass flow rate on the system behavior were studied and the instability region was given.

  11. Evaluation of the added mass for a spheroid-type unmanned underwater vehicle by vertical planar motion mechanism test

    Directory of Open Access Journals (Sweden)

    Seong-Keon Lee

    2011-09-01

    Full Text Available This paper shows added mass and inertia can be acquired from the pure heaving motion and pure pitching motion respectively. A Vertical Planar Motion Mechanism (VPMM test for the spheroid-type Unmanned Underwater Vehicle (UUV was compared with a theoretical calculation and Computational Fluid Dynamics (CFD analysis in this paper. The VPMM test has been carried out at a towing tank with specially manufactured equipment. The linear equations of motion on the vertical plane were considered for theoretical calculation, and CFD results were obtained by commercial CFD package. The VPMM test results show good agreement with theoretical calculations and the CFD results, so that the applicability of the VPMM equipment for an underwater vehicle can be verified with a sufficient accuracy.

  12. Recent Advances in Water Analysis with Gas Chromatograph Mass Spectrometers

    Science.gov (United States)

    MacAskill, John A.; Tsikata, Edem

    2014-01-01

    We report on progress made in developing a water sampling system for detection and analysis of volatile organic compounds in water with a gas chromatograph mass spectrometer (GCMS). Two approaches are described herein. The first approach uses a custom water pre-concentrator for performing trap and purge of VOCs from water. The second approach uses a custom micro-volume, split-splitless injector that is compatible with air and water. These water sampling systems will enable a single GC-based instrument to analyze air and water samples for VOC content. As reduced mass, volume, and power is crucial for long-duration, manned space-exploration, these water sampling systems will demonstrate the ability of a GCMS to monitor both air and water quality of the astronaut environment, thereby reducing the amount of required instrumentation for long duration habitation. Laboratory prototypes of these water sampling systems have been constructed and tested with a quadrupole ion trap mass spectrometer as well as a thermal conductivity detector. Presented herein are details of these water sampling system with preliminary test results.

  13. Measurements of the Effects of Spacers on the Burnout Conditions for Flow of Boiling Water in a Vertical Annulus and a Vertical 7-Rod Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, G

    1964-11-15

    The present report deals with measurements of the effects of spacers on the burnout conditions in a vertical annulus and a vertical 7-rod cluster. The following ranges of variables were studied and 162 burnout measurements were obtained. Pressure p = 31 kg/cm; Inlet sub-cooling 35 < {delta}t{sub sub} < 174 deg C; Surface heat flux 89 < q/A < 305 W/cm{sup 2}; Mass velocity 94 < m'/F < 900 kg/m{sup 2}/s; Burnout steam quality 0.10 < x{sub BO} < 0.56. The experimental results showed that the type of spacers employed during the present investigation had negligible effects on the burnout conditions and that the measured burnout heat fluxes could be predicted within {+-} 5 per cent by means of the correlation by Becker et al for flow in smooth channels.

  14. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    Science.gov (United States)

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  15. 3D correlation imaging of the vertical gradient of gravity data

    International Nuclear Information System (INIS)

    Guo, Lianghui; Meng, Xiaohong; Shi, Lei

    2011-01-01

    We present a new 3D correlation imaging approach for vertical gradient of gravity data for deriving a 3D equivalent mass distribution in the subsurface. In this approach, we divide the subsurface space into a 3D regular grid, and then at each grid node calculate a cross correlation between the vertical gradient of the observed gravity data and the theoretical gravity vertical gradient due to a point mass source. The resultant correlation coefficients are used to describe the equivalent mass distribution in a probability sense. We simulate a geological syncline model intruded by a dike and later broken by two vertical faults. The vertical gradient of gravity anomaly of the model is calculated and used to test the approach. The results demonstrate that the equivalent mass distribution derived by the approach reflects the basic geological structures of the model. We also test the approach on the transformed vertical gradient of real Bouguer gravity data from a geothermal survey area in Northern China. The thermal reservoirs are located in the lower portion of the sedimentary basin. From the resultant equivalent mass distribution, we produce the depth distribution of the bottom interface of the basin and predict possible hidden faults present in the basin

  16. Mass and charge transfer within a floating water bridge

    Science.gov (United States)

    Fuchs, Elmar C.; Agostinho, Luewton L. F.; Eisenhut, Mathias; Woisetschläger, Jakob

    2010-11-01

    When high voltage is applied to pure water filled into two beakers close to each other, a connection forms spontaneously, giving the impression of a floating water bridge 1-8. This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the charge and mass transfer through the water bridge are investigated with schlieren visualization and laser interferometry. It can be shown that the addition of a pH dye increases the H+ and OH- production with subsequent electrolysis, whereas schlieren and interferometric methods reveal another mechanism where charge and mass transfer appear to be coupled. Whereas this mechanism seems to be responsible for the electrolysis-less charge and mass transfer in the water bridge, it is increasingly superseded by the electrochemical mechanism with rising conductivity. Thus it can be shown that a pH dye does only indirectly visualize the charge transfer in the water bridge since it is dragged along with the water flow like any other dye, and additionally promotes conventional electrochemical conduction mechanisms, thereby enhancing electrolysis and reducing the masscoupled charge transport and thus destabilizing the bridge.

  17. Natural convection mass transfer on a vertical steel structure submerged in a molten aluminum pool

    International Nuclear Information System (INIS)

    Cheung, F.B.; Yang, B.C.; Shiah, S.W.; Cho, D.H.; Tan, M.J.

    1995-01-01

    The process of dissolution mass transport along a vertical steel structure submerged in a large molten aluminum pool is studied theoretically. A mathematical model is developed from the conservation laws and thermodynamic principles, taking full account of the density variation in the dissolution boundary layer due to concentration differences. Also accounted for are the influence of the solubility of the wall material on species transfer and the motion of the solid/liquid interface at the dissolution front. The governing equations are solved by a combined analytical-numerical technique to determine the characteristics of the dissolution boundary layer and the rate of natural convection mass transfer. Based upon the numerical results, a correlation for the average Sherwood number is obtained. It is found that the Sherwood number depends strongly on the saturated concentration of the substrate at the moving dissolution front but is almost independent of the freestream velocity

  18. Retrieval of water vapor vertical distributions in the upper troposphere and the lower stratosphere from SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Rozanov

    2011-05-01

    Full Text Available This study describes the retrieval of water vapor vertical distributions in the upper troposphere and lower stratosphere (UTLS altitude range from space-borne observations of the scattered solar light made in limb viewing geometry. First results using measurements from SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY aboard ENVISAT (Environmental Satellite are presented here. In previous publications, the retrieval of water vapor vertical distributions has been achieved exploiting either the emitted radiance leaving the atmosphere or the transmitted solar radiation. In this study, the scattered solar radiation is used as a new source of information on the water vapor content in the UTLS region. A recently developed retrieval algorithm utilizes the differential absorption structure of the water vapor in 1353–1410 nm spectral range and yields the water vapor content in the 11–25 km altitude range. In this study, the retrieval algorithm is successfully applied to SCIAMACHY limb measurements and the resulting water vapor profiles are compared to in situ balloon-borne observations. The results from both satellite and balloon-borne instruments are found to agree typically within 10 %.

  19. Slug flooding in air-water countercurrent vertical flow

    International Nuclear Information System (INIS)

    Lee, Jae Young; Raman, Roger; Chang, Jen-Shih

    2000-01-01

    This paper is to study slug flooding in the vertical air-water countercurrent flow loop with a porous liquid injector in the upper plenum. More water penetration into the bottom plenum in slug flooding is observed than the annular flooding because the flow regime changes from the slug flow regime or periodic slug/annular flow regime to annular flow regime due to the hysteresis between the onset of flooding and the bridging film. Experiments were made tubes of 0.995 cm, 2.07 cm, and 5.08 cm in diameter. A mechanistic model for the slug flooding with the solitary wave whose height is four time of the mean film thickness is developed to produce relations of the critical liquid flow rate and the mean film thickness. After fitting the critical liquid flow rate with the experimental data as a function of the Bond number, the gas flow rate for the slug flooding is obtained by substituting the critical liquid flow rate to the annular flooding criteria. The present experimental data evaluate the slug flooding condition developed here by substituting the correlations for mean film thickness models in the literature. The best prediction was made by the correlation for the mean film thickness of the present study which is same as Feind's correlation multiplied by 1.35. (author)

  20. Effect of the Discharge Water which Mixed Sewage Disposal Water with Seawater Desalting Treated Sewage for Bottom Sediment and Hypoxic Water Mass

    Science.gov (United States)

    Watanabe, Ryoichi; Yamasaki, Koreyoshi; Minagawa, Tomoko; Iyooka, Hiroki; Kitano, Yoshinori

    For every time in summer season, hypoxic water mass has formed at the inner part of Hakata Bay. Field observation study has carried out at the inner part of Hakata Bay since 2004 with the particular aim of tracking the movement of hypoxic water mass. Hypoxic water masses form the end of June to September on this area because the consumption of oxygen in bottom water layers exceeds the re-supply of oxygen from the atmosphere. Under such hypoxic conditions, the seawater desalination plant has begun to use in 2005. After seawater desalination plant operation starting, hypoxic water mass tends to improve. In this research, the authors show the following result. After seawater desalination plant has begun to operate, the hypoxia around the mixed discharge water outlet tends to be improved.

  1. Treatment of fishpond water by recirculating horizontal and vertical flow constructed wetlands in the tropics

    DEFF Research Database (Denmark)

    Konnerup, Dennis; Trang, Ngo Thuy Diem; Brix, Hans

    2011-01-01

    quantities of phytoplankton algae were removed in the CWs but abundance of toxic algae such as Microcystis was low. It is concluded that particularly vertical flow CWs have great potential for treatment of fishpond water in recirculating aquaculture systems in the tropics as the discharge of polluted water......Common practice of aquaculture in Vietnam and other countries in South East Asia involves frequent discharge of polluted water into rivers which results in eutrophication and degradation of receiving water bodies. There is therefore a need to develop improved aquaculture systems which have a more...... efficient use of water and less environmental impact. The aim of this study was to assess the suitability of using constructed wetlands (CWs) for the treatment of fishpond water in a recirculating aquaculture system in the Mekong Delta of Vietnam. Water from a fishpond stocked with Nile tilapia (Oreochromis...

  2. Effects of rotation on MHD flow past an accelerated isothermal vertical plate with heat and mass diffusion

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2010-01-01

    Full Text Available An exact analysis of rotation effects on unsteady flow of an incompressible and electrically conducting fluid past a uniformly accelerated infinite isothermal vertical plate, under the action of transversely applied magnetic field has been presented. The plate temperature is raised to Tw and the concentration level near the plate is also raised to C′w . The dimensionless governing equations are solved using Laplace-transform technique. The velocity profiles, temperature and concentration are studied for different physical parameters like thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that the velocity increases with increasing values of thermal Grashof number or mass Grashof number. It is also observed that the velocity increases with decreasing magnetic field parameter.

  3. Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water.

    Science.gov (United States)

    Zhang, Panpan; Li, Jing; Lv, Lingxiao; Zhao, Yang; Qu, Liangti

    2017-05-23

    Efficient utilization of solar energy for clean water is an attractive, renewable, and environment friendly way to solve the long-standing water crisis. For this task, we prepared the long-range vertically aligned graphene sheets membrane (VA-GSM) as the highly efficient solar thermal converter for generation of clean water. The VA-GSM was prepared by the antifreeze-assisted freezing technique we developed, which possessed the run-through channels facilitating the water transport, high light absorption capacity for excellent photothermal transduction, and the extraordinary stability in rigorous conditions. As a result, VA-GSM has achieved average water evaporation rates of 1.62 and 6.25 kg m -2 h -1 under 1 and 4 sun illumination with a superb solar thermal conversion efficiency of up to 86.5% and 94.2%, respectively, better than that of most carbon materials reported previously, which can efficiently produce the clean water from seawater, common wastewater, and even concentrated acid and/or alkali solutions.

  4. Vertical distribution and diel vertical migration of krill beneath snow-covered ice and in ice-free waters

    KAUST Repository

    Vestheim, Hege; Rø stad, Anders; Klevjer, Thor A.; Solberg, Ingrid; Kaartvedt, Stein

    2013-01-01

    A bottom mounted upward looking Simrad EK60 120-kHz echo sounder was used to study scattering layers (SLs) and individuals of the krill Meganyctiphanes norvegica. The mooring was situated at 150-m depth in the Oslofjord, connected with an onshore cable for power and transmission of digitized data. Records spanned 5 months from late autumn to spring. A current meter and CTD was associated with the acoustic mooring and a shore-based webcam monitored ice conditions in the fjord. The continuous measurements were supplemented with intermittent krill sampling campaigns and their physical and biological environment.The krill carried out diel vertical migration (DVM) throughout the winter, regardless of the distribution of potential prey. The fjord froze over in mid-winter and the daytime distribution of a mid-water SL of krill immediately became shallower associated with snow fall after freezing, likely related to reduction of light intensities. Still, a fraction of the population always descended all the way to the bottom, so that the krill population by day seemed to inhabit waters with light levels spanning up to six orders of magnitude. Deep-living krill ascended in synchrony with the rest of the population in the afternoon, but individuals consistently reappeared in near-bottom waters already? 1 h after the ascent. Thereafter, the krill appeared to undertake asynchronous migrations, with some krill always being present in near-bottom waters even though the entire population appeared to undertake DVM. The Author 2013. Published by Oxford University Press. All rights reserved.

  5. Vertical distribution and diel vertical migration of krill beneath snow-covered ice and in ice-free waters

    KAUST Repository

    Vestheim, Hege

    2013-11-11

    A bottom mounted upward looking Simrad EK60 120-kHz echo sounder was used to study scattering layers (SLs) and individuals of the krill Meganyctiphanes norvegica. The mooring was situated at 150-m depth in the Oslofjord, connected with an onshore cable for power and transmission of digitized data. Records spanned 5 months from late autumn to spring. A current meter and CTD was associated with the acoustic mooring and a shore-based webcam monitored ice conditions in the fjord. The continuous measurements were supplemented with intermittent krill sampling campaigns and their physical and biological environment.The krill carried out diel vertical migration (DVM) throughout the winter, regardless of the distribution of potential prey. The fjord froze over in mid-winter and the daytime distribution of a mid-water SL of krill immediately became shallower associated with snow fall after freezing, likely related to reduction of light intensities. Still, a fraction of the population always descended all the way to the bottom, so that the krill population by day seemed to inhabit waters with light levels spanning up to six orders of magnitude. Deep-living krill ascended in synchrony with the rest of the population in the afternoon, but individuals consistently reappeared in near-bottom waters already? 1 h after the ascent. Thereafter, the krill appeared to undertake asynchronous migrations, with some krill always being present in near-bottom waters even though the entire population appeared to undertake DVM. The Author 2013. Published by Oxford University Press. All rights reserved.

  6. A Study on Distribution Measurement and Mechanism of Deformation due to Water Loss of Overburden Layer in Vertical Shaft

    Directory of Open Access Journals (Sweden)

    Chunde Piao

    2015-01-01

    Full Text Available Based on FBG fiber Bragg grating technology and BOTDA distributed optical fiber sensing technology, this study uses fine sand to simulate overburden layer in vertical shaft model equipment. It studies the placing technique and test method for optical fiber sensors in the overburden layer, combined with MODFLOW software to simulate the change of the water head value when the overburden layer is losing water, and obtains the deformation features of overburden layer. The results show, at the beginning of water loss, the vertical deformation increases due to larger hydraulic pressure drop, while the deformation decreases gradually and tends to be stable with the hydraulic pressure drop reducing. The circumferential deformation is closely related to such factors as the distance between each drainage outlet, the variations of water head value, and the method of drainage. The monitoring result based on optical fiber sensing technology is consistent with the characteristics of water loss in overburden layer simulated by MODFLOW software, which shows that the optical fiber sensing technology applied to monitor shaft overburden layer is feasible.

  7. Evidence of Diel Vertical Migration of Mesopelagic Sound-Scattering Organisms in the Arctic

    Directory of Open Access Journals (Sweden)

    Harald Gjøsæter

    2017-10-01

    Full Text Available While sound scattering layers (SSLs have been described previously from ice-covered waters in the Arctic, the existence of a viable mesopelagic community that also includes mesopelagic fishes in the Arctic has been questioned. In addition, it has been hypothesized that vertical migration would hardly exist in these areas. We wanted to check if deep scattering layers (DSLs was found to the west and north of Svalbard (79°30′N−82°10′N during autumn 2015, and if present; whether organisms in such DSLs undertook vertical migrations. Our null hypothesis was that there would be no evidence of diel vertical migration. Multi-frequency acoustic observations by hull mounted echo sounder (18, 38, and 120 kHz revealed a DSL at depths ~210–510 m in areas with bottom depths exceeding ~600 m. Investigating eight geographical locations that differed with respect to time periods, light cycle and sea ice conditions, we show that the deeper layer of DSL displayed a clear ascending movement during night time and a descending movement during daytime. The high-light weighted mean depth (WMD (343–514 m with respect to backscattered energy was statistically deeper than the low-light WMD (179–437 m for the locations studied. This behavior of the DSL was found to be consistent both when the sun was continuously above the horizon and after it started to set on 1 September, and both in open water and sea ice covered waters. The WMD showed an increasing trend, while the nautical area backscattering strength from the DSL showed a decreasing trend from south to north among the studied locations. Hydrographic observations revealed that the diel migration was found in the lower part of the north-flowing Atlantic Water, and was disconnected from the surface water masses above the Atlantic Water during day and night. The organisms conducting vertical migrations were studied by vertical and oblique hauls with zooplankton nets and pelagic trawls. These data suggest

  8. Retrieving Vertical Air Motion and Raindrop Size Distributions from Vertically Pointing Doppler Radars

    Science.gov (United States)

    Williams, C. R.; Chandra, C. V.

    2017-12-01

    The vertical evolution of falling raindrops is a result of evaporation, breakup, and coalescence acting upon those raindrops. Computing these processes using vertically pointing radar observations is a two-step process. First, the raindrop size distribution (DSD) and vertical air motion need to be estimated throughout the rain shaft. Then, the changes in DSD properties need to be quantified as a function of height. The change in liquid water content is a measure of evaporation, and the change in raindrop number concentration and size are indicators of net breakup or coalescence in the vertical column. The DSD and air motion can be retrieved using observations from two vertically pointing radars operating side-by-side and at two different wavelengths. While both radars are observing the same raindrop distribution, they measure different reflectivity and radial velocities due to Rayleigh and Mie scattering properties. As long as raindrops with diameters greater than approximately 2 mm are in the radar pulse volumes, the Rayleigh and Mie scattering signatures are unique enough to estimate DSD parameters using radars operating at 3- and 35-GHz (Williams et al. 2016). Vertical decomposition diagrams (Williams 2016) are used to explore the processes acting on the raindrops. Specifically, changes in liquid water content with height quantify evaporation or accretion. When the raindrops are not evaporating, net raindrop breakup and coalescence are identified by changes in the total number of raindrops and changes in the DSD effective shape as the raindrops. This presentation will focus on describing the DSD and air motion retrieval method using vertical profiling radar observations from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility in Northern Oklahoma.

  9. Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring

    Science.gov (United States)

    Sosik, Heidi M.; Green, Rebecca E.; Pegau, W. Scott; Roesler, Collin S.

    2001-05-01

    Relationships between optical and physical properties were examined on the basis of intensive sampling at a site on the New England continental shelf during late summer 1996 and spring 1997. During both seasons, particles were found to be the primary source of temporal and vertical variability in optical properties since light absorption by dissolved material, though significant in magnitude, was relatively constant. Within the particle pool, changes in phytoplankton were responsible for much of the observed optical variability. Physical processes associated with characteristic seasonal patterns in stratification and mixing contributed to optical variability mostly through effects on phytoplankton. An exception to this generalization occurred during summer as the passage of a hurricane led to a breakdown in stratification and substantial resuspension of nonphytoplankton particulate material. Prior to the hurricane, conditions in summer were highly stratified with subsurface maxima in absorption and scattering coefficients. In spring, stratification was much weaker but increased over the sampling period, and a modest phytoplankton bloom caused surface layer maxima in absorption and scattering coefficients. These seasonal differences in the vertical distribution of inherent optical properties were evident in surface reflectance spectra, which were elevated and shifted toward blue wavelengths in the summer. Some seasonal differences in optical properties, including reflectance spectra, suggest that a significant shift toward a smaller particle size distribution occurred in summer. Shorter timescale optical variability was consistent with a variety of influences including episodic events such as the hurricane, physical processes associated with shelfbreak frontal dynamics, biological processes such as phytoplankton growth, and horizontal patchiness combined with water mass advection.

  10. The inverse Numerical Computer Program FLUX-BOT for estimating Vertical Water Fluxes from Temperature Time-Series.

    Science.gov (United States)

    Trauth, N.; Schmidt, C.; Munz, M.

    2016-12-01

    Heat as a natural tracer to quantify water fluxes between groundwater and surface water has evolved to a standard hydrological method. Typically, time series of temperatures in the surface water and in the sediment are observed and are subsequently evaluated by a vertical 1D representation of heat transport by advection and dispersion. Several analytical solutions as well as their implementation into user-friendly software exist in order to estimate water fluxes from the observed temperatures. Analytical solutions can be easily implemented but assumptions on the boundary conditions have to be made a priori, e.g. sinusoidal upper temperature boundary. Numerical models offer more flexibility and can handle temperature data which is characterized by irregular variations such as storm-event induced temperature changes and thus cannot readily be incorporated in analytical solutions. This also reduced the effort of data preprocessing such as the extraction of the diurnal temperature variation. We developed a software to estimate water FLUXes Based On Temperatures- FLUX-BOT. FLUX-BOT is a numerical code written in MATLAB which is intended to calculate vertical water fluxes in saturated sediments, based on the inversion of measured temperature time series observed at multiple depths. It applies a cell-centered Crank-Nicolson implicit finite difference scheme to solve the one-dimensional heat advection-conduction equation. Besides its core inverse numerical routines, FLUX-BOT includes functions visualizing the results and functions for performing uncertainty analysis. We provide applications of FLUX-BOT to generic as well as to measured temperature data to demonstrate its performance.

  11. Complex vertical migration of larvae of the ghost shrimp, Nihonotrypaea harmandi, in inner shelf waters of western Kyushu, Japan

    Science.gov (United States)

    Tamaki, Akio; Mandal, Sumit; Agata, Yoshihiro; Aoki, Ikumi; Suzuki, Toshikazu; Kanehara, Hisao; Aoshima, Takashi; Fukuda, Yasushi; Tsukamoto, Hideshi; Yanagi, Tetsuo

    2010-01-01

    The position of meroplanktonic larvae in the water column with depth-dependent current velocities determines horizontal transport trajectories. For those larvae occurring in inner shelf waters, little is known about how combined diel and tidally-synchronized vertical migration patterns shift ontogenetically. The vertical migration of larvae of Nihonotrypaea harmandi (Decapoda: Thalassinidea: Callianassidae) was investigated in mesotidal, inner shelf waters of western Kyushu, Japan in July-August 2006. The larval sampling at seven depth layers down to 60 m was conducted every 3 h for 36 h in a 68.5-m deep area 10 km off a major coastal adult habitat. Within a 61-65-m deep area 5-7.5 km off the adult habitat, water temperature, salinity, chlorophyll a concentration, and photon flux density were measured, and water currents there were characterized from harmonic analysis of current meter data collected in 2008. The water column was stratified, with pycnocline, chlorophyll a concentration maximum, and 2% of photon flux density at 2 m, recorded at around 22-24 m. The stratified residual currents were detected in their north component, directed offshore and onshore in the upper and lower mixed layers, respectively. More than 87% of larvae occurred between 20 m and 60 m, producing a net onshore transport of approximately 1.3 km d -1. At the sunset flooding tide, all zoeal-stage larvae ascended, which could further promote retention (1.4-km potential onshore transport in 3 h). The actual onshore transport of larvae was detected by observing their occurrence pattern in a shallow embayment area with the adult habitat for 24 h in October 1994. However, ontogenetic differences in the vertical migration pattern in inner shelf waters were also apparent, with the maximum mean positions of zoeae deepening with increasing stages. Zoeae I and II performed a reverse diel migration, with their minimum and maximum depths being reached around noon and midnight, respectively. Zoeae IV

  12. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers

    KAUST Repository

    Klevjer, Thor Aleksander

    2016-01-27

    Recent studies suggest that previous estimates of mesopelagic biomasses are severely biased, with the new, higher estimates underlining the need to unveil behaviourally mediated coupling between shallow and deep ocean habitats. We analysed vertical distribution and diel vertical migration (DVM) of mesopelagic acoustic scattering layers (SLs) recorded at 38 kHz across oceanographic regimes encountered during the circumglobal Malaspina expedition. Mesopelagic SLs were observed in all areas covered, but vertical distributions and DVM patterns varied markedly. The distribution of mesopelagic backscatter was deepest in the southern Indian Ocean (weighted mean daytime depth: WMD 590 m) and shallowest at the oxygen minimum zone in the eastern Pacific (WMD 350 m). DVM was evident in all areas covered, on average ~50% of mesopelagic backscatter made daily excursions from mesopelagic depths to shallow waters. There were marked differences in migrating proportions between the regions, ranging from ~20% in the Indian Ocean to ~90% in the Eastern Pacific. Overall the data suggest strong spatial gradients in mesopelagic DVM patterns, with implied ecological and biogeochemical consequences. Our results suggest that parts of this spatial variability can be explained by horizontal patterns in physical-chemical properties of water masses, such as oxygen, temperature and turbidity.

  13. Water-Exit Process Modeling and Added-Mass Calculation of the Submarine-Launched Missile

    Directory of Open Access Journals (Sweden)

    Yang Jian

    2017-11-01

    Full Text Available In the process that the submarine-launched missile exits the water, there is the complex fluid solid coupling phenomenon. Therefore, it is difficult to establish the accurate water-exit dynamic model. In the paper, according to the characteristics of the water-exit motion, based on the traditional method of added mass, considering the added mass changing rate, the water-exit dynamic model is established. And with help of the CFX fluid simulation software, a new calculation method of the added mass that is suit for submarine-launched missile is proposed, which can effectively solve the problem of fluid solid coupling in modeling process. Then by the new calculation method, the change law of the added mass in water-exit process of the missile is obtained. In simulated analysis, for the water-exit process of the missile, by comparing the results of the numerical simulation and the calculation of theoretical model, the effectiveness of the new added mass calculation method and the accuracy of the water-exit dynamic model that considers the added mass changing rate are verified.

  14. Vertical and horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean

    Science.gov (United States)

    Fuenzalida, Rosalino; Schneider, Wolfgang; Garcés-Vargas, José; Bravo, Luis; Lange, Carina

    2009-07-01

    Recent hydrographic measurements within the eastern South Pacific (1999-2001) were combined with vertically high-resolution data from the World Ocean Circulation Experiment, high-resolution profiles and bottle casts from the World Ocean Database 2001, and the World Ocean Atlas 2001 in order to evaluate the vertical and horizontal extension of the oxygen minimum zone (oxygen minimum zone to be 9.82±3.60×10 6 km 2 and 2.18±0.66×10 6 km 3, respectively. The oxygen minimum zone is thickest (>600 m) off Peru between 5 and 13°S and to about 1000 km offshore. Its upper boundary is shallowest (zone in some places. Offshore, the thickness and meridional extent of the oxygen minimum zone decrease until it finally vanishes at 140°W between 2° and 8°S. Moving southward along the coast of South America, the zonal extension of the oxygen minimum zone gradually diminishes from 3000 km (15°S) to 1200 km (20°S) and then to 25 km (30°S); only a thin band is detected at ˜37°S off Concepción, Chile. Simultaneously, the oxygen minimum zone's maximum thickness decreases from 300 m (20°S) to less than 50 m (south of 30°S). The spatial distribution of Ekman suction velocity and oxygen minimum zone thickness correlate well, especially in the core. Off Chile, the eastern South Pacific Intermediate Water mass introduces increased vertical stability into the upper water column, complicating ventilation of the oxygen minimum zone from above. In addition, oxygen-enriched Antarctic Intermediate Water clashes with the oxygen minimum zone at around 30°S, causing a pronounced sub-surface oxygen front. The new estimates of vertical and horizontal oxygen minimum zone distribution in the eastern South Pacific complement the global quantification of naturally hypoxic continental margins by Helly and Levin [2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Research I 51, 1159-1168] and provide new baseline data useful for studies on the

  15. LOW-MASS PLANETS IN PROTOPLANETARY DISKS WITH NET VERTICAL MAGNETIC FIELDS: THE PLANETARY WAKE AND GAP OPENING

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhaohuan; Stone, James M.; Rafikov, Roman R., E-mail: zhzhu@astro.princeton.edu, E-mail: jstone@astro.princeton.edu, E-mail: rrr@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ, 08544 (United States)

    2013-05-10

    Some regions in protoplanetary disks are turbulent, while some regions are quiescent (e.g. the dead zone). In order to study how planets open gaps in both inviscid hydrodynamic disk (e.g. the dead zone) and the disk subject to magnetorotational instability (MRI), we carried out both shearing box two-dimensional inviscid hydrodynamical simulations and three-dimensional unstratified magnetohydrodynamical (MHD) simulations (having net vertical magnetic fields) with a planet at the box center. We found that, due to the nonlinear wave steepening, even a low mass planet can open gaps in both cases, in contradiction to the ''thermal criterion'' for gap opening. In order to understand if we can represent the MRI turbulent stress with the viscous {alpha} prescription for studying gap opening, we compare gap properties in MRI-turbulent disks to those in viscous HD disks having the same stress, and found that the same mass planet opens a significantly deeper and wider gap in net vertical flux MHD disks than in viscous HD disks. This difference arises due to the efficient magnetic field transport into the gap region in MRI disks, leading to a larger effective {alpha} within the gap. Thus, across the gap, the Maxwell stress profile is smoother than the gap density profile, and a deeper gap is needed for the Maxwell stress gradient to balance the planetary torque density. Comparison with previous results from net toroidal flux/zero flux MHD simulations indicates that the magnetic field geometry plays an important role in the gap opening process. We also found that long-lived density features (termed zonal flows) produced by the MRI can affect planet migration. Overall, our results suggest that gaps can be commonly produced by low mass planets in realistic protoplanetary disks, and caution the use of a constant {alpha}-viscosity to model gaps in protoplanetary disks.

  16. LOW-MASS PLANETS IN PROTOPLANETARY DISKS WITH NET VERTICAL MAGNETIC FIELDS: THE PLANETARY WAKE AND GAP OPENING

    International Nuclear Information System (INIS)

    Zhu Zhaohuan; Stone, James M.; Rafikov, Roman R.

    2013-01-01

    Some regions in protoplanetary disks are turbulent, while some regions are quiescent (e.g. the dead zone). In order to study how planets open gaps in both inviscid hydrodynamic disk (e.g. the dead zone) and the disk subject to magnetorotational instability (MRI), we carried out both shearing box two-dimensional inviscid hydrodynamical simulations and three-dimensional unstratified magnetohydrodynamical (MHD) simulations (having net vertical magnetic fields) with a planet at the box center. We found that, due to the nonlinear wave steepening, even a low mass planet can open gaps in both cases, in contradiction to the ''thermal criterion'' for gap opening. In order to understand if we can represent the MRI turbulent stress with the viscous α prescription for studying gap opening, we compare gap properties in MRI-turbulent disks to those in viscous HD disks having the same stress, and found that the same mass planet opens a significantly deeper and wider gap in net vertical flux MHD disks than in viscous HD disks. This difference arises due to the efficient magnetic field transport into the gap region in MRI disks, leading to a larger effective α within the gap. Thus, across the gap, the Maxwell stress profile is smoother than the gap density profile, and a deeper gap is needed for the Maxwell stress gradient to balance the planetary torque density. Comparison with previous results from net toroidal flux/zero flux MHD simulations indicates that the magnetic field geometry plays an important role in the gap opening process. We also found that long-lived density features (termed zonal flows) produced by the MRI can affect planet migration. Overall, our results suggest that gaps can be commonly produced by low mass planets in realistic protoplanetary disks, and caution the use of a constant α-viscosity to model gaps in protoplanetary disks.

  17. Evaluation of subcooled critical heat flux correlations using the PU-BTPFL CHF database for vertical upflow of water in a uniformly heated round tube

    International Nuclear Information System (INIS)

    Hall, D.D.; Mudawar, I.

    1997-01-01

    A simple methodology for assessing the predictive ability of critical heat flux (CHF) correlations applicable to subcooled flow boiling in a uniformly heated vertical tube is developed. Popular correlations published in handbooks and review articles as well as the most recent correlations are analyzed with the PU-BTPFL CHF database, which contains 29,718 CHF data points. This database is the largest collection of CHF data (vertical upflow of water in a uniformly heated round tube) ever cited in the world literature. The parametric ranges of the CHF database are diameters from 0.3 to 45 mm, length-to-diameter ratios from 2 to 2484, mass velocities from 0.01 x 10 3 to 138 x 10 3 kg/m 2 ·s, pressures from 1 to 223 bars, inlet subcoolings from 0 to 347 C, inlet qualities from -2.63 to 0.00, outlet subcoolings from 0 to 305 C, outlet qualities from -2.13 to 1.00, and CHFs from 0.05 x 10 6 to 276 x 10 6 W/m 2 . The database contains 4,357 data points having a subcooled outlet condition at CHF. A correlation published elsewhere is the most accurate in both low- and high-mass velocity regions, having been developed with a larger database than most correlations. In general, CHF correlations developed from data covering a limited range of flow conditions cannot be extended to other flow conditions without much uncertainty

  18. Estimation of the depth to the fresh-water/salt-water interface from vertical head gradients in wells in coastal and island aquifers

    Science.gov (United States)

    Izuka, Scot K.; Gingerich, Stephen B.

    An accurate estimate of the depth to the theoretical interface between fresh, water and salt water is critical to estimates of well yields in coastal and island aquifers. The Ghyben-Herzberg relation, which is commonly used to estimate interface depth, can greatly underestimate or overestimate the fresh-water thickness, because it assumes no vertical head gradients and no vertical flow. Estimation of the interface depth needs to consider the vertical head gradients and aquifer anisotropy that may be present. This paper presents a method to calculate vertical head gradients using water-level measurements made during drilling of a partially penetrating well; the gradient is then used to estimate interface depth. Application of the method to a numerically simulated fresh-water/salt-water system shows that the method is most accurate when the gradient is measured in a deeply penetrating well. Even using a shallow well, the method more accurately estimates the interface position than does the Ghyben-Herzberg relation where substantial vertical head gradients exist. Application of the method to field data shows that drilling, collection methods of water-level data, and aquifer inhomogeneities can cause difficulties, but the effects of these difficulties can be minimized. Résumé Une estimation précise de la profondeur de l'interface théorique entre l'eau douce et l'eau salée est un élément critique dans les estimations de rendement des puits dans les aquifères insulaires et littoraux. La relation de Ghyben-Herzberg, qui est habituellement utilisée pour estimer la profondeur de cette interface, peut fortement sous-estimer ou surestimer l'épaisseur de l'eau douce, parce qu'elle suppose l'absence de gradient vertical de charge et d'écoulement vertical. L'estimation de la profondeur de l'interface requiert de prendre en considération les gradients verticaux de charge et l'éventuelle anisotropie de l'aquifère. Cet article propose une méthode de calcul des

  19. Critical heat flux of water in vertical round tubes at low-pressure and low-flow conditions

    International Nuclear Information System (INIS)

    Park, Jae-Wook; Kim, Hong-Chae; Beak, Won-Pil; Chang, Soon Heung

    1997-01-01

    A series of critical heat flux (CHF) tests have been performed to provide a reliable set of CHF data for water flow in vertical round tubes at low pressure and low flow (LPLF) conditions. The range of experimental conditions is as follows: diameter 8, 10 mm; heated length 0.5, 1 m; pressure 2-9 bar, mass flux 50-200 kg/m 2 s; inlet subcooling 350, 450 kJ/kg. The observed parametric trends are generally consistent with the previous understanding except for the effects of system pressure and tube diameter. The pressure effect is small but very complicated; existing CHF correlations do not represent this parametric trend properly. CHF increases with the increase in diameter at fixed exit conditions, contrary to the general understanding. The artificial neural networks are applied to the round tube CHF data base at LPLF (P = 110-1100 kPa, G = 0-500 kg/m 2 s) conditions. The trained backpropagation networks (BPNs) predict CHF better than any other CHF correlations. Parametric trends of CHF based on the BPN for fixed inlet conditions generally agree well with our experimental results. (author)

  20. Influence of marine current on vertical migration of Pb in marine bay

    Science.gov (United States)

    Yu, Chen; Hong, Ai; Danfeng, Yang; Huijuan, Zhao; Dongfang, Yang

    2018-02-01

    This paper analyzed that vertical migration of Pb contents waters in Jiaozhou Bay, and revealed the influence of marine current on vertical migration process. Results showed that Pb contents in bottom waters of Jiaozhou Bay in April and July 1988 were 1.49-18.53 μg L-1 and 12.68/-27.64 μg L-1, respectively. The pollution level of Pb in bottom waters was moderate to heavy, and were showing temporal variations and spatial heterogeneity. The vertical migration process of Pb in April 1988 included a drifting process from the southwest to the north by means of the marine current was rapid in this region. The vertical migration process of Pb in July 1988 in the open waters included no drifting process since the flow rate of marine current was relative low in this region. The vertical migration process of Pb was jointly determined by vertical water’s effect, source input and water exchange, and the influence of marine current on the vertical migration of Pb in marine bay was significant.

  1. The Characteristics of natural convection heat transfer of Al_2O_3–water nano fluid flow in a vertical annulus pipe

    International Nuclear Information System (INIS)

    Reinaldy Nazar

    2016-01-01

    Results of several researches have shown that nano fluids have better thermal characteristics than conventional fluid (water). In this regard, ideas for using nano fluids as an alternative heat transfer fluid in the reactor coolant system have been well developed. Meanwhile the natural convection in a vertical annulus pipe is one of the important mechanisms of heat transfer and is found at the TRIGA research reactor, the new generation nuclear power plants and other energy conversion devices. On the other hand, the heat transfer characteristics of nano fluids in a vertical annulus pipe has not been known. Therefore, it is important to do research continuously to analyze the heat transfer nano fluids in a vertical annulus pipe. This study has carried out numerical analysis by using computer code of CFD (computational of fluids dynamic) on natural convection heat transfer characteristics of nano fluids flow of Al_2O_3-water 2 % volume in the vertical annulus pipe. The results showed an increase in heat transfer performance (Nusselt numbers - NU) by 20.5 % - 35 %. In natural convection mode with Rayleigh numbers 2.471 e"+"0"9 ≤ Ra ≤ 1.955 e"+"1"3 obtained empirical correlations for water is N_U = 1.065 (R_a(D_H/x))"0"."1"7"9 and empirical correlations for Al_2O_3-water nano fluids is N_U = 14.869 (R_a(D_H/x))"0"."1"1"5.(author)

  2. Experimental evaluation of the objective virtual mass coefficient

    International Nuclear Information System (INIS)

    Heilbron Filho, Paulo Fernando Lavalle

    1984-04-01

    This work is a continuation of many others studies that have been made in the field of two-phase flow, concerning the influence of the void fraction in a parameter known as 'induced mass' that appears in the constitutive equation of the inter-phase force called 'virtual mass force'. The determination of the influence of the void fraction in the induced mass is done using experiment involving a bubble flow in a vertical tube filled with water. Using the two-phase flow model together with some hypothesis concerning the bubble flow experience and the constitutive equation for the virtual mass force, we achieve through the analysis of the filming of the experiment our purpose in determining the influence of the void fraction on the induced mass. (author)

  3. Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM)

    Science.gov (United States)

    Halliwell, George R.

    Vertical coordinate and vertical mixing algorithms included in the HYbrid Coordinate Ocean Model (HYCOM) are evaluated in low-resolution climatological simulations of the Atlantic Ocean. The hybrid vertical coordinates are isopycnic in the deep ocean interior, but smoothly transition to level (pressure) coordinates near the ocean surface, to sigma coordinates in shallow water regions, and back again to level coordinates in very shallow water. By comparing simulations to climatology, the best model performance is realized using hybrid coordinates in conjunction with one of the three available differential vertical mixing models: the nonlocal K-Profile Parameterization, the NASA GISS level 2 turbulence closure, and the Mellor-Yamada level 2.5 turbulence closure. Good performance is also achieved using the quasi-slab Price-Weller-Pinkel dynamical instability model. Differences among these simulations are too small relative to other errors and biases to identify the "best" vertical mixing model for low-resolution climate simulations. Model performance deteriorates slightly when the Kraus-Turner slab mixed layer model is used with hybrid coordinates. This deterioration is smallest when solar radiation penetrates beneath the mixed layer and when shear instability mixing is included. A simulation performed using isopycnic coordinates to emulate the Miami Isopycnic Coordinate Ocean Model (MICOM), which uses Kraus-Turner mixing without penetrating shortwave radiation and shear instability mixing, demonstrates that the advantages of switching from isopycnic to hybrid coordinates and including more sophisticated turbulence closures outweigh the negative numerical effects of maintaining hybrid vertical coordinates.

  4. Heat transfer and pressure drop for air-water mixtures in an isoflux vertical annulus

    International Nuclear Information System (INIS)

    Khattab, M.; El-Sallak, M.; Morcos, S.M.; Salama, A.

    1996-01-01

    Heat transfer and pressure drop in flows of air-water mixtures have been investigated experimentally in an isoflux vertical annulus. The superficial liquid Reynolds number, as a reference parameter, varied from 4500 to 30 000, at different values of gas-to-liquid superficial velocity ratios up to 20 and surface heat fluxes from 50 to 240 kW/m 2 . Enhancement of the two-phase heat transfer coefficient is pronounced particularly at low liquid superficial velocities. The results are correlated and compared with some models of two-phase, two-component flows for air-water mixtures within their range of validity. Satisfactory agreement is obtained from the trend of the experimental data. (orig.) [de

  5. Water cut measurement of oil–water flow in vertical well by combining total flow rate and the response of a conductance probe

    International Nuclear Information System (INIS)

    Chen, Jianjun; Xu, Lijun; Cao, Zhang; Zhang, Wen; Liu, Xingbin; Hu, Jinhai

    2015-01-01

    In this paper, a conductance probe-based well logging instrument was developed and the total flow rate is combined with the response of the conductance probe to estimate the water cut of the oil–water flow in a vertical well. The conductance probe records the time-varying electrical characteristics of the oil–water flow. Linear least squares regression (LSR) and nonlinear support vector regression (SVR) were used to establish models to map the total flow rate and features extracted from the probe response onto the water cut, respectively. Principal component analysis (PCA) and partial least squares analysis (PLSA) techniques were employed to reduce data redundancy within the extracted features. An experiment was carried out in a vertical pipe with an inner diameter of 125 mm and a height of 24 m in an experimental multi-phase flow setup, Daqing Oilfield, China. In the experiment, oil–water flow was used and the total flow rate varied from 10 to 200 m 3 per day and the water cut varied from 0% to 100%. As a direct comparison, the cases were also studied when the total flow rate was not used as an independent input to the models. The results obtained demonstrate that: (1) the addition of the total flow rate as an input to the regression models can greatly improve the accuracy of water cut prediction, (2) the nonlinear SVR model performs much better than the linear LSR model, and (3) for the SVR model with the total flow rate as an input, the adoption of PCA or PLSA not only decreases the dimensions of inputs, but also increases prediction accuracy. The SVR model with five PCA-treated features plus the total flow rate achieves the best performance in water cut prediction, with a coefficient of determination (R 2 ) as high as 0.9970. The corresponding root mean squared error (RMSE) and mean quoted error (MQE) are 0.0312% and 1.99%, respectively. (paper)

  6. Application of the Regional Water Mass Variations from GRACE Satellite Gravimetry to Large-Scale Water Management in Africa

    Directory of Open Access Journals (Sweden)

    Guillaume Ramillien

    2014-08-01

    Full Text Available Time series of regional 2° × 2° Gravity Recovery and Climate Experiment (GRACE solutions of surface water mass change have been computed over Africa from 2003 to 2012 with a 10-day resolution by using a new regional approach. These regional maps are used to describe and quantify water mass change. The contribution of African hydrology to actual sea level rise is negative and small in magnitude (i.e., −0.1 mm/y of equivalent sea level (ESL mainly explained by the water retained in the Zambezi River basin. Analysis of the regional water mass maps is used to distinguish different zones of important water mass variations, with the exception of the dominant seasonal cycle of the African monsoon in the Sahel and Central Africa. The analysis of the regional solutions reveals the accumulation in the Okavango swamp and South Niger. It confirms the continuous depletion of water in the North Sahara aquifer at the rate of −2.3 km3/y, with a decrease in early 2008. Synergistic use of altimetry-based lake water volume with total water storage (TWS from GRACE permits a continuous monitoring of sub-surface water storage for large lake drainage areas. These different applications demonstrate the potential of the GRACE mission for the management of water resources at the regional scale.

  7. Experimental study of natural convection adjacent to an isothermal vertical ice cylinder in cold pure water

    International Nuclear Information System (INIS)

    Riu, Kap Jong; Yea, Yong Taeg; Park, Sang Hee

    1991-01-01

    A natural convection adjacent to an isothermal vertical ice cylinder is studied experimentally in cold pure water. The experiments are carried out as changing the temperature of the ambient water and then the flow and heat transfer characteristics is visualized and observed. It is shown that flow patterns are steady state upflow, unsteady state flow, steady state dual flow, and steady state downflow. There is also obtained a heat transfer coefficient and mean Nusselt number at various ambient temperature. These results are in good agreement with the theoretical ones. (Author)

  8. Water mass distributions and transports for the 2014 GEOVIDE cruise in the North Atlantic

    Science.gov (United States)

    García-Ibáñez, Maribel I.; Pérez, Fiz F.; Lherminier, Pascale; Zunino, Patricia; Mercier, Herlé; Tréguer, Paul

    2018-04-01

    We present the distribution of water masses along the GEOTRACES-GA01 section during the GEOVIDE cruise, which crossed the subpolar North Atlantic Ocean and the Labrador Sea in the summer of 2014. The water mass structure resulting from an extended optimum multiparameter (eOMP) analysis provides the framework for interpreting the observed distributions of trace elements and their isotopes. Central Waters and Subpolar Mode Waters (SPMW) dominated the upper part of the GEOTRACES-GA01 section. At intermediate depths, the dominant water mass was Labrador Sea Water, while the deep parts of the section were filled by Iceland-Scotland Overflow Water (ISOW) and North-East Atlantic Deep Water. We also evaluate the water mass volume transports across the 2014 OVIDE line (Portugal to Greenland section) by combining the water mass fractions resulting from the eOMP analysis with the absolute geostrophic velocity field estimated through a box inverse model. This allowed us to assess the relative contribution of each water mass to the transport across the section. Finally, we discuss the changes in the distribution and transport of water masses between the 2014 OVIDE line and the 2002-2010 mean state. At the upper and intermediate water levels, colder end-members of the water masses replaced the warmer ones in 2014 with respect to 2002-2010, in agreement with the long-term cooling of the North Atlantic Subpolar Gyre that started in the mid-2000s. Below 2000 dbar, ISOW increased its contribution in 2014 with respect to 2002-2010, with the increase being consistent with other estimates of ISOW transports along 58-59° N. We also observed an increase in SPMW in the East Greenland Irminger Current in 2014 with respect to 2002-2010, which supports the recent deep convection events in the Irminger Sea. From the assessment of the relative water mass contribution to the Atlantic Meridional Overturning Circulation (AMOC) across the OVIDE line, we conclude that the larger AMOC intensity in

  9. 33 CFR 118.85 - Lights on vertical lift bridges.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of the...

