WorldWideScience

Sample records for vertical heated plate

  1. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A

    Energy Technology Data Exchange (ETDEWEB)

    Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)

    2016-06-08

    Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter.

  2. Open Channel Natural Convection Heat Transfer on a Vertical Finned Plate

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hyun; Heo, Jeong Hwan; Chung, Bum Jin [Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-10-15

    The natural convection heat transfer of vertical plate fin was investigated experimentally. Heat transfer systems were replaced by mass-transfer systems, based on the analogy concept. The experimental results lie within the predictions of the existing heat transfer correlations of plate-fin for the natural convections. An overlapped thermal boundary layers caused increasing heat transfer, and an overlapped momentum boundary layers caused decreasing heat transfer. As the fin height increases, heat transfer was enhanced due to increased inflow from the open side of the fin spacing. When fin spacing and fin height are large, heat transfer was unaffected by the fin spacing and fin height. Passive cooling by natural convection becomes more and more important for the nuclear systems as the station black out really happened at the Fukushima NPPs. In the RCCS (Reactor Cavity Cooling System) of a VHTR (Very High Temperature Reactor), natural convection cooling through duct system is adopted. In response to the stack failure event, extra cooling capacity adopting the fin array has to be investigated. The finned plate increases the surface area and the heat transfer increases. However, the plate of fin arrays may increase the pressure drop and the heat transfer decreases. Therefore, in order to enhance the passive cooling with fin arrays, the parameters for the fin arrays should be optimized. According to Welling and Wooldridge, a natural convection on vertical plate fin is function of Gr, Pr, L, t, S, and H. The present work investigated the natural convection heat transfer of a vertical finned plate with varying the fin height and the fin spacing. In order achieve high Rayleigh numbers, an electroplating system was employed and the mass transfer rates were measured using a copper sulfate electroplating system based on the analogy concept.

  3. Mixed convective heat transfer from a vertical plate embedded in a ...

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana; Volume 40; Issue 2. Mixed convective heat transfer from a vertical plate embedded in a saturated non-Darcy porous medium with concentration and melting effect. K Hemalatha Peri K Kameswaran M V D N S Madhavi. Mechanical Sciences Volume 40 Issue 2 April 2015 pp 455-465 ...

  4. Fundamental Study of Local Heat Transfer in Forced Convective Boiling of Ammonia on Vertical Flat Plate

    Science.gov (United States)

    Kim, Jeong-Hun; Arima, Hirofumi; Ikegami, Yasuyuki

    In the present study, the fundamental experiments that investigate characteristics of local heat transfer in forced convective boiling on vertical flat plate with 2-mm channel height are taken to realize plate type compact evaporator for OTEC or STEC. The experiments are performed with ammonia as the working fluid. The experiments are also carried out with the following test conditions; saturated pressure = 0.7, 0.8, 0.9 MPa, mass flux = 7.5, 10, 15 kg/(m2•s), heat flux = 15, 20, 25 kW/m2 and inlet quality = 0.1 ~ 0.4 [-]. The result shows that the wall superheated temperature of forced convective boiling is lower than that of pool boiling. And the heat transfer coefficient increases with an increase in quality and the decrease in the local heat flux and saturated pressure for prescribed experimental conditions. However, local heat transfer coefficients are not affected by mass fluxes in the prescribed experimental conditions. An empirical correlation that can predict the local heat transfer coefficient on vertical flat plate within experimental conditions is also proposed.

  5. Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-03-01

    Full Text Available An investigation of the hydromagnetic boundary layer flow past a moving vertical plate in nanofluids in the presence of a uniform transverse magnetic field and thermal radiation has been carried out. Three different types of water-based nanofluids containing copper, aluminum oxide and titanium dioxide are taken into consideration. The governing equations are solved using Laplace transform technique and the solutions are presented in closed form. The numerical values of nanofluid temperature, velocity, the rate of heat transfer and the shear stress at the plate are presented graphically for several values of the pertinent parameters. The present study finds applications in engineering devices.

  6. Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and heat source

    Science.gov (United States)

    Azhar, Waqas Ali; Vieru, Dumitru; Fetecau, Constantin

    2017-08-01

    Free convection flow of some water based fractional nanofluids over a moving infinite vertical plate with uniform heat flux and heat source is analytically and graphically studied. Exact solutions for dimensionless temperature and velocity fields, Nusselt numbers, and skin friction coefficients are established in integral form in terms of modified Bessel functions of the first kind. These solutions satisfy all imposed initial and boundary conditions and reduce to the similar solutions for ordinary nanofluids when the fractional parameters tend to one. Furthermore, they reduce to the known solutions from the literature when the plate is fixed and the heat source is absent. The influence of fractional parameters on heat transfer and fluid motion is graphically underlined and discussed. The enhancement of heat transfer in such flows is higher for fractional nanofluids in comparison with ordinary nanofluids. Moreover, the use of fractional models allows us to choose the fractional parameters in order to get a very good agreement between experimental and theoretical results.

  7. Natural Convection Flow along an Isothermal Vertical Flat Plate with Temperature Dependent Viscosity and Heat Generation

    Directory of Open Access Journals (Sweden)

    Md. Mamun Molla

    2014-01-01

    Full Text Available The purpose of this study is to investigate the natural convection laminar flow along an isothermal vertical flat plate immersed in a fluid with viscosity which is the exponential function of fluid temperature in presence of internal heat generation. The governing boundary layer equations are transformed into a nondimensional form and the resulting nonlinear system of partial differential equations is reduced to a convenient form which are solved numerically using an efficient marching order implicit finite difference method with double sweep technique. Numerical results are presented in terms of the velocity and temperature distribution of the fluid as well as the heat transfer characteristics, namely, the wall shear stress and the local and average rate of heat transfer in terms of the local skin-friction coefficient, the local and average Nusselt number for a wide range of the viscosity-variation parameter, heat generation parameter, and the Rayleigh number. Increasing viscosity variation parameter and Rayleigh number lead to increasing the local and average Nusselt number and decreasing the wall shear stress. Wall shear stress and the rate of heat transfer decreased due to the increase of heat generation.

  8. Natural convection of nanofluids over a convectively heated vertical plate embedded in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Ghalambaz, M.; Noghrehabadi, A.; Ghanbarzadeh, A., E-mail: m.ghalambaz@gmail.com, E-mail: ghanbarzadeh.a@scu.ac.ir [Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of)

    2014-04-15

    In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb), thermophoresis parameter (Nt) and the convective heating parameter (Nc) on the boundary layer profiles are investigated. Furthermore, the variation of the reduced Nusselt number and reduced Sherwood number, as important parameters of heat and mass transfer, as a function of the Brownian motion, thermophoresis and convective heating parameters is discussed in detail. The results show that the thickness of the concentration profiles is much lower than the temperature and velocity profiles. For low values of the convective heating parameter (Nc), as the Brownian motion parameter increases, the non-dimensional wall temperature increases. However, for high values of Nc, the effect of the Brownian motion parameter on the non-dimensional wall temperature is not significant. As the Brownian motion parameter increases, the reduced Sherwood number increases and the reduced Nusselt number decreases. (author)

  9. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    Science.gov (United States)

    Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas

    2014-01-01

    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.

  10. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    Directory of Open Access Journals (Sweden)

    Abid Hussanan

    Full Text Available In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.

  11. Flow reversal of laminar mixed convection in the entry region of symmetrically heated, vertical plate channels

    Energy Technology Data Exchange (ETDEWEB)

    Desrayaud, G. [Universite de Picardie Jules Verne, INSSET, Lab. Modelisation et Simulation Multi Echelle, MSME FRE 3160 CNRS, 02 - Saint-Quentin (France); Lauriat, G. [Universite Paris-Est, Lab. Modelisation et Simulation Multi Echelle, MSME FRE 3160 CNRS, 77 - Marne-la-Vallee (France)

    2009-11-15

    The present numerical investigation is concerned with flow reversal phenomena for laminar, mixed convection of air in a vertical parallel-plate channel of finite length. Results are obtained for buoyancy-assisted flow in a symmetrically heated channel with uniform wall temperatures for various Grashof numbers and Reynolds numbers in the range 300 {<=} Re {<=} 1300. The effects of buoyancy forces on the flow pattern are investigated and the shapes of velocity and temperature profiles are discussed in detail. Flow reversals centred in the entrance of the channel are predicted. The strength of the cells decreases as the Reynolds number is increased, until they disappear. The regime of reversed flow is identified for high values of the Peclet number in a Pe-Gr/Re map. It is also shown that the channel length has no influence on the occurrence of the reversal flow provided that H/D {>=} 10. (authors)

  12. The Impact of Reduced Gravity on Free Convective Heat Transfer from a Finite, Flat, Vertical Plate

    Science.gov (United States)

    Lotto, Michael A.; Johnson, Kirstyn M.; Nie, Christopher W.; Klaus, David M.

    2017-09-01

    Convective heat transfer is governed by a number of factors including various fluid properties, the presence of a thermal gradient, geometric configuration, flow condition, and gravity. Empirically-derived analytical relationships can be used to estimate convection as a function of these governing parameters. Although it is relatively straightforward to experimentally quantify the contributions of the majority of these variables, it is logistically difficult to assess the influence of reduced-gravity due to practical limitations of establishing this environment. Therefore, in order to explore this regime, a series of tests was conducted to evaluate convection under reduced-gravity conditions averaging 0.45 m/sec2 (0.05 g) achieved aboard a parabolic aircraft. The results showed a reduction in net heat transfer of approximately 61% in flight relative to a 1g terrestrial baseline using the same setup. The average experimental Nusselt Number of 19.05 ± 1.41 statistically correlated with the predicted value of 18.90 ± 0.63 (N = 13), estimated using the Churchill-Chu correlation for free convective heat transfer from a finite, flat, vertical plate. Extrapolating this to similar performance in true microgravity (10-6 g) indicates that these conditions should yield a Nusselt Number of 1.27, which is 2.6% the magnitude of free convection at 1g, or a reduction of 97.4%. With advection essentially eliminated, heat transfer becomes limited to diffusion and radiation, which are gravity-independent and nearly equivalent in magnitude in this case. These results offer a general guideline for integrating components that utilize natural (free) convective gas cooling in a spacecraft habitat and properly sizing the thermal control system.

  13. The Impact of Reduced Gravity on Free Convective Heat Transfer from a Finite, Flat, Vertical Plate

    Science.gov (United States)

    Lotto, Michael A.; Johnson, Kirstyn M.; Nie, Christopher W.; Klaus, David M.

    2017-10-01

    Convective heat transfer is governed by a number of factors including various fluid properties, the presence of a thermal gradient, geometric configuration, flow condition, and gravity. Empirically-derived analytical relationships can be used to estimate convection as a function of these governing parameters. Although it is relatively straightforward to experimentally quantify the contributions of the majority of these variables, it is logistically difficult to assess the influence of reduced-gravity due to practical limitations of establishing this environment. Therefore, in order to explore this regime, a series of tests was conducted to evaluate convection under reduced-gravity conditions averaging 0.45 m/sec2 (0.05 g) achieved aboard a parabolic aircraft. The results showed a reduction in net heat transfer of approximately 61% in flight relative to a 1 g terrestrial baseline using the same setup. The average experimental Nusselt Number of 19.05 ± 1.41 statistically correlated with the predicted value of 18.90 ± 0.63 (N = 13), estimated using the Churchill-Chu correlation for free convective heat transfer from a finite, flat, vertical plate. Extrapolating this to similar performance in true microgravity (10-6 g) indicates that these conditions should yield a Nusselt Number of 1.27, which is 2.6% the magnitude of free convection at 1 g, or a reduction of 97.4%. With advection essentially eliminated, heat transfer becomes limited to diffusion and radiation, which are gravity-independent and nearly equivalent in magnitude in this case. These results offer a general guideline for integrating components that utilize natural (free) convective gas cooling in a spacecraft habitat and properly sizing the thermal control system.

  14. Attempts of Thermal Imaging Camera Usage in Estimations of the Convective Heat Loss From a Vertical Plate

    Directory of Open Access Journals (Sweden)

    Denda Hubert

    2014-01-01

    Full Text Available In this paper a new method for determining heat transfer coefficients using a gradient method has been developed. To verify accuracy of the proposed method vertical isothermal heating plate with natural convection mechanism has been examined. This configuration was deliberately chosen, because of the fact that such case is historically the earliest and most thoroughly studied and its rich scientific documentation – the most reliable. New method is based on temperature field visualization made in perpendicular plane to the heating surface of the plate using infrared camera. Because the camera does not record temperature of air itself but the surface only, therefore plastic mesh with low thermal conductivity has been used as a detector. Temperature of each mesh cell, placed perpendicular to the vertical heating surface and rinsed with convection stream of heated air could be already recorded by infrared camera. In the same time using IR camera surface of heating plate has been measured. By numerical processing of the results matrix temperature gradient on the surface ∂T/∂x │ x=0, local heat transfer coefficients αy, and local values of Nusselt number Nuy, can be calculated. After integration the average Nusselt number for entire plate can be calculated. Obtained relation characteristic numbers Nu = 0.647 Ra 0.236 (R2 = 0.943, has a good correlation with literature reports and proves usefulness of the method.

  15. An Experimental Study on the Solidification and Melting of Water around a Vertical Heat Transfer Plate with Pin Fins

    OpenAIRE

    平澤, 良男; 陳, 東; 渡邉, 弘毅; 竹越, 栄俊

    1997-01-01

    In the present study, the solidification and melting of water were investigated experimentally for the case of a vertical heat transfer plate with pin fins. In the experiment, temperature distributions, ice and water volume fractions, and heat flux changes were measured and the flow patterns in the water were observed for examination of the phase change process. In the solidification, the phase change rate increased monotonously with increasing number of fins. In the melting, the temperature ...

  16. MHD forced convective laminar boundary layer flow from a convectively heated moving vertical plate with radiation and transpiration effect.

    Science.gov (United States)

    Uddin, Md Jashim; Khan, Waqar A; Ismail, A I Md

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m) whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1)/2) where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory.

  17. Magnetohydrodynamic free convection heat and mass transfer of a heat generating fluid past an impulsively started infinite vertical porous plate with Hall current and radiation absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kinyanjui, M.; Kwanza, J.K.; Uppal, S.M. [Jomo Kenyatta University of Agriculture and Technology, Nairobi (Cayman Islands). Dept. of Mathematics and Statistics

    2001-05-01

    Simultaneous heat and mass transfer in unsteady free convection flow with radiation absorption past an impulsively started infinite vertical porous plate subjected to a strong magnetic field is presented. The governing equations for the problem are solved by a finite difference scheme. The influence of the various parameters on the convectively cooled or convectively heated plate in the laminar boundary layer are considered. An analysis of the effects of the parameters on the concentration, velocity and temperature profiles, as well as skin friction and the rates of mass and heat transfer, is done with the aid of graphs and tables. (author)

  18. Experimental Optimization of Passive Cooling of a Heat Source Array Flush-Mounted on a Vertical Plate

    Directory of Open Access Journals (Sweden)

    Antoine Baudoin

    2016-11-01

    Full Text Available Heat sources, such as power electronics for offshore power, could be cooled passively—mainly by conduction and natural convection. The obvious advantage of this strategy is its high reliability. However, it must be implemented in an efficient manner (i.e., the area needs to be kept low to limit the construction costs. In this study, the placement of multiple heat sources mounted on a vertical plate was studied experimentally for optimization purposes. We chose a regular distribution, as this is likely to be the preferred choice in the construction process. We found that optimal spacing can be determined for a targeted source density by tuning the vertical and horizontal spacing between the heat sources. The optimal aspect ratio was estimated to be around two.

  19. Combined Effects Of Stress Work And Heat Generation On MHD Natural Convection Flow Along A Vertical Flat Plate With Power Law Variation Of Uniform Surface Temperature

    National Research Council Canada - National Science Library

    Mohammad Mahfuzul Islam; Md. M. Alam; M. M. Parvez; M. A. Rahman

    2015-01-01

    Abstract In this paper is presented to study conjugate effects of stress work and heat generation on MHD natural convection flow along a vertical flat plate with power law variation of surface temperature...

  20. Effects of Hall current, radiation and rotation on natural convection heat and mass transfer flow past a moving vertical plate

    Directory of Open Access Journals (Sweden)

    G.S. Seth

    2014-06-01

    Full Text Available An investigation of the effects of Hall current and rotation on unsteady hydromagnetic natural convection flow with heat and mass transfer of an electrically conducting, viscous, incompressible and optically thick radiating fluid past an impulsively moving vertical plate embedded in a fluid saturated porous medium, when temperature of the plate has a temporarily ramped profile, is carried out. Exact solution of the governing equations is obtained in closed form by Laplace transform technique. Exact solution is also obtained in case of unit Schmidt number. Expressions for skin friction due to primary and secondary flows and Nusselt number are derived for both ramped temperature and isothermal plates. Expression for Sherwood number is also derived. The numerical values of primary and secondary fluid velocities, fluid temperature and species concentration are displayed graphically whereas those of skin friction are presented in tabular form for various values of pertinent flow parameters.

  1. MHD Free Convective Boundary Layer Flow of a Nanofluid past a Flat Vertical Plate with Newtonian Heating Boundary Condition

    Science.gov (United States)

    Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmed I.

    2012-01-01

    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement. PMID:23166688

  2. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition.

    Science.gov (United States)

    Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmed I

    2012-01-01

    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.

  3. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition.

    Directory of Open Access Journals (Sweden)

    Mohammed J Uddin

    Full Text Available Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.

  4. Radiation effects on unsteady MHD convective heat and mass transfer past a vertical plate with chemical reaction and viscous dissipation

    Directory of Open Access Journals (Sweden)

    Chandra Shekar Balla

    2015-09-01

    Full Text Available A numerical analysis is performed to study the unsteady magnetohydrodynamic convective flow of heat and mass transfer of a viscous, incompressible, electrically conducting Newtonian fluid along a vertical permeable plate in the presence of a homogeneous first order chemical reaction and taking into account thermal radiation effects. The porous plate was subjected to a constant suction velocity with variable surface temperature and concentration. The governing coupled non-linear boundary layer partial differential equations were solved by an efficient and unconditionally stable finite element method based on Galerkin weighted residual approach. A representative set of computational results for the velocity, temperature and concentration profiles as well as Local skin-friction coefficient, Local Nusselt number and Local Sherwood number are presented graphically for various governing parameters such as M,R,Ec,Sc,andK. In the present analysis various comparisons with previously published work are performed and the results are found to be in a good agreement.

  5. NUMERICAL STUDY OF MICROPOLAR FLUID FLOW HEAT AND MASS TRANSFER OVER VERTICAL PLATE: EFFECTS OF THERMAL RADIATION AND MAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    REDHA ALOUAOUI

    2015-06-01

    Full Text Available In this paper, we examine the thermal radiation effect on heat and mass transfer in steady laminar boundary layer flow of an incompressible viscous micropolar fluid over a vertical flat plate, with the presence of a magnetic field. Rosseland approximation is applied to describe the radiative heat flux in the energy equation. The resulting similarity equations are solved numerically. Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on different profiles. The conclusion is drawn that the flow field, temperature, concentration and microrotation  as well as the skin friction coefficient and the both  local Nusselt and Sherwood numbers  are significantly influenced by Magnetic parameter, material parameter  and thermal radiation parameter.

  6. MHD Heat and Mass Transfer of Chemical Reaction Fluid Flow over a Moving Vertical Plate in Presence of Heat Source with Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    B. R. Rout

    2013-01-01

    Full Text Available This paper aims to investigate the influence of chemical reaction and the combined effects of internal heat generation and a convective boundary condition on the laminar boundary layer MHD heat and mass transfer flow over a moving vertical flat plate. The lower surface of the plate is in contact with a hot fluid while the stream of cold fluid flows over the upper surface with heat source and chemical reaction. The basic equations governing the flow, heat transfer, and concentration are reduced to a set of ordinary differential equations by using appropriate transformation for variables and solved numerically by Runge-Kutta fourth-order integration scheme in association with shooting method. The effects of physical parameters on the velocity, temperature, and concentration profiles are illustrated graphically. A table recording the values of skin friction, heat transfer, and mass transfer at the plate is also presented. The discussion focuses on the physical interpretation of the results as well as their comparison with previous studies which shows good agreement as a special case of the problem.

  7. Effects of internal heat generation, thermal radiation and buoyancy force on a boundary layer over a vertical plate with a convective surface boundary condition

    OpenAIRE

    Tasawar Hayat; Awatif A. Hendi; Jacob A. Gbadeyan; Philip O. Olanrewaju

    2011-01-01

    In this paper we analyse the effects of internal heat generation, thermal radiation and buoyancy force on the laminar boundary layer about a vertical plate in a uniform stream of fluid under a convective surface boundary condition. In the analysis, we assumed that the left surface of the plate is in contact with a hot fluid whilst a stream of cold fluid flows steadily over the right surface; the heat source decays exponentially outwards from the surface of the plate. The similarity variable m...

  8. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part B

    Energy Technology Data Exchange (ETDEWEB)

    Quadir, G. A., E-mail: Irfan-magami@Rediffmail.com, E-mail: gaquadir@gmail.com [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia); Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia)

    2016-06-08

    This work is continuation of the paper Part A. Due to large number of results, the paper is divided into two section with section-A (Part A) discussing the effect of various parameters such as heat transfer coefficient parameter, thermal conductivity ratio etc. on streamlines and isothermal lines. Section-B highlights the heat transfer characteristics in terms of Nusselt number The Darcy model is employed to simulate the flow inside the medium. It is assumed that the heat transfer takes place by convection and radiation. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method.

  9. Mixed convective heat transfer from a vertical plate embedded in a ...

    Indian Academy of Sciences (India)

    In problems dealing with porous media, the effect of melting, radiation is important in indus- tries and technologies. The applications are found in situation such as geothermal systems, heating and cooling chamber, fossil fuel combustion, energy processes and Astro-physical flows. The effects of non-Darcy mixed convection ...

  10. Heat transfer analysis in a Maxwell fluid over an oscillating vertical plate using fractional Caputo-Fabrizio derivatives

    Science.gov (United States)

    Khan, Ilyas; Ali Shah, Nehad; Mahsud, Yasir; Vieru, Dumitru

    2017-04-01

    This article is focused on heat transfer analysis in the unsteady flow of a generalized Maxwell fluid over an oscillating vertical flat plate with constant temperature. The well-known equation of the Maxwell fluid with classical derivatives, describing the unidirectional and one-dimensional flow, has been generalized to a non-integer-order derivative, known as fractional derivative, with free convection term of buoyancy. A new definition of the fractional derivative introduced by Caputo and Fabrizio has been used in the mathematical formulation of the problem. Exact solution of the dimensionless problem has been obtained by using the Laplace transform. These solutions are expressed with complementary error and modified Bessel functions. Similar solutions for classical Maxwell and Newtonian fluids and generalized Newtonian fluid performing the same motion are obtained as limiting cases of our general results. Graphical illustrations show that the velocity profiles corresponding to a generalized Maxwell fluid are similar to those for an ordinary Maxwell fluid when the fraction order approaches 1. A comparison amongst four different types of fluids is also shown graphically.

  11. Soret and heat generation effects on MHD Casson fluid flow past an oscillating vertical plate embedded through porous medium

    Directory of Open Access Journals (Sweden)

    Hari R. Kataria

    2016-09-01

    Full Text Available Analytical solution of thermal diffusion and heat generation effects on MHD Casson fluid flow past an oscillating vertical plate embedded through porous medium in the presence of thermal radiation and chemical reaction is obtained. Ramped wall temperature with ramped surface concentration, isothermal temperature with ramped surface concentration and isothermal temperature with constant surface concentration are taken into account. The governing non-dimensional equations are solved using Laplace transform technique and the solutions are presented in closed form. In order to get a perfect understanding of the physics of the problem we obtained numerical results using Matlab software and clarified with the help of graphical illustrations. With the help of velocity, temperature and concentration, Skin friction, Nusselt number and Sherwood number are obtained and represent through tabular form. Casson parameter is inversely proportional to the yield stress and it is observed that for the large value of Casson parameter, the fluid is close to the Newtonian fluid where the velocity is less than the non-Newtonian fluid. The intensification in values of Soret number produces a raise in the mass buoyancy force which results an increase in the value of velocity.

  12. Chemical reaction and radiation effects on mixed convection heat and mass transfer over a vertical plate in power-law fluid saturated porous medium

    Directory of Open Access Journals (Sweden)

    D. Srinivasacharya

    2016-01-01

    Full Text Available Mixed convection heat and mass transfer along a vertical plate embedded in a power-law fluid saturated Darcy porous medium with chemical reaction and radiation effects is studied. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations and then solved numerically using shooting method. A parametric study of the physical parameters involved in the problem is conducted and a representative set of numerical results is illustrated graphically.

  13. Rotation and Radiation Effects on MHD Flow through Porous Medium Past a Vertical Plate with Heat and Mass Transfer

    Directory of Open Access Journals (Sweden)

    Uday Singh Rajput

    2017-11-01

    Full Text Available Effects of rotation and radiation on unsteady MHD flow past a vertical plate with variable wall temperature and mass diffusion in the presence of Hall current is studied here. Earlier we studied chemical reaction effect on unsteady MHD flow past an exponentially accelerated inclined plate with variable temperature and mass diffusion in the presence of Hall current. We had obtained the results which were in agreement with the desired flow phenomenon. To study further, we are changing the model by considering radiation effect on fluid, and changing the geometry of the model. Here in this paper we are taking the plate positioned vertically upward and rotating with velocity Ω . Further, medium of the flow is taken as porous. The plate temperature and the concentration level near the plate increase linearly with time. The governing system of partial differential equations is transformed to dimensionless equations using dimensionless variables. The dimensionless equations under consideration have been solved by Laplace transform technique. The model contains equations of motion, diffusion equation and equation of energy. To analyze the solution of the model, desirable sets of the values of the parameters have been considered. The governing equations involved in the flow model are solved by the Laplace-transform technique. The results obtained have been analyzed with the help of graphs drawn for different parameters. The numerical values obtained for the drag at boundary and Nusselt number have been tabulated. We found that the values obtained for velocity, concentration and temperature are in concurrence with the actual flow of the fluid

  14. Nonlinear radiation heat transfer effects in the natural convective boundary layer flow of nanofluid past a vertical plate: a numerical study.

    Directory of Open Access Journals (Sweden)

    Meraj Mustafa

    Full Text Available The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge-Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter.

  15. A Note on Variable Viscosity and Chemical Reaction Effects on Mixed Convection Heat and Mass Transfer Along a Semi-Infinite Vertical Plate

    Directory of Open Access Journals (Sweden)

    Mostafa A. A. Mahmoud

    2007-01-01

    Full Text Available In the present study, an analysis is carried out to study the variable viscosity and chemical reaction effects on the flow, heat, and mass transfer characteristics in a viscous fluid over a semi-infinite vertical porous plate. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically by using the shooting method. The effects of different parameters on the dimensionless velocity, temperature, and concentration profiles are shown graphically. In addition, tabulated results for the local skin-friction coefficient, the local Nusselt number, and the local Sherwood number are presented and discussed.

  16. Combined Effects Of Stress Work And Heat Generation On MHD Natural Convection Flow Along A Vertical Flat Plate With Power Law Variation Of Uniform Surface Temperature

    Directory of Open Access Journals (Sweden)

    Mohammad Mahfuzul Islam

    2015-08-01

    Full Text Available Abstract In this paper is presented to study conjugate effects of stress work and heat generation on MHD natural convection flow along a vertical flat plate with power law variation of surface temperature. Stress work and heat generation effects on magneto-hydrodynamics natural convection flows are considered in this investigation. With a goal to attain similarity solutions of the problem the developed equations are made dimensionless by using suitable transformations. The non-dimensional equations are then transformed into non-similar forms by introducing non- similarity transformations. The resulting non-similar equations together with their corresponding boundary conditions based on conduction and convection are solved numerically by using the shooting method of Nachtsheim-swigert iteration technique and finite difference method together with Keller box Scheme. Numerically calculated velocity profiles and temperature profiles skin friction and the rate of heat transfer coefficient are shown on graphs for different values of the parameters entering into the problem.

  17. Heat and mass transfer effects on the mixed convective flow of chemically reacting nanofluid past a moving/stationary vertical plate

    Directory of Open Access Journals (Sweden)

    B. Mahanthesh

    2016-03-01

    Full Text Available The problem of conjugate effects of heat and mass transfer over a moving/stationary vertical plate has been studied under the influence of applied magnetic field, thermal radiation, internal heat generation/absorption and first order chemical reaction. The fluid is assumed to be electrically conducting water based Cu-nanofluid. The Tiwari and Das model is used to model the nanofluid, whereas Rosseland approximation is used for thermal radiation effect. Unified closed form solutions are obtained for the governing equations using Laplace transform method. The velocity, temperature and concentration profiles are expressed graphically for different flow pertinent parameters. The physical quantities of engineering interest such as skin friction, Nusselt number and Sherwood number are also computed. The obtained analytical solutions satisfy all imposed initial and boundary conditions and they can be reduced to known previous results in some limiting cases. It is found that, by varying nanoparticle volume fraction, the flow and heat transfer characteristics could be controlled.

  18. Computational study of Jeffrey’s non-Newtonian fluid past a semi-infinite vertical plate with thermal radiation and heat generation/absorption

    Directory of Open Access Journals (Sweden)

    S. Abdul Gaffar

    2017-06-01

    Full Text Available The nonlinear, steady state boundary layer flow, heat and mass transfer of an incompressible non-Newtonian Jeffrey’s fluid past a semi-infinite vertical plate is examined in this article. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a versatile, implicit finite-difference Keller box technique. The influence of a number of emerging non-dimensional parameters, namely Deborah number (De, ratio of relaxation to retardation times (λ, Buoyancy ratio parameter (N, suction/injection parameter (fw, Radiation parameter (F, Prandtl number (Pr, Schmidt number (Sc, heat generation/absorption parameter (Δ and dimensionless tangential coordinate (ξ on velocity, temperature and concentration evolution in the boundary layer regime is examined in detail. Also, the effects of these parameters on surface heat transfer rate, mass transfer rate and local skin friction are investigated. This model finds applications in metallurgical materials processing, chemical engineering flow control, etc.

  19. Effects of internal heat generation, thermal radiation and buoyancy force on a boundary layer over a vertical plate with a convective surface boundary condition

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    2011-09-01

    Full Text Available In this paper we analyse the effects of internal heat generation, thermal radiation and buoyancy force on the laminar boundary layer about a vertical plate in a uniform stream of fluid under a convective surface boundary condition. In the analysis, we assumed that the left surface of the plate is in contact with a hot fluid whilst a stream of cold fluid flows steadily over the right surface; the heat source decays exponentially outwards from the surface of the plate. The similarity variable method was applied to the steady state governing non-linear partial differential equations, which were transformed into a set of coupled non-linear ordinary differential equations and were solved numerically by applying a shooting iteration technique together with a sixth-order Runge–Kutta integration scheme for better accuracy. The effects of the Prandtl number, the local Biot number, the internal heat generation parameter, thermal radiation and the local Grashof number on the velocity and temperature profiles are illustrated and interpreted in physical terms. A comparison with previously published results on similar special cases showed excellent agreement.

  20. Combined effect of buoyancy force and Navier slip on MHD flow of a nanofluid over a convectively heated vertical porous plate.

    Science.gov (United States)

    Mutuku-Njane, Winifred Nduku; Makinde, Oluwole Daniel

    2013-01-01

    We examine the effect of magnetic field on boundary layer flow of an incompressible electrically conducting water-based nanofluids past a convectively heated vertical porous plate with Navier slip boundary condition. A suitable similarity transformation is employed to reduce the governing partial differential equations into nonlinear ordinary differential equations, which are solved numerically by employing fourth-order Runge-Kutta with a shooting technique. Three different water-based nanofluids containing copper (Cu), aluminium oxide (Al2O3), and titanium dioxide (TiO2) are taken into consideration. Graphical results are presented and discussed quantitatively with respect to the influence of pertinent parameters, such as solid volume fraction of nanoparticles (φ), magnetic field parameter (Ha), buoyancy effect (Gr), Eckert number (Ec), suction/injection parameter (f w ), Biot number (Bi), and slip parameter ( β ), on the dimensionless velocity, temperature, skin friction coefficient, and heat transfer rate.

  1. Radiation and mass transfer effects on an unsteady MHD free convection flow past a heated vertical plate in a porous medium with viscous dissipation

    Directory of Open Access Journals (Sweden)

    Prasad Ramachandra V.

    2007-01-01

    Full Text Available An unsteady, two-dimensional, hydromagnetic, laminar free convective boundary-layer flow of an incompressible, Newtonian, electrically-conducting and radiating fluid past an infinite heated vertical porous plate with heat and mass transfer is analyzed, by taking into account the effect of viscous dissipation. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and graphical results for velocity, temperature and concentration profiles within the boundary layer and tabulated results for the skin-friction coefficient, Nusselt number and Sherwood number are presented and discussed. It is observed that, when the radiation parameter increases, the velocity and temperature decrease in the boundary layer, whereas when thermal and solutal Grashof increases the velocity increases.

  2. Heat and Mass Transfer of Unsteady Hydromagnetic Free Convection Flow Through Porous Medium Past a Vertical Plate with Uniform Surface Heat Flux

    Science.gov (United States)

    El-Aziz, Mohamed Abd; Yahya, Aishah S.

    2017-09-01

    Simultaneous effects of thermal and concentration diffusions in unsteady magnetohydrodynamic free convection flow past a moving plate maintained at constant heat flux and embedded in a viscous fluid saturated porous medium is presented. The transport model employed includes the effects of thermal radiation, heat sink, Soret and chemical reaction. The fluid is considered as a gray absorbing-emitting but non-scattering medium and the Rosseland approximation in the energy equations is used to describe the radiative heat flux for optically thick fluid. The dimensionless coupled linear partial differential equations are solved by using Laplace transform technique. Numerical results for the velocity, temperature, concentration as well as the skin friction coefficient and the rates of heat and mass transfer are shown graphically for different values of physical parameters involved.

  3. Combined natural convection and mass transfer effects on unsteady flow past an infinite vertical porous plate embedded in a porous medium with heat source

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.S. [Department of Physics, K B D A V College, Nirakarpur, Khurda-752 019 (Orissa) (India); Tripathy, R.K. [Department of Physics, D R Nayapalli College, Bhubaneswar-751 012 (Orissa) (India); Padhy, R.K. [Department of Physics, D A V Public School, Chandrasekharpur, Bhubaneswar-751 021 (Orissa) (India); Sahu, M. [Department of Physics, Jupiter +2 Women’s Science College, IRC Village, Bhubaneswar-751 015 (Orissa) (India)

    2012-07-01

    This paper theoretically investigates the combined natural convection and mass transfer effects on unsteady flow of a viscous incompressible fluid past an infinite vertical porous plate embedded in a porous medium with heat source. The governing equations of the flow field are solved analytically for velocity, temperature, concentration distribution, skin friction and the rate of heat transfer using multi parameter perturbation technique and the effects of the flow parameters such as permeability parameter Kp, Grashof number for heat and mass transfer Gr, Gc; heat source parameter S, Schmidt number Sc, Prandtl number Pr etc. on the flow field are analyzed and discussed with the help of figures and tables. The permeability parameter Kp is reported to accelerate the transient velocity of the flow field at all points for small values of Kp (£1) and for higher values the effect reverses. The effect of increasing Grashof numbers for heat and mass transfer or heat source parameter is to enhance the transient velocity of the flow field at all points while a growing Schmidt number retards its effect at all points. A growing permeability parameter or heat source parameter increases the transient temperature of the flow field at all points, while a growing Prandtl number shows reverse effect. The effect of increasing Schmidt number is to decrease the concentration boundary layer thickness of the flow field at all points. Further, a growing permeability parameter enhances the skin friction at the wall and a growing Prandtl number shows reverse effect. The effect of increasing Prandtl number or permeability parameter leads to increase the magnitude of the rate of heat transfer at the wall.

  4. Heat and mass transfer on unsteady MHD free convection rotating flow through a porous medium over an infinite vertical plate with hall effects

    Science.gov (United States)

    Babu, D. Dastagiri; Venkateswarlu, S.; Reddy, E. Keshava

    2017-07-01

    In this paper, we have considered the unsteady MHD free convection flow of an incompressible electrically conducting fluid through porous medium bounded by an infinite vertical porous surface in the presence of heat source and chemical reaction in a rotating system taking hall current into account. The flow through porous medium is governed by Brinkman's model for the momentum equation. In the undisturbed state, both the plate and fluid in porous medium are in solid body rotation with the same angular velocity about normal to the infinite vertical plane surface. The vertical surface is subjected to the uniform constant suction perpendicular to it and the temperature on the surface varies with time about a non-zero constant mean while the temperature of free stream is taken to be constant. The exact solutions for the velocity, temperature and concentration are obtained making use of perturbation technique. The velocity expression consists steady state and oscillatory state. It reveals that, the steady part of the velocity field has three layer characters while the oscillatory part of the fluid field exhibits a multi-layer character. The influence of various flow parameters on the velocity, temperature and concentration is analysed graphically, and computational results for the skin friction, Nusselt number and Sherwood number are also obtained in the tabular forms.

  5. Second-order velocity slip with axisymmetric stagnation point flow and heat transfer due to a stretching vertical plate in a Copper-water nanofluid

    Science.gov (United States)

    Kardri, M. A.; Bachok, N.; Arifin, N. M.; Ali, F. M.

    2017-09-01

    The steady axisymmetric stagnation point flow with second-order velocity slip due to a stretching vertical plate with the existence of copper-water nanofluid was investigated. Similarity transformation has been applied to reduce the governing partial differential equations to ordinary differential equations. Then the self-similar equations are solved numerically using solver bvp4c available in Matlab with Prandtl number, Pr = 6.2. It is found that the dual solutions exist for the certain range of mixed convection parameter. The effects of the governing parameters on the velocity and temperature profile, skin friction coefficient and the local Nusselt number are observed. The results show that the inclusion of nanoparticle copper, will increase the shear stress on the stretching sheet and decrease the heat transfer rate for the slip parameters.

  6. Development of flow and heat transfer in the vicinity of a vertical plate embedded in a porous medium with viscous dissipation effects

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    In this paper, the effects of viscous dissipation on unsteady free convection from an isothermal vertical flat plate in a fluidsaturated porous medium are investigated. The Darcy-Brinkman model is employed to describe the flow field. A new model of viscous dissipation is used for the Darcy-Brinkman model of porous media. The simultaneous development of the momentum and thermal boundary layers is obtained by using a finite-difference method. Boundary layer and Boussinesq approximation have been incorporated. Numerical calculations are carried out for various parameters entering into the problem. Velocity and temperature profiles as well as the local friction factor and local Nusselt number are displayed graphically. It is found that as time approaches infinity, the values of the friction factor and heat transfer coefficient approach steady state. © 2012 by Begell House, Inc.

  7. Thermo-fluid-dynamics of natural convection around a heated vertical plate with a critical assessment of the standard similarity theory

    Science.gov (United States)

    Guha, Abhijit; Nayek, Subhajit

    2017-10-01

    A compulsory element of all textbooks on natural convection has been a detailed similarity analysis for laminar natural convection on a heated semi-infinite vertical plate and a routinely used boundary condition for such analysis is u = 0 at x = 0. The same boundary condition continues to be assumed in related theoretical analyses, even in recent publications. The present work examines the consequence of this long-held assumption, which appears to have never been questioned in the literature, on the fluid dynamics and heat transfer characteristics. The assessment has been made here by solving the Navier-Stokes equations numerically with two boundary conditions—one with constrained velocity at x = 0 to mimic the similarity analysis and the other with no such constraints simulating the case of a heated vertical plate in an infinite expanse of the quiescent fluid medium. It is found that the fluid flow field given by the similarity theory is drastically different from that given by the computational fluid dynamics (CFD) simulations with unconstrained velocity. This also reflects on the Nusselt number, the prediction of the CFD simulations with unconstrained velocity being quite close to the experimentally measured values at all Grashof and Prandtl numbers (this is the first time theoretically computed values of the average Nusselt number N u ¯ are found to be so close to the experimental values). The difference of the Nusselt number (Δ N u ¯ ) predicted by the similarity theory and that by the CFD simulations (as well as the measured values), both computed with a high degree of precision, can be very significant, particularly at low Grashof numbers and at Prandtl numbers far removed from unity. Computations show that within the range of investigations (104 ≤ GrL ≤ 108, 0.01 ≤ Pr ≤ 100), the maximum value of Δ N u ¯ may be of the order 50%. Thus, for quantitative predictions, the available theory (i.e., similarity analysis) can be rather inadequate. With

  8. Unsteady MHD free convective flow past a vertical porous plate ...

    African Journals Online (AJOL)

    An attempt has been made to study the unsteady MHD free convective flow past a vertical porous plate immersed in a porous medium with Hall current, thermal diffusion and heat source. Analytical solution has been found depending on the physical parameters including the Hartmann number M, the Prandtl number Pr, the ...

  9. The effects of thermal radiation and viscous dissipation on MHD heat and mass diffusion flow past an oscillating vertical plate embedded in a porous medium with variable surface conditions

    Directory of Open Access Journals (Sweden)

    Kishore P.M.

    2012-01-01

    Full Text Available This investigation is undertaken to study the hydromagnetic flow of a viscous incompressible fluid past an oscillating vertical plate embedded in a porous medium with radiation, viscous dissipation and variable heat and mass diffusion. Governing equations are solved by unconditionally stable explicit finite difference method of DuFort - Frankel’s type for concentration, temperature, vertical velocity field and skin - friction and they are presented graphically for different values of physical parameters involved. It is observed that plate oscillation, variable mass diffusion, radiation, viscous dissipation and porous medium affect the flow pattern significantly.

  10. Surface heat flux feedback controlled impurity seeding experiments with Alcator C-Mod’s high-Z vertical target plate divertor: performance, limitations and implications for fusion power reactors

    Science.gov (United States)

    Brunner, D.; Wolfe, S. M.; LaBombard, B.; Kuang, A. Q.; Lipschultz, B.; Reinke, M. L.; Hubbard, A.; Hughes, J.; Mumgaard, R. T.; Terry, J. L.; Umansky, M. V.; The Alcator C-Mod Team

    2017-08-01

    The Alcator C-Mod team has recently developed a feedback system to measure and control surface heat flux in real-time. The system uses real-time measurements of surface heat flux from surface thermocouples and a pulse-width modulated piezo valve to inject low-Z impurities (typically N2) into the private flux region. It has been used in C-Mod to mitigate peak surface heat fluxes  >40 MW m-2 down to    1. While the system works quite well under relatively steady conditions, use of it during transients has revealed important limitations on feedback control of impurity seeding in conventional vertical target plate divertors. In some cases, the system is unable to avoid plasma reattachment to the divertor plate or the formation of a confinement-damaging x-point MARFE. This is due to the small operational window for mitigated heat flux in the parameters of incident plasma heat flux, plasma density, and impurity density as well as the relatively slow response of the impurity gas injection system compared to plasma transients. Given the severe consequences for failure of such a system to operate reliably in a reactor, there is substantial risk that the conventional vertical target plate divertor will not provide an adequately controllable system in reactor-class devices. These considerations motivate the need to develop passively stable, highly compliant divertor configurations and experimental facilities that can test such possible solutions.

  11. HEAT AND MASS TRANSFER EFFECTS ON FLOW PAST PARABOLIC STARTING MOTION OF ISOTHERMAL VERTICAL PLATE IN THE PRESENCE OF FIRST ORDER CHEMICAL REACTION

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2013-06-01

    Full Text Available An exact solution of unsteady flow past a parabolic starting motion of the infinite isothermal vertical plate with uniform mass diffusion, in the presence of a homogeneous chemical reaction of the first order, has been studied. The plate temperature and the concentration level near the plate are raised uniformly. The dimensionless governing equations are solved using the Laplace transform technique. The effect of velocity profiles are studied for different physical parameters, such as chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, and time. It is observed that velocity increases with increasing values of thermal Grashof number or mass Grashof number. The trend is reversed with respect to the chemical reaction parameter.

  12. Influence of non-integer order parameter and Hartmann number on the heat and mass transfer flow of a Jeffery fluid over an oscillating vertical plate via Caputo-Fabrizio time fractional derivatives

    Science.gov (United States)

    Butt, A. R.; Abdullah, M.; Raza, N.; Imran, M. A.

    2017-10-01

    In this work, semi analytical solutions for the heat and mass transfer of a fractional MHD Jeffery fluid over an infinite oscillating vertical plate with exponentially heating and constant mass diffusion via the Caputo-Fabrizio fractional derivative are obtained. The governing equations are transformed into dimensionless form by introducing dimensionless variables. A modern definition of the Caputo-Fabrizio derivative has been used to develop the fractional model for a Jeffery fluid. The expressions for temperature, concentration and velocity fields are obtained in the Laplace transformed domain. We have used the Stehfest's and Tzou's algorithm for the inverse Laplace transform to obtain the semi analytical solutions for temperature, concentration and velocity fields. In the end, in order to check the physical impact of flow parameters on temperature, concentration and velocity fields, results are presented graphically and in tabular forms.

  13. Natural convection in a parallel-plate vertical channel with discrete heating by two flush-mounted heaters: effect of the clearance between the heaters

    Science.gov (United States)

    Sarper, Bugra; Saglam, Mehmet; Aydin, Orhan; Avci, Mete

    2017-10-01

    In this study, natural convection in a vertical channel is studied experimentally and numerically. One of the channel walls is heated discretely by two flush-mounted heaters while the other is insulated. The effects of the clearance between the heaters on heat transfer and hot spot temperature while total length of the heaters keeps constant are investigated. Four different settlements of two discrete heaters are comparatively examined. Air is used as the working fluid. The range of the modified Grashof number covers the values between 9.6 × 105 and 1.53 × 10.7 Surface to surface radiation is taken into account. Flow visualizations and temperature measurements are performed in the experimental study. Numerical computations are performed using the commercial CFD code ANSYS FLUENT. The results are represented as the variations of surface temperature, hot spot temperature and Nusselt number with the modified Grashof number and the clearance between the heaters as well as velocity and temperature variations of the fluid.

  14. Lighting system with heat distribution face plate

    Science.gov (United States)

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

    2013-09-10

    Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

  15. Boiling heat transfer of refrigerant R-21 in upward flow in plate-fin heat exchanger

    Science.gov (United States)

    Kuznetsov, V. V.; Shamirzaev, A. S.

    2015-11-01

    The article presents the results of experimental investigation of boiling heat transfer of refrigerant R-21 in upward flow in a vertical plate-fin heat exchanger with transverse size of the channels that is smaller than the capillary constant. The heat transfer coefficients obtained in ranges of small mass velocities and low heat fluxes, which are typical of the industry, have been poorly studied yet. The characteristic patterns of the upward liquid-vapor flow in the heat exchanger channels and the regions of their existence are detected. The obtained data show a weak dependence of heat transfer coefficient on equilibrium vapor quality, mass flow rate, and heat flux density and do not correspond to calculations by the known heat transfer models. A possible reason for this behavior is a decisive influence of evaporation of thin liquid films on the heat transfer at low heat flux.

  16. Chaotic vibrations of heated plates

    Science.gov (United States)

    Fermen-Coker, Muge

    1998-12-01

    In recent years, the investigation of dynamical behavior of plates under thermal loads has become important due to the high temperatures reached on external skin panels of hypersonic vehicles. It has been shown by other researchers that the skin panels may encounter chaotic vibrations about their thermally buckled positions. In this research, the chaotic vibrations of simply supported plates under thermal and sinusoidal excitation is studied in order to predict the vibratory behavior of a representative class of such skin panels. A method for the development of equations of motion, that forms a foundation for further investigation of the response of elastic panels under general thermal, mechanical and aerodynamic loading and various boundary conditions, is presented and discussed. The boundaries of regular and chaotic regions of motion are defined and the sensitivity of these boundaries to changes in design parameters is explored for the purpose of developing useful design criteria. The onset of chaos is predicted through the computation of Lyapunov exponents. The sensitivity of Lyapunov exponent calculations to the choice of numerical method of integration, numerical precision and the magnitude of coefficients as functions of design variables, is discussed. The effects of thermal moment, thermal buckling, amplitude and frequency of excitation, damping, thickness and length to width ratio of panels on the onset of chaos is studied. The results of the research are presented as a contribution to the panel design of hypersonic vehicles.

  17. Heat transfer studies on spiral plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Rajavel Rangasamy

    2008-01-01

    Full Text Available In this paper, the heat transfer coefficients in a spiral plate heat exchanger are investigated. The test section consists of a plate of width 0.3150 m, thickness 0.001 m and mean hydraulic diameter of 0.01 m. The mass flow rate of hot water (hot fluid is varying from 0.5 to 0.8 kg/s and the mass flow rate of cold water (cold fluid varies from 0.4 to 0.7 kg/s. Experiments have been conducted by varying the mass flow rate, temperature, and pressure of cold fluid, keeping the mass flow rate of hot fluid constant. The effects of relevant parameters on spiral plate heat exchanger are investigated. The data obtained from the experimental study are compared with the theoretical data. Besides, a new correlation for the Nusselt number which can be used for practical applications is proposed.

  18. Formula study for plate heat exchanger in the central heating regulation of the indirect connection hot water heating system

    National Research Council Canada - National Science Library

    Minghui CUI; Dezhi MENG; Chengming NI

    2016-01-01

    Plate heat exchanger has unique advantages and becomes dominant heat exchange equipment in heating engineering, but there is no heating regulation formula of plate exchanger applied in central heating...

  19. Numerical investigation of boiling heat transfer on hydrocarbon mixture refrigerant in vertical rectangular minichannel

    OpenAIRE

    Huixing Li; Yu Liu

    2016-01-01

    In order to investigate the characteristics of boiling heat transfer for hydrocarbon mixture refrigerant in plate-fin heat exchanger which is used in the petrochemical industry field, a model was established on boiling heat transfer in vertical rectangular channel. The simulated results were compared with the experimental data from literature. The results show that the deviation between the simulated results and experimental data is within ±15%. Meanwhile, the characteristic of boiling heat t...

  20. Calculating mass transfer from vertical wet fabrics using a free convection heat transfer correlation

    Energy Technology Data Exchange (ETDEWEB)

    Tafreshi, H. Vahedi; Ercan, E.; Pourdeyhimi, B. [North Carolina State University, Nonwovens Cooperative Research Center, Raleigh, NC (United States)

    2006-07-15

    In this note, the evaporation rate from a vertical wet fabric sheet is calculated using a free convection heat transfer correlation. Chilton-Colburn analogy is used to derive a mass transfer correlation from a heat transfer correlation proposed by Churchill and Chu for free convection from a vertical isothermal plate. The mass transfer rate obtained from this expression has shown excellent agreement with experimental data. (orig.)

  1. Thermal diffusion effects on free convection and mass transfer flow for an infinite vertical plate

    CERN Document Server

    Abdel-Khalek, M M

    2003-01-01

    A theoretical study is performed to examine the effects of thermal diffusion on free convection and mass transfer flow for an infinite vertical plate. The governing equations for the fluid flow and the heat transfer are solved subject to the relevant boundary conditions. A perturbation technique is used to obtain expressions for the velocity field and skin friction. An analysis of the effects of the parameters on the concentration, velocity and temperature profiles as well as skin friction and the rate of mass and heat transfer is done with the aid of graphs.

  2. Numerical investigation of boiling heat transfer on hydrocarbon mixture refrigerant in vertical rectangular minichannel

    Directory of Open Access Journals (Sweden)

    Huixing Li

    2016-05-01

    Full Text Available In order to investigate the characteristics of boiling heat transfer for hydrocarbon mixture refrigerant in plate-fin heat exchanger which is used in the petrochemical industry field, a model was established on boiling heat transfer in vertical rectangular channel. The simulated results were compared with the experimental data from literature. The results show that the deviation between the simulated results and experimental data is within ±15%. Meanwhile, the characteristic of boiling heat transfer was investigated in vertical rectangular minichannel of plate-fin heat exchanger. The results show that the boiling heat transfer coefficient increases with the increase in quality and mass flux and is slightly impacted by the heat flux. This is because that the main boiling mechanism is forced convective boiling while the contribution of nucleate boiling is slight. The correlation of Liu and Winterton is in good agreement with the simulation results. The deviation between correlation calculations and simulation results is mostly less than ±15%. These results will provide some constructive instructions for the understanding of saturated boiling mechanism in a vertical rectangular minichannel and the prediction of heat transfer performance in plate-fin heat exchanger.

  3. Boundary layer flow of micropolar fluids past an impulsively started infinite vertical plate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youn-Jea [School of Mechanical Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Suwon 440-746 (Korea, Republic of); Kim, Kwang-Su [SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, 300 Cheoncheon-dong, Suwon 440-746 (Korea, Republic of)

    2007-02-15

    Transient free convective boundary layer flow of micropolar fluids past an impulsively started infinite vertical plate is investigated. The transformed dimensionless governing equations for the flow, microrotation and heat transfer characteristics are solved by using the Laplace transform technique. In particular, the relevant solution of the coupled governing equations was found with the second kind of the Volterra integral equation. The obtained results concerning velocity, microrotation and temperature across the boundary layer are illustrated graphically for different values of the parameters entering into the problem under consideration and the dependence of the flow and temperature fields from these parameters is discussed.

  4. Characteristic of Local Boiling Heat Transfer of Ammonia / Water Binary Mixture on the Plate Type Evaporator

    Science.gov (United States)

    Okamoto, Akio; Arima, Hirofumi; Kim, Jeong-Hun; Akiyama, Hirokuni; Ikegami, Yasuyuki; Monde, Masanori

    Ocean thermal energy conversion (OTEC) and discharged thermal energy conversion (DTEC) are expected to be the next generation energy production systems. Both systems use a plate type evaporator, and ammonia or ammonia/water mixture as a working fluid. It is important to clarify heat transfer characteristic for designing efficient power generation systems. Measurements of local boiling heat transfer coefficients and visualization were performed for ammonia /water mixture (z = 0.9) on a vertical flat plate heat exchanger in a range of mass flux (7.5 - 15 kg/m2s), heat flux (15 - 23 kW/m2), and pressure (0.7 - 0.9 MPa). The result shows that in the case of ammonia /water mixture, the local heat transfer coefficients increase with an increase of vapor quality and mass flux, and decrease with an increase of heat flux, and the influence of the flow pattern on the local heat transfer coefficient is observed.

  5. Chemical reaction effect on MHD free convective surface over a moving vertical plate through porous medium

    Directory of Open Access Journals (Sweden)

    R.S. Tripathy

    2015-09-01

    Full Text Available An attempt has been made to study the heat and mass transfer effect in a boundary layer flow of an electrically conducting viscous fluid subject to transverse magnetic field past over a moving vertical plate through porous medium in the presence of heat source and chemical reaction. The governing non-linear partial differential equations have been transformed into a two-point boundary value problem using similarity variables and then solved numerically by fourth order Runge–Kutta fourth order method with shooting technique. Graphical results are discussed for non-dimensional velocity, temperature and concentration profiles while numerical values of the skin friction, Nusselt number and Sherwood number are presented in tabular form for various values of parameters controlling the flow system.

  6. Vertical Electric Field Measurements with Copper Plates by Sounding Balloon

    Science.gov (United States)

    Wen, Shao-Chun; Chiu, Cheng-Hsiu; Bing-Chih Chen, Alfred; Hsu, Rue-Ron; Su, Han-Tzong

    2015-04-01

    The vertical electric field plays an important role in driving the circulation of the global electric circuit, and crucial to the formation of the transient luminous events (TLEs). The in-situ measurement of the electric field in the upper atmosphere, especially from cloud top to the bottom of the ionosphere is very challenging but essential. Limited by the flight vehicle, the measurements of the electric field in and above cloud, especiall thundercloud, is rare up to now. A light-weight electric field meter was developed independently and sent to 30 km height by small meteorological balloons successfully. Other than the existing long-spaced, spherical probe design, an improved electric field meter has been built and tested carefully. A new circuit with ultra high input impedance and a high voltage amplifier is implemented to reduce the AC noise induced by the voltage divider. Two copper plates are used to replace the double spherical probes which is spaced by a long fiberglass boom. The in-lab calibration and tests show that this new model is superior to the existing design and very sensitive to the variation of the DC electric field. In this poster, the design and the in-lab tests will be presented, and preliminary results of the flight experiments are also discussed.

  7. Local heat transfer coefficients during the evaporation of 1,1,1,2-tetrafluoroethane (R-134a in a plate heat exchanger

    Directory of Open Access Journals (Sweden)

    EMILA ŽIVKOVIĆ

    2009-04-01

    Full Text Available The evaporation heat transfer coefficient of the refrigerant R-134a in a vertical plate heat exchanger was investigated experimentally. The area of the plate was divided into several segments along the vertical axis. For each of the segments, the local value of the heat transfer coefficient was calculated and presented as a function of the mean vapor quality in the segment. Owing to the thermocouples installed along the plate surface, it was possible to determine the temperature distribution and vapor quality profile inside the plate. The influences of the mass flux, heat flux, pressure of system and the flow configuration on the heat transfer coefficient were also taken into account and a comparison with literature data was performed.

  8. Augmentation of heat transfer in a bubble agitated vertical rectangular channel

    Science.gov (United States)

    Mitra, Asish; Dutta, Tapas Kumar; Ghosh, Dibyendu Narayan

    2012-04-01

    This paper presents the results of an experimental study of convective heat transfer between three parallel vertical plates symmetrically spaced with and without bubble agitation to ascertain the degree of augmentation of the heat transfer coefficients due to agitation. The centre plate was electrically heated, while the other side plates were water-cooled forming two successive parallel vertical rectangular channels of dimensions 20 cm × 3.5 cm × 35 cm (length W, gap L, height H) each. At the bottom of the hot and cold plates air spargers were fitted. Water/ethylene glycol (100%) was used to fill the channels. The superficial gas velocity ranged from 0.0016 to 0.01 m/s. Top, bottom and sides of the channels were open to the water/ethylene glycol in the chamber which is the novel aspect of this study. Experimental data have been correlated as under: Natural convective heat transfer: Nu = 0.60 Gr 0.29, r = 0.96, σ = 0.186, 1.17 E6 < Gr < 1.48 E7; Bubble agitated heat transfer: St = 0.11( ReFrPr 2)-0.23, r = 0.82, σ = 0.002, 1.20 E-2 < ( ReFrPr 2) < 1.36 E2.