  10. Changes in water mass exchange between the NW shelf areas and the North Atlantic and their impact on nutrient/carbon cycling

    Science.gov (United States)

    Gröger, Matthias; Maier-Reimer, Ernst; Mikolajewicz, Uwe; Segschneider, Joachim; Sein, Dimitry

    2010-05-01

    Despite their comparatively small extension on a global scale, shelf areas are of interest for several economic reasons and climatic processes related to nutrient cycling, sea food supply, and biological productivity. Moreover, they constitute an important interface for nutrients, pollutants and freshwater on their pathway from the continents to the open ocean. This modelling study aims to investigate the spatial and temporal variability of water mass exchange between the North Atlantic and the NW European shelf and their impact on nutrient/carbon cycling and biological productivity. For this, a new modeling approach has been set up which bridges the gap between pure shelf models where water mass transports across the model domain too strongly depend on the formulation of open boundaries and global models suffering under their too coarse resolution in shelf regions. The new model consists of the global ocean and carbon cycle model MPIOM/HAMOCC with strongly increased resolution in the North Sea and the North Atlantic coupled to the regional atmosphere model REMO. The model takes the full luni-solar tides into account. It includes further a 12 layer sediment module with the relevant pore water chemistry. The main focus lies on the governing mechanisms of water mass exchange across the shelf break and the imprint on shelf biogeochemistry. For this, artificial tracers with a prescribed decay rate have been implemented to distinguish waters arriving from polar and shelf regions and those that originate from the tropics. Experiments were carried out for the years 1948 - 2007. The relationship to larger scale circulation patterns like the position and variability of the subtropical and subpolar gyres is analyzed. The water mass exchange is analyzed with respect to the nutrient concentration and productivity on the European shelf areas. The implementation of tides leads to an enhanced vertical mixing which causes lower sea surface temperatures compared to simulations

  11. Neutrino mass constraints on β decay

    International Nuclear Information System (INIS)

    Ito, Takeyasu M.; Prezeau, Gary

    2005-01-01

    Using the general connection between the upper limit on the neutrino mass and the upper limits on certain types of non-standard-model interactions that can generate loop corrections to the neutrino mass, we derive constraints on some non-standard-model d→ue - ν interactions. When cast into limits on n→pe - ν coupling constants, our results yield constraints on scalar and tensor weak interactions improved by more than an order of magnitude over the current experimental limits. When combined with the existing limits, our results yield vertical bar C S /C V vertical bar or approx. 5x10 -3 , vertical bar C S ' /C V vertical bar or approx. 5x10 -3 , vertical bar C T /C A vertical bar -2 , and vertical bar C T ' /C A vertical bar -2

  12. The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights

    Science.gov (United States)

    Sodemann, Harald; Aemisegger, Franziska; Pfahl, Stephan; Bitter, Mark; Corsmeier, Ulrich; Feuerle, Thomas; Graf, Pascal; Hankers, Rolf; Hsiao, Gregor; Schulz, Helmut; Wieser, Andreas; Wernli, Heini

    2017-05-01

    Stable isotopes of water vapour are powerful indicators of meteorological processes on a broad range of scales, reflecting evaporation, condensation, and air mass mixing processes. With the recent advent of fast laser-based spectroscopic methods, it has become possible to measure the stable isotopic composition of atmospheric water vapour in situ at a high temporal resolution. Here we present results from such comprehensive airborne spectroscopic isotope measurements in water vapour over the western Mediterranean at a high spatial and temporal resolution. Measurements have been acquired by a customized Picarro L2130-i cavity-ring down spectrometer deployed onboard the Dornier 128 D-IBUF aircraft together with a meteorological flux measurement package during the HyMeX SOP1 (Hydrological cycle in Mediterranean Experiment special observation period 1) field campaign in Corsica, France, during September and October 2012. Taking into account memory effects of the air inlet pipe, the typical time resolution of the measurements was about 15-30 s, resulting in an average horizontal resolution of about 1-2 km. Cross-calibration of the water vapour measurements from all humidity sensors showed good agreement under most flight conditions but the most turbulent ones. In total 21 successful stable isotope flights with 59 flight hours have been performed. Our data provide quasi-climatological autumn average conditions and vertical profiles of the stable isotope parameters δD, δ18O, and d-excess during the study period. A d-excess minimum in the overall average profile is reached in the region of the boundary-layer top, possibly caused by precipitation evaporation. This minimum is bracketed by higher d-excess values near the surface caused by non-equilibrium fractionation, and a maximum above the boundary layer related to the increasing d-excess in very depleted and dry high-altitude air masses. Repeated flights along the same pattern reveal pronounced day-to-day variability

  13. First report of vertically aligned (Sn,Ir)O2:F solid solution nanotubes: Highly efficient and robust oxygen evolution electrocatalysts for proton exchange membrane based water electrolysis

    Science.gov (United States)

    Ghadge, Shrinath Dattatray; Patel, Prasad P.; Datta, Moni K.; Velikokhatnyi, Oleg I.; Shanthi, Pavithra M.; Kumta, Prashant N.

    2018-07-01

    One dimensional (1D) vertically aligned nanotubes (VANTs) of (Sn0.8Ir0.2)O2:10F are synthesized for the first time by a sacrificial template assisted approach. The aim is to enhance the electrocatalytic activity of F doped (Sn,Ir)O2 solid solution electrocatalyst for oxygen evolution reaction (OER) in proton exchange membrane (PEM) based water electrolysis by generating (Sn0.8Ir0.2)O2:10F nanotubes (NTs). The 1D vertical channels and the high electrochemically active surface area (ECSA ∼38.46 m2g-1) provide for facile electron transport. This results in low surface charge transfer resistance (4.2 Ω cm2), low Tafel slope (58.8 mV dec-1) and excellent electrochemical OER performance with ∼2.3 and ∼2.6 fold higher electrocatalytic activity than 2D thin films of (Sn0.8Ir0.2)O2:10F and benchmark IrO2 electrocatalysts, respectively. Furthermore, (Sn0.8Ir0.2)O2:10F NTs exhibit excellent mass activity (21.67 A g-1), specific activity (0.0056 mAcm-2) and TOF (0.016 s-1), which is ∼2-2.6 fold higher than thin film electrocatalysts at an overpotential of 270 mV, with a total mass loading of 0.3 mg cm-2. In addition, (Sn0.8Ir0.2)O2:10F NTs demonstrate remarkable electrochemical durability - comparable to thin films of (Sn0.8Ir0.2)O2:10F and pure IrO2, operated under identical testing conditions in PEM water electrolysis. These results therefore indicate promise of (Sn0.8Ir0.2)O2:10F NTs as OER electrocatalysts for efficient and sustainable hydrogen production.

  14. Vertical dynamics of a single-span beam subjected to moving mass-suspended payload system with variable speeds

    Science.gov (United States)

    He, Wei

    2018-03-01

    This paper presents the vertical dynamics of a simply supported Euler-Bernoulli beam subjected to a moving mass-suspended payload system of variable velocities. A planar theoretical model of the moving mass-suspended payload system of variable speeds is developed based on several assumptions: the rope is massless and rigid, and its length keeps constant; the stiffness of the gantry beam is much greater than the supporting beam, and the gantry beam can be treated as a mass particle traveling along the supporting beam; the supporting beam is assumed as a simply supported Bernoulli-Euler beam. The model can be degenerated to consider two classical cases-the moving mass case and the moving payload case. The proposed model is verified using both numerical and experimental methods. To further investigate the effect of possible influential factors, numerical examples are conducted covering a range of parameters, such as variable speeds (acceleration or deceleration), mass ratios of the payload to the total moving load, and the pendulum lengths. The effect of beam flexibility on swing response of the payload is also investigated. It is shown that the effect of a variable speed is significant for the deflections of the beam. The accelerating movement tends to induce larger beam deflections, while the decelerating movement smaller ones. For accelerating or decelerating movements, the moving mass model may underestimate the deflections of the beam compared with the presented model; while for uniform motion, both the moving mass model and the moving mass-payload model lead to same beam responses. Furthermore, it is observed that the swing response of the payload is not sensitive to the stiffness of the beam for operational cases of a moving crane, thus a simple moving payload model can be employed in the swing control of the payload.

  15. Seasonal to Mesoscale Variability of Water Masses in Barrow Canyon,Chukchi Sea

    Science.gov (United States)

    Nobre, C.; Pickart, R. S.; Moore, K.; Ashjian, C. J.; Arrigo, K. R.; Grebmeier, J. M.; Vagle, S.; Itoh, M.; Berchok, C.; Stabeno, P. J.; Kikuchi, T.; Cooper, L. W.; Hartwell, I.; He, J.

    2016-02-01

    Barrow Canyon is one of the primary conduits by which Pacific-origin water exits the Chukchi Sea into the Canada Basin. As such, it is an ideal location to monitor the different water masses through the year. At the same time, the canyon is an energetic environment where mixing and entrainment can occur, modifying the pacific-origin waters. As part of the Distributed Biological Observatory (DBO) program, a transect across the canyon was occupied 24 times between 2010-2013 by international ships of opportunity passing through the region during summer and early-fall. Here we present results from an analysis of these sections to determine the seasonal evolution of the water masses and to investigate the nature of the mesoscale variability. The mean state shows the clear presence of six water masses present at various times through the summer. The seasonal evolution of these summer water masses is characterized both in depth space and in temperature-salinity (T-S) space. Clear patterns emerge, including the arrival of Alaskan coastal water and its modification in early-fall. The primary mesoscale variability is associated with wind-driven upwelling events which occur predominantly in September. The atmospheric forcing of these events is investigated as is the oceanic response.

  16. Water mass distributions and transports for the 2014 GEOVIDE cruise in the North Atlantic

    Directory of Open Access Journals (Sweden)

    M. I. García-Ibáñez

    2018-04-01

    Full Text Available We present the distribution of water masses along the GEOTRACES-GA01 section during the GEOVIDE cruise, which crossed the subpolar North Atlantic Ocean and the Labrador Sea in the summer of 2014. The water mass structure resulting from an extended optimum multiparameter (eOMP analysis provides the framework for interpreting the observed distributions of trace elements and their isotopes. Central Waters and Subpolar Mode Waters (SPMW dominated the upper part of the GEOTRACES-GA01 section. At intermediate depths, the dominant water mass was Labrador Sea Water, while the deep parts of the section were filled by Iceland–Scotland Overflow Water (ISOW and North-East Atlantic Deep Water. We also evaluate the water mass volume transports across the 2014 OVIDE line (Portugal to Greenland section by combining the water mass fractions resulting from the eOMP analysis with the absolute geostrophic velocity field estimated through a box inverse model. This allowed us to assess the relative contribution of each water mass to the transport across the section. Finally, we discuss the changes in the distribution and transport of water masses between the 2014 OVIDE line and the 2002–2010 mean state. At the upper and intermediate water levels, colder end-members of the water masses replaced the warmer ones in 2014 with respect to 2002–2010, in agreement with the long-term cooling of the North Atlantic Subpolar Gyre that started in the mid-2000s. Below 2000 dbar, ISOW increased its contribution in 2014 with respect to 2002–2010, with the increase being consistent with other estimates of ISOW transports along 58–59° N. We also observed an increase in SPMW in the East Greenland Irminger Current in 2014 with respect to 2002–2010, which supports the recent deep convection events in the Irminger Sea. From the assessment of the relative water mass contribution to the Atlantic Meridional Overturning Circulation (AMOC across the OVIDE line, we conclude

  17. Monitoring water masses properties by Glider in Sardinia Channel during summer 2014

    Science.gov (United States)

    Gana, Slim; Iudicone, Daniele; Ghenim, Leila; Mortier, Laurent; Testor, Pierre; Tintoré, Joaquin; Olita, Antonio

    2015-04-01

    characterization using altimetry and gliders: A case study in the Balearic Sea, J. Geophys. Res., 115, C10029, doi:10.1029/2009JC006087. • Garzoli S. and C. Maillard, Winter circulation in the Sicily and Sardinia straits region. Deep-Sea Research, vol. 26A, 933-954, 1979. • Hodges, B. A. and D. M. Fratantoni, 2009. A thin layer of phytoplankton observed in the Philippine Sea with a synthetic moored array of autonomous gliders. Journal of Geophysical Research - Oceans, 114, doi:10.1029/2009JC005294. • Millot, C. (1987a) Circulation in the Western Mediterranean. Oceanologica Acta 10(2), 143-149. • Ozturgut Erdogan, Temporal and spatial variability of water masses: the Strait of Sicily (Medmiloc 72). Saclantcen SM-65, pp 26, 1975. • Puillat I., I. Taupier-Letage, C. Millot, 2002: Algerian Eddies lifetime can near 3 years - Journal of Marine Systems 31, 245- 259 • Ruiz S., Pascual A., Garau B., Pujol I., Tintoré J. 2009. Vertical motion in the upper ocean from glider and altimetry data, Geophys. Res. Lett. 36(14): L14607. • Taupier-Letage et al, J.Geophys.Res., 108, 3245, 2003. • Testor P., K. Béranger and L. Mortier (2005). Modeling the deep eddy field in the southwestern Mediterranean: the life cycle of Sardinian Eddies. In Geophys. Res. Lett., Vol. 32(13):13602.

  18. Thermal Stratification in Vertical Mantle Tanks

    DEFF Research Database (Denmark)

    Knudsen, Søren; Furbo, Simon

    2001-01-01

    It is well known that it is important to have a high degree of thermal stratification in the hot water storage tank to achieve a high thermal performance of SDHW systems. This study is concentrated on thermal stratification in vertical mantle tanks. Experiments based on typical operation conditions...... are carried out to investigate how the thermal stratification is affected by different placements of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the inner tank is analysed by CFD-simulations. Furthermore, the flow pattern in the vertical mantle...

  19. Center of mass detection via an active pixel sensor

    Science.gov (United States)

    Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrara (Inventor); Fossum, Eric (Inventor)

    2006-01-01

    An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.

  20. Effect of aging on mass transfer naphthalene from creosotes to water

    International Nuclear Information System (INIS)

    Alshafie, M.; Ghoshal, S.

    2002-01-01

    Semi-gelatinous interfacial films or 'skins' have been observed to form at the interface of creosote and water when creosote is aged (contacted over an extended time period) in water under quiescent conditions for a few days. The objective of the research is to investigate whether aging of creosote-water interfaces and the formation of interfacial films retard dissolution of a target solute, naphthalene, from samples of creosote. Mass transfer experiments were conducted in gently stirred flow-through reactors where the NAPL was coated on glass beads so as to keep the NAPL and the aqueous phases segregated. The aqueous concentration in the reactor effluent was determined in samples collected at different time points and the equilibrium partitioning coefficients and area-independent mass transfer coefficients were calculated. Over the period of one week, the mass transfer rate coefficients of the naphthalene from creosote to water underwent approximately 30% reduction. Further reduction was observed up to 3 weeks of aging. This significant reduction in mass transfer coefficient has important implications on potential rates of dissolution of the solutes, and thus on rates of clean up of creosote-contaminated sites. (author)

  1. Searches for light sterile neutrinos with multitrack displaced vertices

    Science.gov (United States)

    Cottin, Giovanna; Helo, Juan Carlos; Hirsch, Martin

    2018-03-01

    We study discovery prospects for long-lived sterile neutrinos at the LHC with multitrack displaced vertices, with masses below the electroweak scale. We reinterpret current displaced vertex searches making use of publicly available, parametrized selection efficiencies for modeling the detector response to displaced vertices. We focus on the production of right-handed WR bosons and neutrinos N in a left-right symmetric model, and find poor sensitivity. After proposing a different trigger strategy (considering the prompt lepton accompanying the neutrino displaced vertex) and optimized cuts in the invariant mass and track multiplicity of the vertex, we find that the LHC with √{s }=13 TeV and 300 fb-1 is able to probe sterile neutrino masses between 10 GeV right-handed gauge boson mass of 2 TeV work joins other efforts in motivating dedicated experimental searches to target this low sterile neutrino mass region.

  2. Seasonal Mass Changes in the Red Sea Observed By GPS and Grace

    Science.gov (United States)

    Alothman, A. O.; Fing, W.; Fernandes, R. M. S.; Bos, M. S.; Elsaka, B.

    2014-12-01

    The Red Sea is a semi-enclosed basin and exchanges water with the Gulf of Aden through the strait of Bab-el-Mandeb at the southern part of the sea. Its circulation is affected by the Indian Monsoon through its connection via the Gulf of Aden. Two distinctive (in summer and in winter) seasonal signals represent the water exchange. To understand the seasonal mass changes in the Red Sea, estimates of the mass changes based on two geodetic techniques are presented: from the Gravity Recovery and Climate Experiment (GRACE) and from the Global Navigation Satellite System (GNSS). The GRACE solutions were truncated up to spherical harmonic degree and order degree 60 to estimate the average monthly mass change in the atmosphere and ocean from models (several hours). GNSS solution is based on observations from four stations along the Red Sea that have been acquired in continuous mode starting in 2007 (having at least 5 years' data-span). The time series analysis of the observed GNSS vertical deformation of these sites has been analyzed. The results revealed that the GNSS observed vertical loading agrees with the atmospheric loading (ATML) assuming that the hydrological signal along the costs of the Red sea is negligible. Computed values of daily vertical atmospheric loading using the NCEP surface pressure data (Inverted Barometer IB) for the 4 stations for 2003 until 2013 are provided. Comparison of the GRACE and GNSS solutions has shown significant annual mass variations in the Red Sea (about 15 cm annual amplitude). After removing the atmospheric effect (ATML), the ocean loading can be observed by GNSS and GRACE estimates in the Red Sea.

  3. Absorption of water vapour in the falling film of water-(LiBr + LiI + LiNO{sub 3} + LiCl) in a vertical tube at air-cooling thermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bourouis, Mahmoud; Valles, Manel; Medrano, Marc; Coronas, Alberto [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, CREVER, Universitat Rovira i Virgili, Autovia de Salou, s/n, 43006, Tarragona (Spain)

    2005-05-01

    In air-cooled water-LiBr absorption chillers the working conditions in the absorber and condenser are shifted to higher temperatures and concentrations, thereby increasing the risk of crystallisation. To develop this technology, two main problems are to be addressed: the availability of new salt mixtures with wider range of solubility than water-LiBr, and advanced absorber configurations that enable to carry out simultaneously an appropriate absorption process and an effective air-cooling. One way of improving the solubility of LiBr aqueous solutions is to add other salts to create multicomponent salt solutions. The aqueous solution of the quaternary salt system (LiBr + LiI + LiNO{sub 3} + LiCl) presents favourable properties required for air-cooled absorption systems: less corrosive and crystallisation temperature about 35 K lower than that of water-LiBr.This paper presents an experimental study on the absorption of water vapour over a wavy laminar falling film of an aqueous solution of (LiBr + LiI + LiNO{sub 3} + LiCl) on the inner wall of a water-cooled smooth vertical tube. Cooling water temperatures in the range 30-45 C were selected to simulate air-cooling thermal conditions. The results are compared with those obtained in the same experimental set-up with water-LiBr solutions.The control variables for the experimental study were: absorber pressure, solution Reynolds number, solution concentration and cooling water temperature. The parameters considered to assess the absorber performance were: absorber thermal load, mass absorption flux, degree of subcooling of the solution leaving the absorber, and the falling film heat transfer coefficient.The higher solubility of the multicomponent salt solution makes possible the operation of the absorber at higher salt concentration than with the conventional working fluid water-LiBr. The absorption fluxes achieved with water-(LiBr + LiI + LiNO{sub 3} + LiCl) at a concentration of 64.2 wt% are around 60 % higher than

  4. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus).

    Science.gov (United States)

    Aguilar, Fredy A A; Cruz, Thaline M P DA; Mourão, Gerson B; Cyrino, José Eurico P

    2017-01-01

    Knowledge on fasting heat production (HEf) of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR) of pacu (17 - 1,050 g) at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10) for pacu (2.06) shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1) from body mass (W, kg) and water temperature (T, °C), and can be used in bioenergetical models for the species.

  5. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus

    Directory of Open Access Journals (Sweden)

    FREDY A.A. AGUILAR

    Full Text Available ABSTRACT Knowledge on fasting heat production (HEf of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR of pacu (17 - 1,050 g at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10 for pacu (2.06 shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1 from body mass (W, kg and water temperature (T, °C, and can be used in bioenergetical models for the species.

  6. HEAT AND MASS TRANSFER EFFECTS ON FLOW PAST PARABOLIC STARTING MOTION OF ISOTHERMAL VERTICAL PLATE IN THE PRESENCE OF FIRST ORDER CHEMICAL REACTION

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2013-06-01

    Full Text Available An exact solution of unsteady flow past a parabolic starting motion of the infinite isothermal vertical plate with uniform mass diffusion, in the presence of a homogeneous chemical reaction of the first order, has been studied. The plate temperature and the concentration level near the plate are raised uniformly. The dimensionless governing equations are solved using the Laplace transform technique. The effect of velocity profiles are studied for different physical parameters, such as chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, and time. It is observed that velocity increases with increasing values of thermal Grashof number or mass Grashof number. The trend is reversed with respect to the chemical reaction parameter.

  7. Mass Spectrometry Identification of N-Chlorinated Dipeptides in Drinking Water.

    Science.gov (United States)

    Huang, Guang; Jiang, Ping; Li, Xing-Fang

    2017-04-04

    We report the identification of N-chlorinated dipeptides as chlorination products in drinking water using complementary high-resolution quadrupole time-of-flight (QTOF) and quadrupole ion-trap mass spectrometry techniques. First, three model dipeptides, tyrosylglycine (Tyr-Gly), tyrosylalanine (Tyr-Ala), and phenylalanylglycine (Phe-Gly), reacted with sodium hypochlorite, and these reaction solutions were analyzed by QTOF. N-Cl-Tyr-Gly, N,N-di-Cl-Tyr-Gly, N-Cl-Phe-Gly, N,N-di-Cl-Phe-Gly, N-Cl-Tyr-Ala, and N,N-di-Cl-Tyr-Ala were identified as the major products based on accurate masses, 35 Cl/ 37 Cl isotopic patterns, and MS/MS spectra. These identified N-chlorinated dipeptides were synthesized and found to be stable in water over 10 days except N,N-di-Cl-Phe-Gly. To enable sensitive detection of N-chlorinated dipeptides in authentic water, we developed a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method with multiple reaction monitoring (MRM) mode. N-Cl-Tyr-Gly, N,N-di-Cl-Tyr-Gly, N-Cl-Phe-Gly, N-Cl-Tyr-Ala, and N,N-di-Cl-Tyr-Ala along with their corresponding dipeptides were detected in authentic tap water samples. The dipeptides were clearly detected in the raw water, but the N-chlorinated dipeptides were at background levels. These results suggest that the N-chlorinated dipeptides are produced by chlorination. This study has identified N-chlorinated dipeptides as new disinfection byproducts in drinking water. The strategy developed in this study can be used to identify chlorination products of other peptides in drinking water.

  8. Vertical Displacement of the Surface Area over the Leakage to the Transverse salt Mine in 1992-2012

    Science.gov (United States)

    Lipecki, Tomasz

    2018-03-01

    The leakage of water in the salt mine caused considerable deformation of the surface. This article shows the vertical displacement in the area of leakage to the mine excavation, measured by precision leveling, carried out from the first days of leakage in 1992 until 2012. The geological and hydrogeological conditions of the mine, as well as the associated water hazards were described, which in conjunction with the inconvenient location of the excavation site in the northern frontage of the Carpathians and also inadequately conducted mining operations, contributed to the risk of flooding mine. The analysis of the vertical movements of the surface - subsidence and uplift - were present as well as the process of formation of the depression trough in the form of maps and graphs. The analyzes were based on 49 measurement series, starting from the first days of the disaster within the next 20 years. The course of development of the depression trough and the condition of the surface after stopping the water from the rock mass has been shown, which caused the surface to uplift.

  9. Water Vapor on Titan: The Stratospheric Vertical Profile from Cassini/CIRS Infrared Spectra

    Science.gov (United States)

    Cottini, V.; Jennings, D. E.; Nixon, C. A.; Anderson, C. M.; Gorius, N.; Bjoraker, G. L.; Coustenis, A.; Achterberg, R. K.; Teanby, N. A.; deKok, R.; hide

    2012-01-01

    Water vapor in Titan's middle atmosphere has previously been detected only by disk-average observations from the Infrared Space Observatory (Coustenis et al., 1998). We report here the successful detection of stratospheric water vapor using the Cassini Composite Infrared Spectrometer (CIRS, Flasar et al., 2004) following an earlier null result (de Kok et al., 2007a). CIRS senses water emissions in the far-infrared spectral region near 50 microns, which we have modeled using two independent radiative transfer and inversion codes (NEMESIS, Irwin et al 2008 and ART, Coustenis et al., 2010). From the analysis of nadir spectra we have derived a mixing ratio of (0.14 plus or minus 0.05) ppb at 100 km, corresponding to a column abundance of approximately (3.7 plus or minus 1.3) x 10(exp 14) moles per square centimeter. Using limb observations, we obtained mixing ratios of (0.13 plus or minus 0.04) ppb at 125 km and (0.45 plus or minus 0.15) ppb at 225 km of altitude, confirming that the water abundance has a positive vertical gradient as predicted by photochemical models. In the latitude range (80 deg. S - 30 deg. N) we see no evidence for latitudinal variations in these abundances within the error bars.

  10. Spar-Type Vertical-Axis Wind Turbines in Moderate Water Depth: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Ting Rui Wen

    2018-03-01

    Full Text Available The applications of floating vertical-axis wind turbines (VAWTs in deep water have been proposed and studied by several researchers recently. However, the feasibility of deploying a floating VAWT at a moderate water depth has not yet been studied. In this paper, this feasibility is thoroughly addressed by comparing the dynamic responses of spar-type VAWTs in deep water and moderate water depth. A short spar VAWT supporting a 5 MW Darrieus rotor at moderate water depth is proposed by following the deep spar concept in deep water. A fully coupled simulation tool, SIMO-RIFLEX-DMS code, is utilized to carry out time domain simulations under turbulent wind and irregular waves. Dynamic responses of the short spar and deep spar VAWTs are analyzed and compared, including the natural periods, wind turbine performance, platform motions, tower base bending moments, and tension of mooring lines. The statistical characteristics of the thrust and power production for both spars are similar. The comparison of platform motions and tower base bending moments demonstrate a good agreement for both spars, but the short spar has better performance in surge/sway motions and side–side bending moments. The 2P response dominates the bending moment spectra for both spars. A significant variation in tension of Mooring Line 1 and a larger corresponding spectrum value are found in the short spar concept. The results indicate that the application of short spar VAWTs is feasible and could become an alternative concept at moderate water depth.

  11. Rapid water disinfection using vertically aligned MoS_2 nanofilms and visible light

    International Nuclear Information System (INIS)

    Liu, Chong; Kong, Desheng; Hsu, Po-Chun; Yuan, Hongtao; Lee, Hyun-Wook

    2016-01-01

    Here, solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water (SODIS) mostly relies on ultraviolet light, which represents only 4% of total solar energy, and this leads to slow treatment speed. The development of new materials that can harvest visible light for water disinfection, and speed up solar water purification, is therefore highly desirable. Here, we show that few-layered vertically aligned MoS_2 (FLV-MoS_2) films can be used to harvest the whole spectrum of visible light (~ 50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS_2 was increased from 1.3 eV to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS_2 to generate reactive oxygen species (ROS) for bacterial inactivation in water. The FLV-MoS_2 showed ~15 times better log inactivation efficiency of indicator bacteria compared to bulk MoS_2, and much faster inactivation of bacteria under both visible light and sunlight illumination compared to widely used TiO_2. Moreover, by using a 5 nm copper film on top of the FLV-MoS_2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was further increased 6 fold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 minutes with a small amount of material (1.6 mg/L) under simulated visible light.

  12. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light

    International Nuclear Information System (INIS)

    Liu, Chong; Kong, Desheng; Hsu, Po-Chun; Yuan, Hongtao; Lee, Hyun-Wook

    2016-01-01

    In most climates, solar energy is readily available and can be used for water purification. But, solar disinfection of drinking water mostly relies on ultraviolet light, which represents only 4% of the total solar energy, and this leads to a slow treatment speed. Therefore, the development of new materials that can harvest visible light for water disinfection, and so speed up solar water purification, is highly desirable. Here we show that few-layered vertically aligned MoS_2 (FLV-MoS_2) films can be used to harvest the whole spectrum of visible light (~50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS_2 was increased from 1.3 to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS_2 to generate reactive oxygen species (ROS) for bacterial inactivation in the water. The FLV-MoS_2 showed a ~15 times better log inactivation efficiency of the indicator bacteria compared with that of bulk MoS_2, and a much faster inactivation of bacteria under both visible light and sunlight illumination compared with the widely used TiO_2. Moreover, by using a 5 nm copper film on top of the FLV-MoS_2 as a catalyst to facilitate electron–hole pair separation and promote the generation of ROS, the disinfection rate was increased a further sixfold. Here, we achieved water disinfection of >99.999% inactivation of bacteria in 20 min with a small amount of material (1.6 mg l–1) under simulated visible light.

  13. An Experimental Study of Pressure Gradients for Flow of Boiling Water in a Vertical Round Duct. (Part 2)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, Gunnar; Bode, Manfred

    1962-03-15

    The present report contains the results of the second phase of an experimental investigation concerning frictional pressure gradients for the flow of boiling water in vertical channels. The test section for this phase consisted of an electric heated stainless steel tube of 3120 mm length and 7.76 mm inner diameter. Data were obtained for pressures between 6 and 41 ata, steam qualities between 0 and 70 per cent, flow rates between 0.025 and 0.210 Kg/sec and surface heat flux between 30 and 91 W/cm. The results are in excellent agreement with our earlier data for flow in a 9.93 mm inner diameter ducts which were presented in report AE-69. From the measurements we conclude that in the range investigated the non dimensional pressure gradient ratio, {phi}{sup 2} is independent of mass flow rate, inlet sub-cooling and surface heat flux. On the basis of the measured pressure gradients, the following empirical equation has been established for engineering use, {phi}{sup 2} = 1 + 2400 (x/p){sup 0.96} This equation correlates our data (more than 1000 points) with a discrepancy of less than {+-} 15 per cent.

  14. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    Directory of Open Access Journals (Sweden)

    Siomos N.

    2016-01-01

    Full Text Available Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC, that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E from the period 2013-2014 were used in this study.

  15. CFD validation of a supercritical water flow for SCWR design heat and mass fluxes

    International Nuclear Information System (INIS)

    Roelofs, F.; Lycklama a Nijeholt, J.A.; Komen, E.M.J.; Lowenberg, M.; Starflinger, J.

    2007-01-01

    The applicability of Computational Fluid Dynamics (CFD) for water under supercritical conditions in supercritical water reactors (SCWR) has still to be verified. In the recent past, CFD validation analyses were performed by various institutes for supercritical water in vertical tubes based on the well known experimental data from Yamagata. However, validation using data from experiments with working conditions closer to the actual operational conditions of such reactors is needed. From a literature survey the experiments performed by Herkenrath are selected to perform validation analyses at higher heat fluxes and a higher mass flux. The accuracy of CFD using RANS (Reynolds Average Navier-Stokes) turbulence modelling for supercritical fluids under conditions close to the operational conditions of a supercritical water reactor is determined. It is concluded that the wall temperature can be predicted by RANS CFD, using the RNG k-ε turbulence model, with accuracy in the range of 5% for heat fluxes up to 1100 kW/m 2 and for a bulk enthalpy up to 2200 kJ/kg. For a bulk enthalpy exceeding 2200 kJ/kg, a significant lower accuracy of the CFD predictions (about 3%) is found for the simulations of the experiments of Yamagata in comparison with the simulations of the experiments of Herkenrath. For these experiments, the accuracy is about 18 per cent. This might be a result of the fact that the CFD analyses do not simulate the flattening of the temperature profile at about 2200 kJ/kg which is found in the experiments of Herkenrath. However, the obtained accuracies ranging from 3% to 18% are still deemed to be acceptable for many design purposes. (authors)

  16. Comparison of a vertically-averaged and a vertically-resolved model for hyporheic flow beneath a pool-riffle bedform

    Science.gov (United States)

    Ibrahim, Ahmad; Steffler, Peter; She, Yuntong

    2018-02-01

    The interaction between surface water and groundwater through the hyporheic zone is recognized to be important as it impacts the water quantity and quality in both flow systems. Three-dimensional (3D) modeling is the most complete representation of a real-world hyporheic zone. However, 3D modeling requires extreme computational power and efforts; the sophistication is often significantly compromised by not being able to obtain the required input data accurately. Simplifications are therefore often needed. The objective of this study was to assess the accuracy of the vertically-averaged approximation compared to a more complete vertically-resolved model of the hyporheic zone. The groundwater flow was modeled by either a simple one-dimensional (1D) Dupuit approach or a two-dimensional (2D) horizontal/vertical model in boundary fitted coordinates, with the latter considered as a reference model. Both groundwater models were coupled with a 1D surface water model via the surface water depth. Applying the two models to an idealized pool-riffle sequence showed that the 1D Dupuit approximation gave comparable results in determining the characteristics of the hyporheic zone to the reference model when the stratum thickness is not very large compared to the surface water depth. Conditions under which the 1D model can provide reliable estimate of the seepage discharge, upwelling/downwelling discharges and locations, the hyporheic flow, and the residence time were determined.

  17. Fully developed natural convection heat and mass transfer in a vertical annular porous medium with asymmetric wall temperatures and concentrations

    International Nuclear Information System (INIS)

    Cheng, C.-Y.

    2006-01-01

    This work examines the effects of the modified Darcy number, the buoyancy ratio and the inner radius-gap ratio on the fully developed natural convection heat and mass transfer in a vertical annular non-Darcy porous medium with asymmetric wall temperatures and concentrations. The exact solutions for the important characteristics of fluid flow, heat transfer, and mass transfer are derived by using a non-Darcy flow model. The modified Darcy number is related to the flow resistance of the porous matrix. For the free convection heat and mass transfer in an annular duct filled with porous media, increasing the modified Darcy number tends to increase the volume flow rate, total heat rate added to the fluid, and the total species rate added to the fluid. Moreover, an increase in the buoyancy ratio or in the inner radius-gap ratio leads to an increase in the volume flow rate, the total heat rate added to the fluid, and the total species rate added to the fluid

  18. Use of acoustic backscatter and vertical velocity to estimate concentration and dynamics of suspended solids in Upper Klamath Lake, south-central Oregon: Implications for Aphanizomenon flos-aquae

    Science.gov (United States)

    Wood, Tamara M.; Gartner, Jeffrey W.

    2010-01-01

    dispersal of colonies throughout the water column when the water column mixed more easily. RB was used to estimate suspended solids concentrations (SSC). Correlations of depth-integrated SSC with currents or air temperatures suggest that depth-integrated water column mass decreased under conditions of greater water column stability and weaker currents. Results suggest that the use of measured vertical velocity and acoustic backscatter as a surrogate for suspended material has the potential to contribute significant additional insight into dynamics of Aphanizomenon flos-aquae colonies in Upper Klamath Lake, south-central Oregon.

  19. Velocity and phase distribution measurements in vertical air-water annular flows

    International Nuclear Information System (INIS)

    Vassallo, P.

    1997-07-01

    Annular flow topology for three air-water conditions in a vertical duct is investigated through the use of a traversing double-sensor hot-film anemometry probe and differential pressure measurements. Near wall measurements of mean and fluctuating velocities, as well as local void fraction, are taken in the liquid film, with the highest turbulent fluctuations occurring for the flow condition with the largest pressure drop. A modified law-of-the-wall formulation for wall shear is presented which, using near wall values of mean velocity and kinetic energy, agrees reasonably well with the average stress obtained from direct pressure drop measurements. The linear profile using wall coordinates in the logarithmic layer is preserved in annular flow; however, the slope and intercept of the profile differ from the single-phase values for the annular flow condition which has a thicker, more turbulent, liquid film

  20. Vertical distribution of zooplankton in the water column of Lago Amapá, Rio Branco, Acre, Brazil

    Directory of Open Access Journals (Sweden)

    Erlei Cassiano Keppeler

    2004-06-01

    Full Text Available The aim of investigation was to study the model of vertical distribution in Lago Amapá, taking into consideration the seasonality of its zooplanktonic composition. Lago Amapá (10º2'36"S and 67º50'24"W is located in the floodplain of the Rio Acre. Samplings were conducted at three different depths of the water column, to study the vertical distribution of zooplankton populations and determine some physico-chemical and biological parameters of Lago Amapá. Weekly samples were taken with a Van Dorn sampler. The species showed greater concentrations at the by means of water column. Thirty-eight zooplankton species were found in the samples represented by Rotifera (30, Cladocera (5 and Cyclopoida (3. The temperature of the water column showed a tendency toward relatively high values (about 30ºC with little variation, consequently resulting in low viscosity. Based of Jaccard's index, it was seen that during the low-water phase, S1 and S3 of the three sampling stations studied, had greater similarity (Cj = 0.7058 in the middle of the water column. Lago Amapá showed characteristics in line with the intermediate disturbance hypothesis model, favoring colonization by opportunistic species such as rotifers.O objetivo desta investigação foi observar a distribuição vertical da comunidade do zooplâncton no Lago Amapá (10º2'36"S e 67º50'24"W, localizado na planície de inundação do Rio Acre. Amostragens foram conduzidas em três diferentes profundidades da coluna da água, considerando aspectos sazonais do zooplâncton, parâmetros físicos, químicos e biológicos. Coletas foram realizadas semanalmente com Garrafa de Van Dorn. As espécies apresentaram maiores concentrações no meio da coluna da água. Foram encontradas 38 espécies, assim distribuídas: Rotifera (30, Cladocera (5 e Cyclopoida (3. A temperatura da coluna da água em geral apresentou-se alta, em torno de 30ºC, com pequena variação, resultando em baixa viscosidade. O

  1. Identifying water mass depletion in northern Iraq observed by GRACE

    NARCIS (Netherlands)

    Mulder, G.; Olsthoorn, T.N.; Al-manmi, D.A.M.A.; Schrama, E.J.O.; Smidt, E.H.

    2015-01-01

    Observations acquired by Gravity Recovery And Climate Experiment (GRACE) mission indicate a mass loss of 146 ± 6 mm equivalent water height (EWH) in northern Iraq between 2007 and 2009. These data are used as an independent validation of lake mass variations and a rainfall-runoff model, which is

  2. Radiated chemical reaction impacts on natural convective MHD mass transfer flow induced by a vertical cone

    Science.gov (United States)

    Sambath, P.; Pullepu, Bapuji; Hussain, T.; Ali Shehzad, Sabir

    2018-03-01

    The consequence of thermal radiation in laminar natural convective hydromagnetic flow of viscous incompressible fluid past a vertical cone with mass transfer under the influence of chemical reaction with heat source/sink is presented here. The surface of the cone is focused to a variable wall temperature (VWT) and wall concentration (VWC). The fluid considered here is a gray absorbing and emitting, but non-scattering medium. The boundary layer dimensionless equations governing the flow are solved by an implicit finite-difference scheme of Crank-Nicolson which has speedy convergence and stable. This method converts the dimensionless equations into a system of tri-diagonal equations and which are then solved by using well known Thomas algorithm. Numerical solutions are obtained for momentum, temperature, concentration, local and average shear stress, heat and mass transfer rates for various values of parameters Pr, Sc, λ, Δ, Rd are established with graphical representations. We observed that the liquid velocity decreased for higher values of Prandtl and Schmidt numbers. The temperature is boost up for decreasing values of Schimdt and Prandtl numbers. The enhancement in radiative parameter gives more heat to liquid due to which temperature is enhanced significantly.

  3. Transient radiative hydromagnetic free convection flow past an impulsively started vertical plate with uniform heat and mass flux

    Directory of Open Access Journals (Sweden)

    Prasad Ramachandra V.

    2006-01-01

    Full Text Available The interaction of free convection with thermal radiation of viscous incompressible MHD unsteady flow past an impulsively started vertical plate with uniform heat and mass flux is analyzed. This type of problem finds application in many technological and engineering fields such as rocket propulsion systems, space craft re-entry aerothermodynamics, cosmical flight aerodynamics, plasma physics, glass production and furnace engineering .The Rosseland approximation is used to describe the radiative heat transfer in the limit of the optically thin fluid. The non-linear, coupled equations are solved using an implicit finite difference scheme of Crank-Nicolson type. Velocity, temperature and concentration of the flow have been presented for various parameters such as thermal Grashof number, mass Grashof number, Prandtl number, Schmidt number, radiation parameter and magnetic parameter. The local and average skin friction, Nusslet number and Sherwood number are also presented graphically. It is observed that, when the radiation parameter increases the velocity and temperature decrease in the boundary layer. .

  4. Vertical Displacement of the Surface Area over the Leakage to the Transverse salt Mine in 1992–2012

    Directory of Open Access Journals (Sweden)

    Lipecki Tomasz

    2018-01-01

    Full Text Available The leakage of water in the salt mine caused considerable deformation of the surface. This article shows the vertical displacement in the area of leakage to the mine excavation, measured by precision leveling, carried out from the first days of leakage in 1992 until 2012. The geological and hydrogeological conditions of the mine, as well as the associated water hazards were described, which in conjunction with the inconvenient location of the excavation site in the northern frontage of the Carpathians and also inadequately conducted mining operations, contributed to the risk of flooding mine. The analysis of the vertical movements of the surface – subsidence and uplift – were present as well as the process of formation of the depression trough in the form of maps and graphs. The analyzes were based on 49 measurement series, starting from the first days of the disaster within the next 20 years. The course of development of the depression trough and the condition of the surface after stopping the water from the rock mass has been shown, which caused the surface to uplift.

  5. The Interplay of In Situ Stress Ratio and Transverse Isotropy in the Rock Mass on Prestressed Concrete-Lined Pressure Tunnels

    Science.gov (United States)

    Simanjuntak, T. D. Y. F.; Marence, M.; Schleiss, A. J.; Mynett, A. E.

    2016-11-01

    This paper presents the mechanical and hydraulic behaviour of passively prestressed concrete-lined pressure tunnels embedded in elastic transversely isotropic rocks subjected to non-uniform in situ stresses. Two cases are distinguished based on whether the in situ vertical stress in the rock mass is higher, or lower than the in situ horizontal stress. A two-dimensional finite element model was used to study the influence of dip angle, α, and horizontal-to-vertical stress ratio, k, on the bearing capacity of prestressed concrete-lined pressure tunnels. The study reveals that the in situ stress ratio and the orientation of stratifications in the rock mass significantly affect the load sharing between the rock mass and the lining. The distribution of stresses and deformations as a result of tunnel construction processes exhibits a symmetrical pattern for tunnels embedded in a rock mass with either horizontal or vertical stratification planes, whereas it demonstrates an unsymmetrical pattern for tunnels embedded in a rock mass with inclined stratification planes. The results obtained for a specific value α with coefficient k are identical to that for α + 90° with coefficient 1/ k by rotating the tunnel axis by 90°. The maximum internal water pressure was determined by offsetting the prestress-induced hoop strains at the final lining intrados against the seepage-induced hoop strains. As well as assessing the internal water pressure, this approach is capable of identifying potential locations where longitudinal cracks may occur in the final lining.

  6. Entropy generation in MHD flow of a uniformly stretched vertical ...

    African Journals Online (AJOL)

    This paper reports the analytical calculation of the entropy generation due to heat and mass transfer and fluid friction in steady state of a uniformly stretched vertical permeable surface with heat and mass diffusive walls, by solving analytically the mass, momentum, species concentration and energy balance equation, using ...

  7. Transient turbulent heat transfer for heating of water in a short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Kai, Naoto; Shirai, Yasuyuki; Masuzaki, Suguru

    2011-01-01

    The transient turbulent heat transfer coefficients in a short vertical Platinum test tube were systematically measured for the flow velocities (u=4.0 to 13.6 m/s), the inlet liquid temperatures (T in =296.93 to 304.81 K), the inlet pressures (P in =794.39 to 858.27 kPa) and the increasing heat inputs (Q 0 exp(t/τ), exponential periods, τ, of 18.6 ms to 25.7 s) by an experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The Platinum test tubes of test tube inner diameters (d=3 and 6 mm), heated lengths (L=66.5 and 69.6 mm), effective lengths (L eff =56.7 and 59.2 mm), ratios of heated length to inner diameter (L/d=22.16 and 11.6), ratios of effective length to inner diameter (L eff /d=18.9 and 9.87) and wall thickness (δ=0.5 and 0.4 mm) with average surface roughness (Ra=0.40 and 0.45 μm) were used in this work. The surface heat fluxes between the two potential taps were given the difference between the heat generation rate per unit surface area and the rate of change of energy storage in the test tube obtained from the faired average temperature versus time curve. The heater inner surface temperature between the two potential taps was also obtained by solving the unsteady heat conduction equation in the test tube under the conditions of measured average temperature and heat generation rate per unit surface area of the test tube. The transient turbulent heat transfer data for Platinum test tubes were compared with the values calculated by authors' correlation for the steady state turbulent heat transfer. The influence of inner diameter (d), ratio of effective length to inner diameter (L eff /d), flow velocity (u) and exponential period (τ) on the transient turbulent heat transfer is investigated into details and the widely and precisely predictable correlation of the transient turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data and authors' studies for the

  8. Transient turbulent heat transfer for heating of water in a short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Kai, Naoto; Shirai, Yasuyuki; Masuzaki, Suguru

    2011-01-01

    The transient turbulent heat transfer coefficients in a short vertical Platinum test tube were systematically measured for the flow velocities (u=4.0 to 13.6 m/s), the inlet liquid temperatures (T in =296.93 to 304.81 K), the inlet pressures (P in =794.39 to 858.27 kPa) and the increasing heat inputs (Q 0 exp(t/τ), exponential periods, τ, of 18.6 ms to 25.7 s) by an experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The Platinum test tubes of test tube inner diameters (d=3 and 6 mm), heated lengths (L=66.5 and 69.6 mm), effective lengths (L eff =56.7 and 59.2 mm), ratios of heated length to inner diameter (L/d=22.16 and 11.6), ratios of effective length to inner diameter (L eff /d=18.9 and 9.87) and wall thickness (δ=0.5 and 0.4 mm) with average surface roughness (Ra=0.40 and 0.45 μm) were used in this work. The surface heat fluxes between the two potential taps were given the difference between the heat generation rate per unit surface area and the rate of change of energy storage in the test tube obtained from the faired average temperature versus time curve. The heater inner surface temperature between the two potential taps was also obtained by solving the unsteady heat conduction equation in the test tube under the conditions of measured average temperature and heat generation rate per unit surface area of the test tube. The transient turbulent heat transfer data for Platinum test tubes were compared with the values calculated by authors' correlation for the steady state turbulent heat transfer. The influence of inner diameter (d), ratio of effective length to inner diameter (L eff /d), flow velocity (u) and exponential period (τ) on the transient turbulent heat transfer is investigated into details and the widely and precisely predictable correlation of the transient turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data and authors' studies for the

  9. determination of verticality of reservoir engineering structure

    African Journals Online (AJOL)

    user

    applications is 3D survey and management of oil and gas facilities and other engineering structures. This recent .... also affect ground water contamination. 2. VERTICALITY ...... The soil, water and concrete in a Reservoir at the foundation bed ...

  10. Heat transfer in vertical pipe flow at supercritical pressures of water

    International Nuclear Information System (INIS)

    Loewenberg, M.F.

    2007-05-01

    A new reactor concept with light water at supercritical conditions is investigated in the framework of the European project ''High Performance Light Water Reactor'' (HPLWR). Characteristics of this reactor are the system pressure and the coolant outlet temperature above the critical point of water. Water is regarded as a single phase fluid under these conditions with a high energy density. This high energy density should be utilized in a technical application. Therefore in comparison with up to date nuclear power plants some constructive savings are possible. For instance, steam dryers or steam separators can be avoided in contrast to boiling water reactors. A thermal efficiency of about 44% can be accomplished at a system pressure of 25MPa through a water heat-up from 280 C to 510 C. To ensure this heat-up within the core reliable predictions of the heat transfer are necessary. Water as the working fluid changes its fluid properties dramatically during the heat up in the core. As such; the density in the core varies by the factor of seven. The motivation to develop a look-up table for heat transfer predications in supercritical water is due to the significant temperature dependence of the fluid properties of water. A systematic consolidation of experimental data was performed. Together with further developments of the methods to derive a look-up table made it possible to develop a look-up table for heat transfer in supercritical water in vertical flows. A look-up table predicts the heat transfer for different boundary conditions (e.g. pressure or heat flux) with tabulated data. The tabulated wall temperatures for fully developed turbulent flows can be utilized for different geometries by applying hydraulic diameters. With the developed look-up table the difficulty of choosing one of the many published correlations can be avoided. In general, the correlations have problems with strong fluid property variations. Strong property variations combined with high heat

  11. Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting

    KAUST Repository

    Li, Yanbo; Takata, Tsuyoshi; Cha, Dong Kyu; Takanabe, Kazuhiro; Minegishi, Tsutomu; Kubota, Jun; Domen, Kazunari

    2012-01-01

    A vertically aligned Ta3N5 nanorod photoelectrode is fabricated by through-mask anodization and nitridation for water splitting. The Ta3N5 nanorods, working as photoanodes of a photoelectrochemical cell, yield a high photocurrent density of 3.8 mA cm -2 at 1.23 V versus a reversible hydrogen electrode under AM 1.5G simulated sunlight and an incident photon-to-current conversion efficiency of 41.3% at 440 nm, one of the highest activities reported for photoanodes so far. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting

    KAUST Repository

    Li, Yanbo

    2012-09-18

    A vertically aligned Ta3N5 nanorod photoelectrode is fabricated by through-mask anodization and nitridation for water splitting. The Ta3N5 nanorods, working as photoanodes of a photoelectrochemical cell, yield a high photocurrent density of 3.8 mA cm -2 at 1.23 V versus a reversible hydrogen electrode under AM 1.5G simulated sunlight and an incident photon-to-current conversion efficiency of 41.3% at 440 nm, one of the highest activities reported for photoanodes so far. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cotransport of clay colloids and viruses through water-saturated vertically oriented columns packed with glass beads: Gravity effects.

    Science.gov (United States)

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2016-03-01

    The cotransport of clay colloids and viruses in vertically oriented laboratory columns packed with glass beads was investigated. Bacteriophages MS2 and ΦX174 were used as model viruses, and kaolinite (ΚGa-1b) and montmorillonite (STx-1b) as model clay colloids. A steady flow rate of Q=1.5 mL/min was applied in both vertical up (VU) and vertical down (VD) flow directions. In the presence of KGa-1b, estimated mass recovery values for both viruses were higher for VD than VU flow direction, while in the presence of STx-1b the opposite was observed. However, for all cases examined, the produced mass of viruses attached onto suspended clay particles were higher for VD than VU flow direction, suggesting that the flow direction significantly influences virus attachment onto clays, as well as packed column retention of viruses attached onto suspended clays. KGa-1b hindered the transport of ΦX174 under VD flow, while STx-1b facilitated the transport of ΦX174 under both VU and VD flow directions. Moreover, KGa-1b and STx-1b facilitated the transport of MS2 in most of the cases examined except of the case where KGa-1b was present under VD flow. Also, the experimental data were used for the estimation of virus surface-coverages and virus surface concentrations generated by virus diffusion-limited attachment, as well as virus attachment due to sedimentation. Both sedimentation and diffusion limited virus attachment were higher for VD than VU flow, except the case of MS2 and STx-1b cotransport. The diffusion-limited attachment was higher for MS2 than ΦΧ174 for all cases examined. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Portable mass spectrometer for express analysis of dissolved in water substances

    International Nuclear Information System (INIS)

    Kogan, V.T.; Pavlov, A.K.; Savchenko, M.I.; Dobychin, O.E.