  9. Simultaneous heat and mass transfer inside a vertical channel in evaporating a heated falling glycols liquid film

    Science.gov (United States)

    Nait Alla, Abderrahman; Feddaoui, M'barek; Meftah, Hicham

    2015-12-01

    The interactive effects of heat and mass transfer in the evaporation of ethylene and propylene glycol flowing as falling films on vertical channel was investigated. The liquid film falls along a left plate which is externally subjected to a uniform heat flux while the right plate is the dry wall and is kept thermally insulated. The model solves the coupled governing equations in both phases together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by Tridiagonal Matrix Algorithm. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied glycols and water in the same conditions is made. The results indicate that water evaporates in more intense way in comparison to glycols and the increase of gas flow rate tends to improve slightly the evaporation.

  10. Investigations on the performance of chevron type plate heat exchangers

    Science.gov (United States)

    Dutta, Oruganti Yaga; Nageswara Rao, B.

    2018-01-01

    This paper presents empirical relations for the chevron type plate heat exchangers (PHEs) and demonstrated their validity through comparison of test data of PHEs. In order to examine the performance of PHEs, the pressure drop(Δ P), the overall heat transfer coefficient ( U m ) and the effectiveness ( ɛ) are estimated by considering the properties of plate material and working fluid, number of plates ( N t ) and chevron angle( β). It is a known fact that, large surface area of the plate provides more rate of heat transfer ( \\dot{Q} ) thereby more effectiveness ( ɛ). However, there is a possibility to achieve the required performance by increasing the number of plates without altering the plate dimensions, which avoids the new design of the system. Application of the Taguchi's design of experiments is examined with less number of experiments and demonstrated by setting the levels for the parameters and compared the test data with the estimated output responses.

  11. Radiation and mass transfer effects on unsteady MHD convective flow past an infinite vertical plate with Dufour and Soret effects

    OpenAIRE

    N. Vedavathi; K Ramakrishna; K. Jayarami Reddy

    2015-01-01

    This paper deals with the effects of heat and mass transfer on two-dimensional unsteady MHD free convection flow past a vertical porous plate in a porous medium in the presence of thermal radiation under the influence of Dufour and Soret effects. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. The resulting equations are then solved numerically using shooting method along with ...

  12. Numerical Methods for Plate Forming by Line Heating

    DEFF Research Database (Denmark)

    Clausen, Henrik Bisgaard

    2000-01-01

    Line heating is the process of forming originally flat plates into a desired shape by means of heat treatment. Parameter studies are carried out on a finite element model to provide knowledge of how the process behaves with varying heating conditions. For verification purposes, experiments are ca...... are carried out; one set of experiments investigates the actual heat flux distribution from a gas torch and another verifies the validty of the FE calculations. Finally, a method to predict the heating pattern is described....

  13. Line Heat-Source Guarded Hot Plate

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The 1-meter guarded hot-plate apparatus measures thermal conductivity of building insulation. This facility provides for absolute measurement of thermal...

  14. Oscillatory free-convective flow of an elastico-viscous fluid past an impulsively started infinite vertical porous plate. II

    Science.gov (United States)

    Singh, A. K.

    1984-10-01

    The author presents the two-dimensional free-convective flow of an elastico-viscous fluid past an infinite vertical porous plate for the Stokes problem when the flow is subjected to a constant suction velocity through the porous plate. As the mean steady flow has been presented in Part I, only the solution for the transient velocity profiles, transient temperature profiles, the amplitude and the phase of the skin-friction and the rate of heat transfer are presented in this work. As in the case of mean steady flow, the influence of various parameters on the unsteady flow field is discussed for both the cases cooling and heating of the porous plate by free-convection currents.

  15. Modelling of Split Condenser Heat Pump with Limited Set of Plate Heat Exchanger Dimensions

    DEFF Research Database (Denmark)

    Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix

    2017-01-01

    in parallel to different temperature levels, whereas only one stream is heated in a THP. The length/width ratio of the plate heat exchangers on the high pressure side of a SCHP was investigated to find the optimal plate dimensions with respect to minimum area of the heat exchangers. The total heat exchanger...... area was found to decrease with an increasing length/width ratio of the plates. The marginal change in heat exchanger area was shown to be less significant for heat exchangers with high length/width ratios. In practice only a limited number of plate dimensions are available and feasible...... in the production. This was investigated to find the practical potential of a SCHP compared to a THP. Using plates optimized for a SCHP in a THP, the total required heat exchanger area increased by approximately 100% for the conditions investigated in this study, indicating that available plate dimensions influence...

  16. Entropy Constraints on Vertical Heat Transport and Structures

    Science.gov (United States)

    Wu, W.; Liu, Y.

    2008-12-01

    Vertical heat transport by evaporation and condensation is a key process in transferring energy from the surface of the Earth to the atmosphere. Although this process has been studied for a long time, thermodynamic constraints on this process and on the vertical structures of the atmosphere are still poorly understood and quantified. In this work, we use a simple 1D vertical energy-entropy climate model to investigate this issue. Especially, we explore the roles of the entropy-rated constraints in determining vertical heat transport and atmospheric vertical structures. The sensitivities of the vertical distributions of atmospheric temperature, the energy and entropy fluxes to the variation of solar radiation are also discussed.

  17. Dufour and Soret Effects on Melting from a Vertical Plate Embedded in Saturated Porous Media

    Directory of Open Access Journals (Sweden)

    Basant K. Jha

    2013-01-01

    Full Text Available Thermal-diffusion and diffusion-thermo effects on combined heat and mass transfer in mixed convection boundary layer flow with aiding and opposing external flows from a vertical plate embedded in a liquid saturated porous medium with melting are investigated. The resulting system of nonlinear ordinary differential equations is solved numerically using Runge Kutta-Fehlberg with shooting techniques. Numerical results are obtained for the velocity, temperature, and concentration distributions, as well as the Nusselt number and Sherwood number for several values of the parameters, namely, the buoyancy parameter, melting parameter, Dufour effect, Soret effect, and Lewis number. The obtained results are presented graphically and in tabular form and the physical aspects of the problem are discussed.

  18. A concept of PWR using plate and shell heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Luciano Ondir; Andrade, Delvonei Alves de, E-mail: luciano.ondir@gmail.com, E-mail: delvonei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    In previous work it was verified the physical possibility of using plate and shell heat exchangers for steam generation in a PWR for merchant ships. This work studies the possibility of using GESMEX commercial of the shelf plate and shell heat exchanger of series XPS. It was found it is feasible for this type of heat exchanger to meet operational and accidental requirements for steam generation in PWR. Additionally, it is proposed an arrangement of such heat exchangers inside the reactor pressure vessel. Such arrangement may avoid ANSI/ANS51.1 nuclear class I requirements on those heat exchangers because they are contained in the reactor coolant pressure barrier and play no role in accidental scenarios. Additionally, those plates work under compression, preventing the risk of rupture. Being considered non-nuclear safety, having a modular architecture and working under compression may turn such architectural choice a must to meet safety objectives with improved economics. (author)

  19. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.

    1999-01-01

    - The flow structure in vertical mantle heat exchangers was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the mantle were measured using a particle Image Velocimetry (PIV) system. A CFD simulation model of vertical mantle heat...... exchangers was also developed for detailed evaluation of the heat flux distribution over the mantle surface. Both the experimental and simulation results indicate that distribution of the flow around the mantle gap is governed by buoyancy driven recirculation in the mantle. The operation of the mantle...

  20. Heat transfer in flow past a continuously moving porous flat plate with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Sarma, Y.V.B.

    The analysis of the heat transfer in flow past a continuously moving semi-infinite plate in the presence of suction/ injection with heat flux has been presented. Similarity solutions have been derived and the resulting equations are integrated...

  1. Methods for reducing heat losses from flat plate solar collectors: Phase II. Final report, February 1, 1976--August 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Hollands, K.G.T.; Raithby, G.D.; Unny, T.E.

    1978-03-01

    Improvements to flat plate solar collectors for heating and cooling of buildings were investigated through two parallel studies. The first study, which deals with the free convective heat loss from V-corrugated absorber plate to a plane glass cover, has shown that, for the same average spacing, the free convective heat loss is greater for a V-corrugated absorber plate than for a plane absorber plate. However, provided the average spacing is large enough, the amount of increase is slight. The second study, which deals with the free convective heat loss in a honeycomb solar collector in which the honeycomb consists of a set of horizontal partitions, or slits, has shown that provided the solar collector is tilted to near vertical, such a honeycomb gives equivalent or superior free convective loss suppression than does a square-celled honeycomb having the same amount of material. Correlation equations for the free convective heat loss are given for both studies.

  2. Thermal transport between a continuously moving heated plate and a quiescent ambient medium

    Science.gov (United States)

    Karwe, Mukund Vishnu

    A numerical and experimental investigation of the heat transfer and the fluid flow associated with a continuously moving flat surface was carried out. This circumstance is encountered in manufacturing processes such as hot rolling, extrusion, and continuous casting. The resulting temperature distribution within the solid, the appropriate conditions that arise at the location where the plate emerges from the furnace of the die, and the nature of the induced flow field and the heat transfer rate, are of interest. These considerations are important in the simulation, design, control, and optimization of the practical systems. In the numerical part of the study, the thermal transport from a flat, infinitely wide, continuously moving plate, was studied assuming a two-dimensional steady circumstance. The boundary layer equations as well as full governing equations, including buoyancy effects, were solved employing finite difference techniques. Conjugate transport, involving conduction within the plate, radiative loss from the plates surface and convection to the fluid, was considered. The temperature measurements were carried out for a heated aluminum plate moving vertically downward in water and moving upward or downward in the air. The temperature distributions, within the moving plate and the induced flow, were measured, using a microcomputer-controlled data acquisition system. The flow was visualized by means of a shadowgraph.

  3. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers

    NARCIS (Netherlands)

    de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries

    2014-01-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic

  4. Natural convection heat transfer along vertical rectangular ducts

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M. [King Saud University, Mechanical Engineering Department, Riyadh (Saudi Arabia)

    2009-12-15

    Experimental investigations have been reported on steady state natural convection from the outer surface of vertical rectangular and square ducts in air. Seven ducts have been used; three of them have a rectangular cross section and the rest have square cross section. The ducts are heated using internal constant heat flux heating elements. The temperatures along the vertical surface and the peripheral directions of the duct wall are measured. Axial (perimeter averaged) heat transfer coefficients along the side of each duct are obtained for laminar and transition to turbulent regimes of natural convection heat transfer. Axial (perimeter averaged) Nusselt numbers are evaluated and correlated using the modified Rayleigh numbers for laminar and transition regime using the vertical axial distance as a characteristic length. Critical values of the modified Rayleigh numbers are obtained for transition to turbulent. Furthermore, total overall averaged Nusselt numbers are correlated with the modified Rayleigh numbers and the area ratio for the laminar regimes. The local axial (perimeter averaged) heat transfer coefficients are observed to decrease in the laminar region and increase in the transition region. Laminar regimes are obtained at the lower half of the ducts and its chance to appear decreases as the heat flux increases. (orig.)

  5. Natural Convection Flow of Fractional Nanofluids Over an Isothermal Vertical Plate with Thermal Radiation

    Directory of Open Access Journals (Sweden)

    Constantin Fetecau

    2017-03-01

    Full Text Available The studies of classical nanofluids are restricted to models described by partial differential equations of integer order, and the memory effects are ignored. Fractional nanofluids, modeled by differential equations with Caputo time derivatives, are able to describe the influence of memory on the nanofluid behavior. In the present paper, heat and mass transfer characteristics of two water-based fractional nanofluids, containing nanoparticles of CuO and Ag, over an infinite vertical plate with a uniform temperature and thermal radiation, are analytically and graphically studied. Closed form solutions are determined for the dimensionless temperature and velocity fields, and the corresponding Nusselt number and skin friction coefficient. These solutions, presented in equivalent forms in terms of the Wright function or its fractional derivatives, have also been reduced to the known solutions of ordinary nanofluids. The influence of the fractional parameter on the temperature, velocity, Nusselt number, and skin friction coefficient, is graphically underlined and discussed. The enhancement of heat transfer in the natural convection flows is lower for fractional nanofluids, in comparison to ordinary nanofluids. In both cases, the fluid temperature increases for increasing values of the nanoparticle volume fraction.

  6. Direct use geothermal applications for brazed plate heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, K.

    1993-02-01

    Brazed plate heat exchanger were placed in three geothermal fluids (Klamath Falls, OR; Boise, ID; and Pagosa Springs, CO) in order to determine the effect of H[sub 2]S on braze material. Based on subsequent analysis, it appears that the rate of corrosion of the braze material is much slower than corrosion of copper tube materials in the same fluids. Minimum expected life of the heat exchangers based on these corrosion rates is reported to be 12 years in fluids of less than 1 ppm H[sub 2]S and 10 years in fluids of less than 5 ppm. Based on these expected lives, and using a 3% inflation rate and 8% discount rate, brazed plate heat exchangers are a clear economic choice in which the capital cost is 50% or less of the cost of a plate and frame heat exchanger for the same duty. Due to their single pass design, brazed plate heat exchangers are generally limited to approach temperatures of 10[degree] or greater. Size limitations restrict applications to 100 gpm and/or 200 ft[sup 2] heat transfer surface area.

  7. Direct use geothermal applications for brazed plate heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, K.

    1992-01-01

    Brazed plate heat exchanger were placed in three geothermal fluids (Klamath Falls, OR; Boise, ID; and Pagosa Springs, CO) to determine the effect of H[sub 2]S on braze material. Based on subsequent analysis, it appears that the rate of corrosion of the braze material is much slower than corrosion of copper tube materials in the same fluids. Minimum expected life of the heat exchangers based on these corrosion rates is reported to be 12 years in fluids of less than 1 ppm H[sub 2]S and 10 years in fluids of less than 5 ppm. Based on these expected lives, and using a 3% inflation rate and 8% discount rate, brazed plate heat exchangers are a clear economic choice in which the capital cost is 50% or less of the cost of a plate and frame heat exchanger for the same duty. Due to their single pass design, brazed plate heat exchangers are generally limited to approach temperatures of 10[degrees] or greater. Size limitations restrict applications to 100 gpm and/or 200 ft[sup 2] heat transfer surface area.

  8. Direct use geothermal applications for brazed plate heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, K.

    1993-02-01

    Brazed plate heat exchanger were placed in three geothermal fluids (Klamath Falls, OR; Boise, ID; and Pagosa Springs, CO) in order to determine the effect of H{sub 2}S on braze material. Based on subsequent analysis, it appears that the rate of corrosion of the braze material is much slower than corrosion of copper tube materials in the same fluids. Minimum expected life of the heat exchangers based on these corrosion rates is reported to be 12 years in fluids of less than 1 ppm H{sub 2}S and 10 years in fluids of less than 5 ppm. Based on these expected lives, and using a 3% inflation rate and 8% discount rate, brazed plate heat exchangers are a clear economic choice in which the capital cost is 50% or less of the cost of a plate and frame heat exchanger for the same duty. Due to their single pass design, brazed plate heat exchangers are generally limited to approach temperatures of 10{degree} or greater. Size limitations restrict applications to 100 gpm and/or 200 ft{sup 2} heat transfer surface area.

  9. Direct use geothermal applications for brazed plate heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, K.

    1992-12-31

    Brazed plate heat exchanger were placed in three geothermal fluids (Klamath Falls, OR; Boise, ID; and Pagosa Springs, CO) to determine the effect of H{sub 2}S on braze material. Based on subsequent analysis, it appears that the rate of corrosion of the braze material is much slower than corrosion of copper tube materials in the same fluids. Minimum expected life of the heat exchangers based on these corrosion rates is reported to be 12 years in fluids of less than 1 ppm H{sub 2}S and 10 years in fluids of less than 5 ppm. Based on these expected lives, and using a 3% inflation rate and 8% discount rate, brazed plate heat exchangers are a clear economic choice in which the capital cost is 50% or less of the cost of a plate and frame heat exchanger for the same duty. Due to their single pass design, brazed plate heat exchangers are generally limited to approach temperatures of 10{degrees} or greater. Size limitations restrict applications to 100 gpm and/or 200 ft{sup 2} heat transfer surface area.

  10. Analysis of Heat Transfers inside Counterflow Plate Heat Exchanger Augmented by an Auxiliary Fluid Flow

    Science.gov (United States)

    Khaled, A.-R. A.

    2014-01-01

    Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost. PMID:24719572

  11. Analysis of heat transfers inside counterflow plate heat exchanger augmented by an auxiliary fluid flow.

    Science.gov (United States)

    Khaled, A-R A

    2014-01-01

    Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost.

  12. Heat Pipe Embedded AlSiC Plates for High Conductivity - Low CTE Heat Spreaders

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Matthew (DOE/NNSA Kansas City Plant (United States)); Weyant, J.; Garner, S. (Advanced Cooling Technologies, Inc. (Lancaster, PA (United States)); Occhionero, M. (CPS Technologies Corporation, Norton, MA (United States))

    2010-01-07

    Heat pipe embedded aluminum silicon carbide (AlSiC) plates are innovative heat spreaders that provide high thermal conductivity and low coefficient of thermal expansion (CTE). Since heat pipes are two phase devices, they demonstrate effective thermal conductivities ranging between 50,000 and 200,000 W/m-K, depending on the heat pipe length. Installing heat pipes into an AlSiC plate dramatically increases the plate’s effective thermal conductivity. AlSiC plates alone have a thermal conductivity of roughly 200 W/m-K and a CTE ranging from 7-12 ppm/ deg C, similar to that of silicon. An equivalent sized heat pipe embedded AlSiC plate has effective thermal conductivity ranging from 400 to 500 W/m-K and retains the CTE of AlSiC.

  13. Unsteady MHD free convective flow past a vertical porous plate ...

    African Journals Online (AJOL)

    user

    been seen in MHD power generators, astrophysical and meteorological studies as well as in plasma physics. The Hall effect is due merely to ...... -3. Kg/ m ] fluid density in the boundary layer υ [ 2 -1. m s ] kinematic viscosity σ [ -1. -1. Ω m ] electrical conductivity θ [-] dimensionless temperature φ [. -3. Wm ] frictional heat. Ω [-].

  14. On Nonperturbative Techniques for Thermal Radiation Effect on Natural Convection past a Vertical Plate Embedded in a Saturated Porous Medium

    Directory of Open Access Journals (Sweden)

    R. J. Moitsheki

    2008-10-01

    Full Text Available In this article, the heat transfer characteristics of natural convection about a vertical permeable flat surface embedded in a saturated porous medium are studied by taking into account the thermal radiation effect. The plate is assumed to have a power-law temperature distribution. Similarity variables are employed in order to transform the governing partial differential equations into a nonlinear ordinary differential equation. Both Adomian decomposition method (ADM and He's variational iteration method (VIM coupled with Padé approximation technique are implemented to solve the reduced system. Comparisons with previously published works are performed, and excellent agreement between the results is obtained.

  15. Single thermal plume in locally heated vertical soap films.

    Science.gov (United States)

    Adami, N; Dorbolo, S; Caps, H

    2011-10-01

    A vertical soap film is maintained by injection of a soap solution from the top. The film is then locally heated. Thermal plumes may be observed to rise in the film, depending on the magnitude of the heating and injected flows. The nearly two-dimensional nature of the system allows to visualize the motion of the plumes using an infrared camera. A model is proposed to describe the growth, emergence, and stationarity of the plumes in the film by taking into account both magnitudes of the heating ΔT and injected flow Q.

  16. Formula study for plate heat exchanger in the central heating regulation of the indirect connection hot water heating system

    Directory of Open Access Journals (Sweden)

    Minghui CUI

    2016-10-01

    Full Text Available Plate heat exchanger has unique advantages and becomes dominant heat exchange equipment in heating engineering, but there is no heating regulation formula of plate exchanger applied in central heating regulation of indirect connection hot water heating. This paper analyzes the condition that the heating user's system adopts quality regulation method and the hot water network system adopts quality-flow regulation method, and obtains the regulation formulas of plate exchanger applied in central heating regulation of indirect connection hot water heating used for the above two systems. Empirical calculation shows that the formula can be applied to the quality regulation and the mass flow regulation of the different flow optimization adjustment coefficient, and it is an all-round formula.

  17. [Comparison of novel infrared heating plates and conventional warm water plates for piglets' creep areas in farrowing pens].

    Science.gov (United States)

    Strauch-Sürken, L; Wendt, M

    2015-01-01

    On a conventionally managed piglet-producing farm, novel infrared (IR) heating plates for piglets in the farrowing pens were tested for their suitability and compared with common warm-water (WW) heating plates. In total, 134 litters (summer n = 82, winter n = 52) were investigated, which were housed on IR or WW heating plates, respectively, with or without an extra cover plate (groups 1-4). To determine the influence of the different heat sources, the wound healing after castration and tail docking, the umbilical regression and the weight gain of the piglets were investigated. Additionally, the lying behavior of the piglets and the position of the sows' udder at the time of farrowing were examined with regard to the heating plates. Furthermore, the energy consumption and costs were compared. The piglets housed on IR heating plates displayed better wound healing after castration and tail docking than the piglets housed on WW plates. The best results were obtained in piglets kept on IR heating plates with an extra cover plate. In addition, significant benefits were demonstrated for the usage of IR heating plates regarding umbilical regression. The piglets kept on IR heating plates had a slightly better weight gain in summer, whereas there were no differences between groups during winter. The lying behavior in the creep areas was similar in all groups. In general, with increasing age the percentage of time piglets spent in the lying position on the plates decreased. The percentage of time lying on the plates was higher in winter than in summer. At farrowing, 74.6% of all investigated sows directed their udder towards the heating plates. With the IR heating plates, this behavior occurred significantly more often. The energy consumption (kWh) per litter was significantly lower for the IR heating plates (electric power) both in winter and summer in comparison with the WW plates (gas). The energy costs were comparable in summer, but were higher for the IR heating plates

  18. Turbulent mixed convection in asymmetrically heated vertical channel

    Directory of Open Access Journals (Sweden)

    Mokni Ameni

    2012-01-01

    Full Text Available In this paper an investigation of mixed convection from vertical heated channel is undertaken. The aim is to explore the heat transfer obtained by adding a forced flow, issued from a flat nozzle located in the entry section of a channel, to the up-going fluid along its walls. Forced and free convection are combined studied in order to increase the cooling requirements. The study deals with both symmetrically and asymmetrically heated channel. The Reynolds number based on the nozzle width and the jet velocity is assumed to be 3 103 and 2.104; whereas, the Rayleigh number based on the channel length and the wall temperature difference varies from 2.57 1010 to 5.15 1012. The heating asymmetry effect on the flow development including the mean velocity and temperature the local Nusselt number, the mass flow rate and heat transfer are examined.

  19. Experimental and numerical study of the wave run-up along a vertical plate

    DEFF Research Database (Denmark)

    Molin, Bernard; Kimmoun, O.; Liu, Y.

    2010-01-01

    , strong deviations from the predictions of linear theory gradually take place as the reflected wave field develops in the basin. This phenomenon is attributed to third-order interactions between the incoming and reflected wave systems, on the weather side of the plate. The measured profiles along...... the plate are compared with the predictions of two numerical models: an approximate model based on the tertiary interaction theory of Longuet-Higgins & Phillips (J. Fluid Mech., vol. 12, 1962, p. 333) for plane waves, which provides a steady-state solution, and a fully nonlinear numerical wavetank based......Results from experiments on wave interaction with a rigid vertical plate are reported. The 5m long plate is set against the wall of a 30m wide basin, at 100m from the wavemaker. This set-up is equivalent to a 10m plate in the middle of a 60m wide basin. Regular waves are produced, with wavelengths...

  20. Effects of Unsteady Flow Past An Infinite Vertical Plate With Variable ...

    African Journals Online (AJOL)

    The effects of unsteady flow past an infinite vertical plate with variable temperature and constant mass flux are investigated. Laplace transform technique is used to obtain velocity and concentration fields. The computation of the results indicates that the velocity profiles increase with increase in Grashof numbers, mass ...

  1. The structure of turbulent flow around vertical plates containing holes and attached to a channel bed

    Science.gov (United States)

    Basnet, K.; Constantinescu, G.

    2017-11-01

    High-resolution, 3-D large eddy simulations are conducted to study the physics of flow past 2-D solid and porous vertical plates of height H mounted on a horizontal surface (no bottom gap) with a fully developed, turbulent incoming flow. The porous plate consists of an array of spanwise-oriented, identical solid cylinders of rectangular cross section. The height of the solid cylinders and the spacing between the solid cylinders, corresponding to the plate's "holes," are kept constant for any given configuration, as the present study considers only plates of uniform porosity. The paper discusses how the mean flow and turbulence structure around the vertical plate, the unsteady forces acting on the plate, the dynamics of the large-scale turbulent eddies, the spectral content of the wake, and the distribution of the bed friction velocity on the horizontal channel bed vary as a function of the plate porosity (0% forming at the top of the plate and the wake structure. It is found that the main recirculation eddy in the wake remains attached to the plate for P forms away from the porous plate. The energy of the billows advected in the SSL decays monotonically with increasing plate porosity. For cases when the recirculation eddy remains attached to the plate, the larger billows advected in the downstream part of the SSL are partially reinjected inside the main recirculation eddy as a result of their interaction with the channel bed. This creates a feedback mechanism that induces large-scale disturbances of the spanwise-oriented vortex tubes advected inside the upstream part of the SSL. Results also show that the mean drag coefficient and the root-mean-square of the drag coefficient fluctuations increase mildly with increasing d/H. Meanwhile, varying d/H has a negligible effect on the position and size of the main recirculation eddy. The presence of large-scale roughness elements (2-D ribs) at the bed results in the decrease of the mean drag coefficient of the plate and

  2. Double diffusive magnetohydrodynamic (MHD) mixed convective slip flow along a radiating moving vertical flat plate with convective boundary condition.

    Science.gov (United States)

    Rashidi, Mohammad M; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J; Freidoonimehr, Navid

    2014-01-01

    In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, [Formula: see text], local Nusselt number, [Formula: see text], and local Sherwood number [Formula: see text] are shown and explained through tables.

  3. Radiation and chemical reaction effects on isothermal vertical oscillating plate with variable mass diffusion

    Directory of Open Access Journals (Sweden)

    Manivannan Kaliappan

    2009-01-01

    Full Text Available The unsteady flow of a viscous incompressible flow past an infinite isothermal vertical oscillating plate, in the presence of thermal radiation and homogeneous chemical reaction of first order has been studied. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised to Tw and the concentration level near the plate is raised linearly with respect to time. An exact solution to the dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity, temperature, and concentration are studied for different physical parameters like phase angle, radiation parameter, chemical reaction parameter, Schmidt number, thermal Grashof number, mass Grashof number, and time are studied graphically. It is observed that the velocity increases with decreasing phase angle wt.

  4. Numerical Modeling of the Vertical Heat Transport Through the Diffusive Layer of the Arctic Ocean

    Science.gov (United States)

    2013-03-01

    transport through thermohaline staircases in the Arctic region. Results revealed that vertical fluxes exceeded those of extant “four-thirds flux...vertical heat flux, thermohaline staircase 15. NUMBER OF PAGES 73 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18...DNS) were conducted to assess the vertical heat transport through thermohaline staircases in the Arctic region. Results revealed that vertical

  5. Conformable heat equation on a radial symmetric plate

    Directory of Open Access Journals (Sweden)

    Avci Derya

    2017-01-01

    Full Text Available The conformable heat equation is defined in terms of a local and limit-based definition called conformable derivative which provides some basic properties of integer order derivative such that conventional fractional derivatives lose some of them due to their non-local structures. In this paper, we aim to find the fundamental solution of a conformable heat equation acting on a radial symmetric plate. Moreover, we give a comparison between the new conformable and the existing Grunwald-Letnikov solutions of heat equation. The computational results show that conformable formulation is quite successful to show the sub-behaviors of heat process. In addition, conformable solution can be obtained by a analytical method without the need of a numerical scheme and any restrictions on the problem formulation. This is surely a significant advantageous compared to the Grunwald-Letnikov solution.

  6. New movable plate for efficient millimeter wave vertical on-chip antenna

    KAUST Repository

    Marnat, Loic

    2013-04-01

    A new movable plate concept is presented in this paper to realize mm-wave vertical on-chip antennas through MEMS based post-processing steps in a CMOS compatible process. By virtue of its vertical position, the antenna is isolated from the lossy Si substrate and hence performs with a better efficiency as compared to the horizontal position. In addition, the movable plate concept enables polarization diversity by providing both horizontal and vertical polarizations on the same chip. Through a first iteration fractal bowtie antenna design, dual band (60 and 77 GHz) operation is demonstrated in both horizontal and vertical positions without any change in dimensions or use of switches for two different mediums (Si and air). To support the movable plate concept, the transmission line and antenna are designed on a flexible polyamide, where the former has been optimized to operate in the bent position. The design is highly suitable for compact, low cost and efficient SoC solutions. © 1963-2012 IEEE.

  7. Diffusion-thermo effect with hall current on unsteady hydromagnetic flow past an infinite vertical porous plate

    Directory of Open Access Journals (Sweden)

    J.R. Pattnaik

    2017-03-01

    Full Text Available An unsteady hydromagnetic flow past an infinite vertical porous plate has been analyzed to show the effect of an additional cross transport phenomenon, i.e. heat flux caused by concentration gradient in addition to the heat flux caused by temperature gradient. The effect of magnetic field on the fluid temperature and the heat transfer between fluid and wall is of considerable importance affecting the flow. Further, Hall current, an additional electric current density so generated perpendicular to both applied electric field and magnetic field has been taken into consideration in the present study. Moreover, the Dufour effect has been considered in energy equation leaving the equations of thermal diffusion and mass diffusion coupled. The coupled non-linear equations are solved by applying a special function Hhn(x. The effects of flow parameters are shown with the help of graphs and tables. A phenomenal observation, i.e. a radical change is marked near the plate in respect of Dufour number in the presence of suction. Further, it is to note that suction induces backflow in conjunction with opposing buoyancy forces. Hall current contributes to greater skin friction at the bounding surface.

  8. Analysis of the flow structure and heat transfer in a vertical mantle heat exchanger

    DEFF Research Database (Denmark)

    Knudsen, Søren; Morrison, GL; Behnia, M

    2005-01-01

    The flow structure inside the inner tank and inside the mantle of a vertical mantle heat exchanger was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the inner tank and in the mantle were measured using a Particle Image...... Velocimetry (PIV) system. A Computational Fluid Dynamics (CFD) model of the vertical mantle heat exchanger was also developed for a detailed evaluation of the heat flux at the mantle wall and at the tank wall. The flow structure was evaluated for both high and low temperature incoming flows and for both...... initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level. (C...

  9. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    Science.gov (United States)

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  10. Heat transfer in plate heat exchanger channels: Experimental validation of selected correlation equations

    Directory of Open Access Journals (Sweden)

    Cieśliński Janusz T.

    2016-09-01

    Full Text Available This study is focused on experimental investigation of selected type of brazed plate heat exchanger (PHEx. The Wilson plot approach was applied in order to estimate heat transfer coefficients for the PHEx passages. The main aim of the paper was to experimentally check ability of several correlations published in the literature to predict heat transfer coefficients by comparison experimentally obtained data with appropriate predictions. The results obtained revealed that Hausen and Dittus-Boelter correlations underestimated heat transfer coefficient for the tested PHEx by an order of magnitude. The Aspen Plate code overestimated heat transfer coefficient by about 50%, while Muley-Manglik correlation overestimated it from 1% to 25%, dependent on the value of Reynolds number and hot or cold liquid side.

  11. Calculation of Vertical Temperature Gradients in Heated Rooms

    DEFF Research Database (Denmark)

    Overby, H.; Steen-Thøde, Mogens

    This paper deals with a simple model which predicts the vertical temperature gradient in a heated room. The gradient is calculated from a dimensionless temperature profile which is determined by two room air temperatures only, the mean temperature in the occupied zone and the mean temperature...... in the zone above the occupied zone. A model to calculate the two air temperatures has been developed and implemented in Suncode- PC, a thermal analysis programme for residential and small commercial buildings. The dimensionless temperature profile based on measurements in a laboratory test room is presented...

  12. Seasonal performance for Heat pump with vertical ground heat exchanger in Riga

    Science.gov (United States)

    Jaundālders, S.; Stanka, P.; Rusovs, D.

    2017-10-01

    Experimental measurements of Seasonal Coefficient of Performance (SCOP) for heating of 160 m2 household in Riga were conducted for operation of brine-water heat pump with vertical ground heat exchangers (GHE). Data regarding heat and electrical power consumption were recorded during three-year period from 2013 to 2016. Vapor compression heat pump has heat energy output of 8 kW. GHE consists of three boreholes. Each borehole is 60 m deep. Data regarding brine temperature for borehole input and output were presented and discussed. As far as house had floor heating, there were presented data about COP for B0/W35 and its dependence from room and outdoor temperature during heating season. Empirical equation was created. Average heat energy consumption during one year for heating was 72 kWh/m2 measured by heat meter. Detected primary energy consumption (electrical energy from grid) was 21 kWh/m2 which resulted in SCOP=3.8. These data were compared with SCOP for air-to-water heat pump in Latvia and available configuration software for heat pumps operation. Good agreement between calculated performance and reported experimental data were founded.

  13. Heat and mass transfer in a vertical channel under heat-gravitational convection conditions

    Science.gov (United States)

    Petrichenko, Michail; Nemova, Darya; Reich, Elisaveta; Subbotina, Svetlana; Khayrutdinova, Faina

    2016-03-01

    Heat-gravitational motion of an air flow in a vertical channel with one-sided heating in an area with low Reynolds number is stated in Boussinesq approximation. Hydraulic variables field in a heat-gravitational motion is modeled with the application of ANSYS-FLUENT. It is converted to average velocity and temperature values in a cross section of the channel. The value of an average velocity is determined by rate of heat supply in a barotropic flow with a polytropic coefficient nventilated vertical channel with free air access and in the absence of gaps. In a channel with closed air access inleakage of the cold air through gaps on an unheated side leads to decrease in an average speed at least twice in comparison to channel with free air access.

  14. MASS TRANSFER EFFECTS ON ACCELERATED VERTICAL PLATE IN A ROTATING FLUID WITH FIRST ORDER CHEMICAL REACTION

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2012-12-01

    Full Text Available The precise analysis of the rotation effects on the unsteady flow of an incompressible fluid past a uniformly accelerated infinite vertical plate with variable temperature and mass diffusion has been undertaken, in the presence of a homogeneous first order chemical reaction. The dimensionless governing equations are solved using the Laplace-transform technique. The plate temperature as well as the concentration near the plate increase linearly with time. The velocity profiles, temperature and concentration are studied for different physical parameters, like the chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that the velocity increases with increasing values of thermal Grashof number or mass Grashof number. It is also observed that the velocity increases with decreasing rotation parameter Ω.

  15. Newtonian heating effect on unsteady hydromagnetic Casson fluid flow past a flat plate with heat and mass transfer

    Directory of Open Access Journals (Sweden)

    M. Das

    2015-12-01

    Full Text Available The influence of Newtonian heating on heat and mass transfer in unsteady hydromagnetic flow of a Casson fluid past a vertical plate in the presence of thermal radiation and chemical reaction is studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behavior. The fluid flow is induced due to periodic oscillations of the plate along its length and a uniform transverse magnetic field is applied in a direction which is normal to the direction of fluid flow. The partial differential equations governing the flow, heat, and mass transfer are transformed to non-dimensional form using suitable non-dimensional variables which are then solved analytically by using Laplace transform technique. The numerical values of the fluid velocity, fluid temperature, and species concentration are depicted graphically whereas the values of skin-friction, Nusselt number, and Sherwood number are presented in tabular form. It is noticed that the fluid velocity and temperature decrease with increasing values of Casson parameter while concentration decreases with increasing values of chemical reaction parameter and Schmidt number. Such a fluid flow model has several industrial and medical applications such as in glass manufacturing, paper production, purification of crude oil and study of blood flow in the cardiovascular system.

  16. On the Behavior of Pliable Plate Dynamics in Wind: Application to Vertical Axis Wind Turbines

    Science.gov (United States)

    Cosse, Julia Theresa

    Numerous studies have shown that flexible materials improve resilience and durability of a structure. Several studies have investigated the behavior of elastic plates under the influence of a free stream, such as studies of the fluttering flag and others of shape reconfiguration, due to a free stream. The principle engineering contribution of this thesis is the design and development of a vertical axis wind turbine that features pliable blades which undergo various modes of behavior, ultimately leading to rotational propulsion of the turbine. The wind turbine design was tested in a wind tunnel and at the Caltech Laboratory for Optimized Wind Energy. Ultimately, the flexible blade vertical axis wind turbine proved to be an effective way of harnessing the power of the wind. In addition, this body of work builds on the current knowledge of elastic cantilever plates in a free stream flow by investigating the inverted flag. While previous studies have focused on the fluid structure interaction of a free stream on elastic cantilever plates, none had studied the plate configuration where the trailing edge was clamped, leaving the leading edge free to move. Furthermore, the studies presented in this thesis establish the geometric boundaries of where the large-amplitude flapping occurs.

  17. Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger.

    Science.gov (United States)

    Kwon, Y H; Kim, D; Li, C G; Lee, J K; Hong, D S; Lee, J G; Lee, S H; Cho, Y H; Kim, S H

    2011-07-01

    In this paper, the heat transfer characteristics and pressure drop of the ZnO and Al2O3 nanofluids in a plate heat exchanger were studied. The experimental conditions were 100-500 Reynolds number and the respective volumetric flow rates. The working temperature of the heat exchanger was within 20-40 degrees C. The measured thermophysical properties, such as thermal conductivity and kinematic viscosity, were applied to the calculation of the convective heat transfer coefficient of the plate heat exchanger employing the ZnO and Al2O3 nanofluids made through a two-step method. According to the Reynolds number, the overall heat transfer coefficient for 6 vol% Al2O3 increased to 30% because at the given viscosity and density of the nanofluids, they did not have the same flow rates. At a given volumetric flow rate, however, the performance did not improve. After the nanofluids were placed in the plate heat exchanger, the experimental results pertaining to nanofluid efficiency seemed inauspicious.

  18. Radiation and mass transfer effects on unsteady MHD convective flow past an infinite vertical plate with Dufour and Soret effects

    Directory of Open Access Journals (Sweden)

    N. Vedavathi

    2015-03-01

    Full Text Available This paper deals with the effects of heat and mass transfer on two-dimensional unsteady MHD free convection flow past a vertical porous plate in a porous medium in the presence of thermal radiation under the influence of Dufour and Soret effects. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. The resulting equations are then solved numerically using shooting method along with Runge–Kutta fourth order integration scheme. The numerical results are displayed graphically showing the effects of various parameters entering into the problem. Finally, the local values of the skin-friction coefficient, Nusselt number and Sherwood number are also shown in tabular form.

  19. Exact Solutions for Unsteady Free Convection Flow of Casson Fluid over an Oscillating Vertical Plate with Constant Wall Temperature

    Directory of Open Access Journals (Sweden)

    Asma Khalid

    2015-01-01

    Full Text Available The unsteady free flow of a Casson fluid past an oscillating vertical plate with constant wall temperature has been studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behaviour. The governing partial differential equations corresponding to the momentum and energy equations are transformed into linear ordinary differential equations by using nondimensional variables. Laplace transform method is used to find the exact solutions of these equations. Expressions for shear stress in terms of skin friction and the rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and temperature profiles with various values of embedded flow parameters are shown graphically and their effects are discussed in detail.

  20. Thermal radiation and mass transfer effects on unsteady MHD free convection flow past a vertical oscillating plate

    Science.gov (United States)

    Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.

    2017-06-01

    Unsteady MHD free convection flow past a vertical porous plate in porous medium with radiation, diffusion thermo, thermal diffusion and heat source are analyzed. The governing non-linear, partial differential equations are transformed into dimensionless by using non-dimensional quantities. Then the resultant dimensionless equations are solved numerically by applying an efficient, accurate and conditionally stable finite difference scheme of explicit type with the help of a computer programming language Compaq Visual Fortran. The stability and convergence analysis has been carried out to establish the effect of velocity, temperature, concentration, skin friction, Nusselt number, Sherwood number, stream lines and isotherms line. Finally, the effects of various parameters are presented graphically and discussed qualitatively.

  1. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect.

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    Full Text Available The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.

  2. A Numerical Study on Heat Transfer Enhancement and Pressure drop Decrease of Heat Exchanger by Setting Inserted Plates in Duct

    OpenAIRE

    AMBARITA, Himsar; KISHINAMI, Koki; SATO, Kazuhiko; DAIMARUYA, Masashi; SUGIYAMA, Hiromu; SUZUKI, Jun

    2005-01-01

    This present paper attempts to numerically estimate heat transfer enhancement and pressure drop decrease on a duct flow system of heat exchanger. Inserted plates inside the duct flow are proposed in order to enhance heat transfer coefficient, however the inserted plates cause a significant pressure drop, In order to decrease the pressure drop, the inserted plates with slits were employed. Numerical calculations of two-dimensional, laminar, and steady state conditions of duct flow with and wit...

  3. Investigation of a wire plate micro heat pipe array

    Energy Technology Data Exchange (ETDEWEB)

    Launay, Stephane; Sartre, Valerie; Lallemand, Monique [CETHIL, UMR CNRS 5008, INSA, 20, av. A. Einstein, 69621 Cedex, Villeurbanne (France); Mantelli, Marcia B.H.; Paiva, Kleber Vieira de [Mechanical Engineering Department, Federal University of Santa Catarina UFSC, P.O. Box 476, 88040-900, SC, Florianopolis (Brazil)

    2004-05-01

    In the present work, experimental and theoretical investigations have been conducted on a copper/water wire plate micro heat pipe (MHP). The experimental results show that its effective thermal conductivity is improved by a factor 1.3 as compared to the empty MHP array. A numerical model is used to predict the fluid distribution along the MHP axis, the temperature field and the maximum heat flux corresponding to the MHP capillary limit. The 1D, steady-state hydrodynamic model is based on the conservation equations for the liquid and vapour phases. The wall temperatures are calculated from the thermal resistance network of the wall and the liquid film. A good agreement between the theoretical and experimental data is achieved. The effect of various parameters - contact angle, fluid type, corner angle, fill charge - is theoretically investigated. (authors)

  4. Characteristic of local boiling heat transfer of ammonia and ammonia / water binary mixture on the plate type evaporator

    Science.gov (United States)

    Okamoto, Akio; Arima, Hirofumi; Ikegami, Yasuyuki

    2011-08-01

    Power generation using small temperature difference such as ocean thermal energy conversion (OTEC) and discharged thermal energy conversion (DTEC) is expected to be the countermeasures against global warming problem. As ammonia and ammonia/water are used in evaporators for OTEC and DTEC as working fluids, the research of their local boiling heat transfer is important for improvement of the power generation efficiency. Measurements of local boiling heat transfer coefficients were performed for ammonia /water mixture ( z = 0.9-1) on a vertical flat plate heat exchanger in a range of mass flux (7.5-15 kg/m2 s), heat flux (15-23 kW/m2), and pressure (0.7-0.9 MPa). The result shows that in the case of ammonia /water mixture, the local heat transfer coefficients increase with an increase of mass flux and composition of ammonia, and decrease with an increase of heat flux.

  5. Heat pumps using vertical boreholls as heat source; Varmepumper med lodrette boringer som varmeoptager

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Svend V. [Teknologisk Institut, Aarhus (Denmark); Thoegersen, L.; Soerensen, Inga [VIA University College, Risskov (Denmark)] [and others

    2013-01-15

    This report presents instructions on what to consider when you have to establish vertical wells as energy sources for ground source heating systems. The report provides an introduction into what to be aware of when it comes to sizing vertical ground hoses as heat absorbers for heat pumps. The initial geological assessments, you have to make are described and there are references to the available tools and websites that exist today. A calculation model is developed for the design of vertical ground hoses. This calculation model is intended as a tool for installers and consultants as well as well drillers. The calculation model contains two computational models, one can be used for initial calculations and dimensioning of vertical ground hoses, and the detailed model can be used for costing by well driller. The simple calculation is based on proven design approach from the German standard VDI 4640, and the detailed calculation is based on a known empirical calculation, which assumes that you know the geology in more detail. In the project measurements were carried out on four installations, and the calculations show that there is good agreement between the measurements and the calculation model. (LN)

  6. Trans-iliosacral plating for vertically unstable fractures of sacral spine associated with spinopelvic dissociation: A cadaveric study

    Directory of Open Access Journals (Sweden)

    Pravin Padalkar

    2012-01-01

    Conclusions: Trans-iliosacral plating is feasible anatomically, biomechanically and radiologically for sacral fractures associated with vertical shear pelvic fractures. Low profile of plate reduces the risk of hardware prominence and decreases the need for implant removal. Also, the fixation pattern of plate allows to spare mobile lumbosacral junction which is an important segment for spinal mobility. Biomechanical studies revealed that rigidity offered by plate for cross headed displacement across fracture site is equal to sacroiliac screws and further rigidity of construct can be increased with addition of one more screw. There is need for precountered thicker plate in future.

  7. Scalings for unsteady natural convection boundary layers on an evenly heated plate with time-dependent heating flux

    Science.gov (United States)

    Lin, Wenxian; Armfield, S. W.

    2013-12-01

    It is of fundamental significance, especially with regard to application, to fully understand the flow behavior of unsteady natural convection boundary layers on a vertical plate heated by a time-dependent heat flux. Such an understanding is currently scarce. In this paper, the scaling analysis by Lin et al. [Phys. Rev. E 79, 066313 (2009), 10.1103/PhysRevE.79.066313] using a simple three-region structure for the unsteady natural convection boundary layer of a homogeneous Newtonian fluid with Pr >1 under isothermal heating was substantially extended for the case when the heating is due to a time-varying sinusoidal heat flux. A series of scalings was developed for the thermal boundary thickness, the plate temperature, the viscous boundary thicknesses, and the maximum vertical velocity within the boundary layer, which are the major parameters representing the flow behavior, in terms of the governing parameters of the flow, i.e., the Rayleigh number Ra, the Prandtl number Pr, and the dimensionless natural frequency fn of the time-varying sinusoidal heat flux, at the start-up stage, at the transition time scale which represents the ending of the start-up stage and the beginning of the transitional stage of the boundary-layer development, and at the quasi-steady stage. These scalings were validated by comparison to 10 full numerical solutions of the governing equations with Ra, Pr, and fn in the ranges 106≤Ra≤109, 3≤Pr≤100, and 0.01≤fn≤0.1 and were shown in general to provide an accurate description of the flow at different development stages, except for high-Pr runs in which a further, although weak, Pr dependence is present, which cannot be accurately predicted by the current scaling analysis using the simple three-region structure, attributed to the non-boundary-layer nature of the velocity field with high-Pr fluids. Some scalings at the transition time scale and at the quasi-steady stage also produce noticeable deviations from the numerical results when

  8. Similarity Solution for Combined Free-Forced Convection Past a Vertical Porous Plate in a Porous Medium with a Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    Garg P.

    2016-12-01

    Full Text Available This paper studies the mathematical implications of the two dimensional viscous steady laminar combined free-forced convective flow of an incompressible fluid over a semi infinite fixed vertical porous plate embedded in a porous medium. It is assumed that the left surface of the plate is heated by convection from a hot fluid which is at a temperature higher than the temperature of the fluid on the right surface of the vertical plate. To achieve numerical consistency for the problem under consideration, the governing non linear partial differential equations are first transformed into a system of ordinary differential equations using a similarity variable and then solved numerically under conditions admitting similarity solutions. The effects of the physical parameters of both the incompressible fluid and the vertical plate on the dimensionless velocity and temperature profiles are studied and analysed and the results are depicted both graphically and in a tabular form. Finally, algebraic expressions and the numerical values are obtained for the local skin-friction coefficient and the local Nusselt number.

  9. Dynamics of the collision of a vortex ring with a vertical heated wall

    Science.gov (United States)

    Gelderblom, G.; Palacios-Morales, C. A.; Zenit, R.; Solorio-Ordaz, F. J.

    2012-11-01

    We study the dynamics of the impact of a vortex ring with a vertical heated plate (at constant temperature). Laminar vortex rings were generated with a piston cylinder arrangement. The vertical wall is heated by a thermal bath which is held at constant temperature producing a laminar and stable thermal boundary layer. Measurements of the 2D velocity field were obtained with a PIV technique. The experimental results for the isothermal case are in agreement with previous investigations reported in the literature. To avoid azimuthal instabilities, we mainly conducted experiments for L /D0 = 1 (where L is the piston displacement and D0 is the cylinder inner diameter) with different wall temperatures and vortex translation velocities. For this case, secondary vortices were not observed. Using ink visualization we observed the evolution of the vortex shape. The initial circular shape evolves into a ``cat head'' shape after reaching the wall. The top and bottom regions of the vortex reduce and increase their vorticity, respectively. The sides are stretched and convected. An analysis of the different mechanisms leading to this shape evolution is presented and discussed.

  10. Analysis of Self-Heating Effects on vertical FET according to Shallow Trench Isolation

    Science.gov (United States)

    Myeong, Ilho; Son, Dokyun; Kim, Hyunsuk; Kang, Myounggon; Shin, Hyungcheol

    2017-11-01

    In this paper, Self-Heating Effect (SHE) according to depth of STI was analyzed and STI thickness optimization was performed in the plate-shaped vertical field effect transistor (VFET). In case of a VFET, the path of leakage current (Ioff) is different from that of a lateral FET (LFET). As a result, Ioff of VFET is not influenced by STI depth. For this reason, the STI depth of the VFET is not needed as much as the depth needed to reduce Ioff in the LFET. As a result, if the STI depth of the VFET is reduced from 100 nm to 20 nm, which is the drain region depth doped with Arsenic, thermal resistance (Rth) is expected to be reduced by 32.19% and on current (Ion) is expected to be increased by 1.54% without affecting the Ioff as compared with STI depth of 100 nm in VFET.

  11. Sintered Nickel Powder Wicks for Flat Vertical Heat Pipes

    Directory of Open Access Journals (Sweden)

    Geir Hansen

    2015-03-01

    Full Text Available The fabrication and performance of wicks for flat heat pipe applications produced by sintering a filamentary nickel powder has been investigated. Tape casting was used as an intermediate step in the wick production process. Thermogravimetric analysis was used to study the burn-off of the organic binder used and to study the oxidation and reduction processes of the nickel. The wicks produced were flat, rectangular and intended for liquid transport in the upwards vertical direction. Rate-of-rise experiments using heptane were used to test the flow characteristics of the wicks. The wick porosities were measured using isopropanol. The heat transfer limitation constituted by the vapour static pressure and the capillary pressure was discussed. The influence on wick performance by using pore former in the manufacturing was studied. When Pcap/Psat > 1, the use of a pore former to increase the wick permeability will always improve the wick performance. When Pcap/Psat < 1, it was shown that if the effective pore radius and the permeability increase with an equal percentage the overall influence on the wick capacity is negative. A criterion for a successful pore former introduction is proposed and the concept of a pore former evaluation plot is presented.

  12. Heat transfer to immiscible liquid mixtures in a spiral plate heat exchanger

    Directory of Open Access Journals (Sweden)

    S. Sathiyan

    2013-06-01

    Full Text Available This work presents new predictive correlations for heat transfer to immiscible liquid-liquid mixtures in a spiral plate heat exchanger. Liquid-liquid heat transfer studies were carried out in spiral plate heat exchangers for the water-octane, water-kerosene, and water-dodecane systems. For each composition of the mixture, the mass flow rate of the cold fluid was varied, keeping that of the hot fluid and the fluid inlet temperatures constant. Two-phase cold flow rates were in the laminar range, while the hot fluid flow was turbulent. Calculations of the LMTD (log mean temperature difference correction factor showed that the flow was countercurrent. Heat transfer coefficients of the two-phase liquids were found to be strongly dependent on the composition of the liquid mixture and exhibited abrupt transitions as a function of the compositions. Given the absence of predictive correlations in the literature that sufficiently capture this compositiondependence, new empirical correlations were developed using part of the experimental data, with the composition of the cold fluid as an explicit variable. Statistical analysis of the regression yielded satisfactory results. The correlations were tested against the rest of the experimental data and were found to predict heat transfer coefficients within ± 15%. These preliminary studies should be useful in designing compact exchangers for handling two-phase water-organics mixtures.

  13. Analyzing of Nonuniform Hardness for Anchorage Clamp Plate after Heat Treatment

    Science.gov (United States)

    Liu, Zhenmin; Wang, Lijun; Ruan, Shipeng; Wang, Ningtao

    2017-09-01

    20CrMnTi wire rod can be used to manufacture the anchorage clamp plate. In the normal production, the test results show that the hardness of anchorage clamp plate is nonuniform. In this paper, the chemical composition, microstructure, grain size of clamp plate billet and the microstructure, hardness of the finished clamp plate product were studied and analyzed. The results show that improper heat treatment technics causes nonuniform hardness for anchorage clamp plate.

  14. Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in porous medium

    Directory of Open Access Journals (Sweden)

    Hari R. Kataria

    2016-03-01

    Full Text Available Analytic expression for unsteady free convective hydromagnetic boundary layer Casson fluid flow past an oscillating vertical plate embedded through porous medium in the presence of uniform transverse magnetic field, thermal radiation and chemical reaction is obtained. Both isothermal and ramped wall temperatures are taken into account. The governing equations are solved using Laplace transform technique and the solutions are presented in closed form. The numerical values of Casson fluid velocity, temperature and concentration at the plate are presented graphically for several values of the pertinent parameters. Effect of governing parameters on Skin friction, Nusselt number and Sherwood number is also discussed. Casson parameter γ is inversely proportional to the yield stress and it is observed that for the large value of Casson parameter, the fluid is close to the Newtonian fluid where the velocity is less than the Non-Newtonian fluid. It is seen that velocity increases and Temperature decreases with increase in thermal radiation R. Radiation parameter R signifies the relative contribution of conduction heat transfer to thermal radiation transfer. Concentration decreases tendency with chemical reaction parameter R′.

  15. Estimation of pressure drop in gasket plate heat exchangers

    Directory of Open Access Journals (Sweden)

    Neagu Anisoara Arleziana

    2016-06-01

    Full Text Available In this paper, we present comparatively different methods of pressure drop calculation in the gasket plate heat exchangers (PHEs, using correlations recommended in literature on industrial data collected from a vegetable oil refinery. The goal of this study was to compare the results obtained with these correlations, in order to choose one or two for practical purpose of pumping power calculations. We concluded that pressure drop values calculated with Mulley relationship and Buonopane & Troupe correlation were close and also Bond’s equation gave results pretty close to these but the pressure drop is slightly underestimated. Kumar correlation gave results far from all the others and its application will lead to oversize. In conclusion, for further calculations we will chose either the Mulley relationship or the Buonopane & Troupe correlation.

  16. Heat and mass transfer in a vertical channel under heat-gravitational convection conditions

    Directory of Open Access Journals (Sweden)

    Petrichenko Michail

    2016-01-01

    Full Text Available Heat-gravitational motion of an air flow in a vertical channel with one-sided heating in an area with low Reynolds number is stated in Boussinesq approximation. Hydraulic variables field in a heat-gravitational motion is modeled with the application of ANSYS-FLUENT. It is converted to average velocity and temperature values in a cross section of the channel. The value of an average velocity is determined by rate of heat supply in a barotropic flow with a polytropic coefficient nvertical channel with free air access and in the absence of gaps. In a channel with closed air access inleakage of the cold air through gaps on an unheated side leads to decrease in an average speed at least twice in comparison to channel with free air access.

  17. A Novel Heat Pipe Plate for Passive Thermal Control of Fuel Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project aims to develop a lightweight, highly thermally and electrically conductive heat pipe plate for passive removal of the heat from the individual...

  18. Comprehensive Analysis of Convective Heat Transfer in Parallel Plate Microchannel with Viscous Dissipation and Constant Heat Flux Boundary Conditions

    Science.gov (United States)

    Kushwaha, Hari Mohan; Sahu, Santosh Kumar

    2017-10-01

    This paper reports the hydrodynamically and thermally fully developed, laminar, incompressible, forced convective heat transfer characteristics of gaseous flows through a parallel plate microchannel with different constant heat flux boundary conditions. The first order velocity slip and viscous dissipation effects are considered in the analysis. Here, three different thermal boundary conditions such as: both plates kept at different constant heat fluxes, both plates kept at equal constant heat fluxes and one plate kept at constant heat flux and other one insulated are considered for the analysis. The deviation in Nusselt number between the model that considers both first order velocity slip and temperature jump and the one that considers only velocity slip is reported. Also, the effect of various heat flux ratios on the Nusselt number is reported in this analysis. In addition, the deviation in Nusselt number between first and second order slip model is discussed in this study.

  19. Fabrication of Flat Plate Solar Geyser with Flat Grooved Heat Exchanger Having Special Exit System

    OpenAIRE

    Malik, Muhammad Suleman; Malik, Muhammad Arsalan; Shah, Haseeb Ali; Khan Afridi, Adnan Anwar; Asif, Muhammad

    2017-01-01

    International audience; The main objective of this paper is to introduce the concept of novel flat plate solar geyser with integrated heat exchanger and open loop passive system.The heat exchanger acts both as collector for solar radiations and as a heat exchanger its self for cold water beneath it. Contrary to the conventional flat plate solar collectors, water is in direct contact with the collector or flat grooved heat exchanger. A safety control box is installed to minimize hydraulic pres...