    1999-01-01

    The mass spectrometer for analysis under field conditions of chemical composition of dissolved in water substances is described. Special attention is paid to developing portable mass analyzer and device for a probe inlet. The device is intended for the systems of direct autonomous control of water basins contamination. Depending on the level of required work degree of autonomy and loading rate of the device, its dimensions and consumption way vary. The tests of the pilot device having 370x420x570 mm size, 23 kg mass and ≤ 40 W consumption capacity were carried out. The resolution capacity of the device is 100 (at the level of ≤ 3%) and relative sensitivity - ≤ 10 -6 [ru

  15. Seasonal water mass distribution in the Indonesian throughflow entering the Indian Ocean

    Science.gov (United States)

    Coatanoan, C.; Metzl, N.; Fieux, M.; Coste, B.

    1999-09-01

    A multiparametric approach is used to analyze the seasonal properties of water masses in the eastern Indian Ocean. The data were measured during two cruises of the Java Australia Dynamic Experiment (JADE) program carried out during two opposite seasons: August 1989 (SE monsoon) and February-March 1992 (NW monsoon). These cruises took place at the end of a La Niña event and during an El Niño episode, respectively. Seven sources have been identified in the studied region for the 200-800 m layer: the Subtropical Indian Water, the Indian Central Water, the modified Antarctic Intermediate Water, the Indonesian Subsurface Water, the Indonesian Intermediate Water, the Arabian Sea-Persian Gulf Water (AS-PGW), and the Arabian Sea-Red Sea Water (AS-RSW). The selected tracers are potential temperature, salinity and oxygen with mass conservation and positive mixing coefficients as constraints. The analysis indicates the proportion of each water source along the Australia-Bali section and into the Indonesian channels. Although no large changes are observed for Indonesian waters, significant seasonal variations are found for the southern and northern Indian Ocean water. During the NW monsoon, the contribution of the AS-RSW increases at the entrance of the Indonesian archipelago whereas the contribution of the south Indian waters decreases in the northwest Australia basin. In a complementary study, nutrients are introduced into the multiparametric analysis in order to more clearly separate the signature of the north Indian waters (AS-PGW, AS-RSW) and to provide supplementary information on the biological history of the water masses, which is compared to large-scale primary production estimates.

  16. Rotation and Radiation Effects on MHD Flow through Porous Medium Past a Vertical Plate with Heat and Mass Transfer

    Directory of Open Access Journals (Sweden)

    Uday Singh Rajput

    2017-11-01

    Full Text Available Effects of rotation and radiation on unsteady MHD flow past a vertical plate with variable wall temperature and mass diffusion in the presence of Hall current is studied here. Earlier we studied chemical reaction effect on unsteady MHD flow past an exponentially accelerated inclined plate with variable temperature and mass diffusion in the presence of Hall current. We had obtained the results which were in agreement with the desired flow phenomenon. To study further, we are changing the model by considering radiation effect on fluid, and changing the geometry of the model. Here in this paper we are taking the plate positioned vertically upward and rotating with velocity Ω . Further, medium of the flow is taken as porous. The plate temperature and the concentration level near the plate increase linearly with time. The governing system of partial differential equations is transformed to dimensionless equations using dimensionless variables. The dimensionless equations under consideration have been solved by Laplace transform technique. The model contains equations of motion, diffusion equation and equation of energy. To analyze the solution of the model, desirable sets of the values of the parameters have been considered. The governing equations involved in the flow model are solved by the Laplace-transform technique. The results obtained have been analyzed with the help of graphs drawn for different parameters. The numerical values obtained for the drag at boundary and Nusselt number have been tabulated. We found that the values obtained for velocity, concentration and temperature are in concurrence with the actual flow of the fluid

  17. Experimental investigation on subcooled boiling heat transfer in a vertical double-face heated narrow annulus

    International Nuclear Information System (INIS)

    Yan Mingyu; Qiu Suizheng; Jia Dounan

    2005-01-01

    Experimental investigation on the subcooled boiling heat transfer was carried out in a vertical up-flow double narrow annulus with 1.5 mm gap. The working fluid is deionized water. The ranges of parameters as follows: pressure 0.84-6.09 MPa, mass flux 41.9-300.2 kg/(m 2 ·s), heat flux 2.61-114.41kW/m 2 . An empiric correlation used to predict the heat transfer of subcooled boiling in narrow annulus is induced from the experimental data. (author)

  18. Availability and temporal heterogeneity of water supply affect the vertical distribution and mortality of a belowground herbivore and consequently plant growth.

    Science.gov (United States)

    Tsunoda, Tomonori; Kachi, Naoki; Suzuki, Jun-Ichirou

    2014-01-01

    We examined how the volume and temporal heterogeneity of water supply changed the vertical distribution and mortality of a belowground herbivore, and consequently affected plant biomass. Plantago lanceolata (Plantaginaceae) seedlings were grown at one per pot under different combinations of water volume (large or small volume) and heterogeneity (homogeneous water conditions, watered every day; heterogeneous conditions, watered every 4 days) in the presence or absence of a larva of the belowground herbivorous insect, Anomala cuprea (Coleoptera: Scarabaeidae). The larva was confined in different vertical distributions to top feeding zone (top treatment), middle feeding zone (middle treatment), or bottom feeding zone (bottom treatment); alternatively no larva was introduced (control treatment) or larval movement was not confined (free treatment). Three-way interaction between water volume, heterogeneity, and the herbivore significantly affected plant biomass. With a large water volume, plant biomass was lower in free treatment than in control treatment regardless of heterogeneity. Plant biomass in free treatment was as low as in top treatment. With a small water volume and in free treatment, plant biomass was low (similar to that under top treatment) under homogeneous water conditions but high under heterogeneous ones (similar to that under middle or bottom treatment). Therefore, there was little effect of belowground herbivory on plant growth under heterogeneous water conditions. In other watering regimes, herbivores would be distributed in the shallow soil and reduced root biomass. Herbivore mortality was high with homogeneous application of a large volume or heterogeneous application of a small water volume. Under the large water volume, plant biomass was high in pots in which the herbivore had died. Thus, the combinations of water volume and heterogeneity affected plant growth via the change of a belowground herbivore.

  19. Radium-226 and barium as tracers of water masses in the North Atlantic (GA01-GEOTRACES)

    Science.gov (United States)

    Le Roy, Emilie; Sanial, Virginie; Charette, Matthew; Henderson, Paul; Jacquet, Stéphanie; García-Ibáñez, Maribel; Pérez, Fiz; Lherminer, Pascale; Souhaut, Marc; Jeandel, Catherine; Lacan, François; van Beek, Pieter

    2017-04-01

    In this study, we report concentrations of radium-226 (226Ra, t1/2=1602 y) and barium determined along the GEOVIDE section conducted in the North Atlantic (May-July 2014; Portugal-Greenland-Canda) in the framework of the international GEOTRACES program. A high vertical resolution (up to 22 depths per station) was achieved by analyzing small volumes (˜10 L) of seawater for 226Ra using a radon emanation technique. We will present the distribution of 226Ra activities and barium concentrations in contrasting biogeochemical regions of the North Atlantic (Iberian margin, West European Basin, Reykjanes Ridge, Irminger Sea, Greenland margin and Labrador Sea). These regions strongly differ in terms of boundary inputs, biogeochemistry and deep water formation. We observe a linear correlation between 226Ra and barium along the GEOVIDE section, which results from the dominantly conservative behavior of the two tracers. However, deviations from the linear correlation between 226Ra and Ba are found in several places. The potential causes for such deviations are investigated. Optimum multi-parameter (OMP) analysis was thus used to distinguish the relative importance of physical transport (i.e., water mass mixing) from non-conservative processes (sedimentary, river or hydrothermal inputs; uptake by particles) on the 226Ra and Ba distribution in the North Atlantic.

  20. Vertically resolved concentration and liquid water content of atmospheric nanoparticles at the US DOE Southern Great Plains site

    Directory of Open Access Journals (Sweden)

    H. Chen

    2018-01-01

    Full Text Available Most prior field studies of new particle formation (NPF have been performed at or near ground level, leaving many unanswered questions regarding the vertical extent of NPF. To address this, we measured concentrations of 11–16 nm diameter particles from ground level to 1000 m during the 2013 New Particle Formation Study at the Atmospheric Radiation Measurement Southern Great Plains site in Lamont, Oklahoma. The measurements were performed using a tethered balloon carrying two condensation particle counters that were configured for two different particle cut-off diameters. These observations were compared to data from three scanning mobility particle sizers at the ground level. We observed that 11–16 nm diameter particles were generated at the top region of the boundary layer, and were then rapidly mixed throughout the boundary layer. We also estimate liquid water content of nanoparticles using ground-based measurements of particle hygroscopicity obtained with a Humidified Tandem Differential Mobility Analyzer and vertically resolved relative humidity (RH and temperature measured with a Raman lidar. Our analyses of these observations lead to the following conclusions regarding nanoparticles formed during NPF events at this site: (1 ground-based observations may not always accurately represent the timing, distribution, and meteorological conditions associated with the onset of NPF; (2 nanoparticles are highly hygroscopic and typically contain up to 50 % water by volume, and during conditions of high RH combined with high particle hygroscopicity, particles can be up to 95 % water by volume; (3 increased liquid water content of nanoparticles at high RH greatly enhances the partitioning of water-soluble species like organic acids into ambient nanoparticles.

  1. Vertically resolved concentration and liquid water content of atmospheric nanoparticles at the US DOE Southern Great Plains site

    Science.gov (United States)

    Chen, Haihan; Hodshire, Anna L.; Ortega, John; Greenberg, James; McMurry, Peter H.; Carlton, Annmarie G.; Pierce, Jeffrey R.; Hanson, Dave R.; Smith, James N.

    2018-01-01

    Most prior field studies of new particle formation (NPF) have been performed at or near ground level, leaving many unanswered questions regarding the vertical extent of NPF. To address this, we measured concentrations of 11-16 nm diameter particles from ground level to 1000 m during the 2013 New Particle Formation Study at the Atmospheric Radiation Measurement Southern Great Plains site in Lamont, Oklahoma. The measurements were performed using a tethered balloon carrying two condensation particle counters that were configured for two different particle cut-off diameters. These observations were compared to data from three scanning mobility particle sizers at the ground level. We observed that 11-16 nm diameter particles were generated at the top region of the boundary layer, and were then rapidly mixed throughout the boundary layer. We also estimate liquid water content of nanoparticles using ground-based measurements of particle hygroscopicity obtained with a Humidified Tandem Differential Mobility Analyzer and vertically resolved relative humidity (RH) and temperature measured with a Raman lidar. Our analyses of these observations lead to the following conclusions regarding nanoparticles formed during NPF events at this site: (1) ground-based observations may not always accurately represent the timing, distribution, and meteorological conditions associated with the onset of NPF; (2) nanoparticles are highly hygroscopic and typically contain up to 50 % water by volume, and during conditions of high RH combined with high particle hygroscopicity, particles can be up to 95 % water by volume; (3) increased liquid water content of nanoparticles at high RH greatly enhances the partitioning of water-soluble species like organic acids into ambient nanoparticles.

  2. Mass transfer between waste canister and water seeping in rock fractures. Revisiting the Q-equivalent model

    International Nuclear Information System (INIS)

    Neretnieks, Ivars; Liu Longcheng; Moreno, Luis

    2010-03-01

    Models are presented for solute transport between seeping water in fractured rock and a copper canister embedded in a clay buffer. The migration through an undamaged buffer is by molecular diffusion only as the clay has so low hydraulic conductivity that water flow can be neglected. In the fractures and in any damaged zone seeping water carries the solutes to or from the vicinity of the buffer in the deposition hole. During the time the water passes the deposition hole molecular diffusion aids in the mass transfer of solutes between the water/buffer interface and the water at some distance from the interface. The residence time of the water and the contact area between the water and the buffer determine the rate of mass transfer between water and buffer. Simple analytical solutions are presented for the mass transfer in the seeping water. For complex migration geometries simplifying assumptions are made that allow analytical solutions to be obtained. The influence of variable apertures on the mass transfer is discussed and is shown to be moderate. The impact of damage to the rock around the deposition hole by spalling and by the presence of a cemented and fractured buffer is also explored. These phenomena lead to an increase of mass transfer between water and buffer. The overall rate of mass transfer between the bulk of the water and the canister is proportional to the overall concentration difference and inversely proportional to the sum of the mass transfer resistances. For visualization purposes the concept of equivalent flowrate is introduced. This entity can be thought as of the flowrate of water that will be depleted of its solute during the water passage past the deposition hole. The equivalent flowrate is also used to assess the release rate of radionuclides from a damaged canister. Examples are presented to illustrate how various factors influence the rate of mass transfer

  3. Mass transfer in water-saturated concretes

    International Nuclear Information System (INIS)

    Atkinson, A.; Claisse, P.A.; Harris, A.W.; Nickerson, A.K.

    1990-01-01

    Cements and concretes are often considered as components of barriers for the containment of radioactive waste. The performance of such materials as mainly physical barriers to the transport of dissolved radionuclides depends on the mass transfer characteristics of the material. In particular the diffusion and sorption behavior of the radionuclides and the water permeability are important. These parameters also influence how the chemistry of the concrete is imposed on the repository. In addition, the transport of gas through concrete controls the way in which gases escape from the repository. Diffusion and gas transport have been measured in a variety of cementitious materials, covering both structural concretes and cementitious backfills; all possible repository construction materials. Measurements have been made using aqueous iodide, strontium and caesium ions and tritiated water as diffusants. The results show that the diffusion of tritiated water is more rapid than that of other species, whilst the transport of strontium and caesium is hindered by sorption; particularly in materials containing blast furnace slag. The transport of gas in these materials has been found to be very sensitive to the degree of water saturation and is extremely low in fully saturated structural concretes. Cementitious backfills have, nevertheless, been identified that have appreciable gas transport even when almost water saturated. The consequences of the results for the performance of cementitious barriers are discussed

  4. Mass transfer behavior of tritium from air to water through the water surface

    International Nuclear Information System (INIS)

    Takata, Hiroki; Nishikawa, Masabumi; Kamimae, Kozo

    2005-01-01

    It is anticipated that a certain amount of tritiated water exists in the atmosphere of tritium handling facilities, and it is recognized that the hazardous potential of tritiated water is rather high. Then, it is important to grasp the behavior of tritiated water for preserving of the radiation safety. The mass transfer behavior of tritium from air to water through the water surface was discussed in this study. The evaporation rate of water and the condensation rate of water were experimentally examined from measurement of change of the weight of distilled water. The tritium transfer rate from the tritiated water in air to the distilled water was also experimentally examined by using a liquid scintillation counter. Experimental results about change of tritium level in a small beaker placed in the atmosphere with tritiated water showed that diffusion of tritium in water and gas flow in the atmosphere gives considerable effect on tritium transfer. The estimation method of the tritium transfer made in this study was applied to explain the data at The Japan Atomic Power Company second power station at Tsuruga and good agreement was obtained. (author)

  5. RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE

    International Nuclear Information System (INIS)

    Russo, Matthew; Thompson, Christopher

    2015-01-01

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B r ∼ (10 −4 –10 −2 )(r/ AU) −2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10 −8 M ⊙ yr −1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper

  6. The water masses and volumetry of the southern Agulhas Current region

    Science.gov (United States)

    Valentine, H. R.; Lutjeharms, J. R. E.; Brundrit, G. B.

    1993-06-01

    It has been suggested that the southern termination of the Agulhas Current plays a crucial role in the global circulation of thermocline water and thus in global climate. Due to a lack of modern hydrographic observations in this region, no detailed description of water masses or a fine-scale volumetric census for this geographic area had been carried out. Such an analysis of a collection of recent high-quality hydrographic measurements shows that the warm, saline, surface water of Agulhas Current origin contributes very little to the overall volume of the upper 1500 m of the water column in the area. Occasional equatorward leakages from south of the Subtropical Convergence are represented by a range of low-salinity outliers, but they represent <1% of the total volume. The distribution of water volume in temperature/salinity space for the Agulhas Retroflection is less diverse that that of the world ocean as a whole, 25% of the total volume of the region being contained in only 21 fine-scale temperature/salinity classes. North Atlantic Deep Water is the dominant water mass, accounting for 40% of the total volume. Deep Water in general accounts for 60% of the total volume.

  7. Evaporation and condensation of steam-water in a vertical tube

    International Nuclear Information System (INIS)

    Sun, G.; Hewitt, G.F.

    2001-01-01

    Heat Transfer data have been obtained for water from single-phase flow to two-phase annular flow at 0.07-0.09 MPa in a 9.5 mm vertical bore tube under conditions of evaporation and condensation in the same test section. The main aim of the experiments was to elucidate the mechanism of heat transfer in annular flow by distinguishing between the conventional explanation of a purely convective mechanism at high quality region and the alternative hypothesis in which heat transfer is enhanced by secondary nucleation in the region. To avoid ambiguities in local hydrodynamic conditions the experiments were carried out under the same conditions (namely equilibrium annular flow) for both evaporation and condensation in the same test section. The results indicated a forced convective mechanism of the conventional type rather than the alternative thin film boiling mechanism (secondary nucleation) as suggested by Mesler (AIChE, 23 (1977) 448). The heat transfer coefficients in single-phase flow and annular flow regimes are compared with literature correlations. The results show that the present data are in reasonable agreement with existing correlations

  8. Upper Arctic Ocean water masses harbor distinct communities of heterotrophic flagellates

    Directory of Open Access Journals (Sweden)

    A. Monier

    2013-06-01

    Full Text Available The ubiquity of heterotrophic flagellates (HFL in marine waters has been recognized for several decades, but the phylogenetic diversity of these small (ca. 0.8–20 μm cell diameter, mostly phagotrophic protists in the upper pelagic zone of the ocean is underappreciated. Community composition of microbes, including HFL, is the result of past and current environmental selection, and different taxa may be indicative of food webs that cycle carbon and energy very differently. While all oceanic water columns can be density stratified due to the temperature and salinity characteristics of different water masses, the Arctic Ocean is particularly well stratified, with nutrients often limiting in surface waters and most photosynthetic biomass confined to a subsurface chlorophyll maximum layer, where light and nutrients are both available. This physically well-characterized system provided an opportunity to explore the community diversity of HFL from different water masses within the water column. We used high-throughput DNA sequencing techniques as a rapid means of surveying the diversity of HFL communities in the southern Beaufort Sea (Canada, targeting the surface, the subsurface chlorophyll maximum layer (SCM and just below the SCM. In addition to identifying major clades and their distribution, we explored the micro-diversity within the globally significant but uncultivated clade of marine stramenopiles (MAST-1 to examine the possibility of niche differentiation within the stratified water column. Our results strongly suggested that HFL community composition was determined by water mass rather than geographical location across the Beaufort Sea. Future work should focus on the biogeochemical and ecological repercussions of different HFL communities in the face of climate-driven changes to the physical structure of the Arctic Ocean.

  9. Multi-Scale Long-Range Magnitude and Sign Correlations in Vertical Upward Oil-Gas-Water Three-Phase Flow

    Science.gov (United States)

    Zhao, An; Jin, Ning-de; Ren, Ying-yu; Zhu, Lei; Yang, Xia

    2016-01-01

    In this article we apply an approach to identify the oil-gas-water three-phase flow patterns in vertical upwards 20 mm inner-diameter pipe based on the conductance fluctuating signals. We use the approach to analyse the signals with long-range correlations by decomposing the signal increment series into magnitude and sign series and extracting their scaling properties. We find that the magnitude series relates to nonlinear properties of the original time series, whereas the sign series relates to the linear properties. The research shows that the oil-gas-water three-phase flows (slug flow, churn flow, bubble flow) can be classified by a combination of scaling exponents of magnitude and sign series. This study provides a new way of characterising linear and nonlinear properties embedded in oil-gas-water three-phase flows.

  10. A High-Resolution Model of Water Mass Transformation and Transport in the Weddell Sea

    Science.gov (United States)

    Hazel, J.; Stewart, A.

    2016-12-01

    The ocean circulation around the Antarctic margins has a pronounced impact on the global ocean and climate system. One of these impacts includes closing the global meridional overturning circulation (MOC) via formation of dense Antarctic Bottom Water (AABW), which ventilates a large fraction of the subsurface ocean. AABW is also partially composed of modified Circumpolar Deep Water (CDW), a warm, mid-depth water mass whose transport towards the continent has the potential to induce rapid retreat of marine-terminating glaciers. Previous studies suggest that these water mass exchanges may be strongly influenced by high-frequency processes such as downslope gravity currents, tidal flows, and mesoscale/submesoscale eddy transport. However, evaluating the relative contributions of these processes to near-Antarctic water mass transports is hindered by the region's relatively small scales of motion and the logistical difficulties in taking measurements beneath sea ice.In this study we develop a regional model of the Weddell Sea, the largest established source of AABW. The model is forced by an annually-repeating atmospheric state constructed from the Antarctic Mesoscale Prediction System data and by annually-repeating lateral boundary conditions constructed from the Southern Ocean State Estimate. The model incorporates the full Filchner-Ronne cavity and simulates the thermodynamics and dynamics of sea ice. To analyze the role of high-frequency processes in the transport and transformation of water masses, we compute the model's overturning circulation, water mass transformations, and ice sheet basal melt at model horizontal grid resolutions ranging from 1/2 degree to 1/24 degree. We temporally decompose the high-resolution (1/24 degree) model circulation into components due to mean, eddy and tidal flows and discuss the geographical dependence of these processes and their impact on water mass transformation and transport.

  11. Influence of Saharan dust outbreaks and atmospheric stability upon vertical profiles of size-segregated aerosols and water vapor

    Science.gov (United States)

    Giménez, Joaquín; Pastor, Carlos; Castañer, Ramón; Nicolás, José; Crespo, Javier; Carratalá, Adoración

    2010-01-01

    Vertical profiles of aerosols and meteorological parameters were obtained using a hot air balloon and motorized paraglider. They were studied under anticyclonic conditions in four different contexts. Three flights occurred near sunrise, and one took place in the central hours of the day. The effects of North African dust intrusions were analyzed, whose entrance to the study area took place above the Stable Boundary Layer (SBL) in flight 1 and below it in flight 2. These flights have been compared with a non-intrusion situation (flight 3). A fourth flight characterized the profiles in the central hours of the day with a well-formed Convective Boundary Layer (CBL). With respect to the particle number distribution, the results show that not all sizes increase within the presence of an intrusion; during the first flight the smallest particles were not affected. The particle sizes affected in the second flight fell within the 0.35-2.5 μm interval. Under situations of convective dynamics, the reduction percentage of the particle number concentration reduces with increasing altitude, independently of their size, with respect to stability conditions. The negative vertical gradient for aerosols and water vapor, characteristic of a highly stable SBL (flight 3) becomes a constant profile within a CBL (flight 4). There are two situations that seem to alter the negative vertical gradient of the water vapor mixing ratio within the SBL: the presence of an intrusion and the possible stratification of the SBL based on different degrees of stability.

  12. Kinematic Patterns Associated with the Vertical Force Produced during the Eggbeater Kick.

    Science.gov (United States)

    Oliveira, Nuno; Chiu, Chuang-Yuan; Sanders, Ross H

    2015-01-01

    The purpose of this study was to determine the kinematic patterns that maximized the vertical force produced during the water polo eggbeater kick. Twelve water polo players were tested executing the eggbeater kick with the trunk aligned vertically and with the upper limbs above water while trying to maintain as high a position as possible out of the water for nine eggbeater kick cycles. Lower limb joint angular kinematics, pitch angles and speed of the feet were calculated. The vertical force produced during the eggbeater kick cycle was calculated using inverse dynamics for the independent lower body segments and combined upper body segments, and a participant-specific second-degree regression equation for the weight and buoyancy contributions. Vertical force normalized to body weight was associated with hip flexion (average, r = 0.691; maximum, r = 0.791; range of motion, r = 0.710), hip abduction (maximum, r = 0.654), knee flexion (average, r = 0.716; minimum, r = 0.653) and knee flexion-extension angular velocity (r = 0.758). Effective orientation of the hips resulted in fast horizontal motion of the feet with positive pitch angles. Vertical motion of the feet was negatively associated with vertical force. A multiple regression model comprising the non-collinear variables of maximum hip abduction, hip flexion range of motion and knee flexion angular velocity accounted for 81% of the variance in normalized vertical force. For high performance in the water polo, eggbeater kick players should execute fast horizontal motion with the feet by having large abduction and flexion of the hips, and fast extension and flexion of the knees.

  13. Mass transfer of H2O between petroleum and water: implications for oil field water sample quality

    International Nuclear Information System (INIS)

    McCartney, R.A.; Ostvold, T.

    2005-01-01

    Water mass transfer can occur between water and petroleum during changes in pressure and temperature. This process can result in the dilution or concentration of dissolved ions in the water phase of oil field petroleum-water samples. In this study, PVT simulations were undertaken for 4 petroleum-water systems covering a range of reservoir conditions (80-185 o C; 300-1000 bar) and a range of water-petroleum mixtures (volume ratios of 1:1000-300:1000) to quantify the extent of H 2 O mass transfer as a result of pressure and temperature changes. Conditions were selected to be relevant to different types of oil field water sample (i.e. surface, downhole and core samples). The main variables determining the extent of dilution and concentration were found to be: (a) reservoir pressure and temperature, (b) pressure and temperature of separation of water and petroleum, (c) petroleum composition, and (d) petroleum:water ratio (PWR). The results showed that significant dilution and concentration of water samples could occur, particularly at high PWR. It was not possible to establish simple guidelines for identifying good and poor quality samples due to the interplay of the above variables. Sample quality is best investigated using PVT software of the type used in this study. (author)

  14. An Experimental Study of Pressure Gradients for Flow of Boiling Water in a Vertical Round Duct. (Part 3)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, Gunnar; Bode, Manfred

    1962-07-01

    The present report contains the results of the third phase of an experimental investigation concerning frictional pressure gradients for flow of boiling water in vertical channels. The test section for this phase consisted of an electric heated stainless steel tube of 3120 mm length and 3.94 mm inner diameter. Data were obtained for pressures between 8 and 41 ata, steam qualities between 0 and 58 %, flow rates between 0.0075 and 0.048 kg/sec and surface heat flux between 20 and 83 W/cm. The results are in excellent agreement with our earlier data for flow in 9.93 and 7.76 mm inner diameter ducts which were presented in reports AE-69 and AE-70. The present measurements substantiate our earlier conclusion that the non dimensional pressure gradient ratio, {psi}{sup 2} , is, in the range investigated, independent of mass flow rate, inlet subcooling and surface heat flux. On the basis of the measured pressure gradients, the following empirical equation has been established for engineering use: {psi}{sup 2} = 1 + 2400(x/p){sup 0.96} This equation correlates our data (about 800 points) with a discrepancy less than {+-} 15 per cent and is identical with the corresponding equation obtained from measurements with the 7.76 mm duct.

  15. Physical characteristics of the coastal waters between Navapur and Umbharat, West coast of India. Part 2. Vertical homogeneity of temperature and salinity

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Sarma, R.V.

    Vertical distribution of temperature and salinity at five stations in the coastal waters off Navapur-Umbharat (Maharashtra-Gujarat coast, India) was studied over different seasons during 1978. The results showed that inspite of large tidal...

  16. Study on vertical seismic response model of BWR-type reactor building

    International Nuclear Information System (INIS)

    Konno, T.; Motohashi, S.; Izumi, M.; Iizuka, S.

    1993-01-01

    A study on advanced seismic design for LWR has been carried out by the Nuclear Power Engineering Corporation (NUPEC), under the sponsorship of the Ministry of International Trade and Industry (MITI) of Japan. As a part of the study, it has been investigated to construct an accurate analytical model of reactor buildings for a seismic response analysis, which can reasonably represent dynamic characteristics of the building. In Japan, vibration models of reactor buildings for horizontal ground motion have been studied and examined through many simulation analyses for forced vibration tests and earthquake observations of actual buildings. And now it is possible to establish a reliable horizontal vibration model on the basis of multi-lumped mass and spring model. However, vertical vibration models have not been so much studied as horizontal models, due to less observed data for vertical motions. In this paper, the vertical seismic response models of a BWR-type reactor building including soil-structure interaction effect are numerically studied, by comparing the dynamic characteristics of (1) three dimensional finite element model, (2) multi-stick lumped mass model with a flexible base-mat, (3) multi-stick lumped mass model with a rigid base-mat and (4) single-stick lumped mass model. In particular, the BWR-type reactor building has the long span truss roof which is considered to be one of the critical members to vertical excitation. The modelings of the roof trusses are also studied

  17. Evaluation of a mass-balance approach to determine consumptive water use in northeastern Illinois

    Science.gov (United States)

    Mills, Patrick C.; Duncker, James J.; Over, Thomas M.; Marian Domanski,; ,; Engel, Frank

    2014-01-01

    A principal component of evaluating and managing water use is consumptive use. This is the portion of water withdrawn for a particular use, such as residential, which is evaporated, transpired, incorporated into products or crops, consumed by humans or livestock, or otherwise removed from the immediate water environment. The amount of consumptive use may be estimated by a water (mass)-balance approach; however, because of the difficulty of obtaining necessary data, its application typically is restricted to the facility scale. The general governing mass-balance equation is: Consumptive use = Water supplied - Return flows.

  18. MHD free convection and mass transfer flow over an infinite vertical porous plate with viscous dissipation

    Directory of Open Access Journals (Sweden)

    Poonia Hemant

    2010-01-01

    Full Text Available An unsteady, two-dimensional, hydromagnetic, laminar mixed convective boundary layer flow of an incompressible and electrically-conducting fluid along an infinite vertical plate embedded in the porous medium with heat and mass transfer is analyzed, by taking into account the effect of viscous dissipation. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and graphical results for velocity, temperature and concentration profiles within the boundary layer are discussed. The results show that increased cooling (Gr > 0 of the plate and the Eckert number leads to a rise in the velocity profile. Also, an increase in Eckert number leads to an increase in the temperature. Effects of Sc on velocity and concentration are discussed and shown graphically.

  19. Vertical distribution of microphysical properties of Arctic springtime low-level mixed-phase clouds over the Greenland and Norwegian seas

    Science.gov (United States)

    Mioche, Guillaume; Jourdan, Olivier; Delanoë, Julien; Gourbeyre, Christophe; Febvre, Guy; Dupuy, Régis; Monier, Marie; Szczap, Frédéric; Schwarzenboeck, Alfons; Gayet, Jean-François

    2017-10-01

    This study aims to characterize the microphysical and optical properties of ice crystals and supercooled liquid droplets within low-level Arctic mixed-phase clouds (MPCs). We compiled and analyzed cloud in situ measurements from four airborne spring campaigns (representing 18 flights and 71 vertical profiles in MPCs) over the Greenland and Norwegian seas mainly in the vicinity of the Svalbard archipelago. Cloud phase discrimination and representative vertical profiles of the number, size, mass and shape of ice crystals and liquid droplets are established. The results show that the liquid phase dominates the upper part of the MPCs. High concentrations (120 cm-3 on average) of small droplets (mean values of 15 µm), with an averaged liquid water content (LWC) of 0.2 g m-3 are measured at cloud top. The ice phase dominates the microphysical properties in the lower part of the cloud and beneath it in the precipitation region (mean values of 100 µm, 3 L-1 and 0.025 g m-3 for diameter, particle concentration and ice water content (IWC), respectively). The analysis of the ice crystal morphology shows that the majority of ice particles are irregularly shaped or rimed particles; the prevailing regular habits found are stellars and plates. We hypothesize that riming and diffusional growth processes, including the Wegener-Bergeron-Findeisen (WBF) mechanism, are the main growth mechanisms involved in the observed MPCs. The impact of larger-scale meteorological conditions on the vertical profiles of MPC properties was also investigated. Large values of LWC and high concentration of smaller droplets are possibly linked to polluted situations and air mass origins from the south, which can lead to very low values of ice crystal size and IWC. On the contrary, clean situations with low temperatures exhibit larger values of ice crystal size and IWC. Several parameterizations relevant for remote sensing or modeling studies are also determined, such as IWC (and LWC) - extinction

  20. Vertical distribution of microphysical properties of Arctic springtime low-level mixed-phase clouds over the Greenland and Norwegian seas

    Directory of Open Access Journals (Sweden)

    G. Mioche

    2017-10-01

    Full Text Available This study aims to characterize the microphysical and optical properties of ice crystals and supercooled liquid droplets within low-level Arctic mixed-phase clouds (MPCs. We compiled and analyzed cloud in situ measurements from four airborne spring campaigns (representing 18 flights and 71 vertical profiles in MPCs over the Greenland and Norwegian seas mainly in the vicinity of the Svalbard archipelago. Cloud phase discrimination and representative vertical profiles of the number, size, mass and shape of ice crystals and liquid droplets are established. The results show that the liquid phase dominates the upper part of the MPCs. High concentrations (120 cm−3 on average of small droplets (mean values of 15 µm, with an averaged liquid water content (LWC of 0.2 g m−3 are measured at cloud top. The ice phase dominates the microphysical properties in the lower part of the cloud and beneath it in the precipitation region (mean values of 100 µm, 3 L−1 and 0.025 g m−3 for diameter, particle concentration and ice water content (IWC, respectively. The analysis of the ice crystal morphology shows that the majority of ice particles are irregularly shaped or rimed particles; the prevailing regular habits found are stellars and plates. We hypothesize that riming and diffusional growth processes, including the Wegener–Bergeron–Findeisen (WBF mechanism, are the main growth mechanisms involved in the observed MPCs. The impact of larger-scale meteorological conditions on the vertical profiles of MPC properties was also investigated. Large values of LWC and high concentration of smaller droplets are possibly linked to polluted situations and air mass origins from the south, which can lead to very low values of ice crystal size and IWC. On the contrary, clean situations with low temperatures exhibit larger values of ice crystal size and IWC. Several parameterizations relevant for remote sensing or modeling studies are also determined

  1. On line determination of deuterium in hydrogen water exchange reaction by mass spectrometry. IRP-10

    International Nuclear Information System (INIS)

    Sharma, J.D.; Alphonse, K.P.; Mishra, Sushama; Prabhu, S.A.; Mohan, Sadhana; Tangri, V.K.

    2007-01-01

    The Deuterium (D)/Hydrogen (H) analysis at low Concentration is generally carried out by Mass Spectrometry. Mass Spectrometer is specially designed for the measurement of Mass 2 and 3 ratio. The Deuterium analysis of water and hydrogen in concentration range of a few ppm to about 1% plays an important role in the Heavy Water Production Plants. For the enrichment of the Deuterium concentration in H 2 O by H 2 - H 2 O exchange a catalyst is essential as reaction is relatively slow. Heavy Water Division has developed in house Platinum based catalyst for the isotopic exchange of Hydrogen and Water

  2. Measurement of the vertical infiltration parameters and water redistribution in LRd and LEa soils by gamma-ray transmission technique

    International Nuclear Information System (INIS)

    Souza, A.D.B. de; Saito, H.; Appoloni, C.R.; Coimbra, M.M.; Parreira, P.S.

    1991-01-01

    The properties of soil water diffusivity and soil hydraulic conductivity of two horizons (0-20 cm and 20-40 cm) from Latossolo Roxo distrofico (LRd) and Latossolo Vermelho escuro (LEa) soil samples, have been measured in laboratory through the vertical infiltration and redistribution of water in soil columns. The moisture profile as a function of time for each position in the soil column were obtained with the gamma-ray transmission technique, using a sup(241)Am gamma-ray source, a Na (I) T1 scintillation detector and gamma spectrometry standard electronic. (author)

  3. Chemical reaction in MHD flow past a vertical plate with mass ...

    African Journals Online (AJOL)

    flow in a vertical double passage channel using Robin boundary conditions. ... the diffusion of a chemically reactive species in a laminar boundary layer flow. ...... hydrodynamic flow past a flat plate will Hall effects, Journal of the Physical.

  4. An Experimental Study of Pressure Gradients for Flow of Boiling Water in Vertical Round Ducts (Part 4)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, Gunnar; Bode, Manfred

    1962-07-01

    The present report contains the experimental results from the fourth and last phase of an investigation concerning frictional pressure gradients for flow of boiling water in vertical channels. The test section for this phase consisted of an electric heated stainless steel tube of 3120 mm length and 12.99 mm inner diameter. Data were obtained for pressures between 6 and 10 ata, steam qualities between 0 and 0.70, mass flow rates between 0.04 and 0.164 kg/sec. Only one value of 65 W/cm{sup 2} were used for the surface heat flux. The results are in excellent agreement with our earlier data for flow in 9. 93, 7. 76 and 3. 94 mm inner diameter ducts previously presented, and our conclusions given in those reports have been verified. On the basis of the measured pressure gradients, the following empirical equation has been established for engineering use. {chi}{sup 2} = 1 + 2600*(x/p){sup 0.96} This equation correlates our data within an accuracy of {+-} 15 per cent. Considering the data from all four ducts investigated, we have found that the following equation correlates the data with a discrepancy less than {+-} 20 per cent: {chi}{sup 2} = 1 + 2500*(x/p){sup 0.96} and we conclude that for engineering purposes, the effect of diameter is of no significance.

  5. Combined Structural Optimization and Aeroelastic Analysis of a Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Roscher, Björn; Ferreira, Carlos Simao; Bernhammer, Lars O.

    2015-01-01

    Floating offshore wind energy poses challenges on the turbine design. A possible solution is vertical axis wind turbines, which are possibly easier to scale-up and require less components (lower maintenance) and a smaller floating structure than horizontal axis wind turbines. This paper presents...... a structural optimization and aeroelastic analysis of an optimized Troposkein vertical axis wind turbine to minimize the relation between the rotor mass and the swept area. The aeroelastic behavior of the different designs has been analyzed using a modified version of the HAWC2 code with the Actuator Cylinder...... model to compute the aerodynamics of the vertical axis wind turbine. The combined shape and topology optimization of a vertical axis wind turbine show a minimum mass to area ratio of 1.82 kg/m2 for blades with varying blade sections from a NACA 0040 at the attachment points to a NACA 0015...

  6. Experimental investigation of heat transfer for supercritical pressure water flowing in vertical annular channels

    International Nuclear Information System (INIS)

    Gang Wu; Bi Qincheng; Yang Zhendong; Wang Han; Zhu Xiaojing; Hao Hou; Leung, L.K.H.

    2011-01-01

    Highlights: → Two annular test sections were constructed with annular gaps of 4 and 6 mm. → Two heat transfer regions have been observed: normal and deteriorated heat transfer. → The spacer enhances the heat transfer at downstream locations. → The Jackson correlation agrees quite closely with the experimental data. - Abstract: An experiment has recently been completed at Xi'an Jiaotong University (XJTU) to obtain wall-temperature measurements at supercritical pressures with upward flow of water inside vertical annuli. Two annular test sections were constructed with annular gaps of 4 and 6 mm, respectively, and an internal heater of 8 mm outer diameter. Experimental-parameter ranges covered pressures of 23-28 MPa, mass fluxes of 350-1000 kg/m 2 /s, heat fluxes of 200-1000 kW/m 2 , and bulk inlet temperatures up to 400 deg. C. Depending on the flow conditions and heat fluxes, two distinctive heat transfer regimes, referring to as the normal heat transfer and deteriorated heat transfer, have been observed. At similar flow conditions, the heat transfer coefficients for the 6 mm gap annular channel are larger than those for the 4 mm gap annular channel. A strong effect of spiral spacer on heat transfer has been observed with a drastic reduction in wall temperature at locations downstream of the device in the annuli. Two tube-data-based correlations have been assessed against the experimental heat transfer results. The Jackson correlation agrees with the experimental trends and overpredicts slightly the heat transfer coefficients. The Dittus-Boelter correlation is applicable only for the normal heat transfer region but not for the deteriorated heat transfer region.

  7. A consistent structure of phytoplankton communities across the warm-cold regions of the water mass on a meridional transect in the East/Japan Sea

    Science.gov (United States)

    Kwak, Jung Hyun; Han, Eunah; Lee, Sang Heon; Park, Hyun Je; Kim, Kyung-Ryul; Kang, Chang-Keun

    2017-09-01

    Three cruises were undertaken along a meridional transect in the East/Japan Sea (EJS) in spring (May 2007), summer (July 2009), and fall (October 2012) to determine the geographic variations in phytoplankton biomass and community composition. This study revealed a gradient of surface temperature and a fluctuation of hydrographic conditions along the transect. Although a subpolar front (SPF) formed between the warm- and cold-water masses (37-40°N), no significant differences in phytoplankton biomass and community composition were detected between the southern and northern parts of the EJS. These results disprove our initial hypothesis that different water masses may contain differently structured phytoplankton communities. In the present study, isothermal layers (≤ 12 °C) fluctuated over a depth of 50 m in both warm- and cold-water masses, depending on the SPF. In contrast, the nitracline (i.e. 2.5 μM nitrate isopleth) depth was recorded within a limited range of 20-40 m in spring, 30-50 m in summer, and 40-60 m in fall. The chlorophyll a concentrations at the subsurface chlorophyll maxima (SCM) were significantly higher in spring and summer (356 ± 233 and 270 ± 182 ng L-1, respectively) than in fall (117 ± 89 ng L-1). The relative contributions of individual phytoplankton groups to the depth-integrated chlorophyll a concentration conformed to the composition of the phytoplankton community in the SCM layer, showing a dominance of diatoms (58 ± 19% in spring, 48 ± 11% in summer, and 30 ± 20% in fall). Canonical correspondence analysis revealed that the geographic structures of phytoplankton communities were strongly associated with the vertical structures of water temperature and nutrient concentration in the water column rather than with horizontal gradients of hydrographic conditions. Finally, our findings suggest that water column stability and light-nutrient availability in the euphotic zone play a key role in determining geographical consistency of

  8. RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Matthew [Department of Physics, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7 (Canada); Thompson, Christopher [Canadian Institute for Theoretical Astrophysics, 60 St. George St., Toronto, ON M5S 3H8 (Canada)

    2015-11-10

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B{sub r} ∼ (10{sup −4}–10{sup −2})(r/ AU){sup −2} G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10{sup −8} M{sub ⊙} yr{sup −1} are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.

  9. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.

    1999-01-01

    - The flow structure in vertical mantle heat exchangers was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the mantle were measured using a particle Image Velocimetry (PIV) system. A CFD simulation model of vertical mantle heat...... exchangers was also developed for detailed evaluation of the heat flux distribution over the mantle surface. Both the experimental and simulation results indicate that distribution of the flow around the mantle gap is governed by buoyancy driven recirculation in the mantle. The operation of the mantle...

  10. Experimental investigation of flooding in air-water counter-current flow with a vertical adiabatic multi-rod bundle

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Kim, Hho Jung; Cha, Jong Hee; Cho, Sung Jae; Chun, Moon Hyun

    1991-01-01

    The process of flooding phenomenon in a vertical adiabatic 3 x 3 tube bundle flow channel has been studied experimentally. A series of tests was performed, using three types of tube bundle differing only in the number of spacer grids attached, to investigate the effects of spacer grids and multi-flow channel interactions on the air-water counter-current flow limitations. Experimentally determined flooding points at various water film Reynolds numbers for three different test sections are presented in graphical form and compared with entrainment criterion for co-current flow and instability criteria. In addition, empirical flooding correlations of the Kutateladze type are obtained for each type of test section using liquid penetration data

  11. Gateways and Water Mass Mixing in the Late Cretaceous North Atlantic

    Science.gov (United States)

    Asgharian Rostami, M.; Martin, E. E.; MacLeod, K. G.; Poulsen, C. J.; Vande Guchte, A.; Haynes, S.

    2017-12-01

    Regions of intermediate/deep water formation and water-mass mixing in the North Atlantic are poorly defined for the Late Cretaceous, a time of gateway evolution and cooler conditions following the Mid Cretaceous greenhouse. Improved proxy data combined with modeling efforts are required to effectively evaluate the relationship between CO2, paleogeography, and circulation during this cooler interval. We analyzed and compiled latest Cretaceous (79 - 66 Ma) ɛNd and δ13C records from seven bathyal (paleodepths 0.2 - 2 km) and eight abyssal (paleodepths > 2 km) sites in the North Atlantic. Data suggest local downwelling of Northern Component Water (NCW; ɛNd -9.5 and δ13C 1.7 ‰) is the primary source of intermediate/deep water masses in the basin. As this water flows southward and ages, δ13C values decrease and ɛNd values increase; however, additional chemical changes at several sites require mixing with contributions from several additional water masses. Lower ɛNd ( -10) and higher δ13C ( 1.9 ‰) values in the deep NW part of the basin indicate proximal contributions from a region draining old continental crust, potentially representing deep convection following opening of the Labrador Sea. In the deep NE Iberian Basin, higher ɛNd ( -7) and lower δ13C ( 0.8 ‰) during the Campanian suggest mixing with a Tethyan source (ɛNd -7 and δ13C 0.1 ‰) whose importance decreased with restriction of that gateway in the Maastrichtian. Data from bathyal sites suggest additional mixing. In the SE Cape Verde region, observed ɛNd variations from -10 in the Campanian to -13 and -12 in the early and late Maastrichtian, respectively, may record variations in output rates of Tethyan and/or NCW sources and Demerara Bottom Water (ɛNd -16), a proposed warm saline intermediate water mass formed in shallow, equatorial seas. Pacific inflow through the Caribbean gateway impacts intermediate sites at Blake Nose (ɛNd values -8), particularly the shallowest site during the late

  12. Vertical patterns of ichthyoplankton at the interface between a temperate estuary and adjacent coastal waters: Seasonal relation to diel and tidal cycles

    Science.gov (United States)

    Primo, Ana Lígia; Azeiteiro, Ulisses M.; Marques, Sónia C.; Ré, Pedro; Pardal, Miguel A.

    2012-07-01

    Vertical distribution and migration pattern of ichthyoplankton assemblage in the Mondego estuary were investigated in relation to diel and tidal cycle. Summer and winter communities were sampled, at surface and bottom, over a diel cycle during spring and neap tides at a fixed station at the mouth of the estuary. Summer presented higher larvae density mainly of Pomatoschistus spp., Gobius niger and Parablennius pilicornis. Main species in winter assemblages were Pomatoschistus spp. and Sardina pilchardus. There were no differences between depth stratums across diel or tide cycle. Nevertheless, main species larval densities showed significant periodic variation associated with tide (M2) and diel (K1) cycles presenting generally, higher density at night and around low tide. Conversely, vertical patterns observed could not be related with diel or tidal cycle. Tough, main species presented some extent of vertical migration. Vertical patterns observed appear to be related to seasonal stratification and river flow, increasing amplitude during periods of less stratification and lower water currents. Present study provides a better understanding of ichthyoplankton vertical movement patterns and of small scale dynamics at the interface of two coastal European systems.

  13. Thermogravimetric analysis-mass spectrometry (TG-MS) of selected Chinese palygorskites-Implications for structural water

    International Nuclear Information System (INIS)

    Cheng, Hongfei; Yang, Jing; Frost, Ray L.

    2011-01-01

    Four Chinese palygorskites clay minerals have been analysed by thermogravimetric analysis-mass spectrometry and X-ray diffraction. The structural water of the palygorskite dehydrates in the temperature range of 30-625 o C, as shown in the thermogravimetric analysis and mass spectrometric curves. The mass spectrometric curves combined the differential thermogravimetric curves enable the detailed determination of the main dehydration steps. The results show that the dehydration occurs in four main steps: (a) elimination of interparticle water and partial zeolitic water at below 110 o C, (b) release of the rest part of zeolitic water from the structural layer of palygorskite at about 160 o C, (c) dehydration of one part of bound water at about 340 o C and (d) loss of the rest part of bound water at around 450 o C. The temperatures of dehydration of the palygorskite minerals are found to be influenced by the geological environment and the amount and kind of impurities. The evolved gases in the decomposition process are various because of the different amounts and kind of impurities. It is also found that decarbonization takes place at around 600 o C due to the decomposition of calcite and dolomite impurities in these minerals. It is evident by the mass spectrometric curve that the water is given out from the samples and carbon dioxide originates from the impurity calcite and dolomite.

  14. Simple suggestions for including vertical physics in oil spill models

    International Nuclear Information System (INIS)

    D'Asaro, Eric; University of Washington, Seatle, WA

    2001-01-01

    Current models of oil spills include no vertical physics. They neglect the effect of vertical water motions on the transport and concentration of floating oil. Some simple ways to introduce vertical physics are suggested here. The major suggestion is to routinely measure the density stratification of the upper ocean during oil spills in order to develop a database on the effect of stratification. (Author)

  15. CFD analysis using two-equation turbulence models for the vertical upward flow of water in a heated tube at supercritical pressure(I)

    International Nuclear Information System (INIS)

    Kim, Y. I.; Kim, S. H.; Bae, Y. Y.; Cho, B. H.

    2003-12-01

    Numerical simulation was performed referring to the Yamagata's experiment on the heat transfer in a vertical tube where water flows upward at supercritical pressure. Numerical simulation was performed for the conditions of tube diameter of 7.5 mm, heated tube length of 2 m, operation pressure at 245 bar, bulk temperatures from 300 to 420 .deg. C, heat fluxes from 465 to 930 kW/m 2 and mass velocity 1,260 kg/m 2 s, by Fluent code and compared with the Yamagata's experiments. At the heat flux 465 kW/m 2 , the maximum difference between calculated results and Yamagata's experiment were less than 20% and the difference between the results using different turbulence models was not so significant. But at the heat flux, 930 kW/m 2 , the difference between the calculations and Yamagata's experiment increased to about 25%, and the difference between the results using different turbulence models increased significantly. The case with RNG κ-ε and enhanced wall treatment predicted the Yamagata's experiment best

  16. Wave energy conversion utilizing vertical motion of water in the array of water chambers aligned in the direction of wave propagation

    Directory of Open Access Journals (Sweden)

    Kesayoshi Hadano

    2017-05-01

    Full Text Available As a new technical approach, wave energy converter by using vertical motion of water in the multiple water chambers were developed to realize actual wave power generation as eco-environmental renewable energy. And practical use of wave energy converter was actually to require the following conditions: (1 setting up of the relevant device and its application to wave power generation in case that severe wave loading is avoided; (2 workability in installation and maintenance operations; (3 high energy conversion potential; and (4 low cost. In this system, neither the wall(s of the chambers nor the energy conversion device(s are exposed to the impulsive load due to water wave. Also since this system is profitable when set along the jetty or along a long floating body, installation and maintenance are done without difficulty and the cost is reduced. In this paper, we describe the system which consists of a float, a shaft connected with another shaft, a rack and pinion arrangement, a ratchet mechanism, and rotary type generator(s. Then, we present the dynamics model for evaluating the output electric power, and the results of numerical calculation including the effect of the phase shift of up/down motion of the water in the array of water chambers aligned along the direction of wave propagation.