  20. Evaporation Heat Transfer of Ammonia and Pressure Drop of Warm Water for Plate Type Evaporator

    Science.gov (United States)

    Kushibe, Mitsuteru; Lkegami, Yasuyuki; Monde, Masanori; Uehara, Haruo

    The performance test of three types of plate type evaporators for spring thermal energy conversion and ocean thermal energy conversion carried out. Ammonia is utilized as working fluid and warm water is utilized as heat source. An empirical correlation is proposed in order to predict the mean evaporation heat transfer coefficient of ammonia and heat transfer coefficient of warm water for plate type evaporators. The mean heat transfer coefficient and friction factor of warm water were compared with other researches.

  1. Comparative study of Nusselt number for a single phase fluid flow using plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Shanmugam Rajasekaran

    2016-01-01

    Full Text Available In this study, the plate heat exchangers are used for various applications in the industries for heat exchange process such as heating, cooling and condensation. The performance of plate heat exchanger depends on many factors such as flow arrangements, plate design, chevron angle, enlargement factor, type of fluid used, etc. The various Nusselt number correlations are developed by considering that the water as a working fluid. The main objective of the present work is to design the experimental set-up for a single phase fluid flow using plate heat exchanger and studied the heat transfer performance. The experiments are carried out for various Reynolds number between 500 and 2200, the heat transfer coefficients are estimated. Based on the experimental results the new correlation is developed for Nusselt number and compared with an existing correlation.

  2. Liquid cooled plate heat exchanger for battery cooling of an electric vehicle (EV)

    Science.gov (United States)

    Rahman, M. M.; Rahman, H. Y.; Mahlia, T. M. I.; Sheng, J. L. Y.

    2016-03-01

    A liquid cooled plate heat exchanger was designed to improve the battery life of an electric vehicle which suffers from premature aging or degradation due to the heat generation during discharging and charging period. Computational fluid dynamics (CFD) was used as a tool to analyse the temperature distribution when a constant surface heat flux was set at the bottom surface of the battery. Several initial and boundary conditions were set based on the past studies on the plate heat exchanger in the simulation software. The design of the plate heat exchanger was based on the Nissan Leaf battery pack to analyse the temperature patterns. Water at different mass flow rates was used as heat transfer fluid. The analysis revealed the designed plate heat exchanger could maintain the surface temperature within the range of 20 to 40°C which is within the safe operating temperature of the battery.

  3. Effect of heat treatment on wear resistance of a grinding plate ...

    African Journals Online (AJOL)

    The effects of heat treatment on the hardness and by extension the wear resistance of locally produced grinding plate of known composition were investigated. Specimens were prepared from the grinding plate and were heat treated at 840°C, 860°C and 880°C and quenched at different rate. Some of the specimens were ...

  4. Unsteady natural convection flow of nanofluids past a semi-infinite isothermal vertical plate

    Science.gov (United States)

    Tippa, Sowmya; Narahari, Marneni; Pendyala, Rajashekhar

    2016-11-01

    Numerical analysis is performed to investigate the unsteady natural convection flow of a nanofluid past a semi-infinite isothermal vertical plate. Five different types of water based nanofluids are considered in this investigation where Silver (Ag), Copper (Cu), Copper Oxide (CuO), Alumina (Al2O3) and Titanium Oxide (TiO2) are the nanoparticles. The governing non-dimensional partial differential equations are solved by employing an implicit finite-difference method of Crank-Nicolson type. Numerical results are computed for different values of pertinent parameters. The results for nanofluid temperature, velocity, local Skin friction and Nusselt number, average Skin friction and Nusselt number are discussed through graphs. The present numerical results for local Nusselt number have been compared with the well-established pure fluid correlation results for the limiting case and the comparison shows that the results are in excellent agreement.

  5. Effects of parabolic motion on an isothermal vertical plate with constant mass flux

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2014-12-01

    Full Text Available An analytical study of free convection flow near a parabolic started infinite vertical plate with isothermal in the presence of uniform mass flux was considered. The mathematical model is reduced to a system of linear partial differential equations for the velocity, the concentration and the temperature; the closed form exact solutions were obtained by the Laplace transform technique. The velocity, temperature and concentration profiles for the different parameters as thermal Grashof number Gr, mass Grashof number Gc, Prandtl number Pr, Schmidt number Sc and time t were graphed and the numerical values for the skin friction were as tabulated. It is observed that the velocity is enhanced as the time increased and the velocity is decreased as the Prandtl number increased.

  6. Mixed Convective Flow of an Elastico-Viscous Fluid Past a Vertical Plate in the Presence of Thermal Radiation and Chemical Reaction with an Induced Magnetic Field

    Science.gov (United States)

    Das, Utpal Jyoti

    2016-01-01

    The purpose of the study is to investigate the steady, two-dimensional, hydromagnetic, mixed convection heat and mass transfer of a conducting, optically thin, incompressible, elastico-viscous fluid (characterized by the Walters' B' model) past a permeable, stationary, vertical, infinite plate in the presence of thermal radiation and chemical reaction with account for an induced magnetic field. The governing equations of the flow are solved by the series method, and expressions for the velocity field, induced magnetic field, temperature field, and the skin friction are obtained.

  7. An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers.

    Science.gov (United States)

    White, M J; Nellis, G F; Kelin, S A; Zhu, W; Gianchandani, Y

    2010-11-01

    Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid.

  8. An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers

    Science.gov (United States)

    Nellis, G. F.; Kelin, S. A.; Zhu, W.; Gianchandani, Y.

    2010-01-01

    Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid. PMID:20976021

  9. On the material properties of shell plate formed by line heating

    Directory of Open Access Journals (Sweden)

    Hyung Kyun Lim

    2017-01-01

    Full Text Available This paper is concerned with investigating the plastic material properties of steel plate formed by line heating method, and is aimed at implementing more rational design considering the accidental limit states such as collision or grounding. For the present study, line heating test for marine grade steel plate has been carried out with varying plate thickness and heating speed, and then microscopic examination and tensile test have been carried out. From the microscopic, it is found that the grain refined zones like ferrite and pearlite are formed all around the heat affected zone. From the tensile test results, it is seen that yield strength, tensile strength, fracture strain, hardening exponent and strength coefficient vary with plate thickness and heat input quantity. The formulae relating the material properties and heat input parameter should be, therefore, derived for the design purpose considering the accidental impact loading. This paper ends with describing the extension of the present study.

  10. Heat transfer and pressure drop during hydrocarbon refrigerant condensation inside a brazed plate heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Giovanni A. [University of Padova, Department of Management and Engineering, Str.lla S.Nicola 3, I-36100 Vicenza (Italy)

    2010-08-15

    This paper presents the heat transfer coefficients and pressure drop measured during HC-600a, HC-290 and HC-1270 saturated vapour condensation inside a brazed plate heat exchanger: the effects of refrigerant mass flux, saturation temperature (pressure) and fluid properties are investigated. The heat transfer coefficients show weak sensitivity to saturation temperature (pressure) and great sensitivity to refrigerant mass flux and fluid properties. A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 15-18 kg m{sup -2} s{sup -1}. In the forced convection condensation region the heat transfer coefficients show a 35-40% enhancement for a 60% increase of the refrigerant mass flux. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow. HC-1270 shows heat transfer coefficients 5% higher than HC-600a and 10-15% higher than HC-290, together with frictional pressure drop 20-25% lower than HC-290 and 50-66% lower than HC-600a. (author)

  11. Heat transfer in flow past a continuously moving semi-infinite flat plate in transverse magnetic field with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.

    Thermal boundary layer on a continuously moving semi-infinite flat plate in the presence of transverse magnetic field with heat flux has been examined. Similarity solutions have been derived and the resulting equations are integrated numerically...

  12. Investigation of the third heat transfer crisis on a vertical surface

    Science.gov (United States)

    Avksentyuk, B. P.; Ovchinnikov, V. V.

    2012-03-01

    The process of development of the third heat transfer crisis for vertical orientation of the heating surface was studied experimentally. Experiments were carried out with acetone under the conditions of saturation for the pressures in the working volume from 20 to 28 kPa. In all experiments, the third heat transfer crisis was preceded by propagation of evaporation front along the heating surface. The threshold values of heat flux densities, above which a stable vapor film is formed on the whole heating surface, are lower for vertical orientation of this heating surface than for the horizontal one. Data on the threshold heat flux densities and overheating before boiling-up were obtained. Above these values, formation of evaporation fronts was observed. The range of operation parameters corresponding to formation of the sites of unstable film boiling on the heating surface after boiling-up was determined.

  13. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.

    1976-01-01

    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  14. Development and Application of Collaborative Optimization Software for Plate - fin Heat Exchanger

    Science.gov (United States)

    Chunzhen, Qiao; Ze, Zhang; Jiangfeng, Guo; Jian, Zhang

    2017-12-01

    This paper introduces the design ideas of the calculation software and application examples for plate - fin heat exchangers. Because of the large calculation quantity in the process of designing and optimizing heat exchangers, we used Visual Basic 6.0 as a software development carrier to design a basic calculation software to reduce the calculation quantity. Its design condition is plate - fin heat exchanger which was designed according to the boiler tail flue gas. The basis of the software is the traditional design method of the plate-fin heat exchanger. Using the software for design and calculation of plate-fin heat exchangers, discovery will effectively reduce the amount of computation, and similar to traditional methods, have a high value.

  15. Exact solutions for unsteady free convection flow of carbon nanotubes over an oscillating vertical plate

    Science.gov (United States)

    Khalid, Asma; Jiann, Lim Yeou; Khan, Ilyas; Shafie, Sharidan

    2017-04-01

    The purpose of this paper is to study the unsteady convection flow of carbon nanotubes (CNTs) induced by free convection with oscillating plate condition. Single-wall CNTs are used with water as base fluids. The governing partial differential equations and boundary conditions are transformed into a set of ordinary differential equations using suitable dimensionless variables. These equations are solved analytically using Laplace transform technique to obtain the velocity and temperature profiles. Results for velocity and temperature are shown in various graphs and discussed for the embedded flow parameters in detail. It is observed that, velocity decreases with increasing CNTs volume fraction and an increase in CNTs volume fraction increases the nanofluid temperature, which leads to an increase in the heat transfer rates.

  16. Design of Shell Plates Minimizing the Heat Input

    DEFF Research Database (Denmark)

    Randrup, Thomas; Basu, Nemai

    1998-01-01

    It is the purpose of this paper to present a current research project at Odense Steel Shipyard Ltd., Denmark. The objective of the research is to find new mathematical methods for the design of shell plates and apply these methods at the shipyard. The focus is on double-curved plates...

  17. Natural convection heat transfer from a long heated vertical cylinder to an adjacent air gap of concentric and eccentric conditions

    DEFF Research Database (Denmark)

    Hosseini, R.; Kolaei, Alireza Rezania; Alipour, M.

    2012-01-01

    In this work, the natural convection heat transfer from a long vertical electrically heated cylinder to an adjacent air gap is experimentally studied. The aspect and diameter ratios of the cylinder are 55.56 and 6.33, respectively. The experimental measurements were obtained for a concentric...

  18. Entropy generation in hydrodynamic slip flow over a vertical plate with convective boundary

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Adnan Saeed; Munawar, Sufian; Ali, Asif [Quaid i Azam Univ., Islamabad (Pakistan); Meh Mood, Ahmer [International Islamic Univ., Islamabad (Pakistan)

    2012-09-15

    The present article aims to report the effects of hydrodynamic slip on entropy generation in the boundary layer flow over a vertical surface with convective boundary condition. Suitable similarity transformations are used to transform the fundamental equations of hydrodynamic and thermal boundary layer flow into ordinary differential equations. The governing equations are then solved numerically using the shooting method and the velocity and the temperature profiles are obtained for various values of parameters involved in the governing equations. The expressions for the entropy generation number and the Bejan number are presented and the results are discussed graphically and quantitatively for the slip parameter, the local Grashof number, the Prandtl number, the local convective heat transfer parameter, the group parameter and the local Reynolds number. It is observed that due to the presence of slip, entropy production in a thermal system can be controlled and reduced.

  19. The influence of chemical reaction and viscous dissipation on unsteady MHD free convection flow past an exponentially accelerated vertical plate with variable surface conditions

    Directory of Open Access Journals (Sweden)

    Kishore P.M.

    2013-01-01

    Full Text Available A numerical study is presented on the effects of chemical reaction and magnetic field on the unsteady free convection flow, heat and mass transfer characteristics in a viscous, incompressible and electrically conducting fluid past an exponentially accelerated vertical plate by taking into account the heat due to viscous dissipation. The problem is governed by coupled non-linear partial differential equations. The dimensionless equations of the problem have been solved numerically by the implicit finite difference method of Crank - Nicolson’s type. The effects of governing parameters on the flow variables are discussed quantitatively with the aid of graphs for the flow field, temperature field, concentration field, skin-friction, Nusselt number and Sherwood number. It is found that under the influence of chemical reaction, the flow velocity as well as concentration distributions reduce, while the viscous dissipation parameter leads to increase the temperature.

  20. Viscous dissipation effects on heat transfer in flow past a continuous moving plate

    Digital Repository Service at National Institute of Oceanography (India)

    Soundalgekar, V.M.; Murty, T.V.R.

    The study of thermal boundary layer on taking into account the viscous dissipative heat, on a continuously moving semi-infinite flat plate is presented here.Similarity solutions are derived and the resulting equations are integrated numerically...

  1. Characterizing open and non-uniform vertical heat sources: towards the identification of real vertical cracks in vibrothermography experiments

    Science.gov (United States)

    Castelo, A.; Mendioroz, A.; Celorrio, R.; Salazar, A.; López de Uralde, P.; Gorosmendi, I.; Gorostegui-Colinas, E.

    2017-05-01

    Lock-in vibrothermography is used to characterize vertical kissing and open cracks in metals. In this technique the crack heats up during ultrasound excitation due mainly to friction between the defect's faces. We have solved the inverse problem, consisting in determining the heat source distribution produced at cracks under amplitude modulated ultrasound excitation, which is an ill-posed inverse problem. As a consequence the minimization of the residual is unstable. We have stabilized the algorithm introducing a penalty term based on Total Variation functional. In the inversion, we combine amplitude and phase surface temperature data obtained at several modulation frequencies. Inversions of synthetic data with added noise indicate that compact heat sources are characterized accurately and that the particular upper contours can be retrieved for shallow heat sources. The overall shape of open and homogeneous semicircular strip-shaped heat sources representing open half-penny cracks can also be retrieved but the reconstruction of the deeper end of the heat source loses contrast. Angle-, radius- and depth-dependent inhomogeneous heat flux distributions within these semicircular strips can also be qualitatively characterized. Reconstructions of experimental data taken on samples containing calibrated heat sources confirm the predictions from reconstructions of synthetic data. We also present inversions of experimental data obtained from a real welded Inconel 718 specimen. The results are in good qualitative agreement with the results of liquids penetrants testing.

  2. Accuracy of soil heat flux plate measurements in coarse substrates - Field measurements versus a laboratory test

    NARCIS (Netherlands)

    Weber, S.; Graf, A.; Heusinkveld, B.G.

    2007-01-01

    The in-situ performance of heat flux plates within coarse porous substrates might be limited due to poor contact between plate and substrate. We tested this behaviour with a simple laboratory set-up. Two test substrates were placed above a reference material of known thermal conductivity between a

  3. Fabrication of Flat Plate Solar Geyser with Flat Grooved Heat Exchanger Having Special Exit System

    OpenAIRE

    Muhammad Suleman Malik; Muhammad Arsalan Malik; Haseeb Ali Shah; Adnan Anwar khan afridi; Muhammad Asif

    2017-01-01

    The main objective of this paper is to introduce the concept of novel flat plate solar geyser with integrated heat exchanger and open loop passive system.The heat exchanger acts both as collector for solar radiations and as a heat exchanger its self for cold water beneath it. Contrary to the conventional flat plate solar collectors, water is in direct contact with the collector or flat grooved heat exchanger. A safety control box is installed to minimize hydraulic pressure of cold water rese...

  4. Heat transfer in a vertical rectangular duct filled with a porous matrix ...

    African Journals Online (AJOL)

    with uniform heat flux, Transactions of the ASME Journal of Heat Transfer, Vol. 107, pp. 716-720. Seddeek M.A., Effects of magnetic field and variable viscosity on forced non-Darcy flow about a flat plate with variable wall temperature in porous media in the presence of suction and bellowing, J. Appl. Mech. Tech. Phys., Vol.

  5. Experimental testing of various heat transfer structures in a flat plate thermal energy storage unit

    OpenAIRE

    Johnson, Maike; Fiss, Michael; Klemm, Torsten

    2016-01-01

    For solar process heat applications with steam as the working fluid and varying application parameters, a novel latent heat storage concept has been developed using an adaptation of a flat plate heat exchanger as the storage concept. Since the pressure level in these applications usually does not exceed 30 bar, an adaptation with storage material chambers arranged between heat transfer medium chambers is possible. Phase change materials are used as the storage medium, so that the isotherma...

  6. Performing multiobjective optimization on perforated plate matrix heat exchanger surfaces using genetic algorithm

    Directory of Open Access Journals (Sweden)

    John Anish K.

    2017-01-01

    Full Text Available Matrix Heat Exchanger is having wide spread applications in cryogenics and aerospace, where high effectiveness and compactness is essential. This can be achieved by providing high thermal conductive plates and low thermal conductive spacers alternately. These perforated plate matrix heat exchangers have near to 100% efficiency due to low longitudinal heat transfer. The heat transfer and flow friction characteristics of a perforated plate matrix heat exchanger can be represented using Colburn factor and friction factor. In this paper, dimensionless parameters like Reynolds number (Re, porosity (p, perforation perimeter factor (P f, plate thickness to pore diameter ratio (l/d and spacer thickness to plate thickness ratio (s/l have been optimized for maximum Colburn factor and minimum friction factor using genetic algorithm. Two algorithms, one for single objective and the other for multi-objective problems, which are believed to be more efficient, are described. The algorithms coded with MATLAB, is used to perform multi-objective optimization on perforated plate matrix heat exchanger surfaces. The results show promising results.

  7. Simulation and Experimental Investigation of Thermal Performance of a Miniature Flat Plate Heat Pipe

    Directory of Open Access Journals (Sweden)

    R. Boukhanouf

    2013-01-01

    Full Text Available This paper presents the results of a CFD analysis and experimental tests of two identical miniature flat plate heat pipes (FPHP using sintered and screen mesh wicks and a comparative analysis and measurement of two solid copper base plates 1 mm and 3 mm thick. It was shown that the design of the miniature FPHP with sintered wick would achieve the specific temperature gradients threshold for heat dissipation rates of up to 80 W. The experimental results also revealed that for localised heat sources of up to 40 W, a solid copper base plate 3 mm thick would have comparable heat transfer performances to that of the sintered wick FPHP. In addition, a marginal effect on the thermal performance of the sintered wick FPHP was recorded when its orientation was held at 0°, 90°, and 180° and for heat dissipation rates ranging from 0 to 100 W.

  8. Vertical heat flux in the ocean: Estimates from observations and from a coupled general circulation model

    Science.gov (United States)

    Cummins, Patrick F.; Masson, Diane; Saenko, Oleg A.

    2016-06-01

    The net heat uptake by the ocean in a changing climate involves small imbalances between the advective and diffusive processes that transport heat vertically. Generally, it is necessary to rely on global climate models to study these processes in detail. In the present study, it is shown that a key component of the vertical heat flux, namely that associated with the large-scale mean vertical circulation, can be diagnosed over extra-tropical regions from global observational data sets. This component is estimated based on the vertical velocity obtained from the geostrophic vorticity balance, combined with estimates of absolute geostrophic flow. Results are compared with the output of a non-eddy resolving, coupled atmosphere-ocean general circulation model. Reasonable agreement is found in the latitudinal distribution of the vertical heat flux, as well as in the area-integrated flux below about 250 m depth. The correspondence with the coupled model deteriorates sharply at depths shallower than 250 m due to the omission of equatorial regions from the calculation. The vertical heat flux due to the mean circulation is found to be dominated globally by the downward contribution from the Southern Hemisphere, in particular the Southern Ocean. This is driven by the Ekman vertical velocity which induces an upward transport of seawater that is cold relative to the horizontal average at a given depth. The results indicate that the dominant characteristics of the vertical transport of heat due to the mean circulation can be inferred from simple linear vorticity dynamics over much of the ocean.

  9. Free convective heat transfer with hall effects, heat absorption and chemical reaction over an accelerated moving plate in a rotating system

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, S.M., E-mail: hussain.modassir@yahoo.com [Department of Mathematics, OP Jindal University, Raigarh 496109 (India); Jain, J., E-mail: jj.28481@gmail.com [Department of Mathematics, OP Jindal University, Raigarh 496109 (India); Seth, G.S., E-mail: gsseth_ism@yahoo.com [Department of Applied Mathematics, Indian School of Mines, Dhanbad 826004 (India); Rashidi, M.M., E-mail: mm_rashidi@yahoo.com [Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management System, Tongji University, Shanghai 201804 (China)

    2017-01-15

    The unsteady MHD free convective heat and mass transfer flow of an electrically conducting, viscous and incompressible fluid over an accelerated moving vertical plate in the presence of heat absorption and chemical reaction with ramped temperature and ramped surface concentration through a porous medium in a rotating system is studied, taking Hall effects into account. The governing equations are solved analytically with the help of Laplace transform technique. The unified closed-form expressions are obtained for fluid velocity, fluid temperature, species concentration, skin friction, Nusselt number and Sherwood numbers. The effects of various parameters on fluid velocity, fluid temperature and species concentration are discussed by graphs whereas numerical values of skin friction, Nusselt and Sherwood numbers are presented in tabular form for different values of pertinent flow parameters. The numerical results are also compared with free convective flow near ramped temperature plate with ramped surface concentration with the corresponding flow near isothermal plate with uniform surface concentration. - Highlights: • Magnetic field, Hall current, rotation and chemical reaction play vital role on flow field. • Hall current tends to accelerate secondary fluid velocity in the boundary layer region. • Rotation tends to retard primary fluid velocity throughout the boundary layer region. • Rotation and chemical reaction tend to enhance primary skin friction. • Solutal buoyancy force and permeability of medium reduce primary skin friction.

  10. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find...... the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The threedimensional governing equations for the fluid flow and the heat...... heat sink configurations reduces the coolant pumping power in the system....

  11. Thermophoresis on boundary layer heat and mass transfer flow of Walters-B fluid past a radiate plate with heat sink/source

    Science.gov (United States)

    Vasu, B.; Gorla, Rama Subba Reddy; Murthy, P. V. S. N.

    2017-05-01

    The Walters-B liquid model is employed to simulate medical creams and other rheological liquids encountered in biotechnology and chemical engineering. This rheological model introduces supplementary terms into the momentum conservation equation. The combined effects of thermal radiation and heat sink/source on transient free convective, laminar flow and mass transfer in a viscoelastic fluid past a vertical plate are presented by taking thermophoresis effect into account. The transformed conservation equations are solved using a stable, robust finite difference method. A parametric study illustrating the influence of viscoelasticity parameter ( Γ), thermophoretic parameter ( τ), thermal radiation parameter ( F), heat sink/source ( ϕ), Prandtl number ( Pr), Schmidt number ( Sc), thermal Grashof number ( Gr), solutal Grashof number ( Gm), temperature and concentration profiles as well as local skin-friction, Nusselt and Sherwood number is conducted. The results of this parametric study are shown graphically and inform of table. The study has applications in polymer materials processing.

  12. Trans-iliosacral plating for vertically unstable fractures of sacral spine associated with spinopelvic dissociation: A cadaveric study.

    Science.gov (United States)

    Padalkar, Pravin; Pereira, Barry P; Kathare, Ambadas; Sun, Khong Kok; Kagda, Fareed; Joseph, Thambiah

    2012-05-01

    The treatment algorithm for sacral fracture associated with vertical shear pelvic fracture has not emerged. Our aim was to study a new approach of fixation for comminuted and vertically unstable fracture pattern with spinopelvic dissociation to overcome inconsistent outcome and avoid complications associated with fixations. We propose fixation with well-contoured thick reconstruction plate spreading across sacrum from one iliac bone to another with fixation points in iliac wing, sacral ala and sacral pedicle on either side. Present biomechanical study tests the four fixation pattern to compare their stiffness to vertical compressive forces. Dissection was performed on human cadavers through posterior midline paraspinal approach elevating erector spinae from insertion with two flaps. Feasibility of surgical exposure and placement of contoured plate for fixation was evaluated. Ten age and sex matched computed tomography scans of pelvis with both hips were obtained. Reconstructions were performed with advantage windows 4.2 (GE Light Speed QX/I, General Electric, Milwaukee, WI, USA). Using the annotation tools, direct digital CT measurement (0.6 mm increments) of three linear parameters was carried out. Readings were recorded at S2 sacral level. Pelvic CT scans were extensively studied for entry point, trajectory and estimated length for screw placement in S2 pedicle, sacral ala and iliac wing. Readings were recorded for desired angulation of screw in iliac wing ala of sacrum and sacral pedicle with respect to midline. The readings were analyzed by the values of mean and standard deviation. Biomechanical efficacy of fixation methods was studied separately on synthetic bone. Four fixation patterns given below were tested to compare their stiffness to vertical compressive forces: 1) Single S1 iliosacral screw (7.5 mm cancellous screw), 2) Two S1 and S2 iliosacral screws, 3) Isolated trans-iliosacral plate, 4) Trans-iliosacral plate + single S1 iliosacral screw. Mean of

  13. Modelling and control of Base Plate Loading subsystem for The Motorized Adjustable Vertical Platform

    Science.gov (United States)

    Norsahperi, N. M. H.; Ahmad, S.; Fuad, A. F. M.; Mahmood, I. A.; Toha, S. F.; Akmeliawati, R.; Darsivan, F. J.

    2017-03-01

    Malaysia National Space Agency, ANGKASA is an organization that intensively undergoes many researches especially on space. On 2011, ANGKASA had built Satellite Assembly, Integration and Test Centre (AITC) for spacecraft development and test. Satellite will undergo numerous tests and one of it is Thermal test in Thermal Vacuum Chamber (TVC). In fact, TVC is located in cleanroom and on a platform. The only available facilities for loading and unloading the satellite is overhead crane. By utilizing the overhead crane can jeopardize the safety of the satellite. Therefore, Motorized vertical platform (MAVeP) for transferring the satellite into the TVC with capability to operate under cleanroom condition and limited space is proposed to facilitate the test. MAVeP is the combination of several mechanisms to produce horizontal and vertical motions with the ability to transfer the satellite from loading bay into TVC. The integration of both motions to elevate and transfer heavy loads with high precision capability will deliver major contributions in various industries such as aerospace and automotive. Base plate subsystem is capable to translate the horizontal motion by converting the angular motion from motor to linear motion by using rack and pinion mechanism. Generally a system can be modelled by performing physical modelling from schematic diagram or through system identification techniques. Both techniques are time consuming and required comprehensive understanding about the system, which may expose to error prone especially for complex mechanism. Therefore, a 3D virtual modelling technique has been implemented to represent the system in real world environment i.e. gravity to simulate control performance. The main purpose of this technique is to provide better model to analyse the system performance and capable to evaluate the dynamic behaviour of the system with visualization of the system performance, where a 3D prototype was designed and assembled in Solidworks

  14. A diagram for defined flat plate solar collector area for solar floor heating

    Energy Technology Data Exchange (ETDEWEB)

    Altuntop, N.; Tekin, Y. [Erciyes University, Dept. of Mechanical Engineering (Turkey); Cengel, Y.A. [Nevada Reno University, Dept. of Mechanical Engineering, NV (United States)

    2000-07-01

    In winters, one of the best ways to heat living areas by using the low- temperature - water obtained from flat-plate solar collectors is the floor heating. In floor heating, low temperature-water (30 + 60 deg C) can be used and heat can be stored in water when solar radiation is not possible. In this study, it is aimed to define collector surface needed to supply heat for floor heating. It is also aimed to define and explain the diagram developed for every heating months. The calculations about the sun geometry are used to define the amount of radiation coming in to the collectors. Formulations are made about the definition of solar radiation absorbed by the collectors, the total heat loss coefficient, and the collector plate surface temperature. These formulations are transformed in to the diagram. In addition, the studies, heat transfer calculations and design parameters about the floor of the heating areas are used. A combined collector floor heating diagram is obtained. This diagram is used to define collector surface area necessary to supply heat for floor heated places. In this diagram, the collector surface area is obtained by giving the heat capacity of the place area, floor surface temperature, approximate modulation distance of the floor, the elevation of city, collector slope angle, wind speed, sun shine lime and the amount of the solar radiation obtained from the solar radiation diagram. (authors)

  15. An exact solution on unsteady MHD free convection chemically reacting silver nanofluid flow past an exponentially accelerated vertical plate through porous medium

    Science.gov (United States)

    Kumaresan, E.; Vijaya Kumar, A. G.; Rushi Kumar, B.