  17. A Heat Transfer Correlation in a Vertical Upward Flow of CO2 at Supercritical Pressures

    International Nuclear Information System (INIS)

    Kim, Hyung Rae; Bae, Yoon Yeong; Song, Jin Ho; Kim, Hwan Yeol

    2006-01-01

    Heat transfer data has been collected in the heat transfer test loop, named SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), in KAERI. The facility primarily aims at the generation of heat transfer data in the flow conditions and geometries relevant to SCWR (SuperCritical Water-cooled Reactor). The produced data will aid the thermohydraulic design of a reactor core. The loop uses carbon dioxide, and later the results will be scaled to the water flows. The heat transfer data has been collected for a vertical upward flow in a circular tube with varying mass fluxes, heat fluxes, and operating pressures. The results are compared with the existing correlations and a new correlation is proposed by fine-tuning the one of the existing correlations

  18. Nutrient characteristics of the water masses and their seasonal variability in the eastern equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Shetye, S.; Maya, M.V.; Mangala, K.R.; PrasannaKumar, S.

    . (Position of Fig 1.) 3. Results and Discussion 3.1. Water masses in the area of observation You and Tomczak (1993) has reviewed the water masses in the Indian Ocean identified by the earlier workers ( Sverdrup et al. 1942; Mamalev, 1975; and Shcherbinin... at 200 m at 5° S in the meridional region of our observations and flows down to 800 m to the north and termed as Indian central water (ICW) (You and Tomczak, 1993). (position of Fig.2) 3.2. Seasonal variability of water masses The seasonal...

  19. Experimental and Numerical Studies of Controlling Thermal Cracks in Mass Concrete Foundation by Circulating Water

    Directory of Open Access Journals (Sweden)

    Wenchao Liu

    2016-04-01

    Full Text Available This paper summarizes an engineering experience of solving the problem of thermal cracking in mass concrete by using a large project, Zhongguancun No.1 (Beijing, China, as an example. A new method is presented for controlling temperature cracks in the mass concrete of a foundation. The method involves controlled cycles of water circulating between the surface of mass concrete foundation and the atmospheric environment. The temperature gradient between the surface and the core of the mass concrete is controlled at a relatively stable state. Water collected from the well-points used for dewatering and from rainfall is used as the source for circulating water. Mass concrete of a foundation slab is experimentally investigated through field temperature monitoring. Numerical analyses are performed by developing a finite element model of the foundation with and without water circulation. The calculation parameters are proposed based on the experiment, and finite element analysis software MIDAS/CIVIL is used to calculate the 3D temperature field of the mass concrete during the entire process of heat of hydration. The numerical results are in good agreement with the measured results. The proposed method provides an alternative practical basis for preventing thermal cracks in mass concrete.

  20. Minimalistic models of the vertical distribution of roots under stochastic hydrological forcing

    Science.gov (United States)

    Laio, Francesco

    2014-05-01

    The assessment of the vertical root profile can be useful for multiple purposes: the partition of water fluxes between evaporation and transpiration, the evaluation of root soil reinforcement for bioengineering applications, the influence of roots on biogeochemical and microbial processes in the soil, etc. In water-controlled ecosystems the shape of the root profile is mainly determined by the soil moisture availability at different depths. The long term soil water balance in the root zone can be assessed by modeling the stochastic incoming and outgoing water fluxes, influenced by the stochastic rainfall pulses and/or by the water table fluctuations. Through an ecohydrological analysis one obtains that in water-controlled ecosystems the vertical root distribution is a decreasing function with depth, whose parameters depend on pedologic and climatic factors. The model can be extended to suitably account for the influence of the water table fluctuations, when the water table is shallow enough to exert an influence on root development, in which case the vertical root distribution tends to assume a non-monotonic form. In order to evaluate the validity of the ecohydrological estimation of the root profile we have tested it on a case study in the north of Tuscany (Italy). We have analyzed data from 17 landslide-prone sites: in each of these sites we have assessed the pedologic and climatic descriptors necessary to apply the model, and we have measured the mean rooting depth. The results show a quite good matching between observed and modeled mean root depths. The merit of this minimalistic approach to the modeling of the vertical root distribution relies on the fact that it allows a quantitative estimation of the main features of the vertical root distribution without resorting to time- and money-demanding measuring surveys.

  1. New data on two-phase water-air hydrodynamics in vertical upward and downward tubes

    Energy Technology Data Exchange (ETDEWEB)

    Lau, V [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada); Rezkallah, K S [Saskatchewan Univ., Saskatoon (Canada). Mechanical Engineering Dept.

    1996-12-31

    The three key parameters involved in the analysis of the hydrodynamic characteristics of a two-phase system (i.e. pressure drop, void fraction, and flow pattern associated with the flow) are taken in vertical upward and downward tubes, using water-air mixture at atmospheric pressure. The acquired data set covers a wide range of liquid and gas flow rates, as well as void fractions. Using the acquired data set, two sets of flow pattern maps, for both upward and downward flows, are developed in the present study. Furthermore, a set of correlations for predicting the frictional pressure drop in both upward and downward flow were also developed. (author). 16 refs., 13 figs.

  2. On the Origin of Microheterogeneity : Mass Spectrometric Studies of Acetonitrile-Water and Dimethyl Sulfoxide-Water Binary Mixtures (Part 2)

    NARCIS (Netherlands)

    Shin, Dong Nam; Wijnen, Jan W.; Engberts, Jan B.F.N.; Wakisaka, Akihiro

    2002-01-01

    The microscopic structures of acetonitrile-water and DMSO-water binary mixed solvents and their influence on the solvation for solutes (some alcohols and phenol) have been studied on the basis of the cluster structures observed through a specially designed mass spectrometer. In acetonitrile-water

  3. Air-water two-phase flow through a pipe junction

    International Nuclear Information System (INIS)

    Suu, Tetsuo

    1991-01-01

    The distribution of the local void fraction across the section of the conduit was studied experimentally in air-water two-phase flow flowing through a pipe junction with the branching angle of 90deg and the area ratio of unity. As in the previous report, the main conduit of the junction was set up vertically and upward air-water bubbly and slug flows were arranged in the main upstream section. If the flow regime, the quality and the ratio of lateral mass flow discharge of water to total mass flow discharge of water are the same, the larger the Reynolds number is, the more violent the variety of the local void fraction distribution adjacent to the branching part in the lateral conduit is. However, the variety in the main downstream section is scarcely influenced by the Reynolds number. (author)

  4. Detailed evaluation of the natural circulation mass flow rate of water propelled by using an air injection

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Ha, Kwang-Soon; Kim, Jae-Cheol; Hong, Seong-Wan; Kim, Sang-Baik

    2008-01-01

    One-dimensional (1D) air-water two-phase natural circulation flow in the thermohydraulic evaluation of reactor cooling mechanism by external self-induced flow - one-dimensional' (THERMES-1D) experiment has been verified and evaluated by using the RELAP5/MOD3 computer code. Experimental results on the 1D natural circulation mass flow rate of water propelled by using an air injection have been evaluated in detail. The RELAP5 results have shown that an increase in the air injection rate to 50% of the total heat flux leads to an increase in the water circulation mass flow rate. However, an increase in the air injection rate from 50 to 100% does not affect the water circulation mass flow rate, because of the inlet area condition. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it has no influence on the local pressure. An increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not have an influence on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. (author)

  5. Influence of the Pearl River estuary and vertical mixing in Victoria Harbor on water quality in relation to eutrophication impacts in Hong Kong waters.

    Science.gov (United States)

    Yin, Kedong; Harrison, Paul J

    2007-06-01

    This study presents water quality parameters such as nutrients, phytoplankton biomass and dissolved oxygen based on 11 years of water quality data in Victoria Harbor and examined how the Pearl River estuary discharge in summer and year round sewage discharge influenced these parameters. Nutrients in Victoria Harbor were strongly influenced by both the Pearl River and sewage effluent, as indicated by the high NO(3) inputs from the Pearl River in summer and higher NH(4) and PO(4) in Victoria Harbor than both its sides. N:P ratios were low in the dry season, but increased to >16:1 in the wet season, suggesting that P is potentially the most limiting nutrient in this area during the critical period in the summer. Although there were generally high nutrients, the phytoplankton biomass was not as high as one would expect in Victoria Harbor. In fact, there were high concentrations of chl near the bottom well below the photic zone. Salinity near the bottom was lower in Victoria Harbor than at the two entrances to Victoria Harbor, suggesting strong vertical mixing within Victoria Harbor. Therefore, strong vertical mixing and horizontal advection appear to play an important role in significantly reducing eutrophication impacts in Victoria Harbor. Consequently, dissolved oxygen near the bottom was low in summer, but only occasionally dipped to 2 mgL(-1) despite the high organic loading from sewage effluent.

  6. Transmission of vertical stress in a real soil profile. Part III

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per

    2011-01-01

    The transmission of stress in soils is extremely sensitive to changes in water content. According to the elasticity theory, for a given load applied to a given soil, an increase in soil water content yields a higher concentration of stresses under the centre of the load and a deeper propagation...... of stresses. We quantified the effect of soil water content of topsoil/subsoil layers (wet/wet, wet/dry, and dry/dry) on stress transmission. 3D measurements of vertical stresses under a towed wheel (800/50R34) were performed in situ in a Stagnic Luvisol. The tyre was loaded with 60 kN, and we used...... were measured in separate tests. Increase of water content in the topsoil by 114% increased the contact area by 149%, decreased the vertical stresses at the tyre–soil interface by 50%, and decreased the maximum vertical stress at 0.3 and 0.6 m depth by 46 and 63%, respectively. Stress attenuation...

  7. MHD mixed convection in a vertical annulus filled with Al2O3–water nanofluid considering nanoparticle migration

    International Nuclear Information System (INIS)

    Malvandi, A.; Safaei, M.R.; Kaffash, M.H.; Ganji, D.D.

    2015-01-01

    In the current study, an MHD mixed convection of alumina/water nanofluid inside a vertical annular pipe is investigated theoretically. The model used for the nanofluid mixture involves Brownian motion and thermophoretic diffusivities in order to take into account the effects of nanoparticle migration. Since the thermophoresis is the main mechanism of the nanoparticle migration, different temperature gradients have been imposed using the asymmetric heating. Considering hydrodynamically and thermally fully developed flow, the governing equations have been reduced to two-point ordinary boundary value differential equations and they have been solved numerically. It is revealed that the imposed thermal asymmetry would change the direction of nanoparticle migration and distorts the velocity, temperature and nanoparticle concentration profiles. Moreover, it is shown that the advantage of nanofluids in heat transfer enhancement is reduced in the presence of a magnetic field. - Highlights: • MHD mixed convection of alumina/water nanofluid inside a vertical annulus. • The effects of nanoparticle migration on rheological and thermophysical characteristics. • The effects of asymmetric heating on nanoparticle migration. • The effects of asymmetric heating on the heat transfer enhancement. • Inclusion of nanoparticles in presence of a magnetic field has a negative effect on performance

  8. Measurements of the Effects of Spacers on the Burnout Conditions for Flow of Boiling Water in a Vertical Annulus and a Vertical 7-Rod Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M

    1965-03-15

    An analysis for predicting the burnout conditions for flow of boiling water in vertical round ducts is presented. The analysis which is based on the Vanderwater flow model predicts that the burnout conditions are independent of the inlet subcooling and the heated length, and depends only on the local values at the burnout position of pressure, heat flux, steam quality and, mass velocity and the duct diameter. The results of an experimental investigation covering 811 burnout measurements in the pressure range from 41 to 101 kg/cm{sup 2} is presented. These results together with 488 of our earlier burnout measurements at the pressures of 2, 7, 10, 20 and 30 kg/cm{sup 2} were used to determine two constants in the analytical results. The final correlation predicted the burnout heat fluxes of the 1299 measurements within 8 per cent and with an RMS error of 5.3 per cent. The measurements covered the following ranges of variables Diameter d, 3.93-24.95 mm; Heated length L 400-3,500 mm; L/d-ratio L/d 40-890; Pressure p, 2.7-101 kg/cm{sup 2}; Inlet sub-cooling {delta}t{sub sub} 30-240 deg C; Mass velocity G 120-5450 kg/m{sup 3}/s; Heat flux q/A 35-686 W/cm{sup 3}; Burnout steam quality X{sub BO} 0-1.00. The Columbia data and the Winfrith data were also analysed in terms of the measured and predicted burnout heat fluxes and enthalpies, and it was found, that a very good agreement existed between the present results and the Columbia and the Winfrith data. The Columbia data were on the average 3 per cent lower comparing the measured and predicted burnout heat fluxes. The scatter of the data was within + 10 and - 15 per cent and the RMS error was 8.4 per cent. The Winfrith data were on the average 6 per cent higher than the predicted heat fluxes and the deviations of the measured heat fluxes were within + 25 and - 15 per cent of the predictions. The RMS error was 10.8 per cent.

  9. Similar mid-depth Atlantic water mass provenance during the Last Glacial Maximum and Heinrich Stadial 1

    Science.gov (United States)

    Howe, Jacob N. W.; Huang, Kuo-Fang; Oppo, Delia W.; Chiessi, Cristiano M.; Mulitza, Stefan; Blusztajn, Jurek; Piotrowski, Alexander M.

    2018-05-01

    The delivery of freshwater to the North Atlantic during Heinrich Stadial 1 (HS1) is thought to have fundamentally altered the operation of Atlantic meridional overturning circulation (AMOC). Although benthic foraminiferal carbon isotope records from the mid-depth Atlantic show a pronounced excursion to lower values during HS1, whether these shifts correspond to changes in water mass proportions, advection, or shifts in the carbon cycle remains unclear. Here we present new deglacial records of authigenic neodymium isotopes - a water mass tracer that is independent of the carbon cycle - from two cores in the mid-depth South Atlantic. We find no change in neodymium isotopic composition, and thus water mass proportions, between the Last Glacial Maximum (LGM) and HS1, despite large decreases in carbon isotope values at the onset of HS1 in the same cores. We suggest that the excursions of carbon isotopes to lower values were likely caused by the accumulation of respired organic matter due to slow overturning circulation, rather than to increased southern-sourced water, as typically assumed. The finding that there was little change in water mass provenance in the mid-depth South Atlantic between the LGM and HS1, despite decreased overturning, suggests that the rate of production of mid-depth southern-sourced water mass decreased in concert with decreased production of northern-sourced intermediate water at the onset of HS1. Consequently, we propose that even drastic changes in the strength of AMOC need not cause a significant change in South Atlantic mid-depth water mass proportions.

  10. Evidence of horizontal and vertical transport of water in the Southern Hemisphere tropical tropopause layer (TTL from high-resolution balloon observations

    Directory of Open Access Journals (Sweden)

    S. M. Khaykin

    2016-09-01

    Full Text Available High-resolution in situ balloon measurements of water vapour, aerosol, methane and temperature in the upper tropical tropopause layer (TTL and lower stratosphere are used to evaluate the processes affecting the stratospheric water budget: horizontal transport (in-mixing and hydration by cross-tropopause overshooting updrafts. The obtained in situ evidence of these phenomena are analysed using satellite observations by Aura MLS (Microwave Limb Sounder and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation together with trajectory and transport modelling performed using CLaMS (Chemical Lagrangian Model of the Stratosphere and HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory model. Balloon soundings were conducted during March 2012 in Bauru, Brazil (22.3° S in the frame of the TRO-Pico campaign for studying the impact of convective overshooting on the stratospheric water budget. The balloon payloads included two stratospheric hygrometers: FLASH-B (Fluorescence Lyman-Alpha Stratospheric Hygrometer for Balloon and Pico-SDLA instrument as well as COBALD (Compact Optical Backscatter Aerosol Detector sondes, complemented by Vaisala RS92 radiosondes. Water vapour vertical profiles obtained independently by the two stratospheric hygrometers are in excellent agreement, ensuring credibility of the vertical structures observed. A signature of in-mixing is inferred from a series of vertical profiles, showing coincident enhancements in water vapour (of up to 0.5 ppmv and aerosol at the 425 K (18.5 km level. Trajectory analysis unambiguously links these features to intrusions from the Southern Hemisphere extratropical stratosphere, containing more water and aerosol, as demonstrated by MLS and CALIPSO global observations. The in-mixing is successfully reproduced by CLaMS simulations, showing a relatively moist filament extending to 20° S. A signature of local cross-tropopause transport of water is observed in

  11. Sequential estimation of surface water mass changes from daily satellite gravimetry data

    Science.gov (United States)

    Ramillien, G. L.; Frappart, F.; Gratton, S.; Vasseur, X.

    2015-03-01

    We propose a recursive Kalman filtering approach to map regional spatio-temporal variations of terrestrial water mass over large continental areas, such as South America. Instead of correcting hydrology model outputs by the GRACE observations using a Kalman filter estimation strategy, regional 2-by-2 degree water mass solutions are constructed by integration of daily potential differences deduced from GRACE K-band range rate (KBRR) measurements. Recovery of regional water mass anomaly averages obtained by accumulation of information of daily noise-free simulated GRACE data shows that convergence is relatively fast and yields accurate solutions. In the case of cumulating real GRACE KBRR data contaminated by observational noise, the sequential method of step-by-step integration provides estimates of water mass variation for the period 2004-2011 by considering a set of suitable a priori error uncertainty parameters to stabilize the inversion. Spatial and temporal averages of the Kalman filter solutions over river basin surfaces are consistent with the ones computed using global monthly/10-day GRACE solutions from official providers CSR, GFZ and JPL. They are also highly correlated to in situ records of river discharges (70-95 %), especially for the Obidos station where the total outflow of the Amazon River is measured. The sparse daily coverage of the GRACE satellite tracks limits the time resolution of the regional Kalman filter solutions, and thus the detection of short-term hydrological events.

  12. Influence of the effective mass of water molecule on thermal neutron scattering

    International Nuclear Information System (INIS)

    Markovic, M.

    1981-01-01

    The influence of the effective water molecule mass on the thermal neutron scattering on the nucleus of the hydrogen atom has been investigated. Besides the actual water molecule mass (M = 18) the investigations have been carried out with its two effective values (M1 = 16 and M2 = 20). The differential and total cross sections have been calculated for the incident thermal neutron energy E o = 1 eV. Investigation results show different prominence of the quantum effects and for M2 the appearance of peaks in the quasielastic scattering. (author)

  13. Effect of free swirl flow on the rate of mass and heat transfer at the bottom of a vertical cylindrical container and possible applications

    International Nuclear Information System (INIS)

    Konsowa, A.H.; Abdel-Aziz, M.H.; Abdo, M.S.E.; Hassan, M.S.; Sedahmed, G.H.

    2017-01-01

    Highlights: • Mass transfer at the bottom of a cylindrical container was studied under decaying swirl flow. • Parameters studied are swirl flow velocity, diameter of the inlet nozzle and solution properties. • A dimensionless equation was obtained using the significant parameters. • The present results were compared with the results obtained using perpendicular inlet nozzle. • Relevance of study to the design of membrane processes was highlighted. - Abstract: Rates of mass transfer at the base of a vertical cylindrical container were determined under decaying swirl flow by the electrochemical technique. Variables studied were swirl flow solution velocity, diameter of the tangential inlet nozzle and physical properties of the solution. The data were correlated by a dimensionless mass transfer equation. The equation can be used to predict the rate of heat loss from the bottom of swirl flow equipment as well as the rate of diffusion controlled corrosion of the bottom. The importance of the derived equation in the design and scale up of a cylindrical batch recirculating catalytic or electrochemical reactor with a catalyst layer or electrode at the bottom and a cooling jacket around the vertical wall suitable for conducting exothermic liquid – solid diffusion controlled reactions which need rapid temperature control to avoid the loss of heat sensitive catalysts or heat sensitive products was pointed out. Comparison of the present results with the results obtained using perpendicular inlet nozzle which generates parallel flow at the bottom and axial flow along the cylindrical container revealed the fact that although swirl flow produces higher rates of heat and mass transfer at the cylindrical wall than axial flow and the reverse is true at the container base. Relevance of the present study to the design and operation of membrane processes and heat recovery from hot pools of liquid metals and low melting alloys in the production stage was highlighted.

  14. Vertical migration of motile phytoplankton chains through turbulence

    Science.gov (United States)

    Climent, Eric; Lovecchio, Salvatore; Durham, William; Stocker, Roman

    2017-11-01

    Daily, phytoplankton needs to migrate vertically from and towards the ocean surface to find nutrients such as dissolved oxygen. To travel through the water column they need to fight against gravity (by swimming) and fluid turbulence which can make their journey longer. It is often observed that cells migrate across the water column as chains. The first benefit to form chains is that micro-organisms sum up their thrust while reducing their drag. Therefore, upwards swimming is faster for chains in a quiescent fluid with steady vertical orientation. However, as chain length increases their tendency to periodically tumble in turbulent structures increases which reduces orientation stability and limits their capacity to swim upwards. The purpose of our study is to elaborate on this apparent contradiction. We carried out direct numerical simulations and physical analysis of the coupled system of homogeneous isotropic turbulence and chain trajectories through Lagrangian tracking. Formation of chains is indeed favorable for vertical migration through the upper layer of the ocean.

  15. Multiscale estimation of excess mass from gravity data

    Science.gov (United States)

    Castaldo, Raffaele; Fedi, Maurizio; Florio, Giovanni

    2014-06-01

    We describe a multiscale method to estimate the excess mass of gravity anomaly sources, based on the theory of source moments. Using a multipole expansion of the potential field and considering only the data along the vertical direction, a system of linear equations is obtained. The choice of inverting data along a vertical profile can help us to reduce the interference effects due to nearby anomalies and will allow a local estimate of the source parameters. A criterion is established allowing the selection of the optimal highest altitude of the vertical profile data and truncation order of the series expansion. The inversion provides an estimate of the total anomalous mass and of the depth to the centre of mass. The method has several advantages with respect to classical methods, such as the Gauss' method: (i) we need just a 1-D inversion to obtain our estimates, being the inverted data sampled along a single vertical profile; (ii) the resolution may be straightforward enhanced by using vertical derivatives; (iii) the centre of mass is also estimated, besides the excess mass; (iv) the method is very robust versus noise; (v) the profile may be chosen in such a way to minimize the effects from interfering anomalies or from side effects due to the a limited area extension. The multiscale estimation of excess mass method can be successfully used in various fields of application. Here, we analyse the gravity anomaly generated by a sulphide body in the Skelleftea ore district, North Sweden, obtaining source mass and volume estimates in agreement with the known information. We show also that these estimates are substantially improved with respect to those obtained with the classical approach.

  16. Seismic response time history analyses for KALIMER building with a horizontal and vertical seismic isolation

    International Nuclear Information System (INIS)

    Lee, J. H.; Yoo, B.; Koo, K. H.

    2001-01-01

    The seismic response time history analyses for the lumped mass models of KALIMER reactor building with a horizontal and vertical seismic isolation are performed for Artificial Time History and Kobe earthquake. The vertical amplification by the horizontal isolation is reduced by a vertical isolation for both earthquakes. The 3% viscous damping and the vertical isolation frequency of 1.5Hz gives a reduced vertical response compared to the fixed base condition at reactor support, and the 9% viscous damping to Kobe earthquake is required to get an equivalent vertical response with a fixed base condition

  17. Seismic response time history analyses for KALIMER building with a horizontal and vertical seismic isolation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Yoo, B.; Koo, K. H. [KAERI, Taejon (Korea, Republic of)

    2001-05-01

    The seismic response time history analyses for the lumped mass models of KALIMER reactor building with a horizontal and vertical seismic isolation are performed for Artificial Time History and Kobe earthquake. The vertical amplification by the horizontal isolation is reduced by a vertical isolation for both earthquakes. The 3% viscous damping and the vertical isolation frequency of 1.5Hz gives a reduced vertical response compared to the fixed base condition at reactor support, and the 9% viscous damping to Kobe earthquake is required to get an equivalent vertical response with a fixed base condition.

  18. A Heat Transfer Correlation in a Vertical Upward Flow of CO{sub 2} at Supercritical Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Rae; Bae, Yoon Yeong; Song, Jin Ho; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    Heat transfer data has been collected in the heat transfer test loop, named SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), in KAERI. The facility primarily aims at the generation of heat transfer data in the flow conditions and geometries relevant to SCWR (SuperCritical Water-cooled Reactor). The produced data will aid the thermohydraulic design of a reactor core. The loop uses carbon dioxide, and later the results will be scaled to the water flows. The heat transfer data has been collected for a vertical upward flow in a circular tube with varying mass fluxes, heat fluxes, and operating pressures. The results are compared with the existing correlations and a new correlation is proposed by fine-tuning the one of the existing correlations.

  19. Fingerprinting North Atlantic water masses near Iceland using Nd-isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Norbert [Institut fuer Umweltphysik, INF229, Heidelberg (Germany); Waldner, Astrid [Paul Scherrer Institute, Villigen (Switzerland); Montagna, Paolo [CNR - ISMAR, Bologna (Italy); Colin, Christophe [IDES, Universite de Paris-Sud, Orsay (France); Wu, Qiong [State Key Laboratory, Tongji University, Shanghai (China)

    2015-07-01

    The radiogenic {sup 143}Nd/{sup 144}Nd ratio of seawater is a valuable tracer of north Atlantic circulation pathways, driven by continental runoff (freshwater and Aeolian dust), boundary exchange and advection and thus mixing patterns. A region of particular interest in the North Atlantic is the overflow across the Iceland-Scotland Ridge injecting water from the Arctic Ocean into the Iceland basin (Iceland Scotland Overflow Water). However, Iceland itself constitutes a local source for Nd due to possible leaching of young volcanic basalts adding radiogenic {sup 143}Nd/{sup 144}Nd to seawater. We have conducted an intense survey of physical properties and Nd-isotope composition between Iceland and the Azores that allows to fingerprint different water masses of the North Atlantic through the {sup 143}Nd/{sup 144}Nd ratio and that demonstrates the very local influence of volcanic material to the seawater Nd cycle. A first local transect is achieved from the open ocean to the outflow of the Vatnajoekull glacier. Runoff influences seawater Nd in close vicinity (< 40 km near the outflow). A along shelf transect provide a similar observation. From Iceland to the Azores, however, water masses of the sub-tropical and sub-polar gyre are clearly distinguishable.

  20. Analysis of combined heat and mass transfer of water- Vapor in a ...

    African Journals Online (AJOL)

    In this paper, the combined heat and mass transfer of water-vapor into a cylindrical zeolite adsorber has been numerically simulated The twodimensional heat and mass transfer equations are numerically solved using gPROMS program - a general Process Modeling System {lJ program, inserting the proper initial and ...

  1. Analysis of combined heat and mass transfer of water-vapor in a ...

    African Journals Online (AJOL)

    Jn this paper, the combined heat and mass transfer of water-vapor into a cylindrical zeolite adsorber has been numerically simulated The twodimensional heat and mass transfer equations are numerically solved using gPROMS program - a general Process Modeling System [J] program, inserting the proper initial and ...

  2. Changes in viability of two Antarctic marine bacteria exposed to solar radiation in the water column: influence of vertical mixing

    International Nuclear Information System (INIS)

    Hernandez, E.A.

    2007-01-01

    The effect of UV radiation on two Antarctic marine bacterial strains (UVps and UVvi) was studied in the water column of Potter Cove (South Shetland, Antarctica). Quartz flasks were filled with the bacterial suspensions and exposed to solar radiation at 0 m, 1 m and 3 m depth. Assays using flasks exposed to direct solar radiation and others using flasks covered with/by interferential filters which discriminate between UVA and UVB, were performed. In other assays, a vertical mixing of 4 m/h was simulated. Both strains showed a significant decrease in viability (expressed as colony - forming units) when exposed to a surface UVB dose of 8.4 kJ m -2 . Studies with interferential filters showed a significant decrease at 0 and 1 m depth under both UV treatments. The UVps strain appeared to be more sensitive to UVB than to UVA. Damage produced by UVB was attenuated by the vertical mixing when the surface UVB dose was 4.8 kJ m -2 . This effect was not observed when surface UVB dose was 7.7 kJ m -2 . These results show that the negative effect caused by UVB radiation on the bacterio plankton would be significant only in the first meter of water column of the Antarctic coastal waters with high levels of suspended particulate material. (author) [es

  3. Determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke from baryonic Λ{sub b} decays

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Y.K. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Geng, C.Q. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Changsha (China)

    2017-10-15

    We present the first attempt to extract vertical stroke V{sub cb} vertical stroke from the Λ{sub b} → Λ{sub c}{sup +}l anti ν{sub l} decay without relying on vertical stroke V{sub ub} vertical stroke inputs from the B meson decays. Meanwhile, the hadronic Λ{sub b} → Λ{sub c}M{sub (c)} decays with M = (π{sup -},K{sup -}) and M{sub c} =(D{sup -},D{sup -}{sub s}) measured with high precisions are involved in the extraction. Explicitly, we find that vertical stroke V{sub cb} vertical stroke =(44.6 ± 3.2) x 10{sup -3}, agreeing with the value of (42.11 ± 0.74) x 10{sup -3} from the inclusive B → X{sub c}l anti ν{sub l} decays. Furthermore, based on the most recent ratio of vertical stroke V{sub ub} vertical stroke / vertical stroke V{sub cb} vertical stroke from the exclusive modes, we obtain vertical stroke V{sub ub} vertical stroke = (4.3 ± 0.4) x 10{sup -3}, which is close to the value of (4.49 ± 0.24) x 10{sup -3} from the inclusive B → X{sub u}l anti ν{sub l} decays. We conclude that our determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke favor the corresponding inclusive extractions in the B decays. (orig.)

  4. Temporal Variability in Vertical Groundwater Fluxes and the Effect of Solar Radiation on Streambed Temperatures Based on Vertical High Resolution Distributed Temperature Sensing

    Science.gov (United States)

    Sebok, E.; Karan, S.; Engesgaard, P. K.; Duque, C.

    2013-12-01

    Due to its large spatial and temporal variability, groundwater discharge to streams is difficult to quantify. Methods using vertical streambed temperature profiles to estimate vertical fluxes are often of coarse vertical spatial resolution and neglect to account for the natural heterogeneity in thermal conductivity of streambed sediments. Here we report on a field investigation in a stream, where air, stream water and streambed sediment temperatures were measured by Distributed Temperature Sensing (DTS) with high spatial resolution to; (i) detect spatial and temporal variability in groundwater discharge based on vertical streambed temperature profiles, (ii) study the thermal regime of streambed sediments exposed to different solar radiation influence, (iii) describe the effect of solar radiation on the measured streambed temperatures. The study was carried out at a field site located along Holtum stream, in Western Denmark. The 3 m wide stream has a sandy streambed with a cobbled armour layer, a mean discharge of 200 l/s and a mean depth of 0.3 m. Streambed temperatures were measured with a high-resolution DTS system (HR-DTS). By helically wrapping the fiber optic cable around two PVC pipes of 0.05 m and 0.075 m outer diameter over 1.5 m length, temperature measurements were recorded with 5.7 mm and 3.8 mm vertical spacing, respectively. The HR-DTS systems were installed 0.7 m deep in the streambed sediments, crossing both the sediment-water and the water-air interface, thus yielding high resolution water and air temperature data as well. One of the HR-DTS systems was installed in the open stream channel with only topographical shading, while the other HR-DTS system was placed 7 m upstream, under the canopy of a tree, thus representing the shaded conditions with reduced influence of solar radiation. Temperature measurements were taken with 30 min intervals between 16 April and 25 June 2013. The thermal conductivity of streambed sediments was calibrated in a 1D flow

  5. Electrical Capacitance Probe Characterization in Vertical Annular Two-Phase Flow

    Directory of Open Access Journals (Sweden)

    Grazia Monni

    2013-01-01

    Full Text Available The paper presents the experimental analysis and the characterization of an electrical capacitance probe (ECP that has been developed at the SIET Italian Company, for the measurement of two-phase flow parameters during the experimental simulation of nuclear accidents, as LOCA. The ECP is used to investigate a vertical air/water flow, characterized by void fraction higher than 95%, with mass flow rates ranging from 0.094 to 0.15 kg/s for air and from 0.002 to 0.021 kg/s for water, corresponding to an annular flow pattern. From the ECP signals, the electrode shape functions (i.e., the signals as a function of electrode distances in single- and two-phase flows are obtained. The dependence of the signal on the void fraction is derived and the liquid film thickness and the phase’s velocity are evaluated by means of rather simple models. The experimental analysis allows one to characterize the ECP, showing the advantages and the drawbacks of this technique for the two-phase flow characterization at high void fraction.

  6. Active Low-frequency Vertical Vibration Isolation System for Precision Measurements

    Institute of Scientific and Technical Information of China (English)

    WU Kang; LI Gang; HU Hua; WANG Lijun

    2017-01-01

    Low-frequency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise.Several types of active vibration isolation systems have been developed.However,few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility.An active low-frequency vertical vibration isolation system based on an earlier instrument,the Super Spring,is designed and implemented.The system,which is simple and compact,consists of two stages:a parallelogram-shaped linkage to ensure vertical motion,and a simple spring-mass system.The theoretical analysis of the vibration isolation system is presented,including terms erroneously ignored before.By carefully choosing the mechanical parameters according to the above analysis and using feedback control,the resonance frequency of the system is reduced from 2.3 to 0.03 Hz,a reduction by a factor of more than 75.The vibration isolation system is installed as an inertial reference in an absolute gravimeter,where it improved the scatter of the absolute gravity values by a factor of 5.The experimental results verifies the improved performance of the isolation system,making it particularly suitable for precision experiments.The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems.An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed,providing fundamental guidelines for vibration isolator design and assembling.

  7. Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower

    Science.gov (United States)

    Lee, Hyunsub; Son, Gihun

    2017-11-01

    Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.

  8. Effects of Unsteady Flow Past An Infinite Vertical Plate With Variable ...

    African Journals Online (AJOL)

    The effects of unsteady flow past an infinite vertical plate with variable temperature and constant mass flux are investigated. Laplace transform technique is used to obtain velocity and concentration fields. The computation of the results indicates that the velocity profiles increase with increase in Grashof numbers, mass ...

  9. Uniform and non-uniform inlet temperature of a vertical hot water jet injected into a rectangular tank

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu

    2010-01-01

    In most of real-world applications, such as the case of heat stores, inlet is not kept at a constant temperature but it may vary with time during charging process. In this paper, a vertical water jet injected into a rectangular storage tank is measured experimentally and simulated numerically. Two cases of study are considered; one is a hot water jet with uniform inlet temperature (UIT) injected into a cold water tank, and the other is a cold water jet with non-uniform inlet temperature (NUIT) injected into a hot water tank. Three different temperature differences and three different flow rates are studied for the hot water jet with UIT which is injected into a cold water tank. Also, three different initial temperatures with constant flow rate as well as three different flow rates with constant initial temperature are considered for the cold jet with NUIT which is injected into a hot water tank. Turbulence intensity at the inlet as well as Reynolds number for the NUIT cases are therefore functions of inlet temperature and time. Both experimental measurements and numerical calculations are carried out for the same measured flow and thermal conditions. The realizable k-ε model is used for modeling the turbulent flow. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank are analyzed. The simulated results are compared to the measured results, and they show a good agreement at low temperatures. © 2010 IEEE.

  10. Uniform and non-uniform inlet temperature of a vertical hot water jet injected into a rectangular tank

    KAUST Repository

    El-Amin, Mohamed

    2010-12-01

    In most of real-world applications, such as the case of heat stores, inlet is not kept at a constant temperature but it may vary with time during charging process. In this paper, a vertical water jet injected into a rectangular storage tank is measured experimentally and simulated numerically. Two cases of study are considered; one is a hot water jet with uniform inlet temperature (UIT) injected into a cold water tank, and the other is a cold water jet with non-uniform inlet temperature (NUIT) injected into a hot water tank. Three different temperature differences and three different flow rates are studied for the hot water jet with UIT which is injected into a cold water tank. Also, three different initial temperatures with constant flow rate as well as three different flow rates with constant initial temperature are considered for the cold jet with NUIT which is injected into a hot water tank. Turbulence intensity at the inlet as well as Reynolds number for the NUIT cases are therefore functions of inlet temperature and time. Both experimental measurements and numerical calculations are carried out for the same measured flow and thermal conditions. The realizable k-ε model is used for modeling the turbulent flow. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank are analyzed. The simulated results are compared to the measured results, and they show a good agreement at low temperatures. © 2010 IEEE.

  11. Piezometric surface deduced from vertical electrical sounding data ...

    African Journals Online (AJOL)

    In hydrogeological studies the knowledge of the water table is very essential. In this work, one hundred and eight vertical electrical soundings were carried out, with the view of unravelling the hydrogeological characteristics of Kuri River Basin, Kaduna, Nigeria. The water table for eleven hand dug wells were directly ...

  12. Assessment of Mass Transfer Coefficients in Coalescing Slug Flow in Vertical Pipes and Applications to Tubular Airlift Membrane Bioreactors

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Berube, P.R.; Nopens, I.

    2011-01-01

    by the gas flow. It was noted that coalescence of bubbles affects the MTH. Coalescence increased the “width” of the peaks (i.e. the estimate of the variability of the mass transfer coefficient) and the height of the peak (i.e. amount of time that a mass transfer coefficient of a given value is maintained......). A semi-empirical relationship based on the Lévêque relationship for the Sherwood number (mass transfer coefficient) was formulated for the laminar regime. A test case comparison between water and activated sludge was performed based on full-scale airlift MBR operational conditions. It was found...

  13. Wave-induced mass transport affects daily Escherichia coli fluctuations in nearshore water

    Science.gov (United States)

    Ge, Zhongfu; Whitman, Richard L.; Nevers, Meredith B.; Phanikumar, Mantha S.

    2012-01-01

    Characterization of diel variability of fecal indicator bacteria concentration in nearshore waters is of particular importance for development of water sampling standards and protection of public health. Significant nighttime increase in Escherichia coli (E. coli) concentration in beach water, previously observed at marine sites, has also been identified in summer 2000 from fixed locations in waist- and knee-deep waters at Chicago 63rd Street Beach, an embayed, tideless, freshwater beach with low currents at night (approximately 0.015 m s–1). A theoretical model using wave-induced mass transport velocity for advection was developed to assess the contribution of surface waves to the observed nighttime E. coli replenishment in the nearshore water. Using average wave conditions for the summer season of year 2000, the model predicted an amount of E. coli transported from water of intermediate depth, where sediment resuspension occurred intermittently, that would be sufficient to have elevated E. coli concentration in the surf and swash zones as observed. The nighttime replenishment of E. coli in the surf and swash zones revealed here is an important phase in the cycle of diel variations of E. coli concentration in nearshore water. According to previous findings in Ge et al. (Environ. Sci. Technol. 2010, 44, 6731–6737), enhanced current circulation in the embayment during the day tends to displace and deposit material offshore, which partially sets up the system by the early evening for a new period of nighttime onshore movement. This wave-induced mass transport effect, although facilitating a significant base supply of material shoreward, can be perturbed or significantly influenced by high currents (orders of magnitude larger than a typical wave-induced mass transport velocity), current-induced turbulence, and tidal forcing.

  14. Mass size distribution of particle-bound water

    Science.gov (United States)

    Canepari, S.; Simonetti, G.; Perrino, C.

    2017-09-01

    The thermal-ramp Karl-Fisher method (tr-KF) for the determination of PM-bound water has been applied to size-segregated PM samples collected in areas subjected to different environmental conditions (protracted atmospheric stability, desert dust intrusion, urban atmosphere). This method, based on the use of a thermal ramp for the desorption of water from PM samples and the subsequent analysis by the coulometric KF technique, had been previously shown to differentiate water contributes retained with different strength and associated to different chemical components in the atmospheric aerosol. The application of the method to size-segregated samples has revealed that water showed a typical mass size distribution in each one of the three environmental situations that were taken into consideration. A very similar size distribution was shown by the chemical PM components that prevailed during each event: ammonium nitrate in the case of atmospheric stability, crustal species in the case of desert dust, road-dust components in the case of urban sites. The shape of the tr-KF curve varied according to the size of the collected particles. Considering the size ranges that better characterize the event (fine fraction for atmospheric stability, coarse fraction for dust intrusion, bi-modal distribution for urban dust), this shape is coherent with the typical tr-KF shape shown by water bound to the chemical species that predominate in the same PM size range (ammonium nitrate, crustal species, secondary/combustion species - road dust components).

  15. Roadmap to a mutually consistent set of offshore vertical reference frames

    NARCIS (Netherlands)

    Slobbe, D.C.

    2013-01-01

    This thesis presents a combined approach for the realization of the (quasi-)geoid as a height reference surface and the vertical reference surface at sea (chart datum). This approach, specifically designed for shallow seas and coastal waters, provides the relation between the two vertical reference

  16. Heat transfer test in a vertical tube using CO2 at supercritical pressures

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Kim, Hyungrae; Song, Jin Ho; Cho, Bong Hyun; Bae, Yoon Yeong

    2007-01-01

    Heat transfer test facility, SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt Generation), was constructed at KAERI (Korea Atomic Energy Research Institute) for an investigation of the thermal-hydraulic behaviors of supercritical CO 2 at the various geometries of the test section. The test data will be used for the reactor core design of the SCWR (SuperCritical Water-cooled Reactor). As a working fluid, CO 2 was selected to make use of the low critical pressure and temperature of CO 2 compared with water. An experimental study was carried out in the SPHINX to investigate the characteristics of heat transfer and pressure drop at a vertical single tube with an inside diameter of 4.4 mm in case of an upward flow of supercritical CO 2 . The heat and mass fluxes were varied at a given pressure. The mass flux was in the range of 400-1,200 kg/m 2 s and the heat flux was chosen up to 150 kW/m 2 . The selected pressures were 7.75, 8.12, and 8.85 MPa. A heat transfer deterioration occurred at the lower mass fluxes. The experimental heat transfer coefficients were compared with the ones predicted by several existing correlations. The standard deviation was about 20% for each correlation and an apparent discrepancy was not found among the correlations. The major components of the pressure drop were a gravitational pressure drop and a frictional pressure drop. The frictional pressure drop increases as the mass flux and heat flux increase. (author)

  17. Study of mass transfer at the air-water interface by an isotopic method

    International Nuclear Information System (INIS)

    Merlivat, L.

    1975-01-01

    It is shown by analysing the hydrogen and oxygen stable isotopes distribution in liquid and water vapor, that the processes taking place on a very small scale near the liquid can be investigated. The effect of molecular mass transfer is directly obtained without having to perform difficult measurements in the air in the immediate vicinity of the water surface. Experiments are carried out in the air-water tunnel especially designed for the simulation of ocean atmosphere energy exchanges. The wind velocities vary from 0.7 to 7m/sec. The experimental results obtained do not support the classical Reynolds' analogy between momentum and mass transfer down to the interface and the theory proposed by Sheppard, but they are in agreement with Sverdrup's, Kitaigorodskiy and Volkov's and Brutsaert's theories, all of which involve a layer just above the air-water interface through which mass transfer is dominated by molecular diffusion. The thickness of this layer in the two first theories is shown to decrease with increasing wind velocity. Direct application of Brutsaert's theory for roughness Reynolds numbers smaller than one is in good agreement with the experimental data obtained [fr

  18. Modeling the improvement of ultrafiltration membrane mass transfer when using biofiltration pretreatment in surface water applications.

    Science.gov (United States)

    Netcher, Andrea C; Duranceau, Steven J

    2016-03-01

    In surface water treatment, ultrafiltration (UF) membranes are widely used because of their ability to supply safe drinking water. Although UF membranes produce high-quality water, their efficiency is limited by fouling. Improving UF filtrate productivity is economically desirable and has been attempted by incorporating sustainable biofiltration processes as pretreatment to UF with varying success. The availability of models that can be applied to describe the effectiveness of biofiltration on membrane mass transfer are lacking. In this work, UF water productivity was empirically modeled as a function of biofilter feed water quality using either a quadratic or Gaussian relationship. UF membrane mass transfer variability was found to be governed by the dimensionless mass ratio between the alkalinity (ALK) and dissolved organic carbon (DOC). UF membrane productivity was optimized when the biofilter feed water ALK to DOC ratio fell between 10 and 14. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Periodic swarms of the salp Salpa aspera in the Slope Water off the NE United States: Biovolume, vertical migration, grazing, and vertical flux

    Science.gov (United States)

    Madin, L. P.; Kremer, P.; Wiebe, P. H.; Purcell, J. E.; Horgan, E. H.; Nemazie, D. A.

    2006-05-01

    Sampling during four summers over a twenty-seven year period has documented dense populations of Salpa aspera in the Slope Water south of New England, northeastern United States. The salps demonstrated a strong pattern of diel vertical migration, moving to depth (mostly 600-800 m) during the day and aggregating in the epipelagic (salps measured were 5.7lm-2 in 1986 and 1.6lm-2 in 1993. Depending on the year, the sampled salp populations were calculated to clear between 8 and 74% of the upper 50 m during each 8 h night. Total fecal output for the same populations was estimated to be between 5 and 91mgCm-2night-1. These results, and other observations, suggest this region is a salp "hot spot", with swarms of S. aspera developing seasonally on a frequent basis.

  20. A determination of the CKM-matrix element ratio vertical stroke Vtsvertical stroke /vertical stroke Vcbvertical stroke from the rare B-decays B →K*+γ and B →Xs + γ

    International Nuclear Information System (INIS)

    Ali, A.; Greub, C.

    1993-05-01

    Implication of the recent CLEO observation of the rare decay mode B→K * +γhaving a combined branching ratio BR(B→K * +γ)=(4.5±1.5±0.9)x10 -5 and an improved upper limit on the inclusive branching ratio BR(B→X s +γ) -4 (95% C.L.) are discussed in the context of the Standard Model (SM). Unsing the unitarity of the CKM-matrix and taking into account QCD radiative corrections in the decay rate and the inclusive photon energy spectrum we obtain an improved upper limit on the inclusive branching ratio BR(B→X s +γ) -4 (95% C.L.). This can be used to constrain possible non-SM contributions to the inclusive branching ratio, giving BR(B→X s +γ)(non-SM) -4 for m t ≥108 GeV. Within the SM, we show that the resulting experimental upper limit can be interpreted as a corresponding limit on the CKM-matrix element ratio yielding vertical stroke V ts vertical stroke /vertical stroke V cb vertical stroke * /X s )≡Γ(B→K * +γ)/Γ(B→X s +γ), based on the inclusive hadronic invariant mass distribution in B→X s +γ. Estimating the K * -contribution from this distribution in the threshold region (m K +m π)≤ m X s ≤0.97 GeV and using experimental measurements from the semileptonic D-decays D→K+π+lν l in the same mass interval, we obtain R(K * /X s )=0.13±0.03. This enables us to put a lower bound on the ratio vertical stroke V ts vertical stroke /vertical stroke V cb vertical stroke from the 95% C.L. lower limit on the branching rato BR(B→K * +γ)>1.6x10 -5 . Combining the exclusive and inclusive decay rates, we determine 0.50≤vertical stroke V ts vertical stroke /vertical stroke V cb vertical stroke ≤1.67 (at 95% C.L.). (orig.). 7 figs

  1. Direct sampling of chemical weapons in water by photoionization mass spectrometry.

    Science.gov (United States)

    Syage, Jack A; Cai, Sheng-Suan; Li, Jianwei; Evans, Matthew D

    2006-05-01

    The vulnerability of water supplies to toxic contamination calls for fast and effective means for screening water samples for multiple threats. We describe the use of photoionization (PI) mass spectrometry (MS) for high-speed, high-throughput screening and molecular identification of chemical weapons (CW) threats and other hazardous compounds. The screening technology can detect a wide range of compounds at subacute concentrations with no sample preparation and a sampling cycle time of approximately 45 s. The technology was tested with CW agents VX, GA, GB, GD, GF, HD, HN1, and HN3, in addition to riot agents and precursors. All are sensitively detected and give simple PI mass spectra dominated by the parent ion. The target application of the PI MS method is as a routine, real-time early warning system for CW agents and other hazardous compounds in air and in water. In this work, we also present comprehensive measurements for water analysis and report on the system detection limits, linearity, quantitation accuracy, and false positive (FP) and false negative rates for concentrations at subacute levels. The latter data are presented in the form of receiver operating characteristic curves of the form of detection probability P(D) versus FP probability P(FP). These measurements were made using the CW surrogate compounds, DMMP, DEMP, DEEP, and DIMP. Method detection limits (3sigma) obtained using a capillary injection method yielded 1, 6, 3, and 2 ng/mL, respectively. These results were obtained using 1-microL injections of water samples without any preparation, corresponding to mass detection limits of 1, 6, 3, and 2 pg, respectively. The linear range was about 3-4 decades and the dynamic range about 4-5 decades. The relative standard deviations were generally <10% at CW subacute concentrations levels.

  2. Inference and Biogeochemical Response of Vertical Velocities inside a Mode Water Eddy

    Science.gov (United States)

    Barceló-Llull, B.; Pallas Sanz, E.; Sangrà, P.

    2016-02-01

    With the aim to study the modulation of the biogeochemical fluxes by the ageostrophic secondary circulation in anticyclonic mesoscale eddies, a typical eddy of the Canary Eddy Corridor was interdisciplinary surveyed on September 2014 in the framework of the PUMP project. The eddy was elliptical shaped, 4 month old, 110 km diameter and 400 m depth. It was an intrathermocline type often also referred as mode water eddy type. We inferred the mesoscale vertical velocity field resolving a generalized omega equation from the 3D density and ADCP velocity fields of a five-day sampled CTD-SeaSoar regular grid centred on the eddy. The grid transects where 10 nautical miles apart. Although complex, in average, the inferred omega velocity field (hereafter w) shows a dipolar structure with downwelling velocities upstream of the propagation path (west) and upwelling velocities downstream. The w at the eddy center was zero and maximum values were located at the periphery attaining ca. 6 m day-1. Coinciding with the occurrence of the vertical velocities cells a noticeable enhancement of phytoplankton biomass was observed at the eddy periphery respect to the far field. A corresponding upward diapycnal flux of nutrients was also observed at the periphery. As minimum velocities where reached at the eddy center, lineal Ekman pumping mechanism was discarded. Minimum values of phytoplankton biomass where also observed at the eddy center. The possible mechanisms for such dipolar w cell are still being investigated, but an analysis of the generalized omega equation forcing terms suggest that it may be a combination of horizontal deformation and advection of vorticity by the ageostrophic current (related to nonlinear Ekman pumping). As expected for Trades, the wind was rather constant and uniform with a speed of ca. 5 m s-1. Diagnosed nonlinear Ekman pumping leaded also to a dipolar cell that mirrors the omega w dipolar cell.

  3. Carbonate system in the water masses of the Southeast Atlantic sector of the Southern Ocean during February and March 2008

    Directory of Open Access Journals (Sweden)

    M. González-Dávila

    2011-05-01

    Full Text Available Carbonate system variables were measured in the South Atlantic sector of the Southern Ocean along a transect from South Africa to the southern limit of the Antarctic Circumpolar Current (ACC from February to March 2008. Eddies detached from the retroflection of the Agulhas Current increased the gradients observed along the fronts. Minima in the fugacity of CO2, fCO2, and maxima in pH on either side of the frontal zone were observed, noting that within the frontal zone fCO2 reached maximum values and pH was at a minimum.

    Vertical distributions of water masses were described by their carbonate system properties and their relationship to CFC concentrations. Upper Circumpolar Deep Water (UCDW and Lower Circumpolar Deep Water (LCDW offered pHT,25 values of 7.56 and 7.61, respectively. The UCDW also had higher concentrations of CFC-12 (>0.2 pmol kg−1 as compared to deeper waters, revealing that UCDW was mixed with recently ventilated waters. Calcite and aragonite saturation states (Ω were also affected by the presence of these two water masses with high carbonate concentrations. The aragonite saturation horizon was observed at 1000 m in the subtropical area and north of the Subantarctic Front. At the position of the Polar Front, and under the influence of UCDW and LCDW, the aragonite saturation horizon deepened from 800 m to 1500 m at 50.37° S, and reached 700 m south of 57.5° S. High latitudes proved to be the most sensitive areas to predicted anthropogenic carbon increase. Buffer coefficients related to changes in [CO2], [H+] and Ω with changes in dissolved inorganic carbon (CT and total alkalinity (AT offered minima values in the Antarctic Intermediate Water and UCDW layers. These coefficients suggest that a small increase in CT will sharply decrease the status of pH and carbonate saturation

  4. Water vapor mass balance method for determining air infiltration rates in houses

    Science.gov (United States)

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  5. Impact of sub-horizontal discontinuities and vertical heterogeneities on recharge processes in a weathered crystalline aquifer in southern India

    Science.gov (United States)

    Nicolas, Madeleine; Selles, Adrien; Bour, Olivier; Maréchal, Jean-Christophe; Crenner, Marion; Wajiduddin, Mohammed; Ahmed, Shakeel

    2017-04-01

    In the face of increasing demands for irrigated agriculture, many states in India are facing water scarcity issues, leading to severe groundwater depletion. Because perennial water resources in southern India consist mainly of crystalline aquifers, understanding how recharge takes place and the role of preferential flow zones in such heterogeneous media is of prime importance for successful and sustainable aquifer management. Here we investigate how vertical heterogeneities and highly transmissive sub-horizontal discontinuities may control groundwater flows and recharge dynamics. Recharge processes in the vadose zone were examined by analysing the propagation of an infiltration front and mass transfers resulting from the implementation of a managed aquifer recharge (MAR) structure. Said structure was set up in the Experimental Hydrogeological Park in Telangana (Southern India), a well-equipped and continuously monitored site, which is periodically supplied with surface water deviated from the nearby Musi river, downstream of Hyderabad. An initial volume balance equation was applied to quantify the overall inputs from the MAR structure into the groundwater system, which was confirmed using a chloride mass balance approach. To understand how this incoming mass is then distributed within the aquifer, we monitored the evolution of water volumes in the tank, and the resulting lateral propagation front observed in the surrounding borehole network. Borehole logs of temperature and conductivity were regularly performed to identify preferential flow paths. As a result we observed that mass transfers take place in the way of preferential lateral flow through the most transmissive zones of the profile. These include the interface between the lower portion of the upper weathered horizon (the saprolite) and the upper part of the underlying fissured granite, as well as the first flowing fractures. This leads to a rapid lateral transfer of recharge, which allows quick

  6. Vertical designs and agriculture joined for food production in the modules for urban vertical gardens.

    Directory of Open Access Journals (Sweden)

    Fritz Hammerling Navas Navarro

    2012-10-01

    Full Text Available Modules for Vertical Urban Gardens (MHUG are a hybrid of vertical gardens and urban agriculture. Vertical gardens have been recognized for the past 2500 years, mainly in the form of the Hanging Gardens of Babylon, while urban agriculture is being practiced today by more than 700 million people worldwide. The benefits that MHUV offers are multiple, but perhaps the most significant is the consumption of foods free of chemicals, free of GMO’s, irrigated with potable water, and that are 100% organic. It is presented a “culinary and medicinal module” that can be implemented in the kitchen area, on roofs, terraces, balconies or patios, where species such as thyme, mint, peppermint, parsley, lemon balm and rosemary can be at hand when preparing dishes. The module consists of three plastic baskets that are recyclable and resistant to decay. Each basket has four rows with space for fourteen seedlings. The baskets are first lined on the interior with a black geotextile, and then are covered with a mesh (polisombra which helps support the substrate and seedlings. Each basket rests on a structure made of recycled wood (from pallets or crates that both holds the basket vertically and serves as a rain cover. The cages measure 0.33m by 0.55m by 0.14m. Each module comes with hosing and connectors for a drip irrigation system, and an instructional manual. The modules demonstrate the benefits of urban agriculture combined with the beauty and modality of vertical gardens, leading to useful applications for food production and decoration in the spaces where vertical urban gardens are possible.

  7. Formation and spreading of Arabian Sea high-salinity water mass

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Prasad, T.G.

    The formation and seasonal spreading of the Arabian Sea High-Salinity Water (ASHSW) mass were studied based on the monthly mean climatology of temperature and salinity in the Arabian Sea, north of the equator and west of 80 degrees E, on a 2 degrees...

  8. Geophysical aspects of vertical streamer seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Sognnes, Walter

    1998-12-31

    Vertical cable acquisition is performed by deploying a certain number of vertical hydrophone arrays in the water column, and subsequently shooting a source point on top of it. The advantage of this particular geometry is that gives a data set with all azimuths included. Therefore a more complete 3-D velocity model can be derived. In this paper there are presented some results from the Fuji survey in the Gulf of Mexico. Based on these results, improved geometries and review recommendations for future surveys are discussed. 7 figs.

  9. Geophysical aspects of vertical streamer seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Sognnes, Walter

    1999-12-31

    Vertical cable acquisition is performed by deploying a certain number of vertical hydrophone arrays in the water column, and subsequently shooting a source point on top of it. The advantage of this particular geometry is that gives a data set with all azimuths included. Therefore a more complete 3-D velocity model can be derived. In this paper there are presented some results from the Fuji survey in the Gulf of Mexico. Based on these results, improved geometries and review recommendations for future surveys are discussed. 7 figs.

  10. An alternative method for the measurement of the mechanical impulse of a vertically directed blast

    CSIR Research Space (South Africa)

    Turner, GR

    2008-01-01

    Full Text Available An alternative method for the measurement of the total mechanical impulse of a vertically directed blast due to an explosive charge is presented. The method differs from apparatus that employ a vertically displaced mass (similar in principle...

  11. AWWA E102-17 submersible vertical turbine pumps

    CERN Document Server

    2017-01-01

    This standard describes minimum requirements for submersible vertical turbine pumps utilizing a discharge column pipe assembly, 5 hp or larger, used in water service, including materials, design, manufacture, inspection, and testing.

  12. Measurement of the wetting profile in concrete samples with vertical water by gamma radiation transmission method

    International Nuclear Information System (INIS)

    Silva, L.M. da; Rocha, M.C. da; Appoloni, C.R.; Portezan Filho, O.; Lopes, F.; Melquiades, F.L.; Santos, E.A. dos; Santos, A.O. dos; Moreira, A.C.; Poetker, W.E.; Almeida, E. de; Tannous, C.Q.; Kuramoto, R.; Cavalcante, F.H. de M.; Barbieri, P.F.

    2000-01-01

    Samples of concrete for popular habitation (0,1x0,03x0,1 m) and cellular concrete (0,1x0,05x0,1 m) were submitted to water vertical ascending infiltration. The moisture content spatial and temporal evolution of each sample it was monitored in three halfway positions in a same horizontal line, applying the gamma rays transmission method. The data were taken with a 137 Cs (3,7x10 10 Bq, 0662 MeV) source, NaI (Tl) of 2x2' detector coupled to between wetting profiles and concrete strength. The cellular concrete showed a wetting profile compatible to its greater porosity. (author)

  13. Design and application of a surface vessel for autonomous inland water monitoring

    OpenAIRE

    Hitz Gregory; Pomerleau Francois; Garneau Marie-Eve; Pradalier Cedric; Posch Thomas; Pernthaler Jakob; Siegwart Roland

    2012-01-01

    This article presents a novel autonomous surface vessel (ASV) that was designed and manufactured specifically for the monitoring of water resources resources that are not only constantly drained but also face the growing threat of mass proliferation (bloom) of noxious cyanobacteria. On one hand the distribution of these blooms in a given water body requires a surveillance of biological data at high spatial resolution on both vertical and horizontal axes whereas on the other hand the understan...

  14. Characterization of Bacteria in Ballast Water Using MALDI-TOF Mass Spectrometry

    Digital Repository Service at National Institute of Oceanography (India)

    Emami, K.; Askari, V.; Ullrich, M.; Mohinudeen, K.; Anil, A.C.; Khandeparker, L.; Burgess, J.G.; Mesbahi, E.

    To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Since...

  15. Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation

    DEFF Research Database (Denmark)

    Tremaroli, Valentina; Karlsson, Fredrik; Werling, Malin

    2015-01-01

    Bariatric surgery is currently the most effective procedure for the treatment of obesity. Given the role of the gut microbiota in regulating host metabolism and adiposity, we investigated the long-term effects of bariatric surgery on the microbiome of patients randomized to Roux-en-Y gastric bypass...... or vertical banded gastroplasty and matched for weight and fat mass loss. The two surgical procedures induced similar and durable changes on the gut microbiome that were not dependent on body mass index and resulted in altered levels of fecal and circulating metabolites compared with obese controls....... By colonizing germ-free mice with stools from the patients, we demonstrated that the surgically altered microbiota promoted reduced fat deposition in recipient mice. These mice also had a lower respiratory quotient, indicating decreased utilization of carbohydrates as fuel. Our results suggest that the gut...

  16. Effect of Orifice Nozzle Design and Input Power on Two-Phase Flow and Mass Transfer Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hei Cheon [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)

    2016-04-15

    It is necessary to investigate the input power as well as the mass transfer characteristics of the aeration process in order to improve the energy efficiency of an aerobic water treatment. The objective of this study is to experimentally investigate the effect of orifice nozzle design and input power on the flow and mass transfer characteristics of a vertical two-phase flow. The mass ratio, input power, volumetric mass transfer coefficient, and mass transfer efficiency were calculated using the measured data. It was found that as the input power increases the volumetric mass transfer coefficient increases, while the mass ratio and mass transfer efficiency decrease. The mass ratio, volumetric mass transfer coefficient, and mass transfer efficiency were higher for the orifice configuration with a smaller orifice nozzle area ratio. An empirical correlation was proposed to estimate the effect of mass ratio, input power, and Froude number on the volumetric mass transfer coefficient.

  17. Chemical speciation analysis for bromine in tap water by ion chromatography/inductively coupled plasma-mass spectrometry and electrospray ionization-mass spectrometry

    International Nuclear Information System (INIS)

    Kurata, Keigo; Suzuki, Yoshinari; Furuta, Naoki

    2010-01-01

    Bromide compounds in tap water were measured by using a hyphenated technique of ion chromatography coupled with inductively coupled plasma - mass spectrometry (IC/ICP-MS) and electrospray ionization mass spectrometry (ESI-MS). We identified bromide ion (Br - ), bromate ion (BrO 3 - ), bromochloroacetic acid (BCAA), dibromoacetic acid (DBAA) and bromodichloroacetic acid (BDCAA) by standard addition methods with IC/ICP-MS. Moreover, we identified BCAA and BDCAA by ESI-MS after separation with IC. Br - , BrO 3 - , BCAA, DBAA and BDCAA in tap water collected from around Tokyo area were quantified by IC/ICP-MS. The maximum concentration of BrO 3 - (1.8 ng mL -1 ) was observed in tap water collected from Bunkyo-ku, although this concentration was lower than 10 ng mL -1 , which is the regulated concentration in Japan. DBAA, which is regulated by United States Environmental Protection Agency, was detected in tap water collected from all sites, except for Ome. However, since BrO 3 - and DBAA are toxic, it is necessary to continue monitoring bromide compounds in tap water. (author)

  18. Winter and summer monsoon water mass, heat and freshwater transport changes in the Arabian Sea near 8°N

    Science.gov (United States)

    Stramma, Lothar; Brandt, Peter; Schott, Friedrich; Quadfasel, Detlef; Fischer, Jürgen

    The differences in the water mass distributions and transports in the Arabian Sea between the summer monsoon of August 1993 and the winter monsoon of January 1998 are investigated, based on two hydrographic sections along approximately 8°N. At the western end the sections were closed by a northward leg towards the African continent at about 55°E. In the central basin along 8°N the monsoon anomalies of the temperature and density below the surface-mixed layer were dominated by annual Rossby waves propagating westward across the Arabian Sea. In the northwestern part of the basin the annual Rossby waves have much smaller impact, and the density anomalies observed there were mostly associated with the Socotra Gyre. Salinity and oxygen differences along the section reflect local processes such as the spreading of water masses originating in the Bay of Bengal, northward transport of Indian Central Water, or slightly stronger southward spreading of Red Sea Water in August than in January. The anomalous wind conditions of 1997/98 influenced only the upper 50-100 m with warmer surface waters in January 1998, and Bay of Bengal Water covered the surface layer of the section in the eastern Arabian Sea. Estimates of the overturning circulation of the Arabian Sea were carried out despite the fact that many uncertainties are involved. For both cruises a vertical overturning cell of about 4-6 Sv was determined, with inflow below 2500 m and outflow between about 300 and 2500 m. In the upper 300-450 m a seasonally reversing shallow meridional overturning cell appears to exist in which the Ekman transport is balanced by a geostrophic transport. The heat flux across 8°N is dominated by the Ekman transport, yielding about -0.6 PW for August 1993, and 0.24 PW for January 1998. These values are comparable to climatological and model derived heat flux estimates. Freshwater fluxes across 8°N also were computed, yielding northward freshwater fluxes of 0.07 Sv in January 1998 and 0

  19. Bounds on the Cabibbo-Kobayashi-Maskawa matrix elements vertical strokeVtdvertical stroke and vertical strokeVtsvertical stroke from experiments on B0-anti B0 mixings

    International Nuclear Information System (INIS)

    Ali, A.; Eijk, B. van; Have, I. ten

    1987-01-01

    We present a theoretical analysis of the process panti p → μ ± μ ± X, μ ± X', μ + μ - X' due to heavy flavour production and decays, based on perturbative quantum chromodynamics, QCD. We find reasonable agreement for the inclusive rates and distributions between the UA1 measurement and our calculations, with the exception of the dimuon ratio R(±±/+--), which is found typically a factor ≅ 1.8 smaller than the UA1 data. We interpret this excess in terms of B s 0 -anti B s 0 mixing and obtain a lower bound on the mixing probability, ρ s > 0.14. In the standard model this implies a lower bound on the Cabibbo-Kobayashi-Maskawa matrix element vertical strokeV ts vertical stroke given the top quark mass. The lower bound on vertical strokeV ts vertical stroke and the upper bound on vertical strokeV td vertical stroke, obtained from the (upper bound) B d 0 -anti B d 0 mixing probability, ρ d , from e + e - experiments are worked out. (orig.)

  20. Simulation of heat and mass transfer in boiling water with the Melodif code

    International Nuclear Information System (INIS)

    Freydier, P.; Chen, O.; Olive, J.; Simonin, O.

    1991-04-01

    The Melodif code is developed at Electricite de France, Research and Development Division. It is an eulerian two dimensional code for the simulation of turbulent two phase flows (a three dimensional code derived from Melodif, ASTRID, is currently being prepared). Melodif is based on the two fluid model, solving the equations of conservation for mass, momentum and energy, for both phases. In such a two fluid model, the description of interfacial transfers between phases is a crucial issue. The model used applies to a dominant continuous phase, and a dispersed phase. A good description of interfacial momentum transfer exists in the standard MELODIF code: the drag force, the apparent mass force... are taken into account. An important factor for interfacial transfers is the interfacial area per volume unit. With the assumption of spherical gas bubbles, an equation has been written for this variable. In the present wok, a model has been tested for interfacial heat and mass transfer in the case of boiling water: it is assumed that mass transfer is controlled by heat transfer through the latent massic energy taken in the phase that vaporizes (or condenses). This heat and mass transfer model has been tested in various configurations: - a cylinder with water flowing inside, is being heated. Boiling takes place near the wall, while bubbles migrating to the core of the flow recondense. This roughly simulates a sub-cooled boiling phenomenon. - a box containing liquid water is depressurized. Boiling takes place in the whole volume of the fluid. The Melodif code can simulate this configuration due to the implicitation of the relation between interphase mass transfer and the pressure variable

  1. Reconstructing particle masses in events with displaced vertices

    Science.gov (United States)

    Cottin, Giovanna

    2018-03-01

    We propose a simple way to extract particle masses given a displaced vertex signature in event topologies where two long-lived mother particles decay to visible particles and an invisible daughter. The mother could be either charged or neutral and the neutral daughter could correspond to a dark matter particle in different models. The method allows to extract the parent and daughter masses by using on-shell conditions and energy-momentum conservation, in addition to the displaced decay positions of the parents, which allows to solve the kinematic equations fully on an event-by-event basis. We show the validity of the method by means of simulations including detector effects. If displaced events are seen in discovery searches at the Large Hadron Collider (LHC), this technique can be applied.

  2. Phase change of First Wall in Water-Cooled Breeding Blankets of K-DEMO for Vertical

    International Nuclear Information System (INIS)

    Kim, Geon Woo; Lee, Jeong Hun; Cho, Hyoung Kyu; Park, Goon Cherl; Im, Ki Hak

    2016-01-01

    The purpose of this study is to simulate thermal-hydraulic behavior of a single blanket module when plasma disruption occurs. Plasma disruptions, such as vertical displacement events (VDE), with high heat flux can cause melting and vaporization of plasma facing materials and also burnout of coolant channels. The thermal design, evaluation and validation have been performed in order to establish the conceptual design guidelines of the water-cooled breeding blanket for the K-DEMO reactor. As a part of the NFRI research, Seoul National University (SNU) is conducting transient thermal-hydraulic analysis to confirm the integrity of blanket system for plasma disruption events. Vertical displacement events (VDE) with high heat flux can cause melting and vaporization of plasma facing materials (PFCs) and also burnout of coolant channels. In order to simulate melting of first wall in blanket module when VDE occurs, one-dimensional heat conduction equations were solved numerically with modification of the specific heat of the first wall materials using effective heat capacity method. Temperature profiles in first wall for VDE are shown in fig 7 - 9. At first, temperature of tungsten rapidly raised and even exceeded its melting temperature. When VDE just ended at 0.1 second, 0.83 mm thick of tungsten melted. But the other materials including vanadium and RAFM didn't exceed their melting temperatures after 500 seconds

  3. Phase change of First Wall in Water-Cooled Breeding Blankets of K-DEMO for Vertical

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo; Lee, Jeong Hun; Cho, Hyoung Kyu; Park, Goon Cherl [Seoul National University, Seoul (Korea, Republic of); Im, Ki Hak [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to simulate thermal-hydraulic behavior of a single blanket module when plasma disruption occurs. Plasma disruptions, such as vertical displacement events (VDE), with high heat flux can cause melting and vaporization of plasma facing materials and also burnout of coolant channels. The thermal design, evaluation and validation have been performed in order to establish the conceptual design guidelines of the water-cooled breeding blanket for the K-DEMO reactor. As a part of the NFRI research, Seoul National University (SNU) is conducting transient thermal-hydraulic analysis to confirm the integrity of blanket system for plasma disruption events. Vertical displacement events (VDE) with high heat flux can cause melting and vaporization of plasma facing materials (PFCs) and also burnout of coolant channels. In order to simulate melting of first wall in blanket module when VDE occurs, one-dimensional heat conduction equations were solved numerically with modification of the specific heat of the first wall materials using effective heat capacity method. Temperature profiles in first wall for VDE are shown in fig 7 - 9. At first, temperature of tungsten rapidly raised and even exceeded its melting temperature. When VDE just ended at 0.1 second, 0.83 mm thick of tungsten melted. But the other materials including vanadium and RAFM didn't exceed their melting temperatures after 500 seconds.

  4. Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest.

    Science.gov (United States)

    Coble, Adam P; Cavaleri, Molly A

    2014-02-01

    Leaf mass per area (LMA, g m(-2)) is an essential trait for modeling canopy function due to its strong association with photosynthesis, respiration and leaf nitrogen. Leaf mass per area, which is influenced by both leaf thickness and density (LMA = thickness × density), generally increases from the bottom to the top of tree canopies, yet the mechanisms behind this universal pattern are not yet resolved. For decades, the light environment was assumed to be the most influential driver of within-canopy variation in LMA, yet recent evidence has shown hydrostatic gradients to be more important in upper canopy positions, especially in tall evergreen trees in temperate and tropical forests. The aim of this study was to disentangle the importance of various environmental drivers on vertical LMA gradients in a mature sugar maple (Acer saccharum Marshall) forest. We compared LMA, leaf density and leaf thickness relationships with height, light and predawn leaf water potential (ΨPre) within a closed and an exposed canopy to assess leaf morphological traits at similar heights but different light conditions. Contrary to our expectations and recent findings in the literature, we found strong evidence that light was the primary driver of vertical gradients in leaf morphology. At similar heights (13-23 m), LMA was greater within the exposed canopy than the closed canopy, and light had a stronger influence over LMA compared with ΨPre. Light also had a stronger influence over both leaf thickness and density compared with ΨPre; however, the increase in LMA within both canopy types was primarily due to increasing leaf thickness with increasing light availability. This study provides strong evidence that canopy structure and crown exposure, in addition to height, should be considered as a parameter for determining vertical patterns in LMA and modeling canopy function.

  5. Disappearance of a detached vapor mass in subcooled water

    International Nuclear Information System (INIS)

    Inada, Shigeaki; Miyasaka, Yoshiki; Izumi, Ryotaro.

    1986-01-01

    Experiments on pool transition boiling of water under atmospheric pressure on a heated surface 10 mm in diameter were conducted for subcooling 15 - 50 K. The mass flux of condensation of a detached coalescent vapor bubble was experimentally estimated by a mathematical model based on the mass transfer mechanism of condensation. As a result, it is clarified that the mass flux of condensation of the detached bubble was influenced by the initial growing velocity of a vapor bubble immediately following the detached bubble. The disappearance velocity of the detached bubble defined as a ratio of the bubble diameter at the departure to the time required until the disappearance, is in the range 0.2 to 2.0 m/sec. The disappearance velocity is proportional to the initial growing velocity of the bubble, to the square of the heat flux of the heated surface and to the cube of the wall superheat, separately. (author)

  6. MHD mixed convection in a vertical annulus filled with Al{sub 2}O{sub 3}–water nanofluid considering nanoparticle migration

    Energy Technology Data Exchange (ETDEWEB)

    Malvandi, A., E-mail: amirmalvandi@aut.ac.ir [Department of Mechanical Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur (Iran, Islamic Republic of); Safaei, M.R. [Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Kaffash, M.H. [Department of Mechanical Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur (Iran, Islamic Republic of); Ganji, D.D. [Mechanical Engineering Department, Babol University of Technology, Babol (Iran, Islamic Republic of)

    2015-05-15

    In the current study, an MHD mixed convection of alumina/water nanofluid inside a vertical annular pipe is investigated theoretically. The model used for the nanofluid mixture involves Brownian motion and thermophoretic diffusivities in order to take into account the effects of nanoparticle migration. Since the thermophoresis is the main mechanism of the nanoparticle migration, different temperature gradients have been imposed using the asymmetric heating. Considering hydrodynamically and thermally fully developed flow, the governing equations have been reduced to two-point ordinary boundary value differential equations and they have been solved numerically. It is revealed that the imposed thermal asymmetry would change the direction of nanoparticle migration and distorts the velocity, temperature and nanoparticle concentration profiles. Moreover, it is shown that the advantage of nanofluids in heat transfer enhancement is reduced in the presence of a magnetic field. - Highlights: • MHD mixed convection of alumina/water nanofluid inside a vertical annulus. • The effects of nanoparticle migration on rheological and thermophysical characteristics. • The effects of asymmetric heating on nanoparticle migration. • The effects of asymmetric heating on the heat transfer enhancement. • Inclusion of nanoparticles in presence of a magnetic field has a negative effect on performance.

  7. Regional GRACE-based estimates of water mass variations over Australia: validation and interpretation

    Science.gov (United States)

    Seoane, L.; Ramillien, G.; Frappart, F.; Leblanc, M.

    2013-04-01

    Time series of regional 2°-by-2° GRACE solutions have been computed from 2003 to 2011 with a 10 day resolution by using an energy integral method over Australia [112° E 156° E; 44° S 10° S]. This approach uses the dynamical orbit analysis of GRACE Level 1 measurements, and specially accurate along-track K Band Range Rate (KBRR) residuals (1 μm s-1 level of error) to estimate the total water mass over continental regions. The advantages of regional solutions are a significant reduction of GRACE aliasing errors (i.e. north-south stripes) providing a more accurate estimation of water mass balance for hydrological applications. In this paper, the validation of these regional solutions over Australia is presented as well as their ability to describe water mass change as a reponse of climate forcings such as El Niño. Principal component analysis of GRACE-derived total water storage maps show spatial and temporal patterns that are consistent with independent datasets (e.g. rainfall, climate index and in-situ observations). Regional TWS show higher spatial correlations with in-situ water table measurements over Murray-Darling drainage basin (80-90%), and they offer a better localization of hydrological structures than classical GRACE global solutions (i.e. Level 2 GRGS products and 400 km ICA solutions as a linear combination of GFZ, CSR and JPL GRACE solutions).

  8. Chemical mass transport between fluid fine tailings and the overlying water cover of an oil sands end pit lake

    Science.gov (United States)

    Dompierre, Kathryn A.; Barbour, S. Lee; North, Rebecca L.; Carey, Sean K.; Lindsay, Matthew B. J.

    2017-06-01

    Fluid fine tailings (FFT) are a principal by-product of the bitumen extraction process at oil sands mines. Base Mine Lake (BML)—the first full-scale demonstration oil sands end pit lake (EPL)—contains approximately 1.9 × 108 m3 of FFT stored under a water cover within a decommissioned mine pit. Chemical mass transfer from the FFT to the water cover can occur via two key processes: (1) advection-dispersion driven by tailings settlement; and (2) FFT disturbance due to fluid movement in the water cover. Dissolved chloride (Cl) was used to evaluate the water cover mass balance and to track mass transport within the underlying FFT based on field sampling and numerical modeling. Results indicated that FFT was the dominant Cl source to the water cover and that the FFT is exhibiting a transient advection-dispersion mass transport regime with intermittent disturbance near the FFT-water interface. The advective pore water flux was estimated by the mass balance to be 0.002 m3 m-2 d-1, which represents 0.73 m of FFT settlement per year. However, the FFT pore water Cl concentrations and corresponding mass transport simulations indicated that advection rates and disturbance depths vary between sample locations. The disturbance depth was estimated to vary with location between 0.75 and 0.95 m. This investigation provides valuable insight for assessing the geochemical evolution of the water cover and performance of EPLs as an oil sands reclamation strategy.

  9. Mathematical modeling of water mass balance for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Wan Ramli Wan Daud; Kamaruzzaman Sopian; Jaafar Sahari; Nik Suhaimi Mat Hassan

    2006-01-01

    Gas and water management are key to achieving good performance from a proton exchange membrane fuel cell (PEMFC) stack. Water plays a critical role in PEMFC. The proton conductivity is increase with the water content. In order to achieve enough hydration, water is normally introduced into the cell externally by a variety of methods such as liquid injection, steam introduction, and humidification of reactants by passing them through humidifiers before entering the cell. In this paper, mathematical modeling of water mass balance for PEMFC at anode and cathode side are proposed by using external humidification and assume that steady state, constant pressure, constant temperature and gases distribution are uniform

  10. Continuum model for water movement in an unsaturated fractured rock mass

    International Nuclear Information System (INIS)

    Peters, R.R.; Klavetter, E.A.

    1988-01-01

    The movement of fluids in a fractured, porous medium has been the subject of considerable study. This paper presents a continuum model that may be used to evaluate the isothermal movement of water in an unsaturated, fractured, porous medium under slowly changing conditions. This continuum model was developed for use in evaluating the unsaturated zone at the Yucca Mountain site as a potential repository for high-level nuclear waste. Thus its development has been influenced by the conditions thought to be present at Yucca Mountain. A macroscopic approach and a microscopic approach are used to develop a continuum model to evaluate water movement in a fractured rock mass. Both approaches assume that the pressure head in the fractures and the matrix are identical in a plane perpendicular to flow. Both approaches lead to a single-flow equation for a fractured rock mass. The two approaches are used to calculate unsaturated hydrologic properties, i.e., relative permeability and saturation as a function of pressure head, for several types of tuff underlying Yucca Mountain, using the best available hydrologic data for the matrix and the fractures. Rock mass properties calculated by both approaches are similar

  11. Hydrophysical correlation and water mass indication of optical physiological parameters of picophytoplankton in Prydz Bay during autumn 2008.

    Science.gov (United States)

    Zhang, Fang; Ma, Yuxin; Lin, Ling; He, Jianfeng

    2012-12-01

    Flow cytometry (FCM) is efficient in detecting both abundance and optical physiological parameters including cell size and cellular carbon content-side scatter (SSC), carotenoids-green and orange fluorescence (FL1 and FL2), and red fluorescence-chlorophylls (FL3) can be obtained by FCM. The utilization of these physiological parameters in indicating water masses in Prydz Bay was investigated for the first time. Picophytoplankton were very sensitive to hydrophysical changes and present distinct characteristics of water masses: Picophytoplankton in water closer to the Amery Ice Shelf were more affected by salinity than by temperature, while temperature became more important than salinity the nearer the picophytoplankton were to the deep sea. The picophytoplankton dealt with declines in light by increasing the size of cells, which increase the fixation of carbon. This can also be increased by high temperature and salinity. Pure water masses can increase the content of chlorophylls and cellular carbon. Generally, the distributions of all the five parameters at upper water depths were less affected by temperature and salinity than by water masses; and these parameters can be as indicators to Summer Surface Water (SSW), Winter Water (WW) and Continental Shelf Water (CSW). Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Experimental study for flow regime of downward air-water two-phase flow in a vertical narrow rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. H.; Yun, B. J.; Jeong, J. H. [Pusan National University, Geunjeong-gu, Busan (Korea, Republic of)

    2015-05-15

    Studies were mostly about flow in upward flow in medium size circular tube. Although there are great differences between upward and downward flow, studies on vertical upward flow are much more active than those on vertical downward flow in a channel. In addition, due to the increase of surface forces and friction pressure drop, the pattern of gas-liquid two-phase flow bounded to the gap of inside the rectangular channel is different from that in a tube. The downward flow in a rectangular channel is universally applicable to cool the plate type nuclear fuel in research reactor. The sub-channel of the plate type nuclear fuel is designed with a few millimeters. Downward air-water two-phase flow in vertical rectangular channel was experimentally observed. The depth, width, and length of the rectangular channel is 2.35 mm, 66.7 mm, and 780 mm, respectively. The test section consists of transparent acrylic plates confined within a stainless steel frame. The flow patterns of the downward flow in high liquid velocity appeared to be similar to those observed in previous studies with upward flow. In downward flow, the transition lines for bubbly-slug and slug-churn flow shift to left in the flow regime map constructed with abscissa of the superficial gas velocity and ordinate of the superficial liquid velocity. The flow patterns observed with downward flow at low liquid velocity are different from those with upward flow.

  13. Biomarker Pigment Divinyl Chlorophyll a as a Tracer of Water Masses?

    Science.gov (United States)

    Mejdandzic, Maja; Mihanovic, Hrvoje; Silovic, Tina; Henderiks, Jorijntje; Supraha, Luka; Polovic, Dorotea; Bosak, Suncica; Bosnjak, Ivana; Cetinic, Ivona; Olujic, Goran; hide

    2015-01-01

    The ecological preferences of different Phytoplankton types drive their temporal and spatial distributions, reflecting their dependence on certain temperature ranges, light levels, nutrient availability and other environmental gradients. Hence, some phytoplankton taxa can be used as water mass tracers (biotracers).

  14. Water mass census in the Nordic seas using climatological and observational data sets

    International Nuclear Information System (INIS)

    Piacsek, S.; Allard, R.; McClean, J.

    2008-01-01

    We have compared and evaluated the water mass census in the Greenland-Iceland-Norwegian (Gin) Sea area from climatologies, observational data sets and model output. The four climatologies evaluated were: the 1998 and 2001 versions of the World Ocean Atlas (WOA98, WOA01), and the United States Navy's GDEM90 (Generalized Digital Environmental Model) and MODAS01 (Modular Ocean Data Assimilation System) climatologies. Three observational data sets were examined: the multidecadal (1965-1995) set contained on the National Oceano- graphic Data Centre's (NODC) WOD98 (World Ocean Data) Cd-Rom, and two seasonal data sets extracted from observations taken on six cruises by the SACLANT Research Center (SACLANTCEN) of NATO/Italy between 1986-1989. The model data is extracted from a global model run at 1/3 degree resolution for the years 1983-1997, using the Pop (Parallel Ocean Program) model of the Los Alamos National Laboratory. The census computations focused on the Norwegian Sea, in the southern part of the Gin Sea, between 10 0 W-10 0 E and 60 0 N-70 0 N, especially for comparisons with the hydro casts and the model. Cases of such evaluation computations included: (a) short term comparisons with quasi-synoptic CTD surveys carried out over a 4-year period in the southeastern Gin Sea; (b) climatological comparisons utilizing all available casts from the WOD98 Cd-Rom, with four climatologies; and (c) a comparison between the WOA01 climatology and the Pop model output ending in 1997. In this region in the spring, the fraction of ocean water that has salinity above 34.85 is ∼94%, and that has temperatures above 0 0 C is ∼33%. Three principal water masses dominated the census: the Atlantic water A W, the deep water D W and an intermediate water mass defined as Lower Arctic Intermediate Water (LAIW). Besides these classes, both the climatologies and the observations exhibited the significant presence of deep water masses with T-S characteristics that do not fall into the named

  15. An Analysis of Saturated Film Boiling Heat Transfer from a Vertical Slab with Horizontal Bottom Surface

    OpenAIRE

    茂地, 徹; 山田, たかし

    1997-01-01

    The film boiling heat transfer from a vertical slab with horizontal bottom surface to saturated liquids was analyzed theoretically. Bromley's solution for the vertical surface was modified to accommodate the continuity of the vapor mass flow rate around the lower corner of the vertical slab. The thickness of the vapor film covering the vertical surface of the slab was increased owing to the inflow of vapor generated under the horizontal bottom surface and resulted in a decrease in the heat tr...

  16. A Comparison of Vertical Stiffness Values Calculated from Different Measures of Center of Mass Displacement in Single-Leg Hopping.

    Science.gov (United States)

    Mudie, Kurt L; Gupta, Amitabh; Green, Simon; Hobara, Hiroaki; Clothier, Peter J

    2017-02-01

    This study assessed the agreement between K vert calculated from 4 different methods of estimating vertical displacement of the center of mass (COM) during single-leg hopping. Healthy participants (N = 38) completed a 10-s single-leg hopping effort on a force plate, with 3D motion of the lower limb, pelvis, and trunk captured. Derived variables were calculated for a total of 753 hop cycles using 4 methods, including: double integration of the vertical ground reaction force, law of falling bodies, a marker cluster on the sacrum, and a segmental analysis method. Bland-Altman plots demonstrated that K vert calculated using segmental analysis and double integration methods have a relatively small bias (0.93 kN⋅m -1 ) and 95% limits of agreement (-1.89 to 3.75 kN⋅m -1 ). In contrast, a greater bias was revealed between sacral marker cluster and segmental analysis (-2.32 kN⋅m -1 ), sacral marker cluster and double integration (-3.25 kN⋅m -1 ), and the law of falling bodies compared with all methods (17.26-20.52 kN⋅m -1 ). These findings suggest the segmental analysis and double integration methods can be used interchangeably for the calculation of K vert during single-leg hopping. The authors propose the segmental analysis method to be considered the gold standard for the calculation of K vert during single-leg, on-the-spot hopping.

  17. A Note on Variable Viscosity and Chemical Reaction Effects on Mixed Convection Heat and Mass Transfer Along a Semi-Infinite Vertical Plate

    Directory of Open Access Journals (Sweden)

    Mostafa A. A. Mahmoud

    2007-01-01

    Full Text Available In the present study, an analysis is carried out to study the variable viscosity and chemical reaction effects on the flow, heat, and mass transfer characteristics in a viscous fluid over a semi-infinite vertical porous plate. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically by using the shooting method. The effects of different parameters on the dimensionless velocity, temperature, and concentration profiles are shown graphically. In addition, tabulated results for the local skin-friction coefficient, the local Nusselt number, and the local Sherwood number are presented and discussed.

  18. Model description of dibenzothiophene mass transfer in oil/water dispersions with respect to biodesulfurization

    NARCIS (Netherlands)

    Marcelis, C.L.M.; Leeuwen, van M.; Polderman, H.G.; Janssen, A.J.H.; Lettinga, G.

    2003-01-01

    A mathematical model was developed in order to describe the mass transfer rate of dibenzothiophene within the oil droplet to the oil/water interface of droplets created in a stirred tank reactor. The mass transfer rate of dibenzothiophene was calculated for various complex hydrocarbon distillates

  19. Factors affecting the vertical distribution of eggs [HELP 34

    OpenAIRE

    Sundby, Svein

    1990-01-01

    The spatia1 distribution of eggs and larvae is a function of the properties of the ambient water, i.e. the density, current and turbulent diffusion, and of the physical properties of the eggs, i.e. the buoyancy and dimension. The study of the vertical distribution is the first step to understanding the horizontal transport of eggs and larvae. Two models for the vertical distribution of eggs are applied to demonstrate how the physical and biological conditions influence th...

  20. The role of the substrate surface morphology and water in growth of vertically aligned single-walled carbon nanotubes.

    Science.gov (United States)

    Pint, Cary; Pheasant, Sean; Nicholas, Nolan; Horton, Charles; Hauge, Robert

    2008-11-01

    Growth of high quality, vertically aligned single-walled carbon nanotubes (carpets) is achieved using a rapid insertion hot filament chemical vapor deposition (HF-CVD) technique. The effect of the substrate morphology on growth is explored by comparing carpets grown on epitaxially polished MgO substrates to those grown on "as-cut", macroscopically rough MgO substrates. Depending on the substrate morphology, we observe differences in both the overall carpet morphology as well as the diameter distribution of nanotubes grown in the carpet based on optical measurements. In addition, we explore the role of water in the growth of carpets on MgO and the conventional Al2O3 coated Si substrates. We find that the addition of a small amount of water is beneficial to the growth rates of the SWNT carpets, enhancing the growth rates by up to eight times.

  1. Seaglider surveys at Ocean Station Papa: Circulation and water mass properties in a meander of the North Pacific Current

    Science.gov (United States)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2016-09-01

    A Seaglider autonomous underwater vehicle augmented the Ocean Station Papa (OSP; 50°N, 145°W) surface mooring, measuring spatial structure on scales relevant to the monthly evolution of the moored time series. During each of three missions from June 2008 to January 2010, a Seaglider made biweekly 50 km × 50 km surveys in a bowtie-shaped survey track. Horizontal temperature and salinity gradients measured by these surveys were an order of magnitude stronger than climatological values and sometimes of opposite sign. Geostrophically inferred circulation was corroborated by moored acoustic Doppler current profiler measurements and AVISO satellite altimetry estimates of surface currents, confirming that glider surveys accurately resolved monthly scale mesoscale spatial structure. In contrast to climatological North Pacific Current circulation, upper-ocean flow was modestly northward during the first half of the 18 month survey period, and weakly westward during its latter half, with Rossby number O>(0.01>). This change in circulation coincided with a shift from cool and fresh to warm, saline, oxygen-rich water in the upper-ocean halocline, and an increase in vertical fine structure there and in the lower pycnocline. The anomalous flow and abrupt water mass transition were due to the slow growth of an anticyclonic meander within the North Pacific Current with radius comparable to the scale of the survey pattern, originating to the southeast of OSP.

  2. Grouting aid for controlling the separation of water for cement grout for grouting vertical tendons in nuclear concrete pressure vessels

    International Nuclear Information System (INIS)

    Schupack, M.

    1976-01-01

    Considerable testing and development work has led to grouting procedures which can successfully grout 60 m and taller tendons in containment structures. The exaggerated water separation phenomena of strand tendons can be controlled by chemical admixtures using proper mixing and pumping procedures. Experience with both vertical six-bar tendons and large capacity strand type tendons are described. History, development work, characteristics of grout using the admixtures, mixing and pumping procedure, full scale tests and practical applications are included. (author)

  3. Physical determinants of phytoplankton production, algal stoichiometry, and vertical nutrient fluxes.

    Science.gov (United States)

    Jäger, Christoph G; Diehl, Sebastian; Emans, Maximilian

    2010-04-01

    Most phytoplankters face opposing vertical gradients in light versus nutrient supplies but have limited capacities for vertical habitat choice. We therefore explored a dynamical model of negatively buoyant algae inhabiting a one-dimensional water column to ask how water column depth and turbulence constrain total (areal) phytoplankton biomass. We show that the population persistence boundaries in water column depth-turbulence space are set by sinking losses and light limitation but that nutrients are most limiting to total biomass in water columns that are neither too shallow or too weakly mixed (where sinking losses prevail) nor too deep and turbulent (where light limitation prevails). In shallow waters, the most strongly limiting process is nutrient influx to the bottom of the water column (e.g., from sediments). In deep waters, the most strongly limiting process is turbulent upward transport of nutrients to the photic zone. Consequently, the highest total biomasses are attained in turbulent waters at intermediate water column depths and in deep waters at intermediate turbulences. These patterns are insensitive to the assumption of fixed versus flexible algal carbon-to-nutrient stoichiometry, and they arise irrespective of whether the water column is a surface layer above a deep water compartment or has direct contact with sediments.

  4. Gravity Gradient Tensor of Arbitrary 3D Polyhedral Bodies with up to Third-Order Polynomial Horizontal and Vertical Mass Contrasts

    Science.gov (United States)

    Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang

    2018-03-01

    During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained

  5. Early Detection of Biofouling on Water Purification Membranes by Ambient Ionization Mass Spectrometry Imaging.

    Science.gov (United States)

    Jakka Ravindran, Swathy; Kumar, Ramesh; Srimany, Amitava; Philip, Ligy; Pradeep, Thalappil

    2018-01-02

    By direct analysis of water purification membranes using ambient ionization mass spectrometry, an attempt has been made to understand the molecular signatures of bacterial fouling. Membrane based purification methods are used extensively in water treatment, and a major challenge for them is biofouling. The buildup of microbes and their extracellular polymeric matrix clog the purification membranes and reduce their efficiency. To understand the early stages of bacterial fouling on water purification membranes, we have used desorption electrospray ionization mass spectrometry (DESI MS), where ion formation occurs in ambient conditions and the ionization event is surface sensitive. Biosurfactants at the air-water interface generated by microorganisms as a result of quorum sensing, influence the water-membrane interface and are important for the bacterial attachment. We show that these biosurfactants produced by bacteria can be indicator molecular species signifying initiation of biofilms on membrane surfaces, demonstrated by specific DESI MS signatures. In Pseudomonas aeruginosa, one of the best studied models for biofilm formation, this process is mediated by rhamnolipids forewarning bacterial fouling. Species dependent variation of such molecules can be used for the precise identification of the microorganisms, as revealed by studies on P. aeroginosa (ATCC 25619). The production of biosurfactants is tightly regulated at the transcriptional level by the quorum-sensing (QS) response. Thus, secretion of these extracellular molecules across the membrane surface allows rapid screening of the biofilm community. We show that, the ambient ionization mass spectrometry can detect certain toxic heavy metals present in water, using surfactant-metal complexes as analytes. We believe that such studies conducted on membranes in various input water streams will help design suitable membrane processes specific to the input streams.

  6. Initial Unsteady Free Convective Flow Past an Infinite Vertical Plate with Radiation and Mass Transfer Effects

    Directory of Open Access Journals (Sweden)

    Khan A.

    2017-12-01

    Full Text Available An exact solution and analysis of an initial unsteady two dimensional free convection flow, heat and mass transfer in the presence of thermal radiation along an infinite fixed vertical plate when the plate temperature is instantaneously raised, is presented. The fluid considered is a gray, absorbing emitting radiation but a nonscattering medium. Three cases have been discussed, in particular, namely, (i when, the plate temperature is instantaneously raised to a higher constant value, (ii when, the plate temperature varies linearly with time and (iii when, the plate temperature varies non-linearly with time. A close form general solution for all the cases has been obtained in terms of repeated integrals of error functions. In two particular cases, the solutions in terms of the repeated integrals of error functions have been further simplified to forms containing only error functions. It is observed that for an increase in the radiation parameter N or a decrease in the Grashof number Gr or Gm, there is a fall in the velocity or temperature, but compared to the no radiation case or no diffusing species, there is a rise in the velocity and temperature of the fluid.

  7. Compartment in vertical flow reactor for ferruginous mine water

    Science.gov (United States)

    Hur, Won; Cheong, Young-Wook; Yim, Gil-Jae; Ji, Sang-Woo; Hong, Ji-Hye

    2014-05-01

    Mine effluents contain varying concentrations of ferrous ion along with other metal ions. Fe(II) that quickly oxidizes to form precipitates in the presence of oxygen under net alkaline or neutral conditions. Thus, passive treatment methods are designed for the mine water to reside in an open containment area so as to allow simultaneous oxidation and precipitation of Fe(II), such as in a lagoon or an oxidation pond. A vertical flow reactor (VFR) was also suggested to remediate ferruginous mine drainage passing down through an accreting bed of ochre. However, VFR has a limited operation time until the system begins to overflow. It was also demonstrated that two-compartment VFR has a longer operation time than single compartment VFR of same size. In this study, a mathematical model was developed as a part of efforts to explore the operation of VFR, showing dynamic changes in head differences, ochre depth and Fe(II)/Fe(III) concentration in the effluent flow. The analysis shows that Fe(II) oxidation and ochre formation should be balanced with permeability of ochre bed to maximize VFR operation time and minimize residual Fe(II) in the effluent. The model demonstrates that two compartment VFR can have a longer operation time than a single-compartment VFR and that an optimum compartment ratio exists that maximize VFR operation time. Accelerated Fe(II) oxidation significantly affects the optimum ratio of compartment area and reduced residual Fe(II) in the effluent. VFR operation time can be significantly prolonged by increasing the rate of ochre formation not by accelerated Fe(II) oxidation. Taken together, ochre forms largely in the first compartment while overflowed mine water with reduced iron contents is efficiently filtered in the second compartment. These results provide us a better understanding of VFR operation and optimum design criteria for maximum operation time in a two-compartment VFR. Rapid ochre accretion in the first compartment maintains constant hydraulic

  8. Water mass distribution in Fram Strait and over the Yermak Plateau in summer 1997

    Directory of Open Access Journals (Sweden)

    B. Rudels

    Full Text Available The water mass distribution in northern Fram Strait and over the Yermak Plateau in summer 1997 is described using CTD data from two cruises in the area. The West Spitsbergen Current was found to split, one part recirculated towards the west, while the other part, on entering the Arctic Ocean separated into two branches. The main inflow of Atlantic Water followed the Svalbard continental slope eastward, while a second, narrower, branch stayed west and north of the Yermak Plateau. The water column above the southeastern flank of the Yermak Plateau was distinctly colder and less saline than the two inflow branches. Immediately west of the outer inflow branch comparatively high temperatures in the Atlantic Layer suggested that a part of the extraordinarily warm Atlantic Water, observed in the boundary current in the Eurasian Basin in the early 1990s, was now returning, within the Eurasian Basin, toward Fram Strait. The upper layer west of the Yermak Plateau was cold, deep and comparably saline, similar to what has recently been observed in the interior Eurasian Basin. Closer to the Greenland continental slope the salinity of the upper layer became much lower, and the temperature maximum of the Atlantic Layer was occasionally below 
    0.5 °C, indicating water masses mainly derived from the Canadian Basin. This implies that the warm pulse of Atlantic Water had not yet made a complete circuit around the Arctic Ocean. The Atlantic Water of the West Spitsbergen Current recirculating within the strait did not extend as far towards Greenland as in the 1980s, leaving a broader passage for waters from the Atlantic and intermediate layers, exiting the Arctic Ocean. A possible interpretation is that the circulation pattern alternates between a strong recirculation of the West Spitsbergen Current in the strait, and a larger exchange of Atlantic Water between the Nordic Seas and the inner parts of the Arctic Ocean.