    2017-11-01

    This article studies, an exact solution of unsteady MHD free convection boundary-layer flow of a silver nanofluid past an exponentially accelerated moving vertical plate through aporous medium in the presence of thermal radiation, transverse applied amagnetic field, radiation absorption and Heat generation or absorption with chemical reaction are investigated theoretically. We consider nanofluids contain spherical shaped nanoparticle of silverwith a nanoparticle volume concentration range smaller than or equal to 0.04. This phenomenon is modeled in the form of partial differential equations with initial boundary conditions. Some suitable dimensional variables are introduced. The corresponding dimensionless equations with boundary conditions are solved by using Laplace transform technique. The exact solutions for velocity, energy, and species are obtained, also the corresponding numerical values of nanofluid velocity, temperature and concentration profiles are represented graphically. The expressions for skin friction coefficient, the rate of heat transfer and mass transfer are derived. The present study finds applications involving heat transfer, enhancement of thermal conductivity and other applications like transportation, industrial cooling applications, heating buildings and reducing pollution, energy applications and solar absorption. The effect of heat transfer is found to be more pronounced in a silver–water nanofluid than in the other nanofluids.

  16. Mathematical modelling of thermal and flow processes in vertical ground heat exchangers

    Directory of Open Access Journals (Sweden)

    Pater Sebastian

    2017-12-01

    Full Text Available The main task of mathematical modelling of thermal and flow processes in vertical ground heat exchanger (BHE-Borehole Heat Exchanger is to determine the unit of borehole depth heat flux obtainable or transferred during the operation of the installation. This assignment is indirectly associated with finding the circulating fluid temperature flowing out from the U-tube at a given inlet temperature of fluid in respect to other operational parameters of the installation.

  17. Heat Transmission of Slab-on-Ground Industrial Floors with Vertical Perimeter Insulation

    OpenAIRE

    Kocsis, Lajos

    2013-01-01

    The surface heat loss of slab-on-ground industrial floors that are vertically insulated along the footing wall (with the insulation reaching under the ground level), is closely linked with the relatively large floor area of industrial halls. To give a comprehensive heat transmission analysis, the present paper first provides an overview of the U-value requirements for such floors in Hungary and Germany. For the determination of the heat transmission coefficient of slab-on-ground floors with v...

  18. Experimental investigation of MHD heat transfer in a vertical round tube affected by transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, I.A., E-mail: corpuskula@gmail.com; Sviridov, E.V.; Sviridov, V.G.; Razuvanov, N.G.

    2016-11-15

    Highlights: • Local and averaged heat transfer coefficient are measured. • Free convection influence on MHD-flow is investigated. • The region with the free convection effect of MHD-heat transfer is found. • Temperature low-frequency fluctuations of abnormally high amplitude are detected. • Analysis of the MHD-heat transfer experimental data is performed. - Abstract: The article is devoted to the results of experimental investigation of heat transfer for a downward mercury flow in a vertical round tube in the presence of a transverse magnetic with non-uniform heat flux along the tube circumference.

  19. Heat Transfer While Incorporating Metal Particles in a Melting Support Plate

    Directory of Open Access Journals (Sweden)

    Mamontov Gennady Ya.

    2016-01-01

    Full Text Available The work defines and solves the heat transfer problem for “particle – support plate” system heated to high temperatures by means of mathematical simulation methods. In the course of the formulated problem, the numerical studies were carried out under conditions of a high density of the particle material in comparison with the support plate material.

  20. Numerical investigation of heat transfer enhancement by carbon nano fibers deposited on a flat plate

    NARCIS (Netherlands)

    Pelevic, N.; van der Meer, Theodorus H.

    2013-01-01

    Numerical simulations of flow and heat transfer have been performed for flow over a plate surface covered with carbon nano fibers (CNFs). The CNFs influence on fluid flow and heat transfer has been investigated. Firstly, a stochastic model for CNFs deposition has been explained. Secondly, the

  1. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  2. The effect of blowing or suction on laminar free convective heat transfer on flat horizontal plates

    NARCIS (Netherlands)

    Brouwers, Jos

    1993-01-01

    In the present paper laminar free convective heat transfer on flat permeable horizontal plates is investigated. To assess the effect of surface suction or injection on heat transfer a correction factor, provided by the film model (or ldquofilm theoryrdquo), is applied. Comparing the film model

  3. Verification of the Performance of a Vertical Ground Heat Exchanger Applied to a Test House in Melbourne, Australia

    Directory of Open Access Journals (Sweden)

    Koon Beng Ooi

    2017-10-01

    Full Text Available The ground heat exchanger is traditionally used as a heat source or sink for the heat pump that raises the temperature of water to about 50 °C to heat houses. However, in winter, the heating thermostat (temperature at which heating begins in the Australian Nationwide House Energy Rating Scheme (NatHERS is only 20 °C during daytime and 15 °C at night. In South-East Melbourne, the temperature at the bottom of a 50-meter-deep borehole has been recorded with an Emerson™ recorder at 17 °C. Melbourne has an annual average temperature of 15 °C, so the ground temperature increases by 2 °C per 50-m depth. A linear projection gives 23 °C at 200-m of depth, and as the average undisturbed temperature of the ground for a 400-m-deep vertical ground heat exchanger (VGHE. This study, by simulation and experimentation, aims to verify that the circulation of water in the VGHE’s U-tube to low-temperature radiators (LTRs could heat a house to thermal comfort. A literature review is included in the introduction. A simulation, using a model of a 60-m2 experimental house, shows that the daytime circulation of water in this VGHE/LTR-on-opposite-walls system during the 8-month cold half of the year, heats the indoors to NatHERS settings. Simulation for the cold half shows that this VGHE-LTR system could cool the indoors. Instead, a fan creating a cooling sensation of up to 4 °C is used so that the VGHE is available for the regeneration of heat extracted from the ground during the cold portion. Simulations for this hot portion show that a 3.4-m2 flat plate solar collector can collect more than twice the heat extracted from the ground in the cold portion. Thus, it can thus replenish the ground heat extracted for houses double the size of this 60-m2 experimental house. Therefore, ground heat is sustainable for family-size homes. Since no heat pump is used, the cost of VGHE-LTR systems could be comparable to systems using the ground source heat pump. Water

  4. Numerical Methods for Plate Forming by Line Heating

    DEFF Research Database (Denmark)

    Clausen, Henrik Bisgaard

    2000-01-01

    Few researchers have addressed so far the topic Line Heating in the search for better control of the process. Various methods to help understanding the mechanics have been used, including beam analysis approximation, equivalent force calculation and three-dimensional finite element analysis. I...... consider here finite element methods to model the behaviour and to predict the heating paths....

  5. Effect of Liquid/Vapour Maldistribution on the Performance of Plate Heat Exchanger Evaporators

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Kærn, Martin Ryhl; Ommen, Torben Schmidt

    2015-01-01

    Plate heat exchangers are often applied as evaporators in industrial refrigeration and heat pump systems. In the design and modelling of such heat exchangers the flow and liquid/vapour distribution is often assumed to be ideal. However, maldistribution may occur and will cause each channel...... to behave differently due to the variation of the mass flux and vapour quality. To evaluate the effect of maldistribution on the performance of plate heat exchangers, a numerical model is developed in which the mass, momentum and energy balances are applied individually to each channel, including suitable...... correlations for heat transfer and pressure drop. The flow distribution on both the refrigerant and secondary side is determined based on equal pressure drop while the liquid/vapour distribution is imposed to the model. Results show that maldistribution may cause up to a 25 % reduction of the overall heat...

  6. Evaporation Heat Transfer of Ammonia/Water Mixtures for Plate Type Evaporator

    Science.gov (United States)

    Kushibe, Mitsuteru; Ikegami, Yasuyuki; Monde, Masanori

    The performance test of plate type evaporators was carried out. Ammonia/Water mixtures were utilized as working fluid and warm water was utilized as heat source. Five kinds of ammonia mass fraction are tested. The overall heat transfer coefficient of ammonia/water mixtures was lower than the pure ammonia in the same experimental condition. In the convection dominant region, the mean evaporation heat transfer of ammonia/water mixtures was almost the same as ammonia by considering thermophysical properties. In the region where nucleate boiling contributes to the heat transfer, the mean evaporation heat transfer coefficient was influenced of mass fraction. An empirical correlation was proposed in order to predict the mean evaporation heat transfer coefficient of ammonia/water mixtures for plate type evaporators.

  7. Computer cooling using a two phase minichannel thermosyphon loop heated from horizontal and vertical sides and cooled from vertical side

    Science.gov (United States)

    Bieliński, Henryk; Mikielewicz, Jarosław

    2010-10-01

    In the present paper it is proposed to consider the computer cooling capacity using the thermosyphon loop. A closed thermosyphon loop consists of combined two heaters and a cooler connected to each other by tubes. The first heater may be a CPU processor located on the motherboard of the personal computer. The second heater may be a chip of a graphic card placed perpendicular to the motherboard of personal computer. The cooler can be placed above the heaters on the computer chassis. The thermosyphon cooling system on the use of computer can be modeled using the rectangular thermosyphon loop with minichannels heated at the bottom horizontal side and the bottom vertical side and cooled at the upper vertical side. The riser and a downcomer connect these parts. A one-dimensional model of two-phase flow and heat transfer in a closed thermosyphon loop is based on mass, momentum, and energy balances in the evaporators, rising tube, condenser and the falling tube. The separate two-phase flow model is used in calculations. A numerical investigation for the analysis of the mass flux rate and heat transfer coefficient in the steady state has been accomplished.

  8. Flow Boiling Heat Transfer in Microchannel Cold Plate Evaporators for Electronics Cooling

    OpenAIRE

    Bertsch, Stefan S.; Groll, Eckhard A; Garimella, Suresh V.

    2008-01-01

    The local two-phase heat transfer coefficient is a critical parameter in the design of microchannel cold plate evaporators used in applications such as electronics cooling systems. Only a few past studies on microchannels have investigated the heat transfer characteristics over the entire vapor quality range and conflicting trends have been reported even in these studies. Therefore, the present study focuses on the investigation of the local flow boiling heat transfer coefficient at different...

  9. Experimental results for hydrocarbon refrigerant vaporization in brazed plate heat exchangers at high pressure

    OpenAIRE

    Desideri, Adriano; Rhyl Kaern, Martin; Ommen Schmidt, Torben; Wronski, Jorrit; Quoilin, Sylvain; Lemort, Vincent; Haglind, Fredrik

    2016-01-01

    In recent years the interest in small capacity organic Rankine cycle (ORC) power systems for harvesting low quality waste thermal energy from industrial processes has been steadily growing. Micro ORC systems are normally equipped with brazed plate heat exchangers which allows for efficient heat transfer with a compact design. An accurate prediction of the heat transfer process characterizing these devices is required from the design phase to the development of model- based control strategies....

  10. Characteristics of a Latent Heat TES Apparatus with Inner Horizontal Plate Fins

    Science.gov (United States)

    Saito, Akio; Nagakubo, Shin-Ichiro

    Numerical analyses were performed on the heat transfer characteristics of a latent heat TES apparatus, in which a row of horizontal plate fins were attached to the heat transfer surface to increase the heat flux through the heat storage process. The transient melting process of the phase change material was treated, including the melting phenomena by heat conduction or natural convection heat transferin the liquid phase, and the direct contact melting phenomena between the solid phase and fin surfaces. In the calculations, nondimensional parameters, composed of the various dimensions of the TES space, the physical properties of the materials and the heat transfer surface temperature, were changed systematically to clarify the effects of the parameters on the average heat flux.

  11. Computer simulation of heat transfer in zone plate optics exposed to x-ray FEL radiation

    Science.gov (United States)

    Nilsson, D.; Holmberg, A.; Sinn, H.; Vogt, U.

    2011-06-01

    Zone plates are circular diffraction gratings that can provide diffraction-limited nano-focusing of x-ray radiation. When designing zone plates for X-ray Free Electron Laser (XFEL) sources special attention has to be made concerning the high intensity of the sources. Absorption of x-rays in the zone material can lead to significant temperature increases in a single pulse and potentially destroy the zone plate. The zone plate might also be damaged as a result of temperature build up and/or temperature fluctuations on longer time scales. In this work we simulate the heat transfer in a zone plate on a substrate as it is exposed to XFEL radiation. This is done in a Finite Element Method model where each new x-ray pulse is treated as an instantaneous heat source and the temperature evolution between pulses is calculated by solving the heat equation. We use this model to simulate different zone plate and substrate designs and source parameters. Results for both the 8 keV source at LCLS and the 12.4 keV source at the European XFEL are presented. We simulate zone plates made of high Z metals such as gold, tungsten and iridium as well as zone plates made of low Z materials such as diamond. In the case of metal zone plates we investigate the influence of substrate material by comparing silicon and diamond substrates. We also study the effect of different cooling temperatures and cooling schemes. The results give valuable indications on the temperature behavior to expect and can serve as a basis for future experimental investigations of zone plates exposed to XFEL radiation.

  12. Magnetic field effects on unsteady convective flow along a vertical porous flat surface embedded in a porous medium with constant suction and heat sink

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.S.; Das, P. [Department of Pysics, K B D A B College, Nirakarpur, Khurda-752 019 (Orissa) (India); Mohanty, J. [Department of Physics, ABIT, CDA, Sector-I, Bidanasi, Cuttack-753 014, (Orissa) (India)

    2011-07-01

    The magnetohydrodynamic unsteady convective flow of a viscous incompressible fluid along a vertical porous plate embedded in a porous medium with constant suction and heat sink is considered. Approximate solutions for velocity, temperature, skin friction and rate of heat transfer are obtained by solving the governing equations of the flow field using multi parameter perturbation technique. The effects of various flow parameters affecting the flow field are discussed with the help of figures and table. It is observed that a growing magnetic parameter or heat sink parameter retards the transient velocity of the flow field while the Grashof number or permeability parameter reverses the effect. Further, an increase in magnetic parameter or Prandtl number or heat sink parameter decreases the transient temperature of the flow field. A growing permeability parameter enhances the magnitude of skin friction and the rate of heat transfer at the wall, while the magnetic parameter reverses the effect.

  13. Copper vertical micro dendrite fin arrays and their superior boiling heat transfer capability

    Science.gov (United States)

    Wang, Ya-Qiao; Lyu, Shu-Shen; Luo, Jia-Li; Luo, Zhi-Yong; Fu, Yuan-Xiang; Heng, Yi; Zhang, Jian-Hui; Mo, Dong-Chuan

    2017-11-01

    Micro pin fin arrays have been widely used in electronic cooling, micro reactors, catalyst support, and wettability modification and so on, and a facile way to produce better micro pin fin arrays is demanded. Herein, a simple electrochemical method has been developed to fabricate copper vertical micro dendrite fin arrays (Cu-VMDFA) with controllable shapes, number density and height. High copper sulphate concentration is one key point to make the dendrite stand vertically. Besides, the applied current should rise at an appropriate rate to ensure the copper dendrite can grow vertically on its own. The Cu-VMDFA can significantly enhance the heat transfer coefficient by approximately twice compared to the plain copper surface. The Cu-VMDFA may be widely used in boiling heat transfer areas such as nuclear power plants, electronic cooling, heat exchangers, and so on.

  14. Numerical investigation of MHD free convection flow of a non-Newtonian fluid past an impulsively started vertical plate in the presence of thermal diffusion and radiation absorption

    Directory of Open Access Journals (Sweden)

    M. Umamaheswar

    2016-09-01

    Full Text Available A numerical investigation is carried out on an unsteady MHD free convection flow of a well-known non-Newtonian visco elastic second order Rivlin-Erickson fluid past an impulsively started semi-infinite vertical plate in the presence of homogeneous chemical reaction, thermal radiation, thermal diffusion, radiation absorption and heat absorption with constant mass flux. The presence of viscous dissipation is also considered at the plate under the influence of uniform transverse magnetic field. The flow is governed by a coupled nonlinear system of partial differential equations which are solved numerically by using finite difference method. The effects of various physical parameters on the flow quantities viz. velocity, temperature, concentration, Skin friction, Nusselt number and Sherwood number are studied numerically. The results are discussed with the help of graphs. We observed that the velocity decreases with an increase in magnetic field parameter, Schmidt number, and Prandtl number while it increases with an increase in Grashof number, modified Grashof number, visco-elastic parameter and Soret number. Temperature increases with an increase in radiation absorption parameter, Eckert number and visco-elastic parameter while it decreases with increasing values of radiation parameter, Prandtl number and heat absorption parameter. Concentration increases with increase in Soret number while it decreases with an increase in Schmidt number and chemical reaction parameter.

  15. Heat and mass transfer in a vertical flue ring furnace

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Mona

    1997-12-31

    The main emphasis of this thesis was the design of a mathematical simulation model for studying details in the baking of anodes in the Hydro Aluminium anode baking furnace. The change of thermal conductivity, density, porosity and permeability during heat treatment was investigated. The Transient Plane Source technique for measuring thermal conductivity of solids was used on green carbon materials during the baking process in the temperature range 20-600 {sup o}C. Next, change of mass, density, porosity and permeability of anode samples were measured after being baked to temperatures between 300 and 1200 {sup o}C. The experimental data were used for parameter estimation and verification of property models for use in the anode baking models. Two distinct mathematical models have been modified to study the anode baking. A transient one-dimensional model for studying temperature, pressure and gas evolution in porous anodes during baking was developed. This was extended to a two-dimensional model incorporating the flue gas flow. The mathematical model which included porous heat and mass transfer, pitch pyrolysis, combustion of volatiles, radiation and turbulent channel flow, was developed by source code modification of the Computational Fluid Dynamics code FLUENT. The two-dimensional geometry of a flue gas channel adjacent to a porous flue gas wall, packing coke and anode was used for studying the effect of different firing strategies, raw materials properties and packing coke thickness. The model proved useful for studying the effects of heating rate, geometry and anode properties. 152 refs., 73 figs, 11 tabs.

  16. Thermal and hydraulic performance of compact brazed plate heat exchangers operating as evaporators in domestic heat pumps

    OpenAIRE

    Claesson, Joachim

    2005-01-01

    This thesis investigates the performance of compact brazed plate heat exchangers (CBE) operating as evaporator in heat pump applications. The thesis, and the performances investigated, has been divided into three main sections; One zone evaporator performance; Two zone evaporator performance; and finally Local performance. The 'One zone evaporator performance' section considers the evaporator as one "black box". It was found that "approaching terminal temperatures" were obtained as low overal...

  17. Adaptive neuro-fuzzy inference system (ANFIS) to predict the forced convection heat transfer from a v-shaped plate

    Science.gov (United States)

    Karami, Alimohammad; Yousefi, Tooraj; Ebrahimi, Saeid; Rezaei, Ehsan; Mahmoudinezhad, Sajjad

    2013-06-01

    This paper reports the application of the adaptive neuro-fuzzy inference system to model the forced convection heat transfer from v-shaped plate internal surfaces exposed to an air impingement slot jet. The aim of the current study is to consider the effects of the angle of the v-shaped plate (Upphi ) , slot-to-plate spacing ratio (Z/W) and the Reynolds number (Re) variation on the average heat transfer from the v-shaped plate.

  18. Numerical simulation of hull curved plate forming by electromagnetic force assisted line heating

    Science.gov (United States)

    Wang, Ji; Wang, Shun; Liu, Yujun; Li, Rui; Liu, xiao

    2017-11-01

    Line heating is a common method in shipyards for forming of hull curved plate. The aluminum alloy plate is widely used in shipbuilding. To solve the problem of thick aluminum alloy plate forming with complex curved surface, a new technology named electromagnetic force assisted line heating(EFALH) was proposed in this paper. The FEM model of EFALH was established and the effect of electromagnetic force assisted forming was verified by self development equipment. Firstly, the solving idea of numerical simulation for EFALH was illustrated. Then, the coupled numerical simulation model of multi physical fields were established. Lastly, the reliability of the numerical simulation model was verified by comparing the experimental data. This paper lays a foundation for solving the forming problems of thick aluminum alloy curved plate in shipbuilding.

  19. Numerical analysis of thermal deformation in laser beam heating of a steel plate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao; Kim, Yong-Rae; Kim, Jae-Woong [Yeungnam University, Kyongsan (Korea, Republic of)

    2017-05-15

    Line heating is a widely used process for plate forming or thermal straightening. Flame heating and induction heating are the traditional heating processes used by industry for line heating. However, these two heating processes are ineffective when used on small steel plates. Thus, the laser beam heating with various power profiles were carried out in this study. A comparison of numerical simulation results and experimental results found a significant difference in the thermal deformation when apply a different power profile of laser beam heating. The one-sinusoid power profile produced largest thermal deformation in this study. The laser beam heating process was simulated by established a combined heat source model, and simulated results were compared with experimental results to confirm the model’s accuracy. The mechanism of thermal deformation was investigated and the effects of model parameters were studied intensively with the finite element method. Thermal deformation was found to have a significant relationship with the amount of central zone plastic deformation. Scientists and engineers could use this study’s verified model to select appropriate parameters in laser beam heating process. Moreover, by using the developed laser beam model, the analysis of welding residual stress or hardness could also be investigated from a power profile point of view.

  20. Radiation and porosity effects on the magnetohydrodynamic flow near a vertical plate that applies shear stress to the fluid with mass diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Arshad; Khan, Ilyas; Shafie, Sharidan [Faculty of Science, Universiti Teknologi Malaysia (Malaysia)

    2014-06-19

    This article studies the radiation and porosity effects on the unsteady magnetohydrodynamic free convection flow of an incompressible viscous fluid past an infinite vertical plate that applies a shear stress f(t) to the fluid. Conjugate phenomenon of heat and mass transfer is considered. General solutions of the dimensionless governing equations along with imposed initial and boundary conditions are determined using Laplace transform technique. The solution of velocity is presented as a sum of mechanical and non mechanical parts. These solutions satisfy all imposed initial and boundary conditions and reduce to some known solutions from the literature as special cases. The results for embedded parameters are shown graphically. Numerical results for skin friction, Nusselt number and Sherwood number are computed and presented in tabular forms.

  1. Derivation of guidelines for the design of plate evaporators in heat pumps using zeotropic mixtures

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Mancini, Roberta; Zühlsdorf, Benjamin

    2017-01-01

    The present work derives design recommendations for plate heat exchangers used for evaporation of zeotropic mixtures in heat pumps. A parametric study is conducted on the geometry of the heat exchanger, and the analysis is carried out for four working fluids, based on a case study of heat pump...... integration in a spray drying facility. A numerical model of the evaporator is combined with cycle calculations, for estimating the impact of heat transfer area and pressure drop on the coefficient of performance and costs. Common trends are obtained as optimal configurations for the four considered fluids...... minimization of area and pressure drop is found by assessing the relative impact on costs of the heat exchanger area and pressure losses of both working fluid and heat source. The result shows that it is not always convenient to minimize the heat transfer area, since the mixture pressure drop negatively...

  2. Numerical Study of Compact Plate-Fin Heat Exchanger for Rotary-Vane Gas Refrigeration Machine

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2017-10-01

    Full Text Available Plate-fin heat exchangers are widely used in refrigeration technique. They are popular because of their compactness and excellent heat transfer performance. Here we present a numerical model for the development, research and optimization of a plate-fin heat exchanger for a rotary-vane gas refrigeration machine. The method of analysis by graphic method of plate - fin heat exchanger is proposed. The model describes the effects of secondary parameters such as axial thermal conductivity through a metal matrix of the heat exchanger. The influence of geometric parameters and heat transfer coefficient is studied. Graphs of dependences of length, efficiency of a fin and pressure drop in a heat exchanger on the thickness of the fin and the number of fins per meter are obtained. To analyze the results of numerical simulation, the heat exchanger was designed in the Aspen HYSYS program. The simulation results show that the total deviation from the proposed numerical model is not more than 15%. 

  3. Numerical Model on Frost Height of Round Plate Fin Used for Outdoor Heat Exchanger of Mobile Electric Heat Pumps

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-01-01

    Full Text Available The objective of this study is to provide the numerical model for prediction of the frost growth of the round plate fin for the purpose of using it as a round plate fin-tube heat exchanger (evaporator under frosting conditions. In this study, numerical model was considering the frost density change with time, and it showed better agreement with experimental data of Sahin (1994 than that of the Kim model (2004 and the Jonse and Parker model (1975. This is because the prediction on the frost height with time was improved by using the frost thermal conductivity reflecting the void fraction and density of ice crystal with frost growth. Therefore, the developed numerical model could be used for frosting performance prediction of the round plate fin-tube heat exchanger.

  4. Heat transfer between two parallel porous plates for Couette flow ...

    Indian Academy of Sciences (India)

    The aim of the present paper is to study the unsteady magneto-hydrodynamic viscous Couette flow with heat transfer in a Darcy porous medium between two ... Basic and Applied Science Department, College of Engineering and Technology, Arab Academy for Science, Technology, and Maritime Transport, Cairo 2033, ...

  5. Natural convection in a water tank with a heated horizontal plate facing downward

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sun Kyoo; Jung, Moon Kee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Helmut Hoffmann [Kemforschungszentrum Karlsruhe/IATF, (Germany)

    1995-06-01

    Experimental and computational studies were carried out to investigate the natural convection of the single phase flow in a tank with a heated horizontal plate facing downward. This is a simplified model for investigations of the influence of a core melt at the bottom of a reactor vessel on the thermal hydraulic behavior in a water filled cavity surrounding the vessel. In this case the vessel is simulated by a hexahedron insulated box with a heated plate horizontally mounted at the bottom of the box. The box with the heated plate is installed in a water filled hexahedron tank. Coolers are immersed in the U-type water volume between the box and the tank. Although the multicomponent flows exist more probably below the heated plate in reality, present study concentrates on the single phase flow in a first step prior to investigating the complicated multicomponent thermal hydraulic phenomena. In the present study, in order to get a better understanding for the natural convection characteristics below the heated plate, the velocity and temperature are measured by LDA(Laser Doppler Anemometry) and thermocouples, respectively. And flow fields are visualized by taking pictures of the flow region with suspended particles. The results show the occurrence of a very effective circulation of the fluid in the whole flow area as the heater and coolers are put into operation. In the remote region below the heated plate the flow is nearly stagnant, and a remarkable temperature stratification can be observed with very thin thermal boundary. Analytical predictions using the FLUTAN code show a reasonable matching of the measured velocity fields. 18 figs., 2 tabs., 18 refs. (Author).

  6. Experimental investigation of heat transfer in a falling down rivulet of liquid FC-72 on the vertical heated foil

    Directory of Open Access Journals (Sweden)

    Ponomarenko Tatyana

    2017-01-01

    Full Text Available Heat transfer at rivulet FC-72 flow over the constantan vertical heated foil with the length of 80 mm, width of 35 mm, and thickness of 25 mm was studied experimentally. Distributions of temperature on the bottom side of foil from the rivulet flow using the infrared thermographic data were obtained. In the future heat flux from the foil will be calculated with help of Koshi problem solution. It was shown that the rivulet width as the liquid flow rate increases, and it narrows as heat power increases due to the high evaporation rate. In the case with water, the rivulet narrows not so intensively as compared with the rivulet of FC-72 liquid. Good wettability and low heat of vaporization of FC-72 liquid contribute to using it to develop effective cooling systems.

  7. Experimental investigation of heat transfer in a falling down rivulet of liquid FC-72 on the vertical heated foil

    Science.gov (United States)

    Ponomarenko, Tatyana

    2017-10-01

    Heat transfer at rivulet FC-72 flow over the constantan vertical heated foil with the length of 80 mm, width of 35 mm, and thickness of 25 mm was studied experimentally. Distributions of temperature on the bottom side of foil from the rivulet flow using the infrared thermographic data were obtained. In the future heat flux from the foil will be calculated with help of Koshi problem solution. It was shown that the rivulet width as the liquid flow rate increases, and it narrows as heat power increases due to the high evaporation rate. In the case with water, the rivulet narrows not so intensively as compared with the rivulet of FC-72 liquid. Good wettability and low heat of vaporization of FC-72 liquid contribute to using it to develop effective cooling systems.

  8. Experimental Investigation of Heat Transfer Coefficient in Vertical Tube Rising Film Evaporator

    OpenAIRE

    Syed Naveed Ul Hasan; Sultan Ali

    2011-01-01

    This paper reports the experimental evaluation of the heat transfer coefficient (U) in a VRF (Vertical Tube Rising Film Evaporator). The aim is to describe the variation of U against different process parameters. Experiments were carried out for laminar flow conditions. The experimental unit is a floor standing tubular framework for a rising film evaporation system. There are many parameters affecting heat transfer coefficient in evaporators, but it was not possible to consider all of them, s...

  9. Experimental investigations and validation of two dimensional model for multistream plate fin heat exchangers

    Science.gov (United States)

    Goyal, Mukesh; Chakravarty, Anindya; Atrey, M. D.

    2017-03-01

    Experimental investigations are carried out using a specially developed three-layer plate fin heat exchanger (PFHE), with helium as the working fluid cooled to cryogenic temperatures using liquid nitrogen (LN2) as a coolant. These results are used for validation of an already proposed and reported numerical model based on finite volume analysis for multistream (MS) plate fin heat exchangers (PFHE) for cryogenic applications (Goyal et al., 2014). The results from the experiments are presented and a reasonable agreement is observed with the already reported numerical model.

  10. Development of a Resistive Plate Chamber with heat strengthened glass

    Science.gov (United States)

    Majumder, G.; Datar, V. M.; Kalmani, S. D.; Mondal, N. K.; Mondal, S.; Satyanarayana, B.; Shinde, R. R.

    2016-09-01

    The INO-ICAL is a proposed neutrino physics experiment, in which RPCs will be used as active detectors. The Iron Calorimeter (ICAL) detector will be made of 50 kTon of low carbon magnetized steel layers, tiled with 4 m × 2 m × 56 mm thick plates, alternating with layers of RPCs. The total number of 2 × 2 m2 RPCs required will be about 29000. However, during the assembly of RPCs, handling the 2 × 2 m2 normal float glass of thickness 3 mm is both difficult and risky. This prompted us to make RPCs with toughened glass and to characterize them. Toughened and tempered glass have higher mechanical strength compared to normal float glass and their processing involves controlled thermal or chemical treatment during the industrial production. This paper presents a comparison of the characteristics, such as noise rate, dark current, particle detection efficiency and time resolution, of normal and hardened glass RPCs.

  11. A Comprehensive Empirical Correlation for Finned Heat Exchangers with Parallel Plates Working in Oscillating Flow

    Directory of Open Access Journals (Sweden)

    Jiale Huang

    2017-02-01

    Full Text Available The oscillating-flow heat transfer performance in finned heat exchangers is one of the main factors affecting the working efficiency of regenerative heat engines and refrigerators. In addition to the working parameters, the geometrical parameters of finned heat exchangers are also major influencing factors. In the present study, the ratio of the heat exchanger length and hydraulic diameter is applied as an independent similarity criterion. An experimental study has been carried out with six different geometrical dimensions of finned heat exchangers with parallel plates, in order to analyze the impacts of fin length, plate spacing, and corresponding relative fluid displacement amplitude, under various working conditions. Based on 298 tested points, a comprehensive empirical correlation for the finned heat exchangers with parallel plates working in oscillating flow has been proposed, providing a relatively accurate prediction, with 98.6% of data in the ±20% deviation and 83.9% of data in the ±10% deviation, within the range discussed.

  12. Visualization study on the enhancement of heat transfer for the groove flat-plate heat pipe with nanoflower coated CuO layer

    Science.gov (United States)

    Xu, Pengfei; Li, Qiang

    2017-10-01

    A flat-plate heat pipe combining the groove structure and the nanoflower structure was developed to improve the wettability of the wick and enhance the phase change heat transfer. The flow and boiling phenomenon of the coolant inside the flat-plate heat pipe was experimentally observed and quantitatively analyzed by the visualization system. The experiment results indicated that the nanoflower coated groove flat-plate heat pipe, owning to its higher wetting area, larger boiling area, and more violent boiling behaviors, possessed a higher two phase heat transfer rate and larger equivalent thermal conductivity under high heat load conditions compared with the groove flat-plate heat pipe. Our work demonstrates a promising approach to address thermal management challenges for high heat flux electronic devices.

  13. The Heated Laminar Vertical Jet in a Liquid with Power-law Temperature Dependence of Density

    OpenAIRE

    Sharifulin, V. A.

    2009-01-01

    The analytical solution of heated laminar vertical jet in a liquid with power-law temperature dependence of density was obtained in the skin-layer approximation for certain values of Prandtl number. Cases of point and linear sources were considered.

  14. Heat transfer in a vertical rectangular duct filled with a porous matrix ...

    African Journals Online (AJOL)

    This paper presents the results of a comprehensive numerical study to analyze free convective heat transfer in a vertical rectangular duct filled with porous matrix and saturated with nanofluid for temperature dependent viscosity. Using the Darcy- Forchhiemer model, the momentum in the porous medium was simulated.

  15. Mixed convection flow and heat transfer in a vertical wavy channel ...

    African Journals Online (AJOL)

    Mixed convection flow and heat transfer in a vertical wavy channel containing porous and fluid layer with traveling thermal waves. ... Results for a wide range of governing parameters such as Grashof number, viscosity ratio, width ratio, conductivity ratio, and traveling thermal temperature are plotted for different values of ...

  16. On the pressure drop in Plate Heat Exchangers used as desorbers in absorption chillers

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Hernando, N.; de Vega, M. [Energy System Engineering (ISE), Departamento de Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganes, Madrid (Spain); Almendros-Ibanez, J.A. [Escuela de Ingenieros Industriales de Albacete, Departamento de Mecanica Aplicada e Ingenieria de Proyectos, Universidad de Castilla La Mancha, Campus Universitario s/n, 02071 Albacete (Spain); Renewable Energy Research Institute, c/de la Investigacion s/n, 02071 Albacete (Spain); Ruiz, G. [Energy Efficiency and Renewables Department, Tecnicas Reunidas S.A., C/Arapiles No. 13, 10a, 28015 Madrid (Spain)

    2011-02-15

    The influence of the pressure drop in Plate Heat Exchangers (PHE) in the boiling temperature of LiBr-H{sub 2}O and NH{sub 3}-H{sub 2}O solutions is studied. For the NH{sub 3}-H{sub 2}O solution, the pressure drop-temperature saturation relationship estates that high pressure drops can be allowed in the solution with negligible changes in the saturation temperature, and in the PHE performance. Besides, in the case of the LiBr-H{sub 2}O solution, as the working pressure is usually very low, the analysis of the pressure drop must be taken as a main limiting parameter for the use of Plate Heat Exchangers as vapour generators. In this case, the pressure drop may considerably change the boiling temperature of the solution entering the heat exchanger and therefore a higher heating fluid temperature may be required. A guideline to design these systems is proposed. (author)

  17. Experimental testing of various heat transfer structures in a flat plate thermal energy storage unit

    Science.gov (United States)

    Johnson, Maike; Fiß, Michael; Klemm, Torsten

    2016-05-01

    For solar process heat applications with steam as the working fluid and varying application parameters, a novel latent heat storage concept has been developed using an adaptation of a flat plate heat exchanger as the storage concept. Since the pressure level in these applications usually does not exceed 30 bar, an adaptation with storage material chambers arranged between heat transfer medium chambers is possible. Phase change materials are used as the storage medium, so that the isothermal evaporation of steam during discharging of the storage is paired with the isothermal solidification of the storage material. Heat transfer structures can be inserted into the chambers to adjust the power level for a given application. By combining the required number of flat plate heat exchanger compartments and inserting the appropriate heat transfer structure, the design can easily be adjusted for the required power level and capacity for a specific application. Within this work, the technical feasibility of this concept is proven. The dependence of the operating characteristics on the geometry of the heat exchanger is identified. A focus is on varying the power density by integrating conductive heat structures in the PCM.

  18. Entropy analysis of flow and heat transfer caused by a moving plate with thermal radiation

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Adnan Saeed; Ali, Asif [Quaid-i-Azam University, Islamabad (Pakistan)

    2014-01-15

    This study examines the effects of thermal radiation on entropy generation in flow and heat transfer caused by a moving plate. The equations that govern the flow and heat transfer phenomenon are solved numerically. Velocity and temperature profiles are obtained for the parameters involved in the problem. The expressions for the entropy generation number and the Bejan number are obtained based on the profiles. Graphs for velocity, temperature, the entropy generation number, and the Bejan number are plotted and discussed qualitatively.

  19. MHD Natural Convection Flow of an incompressible electrically conducting viscous fluid through porous medium from a vertical flat plate

    Directory of Open Access Journals (Sweden)

    Dr. G. Prabhakara Rao,

    2015-04-01

    Full Text Available We consider a two-dimensional MHD natural convection flow of an incompressible viscous and electrically conducting fluid through porous medium past a vertical impermeable flat plate is considered in presence of a uniform transverse magnetic field. The governing equations of velocity and temperature fields with appropriate boundary conditions are solved by the ordinary differential equations by introducing appropriate coordinate transformations. We solve that ordinary differential equations and find the velocity profiles, temperature profile, the skin friction and nusselt number. The effects of Grashof number (Gr, Hartmann number (M and Prandtl number (Pr, Darcy parameter (D-1 on velocity profiles and temperature profiles are shown graphically.

  20. Closed form solutions for unsteady free convection flow of a second grade fluid over an oscillating vertical plate.

    Directory of Open Access Journals (Sweden)

    Farhad Ali

    Full Text Available Closed form solutions for unsteady free convection flows of a second grade fluid near an isothermal vertical plate oscillating in its plane using the Laplace transform technique are established. Expressions for velocity and temperature are obtained and displayed graphically for different values of Prandtl number Pr, thermal Grashof number Gr, viscoelastic parameter α, phase angle ωτ and time τ. Numerical values of skin friction τ 0 and Nusselt number Nu are shown in tables. Some well-known solutions in literature are reduced as the limiting cases of the present solutions.

  1. Vertical Heat Flux in the Ocean: Estimates from Observations, and Comparisons with a Coupled General Circulation Model

    Science.gov (United States)

    Cummins, P. F.; Masson, D.; Saenko, O.

    2016-02-01

    The net heat uptake by the ocean in a changing climate involves small imbalances between the advective and diffusive processes that transport heat vertically. Generally, it is necessary to rely on global climate models to study these processes in detail. In the present study, it is shown that a key component of the vertical heat flux, namely that associated with the large-scale mean vertical circulation, can be diagnosed over extra-tropical regions from global observational data sets. This component is estimated based on the vertical velocity obtained from the geostrophic vorticity balance, combined with estimates of the absolute geostrophic flow. Results are compared with a non-eddy resolving, coupled atmosphere-ocean general circulation model. This shows reasonable agreement in the latitudinal distribution of the heat flux, along with net integrated vertical heat flux below about 300 meters depth. The mean vertical heat flux is shown to be dominated by the downward contribution from the southern hemisphere and, in particular, the Southern Ocean. This is driven by the Ekman vertical velocity which induces an upward vertical transport of seawater that is cold relative to the lateral average at a given depth. The correspondence with the coupled model breaks down at depths shallower than 300 m due to the dominant contribution of equatorial regions which have been excluded from the calculation. It appears that the vertical transport of heat by the large-scale mean circulation is consistent with simple linear vorticity dynamics over much of the ocean.

  2. Performance measurement of plate fin heat exchanger by exploration: ANN, ANFIS, GA, and SA

    Directory of Open Access Journals (Sweden)

    A.K. Gupta

    2017-01-01

    Full Text Available An experimental work is conducted on counter flow plate fin compact heat exchanger using offset strip fin under different mass flow rates. The training, testing, and validation set of data has been collected by conducting experiments. Next, artificial neural network merged with Genetic Algorithm (GA utilized to measure the performance of plate-fin compact heat exchanger. The main aim of present research is to measure the performance of plate-fin compact heat exchanger and to provide full explanations. An artificial neural network predicted simulated data, which verified with experimental data under 10–20% error. Then, the authors examined two well-known global search techniques, simulated annealing and the genetic algorithm. The proposed genetic algorithm and Simulated Annealing (SA results have been summarized. The parameters are impartially important for good results. With the emergence of a new data-driven modeling technique, Neuro-fuzzy based systems are established in academic and practical applications. The neuro-fuzzy interference system (ANFIS has also been examined to undertake the problem related to plate-fin heat exchanger performance measurement under various parameters. Moreover, Parallel with ANFIS model and Artificial Neural Network (ANN model has been created with emphasizing the accuracy of the different techniques. A wide range of statistical indicators used to assess the performance of the models. Based on the comparison, it was revealed that technical ANFIS improve the accuracy of estimates in the small pool and tropical ANN.

  3. Weldability of titanium sheet for plate type heat exchanger by Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Song, Moo Keun [Korea Maritime University, Busan (Korea, Republic of); Kwak, Myung Sub [Daewoo Shipbuilding and Marine Engineering Co., Ltd., Seoul (Korea, Republic of); Kim, Chang Soo [Donghwa Entec, Busan (Korea, Republic of)

    2009-07-01

    Pure titanium and its alloys have excellent corrosion resistance in seawater, high specific strength and creep properties in high temperature. For these reasons, the application is expanded into the field of marine as the heat exchanger plate, marine plant, and so on. Conventional plate type heat exchanger has prevented fluid leakage with gaskets between the plates by mechanical joining method, but gaskets are hardened in high temperature and pressure. Thus, LPG re-condenser which is always in high temperature and pressure, is jointed its plates by welding. Arc weldment has large HAZ and possibility of distortion because of large heat input. And EBW and diffusion bonding make high quality welds, but it should be done in vacuum conditions. Hence, laser welding is applied to get sound beads with small heat input and high aspect ratio in the air. In this study, weld properties of CP titanium were investigated by pulsed and CW Nd:YAG lasers. And welds without porosity, humping, crack, spatter and oxidation were accepted and the best welding conditions were applied to LPG reliquifaction system.

  4. Non-newtonian flow and pressure drop of pineapple juice in a plate heat exchanger

    Directory of Open Access Journals (Sweden)

    R. A. F. Cabral

    2010-12-01

    Full Text Available The study of non-Newtonian flow in plate heat exchangers (PHEs is of great importance for the food industry. The objective of this work was to study the pressure drop of pineapple juice in a PHE with 50º chevron plates. Density and flow properties of pineapple juice were determined and correlated with temperature (17.4 < T < 85.8ºC and soluble solids content (11.0 < Xs < 52.4 ºBrix. The Ostwald-de Waele (power law model described well the rheological behavior. The friction factor for non-isothermal flow of pineapple juice in the PHE was obtained for diagonal and parallel/side flow. Experimental results were well correlated with the generalized Reynolds number (20 < Re g < 1230 and were compared with predictions from equations from the literature. The mean absolute error for pressure drop prediction was 4% for the diagonal plate and 10% for the parallel plate.

  5. Boiling Heat Transfer of a Refrigerant Flowing Vertically Downward in a Mini-channel

    Science.gov (United States)

    Miyata, Kazushi; Mori, Hideo; Ohishi, Katsumi; Hamamoto, Yoshinori

    Experiments were performed on boiling heat transfer of a refrigerant R-410A flowing vertically downward in a copper rectangular tube and a triangular tube of 1.04 mm and 0.88 mm inside hydraulic diameter, respectively,for the development of a high-performance heat exchanger using small tubes or multi-port extruded tubes for air conditioning systems. Local heat transfer coefficients were measured in a range of mass fluxes from 30 to 200kg/(m2s), heat fluxes from 1 to 20 kW/m2 and quality from 0.05 to 1 at the evaporation temperature of 10 °C.Characteristics of the heat transfer coefficient and dryout quality were clarified by comparing the measurements with the data for the circular tube of 1.0 mm inside diameter previously obtained.

  6. Falling Film Evaporation On A Thermal Spray Metal Coated Vertical Corrugated Plate Conduits

    OpenAIRE

    Ebenezar, Jerin Robins; Mani, Annamalai

    2016-01-01

    In falling film evaporation process the heat is transferred from the condensing fluid to the liquid flowing over it. Falling film types of evaporators are widely used in refrigeration, desalination, petroleum refining, chemical industries, etc. Compared to flooded type evaporators, falling film evaporators need less amount of refrigerant and will give higher heat transfer rates even at lower heat fluxes. Tube geometry and tube size have an important role on the performance of the falling film...

  7. The thermal state of the Arabian plate derived from heat flow measurements in Oman and Yemen

    Science.gov (United States)

    Rolandone, Frederique; Lucazeau, Francis; Leroy, Sylvie; Mareschal, Jean-Claude; Jorand, Rachel; Goutorbe, Bruno; Bouquerel, Hélène

    2013-04-01

    The dynamics of the Afar plume and the rifting of the Red Sea and the Gulf of Aden affect the present-day thermal regime of the Arabian plate. However, the Arabian plate is a Precambrian shield covered on its eastern part by a Phanerozoic platform and its thermal regime, before the plume and rifting activities, should be similar to that of other Precambrian shields with a thick and stable lithosphere. The first heat flow measurements in the shield, in Saudi Arabia, yielded low values (35-44 mW/m2), similar to the typical shields values. Recent heat flow measurements in Jordan indicate higher values (56-66 mW/m2). As part of the YOCMAL project (YOung Conjugate MArgins Laboratory), we have conducted heat flow measurements in southern and northern Oman to obtain 10 new heat flux values in the eastern Arabian plate. We also derived 20 heat flux values in Yemen and Oman by processing thermal data from oil exploration wells. The surface heat flux in these different locations is uniformly low (45 mW/m2). The heat production in samples from the Dhofar and Socotra Precambrian basement is also low (0.7 µW/m3). Differences in heat flow between the eastern (60 mW/m2) and the western (45 mW/m2) parts of Arabia reflect differences in crustal heat production as well as a higher mantle heat flux in the west. We have calculated a steady state geotherm for the Arabian platform that intersects the isentropic temperature profile at a depth of about 150 km, consistent with the seismic observations. Seismic tomography studies of the mantle beneath Arabia also show this east-west contrast. Seismic studies have shown that the lithosphere is rather thin, 100 km or less below the shield and 150 km below the platform. The lithospheric thickness for the Arabian plate is 150 km, and the progressive thinning near the Red Sea, caused by the thermal erosion of the plume material, is too recent to be detected at the surface. The Afar plume mostly affects the base of the Arabian lithosphere along

  8. Free surface entropic lattice Boltzmann simulations of film condensation on vertical hydrophilic plates

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Karlin, Iliya; Popok, Vladimir

    2015-01-01

    A model for vapor condensation on vertical hydrophilic surfaces is developed using the entropic lattice Boltzmann method extended with a free surface formulation of the evaporation–condensation problem. The model is validated with the steady liquid film formation on a flat vertical wall....... It is shown that the model is in a good agreement with the classical Nusselt equations for the laminar flow regime. Comparisons of the present model with other empirical models also demonstrate good agreement beyond the laminar regime. This allows the film condensation modeling at high film Reynolds numbers...

  9. Buoyancy effects in vertical rectangular duct with coplanar magnetic field and single sided heat load

    Science.gov (United States)

    Kostichev, P. I.; Poddubnyi, I. I.; Razuvanov, N. G.

    2017-11-01

    In some DEMO blanket designs liquid metal flows in vertical ducts of rectangular cross-section between ceramic breeder units providing their cooling. Heat exchange in these conditions is governed by the influence of magnetic field (coplanar) and by buoyancy effects that depend on the flow orientation to the gravity vector (downward and upward flow). Magnetohydrodynamic and heat transfer of liquid metal in vertical rectangular ducts is not well researched. Experimental study of buoyancy effects in rectangular duct with coplanar magnetic field for one-sided heat load and downward and upward flowsis presented in this paper. The detail research with has been done on mercury MHD close loop with using of the probe technique allow to discover several advantageous and disadvantageous effects. The intensive impact of buoyancy force has been observed in a few regime of downward flow which has been laminarized by magnetic field. Due to the development in the flow of the secondary large-scale vortices heat transfer improved and the temperature fluctuations of the abnormally high intensity have been fixed. On the contrary, in the upward flow the buoyancy force stabilized the flow which lead to decreasing of the turbulence heat transfer ratio and, consequently, deterioration of heat transfer.

  10. Flexible thermoelectric generator with efficient vertical to lateral heat path films

    Science.gov (United States)

    Nishino, T.; Suzuki, T.

    2017-03-01

    This paper presents a flexible thermoelectric generator (TEG) with heat path films, which efficiently convert vertical temperature difference (ΔT) into lateral ΔT for thermocouple (TC). The heat path film consists of copper-filled-vias with low thermal resistance and polymer films with high thermal resistance. They were made in two fabrication steps. The first used a flexible printed circuit board with high density copper-filled-vias, while the second saw the deposition of thin film TCs. The combination offers flexibility of application due to its thinness, mass production potential, and low energy heat loss in the device. We demonstrated 54 TCs cm-2 in a 25 cm2 flexible TEG using Bi2Te3- and Nickel-based TCs respectively. The experimental data were in good accordance with a model which was calculated using the finite element method. The prototype flexible TEGs indicated that the proposed structure converted 84% heat flow from vertical into lateral ΔT in each TC, which was two times higher than the non-heat path film. They produced voltage of 11 mV/K/cm2 and power output of 0.1 µW/K/cm2 respectively. These flexible TEGs are ideally suited for harvesting from waste heat emitted from objects with large wavy areas because of their low weight, low cost and high efficiency conversion with flexibility.

  11. Mathematical model of a plate fin heat exchanger operating under solid oxide fuel cell working conditions

    Science.gov (United States)

    Kaniowski, Robert; Poniewski, Mieczysław

    2013-12-01

    Heat exchangers of different types find application in power systems based on solid oxide fuel cells (SOFC). Compact plate fin heat exchangers are typically found to perfectly fit systems with power output under 5 kWel. Micro-combined heat and power (micro-CHP) units with solid oxide fuel cells can exhibit high electrical and overall efficiencies, exceeding 85%, respectively. These values can be achieved only when high thermal integration of a system is assured. Selection and sizing of heat exchangers play a crucial role and should be done with caution. Moreover, performance of heat exchangers under variable operating conditions can strongly influence efficiency of the complete system. For that reason, it becomes important to develop high fidelity mathematical models allowing evaluation of heat exchangers under modified operating conditions, in high temperature regimes. Prediction of pressure and temperatures drops at the exit of cold and hot sides are important for system-level studies. Paper presents dedicated mathematical model used for evaluation of a plate fin heat exchanger, operating as a part of micro-CHP unit with solid oxide fuel cells.

  12. Investigation of one-dimensional heat flow in a solarflat plate collector with sun tracing system

    Directory of Open Access Journals (Sweden)

    H Samimi Akhijahani

    2016-09-01

    Full Text Available Introduction Drying is one of the most common methods for storing food and agricultural products. During drying process, free water that causes the growth of microorganisms and spoilage of products is removed from the product. There are several methods for drying of agricultural products. one of the most important methods of investment is drying by using sunlight. Iran is situated at 25- 43oE longitude and mean solar radiation is about 4.9 kwh.m-2.d-1. Because of the proper solar radiations in 95% of the agricultural areas in Iran, solar drying is widely used for drying of fruits and vegetables. The use of solar dryer causes saving in energy consumption and processing costs for drying of products in farms and gardens. Several researchers investigated heat transfer and heat flow in dryers. Selection of appropriate method was carried out for drying of agricultural products using heat pump. Experiments were done and mathematical relationships were estimated to obtain correlation parameters between Reynolds number and Nusselt number for the three cases of solar dryer (cabinet, indirect and combination.The best working conditions were determined for three types of solar collectors (flat, finned and corrugated. In this study, the process of heat transfer and heat transfer coefficient of a solar dryer with and without rotation of absorber plate was compared. Materials and Methods The experiments were conducted in Azarshahr, East Azarbayjan province, Iran in September 2014. Newton's law of thermodynamic was used to analyze the working condition of solar absorber. For this purpose the absorber plate was divided into four equal parts. According to the thermal equations and related boundary conditions as well as the relationship between heat transfer coefficient and the temperature gradient, equation 1 for the Nusselet number obtained: 1 Beside the relationship between Nusselt number and heat transfer coefficient is defined as equation 2: 2 Finally

  13. Impact of the filling level on the global heat transfer coefficient of a plate cross section for sorption heat pumps

    Science.gov (United States)

    Giraud, Florine; Hamitouche, Yacine; Vallon, Pierrick; Tremeac, Brice

    2017-02-01

    Compact evaporator like plate heat exchangers can play a significant role in reducing the investment cost of low cooling power sorption systems. However, when water is used as refrigerant, the working pressure is very low and vaporization phenomena are really different than vaporization phenomena occurring at higher pressures. Few studies focus on this subject and there is a lack of knowledge about vaporization (boiling or evaporation) phenomena occurring in compact evaporators at low pressure. The design of such evaporators remain manly empirical. There is thus a need of better characterization of the influence of the driving parameters in order to optimize the evaporator design. The objective of this article is thus to go further in the understanding of phenomena occurring in compact plate-type evaporators. In that goal, an experimental campaign was conducted to study continuously the performance of a smooth plate type evaporator as a function of the filling levels. The influence of the saturation pressure and the secondary fluid temperature on an overall heat transfer coefficient is studied. It is show that there is a dependence of the maximal overall heat transfer coefficient to these parameters. It is also shown that there seems to be a strong dependence between phenomena observed and phenomena that happens before. Thus, dynamic and inertia effects must be taken into account and model developed in absorption configuration cannot be applied for this study.

  14. Enhanced microwave absorbing properties and heat resistance of carbonyl iron by electroless plating Co

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu, E-mail: wanghongyu07010310@163.com; Zhu, Dongmei; Zhou, Wancheng; Luo, Fa

    2015-11-01

    Co coated carbonyl iron particles (Co (CI)) are fabricated through electroless plating method, and the electromagnetic microwave absorbing properties are investigated in the frequencies during 8.2–12.4 GHz. The complex permittivity of CI particles after electroless plating Co is higher than that of raw CI particles due to improvment of the polarization process. Furthermore, according to the XRD and TG results, the Co layer can enhance the heat resistance of CI particles. The bandwidth below −10 dB can reach 3.9 GHz for the Co(CI) absorbent. The results indicate that the electroless plating Co not only enhances the absorbing properties but also improves the heat resistance of CI. - Highlights: • The Co-coated carbonyl iron Co(CI) particles were prepared by electroless plating. • The electromagnetic wave absorbing properties of Co(CI) particles were studied. • The heat treatment on the absorbing property of Co(CI) particles was studied. • The Co(CI) particles have good absorbing property when compared with CI.

  15. Investigation of boiling heat transfer of binary mixture from vertical tube embedded in porous media

    Science.gov (United States)

    Mo, Hailong; Ma, Tongze; Zhang, Zhengfang

    1996-07-01

    Ethanol-water binary mixtures with 7 different mole fractions of ethanol ranging from 0 to 1 were adopted as testing liquids in the experiment. The vertical heating tube was inserted in porous matrix composed of five well sorted glass beads whose diameters range from 0.5 to 4.3 mm. Due to the effect of composition, the trend of combination of vapor bubbles was reduced, resulting in the increase of peak heat flux of binary mixture. With the increase of ethanol mole fraction, 0.5 mm diameter bead had lower value of peak heat flux, while for pure liquid the critical state is difficult to appear. With given diameter of glass bead, there existed an optimum value of mole fraction of ethanol, which was decreased with the increase of bead diameter. A dimensionless heat transfer coefficient was predicted through the introduction of a dimensionless parameter of porous matrix, which agreed with the experimental results satisfactorily.

  16. Heat Transfer Characteristics of the Supercritical CO{sub 2} Flowing in a Vertical Annular Channel

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Tae Ho; Bae, Yoon Yeong; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic characteristics of supercritical CO{sub 2} at several test sections with a different geometry. The loop uses CO{sub 2} because it has much lower critical pressure and temperature than those of water. Experimental study of heat transfer to supercritical CO{sub 2} in a vertical annular channel with and hydraulic diameter of 4.5 mm has been performed. CO{sub 2} flows downward through the annular channel simulating the downward-flowing coolant in a multi-pass reactor or water rod moderator in a single pass reactor. The heat transfer characteristics in a downward flow were analyzed and compared with the upward flow test results performed previously with the same test section at KAERI

  17. Numerical simulation of calcium sulfate (CaSO4) fouling in the plate heat exchanger

    Science.gov (United States)

    Xu, Zhiming; Zhao, Yu; Han, Zhimin; Wang, Jingtao

    2018-01-01

    Plate heat exchanger is a widely used apparatus in the industrial production processes. Through a numerical simulation method, this paper calculates the deposition rate of CaSO4 fouling on heat transfer surfaces of the plate heat exchanger under saturation in the bulk. The effects of CaSO4 concentration in the range 0.7 kg/m3 to 1.5 kg/m3, inlet flow velocity under turbulent flow, and the fluid's inlet temperature from 288 K to 328 K on the deposition rate, removal mass rate and fouling resistance are investigated. The simulation results are compared with the experimental results showing similar trend. The simulation results show that the concentration and the flow velocity affect significantly the fouling characteristics in the plate heat exchanger. The deposition mass rate, removal mass rate, and asymptotic value of fouling resistance all increase with the increase in CaSO4 concentration and the inlet temperature of the hot fluid, while the asymptotic value of fouling resistance decreases with the increasing of inlet flow velocity. The influence of the inlet temperature of cold fluid may be negligible.

  18. A study of natural convection cooling of multiple discrete heat sources in a vertical channel

    Science.gov (United States)

    Willson, Thomas D.

    1988-06-01

    Natural convection liquid cooling of simulated electronic components in a vertical channel was investigated. The test surface contained a single column of eight rectangular, protruding heated elements, each simulating a 20 pin dual-in-line package. Temperature measurements and flow visualization were performed for a number of power dissipation levels and channel widths. Collectively, this information was used in interpreting the flow and transport characteristics. A correlation to predict the heat transfer rates was developed based on the component surface temperatures. Optimum channel widths were determined from these surface temperature measurements for the range of power levels investigated. Temperature distributions in the fluid were measured using a traversing thermocouple probe.