    Key words: Oceanography: general

  9. Coupled vertical-rocking response of base-isolated structures

    International Nuclear Information System (INIS)

    Pan, T.C.; Kelly, J.M.

    1984-01-01

    A base-isolated building can have a small horizontal eccentricity between the center of mass of the superstructure and the center of rigidity of the supporting bearings. The structure can be modeled as a rigid block with tributary masses supported on massless rubber bearings placed at a constant elevation below the center of mass. Perturbation methods are implemented to find the dynamic characteristics for both the detuned and the perfectly tuned cases. The Green's functions for the displacement response of the system are derived for the undamped and the damped conditions. The response spectrum modal superposition method is used in estimating the maximum acceleration. A simple method, accounting for the effect of closely spaced modes, is proposed for combining modal maxima and results in an approximate single-degree-of-freedom solution. This approximate solution may be used for thepreliminary design of a base-isolated structure. Numerical results for a base-isolated building subjected to the vertical component of the El Centro earthquake of 1940 were carried out for comparison with analytical results. It is shown that the effect of rocking coupling on the vertical seismic response of baseisolated structures can generally be neglected because of the combined effects of the time lag between the maximum translational and rotational responses and the influence of damping in the isolation system

  10. Well Water and Subsurface Salinity of Tuba Basin Langkawi by Hydrochemical Analysis and Vertical Electrical Resistivity Survey

    International Nuclear Information System (INIS)

    Umar Hamzah; Abdul Rahim Samsudin; Abdul Ghani Rafek; Khairul Azlan Razak

    2009-01-01

    Tuba basin is an alluvial deposit located between granitic hill in the western part of Tuba Island and the Setul formation sedimentary rocks in the eastern site of the island. This basin stretched along 3 km in the NE-SW direction with an estimated width of about 2 km. A geophysical survey using geo electrical technique was carried out to figure out the subsurface structure, to detect the presence of underground aquifers and to investigate any saltwater intrusion into these aquifers in the basin. Concentrations of several elements in the well water were also analyzed to investigate any occurrence of salt water intrusion into the coastal aquifers. For this purpose, the vertical electrical sounding surveys were carried out at 22 randomly distributed stations in the study area. Water samples were also taken from 11 wells for hydrochemical analysis in the laboratory. Our results showed that all water samples were of fresh water type. Electrical resistivity profile constructed from stations located in NE-SW direction from Teluk Berembang to Telok Bujur shows a wide range of resistivities ranging from 4 Ωm to infinity. The top layer with a thickness of 1-3 m and resistivity values of 4 - 12 Ωm is interpreted as clay zone. This layer is overlying a much thicker layer of 10-50 m with resistivity values of 2 - 280 Ωm representing sandy material that may contain fresh water or sand with brackish water. Layers with resistivity values from thousands ohm.m to infinity are interpreted as either granite or limestone bedrock. Maximum thickness observed in this resistivity survey is approximately 70 m. (author)

  11. Mixed convective heat transfer from a vertical plate embedded in a ...

    Indian Academy of Sciences (India)

    Melting effect with heat and mass transfer in porous media has much ... convection boundary layer flow about a vertical surface embedded in a porous medium, ..... Salama A 2008 Combined effect of thermal dispersion and radiation on free.

  12. Numerical Analysis and Geometry Optimisation of Vertical Vane of Room Air-conditioner

    Directory of Open Access Journals (Sweden)

    Al-Obaidi Abdulkareem Sh. Mahdi

    2018-01-01

    Full Text Available Vertical vanes of room air-conditioners are used to control and direct cold air. This paper aims to study vertical vane as one of the parameters that affect the efficiency of dissipating cold air to a given space. The vertical vane geometry is analysed and optimised for lower production cost using CFD. The optimised geometry of the vertical vane should have the same or increased efficiency of dissipating cold air and have lesser mass compared to the existing original design. The existing original design of vertical vane is simplified and analysed by using ANSYS Fluent. Efficiency of wind direction is define as how accurate the direction of airflow coming out from vertical vane. In order to calculate the efficiency of wind direction, 15° and 30° rotation of vertical vane inside room air-conditioner are simulated. The efficiency of wind direction for 15° rotation of vertical vane is 57.81% while efficiency of wind direction for 30° rotation of vertical vane is 47.54%. The results of the efficiency of wind direction are used as base reference for parametric study. The parameters investigated for optimisation of vertical vane are focused at length of long span, tip chord and short span. The design of 15% decreased in vane surface area at tip chord is the best optimised design of vertical vane because the efficiency of wind direction is the highest as 60.32%.

  13. Molecular theory of mass transfer kinetics and dynamics at gas-water interface

    International Nuclear Information System (INIS)

    Morita, Akihiro; Garrett, Bruce C

    2008-01-01

    The mass transfer mechanism across gas-water interface is studied with molecular dynamics (MD) simulation. The MD results provide a robust and qualitatively consistent picture to previous studies about microscopic aspects of mass transfer, including interface structure, free energy profiles for the uptake, scattering dynamics and energy relaxation of impinging molecules. These MD results are quantitatively compared with experimental uptake measurements, and we find that the apparent inconsistency between MD and experiment could be partly resolved by precise decomposition of the observed kinetics into elemental steps. Remaining issues and future perspectives toward constructing a comprehensive multi-scale description of interfacial mass transfer are summarized.

  14. Unsteady free convection flow past a semi-infinite vertical plate with constant heat flux in water based nanofluids

    Science.gov (United States)

    Narahari, Marneni

    2018-04-01

    The unsteady free convective flow of nanofluids past a semi-infinite vertical plate with uniform heat flux has been investigated numerically. An implicit finite difference technique of Crank-Nicolson scheme has been employed to solve the governing partial differential equations. Five different types of water based nanofluids containing Cu, Ag, Al2O3, CuO and TiO2 nanoparticles are considered to study the fluid flow characteristics with various time and solid volume fraction parameters. It is found that the local as well as the average Nusselt number for nanofluids is higher than the pure fluid (water). The local skin-friction is higher for pure fluid as compared to the nanofluids. The present numerical results obtained for local Nusselt number are validated with the previously published correlation results for a limiting case and it is found that the results are in good agreement.

  15. Turbulent heat transfer for heating of water in a short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Noda, Nobuaki

    2008-01-01

    The turbulent heat transfer coefficients for the flow velocities (u=4.0 to 21 m/s), the inlet liquid temperatures (T in =296.5 to 353.4 K), the inlet pressures (P in =810 to 1014 kPa) and the increasing heat inputs (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured by an experimental water loop. The Platinum test tubes of test tube inner diameters (d=3, 6 and 9 mm), heated lengths (L=32.7 to 100 mm), ratios of heated length to inner diameter (L/d=5.51 to 33.3) and wall thickness (δ=0.3, 0.4 and 0.5 mm) with surface roughness (Ra=0.40 to 0.78 μm) are used in this work. The turbulent heat transfer data for Platinum test tubes were compared with the values calculated by other workers' correlations for the turbulent heat transfer. The influence of Reynolds number (Re), Prandtl number (Pr), Dynamic viscosity (μ) and L/d on the turbulent heat transfer is investigated into details and, the widely and precisely predictable correlation of the turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data. The correlation can describe the turbulent heat transfer coefficients obtained in this work for the wide range of the temperature difference between heater inner surface temperature and average bulk liquid temperature (ΔT L =5 to 140 K) with d=3, 6 and 9 mm, L=32.7 to 100 mm and u=4.0 to 21 m/s within ±15%, difference. (author)

  16. Turbulent heat transfer for heating of water in a short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Noda, Nobuaki

    2007-01-01

    The turbulent heat transfer coefficients for the flow velocities (u=4.0 to 21 m/s), the inlet liquid temperatures (T in =296.5 to 353.4 K), the inlet pressures (P in =810 to 1014 kPa) and the increasing heat inputs (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured by the experimental water loop. The Platinum test tubes of test tube inner diameters (d=3, 6 and 9 mm), heated lengths (L=32.7 to 100 mm), ratios of heated length to inner diameter (L/d=5.51 to 33.3) and wall thicknesses (δ=0.3, 0.4 and 0.5 mm) with surface roughness (Ra=0.40 to 0.78 μm) are used in this work. The turbulent heat transfer data for Platinum test tubes were compared with the values calculated by other workers' correlations for the turbulent heat transfer. The influences of Reynolds number (Re), Prandtl number (Pr), Dynamic viscosity (μ) and L/d on the turbulent heat transfer are investigated into details and, the widely and precisely predictable correlation of the turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data. The correlation can describe the turbulent heat transfer coefficients obtained in this work for wide range of the temperature difference between heater inner surface temperature and average bulk liquid temperature (ΔT L =5 to 140 K) with d=3, 6 and 9 mm, L=32.7 to 100 mm and u=4.0 to 21 m/s within ±15% difference. (author)

  17. The vertical distribution of Mars water vapor

    Science.gov (United States)

    Davies, D. W.

    1979-01-01

    Analysis of observations made from the Viking 1 Orbiter indicates that the water vapor over the Viking 1 landing site is uniformly mixed with the atmosphere and not concentrated near the surface. The analysis incorporates the effects of atmospheric scattering and explains why previous earth-based observations showed a strong diurnal variation in water content. It also explains the lack of an early morning fog and removes the necessity of daily exchange of large amounts of water between the surface and the atmosphere. A water vapor volume mixing ratio of 1.5 x 10 to the -4th is inferred for the Viking 1 site in late summer.

  18. Experimental evaluation of the objective virtual mass coefficient; Avaliacao experimental do coeficiente de massa virtual apoiada em uma formulacao objetiva

    Energy Technology Data Exchange (ETDEWEB)

    Heilbron Filho, Paulo Fernando Lavalle

    1984-04-15

    This work is a continuation of many others studies that have been made in the field of two-phase flow, concerning the influence of the void fraction in a parameter known as 'induced mass' that appears in the constitutive equation of the inter-phase force called 'virtual mass force'. The determination of the influence of the void fraction in the induced mass is done using experiment involving a bubble flow in a vertical tube filled with water. Using the two-phase flow model together with some hypothesis concerning the bubble flow experience and the constitutive equation for the virtual mass force, we achieve through the analysis of the filming of the experiment our purpose in determining the influence of the void fraction on the induced mass. (author)

  19. An LES study of vertical-axis wind turbine wakes aerodynamics

    Science.gov (United States)

    Abkar, Mahdi; Dabiri, John O.

    2016-11-01

    In this study, large-eddy simulation (LES) combined with a turbine model is used to investigate the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a recently developed minimum dissipation model is used to parameterize the subgrid-scale stress tensor, while the turbine-induced forces are modeled with an actuator-line technique. The LES framework is first tested in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel, and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit is well characterized by a two-dimensional elliptical Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine.

  20. Vertical structure of atmosphere in pre-monsoon season over ...

    Indian Academy of Sciences (India)

    (CIN), precipitable water content (PWC) and dynamical parameter vertical wind shear difference (VWS) are studied. ... These results are found to be significant at 99% confidence. It is found ... thunderstorms are maximum in terms of number.

  1. Phase separation and pressure drop of two-phase flow in vertical manifolds

    International Nuclear Information System (INIS)

    Zetzmann, K.

    1982-01-01

    The splitting of a two-phase mass flow in a tube manifold results in a separation between liquid and gas phase. A study is presented of the phase distribution and the related two-phase pressure drop for vertical manifolds in the technically relevant geometry and flow parameter region of an air-water-flow. At the outlet changes in the gas/fluid-radio are observed which are proportional to this ratio at the inlet. The separation characteristic strongly depends on the massflow through the junction. Empirical equations are given to calculate the separation. Measuring the pressure drop at main- and secondary tube of the manifold the additional pressure drop can be obtained. If these results are related with the dynamic pressure at the inlet, two-phase resistance coefficients can be deduced, which may be tested by empirical relations. (orig.) [de

  2. Single-Phase Crossflow Mixing in a Vertical Tube Bundle Geometry : An Experimental Study

    NARCIS (Netherlands)

    Mahmood, A.

    2011-01-01

    The vertical rod/tube bundle geometry has a wide variety of industrial applications. Typical examples are the core of light water nuclear reactors (LWR) and vertical tube steam generators. In the core of a LWR, primarily coolant flows upward but their also exist a flow in lateral direction, called

  3. Mixed convective heat transfer from a vertical plate embedded

    Indian Academy of Sciences (India)

    Abstract. The effect of melting and solute dispersion on heat and mass transfer in non-Darcy fluid flow over a vertical surface has been studied numerically in the present article. The flow is assumed to be laminar and steady state. Using similarity transformations, the governing boundary layer equations are transformed into ...

  4. Eastern South Pacific water mass geometry during the last glacial-interglacial transition

    Science.gov (United States)

    De Pol-Holz, R.; Reyes, D.; Mohtadi, M.

    2012-12-01

    The eastern South Pacific is characterized today by a complex thermocline structure where large salinity and oxygen changes as a function of depth coexist. Surface waters from tropical origin float on top of subantarctic fresher water (the so-called 'shallow salinity minimum of the eastern south Pacific'), which in turn, flow above aged equatorial and deeper recently ventilated Antarctic Intermediate waters. Little is known however about the water mass geometry changes that could have occurred during the last glacial maximum boundary conditions (about 20,000 years before the present), despite this information being critical for the assessment of potential mechanisms that have been proposed as explanations for the deglacial onset of low oxygen conditions in the area and the atmospheric CO2 increase during the same time. Here we present benthic and planktonic foraminifera stable isotope and radiocarbon data from a set of sediment cores from the Chilean continental margin covering a large -yet still limited- geographical area and depth range. Sedimentations rates were relatively high (>10 cm/kyr) precluding major caveats from bioturbation in all of our archives. The distribution of δ13C of ΣCO2 shows the presence of a very depleted (δ13C < -1‰ V-PDB) water mass overlaying more recently ventilated waters at intermediate depths as indicated by thermocline foraminifer dwellers being more depleted in 13C than the benthic species. The origin of this depleted end-member is probably upwelling from the Southern Ocean as expressed by the radiocarbon content and the large reservoir effect associated with the last glacial maximum and the beginning of the deglaciation along the margin. Our data suggest that the Tropical waters that today bath the lower latitude cores was displaced by surface waters of southern origin and therefore in line with the evidence of a latitudinal shift of the frontal systems.

  5. Vertical distributions of particulate plutonium in the western North Pacific Ocean

    International Nuclear Information System (INIS)

    Okubo, Ayako; Zheng, Jian; Aono, Tatsuo; Kaeriyama, Hideki; Nakanishi, Takahiro; Yamada, Masatoshi; Kusakabe, Masashi

    2007-01-01

    We examined the vertical distributions of 239+240 Pu activity and 240 Pu / 239 Pu atom ratio in particles collected by large volume water in-situ pump in the western North Pacific Ocean (off Rokkasho, Japan). This is the first information of vertical distribution of plutonium activity and Plutonium atom ratio in small particle (1-70 μm) and large particle (>70 μm). (author)

  6. Nine years of mass transport data in the eastern boundary of the North Atlantic Subtropical Gyre

    Science.gov (United States)

    Fraile-Nuez, Eugenio; MachíN, Francisco; VéLez-Belchí, Pedro; López-Laatzen, Federico; Borges, Rafael; BeníTez-Barrios, Verónica; HernáNdez-Guerra, Alonso

    2010-09-01

    One of the longest current meter time series in the Lanzarote Passage in the eastern boundary of the North Atlantic Subtropical Gyre has been used to determine and quantify the 9-year mean transport, the inter-annual and seasonal mass transport variability for the three water masses present in the area. Results show North Atlantic Central Water (NACW) flowing southward in the upper levels with a mean mass transport of -0.81 ± 1.48 Sv, Antarctic Intermediate Water (AAIW) flowing northward at intermediate levels with a mean transport of +0.09 ± 0.57 Sv and Mediterranean Water (MW) flowing southward in the deep part of the passage with a mean transport of -0.05 ± 0.17 Sv. Harmonic and wavelet analysis show the presence of a seasonal pattern in the passage for the three water masses. A maximum southward transport in winter and spring has been observed for the NACW followed by a minimum in summer and fall. Near zero values during winter and spring are found for AAIW, with a maximum northward value in summer and a negative value in fall, when this water mass reverses its flow. MW has a similar seasonal pattern to NACW. The vertical structure in the Lanzarote Passage can be approximated by four significant oscillatory modes which cumulatively explain 86.4% of the variance. The strong transport fluctuation found at the seasonal and inter-annual timescales demonstrates that the Eastern Boundary Current transport has a strong impact on meridional overturning estimates, thus indicating that to understand Meridional Overturning Circulation variability, these transport estimates at the eastern Atlantic margin are necessary.

  7. Characteristics of Wave Reflection for Vertical and Slit Caissons with Porous Structures

    Directory of Open Access Journals (Sweden)

    Tae-Hwa Jung

    2012-01-01

    Full Text Available Offshore structures are occasionally located at a relatively deep water region, the outside of breakwater. In this case, these structures may be damaged by the supposition of incident and reflected waves from a vertical breakwater. To prevent the damage, the reflected waves are controlled by installing porous structures at the face of the vertical breakwater. In this study, numerical experiments are carried out to identify the characteristics of wave reflection from the porous structures installing in front of a vertical or slit caisson.

  8. Water mass modification at the Agulhas retroflection: chlorofluoromethane studies

    Science.gov (United States)

    Fine, Rana A.; Warner, Mark J.; Weiss, Ray F.

    1988-03-01

    Chlorofluoromethane (CFM) and hydrographic data from the 1983 Agulhas Retroflection cruise are used to show the importance of the region in ventilating thermocline and Intermediate Waters of the southwest Indian ocean gyre. Generally South Atlantic waters are more recently ventilated by at least two years than those of the South Indian Ocean, probably because the latter are farther downstream from the source regions near the South Atlantic subantarctic sector. A two-component mixing model shows that the outflow from the Agulhas Retroflection (14-4°C) was composed of South Indian water and at least 23% South Atlantic water. However, at the density of Indian sector Subantarctic Mode Water the inflow into the Agulhas Retroflection was well preserved in the outflow, and the South Atlantic and Indian waters appear to be ventilated by different water masses. In addition, strong interleaving was found throughout the survey area (between 14 and 4°C), characterized by correlations of negative salinity anomalies with high CFM concentrations. At the density of Antarctic Intermediate Water (AAIW) there was interleaving of both low salinity water and higher salinity Red Sea Water. Using estimates of past atmospheric ratios of two CFMs, we calculate that AAIW within the retroflection was 50-75% diluted by mixing with CFM-free water since leaving the source region. Results from the two-component mixing model, which show substantial contributions of South Atlantic water in the outflow, suggest that the return flow for the 10 Sv leakage of Indian Ocean water via the Agulhas Current into the South Atlantic [ GORDON (1985) Science, 227, 1030-1033; GORDONet al. (1987) Deep-Sea Research, 34, 565-600] is occurring at thermocline and intermediate depths. A combination of active mixing in this region and similarity in the ventilation processes may be the reason that the South Atlantic and Indian thermoclines are coincident in temperature and salinity space (between 15 and 7°C) as noted

  9. The counter-current flooding limit in vertical tubes with and without orifices

    International Nuclear Information System (INIS)

    Tye, P.; Davidson, M.; Teyssedou, A.; Tapucu, A.; Matuszkiewicz, A.; Midvidy, W.

    1993-01-01

    For hypothetical loss of coolant accidents in nuclear reactors, rapid reflooding of the core is desirable. In CANDU reactors the cooling water is injected into the headers which are connected to the fuel channels by the feeder pipes. These pipes consist of vertical and horizontal runs; in some feeders, orifices and/or venturi flow meters are installed for flow adjustments and measurements respectively. For certain postulated accident scenarios, steam coming from the fuel channels and/or generated in the hot feeders may flow in the direction opposite to that of the cooling water thereby, creating a vertical or horizontal counter-current two-phase flow. Under these conditions, the rate at which cooling water can enter the fuel channels may be limited by the flooding phenomena. This phenomena is greatly affected by the geometry of the feeder pips, shape and number of fittings, and the flow area restrictions located in the feeders. In this paper the influence that orifice type flow area restrictions have on the counter-current flooding limit (CCFL) in a vertical tube is examined. air and water at close to atmospheric conditions are used as the working fluids. The data collected on the counter-current flooding limit in a vertical tube both with and without flow area restrictions is compared against some of the most commonly used correlations that are available in the open literature. Data on the two-phase counter-current pressure drop below the flooding point are also presented. 12 refs., 10 figs., 1 tab

  10. Intra- and inter-tidal variability of the vertical current structure in the Marsdiep basin

    NARCIS (Netherlands)

    de Vries, J. J.; Ridderinkhof, H.; Maas, L. R. M.; van Aken, H. M.

    2015-01-01

    The vertical structure of the along-stream current in the main channel of the periodically-stratified estuarine Marsdiep basin is investigated by combining velocity measurements collected during three different seasons with a one-dimensional water column model. The observed vertical shears in the

  11. Investigation of tungsten mass transfer in rarefied air oxygen and water vapors

    International Nuclear Information System (INIS)

    Evsikov, A.S.; Makeev, A.A.; Lyubimova, L.L.; Sinyavskij, V.V.

    1989-01-01

    The results of experimental investigations of oxygen and water vapor effect on the rate of tungsten evaporation are presented. Methods for carrying out an experiment are presented. The experiments are carried out at the 2600 degC tungsten wire temperature and the pressure of oxygen and water vapors (2x10 -3 -5) Pa. Registration of final products of mass transfer is carried out by the DRON-2.0 diffractometer using a detachable substrate. Empirical dependence taking into account oxygen and water vapor effect on the rate of tungsten evaporation is suggested. It is marked that air oxygen and water vapor increase evaporation rate uniformly the difference is observed only in final products of interaction

  12. Seasonal spreading of the Persian Gulf water mass in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Prasad, T.G.; Ikeda, M.; PrasannaKumar, S.

    The characteristics of the subsurface salinity maximum associated with the Persian Gulf Water mass (PGW) are used to quantify the spreading and mixing of PGW in the thermocline of the Arabian Sea based on a bimonthly climatology of temperature...

  13. Mass transfer resistance in ASFF reactors for waste water treatment.

    Science.gov (United States)

    Ettouney, H M; Al-Haddad, A A; Abu-Irhayem, T M

    1996-01-01

    Analysis of mass transfer resistances was performed for an aerated submerged fixed-film reactor (ASFF) for the treatment of waste water containing a mixture of sucrose and ammonia. Both external and internal mass transfer resistances were considered in the analysis, and characterized as a function of feed flow-rate and concentration. Results show that, over a certain operating regime, external mass transfer resistance in the system was greater for sucrose removal than ammonia. This is because the reaction rates for carbon removal were much larger than those of nitrogen. As a result, existence of any form of mass transfer resistance caused by inadequate mixing or diffusion limitations, strongly affects the overall removal rates of carbon more than nitrogen. Effects of the internal måss transfer resistance were virtually non-existent for ammonia removal. This behaviour was found over two orders of magnitude range for the effective diffusivity for ammonia, and one order of magnitude for the film specific surface area. However, over the same parameters' range, it is found that sucrose removal was strongly affected upon lowering its effective diffusivity and increasing the film specific surface area.

  14. Vertical Wave Impacts on Offshore Wind Turbine Inspection Platforms

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Jacobsen, Niels Gjøl

    2011-01-01

    Breaking wave impacts on a monopile at 20 m depth are computed with a VOF (Volume Of Fluid) method. The impacting waves are generated by the second-order focused wave group technique, to obtain waves that break at the position of the monopile. The subsequent impact from the vertical run-up flow...... on a horizontal inspection platform is computed for five different platform levels. The computational results show details of monopile impact such as slamming pressures from the overturning wave front and the formation of run-up flow. The results show that vertical platform impacts can occur at 20 m water depth....... The dependence of the vertical platform load to the platform level is discussed. Attention is given to the significant downward force that occur after the upward force associated with the vertical impact. The effect of the numerical resolution on the results is assessed. The position of wave overturning is found...

  15. Diffusive-dispersive mass transfer in the capillary fringe: Impact of water table fluctuations and heterogeneities

    DEFF Research Database (Denmark)

    Grathwohl, Peter; Haberer, Cristina; Ye, Yu

    Diffusive–dispersive mass transfer in the capillary fringe is important for many groundwater quality issues such as transfer of volatile compounds into (and out of) the groundwater, the supply of oxygen for aerobic degradation of hydrocarbons as well as for precipitation of minerals (e.g. iron...... hydroxides). 2D-laboratory scale experiments were used to investigate the transfer of oxygen into groundwater under non-reactive and reactive conditions, at steady state and with water table fluctuations. Results show that transfer of oxygen is limited by transverse dispersion in the capillary fringe...... and the dispersion coefficients are the same as below the water table. Water table fluctuations cause temporarily increased fluxes of oxygen into groundwater during draining conditions and entrapped air after water table rise. High-permeability inclusions in the capillary fringe enhance mass transfer of oxygen...

  16. A Novel Method for Vertical Acceleration Noise Suppression of a Thrust-Vectored VTOL UAV.

    Science.gov (United States)

    Li, Huanyu; Wu, Linfeng; Li, Yingjie; Li, Chunwen; Li, Hangyu

    2016-12-02

    Acceleration is of great importance in motion control for unmanned aerial vehicles (UAVs), especially during the takeoff and landing stages. However, the measured acceleration is inevitably polluted by severe noise. Therefore, a proper noise suppression procedure is required. This paper presents a novel method to reduce the noise in the measured vertical acceleration for a thrust-vectored tail-sitter vertical takeoff and landing (VTOL) UAV. In the new procedure, a Kalman filter is first applied to estimate the UAV mass by using the information in the vertical thrust and measured acceleration. The UAV mass is then used to compute an estimate of UAV vertical acceleration. The estimated acceleration is finally fused with the measured acceleration to obtain the minimum variance estimate of vertical acceleration. By doing this, the new approach incorporates the thrust information into the acceleration estimate. The method is applied to the data measured in a VTOL UAV takeoff experiment. Two other denoising approaches developed by former researchers are also tested for comparison. The results demonstrate that the new method is able to suppress the acceleration noise substantially. It also maintains the real-time performance in the final estimated acceleration, which is not seen in the former denoising approaches. The acceleration treated with the new method can be readily used in the motion control applications for UAVs to achieve improved accuracy.

  17. A Novel Method for Vertical Acceleration Noise Suppression of a Thrust-Vectored VTOL UAV

    Directory of Open Access Journals (Sweden)

    Huanyu Li

    2016-12-01

    Full Text Available Acceleration is of great importance in motion control for unmanned aerial vehicles (UAVs, especially during the takeoff and landing stages. However, the measured acceleration is inevitably polluted by severe noise. Therefore, a proper noise suppression procedure is required. This paper presents a novel method to reduce the noise in the measured vertical acceleration for a thrust-vectored tail-sitter vertical takeoff and landing (VTOL UAV. In the new procedure, a Kalman filter is first applied to estimate the UAV mass by using the information in the vertical thrust and measured acceleration. The UAV mass is then used to compute an estimate of UAV vertical acceleration. The estimated acceleration is finally fused with the measured acceleration to obtain the minimum variance estimate of vertical acceleration. By doing this, the new approach incorporates the thrust information into the acceleration estimate. The method is applied to the data measured in a VTOL UAV takeoff experiment. Two other denoising approaches developed by former researchers are also tested for comparison. The results demonstrate that the new method is able to suppress the acceleration noise substantially. It also maintains the real-time performance in the final estimated acceleration, which is not seen in the former denoising approaches. The acceleration treated with the new method can be readily used in the motion control applications for UAVs to achieve improved accuracy.

  18. Air-water flow in a vertical pipe with sudden changes of superficial water velocity

    International Nuclear Information System (INIS)

    Horst-Michael Prasser; Eckhard Krepper; Thomas Frank

    2005-01-01

    Full text of publication follows: For further model development and the validation of CFD codes for two-phase flow applications experiments were carried out with a sudden change of the superficial velocity of water. The tests were performed in a vertical pipe of 51.2 mm diameter. The gas was injected through 19 capillaries of 0.8 mm inner diameter equally distributed over the cross section of the pipe. Measurements were taken by two wire-mesh sensors (24 x 24 points, 2500 Hz) mounted in a short distance (16 mm) behind each other. This sensor assembly was placed 3030 mm downstream of the gas injection. The change of the superficial water velocity was produced by a butterfly valve, the flap of which was perforated. In this way, a rapid closure of the valve caused a jump-like reduction of the liquid flow rate. The valve was located upstream of the gas injection. In a second series of tests a jump-like increase of the water flow rate was studied. Time sequences of the gas fraction profile were calculated from the wire-mesh sensor data over sampling periods of 0.2 s per profile. To increase the statistical reliability of the data, the transient was repeated several times and the data superposed (ensemble averaging). Gas velocity distributions were determined by correlation of the signals with the measurements of the second sensor. The tests enable the observation of the restructuring process of bubbly flow between two steady state conditions. The process is subdivided into three main stages: (1) the undisturbed flow before the velocity jump, (2) the passage of the bubbly flow formed under initial conditions, but travelling with the new velocity and (3) the bubbly flow generated under the new boundary conditions. Transient behaviour between these stages is reflected by the measured data. Special attention was paid to stage 2, where the radial gas fraction profiles change shape due to the excitation of the force balance acting on the bubbles. The experimental results for

  19. Nuclear equipment to determine soil and water mass attenuation coefficients

    International Nuclear Information System (INIS)

    Zucchi, O.L.A.D.; Nascimento Filho, V.F. do

    1984-01-01

    The feasibility of substituting the monochannel gamma spectrometer, traditionally used in the gamma ray attenuation technique, for a less sophisticated and less expensive system of integral counting is studied. The proposed system can be operated by a non-specialized person. Three detection systems were used in the determination of the mass attenuation coefficients for different types of soil and for water. (M.A.C.) [pt

  20. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes

    International Nuclear Information System (INIS)

    Yang Jian; Hu Yu; Zuo Zheng; Jin Feng; Li Qingbin

    2012-01-01

    Removal of hydration heat from mass concrete during construction is important for the quality and safety of concrete structures. In this study, a three-dimensional finite element program for thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes was developed based on the equivalent equation of heat conduction including the effect of cooling water pipes and hydration heat of concrete. The cooling function of the double-layer staggered heterogeneous cooling pipes in a concrete slab was derived from the principle of equivalent cooling. To improve the applicability and precision of the equivalent heat conduction equation under small flow, the cooling function was revised according to its monotonicity and empirical formulas of single-phase forced-convection heat transfer in tube flow. Considering heat hydration of concrete at later age, a double exponential function was proposed to fit the adiabatic temperature rise curve of concrete. Subsequently, the temperature variation of concrete was obtained, and the outlet temperature of cooling water was estimated through the energy conservation principle. Comparing calculated results with actual measured data from a monolith of an arch dam in China, the numerical model was proven to be effective in sufficiently simulating accurate temperature variations of mass concrete. - Highlights: ► Three-dimensional program is developed to model temperature history of mass concrete. ► Massive concrete is embedded with double-layer heterogeneous cooling pipes. ► Double exponential function is proposed to fit the adiabatic temperature rise curve. ► Outlet temperature of cooling water is estimated. ► A comparison is made between the calculated and measured data.

  1. The effective neutrino mass of neutrinoless double-beta decays: how possible to fall into a well

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Zhi-zhong [University of Chinese Academy of Sciences, Institute of High Energy Physics and School of Physical Sciences, Beijing (China); Peking University, Center of High Energy Physics, Beijing (China); Zhao, Zhen-hua [Liaoning Normal University, Department of Physics, Dalian (China)

    2017-03-15

    The neutrinoless double-beta (0ν2β) decay is currently the only feasible process in particle and nuclear physics to probe whether massive neutrinos are the Majorana fermions. If they are of a Majorana nature and have a normal mass ordering, the effective neutrino mass term left angle m right angle {sub ee} of a 0ν2β decay may suffer significant cancellations among its three components and thus sink into a decline, resulting in a ''well'' in the three-dimensional graph of vertical stroke left angle m right angle {sub ee} vertical stroke against the smallest neutrino mass m{sub 1} and the relevant Majorana phase ρ. We present a new and complete analytical understanding of the fine issues inside such a well, and identify a novel threshold of vertical stroke left angle m right angle {sub ee} vertical stroke in terms of the neutrino masses and flavor mixing angles: vertical stroke left angle m right angle {sub ee} vertical stroke {sub *} = m{sub 3}sin{sup 2}θ{sub 13} in connection with tanθ{sub 12} = √(m{sub 1}/m{sub 2}) and ρ = π. This threshold point, which links the local minimum and maximum of vertical stroke left angle m right angle {sub ee} vertical stroke, can be used to signify observability or sensitivity of the future 0ν2β-decay experiments. Given current neutrino oscillation data, the possibility of vertical stroke left angle m right angle {sub ee} vertical stroke < vertical stroke left angle m right angle {sub ee} vertical stroke {sub *} is found to be very small. (orig.)

  2. Numerical simulation of the vertical migration of Microcystis (cyanobacteria colonies based on turbulence drag

    Directory of Open Access Journals (Sweden)

    Hongru Zhao

    2016-11-01

    Full Text Available The vertical migration and accumulation of Microcystis is an important process in water blooms, and colony migration is influenced by colony size and wind-wave disturbance. The vertical migration of Microcystis colonies in turbulence can be simulated in a numerical model. In this study, we model such migration by coupling the colony size and hydrodynamics, including the gravity, colony buoyancy, and the viscous drag force of turbulence. The turbulence intensity was represented by the turbulent kinetic energy (KZ; the larger the KZ, the stronger the wind-wave disturbance. The simulated vertical distribution of Microcystis well agreed with the measured values in a laboratory experiment indicating that our model can simulate the vertical distribution of Microcystis under different hydrodynamic conditions. We also found a size-dependent critical turbulent kinetic energy (TKZ, such that if the turbulent kinetic energy of water exceeds the critical value (i.e., KZ > TKZ, the colonies sink under the drag forces of turbulence; conversely, if KZ < TKZ, the colonies can overcome the turbulent mixing and float. The TKZ of each colony was linearly related to colony diameter. The model is crucial for prediction and prevention of water blooms. The simulated threshold turbulent kinetic energy, at which water blooms disappear in Lake Taihu (a large freshwater lake in the Yangtze Delta, Jiangsu Province, China, was 55.5 cm2 s−2. 

  3. Importance of the virtual mass force in accelerating steam/water mixtures

    International Nuclear Information System (INIS)

    Khalil, Y.F.; Kazimi, M.S.

    1987-01-01

    Virtual mass force is one of the forces that must be considered against accelerating a dispersed fluid flowing in the bulk of a continuous fluid. This force depends on the geometry of the interface and the flow pattern of the two fluids. For dilute two-phase flow mixtures where the bubbles are singly dispersed, the value of the virtual mass force coefficient is dependent on the geometry of the bubble. However, for high void fraction cases, such as depressurization initiated by a pipe break in light water reactors, more intense interaction is expected between the two phase and, therefore, the value of the virtual mass force must be well defined. The effects of implementing the virtual mass force term in the momentum equations of a two-fluid model may be significant for improving the stability of the solution of the conservation equations, the accuracy of the numerical results, and the computation time. In the current work, a new stability criterion is derived after implementing Hancox's model for the virtual mass force in the momentum equations of the six-equation two-phase flow model of TERMIT. A one-dimensional blow-down in a horizontal pipe is considered to investigate the importance of incorporating the virtual mass force in accelerating mixtures flows

  4. An evaluation of information on vertical crustal movements pertaining to deep disposal

    International Nuclear Information System (INIS)

    Gale, J.E.; Quinlan, G.; Rogerson, R.; Welhan, J.

    1986-03-01

    The geological and historical information on the magnitude and distribution of uplift and differential movements of rock masses as well as groundwater flow system transients that result from glacial unloading, erosion and tectonic stress have been reviewed. Data presented in the literature show that vertical crustal movements have occurred during the Cenozoic. In addition, the literature indicates significant transients exist in groundwater flow systems. The documented evidence of vertical crustal movements, plus supporting data on the stress-permeability constitutive relationships for discontinuities in fractured crystalline rocks, and three-dimensional modelling capability justifies a detailed analysis of the effects of vertical uplift on bedrock and on groundwater as they pertain to the deep disposal of radioactive waste. 159 annotated refs

  5. Critical heat flux in vertical flows at low pressures; Flux de chaleur critique en ecoulements verticaux aux pressions faibles

    Energy Technology Data Exchange (ETDEWEB)

    Olekhnowitch, A [Ecole Polytechnique, Montreal, PQ (Canada)

    1994-12-31

    This paper presents some critical heat flux (CHF) data obtained for vertical upflow of water in an 8 mm test section, for exit pressures ranging from 5 to 30 bar. The experiments were carried out for heated lengths of 0.75, 1, 1.4 and 1.8 m. In general, the collected data show trends similar to those described in the open literature. However, it was observed that for low pressures CHF depends on the heated length; this dependence begins to disappear for exit pressure of about 30 bar. The data have been compared with a look-up table and predictions of well known correlations. For low pressures and low mass fluxes, the look-up table seems to give better predictions, but for medium pressures and mass fluxes, the correlations perform better. 19 refs., 5 figs.

  6. Problems of large-scale vertically-integrated aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Webber, H H; Riordan, P F

    1976-01-01

    The problems of vertically-integrated aquaculture are outlined; they are concerned with: species limitations (in the market, biological and technological); site selection, feed, manpower needs, and legal, institutional and financial requirements. The gaps in understanding of, and the constraints limiting, large-scale aquaculture are listed. Future action is recommended with respect to: types and diversity of species to be cultivated, marketing, biotechnology (seed supply, disease control, water quality and concerted effort), siting, feed, manpower, legal and institutional aids (granting of water rights, grants, tax breaks, duty-free imports, etc.), and adequate financing. The last of hard data based on experience suggests that large-scale vertically-integrated aquaculture is a high risk enterprise, and with the high capital investment required, banks and funding institutions are wary of supporting it. Investment in pilot projects is suggested to demonstrate that large-scale aquaculture can be a fully functional and successful business. Construction and operation of such pilot farms is judged to be in the interests of both the public and private sector.

  7. Vertical transport of particulate-associated plutonium and americium in the upper water column of the Northeast Pacific

    International Nuclear Information System (INIS)

    Fowler, S.W.; Ballestra, S.; La Rosa, J.; Fukai, R.

    1983-01-01

    Concentrations of plutonium (Pu) and americium (Am) were determined in seawater, suspended particulate matter, sediment trap samples, and biogenic material collected at the VERTEX I site in the North Pacific off central California. From a vertical profile taken over the upper 1500 m, the presence of sub-surface maxima of sup(239+240)Pu and 241 Am were identified between 100 to 750 m and 250 to 750 m, respectively. A large fraction (32%) of the filterable sup(239+240)Pu in surface waters was associated with cells during a phytoplankton bloom; Pu:Am activity ratios in surface water and the suspended particles indicated that Pu was concentrated by the cells to a greater degree than Am. However, similar measurements beneath the surface layer showed an overall enrichment of Am over Pu on fine suspended particles with depth. Freshly produced zooplankton fecal pellets and large, fast sinking particles collected in PITS contained relatively high concentrations of Pu and Am. Both transuranic concentrations in trapped particles and transuranic flux tended to increase with depth down to 750 m, suggesting that their scavenging is in the upper water column. Am appeared to be scavenged by sinking biogenic particles to a greater extent than Pu. The results are discussed. (author)

  8. Increase of Total Body Water with Decrease of Body Mass while Running 100 km Nonstop--Formation of Edema?

    Science.gov (United States)

    Knechtle, Beat; Wirth, Andrea; Knechtle, Patrizia; Rosemann, Thomas

    2009-01-01

    We investigated whether ultraendurance runners in a 100-km run suffer a decrease of body mass and whether this loss consists of fat mass, skeletal muscle mass, or total body water. Male ultrarunners were measured pre- and postrace to determine body mass, fat mass, and skeletal muscle mass by using the anthropometric method. In addition,…

  9. Theoretical and experimental studies on critical heat flux in subcooled boiling and vertical flow geometry

    International Nuclear Information System (INIS)

    Staron, E.

    1996-01-01

    Critical Heat Flux is a very important subject of interest due to design, operation and safety analysis of nuclear power plants. Every new design of the core must be thoroughly checked. Experimental studies have been performed using freon as a working fluid. The possibility of transferring of results into water equivalents has been proved. The experimental study covers vertical flow, annular geometry over a wide range of pressure, mass flow and temperature at inlet of test section. Theoretical models of Critical Heat Flux have been presented but only those which cover DNB. Computer programs allowing for numerical calculations using theoretical models have been developed. A validation of the theoretical models has been performed in accordance with experimental results. (author). 83 refs, 32 figs, 4 tabs

  10. Airborne in situ vertical profiling of HDO / H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    Science.gov (United States)

    Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; Gonzalez-Ramos, Y.; Schneider, M.

    2015-05-01

    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δD(H2O) were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δD) ≈10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote sensing measurements of δD(H2O) as a means to validate the remote sensing humidity and δD(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δD(H2O) correlations we were able to identify different layers of air masses with specific isotopic signatures. The results are discussed.

  11. Pressure loss of the annular air-liquid flow in vertical tufes

    Energy Technology Data Exchange (ETDEWEB)

    Schmal, M [Rio de Janeiro Univ. (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Cantalino, A [Rio de Janeiro Univ. (Brazil). Dept. de Engenharia Quimica

    1976-01-01

    In this work the pressure loss of the annular air-liquid flow in vertical tubes has been determined. Correlations are presented for the frictional pressure drop. The dimensional analysis and the following fluid systems were used for this determination: air-water, air-alcohol solutions and air-water and surfactants.

  12. Magnetic and velocity fields MHD flow of a stretched vertical ...

    African Journals Online (AJOL)

    Analytical solutions for heat and mass transfer by laminar flow of Newtonian, viscous, electrically conducting and heat generation/absorbing fluid on a continuously moving vertical permeable surface with buoyancy in the presence of a magnetic field and a first order chemical reaction are reported. The solutions for magnetic ...

  13. A study of Two-Phase Flow Regime Maps in Vertical and Horizontal Pipes

    International Nuclear Information System (INIS)

    Kim, Kyung Doo; Kang, Doo Hyuk

    2007-10-01

    A safety analysis code to design a pressurized water reactor and to obtain the licences including entire proprietary rights is under development in domestic research and development project. The purpose and scope of this report is to develop the flow regimes related models for inter-phase friction, wall frictions, wall heat transfer, and inter-phase heat and mass transfer in two-phase three-field equations. In order to choose choose the flow regime criteria, we have investigated various exiting best-estimate T/H codes in this chapter 2. They are the RELAP5-3D, TRAC-M, CATHARE, MARS codes. Around 500 references used in these codes have been collected and reviewed. Also we have investigated eleven papers in detail. In chapter 3, based on the selected flow regimes, the flow regime maps for a gas-liquid flow in horizontal and vertical tubes have decided including the mechanisms of flow regime transition regions. Conclusively, the process will be presented for choosing the best flow regime maps which occur in gas-liquid two-phase flow in horizontal and vertical pipes. We will look forward to decide the constitutive relations based upon the flow regime maps that are determined in this works. The constitutive relations will be used for the code under development

  14. Differences in vertical and horizontal distribution of fish larvae and zooplankton, related to hydrography

    DEFF Research Database (Denmark)

    Höffle, Hannes; Nash, Richard D.M.; Falkenhaug, Tone

    2013-01-01

    Planktonic fish larvae have little influence on their horizontal distribution, while they are able to control their vertical position in the water column. While prey and light are among the factors with an apparent influence on the vertical distribution, the effects of other factors are less clea...

  15. Numerical study of heat and mass transfer during evaporation of a turbulent binary liquid film

    Directory of Open Access Journals (Sweden)

    Khalal Larbi

    2015-01-01

    Full Text Available This paper deals with a computational study for analysing heat and mass exchanges in the evaporation of a turbulent binary liquid film (water-ethanol and water-methanol along a vertical tube. The film is in co-current with the dry air and the tube wall is subjected to a uniform heat flux. The effect of gas-liquid phase coupling, variable thermophysical properties and film vaporization are considered in the analysis. The numerical method applied solves the coupled governing equations together with the boundary and interfacial conditions. The algebraic systems of equations obtained are solved using the Thomas algorithm. The results concern the effects of the inlet liquid Reynolds number and inlet film composition on the intensity of heat and mass transfer. In this study, results obtained show that heat transferred through the latent mode is more pronounced when the concentration of volatile components is higher in the liquid mixture .The comparisons of wall temperature and accumulated mass evaporation rate with the literature results are in good agreement.

  16. The Mediterranean Water content in the Northeast Atlantic

    Science.gov (United States)

    Nascimento, Angela; Bashmachnikov, Igor; Neves, Filipe

    2014-05-01

    Distribution of the Mediterranean Water (MW) in the subtropical Northeast Atlantic [20-50o N, 5-40o W] was studied using Optimum Multiparameter analysis (OMP) applied to the World Ocean Atlas (http://www.nodc.noaa.gov/) and MEDTRANS climatologies (http://co.fc.ul.pt/en/). The areas of influence of water masses in the study region were obtained from literature and from analysis of individual TS-diagrams. The analysis permitted to divide the water column between 500 to 2000 m into 5 vertical layers. The boundaries of the layers separated different expected sets of the dominant water masses; their depth varied across the study region. For the OMP we used the following water masses: the central fraction of the North Atlantic Central Water (H), the lower fraction of the North Atlantic Central Water (NACWl), the Mediterranean Water (MW), the Sub-Artic Intermediate Water (SAIW), the modified Antarctic Intermediate Water (AA), the Labrador Sea Water (LSW) and the upper fraction of the North Atlantic Deep Water (NADWu). The characteristics of the water masses were obtained from Perez et al. (2001), Alvarez et al. (2004) and Barbero et al. (2010), taken at the places where the water masses entered the study region. For each of the layers and each of the grid-points OMP was applied for estimation of the percentage of the each of the water masses in the observed mixture. The analysis of sensitivity of the results to the definition of water mass proprieties showed that their percentages were derived within the average error of 10%. The percentages of water masses obtained in this study compared well with the previous OMP results at some individual sections across our region (Hinrichsen and Tomczak, 1993; Alvarez et al., 2004 and Barbero et al., 2010). In this work we specifically focused on distribution of the MW. The results showed that the MW reached its maximum of 50% at 1200 m depth in the Gulf of Cadiz. The percentage decreased to about 40% along the Iberian continental

  17. Study of water mass transfer dynamics in frescoes by dielectric spectroscopy

    International Nuclear Information System (INIS)

    Olmi, R.; Riminesi, C.

    2008-01-01

    The knowledge of moisture content (M C) is essential for determining the state of preservation of various types of hand-work: from building materials such as bricks and concrete, to objects of artistic value, in particular frescoes and mural paintings. In all above, moisture is the primary source of damages, as it affects the durability of porous materials. Dielectric properties of porous materials are strongly affected by the presence of water, suggesting dielectric spectroscopy as a suitable non-invasive diagnostic technique. The development of a quantitative relationship between M C and permittivity requires to investigate the dynamics of water mass transfer in porous media, and to determine its effect on the dielectric properties. In this paper a coupled mass transfer/dielectric problem is introduced and solved numerically, based on a finite element model. Results are compared to experimental dielectric measurements performed on plaster samples by the open coaxial method. The application of the dielectric technique to frescoes monitoring is proposed, showing the results obtained is an on-site study.

  18. Transient turbid water mass reduces temperature-induced coral bleaching and mortality in Barbados

    Science.gov (United States)

    Vallès, Henri

    2016-01-01

    Global warming is seen as one of the greatest threats to the world’s coral reefs and, with the continued rise in sea surface temperature predicted into the future, there is a great need for further understanding of how to prevent and address the damaging impacts. This is particularly so for countries whose economies depend heavily on healthy reefs, such as those of the eastern Caribbean. Here, we compare the severity of bleaching and mortality for five dominant coral species at six representative reef sites in Barbados during the two most significant warm-water events ever recorded in the eastern Caribbean, i.e., 2005 and 2010, and describe prevailing island-scale sea water conditions during both events. In so doing, we demonstrate that coral bleaching and subsequent mortality were considerably lower in 2010 than in 2005 for all species, irrespective of site, even though the anomalously warm water temperature profiles were very similar between years. We also show that during the 2010 event, Barbados was engulfed by a transient dark green turbid water mass of riverine origin coming from South America. We suggest that reduced exposure to high solar radiation associated with this transient water mass was the primary contributing factor to the lower bleaching and mortality observed in all corals. We conclude that monitoring these episodic mesoscale oceanographic features might improve risk assessments of southeastern Caribbean reefs to warm-water events in the future. PMID:27326377

  19. Experimental study on the CHF in uniformly and non-uniformly heated vertical annuli

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Se Young; Moon, Sang Ki; Chung, Heung June; Park, Jong Kuk; Kim, Bok Deuk; Youn, Young Jung; Chung, Moon Ki

    2001-09-01

    Up to now, KAERI has performed critical heat flux experiments in water under zero-flow and low-flow conditions using a RCS CHF loop facility with uniformly and non-uniformly heated vertical annulus. Since the existing CHF experiments were mainly performed under low-pressure conditions, we performed the CHF experiment to investigate the pressure effect on the CHF under zero-flow and low-flow conditions for a wide range of system pressures. Also, two vertical annuli with the same geometry have been used to investigate the axial heat flux distributions on the CHF. This report summarizes the experimental results and provides the CHF data that can be used for the development for CHF correlation and a thermal hydraulic analysis code. The CHF data have been collected for system pressures ranging from 0.57 to 15.15 MPa, mass flux 0 and from 200 to 650 kg/m2s, inlet subcooling from 75 to 360 kJ/kg and exit quality from 0.07 to 0.57. At low-flow conditions, the total number of data are 242 and 290 with uniformly heated- and non-uniformly heated test sections, respectively. 41 and 94 CHF data are generated with uniformly heated- and non-uniformly heated test sections, respectively, in zero-flow CHF experiments that are performed by blocking test section bottoms. The CHF experiment result shows that the effects of system pressure, mass flux and inlet subcooling are consistent with conventional understandings and similar to those for round tubes. The behavior of the CHF is relatively complex at low pressures. Also, the effects of axial heat flux profile are large at low-pressure conditions.

  20. Experimental study on the CHF in uniformly and non-uniformly heated vertical annuli

    International Nuclear Information System (INIS)

    Chun, Se Young; Moon, Sang Ki; Chung, Heung June; Park, Jong Kuk; Kim, Bok Deuk; Youn, Young Jung; Chung, Moon Ki

    2001-09-01

    Up to now, KAERI has performed critical heat flux experiments in water under zero-flow and low-flow conditions using a RCS CHF loop facility with uniformly and non-uniformly heated vertical annulus. Since the existing CHF experiments were mainly performed under low-pressure conditions, we performed the CHF experiment to investigate the pressure effect on the CHF under zero-flow and low-flow conditions for a wide range of system pressures. Also, two vertical annuli with the same geometry have been used to investigate the axial heat flux distributions on the CHF. This report summarizes the experimental results and provides the CHF data that can be used for the development for CHF correlation and a thermal hydraulic analysis code. The CHF data have been collected for system pressures ranging from 0.57 to 15.15 MPa, mass flux 0 and from 200 to 650 kg/m2s, inlet subcooling from 75 to 360 kJ/kg and exit quality from 0.07 to 0.57. At low-flow conditions, the total number of data are 242 and 290 with uniformly heated- and non-uniformly heated test sections, respectively. 41 and 94 CHF data are generated with uniformly heated- and non-uniformly heated test sections, respectively, in zero-flow CHF experiments that are performed by blocking test section bottoms. The CHF experiment result shows that the effects of system pressure, mass flux and inlet subcooling are consistent with conventional understandings and similar to those for round tubes. The behavior of the CHF is relatively complex at low pressures. Also, the effects of axial heat flux profile are large at low-pressure conditions

  1. Influence of pycnocline topography and water-column structure on marine distributions of alcids (Aves: Alcidae) in Anadyr Strait, Northern Bering Sea, Alaska

    Science.gov (United States)

    Haney, J. Christopher

    1991-01-01

    Systematic ship-board surveys were used to simultaneously record seabird abundances and resolve coarse-scale (3 to 10 km) horizontal and fine-scale (1 to 10 m) vertical variability in water-column structure and bathymetry for portions of the coastal zone in Anadyr Strait near western St. Lawrence Island, northern Bering Sea, Alaska, during August and September 1987. Three plankton-feeding alcids, parakeet (Cyclorrhynchus psittacula), crested (Aethia cristatella) and least (A. pusilla) auklets, each exhibited distinct associations for different pycnocline characteristics. Least auklets were more abundant in mixed water, but they also occurred within stratified water where the pycnocline and upper-mixed layer were shallow (≤8 m) and thin (≤10 m), respectively. Low body mass (85 g), high buoyancy, and relatively poor diving ability may have restricted this auklet to areas where water-column strata nearly intersected the surface, or to areas from which strata were absent altogether due to strong vertical mixing. Parakeet and crested auklets, which are larger-bodied (ca. 260 g) planktivores with presumably greater diving ability, were more abundant in stratified water, and both species exhibited less specific affinities for water-column characteristic at intermediate and shallow levels. All three auklets avoided locations with strong pycnocline gradients (≤0.22σtm−1), a crude index of the strong, subsurface shear in water velocities characteristic of this region. Auklet distributions in Anadyr Strait were consistent with: (1) strata accessibility, as estimated from relationships between body mass and relative diving ability, (2) possible avoidance of strong subsurface water motions, and (3) habits and distributions of plankton prey. In contrast, largebodied (>450 g) alcids [i.e., common (Uria aalge) and thick-billed (U. lomvia) murres, pigeon guillemots (Cephus columba), tufted (Fratercula cirrhata), and horned (F. corniculata) puffins feeding on fish or

  2. Experimental evaluation of the objective virtual mass coefficient; Avaliacao experimental do coeficiente de massa virtual apoiada em uma formulacao objetiva

    Energy Technology Data Exchange (ETDEWEB)

    Heilbron Filho, Paulo Fernando Lavalle

    1984-04-15

    This work is a continuation of many others studies that have been made in the field of two-phase flow, concerning the influence of the void fraction in a parameter known as 'induced mass' that appears in the constitutive equation of the inter-phase force called 'virtual mass force'. The determination of the influence of the void fraction in the induced mass is done using experiment involving a bubble flow in a vertical tube filled with water. Using the two-phase flow model together with some hypothesis concerning the bubble flow experience and the constitutive equation for the virtual mass force, we achieve through the analysis of the filming of the experiment our purpose in determining the influence of the void fraction on the induced mass. (author)

  3. The effect of sediment thermal conductivity on vertical groundwater flux estimates

    Science.gov (United States)

    Sebok, Eva; Müller, Sascha; Engesgaard, Peter; Duque, Carlos

    2015-04-01

    The interaction between groundwater and surface water is of great importance both from ecological and water management perspective. The exchange fluxes are often estimated based on vertical temperature profiles taken from shallow sediments assuming a homogeneous standard value of sediment thermal conductivity. Here we report on a field investigation in a stream and in a fjord, where vertical profiles of sediment thermal conductivity and temperatures were measured in order to, (i) define the vertical variability in sediment thermal conductivity, (ii) quantify the effect of heterogeneity in sediment thermal conductivity on the estimated vertical groundwater fluxes. The study was carried out at field sites located in Ringkøbing fjord and Holtum stream in Western Denmark. Both locations have soft, sandy sediments with an upper organic layer at the fjord site. First 9 and 12 vertical sediment temperature profiles up to 0.5 m depth below the sediment bed were collected in the fjord and in the stream, respectively. Later sediment cores of 0.05 m diameter were removed at the location of the temperature profiles. Sediment thermal conductivity was measured in the sediment cores at 0.1 m intervals with a Decagon KD2 Pro device. A 1D flow and heat transport model (HydroGeoSphere) was set up and vertical groundwater fluxes were estimated based on the measured vertical sediment temperature profiles by coupling the model with PEST. To determine the effect of heterogeneity in sediment thermal conductivity on estimated vertical groundwater fluxes, the model was run by assigning (i) a homogeneous thermal conductivity for all sediment layers, calculated as the average sediment thermal conductivity of the profile, (ii) measured sediment thermal conductivities to the different model layers. The field survey showed that sediment thermal conductivity over a 0.5 m profile below the sediment bed is not uniform, having the largest variability in the fjord where organic sediments were also

  4. Rational designing of the internal water supply system in reconstructed residential buildings of mass standard series

    OpenAIRE

    Orlov Evgeny

    2018-01-01

    The issues of water supply system reconstruction in mass series buildings are reviewed with consideration of water- and resource saving. Principal points for location of plumbing cells in apartments, arrangement of water devices and wastewater receivers, selection of pipelines for reconstructed water line are described. Comparative analysis of design variants of inner water line before and following reconstruction are given. It was found that applying the developed system design approaches th...

  5. Partitioning the effects of Global Warming on the Hydrological Cycle with Stable Isotopes in Water Vapor

    Science.gov (United States)

    Dee, S. G.; Russell, J. M.; Nusbaumer, J. M.; Konecky, B. L.; Buenning, N. H.; Lee, J. E.; Noone, D.

    2016-12-01

    General circulation models (GCMs) suggest that much of the global hydrological cycle's response to anthropogenic warming will be caused by increased lower-tropospheric water vapor concentrations and associated feedbacks. However, fingerprinting changes in the global hydrological cycle due to anthropogenic warming remains challenging. Held and Soden (2006) predicted that as lower-tropospheric water vapor increases, atmospheric circulation will weaken as climate warms to maintain the surface energy budget. Unfortunately, the strength of this feedback and the fallout for other branches of the hydrological cycle is difficult to constrain in situ or with GCMs alone. We demonstrate the utility of stable hydrogen isotope ratios in atmospheric water vapor to quantitatively trace changes in atmospheric circulation and convective mass flux in a warming world. We compare water isotope-enabled GCM experiments for control (present-day) CO2 vs. high CO2(2x, 4x) atmospheres in two GCMs, IsoGSM and iCAM5. We evaluate changes in the distribution of water vapor, vertical velocity (omega), and the stream function between these experiments in order to identify spatial patterns of circulation change over the tropical Pacific (where vertical motion is strong) and map the δD of water vapor associated with atmospheric warming. We also probe the simulations to isolate isotopic signatures associated with water vapor residence time, precipitation efficiency, divergence, and cloud physics. We show that there are robust mechanisms that moisten the troposphere and weaken convective mass flux, and that these mechanisms can be tracked using the δD of water vapor. Further, we find that these responses are most pronounced in the upper troposphere. These findings provide a framework to develop new metrics for the detection of global warming impacts to the hydrological cycle. Further, currently available satellite missions measure δD in the atmospheric boundary layer, the free atmosphere, or the

  6. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  7. Important role of vertical migration of compressed gas, oil and water in formation of AVPD (abnormally high pressure gradient) zones

    Energy Technology Data Exchange (ETDEWEB)

    Anikiyev, K.A.

    1980-01-01

    The principal role of vertical migration of compressed gases, gas-saturated petroleum and water during formation of abnormally high pressure gradients (AVPD) is confirmed by extensive factual data on gas production, grifons, blowouts and gushers that accompany drilling formations with AVPD from early history to the present time; the sources of vertical migration of compressed fluids, in accordance with geodynamic AVPD theory, are the deep degasified centers of the earth mantle. Among the various types of AVPD zones especially notable are the large (often massive or massive-layer) deposits and the intrusion aureoles that top them in the overlapping covering layers. Prediction of AVPD zones and determining their field and energy potential must be based on field-baric simulation of the formations being drilled in light of laws regarding the important role of the vertical migration of compressed fluids. When developing field-baric models, it is necessary to utilize the extensive and valuable data on grifons, gas production and blowouts that has been collected and categorized by drilling engineers and production geologists. To further develop data on field-baric conditions of the earth, it is necessary to collect and study signals of AVPD. First of all, there is a need to evaluate potential elastic resources of compressed fluids which can move from the bed into the well. Thus it is necessary to study and standardize intrusion aureoles and other AVPD zones within the aspect of fieldbaric modeling.

  8. Dynamic optimal foraging theory explains vertical migrations of bigeye tuna

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Sommer, Lene; Evans, Karen

    2016-01-01

    Bigeye tuna are known for remarkable daytime vertical migrations between deep water, where food is abundant but the water is cold, and the surface, where water is warm but food is relatively scarce. Here we investigate if these dive patterns can be explained by dynamic optimal foraging theory...... behaves such as to maximize its energy gains. The model therefore provides insight into the processes underlying observed behavioral patterns and allows generating predictions of foraging behavior in unobserved environments...

  9. Adaptation of a Freon-12 CHF correlation to apply for water in uniformly heated vertical tubes. Part 2: Based on CHF data for water at pressures in the range 6-20 MPa

    International Nuclear Information System (INIS)

    Green, W.J.

    1982-03-01

    An examination of more than 5000 sets of experimental data for critical heat flux (CHF) in uniformly heated vertical tubes internally cooled by high pressure water has shown that the CHF correlation proposed in Part 1 of this work is accurate for water at pressures up to approximately 17 MPa, provided that minor modifications are made to the Prandtl number index, and the saturation boiling length function. For pressures greater than 17 MPa, CHF values calculated from the correlation are increasingly lower than the experimental data, particularly at low saturation boiling length ratios ( -1 m -2 or thermal equilibrium exit qualities are less than 0.1

  10. Effects of Buoyancy Forces on Immiscible Water/Oil Displacements in a Vertically Oriented Porous Medium Effets des facteurs de flottabilité sur les déplacements non-miscibles eau/huile dans un milieu poreux vertical

    Directory of Open Access Journals (Sweden)

    Thirunavu S. R.

    2006-11-01

    Full Text Available The effects of buoyancy forces on liquid-liquid displacement processes occurring in porous media are important in a variety of practical situations, in particular during the displacement of oil from partially-depleted underground reservoirs by means of aqueous solutions. Most previous studies involving the visualization of water/oil displacements in porous media have been undertaken in horizontal two-dimensional porous medium cells. The objective of the present work was to determine the effects of buoyancy forces; on the fingering pattern and oil recovery by conducting immiscible displacement experiments in two-dimensional consolidated porous medium cells aligned in the vertical plane. In order to obtain a clear understanding of the favourable and unfavourable effects of buoyancy forces, experiments were carried out in three different flow modes, namely horizontal, vertical upward, and vertical downward. As the effects of buoyancy forces are negligible for two-dimensional porous media in the horizontal flow mode, the recoveries obtained in this mode were used as a reference for comparison with those obtained in the two vertical modes. Displacements using five different density ratios were studied. The breakthrough time and percentage oil recovery were measured in each case. The effects of buoyancy forces, viscous forces, and capillary forces, as well as the injection flow rate, were also recorded. The results obtained indicate that the effects of buoyancy forces are very pronounced at low flow rates and low oil/water density ratios, and that even a slight increase in the flow rate causes the buoyancy forces to rapidly become less significant. Les facteurs de flottabilité exercent un effet important sur les déplacements liquide/liquide en milieu poreux dans toute une gamme de situations pratiques, en particulier lorsqu'on veut déplacer l'huile de roches réservoirs partiellement épuisées à l'aide de solutions aqueuses. La plupart des

  11. Coincident Mass Occurrence of Gelatinous Zooplankton in Northern Norway

    Directory of Open Access Journals (Sweden)

    Tor Knutsen

    2018-05-01

    Full Text Available In autumn 2015, several sources reported observations of large amounts of gelatinous material in a large north Norwegian fjord system, either caught when trawling for other organisms or fouling fishing gear. The responsible organism was identified as a physonect siphonophore, Nanomia cara, while a ctenophore, Beroe cucumis, and a hydromedusa, Modeeria rotunda, were also registered in high abundances on a couple of occasions. To document the phenomena, we have compiled a variety of data from concurrent fisheries surveys and local fishermen, including physical samples, trawl catch, and acoustic data, photo and video evidence, and environmental data. Because of the gas-filled pneumatophore, characteristic for these types of siphonophores, acoustics provided detailed and unique insight to the horizontal and vertical distribution and potential abundances (~0.2–20 colonies·m−3 of N. cara with the highest concentrations observed in the near bottom region at ~320 m depth in the study area. This suggests that these animals were retained and accumulated in the deep basins of the fjord system possibly blooming here because of favorable environmental conditions and potentially higher prey availability compared to the shallower shelf areas to the north. Few cues as to the origin and onset of the bloom were found, but it may have originated from locally resident siphonophores. The characteristics of the deep-water masses in the fjord basins were different compared to the deep water outside the fjord system, suggesting no recent deep-water import to the fjords. However, water-masses containing siphonophores (not necessarily very abundant, may have been additionally introduced to the fjords at intermediate depths, with the animals subsequently trapped in the deeper fjord basins. The simultaneous observations of abundant siphonophores, hydromedusae, and ctenophores in the Lyngen-Kvænangen fjord system are intriguing, but difficult to provide a unified

  12. The Quasi-Linear Solution of Vertical Infiltration; La solucion cuasi-lineal de la infiltracion vertical

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, Carlos [Instituto Mexicano de Tecnologia del Agua, Jiutepec, Morelos (Mexico); Parlangue, Jean-Yves [Departamento de Agricultura e Ingenieria Biologica (United States); Haverkamp, Randel; Vauclin, Michael [Laboratorio de Estudio de las Transferencias en Hidrologia y Medio ambiente (France)

    2001-12-01

    The exact solution of the one-dimensional vertical infiltration equation is deducted, when the hydraulic diffusivity is considered constant and the hydraulic conductivity is a combination of both a linear and quadratic functions of the soil water content. This quasi-linear solution includes as particular cases, both the classical solution known as linear soil and the Knight solution. The cumulative infiltrated water as a function of time provided by the quasi-linear solution has been compared with the cumulative infiltrated water obtained from the numerical solution of the Richards equation on three different soils of contrasting hydrodynamic properties. The good agreement between the two solutions has shown that the quasi-linear solution can be used on soils where the accepted hypothesis, on hydraulic diffusivity and hydraulic conductivity, for its deduction is not satisfied. [Spanish] Se deduce la solucion exacta de la ecuacion de la infiltracion unidimensional vertical cuando la difusividad hidraulica es considerada constante y la conductividad hidraulica es una combinacion de una funcion lineal y una cuadratica del contenido volumetrico de agua. Esta solucion cuasi-lineal de la infiltracion contiene, como casos particulares, la solucion clasica conocida como suelo lineal y la solucion de Knight. La lamina infiltrada acumulada en funcion del tiempo proporcionada por la solucion cuasi-lineal se ha comparado con la lamina infiltrada proporcionada por la solucion numerica de la ecuacion de Richards en tres suelos de propiedades hidrodinamicas contrastantes. El buen acuerdo entre las laminas infiltradas ha mostrado que la solucion cuasi-lineal puede utilizarse en suelos donde la difusividad y la conductividad hidraulicas no satisfacen los supuestos de la deduccion.

  13. Application of subsurface vertical flow constructed wetlands to reject water treatment in dairy wastewater treatment plant.

    Science.gov (United States)

    Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa

    2017-01-01

    The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d -1 in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD 5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH 4 + 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.

  14. Adenocarcinoma of the pouch after silastic ring vertical gastroplasty.

    Science.gov (United States)

    Zirak, Christophe; Lemaitre, Jean; Lebrun, Eric; Journé, Stephane; Carlier, Patrick

    2002-10-01

    A 52-year-old woman was admitted because of epigastralgia, anorexia and recently increased vomiting, 2 years after silastic ring vertical gastroplasty. On gastroscopy, a tumor mass was visualized in the pouch near the "neo-pylorus". Biopsies confirmed adenocarcinoma. She underwent total gastrectomy, and has no evidence of recurrence at 1 year. The literature on gastric carcinoma after gastroplasty is reviewed.

  15. Measurement of vertical stroke Vub vertical stroke using b hadron semileptonic decay

    International Nuclear Information System (INIS)

    Abbiendi, G.; Aakesson, P.F.

    2001-01-01

    The magnitude of the CKM matrix element vertical stroke V ub vertical stroke is determined by measuring the inclusive charmless semileptonic branching fraction of beauty hadrons at OPAL based on b → X u lν event topology and kinematics. This analysis uses OPAL data collected between 1991 and 1995, which correspond to about four million hadronic Z decays. We measure Br(b → X u lν) to be (1.63 ±0.53 +0.55 -0.62 ) x 10 -3 . The first uncertainty is the statistical error and the second is the systematic error. From this analysis, vertical stroke V ub vertical stroke is determined to be: vertical stroke V ub vertical stroke =(4.00±0.65(stat) +0.67 -0.76 (sys)±0.19(HQE)) x 10 -3 . The last error represents the theoretical uncertainties related to the extraction of vertical stroke V ub vertical stroke from Br(b→X u l ν) using the Heavy Quark Expansion. (orig.)

  16. Computer programs for the numerical modelling of water flow in rock masses

    International Nuclear Information System (INIS)

    Croney, P.; Richards, L.R.

    1985-08-01

    Water flow in rock joints provides a very important possible route for the migration of radio-nuclides from radio-active waste within a repository back to the biosphere. Two computer programs DAPHNE and FPM have been developed to model two dimensional fluid flow in jointed rock masses. They have been developed to run on microcomputer systems suitable for field locations. The fluid flows in a number of jointed rock systems have been examined and certain controlling functions identified. A methodology has been developed for assessing the anisotropic permeability of jointed rock. A number of examples of unconfined flow into surface and underground openings have been analysed and ground water lowering, pore water pressures and flow quantities predicted. (author)

  17. Mass fluxes and spatial trends of xenobiotics in the waters of the city of Halle, Germany

    International Nuclear Information System (INIS)

    Reinstorf, F.; Strauch, G.; Schirmer, K.; Glaeser, H.-R.; Moeder, M.; Wennrich, R.; Osenbrueck, K.; Schirmer, M.

    2008-01-01

    The behaviour and the effects of xenobiotics including pharmaceuticals and fragrances in the environment are widely unknown. In order to improve our knowledge, field investigations and modelling approaches for the entire area of the city of Halle/Saale, Germany, were performed. The distribution of the concentration values and mass fluxes are exemplified using indicators such as Bisphenol A, t-Nonylphenol, Carbamacepine, Galaxolide, Tonalide, Gadolinium and isotopes. Concentrations at a magnitude of ng/L to μg/L were found ubiquitously in the ground and surface waters. Using the concentration values, the impact of the city concerning the indicators was not always evident. Only the assessment of the mass fluxes shows significant urban impacts along the city passage. The calculation of the mass fluxes shows increasing values for all investigated xenobiotics during the city passage; only Bisphenol A stagnates. A balance model of water and indicator mass fluxes was built up for the entire city area. - Xenobiotics are ubiquitous in the investigated urban aquatic system and are quantified by a large scale mass balance to find spatial trends

  18. Application of vertical electrical sounding combined with induced polarization method in ground water exploration; IP koka wo koryoshita hiteikoho suichoku tansa no chikasui chosa eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, M; Sakurada, H [Sumiko Consultants Co. Ltd., Tokyo (Japan); Suzuki, T [Hokkaido Development Bureau, Hokkaido Development Agency, Sapporo (Japan)

    1996-10-01

    For ground water exploration using vertical Schlumberger exploration method, measurement and analysis combined with induced polarization (IP) effect were conducted as trial. For the Schlumberger method, potential is measured at the center between potential electrodes during flow of dc current between current electrodes. In the case of vertical exploration, measurements are repeated with fixed potential electrodes by extending the distance between current electrodes. Ground water exploration was conducted using this method at Otaki village, Hokkaido. Geology of surveyed plateau consists of a basement of Pliocene tuffs and Quaternary Pleistocene sediments covering on the surface. For the results of analysis, four to seven beds were detected from the resistivity. The depth up to the lowest bed was between 25 and 85 m, the resistivity of each bed was between 9 and 8,000 ohm{times}m, and the polarizability was between 1 and 15 mV/V. Among these resistivity zones, it was judged that zones satisfying following three conditions correspond to coarse grain sediments saturated with ground water, and can be expected as aquifers; having resistivity ranging between 100 and 1,000 ohm{times}m, polarizability higher than 10 mV/V, and relatively large thickness. 11 refs., 6 figs.

  19. Investigating the Interannual Variability of the Circulation and Water Mass Formation in the Red Sea

    Science.gov (United States)

    Sofianos, S. S.; Papadopoulos, V. P.; Denaxa, D.; Abualnaja, Y.

    2014-12-01

    The interannual variability of the circulation and water mass formation in the Red Sea is investigated with the use of a numerical model and the combination of satellite and in-situ observations. The response of Red Sea to the large-scale variability of atmospheric forcing is studied through a 30-years simulation experiment, using MICOM model. The modeling results demonstrate significant trends and variability that are mainly located in the central and northern parts of the basin. On the other hand, the exchange pattern between the Red Sea and the Indian Ocean at the strait of Bab el Mandeb presents very weak interannual variability. The results verify the regularity of the water mass formation processes in the northern Red Sea but also show significant variability of the circulation and thermohaline conditions in the areas of formation. Enhanced water mass formation conditions are observed during specific years of the simulation (approximately five years apart). Analysis of recent warm and cold events in the northernmost part of the basin, based on a combination of atmospheric reanalysis results and oceanic satellite and in-situ observations, shows the importance of the cyclonic gyre that is prevailing in this part of the basin. This gyre can effectively influence the sea surface temperature (SST) and intensify or mitigate the winter effect of the atmospheric forcing. Upwelling induced by persistent periods of the gyre functioning drops the SST over the northernmost part of the Red Sea and can produce colder than normal winter SST even without extreme atmospheric forcing. These mechanisms are crucial for the formation of intermediate and deep water masses in the Red Sea and the strength of the subsequent thermohaline cells.

  20. Quantum chemistry in arbitrary dielectric environments: Theory and implementation of nonequilibrium Poisson boundary conditions and application to compute vertical ionization energies at the air/water interface

    Science.gov (United States)

    Coons, Marc P.; Herbert, John M.

    2018-06-01

    Widely used continuum solvation models for electronic structure calculations, including popular polarizable continuum models (PCMs), usually assume that the continuum environment is isotropic and characterized by a scalar dielectric constant, ɛ. This assumption is invalid at a liquid/vapor interface or any other anisotropic solvation environment. To address such scenarios, we introduce a more general formalism based on solution of Poisson's equation for a spatially varying dielectric function, ɛ(r). Inspired by nonequilibrium versions of PCMs, we develop a similar formalism within the context of Poisson's equation that includes the out-of-equilibrium dielectric response that accompanies a sudden change in the electron density of the solute, such as that which occurs in a vertical ionization process. A multigrid solver for Poisson's equation is developed to accommodate the large spatial grids necessary to discretize the three-dimensional electron density. We apply this methodology to compute vertical ionization energies (VIEs) of various solutes at the air/water interface and compare them to VIEs computed in bulk water, finding only very small differences between the two environments. VIEs computed using approximately two solvation shells of explicit water molecules are in excellent agreement with experiment for F-(aq), Cl-(aq), neat liquid water, and the hydrated electron, although errors for Li+(aq) and Na+(aq) are somewhat larger. Nonequilibrium corrections modify VIEs by up to 1.2 eV, relative to models based only on the static dielectric constant, and are therefore essential to obtain agreement with experiment. Given that the experiments (liquid microjet photoelectron spectroscopy) may be more sensitive to solutes situated at the air/water interface as compared to those in bulk water, our calculations provide some confidence that these experiments can indeed be interpreted as measurements of VIEs in bulk water.

  1. Mass-controlled capillary viscometer for a Newtonian liquid: Viscosity of water at different temperatures

    Science.gov (United States)

    Digilov, Rafael M.; Reiner, M.

    2007-03-01

    The operation principle of the mass-controlled capillary viscometer is presented for a Newtonian liquid. The derived equation for the temporal changes of the mass in a liquid column draining under gravity through a discharge capillary tube accounts self-consistently for the inertial convective term associated with the acceleration effect. The viscosity of water measured at different temperatures using the new approach is in good agreement with literature data.

  2. VERTICAL STRUCTURE OF A SUPERNOVA-DRIVEN TURBULENT, MAGNETIZED INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Hill, Alex S.; Matthew Haffner, L.; Ryan Joung, M.; Mac Low, Mordecai-Mark; Benjamin, Robert A.; Klingenberg, Christian; Waagan, Knut

    2012-01-01

    Stellar feedback drives the circulation of matter from the disk to the halo of galaxies. We perform three-dimensional magnetohydrodynamic simulations of a vertical column of the interstellar medium with initial conditions typical of the solar circle in which supernovae drive turbulence and determine the vertical stratification of the medium. The simulations were run using a stable, positivity-preserving scheme for ideal MHD implemented in the FLASH code. We find that the majority (≈90%) of the mass is contained in thermally stable temperature regimes of cold molecular and atomic gas at T 4.2 K, with strong peaks in probability distribution functions of temperature in both the cold and warm regimes. The 200-10 4.2 K gas fills 50%-60% of the volume near the plane, with hotter gas associated with supernova remnants (30%-40%) and cold clouds ( 5 K) gas accounts for most of the mass and volume, while hot gas dominates at |z| > 3 kpc. The magnetic field in our models has no significant impact on the scale heights of gas in each temperature regime; the magnetic tension force is approximately equal to and opposite the magnetic pressure, so the addition of the field does not significantly affect the vertical support of the gas. The addition of a magnetic field does reduce the fraction of gas in the cold ( 4 K) gas. However, our models lack rotational shear and thus have no large-scale dynamo, which reduces the role of the field in the models compared to reality. The supernovae drive oscillations in the vertical distribution of halo gas, with the period of the oscillations ranging from ≈30 Myr in the T 6 K gas, in line with predictions by Walters and Cox.

  3. Experimental analysis of upward vertical two-phase flow in four-cusp channels simulating the conditions of a typical nuclear reactor channel, degraded by a loss of coolant accident

    International Nuclear Information System (INIS)

    Assad, A.C.A.

    1984-01-01

    The present work deals with an experimental analysis of upward vertical two-phase flow in channels with circular and four-cusp cross-sections. The latter simulates the conditions of a typical nuclear reactor channel, degraded by a loss of coolant accident. Simultaneous flow of air and water has been employed to simulate adiabatic steam-water flow. The installation of air-water separators helped eliminate instabilities during pressure-drop measurements. The gamma ray attenuation was utilized for the void fraction determination. For the four-cusp geommetry, new criteria for two-phase flow regime transitions have been determined, as well as new correlatins for pressure drop and void fraction, as function of the Lockhart-Martinelli factor and vapour mass-fraction, respectively. (Author) [pt

  4. On the implications of aerosol liquid water and phase separation for organic aerosol mass

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains data presented in the figures of the paper "On the implications of aerosol liquid water and phase separation for organic aerosol mass"...

  5. Self-talk influences vertical jump performance and kinematics in male rugby union players.

    Science.gov (United States)

    Edwards, Christian; Tod, David; McGuigan, Michael

    2008-11-01

    We examined the effects of instructional and motivational self-talk on centre of mass displacement and hip kinematics during the vertical jump. Twenty-four male rugby union players (age 21.1 years, s = 3.5; body mass 81.0 kg, s = 8.9; height 1.80 m, s = 0.06) performed three vertical jump tests, with a 2 min rest between jumps. Before each jump, participants engaged in one of three counterbalanced interventions (motivational self-talk, instructional self-talk or no-intervention). Motivational self-talk led to greater centre of mass displacement (0.602 m, s = 0.076; P = 0.012) than the no-intervention control (0.583 m, s = 0.085). Centre of mass displacement did not differ between instructional self-talk and the control condition or between motivational and instructional self-talk. Motivational (100.75 degrees , s = 16.05; P = 0.001) and instructional self-talk (106.14 degrees , s = 17.04; P = 0.001) led to greater hip displacement than the no-intervention control (94.11 degrees , s = 17.14). There was also a significant difference in hip displacement between motivational and instructional self-talk (P = 0.014), although there was no difference between instructional self-talk and the control condition. Motivational (451.69 degrees /s, s = 74.34; P = 0.008) and instructional self-talk (462.01 degrees /s, s = 74.37; P = 0.001) led to greater hip rotation velocity than the no-intervention control (434.37 degrees /s, s = 75.37), although there was no difference between the two self-talk interventions. These results indicate that self-talk may influence performance and technique during the vertical jump in male rugby players.

  6. Heat and mass transfer in the stratified flow with ECCS injection

    International Nuclear Information System (INIS)

    Strubelj, L.; Tiselj, I.

    2007-01-01

    One of the most important problems in the light-water nuclear thermal-hydraulics is behaviour of the cold emergency core cooling water injected from the top or from the bottom into the horizontal section of the cold leg near the reactor vessel during the loss of coolant accident. The stratified flows appear where cold water is injected in partially or fully uncovered horizontal cold leg. The hot steam condenses on cold water surface what is also called direct contact condensation. Direct contact condensation and condensation induced water-hammer in a horizontal pipe were experimentally investigated at PMK-2 test facility of the Hungarian Atomic Energy Research Institute KFKI. The cold water is injected through small pipe into lower horizontal part of the section, and then water fills the vertical pipeline and floods the horizontal test section of the pipeline of the PMK-2 integral test facility. As liquid water floods the horizontal part of the pipeline, the counter current horizontally stratified flow is being observed. During the flooding of the pipeline, the steam-liquid interface area increases and therefore the steam condensation rate and the steam velocity also increase and can lead to bubble entrapment. Water level at one cross-section and four local void fraction and temperature at the top of horizontal test pipeline was measured and compared with simulation. Condensed steam increases the water temperature that is why the local temperature measurements are the most important information, from which condensation rate can be estimated, since mass of condensed steam was not measured. Numerical simulation of the experiment with thermal phase change is presented. Surface renewal concept with small eddies is used for calculation of condensation heat transfer coefficient. Two simulations were performed: simulation of whole experimental domain (lower horizontal, vertical and test horizontal pipeline) and simplified simulation of only upper horizontal test section

  7. A comparison of the different regulatory requirements of NPP in vertical ground motion

    International Nuclear Information System (INIS)

    Hou Chunlin; Pan Rong; Yang Yu; Wang Shuguo; Li Xiaojun

    2015-01-01

    Based on the importance of vertical motion in the nuclear power plants (NPPs) and equipment identification of seismic test, we summarize the existing laws and regulations cited by China's NPPs in the vertical seismic ground motion of the regulations. Then, according to the interpretation of various laws and regulations content, we may identified four vertical earthquake response spectrums. Finally, combined with the seismic safety requirements of China NPPs evaluation and the vertical seismic design of M310, EPR, AP1000 and CAP1400 pressurized water reactor, we explain that the vertical seismic ground motion selection should distinguish the effects between near field and far field earthquake, the existing regulations and specifications that China used are still required to further improve on the selection of vertical ground motion. The results of this study can provide reference for seismic design of China's nuclear power plant and nuclear safety review. (authors)

  8. Benthic foraminiferal distribution in surface sediments along continental slope of the southern Okinawa Trough:dependance on water masses and food supply

    Institute of Scientific and Technical Information of China (English)

    向荣; 李铁刚; 杨作升; 阎军; 曹奇原

    2003-01-01

    Benthic foraminiferal analysis of 29 samples in surface sediments from the southern Oki-nawa Trough is carried out. The results indicate that benthic foraminiferal abundance decreases rapidlywith increasing water depth. Percentage frequencies of agglutinated foraminifera further confirm themodem shallow carbonate lysocline in the southern Okinawa Trough. From continental shelf edge to thebottom of Okinawa Trough, benthic foraminiferal fauna in the surface sediments can be divided into 5assemblages: (1) Continental shelf break assemblage, dominated by Cibicides pseudoungerianus, corre-sponds to subsurface water mass of the Kuroshio Current; (2) upper continental slope assemblage, domi-nated by Cassidulina carinata, Globocassidulina subglobosa, corresponds to intermediate water mass of the Kuroshio Current; (3) intermediate continental slope assemblage, dominated by Uvigerina hispi-da, corresponds to the Okinawa Trough deep water mass above the carbonate lysocline; (4) lower con-tinental slope- trough bottom assemblage, dominated by Pullenia bulloides, Epistominella exigua andCibicidoides hyalinus, corresponds to deep water mass of the Okinawa Trough; and (5) trough bottomagglutinated assemblage, dominated by Rhabdammina spp., Bathysiphon flavidus, corresponds tostrongly dissolved environment of the trough bottom. The benthic foraminiferal fauna in the southemOkinawa Trough are controlled jointly by water masses and food supply. Water temperature, oxygenconcentration and carbonate dissolution of the water masses are important controlling factors especiallyfor the continental shelf break and trough bottom assemblages. The food supply also plays an importantrole in these benthic foraminiferal assemblages along the westem slope of the Okinawa Trough. Both theabundance and the 5 assemblages of benthic foraminifera correspond well to the organic matter supplyalong the continental slope and a lateral transport of TSM (total suspended matter) and POC (particulateorganic

  9. Demonstration of isotope-mass balance approach for water budget analyses of El-burulus Lake, Nile Delta, Egypt

    International Nuclear Information System (INIS)

    Sadek, M.A.

    2006-01-01

    The major elements of El-Burulus lake water system are rainfall, agricultural drainage discharge, groundwater, human activities, evaporation and water interaction between the lake and the Mediterranean sea. The principal input sources are agricultural drainage (8 drains at the southern borders of the lake), sea water as well as some contribution of precipitation, groundwater and human activities. Water is lost from the lake through evaporation and surface outflow. The present study has been conducted using isotopic / mass balance approach to investigate the water balance of El-Burulus lake and to emphasize the relative contribution of different input / output components which affect the environmental and hydrological terms of the system. An isotopic evaporation pan experiment was performed to estimate the parameters of relevance to water balance (isotopic composition of free air moisture and evaporating flux) and to simulate the isotopic enrichment of evaporation under atmospheric and hydraulic control. The isotopic mass balance approach employed herein facilitated the estimation of groundwater inflow to the lake, evaporated fraction of total lake inflow (E/I) and its fraction to outflow (E/O), ratio of surface inflow to surface outflow (I/O) as well as residence time of lake water. The isotopic mass balance approach has been validated by comparing the values of estimated parameters with the previous hydrological investigations; a quite good match has been indicated, the relevance of this approach is related to its integrative scale and the more simply implementation

  10. Modelling the transport of common sole larvae in the southern North Sea: Influence of hydrodynamics and larval vertical movements

    Science.gov (United States)

    Savina, Marie; Lacroix, Geneviève; Ruddick, Kevin

    2010-04-01

    In the present work we used a particle-tracking model coupled to a 3D hydrodynamic model to study the combined effect of hydrodynamic variability and active vertical movements on the transport of sole larvae in the southern North Sea. Larval transport from the 6 main spawning grounds was simulated during 40 day periods starting on 2 plausible spawning dates, the 15/04 and the 01/05, during 2 years, 1995 and 1996. In addition to a "passive" behaviour, 3 types of active vertical movements inspired from previous studies have been tested: (1) Eggs and early larvae float in the surface waters, late larvae migrate toward the bottom and stay there until the end of the simulation; (2 and 3) Eggs float in the surface waters, early larvae perform diel vertical migrations in the surface waters, and (2) Late larvae perform diel vertical migrations in the bottom waters until the end of the simulation; or (3) Late larvae perform tidally synchronised vertical migrations in the bottom waters until the end of the simulation. These behaviours have been implemented in the model with vertical migration rates, positive or negative, which can account for buoyancy or real swimming activity. Variations in larval transport were analysed in terms of mean trajectories, final larvae distribution, larval retention above nurseries, and connectivity. Results suggest that the variations in larval retention above nurseries due to the varying hydrodynamic conditions are not consistent in space i.e. not the same for all the spawning sites. The effect of active vertical movements on larval transport is also not consistent in space: Effects of active vertical movements include decreased retention above nurseries, decreased transport and/or decreased horizontal dispersion of larvae through reduced vertical shear (depending on the zone). The variability in larval retention due to hydrodynamic variability is higher than variability due to differences in the behaviour of larvae. In terms of connectivity

  11. Twilight vertical migrations of zooplankton in a Chilean fjord

    Science.gov (United States)

    Valle-Levinson, Arnoldo; Castro, Leonardo; Cáceres, Mario; Pizarro, Oscar

    2014-12-01

    Time series of acoustic backscatter and vertical velocity profiles were obtained at three sites along a Chilean fjord with the purpose of determining dominant structures of vertical migrations of the sound scattering layer. Ancillary data obtained with stratified net samples indicated that the sound scattering layer may have been dominated by euphausiids and decapods. Therefore, distributions of acoustic backscatter anomalies and vertical velocities were attributed to vertical migrations of predominantly these organisms. Migration patterns were dominated by twilight excursions in which organisms swam toward the water surface at sunset, spent 100 m). This migration strategy can also be termed 'semidiel migration' as two double excursions were linked to light levels. The reasons for this twilight migration remain uncertain. But it is possible that the up and down motion around sunset was related to predation avoidance, hunger-satiation state, ontogeny, seaward transport evasion, or reaction to the environmental shock from the pycnocline, or a combination of all or some of them. In contrast, the sunrise double excursion was probably linked to feeding requirements by organisms that need to spend the day at great depth with no food available. This study demonstrated the existence of semidiel patterns throughout the fjord and through prolonged periods. In addition, identification of this pattern by acoustic backscatter was complemented by direct vertical velocity measurements. It is proposed that twilight vertical migration is a common strategy in Chilean fjords.

  12. Horizontal and Vertical Velocities Derived from the IDS Contribution to ITRF2014, and Comparisons with Geophysical Models

    Science.gov (United States)

    Moreaux, G.; Lemoine, F. G.; Argus, D. F.; Santamaria-Gomez, A.; Willis, P.; Soudarin, L.; Gravelle, M.; Ferrage, P.

    2016-01-01

    In the context of the 2014 realization of the International Terrestrial Reference Frame (ITRF2014), the International DORIS Service (IDS) has delivered to the IERS a set of 1140 weekly SINEX files including station coordinates and Earth orientation parameters, covering the time period from 1993.0 to 2015.0. From this set of weekly SINEX files, the IDS Combination Center estimated a cumulative DORIS position and velocity solution to obtain mean horizontal and vertical motion of 160 stations at 71 DORIS sites. The main objective of this study is to validate the velocities of the DORIS sites by comparison with external models or time series. Horizontal velocities are compared with two recent global plate models (GEODVEL 2010 and NNR-MORVEL56). Prior to the comparisons, DORIS horizontal velocities were corrected for Global Isostatic Adjustment (GIA) from the ICE-6G (VM5a) model. For more than half of the sites, the DORIS horizontal velocities differ from the global plate models by less than 2-3 mm/yr. For five of the sites (Arequipa, Dionysos/Gavdos, Manila, Santiago) with horizontal velocity differences wrt these models larger than 10 mm/yr, comparisons with GNSS estimates show the veracity of the DORIS motions. Vertical motions from the DORIS cumulative solution are compared with the vertical velocities derived from the latest GPS cumulative solution over the time span 1995.0-2014.0 from the University of La Rochelle (ULR6) solution at 31 co-located DORIS-GPS sites. These two sets of vertical velocities show a correlation coefficient of 0.83. Vertical differences are larger than 2 mm/yr at 23 percent of the sites. At Thule the disagreement is explained by fine-tuned DORIS discontinuities in line with the mass variations of outlet glaciers. Furthermore, the time evolution of the vertical time series from the DORIS station in Thule show similar trends to the GRACE equivalent water height.

  13. Horizontal and vertical velocities derived from the IDS contribution to ITRF2014, and comparisons with geophysical models

    Science.gov (United States)

    Moreaux, G.; Lemoine, F. G.; Argus, D. F.; Santamaría-Gómez, A.; Willis, P.; Soudarin, L.; Gravelle, M.; Ferrage, P.

    2016-10-01

    In the context of the 2014 realization of the International Terrestrial Reference Frame, the International DORIS (Doppler Orbitography Radiopositioning Integrated by Satellite) Service (IDS) has delivered to the IERS a set of 1140 weekly SINEX files including station coordinates and Earth orientation parameters, covering the time period from 1993.0 to 2015.0. From this set of weekly SINEX files, the IDS combination centre estimated a cumulative DORIS position and velocity solution to obtain mean horizontal and vertical motion of 160 stations at 71 DORIS sites. The main objective of this study is to validate the velocities of the DORIS sites by comparison with external models or time-series. Horizontal velocities are compared with two recent global plate models (GEODVEL 2010 and NNR-MORVEL56). Prior to the comparisons, DORIS horizontal velocities were corrected for Global Isostatic Adjustment from the ICE-6G (VM5a) model. For more than half of the sites, the DORIS horizontal velocities differ from the global plate models by less than 2-3 mm yr-1. For five of the sites (Arequipa, Dionysos/Gavdos, Manila and Santiago) with horizontal velocity differences with respect to these models larger than 10 mm yr-1, comparisons with GNSS estimates show the veracity of the DORIS motions. Vertical motions from the DORIS cumulative solution are compared with the vertical velocities derived from the latest GPS cumulative solution over the time span 1995.0-2014.0 from the University of La Rochelle solution at 31 co-located DORIS-GPS sites. These two sets of vertical velocities show a correlation coefficient of 0.83. Vertical differences are larger than 2 mm yr-1 at 23 percent of the sites. At Thule, the disagreement is explained by fine-tuned DORIS discontinuities in line with the mass variations of outlet glaciers. Furthermore, the time evolution of the vertical time-series from the DORIS station in Thule show similar trends to the GRACE equivalent water height.

  14. Estimating Vertical Land Motion in the Chesapeake Bay

    Science.gov (United States)

    Houttuijn Bloemendaal, L.; Hensel, P.

    2017-12-01

    This study aimed to provide a modern measurement of subsidence in the Chesapeake Bay region and establish a methodology for measuring vertical land motion using static GPS, a cheaper alternative to InSAR or classical leveling. Vertical land motion in this area is of particular concern because tide gages are showing up to 5 mm/yr of local, relative sea level rise. While a component of this rate is the actual eustatic sea level rise itself, part of the trend may also be vertical land motion, in which subsidence exacerbates the effects of actual changes in sea level. Parts of this region are already experiencing an increase in the frequency and magnitude of near-shore coastal flooding, but the last comprehensive study of vertical land motion in this area was conducted by NOAA in 1974 (Holdahl & Morrison) using repeat leveled lines. More recent measures of vertical land motion can help inform efforts on resilience to sea level rise, such as in the Hampton Roads area. This study used measured GPS-derived vertical heights in conjunction with legacy GPS data to calculate rates of vertical motion at several points in time for a selection of benchmarks scattered throughout the region. Seventeen marks in the stable Piedmont area and in the areas suspected of subsidence in the Coastal Plain were selected for the analysis. Results indicate a significant difference between the rates of vertical motion in the Piedmont and Coastal Plain, with a mean rate of -4.10 mm/yr in the Coastal Plain and 0.15 mm/yr in the Piedmont. The rates indicate particularly severe subsidence at the southern Delmarva Peninsula coast and the Hampton-Roads area, with a mean rate of -6.57 mm/yr in that region. By knowing local rates of subsidence as opposed to sea level change itself, coastal managers may make better informed decisions regarding natural resource use, such as deciding whether or not to reduce subsurface fluid withdrawals or to consider injecting treated water back into the aquifer to slow

  15. Effects of complex hydrodynamic processes on the horizontal and vertical distribution of Tc-99 in the Irish Sea

    International Nuclear Information System (INIS)

    Olbert, Agnieszka I.; Hartnett, Michael; Dabrowski, Tomasz; Kelleher, Kevin

    2010-01-01

    The increased discharge of Tc-99 from the Sellafield plant following the commissioning of the Enhance Actinide Removal Plant in 1994 was reflected in higher Tc-99 activity concentrations over much of the Irish Sea. The presence of this radionuclide in the marine environment is of concern not only because of its long half life but also high bio-concentration factor in commercially valuable species, such Norway lobster (Nephrops norvegicus) and common lobster (Homarus gammarus). Accurate predictions of the transport, and spatial and temporal distributions of Tc-99 in the Irish Sea have important environmental and commercial implications. In this study, transport of the Tc-99 material was simulated in order to develop an increased understanding of long-term horizontal and vertical distributions. In particular, impact of seasonal hydrodynamic features such as the summer stratification on the surface-to-bottom Tc-99 ratio was of interest. Also, material retention mechanisms within the western Irish Sea were explored and flushing rates under various release conditions and meteorological forcing were estimated. The results show that highest vertical gradients are observed between June and July in the deepest regions of the North Channel and the western Irish Sea where radionuclide-rich saline-poor water overlays radionuclide-poor saline-rich Atlantic water masses. Strong correlation between top-to-bottom ratio of Tc-99 and strength of stratification was found. Flushing studies demonstrate that as the stratification intensifies, residence times within the western Irish Sea increase. In stratified waters of the gyre Tc-99 material is flushed out from the upper layer much quicker than from the bottom zone. The research also shows that in the gyre the biologically active upper layers above the thermocline are likely to contain higher concentrations than the near-bed region. Long-term horizontal and vertical distributions as determined in this study provide a basis for

  16. Effects of complex hydrodynamic processes on the horizontal and vertical distribution of Tc-99 in the Irish Sea

    Energy Technology Data Exchange (ETDEWEB)

    Olbert, Agnieszka I., E-mail: indiana.olbert@nuigalway.ie [Civil Engineering Department, Environmental Change Institute, National University of Ireland, Galway (Ireland); Hartnett, Michael; Dabrowski, Tomasz [Civil Engineering Department, Environmental Change Institute, National University of Ireland, Galway (Ireland); Kelleher, Kevin [Radiological Protection Institute of Ireland, 3 Clonskeagh Square, Clonskeagh Road, Dublin 14 (Ireland)

    2010-12-01

    The increased discharge of Tc-99 from the Sellafield plant following the commissioning of the Enhance Actinide Removal Plant in 1994 was reflected in higher Tc-99 activity concentrations over much of the Irish Sea. The presence of this radionuclide in the marine environment is of concern not only because of its long half life but also high bio-concentration factor in commercially valuable species, such Norway lobster (Nephrops norvegicus) and common lobster (Homarus gammarus). Accurate predictions of the transport, and spatial and temporal distributions of Tc-99 in the Irish Sea have important environmental and commercial implications. In this study, transport of the Tc-99 material was simulated in order to develop an increased understanding of long-term horizontal and vertical distributions. In particular, impact of seasonal hydrodynamic features such as the summer stratification on the surface-to-bottom Tc-99 ratio was of interest. Also, material retention mechanisms within the western Irish Sea were explored and flushing rates under various release conditions and meteorological forcing were estimated. The results show that highest vertical gradients are observed between June and July in the deepest regions of the North Channel and the western Irish Sea where radionuclide-rich saline-poor water overlays radionuclide-poor saline-rich Atlantic water masses. Strong correlation between top-to-bottom ratio of Tc-99 and strength of stratification was found. Flushing studies demonstrate that as the stratification intensifies, residence times within the western Irish Sea increase. In stratified waters of the gyre Tc-99 material is flushed out from the upper layer much quicker than from the bottom zone. The research also shows that in the gyre the biologically active upper layers above the thermocline are likely to contain higher concentrations than the near-bed region. Long-term horizontal and vertical distributions as determined in this study provide a basis for

  17. Spreading of water masses and regeneration of silica and sup(226)Ra in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; Yuan-Hui, Li

    The magnitudes of silica and sup(226) RA inputs to water (through particle regeneration, in situ, and from sediments) and the validity of observed Si and sup(226) Ra as tracers of water masses and advective processes were examined in the Indian...

  18. Mesoscale variability of water masses in the Arabian Sea as revealed by ARGO floats

    OpenAIRE

    X. Carton; P. L'Hegaret

    2011-01-01

    By analysing ARGO float data over the last four years, some aspects of the mesoscale variability of water masses in the Arabian Sea are described.

    The Red Sea Water outflow is strong in the Southwestern Gulf of Aden, in particular when a cyclonic gyre predominates in this region. Salinities of 36.5 and temperatures of 16 °C are found there between 600 and 1000 m depths. The Red Sea Water is more dilute in the eastern part of the Gulf, and fragments of this ...

  19. Analysis of hydrogen-deuterium mixtures and of mixtures of heavy-water and light-water by means of a mass spectrometer

    International Nuclear Information System (INIS)

    Chenouard, J.; Gueron, J.; Roth, E.

    1951-07-01

    The differences between hydrogen and deuterium with respect to the capture of thermal neutrons (hydrogen = 0.31 barn; deuterium 0.00065 barn) explains the interest of detecting small variations of the isotopic composition of the heavy waters used in the Chatillon nuclear pile. The aim of this report is to describe and discuss the method used since more than a year for the dosimetry of heavy waters. After a recall of the principle of mass spectroscopy analysis of deuterium-hydrogen mixtures, the preciseness of the results is presented and the balancing method used for the determination of the isotopic composition of hydrogen-deuterium mixtures is explained in detail. Finally, a brief comparison of the preciseness of mass spectroscopy measurements with the analyses made with other methods is performed. Some calculations and the tables of results are presented in appendixes. (J.S.)

  20. Alignment analysis of a vertical sodium pump

    International Nuclear Information System (INIS)

    Gupta, V.K.; Fair, C.E.

    1981-01-01

    With the objective of identifying important alignment features of pumps such as FFTF, HALLAM, EBR II, PNC, PHENIX, and CRBR, alignment of the vertical sodium pump for the Clinch River Breeder Reactor Plant (CRBRP) is investigated. The CRBRP pump includes a flexibly coupled pump shaft and motor shaft, two oil-film tilting-pad hydrodynamic radial bearings in the motor plus a vertical thrust bearing, and two sodium hydrostatic bearings straddling the double-suction centrifugal impeller in the pump. The assembled CRBRP prototype pump shows smooth predictable vibration behavior experienced during water test. An ealier swing check of the pump shaft about the motor shaft hub demonstrated that the pump is relatively insensitive to manufacturing and assembly tolerances, a consequence of close dimensional control and unique alignment features. (orig./GL)

  1. The use of vertical constructed wetland and ultrasound in aquaponic systems.

    Science.gov (United States)

    Krivograd Klemenčič, A; Griessler Bulc, T

    2015-01-01

    Treatment performance, fish production, crop plant biomass production, water consumption, and water use efficiency of a pilot aquaponic system for small-scale land-based cyprinid fish farms were evaluated. The system consisted of a 36 m(3) Pond A with an initial carp load of 0.6 kg/m(3); of a treatment chain with a lamellar settler, a roughing filter, a vertical constructed wetland filled with expanded clay and planted with tomatoes; and of a low power ultrasound unit installed in the corner of the pond. The average circulation of the water in the system was 1.2 times per day. Pond A was compared with Pond B of the same dimensions and fish load but with no treatment chain or ultrasound. The treatment chain was efficient in mass removal of total suspended solids , biochemical oxygen demand, chemical oxygen demand, NH4-N, total nitrogen, and total phosphorous (57, 49, 35, 42, 31, and 25 %, respectively). Negative removal of NO3-N, NO2-N, and PO4-P indicated the need for the introduction of additional hydroponic beds in the system. Pond A had markedly lower nutrient concentrations compared with Pond B. Fish body weight increase and specific growth rate in Pond A were higher than in Pond B (102.6 %, 72.1 %; 0.19 %/day, 0.14 %/day, respectively) indicating better rearing conditions in Pond A. Tomato biomass production was high. Water use efficiency was higher in Pond A compared with Pond B (0.31 kg of produced fish/m(3) inflow water and 0.22 kg of produced fish/m(3) inflow water, respectively). The presented aquaponic system could be useful for semi-natural fish farming with fish loads up to 2 kg/m(3).

  2. Theoretical Investigation of Subwavelength Gratings and Vertical Cavity Lasers Employing Grating Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza

    This thesis deals with theoretical investigations of a newly proposed grating structure, referred to as hybrid grating (HG) as well as vertical cavity lasers based on the grating reflectors. The HG consists of a near-subwavelength grating layer and an unpatterned high-refractive-index cap layer...... directions, which is analogous to electronic quantum wells in conduction or valence bands. Several interesting configurations of heterostructures have been investigated and their potential in fundamental physics study and applications are discussed. For numerical and theoretical studies, a three...... feasibility than the HCG-based ones. Furthermore, the concept of cavity dispersion in vertical cavities is introduced and its importance in the modal properties is numerically investigated. The dispersion curvature of a cavity mode is interpreted as the effective photon mass of the cavity mode. In a vertical...

  3. Bacterial flora analysis of coliforms in sewage, river water, and ground water using MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Suzuki, Yoshihiro; Niina, Kouki; Matsuwaki, Tomonori; Nukazawa, Kei; Iguchi, Atsushi

    2018-01-28

    The aim of this study was to rapidly and effectively analyze coliforms, which are the most fundamental indicators of water quality for fecal pollution, using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Coliform bacteria were isolated from municipal sewage, river water, and groundwater. For each sample, 100 isolates were determined by MALDI-TOF MS. In addition, these same 100 isolates were also identified via 16S rRNA gene sequence analysis. Obtained MALDI-TOF MS data were compared with the 16S rRNA sequencing analysis, and the validity of MALDI-TOF MS for classification of coliform bacteria was examined. The concordance rate of bacterial identification for the 100 isolates obtained by MALDI-TOF MS analysis and 16S rRNA gene sequence analysis for sewage, river water, and ground water were 96%, 74%, and 62% at the genus level, respectively. Among the sewage, river water, and ground water samples, the coliform bacterial flora were distinct. The dominant genus of coliforms in sewage, river water, and groundwater were Klebsiella spp., Enterobacter spp., and Serratia spp., respectively. We determined that MALDI-TOF MS is a rapid and accurate tool that can be used to identify coliforms. Therefore, without using conventional 16S rRNA sequencing, it is possible to rapidly and effectively classify coliforms in water using MALDI-TOF MS.

  4. Measurement of the CKM matrix element vertical stroke Vts vertical stroke 2

    International Nuclear Information System (INIS)

    Unverdorben, Christopher Gerhard

    2015-03-01

    This is the first direct measurement of the CKM matrix element vertical stroke V ts vertical stroke, using data collected by the ATLAS detector in 2012 at √(s)= 8 TeV pp-collisions with a total integrated luminosity of 20.3 fb -1 . The analysis is based on 112 171 reconstructed t anti t candidate events in the lepton+jets channel, having a purity of 90.0 %. 183 t anti t→W + W - b anti s decays are expected (charge conjugation implied), which are available for the extraction of the CKM matrix element vertical stroke V ts vertical stroke 2 . To identify these rare decays, several observables are examined, such as the properties of jets, tracks and of b-quark identification algorithms. Furthermore, the s-quark hadrons K 0 s are considered, reconstructed by a kinematic fit. The best observables are combined in a multivariate analysis, called ''boosted decision trees''. The responses from Monte Carlo simulations are used as templates for a fit to data events yielding a significance value of 0.7σ for t→s+W decays. An upper limit of vertical stroke V ts vertical stroke 2 <1.74 % at 95 % confidence level is set, including all systematic and statistical uncertainties. So this analysis, using a direct measurement of the CKM matrix element vertical stroke V ts vertical stroke 2 , provides the best direct limit on vertical stroke V ts vertical stroke 2 up to now.

  5. Application of vertex and mass constraints in track-based alignment

    International Nuclear Information System (INIS)

    Amoraal, J.; Blouw, J.; Blusk, S.; Borghi, S.; Cattaneo, M.; Chiapolini, N.; Conti, G.; Deissenroth, M.; Dupertuis, F.; Eijk, R. van der; Fave, V.; Gersabeck, M.; Hicheur, A.; Hulsbergen, W.; Hutchcroft, D.; Kozlinskiy, A.; Lambert, R.W.

    2013-01-01

    The software alignment of planar tracking detectors using samples of charged particle trajectories may lead to global detector distortions that affect vertex and momentum resolution. We present an alignment procedure that constrains such distortions by making use of samples of decay vertices reconstructed from two or more trajectories and putting constraints on their invariant mass. We illustrate the method by using a sample of invariant-mass constrained vertices from D 0 →K − π + decays to remove a curvature bias in the LHCb spectrometer

  6. How Informative are the Vertical Buoyancy and the Prone Gliding Tests to Assess Young Swimmers’ Hydrostatic and Hydrodynamic Profiles?

    Science.gov (United States)

    Barbosa, Tiago M.; Costa, Mário J.; Morais, Jorge E; Moreira, Marc; Silva, António J.; Marinho, Daniel A.

    2012-01-01

    The aim of this research was to develop a path-flow analysis model to highlight the relationships between buoyancy and prone gliding tests and some selected anthropometrical and biomechanical variables. Thirty-eight young male swimmers (12.97 ± 1.05 years old) with several competitive levels were evaluated. It were assessed the body mass, height, fat mass, body surface area, vertical buoyancy, prone gliding after wall push-off, stroke length, stroke frequency and velocity after a maximal 25 [m] swim. The confirmatory model included the body mass, height, fat mass, prone gliding test, stroke length, stroke frequency and velocity. All theoretical paths were verified except for the vertical buoyancy test that did not present any relationship with anthropometrical and biomechanical variables nor with the prone gliding test. The good-of-fit from the confirmatory path-flow model, assessed with the standardized root mean square residuals (SRMR), is considered as being close to the cut-off value, but even so not suitable of the theory (SRMR = 0.11). As a conclusion, vertical buoyancy and prone gliding tests are not the best techniques to assess the swimmer’s hydrostatic and hydrodynamic profile, respectively. PMID:23486528

  7. Mesoscale variability of water masses in the Arabian Sea as revealed by ARGO floats

    Science.gov (United States)

    Carton, X.; L'Hegaret, P.; Baraille, R.

    2012-03-01

    By analysing ARGO float data over the last four years, a few aspects of the mesoscale variability of water masses in the Arabian Sea are described. The Red Sea Outflow Water (RSOW) is concentrated in the Southwestern Gulf of Aden, in particular when a cyclonic gyre predominates in this region. Salinities of 36.5 and temperatures of 16 °C are found in this area at depths between 600 and 1000 m. RSOW is more dilute in the eastern part of the Gulf, where intense and relatively barotropic gyres mix it with Indian ocean Central Water. RSOW is also detected along the northeastern coast of Socotra, and fragments of RSOW are found between one and three degrees of latitude north of this island. In the whole Gulf of Aden, the correlation between the deep motions of the floats and the sea-level anomaly measured by altimetry is strong, at regional scale. The finer scale details of the float trajectories are not sampled by altimetry and are often related to the anomalous water masses that the floats encounter. The Persian Gulf Water (PGW) is found in the float profiles near Ras ash Sharbatat (near 57° E, 18° N), again with 36.5 in salinity and about 18-19 °C in temperature. These observations were achieved in winter when the southwestward monsoon currents can advect PGW along the South Arabian coast. Fragments of PGW were also observed in the Arabian Sea between 18 and 20° N and 63 and 65° E in summer, showing that this water mass can escape the Gulf of Oman southeastward, during that season. Kinetic energy distributions of floats with respect to distance or angle share common features between the two regions (Gulf of Aden and Arabian Sea), in particular peaks at 30, 50 and 150 km scales and along the axis of monsoon currents. Hydrological measurements by floats are also influenced by the seasonal variations of PGW and RSOW in these regions.

  8. Mesoscale variability of water masses in the Arabian Sea as revealed by ARGO floats

    Directory of Open Access Journals (Sweden)

    X. Carton

    2012-03-01

    Full Text Available By analysing ARGO float data over the last four years, a few aspects of the mesoscale variability of water masses in the Arabian Sea are described.

    The Red Sea Outflow Water (RSOW is concentrated in the Southwestern Gulf of Aden, in particular when a cyclonic gyre predominates in this region. Salinities of 36.5 and temperatures of 16 °C are found in this area at depths between 600 and 1000 m. RSOW is more dilute in the eastern part of the Gulf, where intense and relatively barotropic gyres mix it with Indian ocean Central Water. RSOW is also detected along the northeastern coast of Socotra, and fragments of RSOW are found between one and three degrees of latitude north of this island. In the whole Gulf of Aden, the correlation between the deep motions of the floats and the sea-level anomaly measured by altimetry is strong, at regional scale. The finer scale details of the float trajectories are not sampled by altimetry and are often related to the anomalous water masses that the floats encounter.

    The Persian Gulf Water (PGW is found in the float profiles near Ras ash Sharbatat (near 57° E, 18° N, again with 36.5 in salinity and about 18–19 °C in temperature. These observations were achieved in winter when the southwestward monsoon currents can advect PGW along the South Arabian coast. Fragments of PGW were also observed in the Arabian Sea between 18 and 20° N and 63 and 65° E in summer, showing that this water mass can escape the Gulf of Oman southeastward, during that season.

    Kinetic energy distributions of floats with respect to distance or angle share common features between the two regions (Gulf of Aden and Arabian Sea, in particular peaks at 30, 50 and 150 km scales and along the axis of monsoon currents. Hydrological measurements by floats are also influenced by the seasonal variations of PGW and RSOW in these regions.

  9. Ultrahydrophobic water

    Science.gov (United States)

    Landgraf, J.; Kanitz, C.

    2017-05-01

    When a water drop falls on an oscillating soapy water surface it is observed that coalescence of the drop is inhibited because the drops are bouncing on the surface like on a trampoline. In our research we made experimental and theoretical investigations to an undeformable drop on a deformable bath. We described the vertical movement, predicted the critical bouncing threshold and also made experiments to the effects of an increased Weber number and the horizontal movement of the drop caused by a vertical movement.

  10. Structure of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel with water

    Directory of Open Access Journals (Sweden)

    V. I. Solonin

    2014-01-01

    Full Text Available The article presents a research of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel filled with water. A purpose of the work is to obtain experimental data for further analysis of a character of the moving phases. Research activities used the optic methods PIV (Particle Image Visualization because of their noninvasiveness to obtain data without disturbing effect on the flow. A laser sheet illuminated the fluorescence particles, which were admixed in water along the channel length. A digital camera recorded their motion for a certain time interval that allowed building the velocity vector fields. As a result, gas phase velocity components typical for a steady area of the channel and their relations for various intensity of volume air rate were obtained. A character of motion both for an air bubble and for its surrounding liquid has been conducted. The most probable direction of phases moving in the channel under sparging regime is obtained by building the statistic scalar fields. The use of image processing enabled an analysis of the initial area of the air inlet into liquid. A characteristic curve of the bubbles offset from the axis for various intensity of volume gas rate and channel diameter is defined. A character of moving phases is obtained by building the statistic scalar fields. The values of vertical components of liquid velocity in the inlet part of channel are calculated. Using the obtained data of the gas phase velocities a true void fraction was calculated. It was compared with the values of void fraction, calculated according to the liquid level change in the channel. Obtained velocities were compared with those of the other researchers, and a small difference in their values was explained by experimental conditions. The article is one of the works to research the two-phase flows with no disturbing effect on them. Obtained data allow us to understand a character of moving the two-phase flows in

  11. Potentiation: Effect of Ballistic and Heavy Exercise on Vertical Jump Performance.

    Science.gov (United States)

    Hester, Garrett M; Pope, Zachary K; Sellers, John H; Thiele, Ryan M; DeFreitas, Jason M

    2017-03-01

    Hester, GM, Pope, ZK, Sellers, JH, Thiele, RM, and DeFreitas, JM. Potentiation: Effect of ballistic and heavy exercise on vertical jump performance. J Strength Cond Res 31(3): 660-666, 2017-The purpose of this study was to compare the acute effects of heavy and ballistic conditioning protocols on vertical jump performance in resistance-trained men. Fourteen resistance-trained men (mean ± SD: age = 22 ± 2.1 years, body mass = 86.29 ± 9.95 kg, and height = 175.39 ± 9.34 cm) with an average relative full squat of 2.02 ± 0.28 times their body mass participated in this study. In randomized, counterbalanced order, subjects performed two countermovement vertical jumps before and 1, 3, 5, and 10 minutes after either performing 10 rapid jump squats or 5 heavy back squats. The back squat protocol consisted of 5 repetitions at 80% one repetition maximum (1RM), whereas the jump squat protocol consisted of 10 repetitions at 20% 1RM. Peak jump height (in centimeters) using a jump mat, along with power output (in Watts) and velocity (in meters per second) through a linear transducer, was recorded for each time interval. There was no significant condition × time interaction for any of the dependent variables (p = 0.066-0.127). In addition, there was no main effect for condition for any of the dependent variables (p = 0.457-0.899). Neither the ballistic nor heavy protocol used in this study enhanced vertical jump performance at any recovery interval. The use of these protocols in resistance-trained men to produce postactivation potentiation is not recommended.

  12. Biogeochemistry of (210)Pb and (210)Po in fresh waters and sediments. Doctoral thesis

    International Nuclear Information System (INIS)

    Benoit, G.

    1988-06-01

    The geochemical cycling of (210)Pb in a Massachusetts lake was studied. A mass balance for the epilimnion showed that (210)Pb inputs by precipitation were matched by outputs on settling particles, so direct uptake by bottom sediments was inconsequential. Below the epilimnion, vertical mixing was very low because of a steep temperature/density gradient, and this limited vertical transport. Anoxic conditions caused remobilization of iron and (210)Pb, which reprecipitated at the oxycline and returned to the bottom via settling. Below the zone of precipitation, (210)Pb and iron distributions resulted from constant release from anoxic sediments and dilution in the water column. Sediment (210)Pb distributions were caused by sedimentation and Fickian transport. The Fickian component was equal to the pore water diffusive flux. In pore waters, (210)Pb and (210)Po were 100 times greater that in overlying water and had steep concentration gradients, unlike Fe, Mn, S(-II), and alkalinity. (210)Pb partition coefficients decreased from 15000 to 1500 with depth controlled by sorption on iron oxides. Remobilization to the water column comes from a thin layer of iron-rich floc near the sediment/water interface. Deeper in the cores, diffusive transport can cause redistribution of (210)Pb to an extent that can affect (210)Pb dating

  13. Mixed convection flow and heat transfer in a vertical wavy channel ...

    African Journals Online (AJOL)

    Mixed convection flow and heat transfer in a vertical wavy channel filled with porous and fluid layers is studied analytically. The flow in the porous medium is modeled using Darcy-Brinkman equation. The coupled non-linear partial differential equations describing the conservation of mass, momentum and energy are solved ...

  14. Analysis of the behavior of an experimental absorption heat transformer for water purification for different mass flux rates in the generator

    International Nuclear Information System (INIS)

    Huicochea, Armando; Rivera, Wilfrido; Martínez, Hiram; Siqueiros, Javier; Cadenas, Erasmo

    2013-01-01

    In the present study, first and second laws of thermodynamics have been used to analyse the performance of an experimental absorption heat transformer for water purification. Irreversibilities, coefficients of performance (COP) and exergy coefficients of performance (ECOP) were determined as function of the mass flow of hot water supplied to the generator and as function of the overall thermal specific energy consumption (OSTEC) parameter defined in this paper. The results showed that the system irreversibilities increase meanwhile the coefficients of performance and the exergy coefficient of performance decrease with an increment of the mass flow of hot water supplied to the generator. Also it was shown that the system performance is better when the production of purified water increases due to the increment of the heat recycled to the generator and evaporator. -- Highlights: ► Exergetic performance of an absorption heat transformer for purifying water to different mass flux rates in the generator. ► The irreversibilities are increasing when the mass flow rate in the generator is major. ► The mass flow rates in the generator plays a decisive role in the whole system efficiency

  15. Review of Global Ocean Intermediate Water Masses: 1.Part A,the Neutral Density Surface (the 'McDougall Surface') as a Study Frame for Water-Mass Analysis

    Institute of Scientific and Technical Information of China (English)

    Yuzhu You

    2006-01-01

    This review article commences with a comprehensive historical review of the evolution and application of various density surfaces in atmospheric and oceanic studies.The background provides a basis for the birth of the neutral density idea.Attention is paid to the development of the neutral density surface concept from the nonlinearity of the equation of state of seawater.The definition and properties of neutral density surface are described in detail as developed from the equations of state of seawater and the buoyancy frequency when the squared buoyancy frequency N2 is zero, a neutral state of stability.In order to apply the neutral density surface to intermediate water-mass analysis, this review also describes in detail its practical oceanographic application.The mapping technique is focused for the first time on applying regularly gridded data in this review.It is reviewed how a backbone and ribs framework was designed to flesh out from a reference cast and first mapped the global neutral surfaces in the world's oceans.Several mapped neutral density surfaces are presented as examples for each world ocean.The water-mass property is analyzed in each ocean at mid-depth.The characteristics of neutral density surfaces are compared with those of potential density surfaces.

  16. CCC, Heat Flow and Mass Flow in Liquid Saturated Porous Media

    International Nuclear Information System (INIS)

    Mangold, D.C.; Lippmann, M.J.; Bodvarsson, G.S.

    1982-01-01

    1 - Description of problem or function: The numerical model CCC (conduction-convection-consolidation) solves the heat and mass flow equations for a fully, liquid-saturated, anisotropic porous medium and computes one-dimensional (vertical) consolidation of the simulated systems. The model has been applied to problems in the fields of geothermal reservoir engineering, aquifer thermal energy storage, well testing, radioactive waste isolation, and in situ coal combustion. The code has been validated against analytic solutions for fluid and heat flow, and against a field experiment for underground storage of hot water. 2 - Method of solution: The model employs the Integrated Finite Difference Method (IFDM) in discretizing the saturated porous medium and formulating the governing equations. The sets of equations are sol- ved by an iterative solution technique. The vertical deformation of the medium is calculated using the one-dimensional consolidation theory of Terzaghi. 3 - Restrictions on the complexity of the problem: Maximum of 12 materials. It is assumed that: (a) Darcy's law adequately describes fluid movement through fractured and porous media. (b) The rock and fluid are in thermal equilibrium at any given time. (c) Energy changes due to the fluid compressibility, acceleration and viscous dissipation are neglected. (d) One-dimensional consolidation theory adequately describes the vertical deformation of the medium

  17. Water flow pathways and the water balance within a head-water catchment containing a dambo: inferences drawn from hydrochemical investigations

    Directory of Open Access Journals (Sweden)

    M. P. McCartney

    1999-01-01

    Full Text Available Dambos, seasonally saturated wetlands, are widespread in headwater catchments in sub-Saharan Africa. It is widely believed that they play an important role in regional hydrology but, despite research conducted over the last 25 years, their hydrological functions remain poorly understood. To improve conceptualisation of hydrological flow paths and investigate the water balance of a small Zimbabwean catchment containing a single dambo, measurements of alkalinity and chloride in different water types within the catchment have been used as chemical markers. The temporal variation in alkalinity is consistent with the premise that all stream water, including the prolonged dry season recession, is derived predominantly from shallow sources. The proposition that dry season recession flows are maintained by water travelling at depth within the underlying saprolite is not substantiated. There is evidence that a low permeability clay lens, commonly present in many dambos, acts as a barrier for vertical water exchange. However, the highly heterogeneous chemical composition of different waters precludes quantitative hydrograph split-ting using end member mixing analysis. Calculation of the chloride mass-balance confirms that, after rainfall, evaporation is the largest component of the catchment water budget. The study provides improved understanding of the hydrological functioning of dambos. Such understanding is essential for the development and implementation of sustainable management strategies for this landform.

  18. Computer model verification for seismic analysis of vertical pumps and motors

    International Nuclear Information System (INIS)

    McDonald, C.K.

    1993-01-01

    The general principles of modeling vertical pumps and motors are discussed and then two examples of verifying the models are presented in detail. The first examples is a vertical pump and motor assembly. The model and computer analysis are presented and the first four modes (frequencies) calculated are compared to the values of the same modes obtained from a shaker test. The model used for this example is a lumped mass connected by massless beams model. The shaker test was performed by National Technical Services, Los Angeles, CA. The second example is a larger vertical motor. The model used for this example is a finite element three dimensional shell model. The first frequency obtained from this model is compared to the first frequency obtained from shop tests for several different motors. The shop tests were performed by Reliance Electric, Stratford, Ontario and Siemens-Allis, Inc., Norwood, Ohio

  19. Mixing of high density solution in vertical upward flow

    International Nuclear Information System (INIS)

    Kumamaru, Hiroshige; Hosogi, Nobuyoshi; Komada, Toshiaki; Fujiwara, Yoshiki

    1999-01-01

    Experimental and analytical studies have been performed in order to provide fundamental data and a numerical calculation model on the mixing of boric acid solution, injected from the standby liquid control system (SLCS), under a low natural circulation flow during an ATWS in a BWR. First, fundamental experiments on the mixing of high-density solution in vertically-upward water flow have been performed by using a small apparatus. Mixing patterns observed in the experiments have been classified to two groups, i.e. complete mixing (entrainment) and incomplete mixing (entrainment). In the complete mixing, the injected high-density solution is mixed (entrained) completely into the vertically-upward water flow. From the experiments, the minimum water flow rates in which the complete mixing (entrainment) is achieved have been obtained for various solution densities and solution injection rates. Secondly, two-dimensional numerical calculations have been performed. A continuity equation for total fluid, momentum equations in two directions and a continuity equation for solute are solved by using the finite difference method for discretization method and by following the MAC method for solution procedure. The calculations have predicted nearly the minimum water flow rate in which the complete mixing is achieved, while the calculations have been performed only for one combination of the solution density and solution injection rate until now. (author)

  20. Effects of Isometric Scaling on Vertical Jumping Performance

    Science.gov (United States)

    Bobbert, Maarten F.

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations. PMID:23936494

  1. Effects of isometric scaling on vertical jumping performance.

    Directory of Open Access Journals (Sweden)

    Maarten F Bobbert

    Full Text Available Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.

  2. Mass density fluctuations in quantum and classical descriptions of liquid water

    Science.gov (United States)

    Galib, Mirza; Duignan, Timothy T.; Misteli, Yannick; Baer, Marcel D.; Schenter, Gregory K.; Hutter, Jürg; Mundy, Christopher J.

    2017-06-01

    First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe the properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density fluctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and both the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential.

  3. In-vivo determination of total body water and lean body mass in subjects by deuterium dilution

    International Nuclear Information System (INIS)

    Blagojevic, N.; Allen, B.J.; Baur, L.; Gaskin, K.

    1988-01-01

    Total body water (TBW) estimation is one of a number of basic techniques required for the determination of body composition in normal and malnourished subjects. When combined with total body nitrogen (TBN) analysis by prompt gamma neutron activation, an accurate compartmental model of in vivo body composition can be formed, providing valuable nutritional and other data. This study examines the role of TBW on its own in evaluating lean body mass. Total body water was studied in six male and five female subjects using deuterium oxide and a Fourier transform infrared spectrometer. The lean body mass calculated from the results was compared with the lean body mass deduced from established total body nitrogen measurements. A four-compartment model was also used to calculate lean body mass. Excellent agreement was shown between lean body mass derived from TBW, the four-compartment model and TBN. Hence, TBW can provide a fast, cost-efficient method for evaluating normal subjects. However, for disease-induced malnutrition, or highly developed athletes, both TBN and TBW measurements are essential to establish an accurate picture of their body composition. TBW measurements alone can monitor the hydration state of patients and as such have a useful diagnostic value

  4. In-vivo determination of total body water and lean body mass in subjects by deuterium dilution

    Energy Technology Data Exchange (ETDEWEB)

    Blagojevic, N; Allen, B J; Baur, L; Gaskin, K

    1988-12-01

    Total body water (TBW) estimation is one of a number of basic techniques required for the determination of body composition in normal and malnourished subjects. When combined with total body nitrogen (TBN) analysis by prompt gamma neutron activation, an accurate compartmental model of in vivo body composition can be formed, providing valuable nutritional and other data. This study examines the role of TBW on its own in evaluating lean body mass. Total body water was studied in six male and five female subjects using deuterium oxide and a Fourier transform infrared spectrometer. The lean body mass calculated from the results was compared with the lean body mass deduced from established total body nitrogen measurements. A four-compartment model was also used to calculate lean body mass. Excellent agreement was shown between lean body mass derived from TBW, the four-compartment model and TBN. Hence, TBW can provide a fast, cost-efficient method for evaluating normal subjects. However, for disease-induced malnutrition, or highly developed athletes, both TBN and TBW measurements are essential to establish an accurate picture of their body composition. TBW measurements alone can monitor the hydration state of patients and as such have a useful diagnostic value.

  5. Effects of ethnicity on the relationship between vertical jump and maximal power on a cycle ergometer

    Directory of Open Access Journals (Sweden)

    Rouis Majdi

    2016-06-01

    Full Text Available The aim of this study was to verify the impact of ethnicity on the maximal power-vertical jump relationship. Thirty-one healthy males, sixteen Caucasian (age: 26.3 ± 3.5 years; body height: 179.1 ± 5.5 cm; body mass: 78.1 ± 9.8 kg and fifteen Afro-Caribbean (age: 24.4 ±2.6 years; body height: 178.9 ± 5.5 cm; body mass: 77.1 ± 10.3 kg completed three sessions during which vertical jump height and maximal power of lower limbs were measured. The results showed that the values of vertical jump height and maximal power were higher for Afro-Caribbean participants (62.92 ± 6.7 cm and 14.70 ± 1.75 W∙kg-1 than for Caucasian ones (52.92 ± 4.4 cm and 12.75 ± 1.36 W∙kg-1. Moreover, very high reliability indices were obtained on vertical jump (e.g. 0.95 < ICC < 0.98 and maximal power performance (e.g. 0.75 < ICC < 0.97. However, multiple linear regression analysis showed that, for a given value of maximal power, the Afro-Caribbean participants jumped 8 cm higher than the Caucasians. Together, these results confirmed that ethnicity impacted the maximal power-vertical jump relationship over three sessions. In the current context of cultural diversity, the use of vertical jump performance as a predictor of muscular power should be considered with caution when dealing with populations of different ethnic origins.

  6. Experimental evidence supporting the insensitivity of cloud droplet formation to the mass accommodation coefficient for condensation of water vapor to liquid water

    Science.gov (United States)

    Langridge, Justin M.; Richardson, Mathews S.; Lack, Daniel A.; Murphy, Daniel M.

    2016-06-01

    The mass accommodation coefficient for uptake of water vapor to liquid water, αM, has been constrained using photoacoustic measurements of aqueous absorbing aerosol. Measurements performed over a range of relative humidities and pressures were compared to detailed model calculations treating coupled heat and mass transfer occurring during photoacoustic laser heating cycles. The strengths and weaknesses of this technique are very different to those for droplet growth/evaporation experiments that have typically been applied to these measurements, making this a useful complement to existing studies. Our measurements provide robust evidence that αM is greater than 0.1 for all humidities tested and greater than 0.3 for data obtained at relative humidities greater than 88% where the aerosol surface was most like pure water. These values of αM are above the threshold at which kinetic limitations are expected to impact the activation and growth of aerosol particles in warm cloud formation.

  7. Determination of Endocrine Disrupting Compounds in surface waters by means of chromatographic techniques coupled to mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. Di Carro

    2011-01-01

    Full Text Available Two analytical methods were developed to study five endocrine disrupting compounds (4-n-nonylphenol, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol in waters. One method includes a fast liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS analysis, while the second comprise a Stir Bar Sorptive Extraction (SBSE followed by a headspace derivatization and gaschromatography-mass spectrometry (GC-MS analysis. Passive samplers POCIS (Polar Organic Chemical Integrative Samplers were used as sampling and preconcentration steps in order to reach the very low levels of the analytes in environmental waters. Both methods were then applied to the determination of the analytes in different water samples.

  8. The effect of diameter on vertical and horizontal flow boiling crisis in a tube cooled by Freon-12

    International Nuclear Information System (INIS)

    Merilo, M.; Ahmad, S.Y.

    1979-03-01

    The influence of test section orientation and diameter on flow boiling crisis occurring in tubes has been studied experimentally using Freon-12 as a coolant. At low mass flux the critical heat flux (CHF) was lower in horizontal flow than in vertical. As either the liquid or vapour velocity, or both, were increased the vertical and horizontal CHF results converged. Above a mass flux of 4 Mg.m -2 .s -1 the results were essentially identical. The effect of tube diameter on boiling crisis in general depends crucially on the parameters which are maintained constant when the comparison is made. (author)

  9. Heat convection in a set of three vertical cylinders

    International Nuclear Information System (INIS)

    Serrano Ramirez, M.L. de.

    1993-01-01

    Experimental results on temperature and heat flow in a set of three vertical cylinders with internal generation of heat, water submerged and in free convection are presented in this work . Temperature distribution, Nusselt number and convective coefficient (h) for each rod, developed for the distance between the axis of cylinders in vertical position, as a consequence of the application of power in its outside, are analyzed. Experimental information about heat transfer by free convection in vertical cylinders and surfaces is analyzed. Information of the several author who have carried out studies about the heat transfer on vertical cylinders was compiled, and the proposed equations with the experimental data obtained in the thermo fluids laboratory of National Institute of Nuclear Research (ININ) were tested. The way in which separation distance, s, distribution temperature array, Nusselt number, and convective coefficient calculated for the proposed channel with the Keyhani, Dutton and experimental equations are tabulated and they are plotted for each power value and for each separation between rods. The scheme of the used equipment and the experimentation description as well as the observations of tests and graphical results are included. (Author)

  10. DIFFERENCES BETWEEN YOUNG (13-14 YEARS OF AGE WATER POLO PLAYERS SELECTED AND NOT SELECTED TO THE NATIONAL TEAM

    Directory of Open Access Journals (Sweden)

    Igor Štirn

    2010-09-01

    Full Text Available Young water polo players at age 13 to 14 years were examined once a year in a four- year period using three morphological and eight specific skill tests: body height and mass, vital capacity, swimming at distances 5, 25 and 200 meters, swimming 4x5 meters with changing directions, ball dribbling, vertical jump and reach, vertical eggbeater kick and velocity of a throw at the goal. From the sum of 139 players tested, a group of 73 non-selected and of 66 selected players to the national team (U16, wider selection were formed and checked for differences. Differences in all observed variables (except body mass were found between the groups (P<0.05. One significant discriminant function was revealed (canonical R = 0.52 and the accounted variance was 100 %, P = 0.000. The variables that most differentiated the groups were swimming tests at distances of 25 and 200 meters, followed by vertical-egg beater kick and throwing velocity, while morphological variables differentiated the groups least.

  11. Ground-based lidar and microwave radiometry synergy for high vertical resolution absolute humidity profiling

    Science.gov (United States)

    Barrera-Verdejo, María; Crewell, Susanne; Löhnert, Ulrich; Orlandi, Emiliano; Di Girolamo, Paolo

    2016-08-01

    Continuous monitoring of atmospheric humidity profiles is important for many applications, e.g., assessment of atmospheric stability and cloud formation. Nowadays there are a wide variety of ground-based sensors for atmospheric humidity profiling. Unfortunately there is no single instrument able to provide a measurement with complete vertical coverage, high vertical and temporal resolution and good performance under all weather conditions, simultaneously. For example, Raman lidar (RL) measurements can provide water vapor with a high vertical resolution, albeit with limited vertical coverage, due to sunlight contamination and the presence of clouds. Microwave radiometers (MWRs) receive water vapor information throughout the troposphere, though their vertical resolution is poor. In this work, we present an MWR and RL system synergy, which aims to overcome the specific sensor limitations. The retrieval algorithm combining these two instruments is an optimal estimation method (OEM), which allows for an uncertainty analysis of the retrieved profiles. The OEM combines measurements and a priori information, taking the uncertainty of both into account. The measurement vector consists of a set of MWR brightness temperatures and RL water vapor profiles. The method is applied to a 2-month field campaign around Jülich (Germany), focusing on clear sky periods. Different experiments are performed to analyze the improvements achieved via the synergy compared to the individual retrievals. When applying the combined retrieval, on average the theoretically determined absolute humidity uncertainty is reduced above the last usable lidar range by a factor of ˜ 2 with respect to the case where only RL measurements are used. The analysis in terms of degrees of freedom per signal reveal that most information is gained above the usable lidar range, especially important during daytime when the lidar vertical coverage is limited. The retrieved profiles are further evaluated using

  12. Water spray interaction with air-steam mixtures under containment spray conditions: comparison of heat and mass transfer modelling with the TOSQAN spray tests

    International Nuclear Information System (INIS)

    Malet, J.; Lemaitre, P.; Porcheron, E.; Vendel, J.

    2005-01-01

    using experimental results obtained in the TOSQAN facility (7 m3 volume, 4 m high, 1.5 m i.d.): presentation of this facility, its instrumentation, the spray test scenario and the experimental results are presented in a companion paper. Experimental and theoretical results are presented in two steps corresponding to the two components of this two-phase flow: one concerning the steam-air mixture, and the other concerning the water spray. Concerning the gas phase, it is shown that the vessel depressurization (and the decrease of the connected variables, such as gas temperature and humidity) during the spray injection is lower than the theoretical results. Analysis of the experimental and theoretical results is performed in order to explain this difference: the effect of the convective heat transfer between the gas and the droplets, phenomenon not taken into account in the gas modelling, is to reduce the pressure loss in the experiment. Concerning the droplet phase, droplet temperature vertical profiles downward the nozzle are presented. It is shown that the theoretical and experimental profiles are qualitatively the same, indicating a good behaviour of the heat and mass transfer modelling for the droplets. However, in order to have a quantitative agreement, droplet size has to be well determined. Sensitivity of the theoretical results to this parameter is presented and shows the importance of droplet size determination in the heat and mass transfer characterization. (authors)

  13. Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences.

    Science.gov (United States)

    Pearre, Sifford

    2003-02-01

    The study of vertical migrations in aquatic organisms has a long and colourful history, much of it to do with the effects of changing sampling technology on our understanding of the phenomenon. However, the overwhelming majority of such studies carried out today still depend on detecting differences in vertical distribution profiles during some course of time, or acoustic echoes of migrating bands of organisms. These can not distinguish migratory activity of individual organisms, but can only assess net results of mass transfers of populations, which may integrate many individual migrations. This is an important distinction, for without knowing the actual movements of individuals it seems unlikely that we will be able to understand their causes, nor the effects of vertical migrations on the environment or on the migrators themselves. This review examines evidence for individual vertical movements gathered from 'tracers', mainly gut contents, and reviews the evidence for the hypothesis that such movements are in fact driven by hunger and satiation. The more recently appreciated vertical migrations of phytoplankters and their similarities in form and driving forces to those of zooplankton and nekton are also discussed. Finally, the role of vertical migrators in vertical fluxes of materials is discussed, along with the consequences of satiation-driven descent for such estimates.

  14. Study on low intensity aeration oxygenation model and optimization for shallow water

    Science.gov (United States)

    Chen, Xiao; Ding, Zhibin; Ding, Jian; Wang, Yi

    2018-02-01

    Aeration/oxygenation is an effective measure to improve self-purification capacity in shallow water treatment while high energy consumption, high noise and expensive management refrain the development and the application of this process. Based on two-film theory, the theoretical model of the three-dimensional partial differential equation of aeration in shallow water is established. In order to simplify the equation, the basic assumptions of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction are proposed based on engineering practice and are tested by the simulation results of gas holdup which are obtained by simulating the gas-liquid two-phase flow in aeration tank under low-intensity condition. Based on the basic assumptions and the theory of shallow permeability, the model of three-dimensional partial differential equations is simplified and the calculation model of low-intensity aeration oxygenation is obtained. The model is verified through comparing the aeration experiment. Conclusions as follows: (1)The calculation model of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction can reflect the process of aeration well; (2) Under low-intensity conditions, the long-term aeration and oxygenation is theoretically feasible to enhance the self-purification capacity of water bodies; (3) In the case of the same total aeration intensity, the effect of multipoint distributed aeration on the diffusion of oxygen concentration in the horizontal direction is obvious; (4) In the shallow water treatment, reducing the volume of aeration equipment with the methods of miniaturization, array, low-intensity, mobilization to overcome the high energy consumption, large size, noise and other problems can provide a good reference.

  15. a Borehole-Dilution Method for Quantifying Vertical Darcy Fluxes in the Hyporheic Zone

    Science.gov (United States)

    Augustine, S. D.; Annable, M. D.; Cho, J.

    2017-12-01

    The borehole dilution method has consistently and successfully been used for estimating local water fluxes, however, this method can be relatively labor intensive and expensive. The focus of this research is aimed at developing a low-cost, borehole dilution method for quantifying vertical water fluxes in the hyporheic zone at the surface-groundwater interface. This would allow for the deployment of multiple units within a targeted surface water body and thus produce high-resolution, spatially distributed data on the infiltration rates over a short period of time with minimal set-up requirements. The device consists of a 2-inch, inner diameter PVC pipe containing short, screened sections in its upper and lower segments. The working unit is driven into the sediment and acts as a continuous flow reactor creating a pathway between the subsurface pore-water and the overlying surface water where the presence of a hydraulic gradient facilitates vertical movement. We developed a simple electrode and tracer-injection system housed within the unit to inject and measure salt tracer concentrations at the desired intervals while monitoring and storing those measurements using open-source Arduino technology. Preliminary lab and field scale trials provided data that was fit to both zero and first order reaction rate functions for analysis. The field test was conducted over approximately one day within a wet retention basin. The initial results estimated a vertical Darcy flux of 113.5 cm/d. Additional testing over a range of expected Darcy fluxes will be presented along with an evaluation considering enhanced water flow due to the high hydraulic conductivity of the device.

  16. Vertical stratification of bat assemblages in flooded and unflooded Amazonian forests

    Directory of Open Access Journals (Sweden)

    Maria João Ramos PEREIRA, João Tiago MARQUES, Jorge M. PALMEIRIM

    2010-08-01

    Full Text Available Tropical rainforests usually have multiple strata that results in a vertical stratification of ecological opportunities for animals. We investigated if this stratification influences the way bats use the vertical space in flooded and unflooded forests of the Central Amazon. Using mist-nets set in the canopy (17 to 35 m high and in the understorey (0 to 3 m high we sampled four sites in upland unflooded forests (terra firme, three in forests seasonally flooded by nutrient-rich water (várzea, and three in forests seasonally flooded by nutrient-poor water (igapó. Using rarefaction curves we found that species richness in the understorey and canopy were very similar. An ordination analysis clearly separated the bat assemblages of the canopy from those of the understorey in both flooded and unflooded habitats. Gleaning carnivores were clearly associated with the understorey, whereas frugivores were abundant in both strata. Of the frugivores, Carollinae and some Stenodermatinae were understorey specialists, but several Stenodermatinae mostly used the canopy. The first group mainly includes species that, in general, feed on fruits of understorey shrubs, whereas the second group feed on figs and other canopy fruits. We conclude that vertical stratification in bat communities occurs even within forests with lower canopy heights, such as Amazonian seasonally flooded forests, and that the vertical distribution of bat species is closely related to their diet and foraging behaviour [Current Zoology 56 (4: 469–478, 2010].

  17. Spatial statistics of hydrography and water chemistry in a eutrophic boreal lake based on sounding and water samples.

    Science.gov (United States)

    Leppäranta, Matti; Lewis, John E; Heini, Anniina; Arvola, Lauri

    2018-06-04

    Spatial variability, an essential characteristic of lake ecosystems, has often been neglected in field research and monitoring. In this study, we apply spatial statistical methods for the key physics and chemistry variables and chlorophyll a over eight sampling dates in two consecutive years in a large (area 103 km 2 ) eutrophic boreal lake in southern Finland. In the four summer sampling dates, the water body was vertically and horizontally heterogenic except with color and DOC, in the two winter ice-covered dates DO was vertically stratified, while in the two autumn dates, no significant spatial differences in any of the measured variables were found. Chlorophyll a concentration was one order of magnitude lower under the ice cover than in open water. The Moran statistic for spatial correlation was significant for chlorophyll a and NO 2 +NO 3 -N in all summer situations and for dissolved oxygen and pH in three cases. In summer, the mass centers of the chemicals were within 1.5 km from the geometric center of the lake, and the 2nd moment radius ranged in 3.7-4.1 km respective to 3.9 km for the homogeneous situation. The lateral length scales of the studied variables were 1.5-2.5 km, about 1 km longer in the surface layer. The detected spatial "noise" strongly suggests that besides vertical variation also the horizontal variation in eutrophic lakes, in particular, should be considered when the ecosystems are monitored.

  18. Interaction of the Faroe Bank Channel overflow with Iceland Basin intermediate waters

    Science.gov (United States)

    Ullgren, Jenny E.; Fer, Ilker; Darelius, Elin; Beaird, Nicholas

    2014-01-01

    The narrow and deep Faroe Bank Channel (FBC) is an important pathway for cold, dense waters from the Nordic Seas to flow across the Iceland-Scotland ridge into the North Atlantic. The swift, turbulent FBC overflow is associated with strong vertical mixing. Hydrographic profiles from a shipboard survey and two Slocum electric gliders deployed during a cruise in May-June 2012 show an intermediate water mass characterized by low salinity and low oxygen concentration between the upper waters of Atlantic origin and the dense overflow water. A weak low-salinity signal originating north-east of Iceland is discernible at the exit of the FBC, but smeared out by intense mixing. Further west (downstream) marked salinity and oxygen minima are found, which we hypothesize are indicators of a mixture of Labrador Sea Water and Intermediate Water from the Iceland Basin. Water mass characteristics vary strongly on short time scales. Low-salinity, low-oxygen water in the stratified interface above the overflow plume is shown to move along isopycnals toward the Iceland-Faroe Front as a result of eddy stirring and a secondary, transverse circulation in the plume interface. The interaction of low-salinity, low-oxygen intermediate waters with the overflow plume already at a short distance downstream of the sill, here reported for the first time, affects the final properties of the overflow waters through entrainment and mixing.

  19. Modeling and experimental validation of water mass balance in a PEM fuel cell stack

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Araya, Samuel Simon; Olesen, Anders Christian

    2016-01-01

    Polymer electrolyte membrane (PEM) fuel cells require good hydration in order to deliver high performance and ensure long life operation. Water is essential for proton conductivity in the membrane which increases by nearly six orders of magnitude from dry to fully hydrated. Adequate water...... management in PEM fuel cell is crucial in order to avoid an imbalance between water production and water removal from the fuel cell. In the present study, a novel mathematical zero-dimensional model has been formulated for the water mass balance and hydration of a polymer electrolyte membrane. This model...... is validated against experimental data. In the results it is shown that the fuel cell water balance calculated by this model shows better fit with experimental data-points compared with model where only steady state operation were considered. We conclude that this discrepancy is due a different rate of water...

  20. Vertically Integrated Models for Carbon Storage Modeling in Heterogeneous Domains

    Science.gov (United States)

    Bandilla, K.; Celia, M. A.

    2017-12-01

    Numerical modeling is an essential tool for studying the impacts of geologic carbon storage (GCS). Injection of carbon dioxide (CO2) into deep saline aquifers leads to multi-phase flow (injected CO2 and resident brine), which can be described by a set of three-dimensional governing equations, including mass-balance equation, volumetric flux equations (modified Darcy), and constitutive equations. This is the modeling approach on which commonly used reservoir simulators such as TOUGH2 are based. Due to the large density difference between CO2 and brine, GCS models can often be simplified by assuming buoyant segregation and integrating the three-dimensional governing equations in the vertical direction. The integration leads to a set of two-dimensional equations coupled with reconstruction operators for vertical profiles of saturation and pressure. Vertically-integrated approaches have been shown to give results of comparable quality as three-dimensional reservoir simulators when applied to realistic CO2 injection sites such as the upper sand wedge at the Sleipner site. However, vertically-integrated approaches usually rely on homogeneous properties over the thickness of a geologic layer. Here, we investigate the impact of general (vertical and horizontal) heterogeneity in intrinsic permeability, relative permeability functions, and capillary pressure functions. We consider formations involving complex fluvial deposition environments and compare the performance of vertically-integrated models to full three-dimensional models for a set of hypothetical test cases consisting of high permeability channels (streams) embedded in a low permeability background (floodplains). The domains are randomly generated assuming that stream channels can be represented by sinusoidal waves in the plan-view and by parabolas for the streams' cross-sections. Stream parameters such as width, thickness and wavelength are based on values found at the Ketzin site in Germany. Results from the