  19. Investigation on Minimum Film Boiling Point of Highly Heated Vertical Metal Rod in Aqueous Surfactant Solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chi Young; Kim, Jae Han [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2017-09-15

    In this study, experiments were conducted on the MFB(minimum film boiling) point of highly heated vertical metal rod quenched in aqueous surfactant solution at various temperature conditions. The aqueous Triton X-100 solution(100 wppm) and pure water were used as the liquid pool. Their temperatures ranged from 77 °C to 100 °C. A stainless steel vertical rod of initial center temperature of 500 °C was used as a test specimen. In both liquid pools, as the liquid temperature decreased, the time to reach the MFB point decreased with a parallel increase in the temperature and heat flux of the MFB point. However, over the whole present temperature range, in the aqueous Triton X-100 solution, the time to reach the MFB point was longer, while the temperature and heat flux of the MFB point were reduced when compared with pure water. Based on the present experimental data, this study proposed the empirical correlations to predict the MFB temperature of a high temperature vertical metal rod in pure water and in aqueous Triton X-100 solution.

  20. Double diffusive unsteady convective micropolar flow past a vertical porous plate moving through binary mixture using modified Boussinesq approximation

    Directory of Open Access Journals (Sweden)

    Isaac Lare Animasaun

    2016-06-01

    Full Text Available The problem of unsteady convective with thermophoresis, chemical reaction and radiative heat transfer in a micropolar fluid flow past a vertical porous surface moving through binary mixture considering temperature dependent dynamic viscosity and constant vortex viscosity has been investigated theoretically. For proper and correct analysis of fluid flow along vertical surface with a temperature lesser than that of the free stream, Boussinesq approximation and temperature dependent viscosity model were modified and incorporated into the governing equations. The governing equations are converted to systems of ordinary differential equations by applying suitable similarity transformations and solved numerically using fourth-order Runge–Kutta method along with shooting technique. The results of the numerical solution are presented graphically and in tabular forms for different values of parameters. Velocity profile increases with temperature dependent variable fluid viscosity parameter. Increase of suction parameter corresponds to an increase in both temperature and concentration within the thin boundary layer.

  1. Modeling and analysis of waves in a heat conducting thermo-elastic plate of elliptical shape

    Directory of Open Access Journals (Sweden)

    R. Selvamani

    Full Text Available Wave propagation in heat conducting thermo elastic plate of elliptical cross-section is studied using the Fourier expansion collocation method based on Suhubi's generalized theory. The equations of motion based on two-dimensional theory of elasticity is applied under the plane strain assumption of generalized thermo elastic plate of elliptical cross-sections composed of homogeneous isotropic material. The frequency equations are obtained by using the boundary conditions along outer and inner surface of elliptical cross-sectional plate using Fourier expansion collocation method. The computed non-dimensional frequency, velocity and quality factor are plotted in dispersion curves for longitudinal and flexural (symmetric and antisymmetric modes of vibrations.

  2. Natural Convection Heat and Mass Transfer from Falling Films in Vertical Channels

    Science.gov (United States)

    Buck, Gregory Allen

    1990-01-01

    In the design of solar collector/regenerators for use in open cycle absorption refrigeration (OCAR) units, the problem of predicting evaporation rates and solution temperatures is of paramount importance in determining overall cycle performance. This transport of heat and mass is dominated by natural convection with buoyant forces primarily generated as a result of film heating by the solar flux, but aided by the evaporation of water (the lighter species) into the rising moist air stream. In order to better understand the mechanism of these combined buoyant interactions, the governing equations for natural convection flow in a vertical channel bounded by a heated falling film (simulating a glazed collector/regenerator) were solved using several different finite difference techniques. The numerical results were validated against existing experimental and numerical results for simplified boundary conditions. The appropriate nondimensionalization for the falling film boundary condition was established, ostensibly for the first time, and a parametric study for an air-water vapor mixture has been presented. Curve fits to the numerical results were determined for engineering design applications. To further confirm the validity of the numerical solutions, an experimental apparatus was constructed using electric resistance heat to simulate the constant heat flux of the solar source. Water was introduced at the top of this heated vertical surface at various flow rates and under various supplied heat fluxes, and a natural convection channel flow generated between the heated falling film and a parallel, plexiglass surface. Film temperatures and moist air velocity profiles were measured at various streamwise (vertical) locations for comparison with the numerical results. In general, measured film temperatures were 15 to 20 percent lower than the predicted values, but came to within 3 percent of the predictions when experimental uncertainty was incorporated into the numerical

  3. Magnetohydrodynamic mixed convective slip flow over an inclined porous plate with viscous dissipation and Joule heating

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-06-01

    Full Text Available The combined effects of viscous dissipation and Joule heating on the momentum and thermal transport for the magnetohydrodynamic flow past an inclined plate in both aiding and opposing buoyancy situations have been carried out. The governing non-linear partial differential equations are transformed into a system of coupled non-linear ordinary differential equations using similarity transformations and then solved numerically using the Runge–Kutta fourth order method with shooting technique. Numerical results are obtained for the fluid velocity, temperature as well as the shear stress and the rate of heat transfer at the plate. The results show that there are significant effects of pertinent parameters on the flow fields.

  4. Selected studies of flow maldistribution in a minichannel plate heat exchanger

    Science.gov (United States)

    Dąbrowski, Paweł; Klugmann, Michał; Mikielewicz, Dariusz

    2017-09-01

    Analysis of the state of-the-art in research of minichannel heat exchangers, especially on the topic of flow maldistribution in multiple channels, has been accomplished. Studies on minichannel plate heat exchanger with 51 parallel minichannels with four hydraulic diameters, i.e., 461 μm, 574 μm, 667 μm, and 750 μm have been presented. Flow at the instance of filling the microchannel with water at low flow rates has been visualized. The pressure drop characteristics for single minichannel plate have been presented along with the channels blockage, which occurred in several cases. The impact of the mass flow rate and channels' cross-section dimensions on the flow maldistribution were illustrated.

  5. Boundary layer flow adjacent to a permeable vertical plate with constant surface temperature

    Science.gov (United States)

    Najib, Najwa; Bachok, Norfifah; Md Arifin, Norihan

    2013-04-01

    The effects of suction/injection on the laminar boundary layer flow adjacent to a vertical wall with constant surface temperature are considered. The governing partial differential equations are first transformed into ordinary differential equations before being solved numerically by a finite difference method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. It is found that the solution was unique for the assisting flow, while dual solutions exist for the opposing flow. The results indicate that the range of known dual solutions increases with suction and decreases with injection.

  6. Experimental results for hydrocarbon refrigerant vaporization inside brazed plate heat exchangers at high pressure

    DEFF Research Database (Denmark)

    Desideri, Adriano; Ommen, Torben Schmidt; Wronski, Jorrit

    2016-01-01

    In recent years the interest in small capacity organic Rankine cycle (ORC) power systems for harvesting low qualitywaste thermal energy from industrial processes has been steadily growing. Micro ORC systems are normally equippedwith brazed plate heat exchangers which allows for efficient heat...... transfer with a compact design. An accurate prediction of the heat transfer process characterizing these devices is required from the design phase to the development of modelbased control strategies. The current literature is lacking experimental data and validated correlations for vaporization of organic...... fluids at typical working conditions of ORC systems for low temperature waste heat recovery (WHR) applications. Based on these premises, a novel testrig has been recently designed and built at the Technical University of Denmark to simulate the evaporating condition occurring in a small capacity ORC...

  7. Fluxless Brazing and Heat Treatment of a Plate-Fin Sandwich Actively Cooled Panel

    Science.gov (United States)

    Beuyukian, C. S.

    1978-01-01

    The processes and techniques used to fabricate plate-fin sandwich actively cooled panels are presented. The materials were 6061 aluminum alloy and brazing sheet having clad brazing alloy. The panels consisted of small scale specimens, fatigue specimens, and a large 0.61 m by 1.22 m test panel. All panels were fluxless brazed in retorts in heated platen presses while exerting external pressure to assure intimate contact of details. Distortion and damage normally associated with that heat treatment were minimized by heat treating without fixtures and solution quenching in an organic polymer solution. The test panel is the largest fluxless brazed and heat treated panel of its configuration known to exist.

  8. A film model for free convection over a vertical porous plate with blowing or suction

    NARCIS (Netherlands)

    Brouwers, Jos

    1993-01-01

    A film model is described for free convective heat transfer and friction in the presence of wall suction or injection. The analysis yields a thermal correction factor, which appears to be the classical (Ackermann) expression, and a novel friction correction factor, derived here for the first time.

  9. The influence of flow maldistribution on the performance of inhomogeneous parallel plate heat exhangers

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Engelbrecht, Kurt; Bahl, Christian R.H.

    2013-01-01

    of 50 random stacks having equal average channel thicknesses with 20 channels each are used to provide a statistical base. The standard deviation of the stacks is varied as are the flow rate (Reynolds number) and the thermal conductivity of the solid heat exchanger material. It is found that the heat...... transfer performance of inhomogeneous stacks of parallel plates may be reduced significantly due to the maldistribution of the fluid flow compared to the ideal homogeneous case. The individual channels experience different flow velocities and this further induces an inter-channel thermal cross talk....

  10. Application of DTM for kerosene-alumina nanofluid flow and heat transfer between two rotating plates

    Science.gov (United States)

    Mahmoodi, M.; Kandelousi, Sh.

    2015-07-01

    In this paper, the differential transformation method (DTM) is applied to solve the governing equations of nanofluid flow and heat transfer between two parallel plates in a rotating system. The working fluid is a kerosene-alumina nanofluid. The influences of viscosity parameter, rotation parameter, nanoparticle volume fraction and Eckert number on the flow and heat transfer characteristics have been investigated. Results indicate that skin friction is a decreasing function of the viscosity and rotation parameters. Also it can be found that the Nusselt number has a direct relationship with the rotation parameter and the nanoparticle volume fraction while it has a reverse relationship with the viscosity parameter and the Eckert number.

  11. Development of flat-plate solar collectors for the heating and cooling of buildings: Executive summary

    Science.gov (United States)

    1978-01-01

    An efficient, low cost, flat-plate solar collector was developed. Computer aided mathematical models of the heat process in the collector were used in defining absorber panel configuration; determining insulation thickness; and in selecting the number, spacing, and material of the covers. Prototypes were built and performance tested. Data from simulated operation of the collector are compared with predicted loads from a number of locations to determine the degree of solar utilization.

  12. Monitoring of a flat plate solar thermal field supplying process heat

    OpenAIRE

    Cozzini Marco; Fedrizzi Roberto; Pipiciello Mauro; Söll Robert; Ben Hassine Ilyes; Pietruschka Dirk

    2016-01-01

    The article reports the performance data of a flat plate collector field installed in Austria and supplying process heat to a meat factory, up to a temperature of about 95 °C. The presented data span an entire year, thereby including seasonal effects and allowing for a full characterization of the system performances. Sensor uncertainty is also discussed in detail. Finally, a bin method analysis of the field efficiency is provided. To this purpose, different operating conditions are concisely...

  13. Analytical model of unsteady-state convective heat transfer between the heat carrier and the finite sizes plate adjusted for the thermal relaxation

    Directory of Open Access Journals (Sweden)

    Makarushkin Danila

    2017-01-01

    Full Text Available A hyperbolic boundary value problem of the thermal conduction of a two-dimensional plate with the third kind boundary conditions is formulated. The transient thermal process in the plate is due to the temperature changes of the external medium over time and along the plate length, and also by a multiple step change of the plate surface heat transfer coefficient throughout the transient process. An analytical solution with improved convergence adjusted for thermal relaxation and thermal damping is obtained for the temperature field in the plate.

  14. Large heat and fluid fluxes driven through mid-plate outcrops on ocean crust

    Science.gov (United States)

    Hutnak, M.; Fisher, A. T.; Harris, R.; Stein, C.; Wang, K.; Spinelli, G.; Schindler, M.; Villinger, H.; Silver, E.

    2008-09-01

    Hydrothermal circulation on the sea floor at mid-ocean ridge flanks extracts ~30% of heat from the oceanic lithosphere on a global basis and affects numerous tectonic, magmatic and biogeochemical processes. However, the magnitude, mechanisms and implications of regional-scale fluid and heat flow on mid-ocean ridge flanks are poorly understood. Here we analyse swath-map, seismic and sea-floor heat-flux data to quantify the heat and fluid discharge through a few widely spaced basement outcrops on the Cocos Plate. Heat removed by conduction from a 14,500 square kilometre region of the sea floor is 60-90% lower than that predicted by lithospheric cooling models. This implies that a substantial portion of the heat is extracted by advection, which requires fluid discharge of 4-80×103 litres per second. The heat output of individual discharging outcrops is inferred to be comparable to that from black-smoker vent fields seen on mid-ocean ridges. Our analysis shows that hydrothermal circulation on mid-ocean ridge flanks through widely spaced outcrops can extract a large fraction of lithospheric heat. This circulation requires a very high crustal permeability at a regional scale. Focused flows of warm, nutrient-rich hydrothermal fluid may enhance sub-seafloor microbial habitats and enable direct sampling of these systems.

  15. Numerical analysis of natural convection for non-Newtonian fluid conveying nanoparticles between two vertical parallel plates

    Science.gov (United States)

    Sahebi, S. A. R.; Pourziaei, H.; Feizi, A. R.; Taheri, M. H.; Rostamiyan, Y.; Ganji, D. D.

    2015-12-01

    In this paper, natural convection of non-Newtonian bio-nanofluids flow between two vertical flat plates is investigated numerically. Sodium Alginate (SA) and Sodium Carboxymethyl Cellulose (SCMC) are considered as the base non-Newtonian fluid, and nanoparticles such as Titania ( TiO2 and Alumina ( Al2O3 were added to them. The effective thermal conductivity and viscosity of nanofluids are calculated through Maxwell-Garnetts (MG) and Brinkman models, respectively. A fourth-order Runge-Kutta numerical method (NUM) and three Weighted Residual Methods (WRMs), Collocation (CM), Galerkin (GM) and Least-Square Method (LSM) and Finite-Element Method (FEM), are used to solve the present problem. The influence of some physical parameters such as nanofluid volume friction on non-dimensional velocity and temperature profiles are discussed. The results show that SCMC- TiO2 has higher velocity and temperature values than other nanofluid structures.

  16. Impact of Seasonal Heat Accumulation on Operation of Geothermal Heat Pump System with Vertical Ground Heat Exchanger

    Science.gov (United States)

    Timofeev, D. V.; Malyavina, E. G.

    2017-11-01

    The subject of the investigation was to find out the influence of heat pump operation in summer on its function in winter. For this purpose a mathematical model of a ground coupled heat pump system has been developed and programmed. The mathematical model of a system ground heat exchanger uses the finite difference method to describe the heat transfer in soil and the analytical method to specify the heat transfer in the U-tubes heat exchanger. The thermal diffusivity by the heat transfer in the soil changes during gradual freezing of the pore moisture and thus slows soil freezing. The mathematical model of a heat pump includes the description of a scroll compressor and the simplified descriptions of the evaporator and condenser. The analysis showed that heating during the cold season and cooling in the warm season affect the average heat transfer medium temperature in the soil loop in the winter season. It has been also showed that the degree of this effect depends on the clay content in the soil.

  17. Prediction of critical heat flux for water in uniformly heated vertical ...

    African Journals Online (AJOL)

    Accuracy of correlations was estimated by calculating both the average and RMS error with available experimental data, and a new correlation is presented. The new correlation predicts the CHF data with average error 0.07% and RMS error 7.91 %. Keywords: CHF - Heat transfer - Water vapor - Porous coated tubes.

  18. Parametric study on density stratification erosion caused by a horizontal steam jet interacting with a vertical plate obstruction

    Energy Technology Data Exchange (ETDEWEB)

    Paranjape, S., E-mail: Sidharth.paranjape@psi.ch; Kapulla, R., E-mail: ralf.kapulla@psi.ch; Mignot, G., E-mail: guillaume.mignot@psi.ch; Paladino, D., E-mail: domenico.paladino@psi.ch

    2017-02-15

    Highlights: • Helium layer breakup by horizontal steam jet impinging on vertical plate. • A small change in geometric configuration lead to a large change in flow pattern. • The functional dependence of erosion front motion on time. • Creation of a concentration stratification in adjacent vessel. - Abstract: During postulated severe accident scenarios in nuclear power plants, a hydrogen-rich layer might form at the top of the reactor containment. Various flow patterns resulting from the release of steam from the primary circuit might break the layer and redistribute hydrogen in the containment. The prediction of the gas transport during the accident requires detailed modeling of the processes involved. Advanced lumped parameter codes or computational fluid dynamics codes are used for this purpose. These codes need to be validated against experimental data obtained in large scale experimental facilities, where scale distortions are reduced. In order to obtain the required data with high spatial and temporal resolution, experiments were carried out in the PANDA facility in Switzerland as a part of OECD/HYMERES (HYdrogen Mitigation Experiments for Reactor Safety) project. The present experiments address the breakup of a layer rich in helium (used as simulant for hydrogen), under steam environment and its redistribution in two interconnected vessels (total volume of 183.3 m{sup 3}) under the action of a diffused flow resulting from the interaction of a horizontal steam jet with a vertical plate obstruction. The influence of the distance between the jet exit and the obstruction on the flow pattern was investigated. Spatial and temporal distribution of the gas concentration, the temperature and local gas velocity field were measured. It was found that a small change in the geometric configuration lead to a large change in the flow pattern. Reducing the jet-obstruction distance slowed down the helium-layer erosion process by a factor of two. Additionally, the

  19. A form of MHD universal equations of unsteady incompressible fluid flow with variable elctroconductivity on heated moving plate

    Directory of Open Access Journals (Sweden)

    Boričić Zoran

    2005-01-01

    Full Text Available This paper deals with laminar, unsteady flow of viscous, incompressible and electro conductive fluid caused by variable motion of flat plate. Fluid electro conductivity is variable. Velocity of the plate is time function. Plate moves in its own plane and in "still" fluid. Present external magnetic filed is perpendicular to the plate. Plate temperature is a function of longitudinal coordinate and time. Viscous dissipation, Joule heat, Hole and polarization effects are neglected. For obtaining of universal equations system general similarity method is used as well as impulse and energy equation of described problem.

  20. Dynamics of explosive boiling and third heat transfer crisis at subcooling on a vertical surface

    Science.gov (United States)

    Avksentyuk, B. P.; Ovchinnikov, V. V.

    2017-07-01

    Results of experimental studies on dynamics of explosive boiling and third heat transfer crisis under the conditions of liquid subcooling are presented for the vertical arrangement of the heat-transfer surface. Acetone was used in experiments at the pressure in the working volume from 20 to 46 kPa and subcooling from 0 to 20 K. The studied processes were recorded. Data on the velocity of evaporation front propagation at liquid subcooling were obtained. These data are compared with the results of calculations according to the models available in the literature. The effect of liquid subcooling on the regions of regime parameters corresponding to explosive boiling and third heat transfer crisis is studied.

  1. Fem Simulation of Triple Diffusive Natural Convection Along Inclined Plate in Porous Medium: Prescribed Surface Heat, Solute and Nanoparticles Flux

    Directory of Open Access Journals (Sweden)

    Goyal M.

    2017-12-01

    Full Text Available In this paper, triple diffusive natural convection under Darcy flow over an inclined plate embedded in a porous medium saturated with a binary base fluid containing nanoparticles and two salts is studied. The model used for the nanofluid is the one which incorporates the effects of Brownian motion and thermophoresis. In addition, the thermal energy equations include regular diffusion and cross-diffusion terms. The vertical surface has the heat, mass and nanoparticle fluxes each prescribed as a power law function of the distance along the wall. The boundary layer equations are transformed into a set of ordinary differential equations with the help of group theory transformations. A wide range of parameter values are chosen to bring out the effect of buoyancy ratio, regular Lewis number and modified Dufour parameters of both salts and nanofluid parameters with varying angle of inclinations. The effects of parameters on the velocity, temperature, solutal and nanoparticles volume fraction profiles, as well as on the important parameters of heat and mass transfer, i.e., the reduced Nusselt, regular and nanofluid Sherwood numbers, are discussed. Such problems find application in extrusion of metals, polymers and ceramics, production of plastic films, insulation of wires and liquid packaging.

  2. Fem Simulation of Triple Diffusive Natural Convection Along Inclined Plate in Porous Medium: Prescribed Surface Heat, Solute and Nanoparticles Flux

    Science.gov (United States)

    Goyal, M.; Goyal, R.; Bhargava, R.

    2017-12-01

    In this paper, triple diffusive natural convection under Darcy flow over an inclined plate embedded in a porous medium saturated with a binary base fluid containing nanoparticles and two salts is studied. The model used for the nanofluid is the one which incorporates the effects of Brownian motion and thermophoresis. In addition, the thermal energy equations include regular diffusion and cross-diffusion terms. The vertical surface has the heat, mass and nanoparticle fluxes each prescribed as a power law function of the distance along the wall. The boundary layer equations are transformed into a set of ordinary differential equations with the help of group theory transformations. A wide range of parameter values are chosen to bring out the effect of buoyancy ratio, regular Lewis number and modified Dufour parameters of both salts and nanofluid parameters with varying angle of inclinations. The effects of parameters on the velocity, temperature, solutal and nanoparticles volume fraction profiles, as well as on the important parameters of heat and mass transfer, i.e., the reduced Nusselt, regular and nanofluid Sherwood numbers, are discussed. Such problems find application in extrusion of metals, polymers and ceramics, production of plastic films, insulation of wires and liquid packaging.

  3. Heat transfer regimes for a flow of water at supercritcal conditions in vertical channels

    Science.gov (United States)

    Deev, V. I.; Kharitonov, V. S.; Churkin, A. N.; Baisov, A. M.

    2017-11-01

    Heat transfer regimes observed in experiments with water at supercritical conditions flowing in vertical channels of various cross-sections (such as round pipes, annulus, or rod bundles) are analyzed. In accordance with the established practice, the normal and the deteriorated heat transfer regimes were singled out as the basic regimes specific for heat carriers with highly variable properties. At the same time, it has been established that most published experimental data on supercritical pressure water heat transfer along the length of test sections demonstrate combined (or transient) heat transfer regimes. The features can be presented as a superposition of characteristics of the above-mentioned basic regimes. The combined regimes are not stable in certain ranges of water flow conditions in which sudden transitions between the basic regimes can occur. A system of similarity criteria governing heat transfer rate in the vicinity of the critical point is examined. As applicable to cores of water-cooled reactors, due to a small hydraulic diameter of cooling channels, buoyancy forces acting in these channels are negligible as compared with the inertia effects caused by thermal acceleration of the flow and viscous force. This concept yields two integrated criteria whose use in the correction factors for the basic heat transfer equation, which we proposed previously for the normal regimes, adequately (with an error of 20-25%) describes the specific of the heat transfer coefficient in the normal, deteriorated, and combined regimes. A system of equations is proposed for design calculation of heat transfer in channels of nuclear reactors cooled with supercritical pressure water.

  4. Experimental study on the method of estimating the vertical design wave force acting on a submerged dual horizontal plate

    Directory of Open Access Journals (Sweden)

    Hyuck-Min Kweon

    2013-12-01

    Full Text Available A steel-type breakwater that uses a submerged dual horizontal porous plate was originally proposed by Kweon et al. (2005, and its hydrodynamic characteristics and design methodology were investigated in a series of subsequent researches. In particular, Kweon et al. (2011 proposed a method of estimating the vertical uplift force that acts on the horizontal plate, applicable to the design of the pile uplift drag force. However, the difference between the method proposed by Kweon et al. (2011, and the wave force measured at a different time without a phase difference, have not yet been clearly analyzed. In this study, such difference according to the method of estimating the wave force was analyzed, by measuring the wave pressure acting on a breakwater model. The hydraulic model test was conducted in a two-dimensional wave flume of 60.0 m length, 1.5 m height and 1.0 m width. The steepness range of the selected waves is 0.01~0.03, with regular and random signals. 20 pressure gauges were used for the measurement. The analysis results showed that the wave force estimate in the method of Kweon et al. (2011 was smaller than the wave force calculated from the maximum pressure at individual points, under a random wave action. Meanwhile, the method of Goda (1974 that was applied to the horizontal plate produced a smaller wave force, than the method of Kweon et al. (2011. The method of Kweon (2011 was already verified in the real sea test of Kweon et al. (2012, where the safety factor of the pile uplift force was found to be greater than 2.0. Based on these results, it was concluded that the method of estimating the wave force by Kweon et al. (2011 can be satisfactorily used for estimating the uplift force of a pile.

  5. Quantifying Station Quality from Residual Vertical Motions in the EarthScope Plate Boundary Observatory GPS Network

    Science.gov (United States)

    Puskas, C. M.; Phillips, D. A.; Meertens, C. M.; Herring, T.

    2016-12-01

    Vertical motions measured by GPS stations in the EarthScope Plate Boundary Observatory (PBO) network are a combination of tectonic motion, hydrologic loading processes, local volcanism, atmospheric loading, errors inherent to a satellite-based navigation system, and other local events. We take all the position time series in the PBO network and apply a linear and sinusoidal fit, and we also correct for offsets from earthquakes and equipment, and for post-seismic decay. The residuals can then be used as a starting point for station quality evaluations. Well-fit residuals for healthy stations should have low RMS values and plot as relatively flat time series, with bumps in the time series attributable to seasonal variations in hydrologic loading (e.g., an unusually wet or dry year). Exceptions for healthy stations without flat time series occur in regions with volcanism (affecting the vertical and horizontal components) and episodic tremor and slip (affecting horizontal components). In such cases healthy and unhealthy stations can be separated by examining various quality (QC) parameters from processing-derived errors to multipath to signal-to-noise ratios. Furthermore, otherwise healthy station may experience episodes of low-quality as equipment fails or the station is overgrown with vegetation or buried in snow or something else unusual occurs. Focusing on the vertical residuals, we calculate short and long-term RMS values for all stations and compare them with other QC parameters to separate healthy and well-behaved stations, healthy and nonlinear stations, and unhealthy, poorly-behaved stations. We also showcase examples of low-QC and other unusual episodes in the network.

  6. Prediction and measurement of heat transfer rates for the shock-induced unsteady laminar boundary layer on a flat plate

    Science.gov (United States)

    Cook, W. J.

    1972-01-01

    The unsteady laminar boundary layer induced by the flow-initiating shock wave passing over a flat plate mounted in a shock tube was theoretically and experimentally studied in terms of heat transfer rates to the plate for shock speeds ranging from 1.695 to 7.34 km/sec. The theory presented by Cook and Chapman for the shock-induced unsteady boundary layer on a plate is reviewed with emphasis on unsteady heat transfer. A method of measuring time-dependent heat-transfer rates using thin-film heat-flux gages and an associated data reduction technique are outlined in detail. Particular consideration is given to heat-flux measurement in short-duration ionized shocktube flows. Experimental unsteady plate heat transfer rates obtained in both air and nitrogen using thin-film heat-flux gages generally agree well with theoretical predictions. The experimental results indicate that the theory continues to predict the unsteady boundary layer behavior after the shock wave leaves the trailing edge of the plate even though the theory is strictly applicable only for the time interval in which the shock remains on the plate.

  7. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature......’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...

  8. Heat Transfer on a Flat Plate with Uniform and Step Temperature Distributions

    Science.gov (United States)

    Bahrami, Parviz A.

    2005-01-01

    Heat transfer associated with turbulent flow on a step-heated or cooled section of a flat plate at zero angle of attack with an insulated starting section was computationally modeled using the GASP Navier-Stokes code. The algebraic eddy viscosity model of Baldwin-Lomax and the turbulent two-equation models, the K- model and the Shear Stress Turbulent model (SST), were employed. The variations from uniformity of the imposed experimental temperature profile were incorporated in the computations. The computations yielded satisfactory agreement with the experimental results for all three models. The Baldwin- Lomax model showed the closest agreement in heat transfer, whereas the SST model was higher and the K-omega model was yet higher than the experiments. In addition to the step temperature distribution case, computations were also carried out for a uniformly heated or cooled plate. The SST model showed the closest agreement with the Von Karman analogy, whereas the K-omega model was higher and the Baldwin-Lomax was lower.

  9. Flat plate solar collector for water pre-heating using concentrated solar power (CSP)

    Science.gov (United States)

    Peris, Leonard Sunny; Shekh, Md. Al Amin; Sarker, Imran

    2017-12-01

    Numerous attempt and experimental conduction on different methods to harness energy from renewable sources are being conducted. This study is a contribution to the purpose of harnessing solar energy as a renewable source by using flat plate solar collector medium to preheat water. Basic theory of solar radiation and heat convection in water (working fluid) has been combined with heat conduction process by using copper tubes and aluminum absorber plate in a closed conduit, covered with a glazed through glass medium. By this experimental conduction, a temperature elevation of 35°C in 10 minutes duration which is of 61.58% efficiency range (maximum) has been achieved. The obtained data and experimental findings are validated with the theoretical formulation and an experimental demonstration model. A cost effective and simple form of heat energy extraction method for space heating/power generation has been thoroughly discussed with possible industrial implementation possibilities. Under-developed and developing countries can take this work as an illustration for renewable energy utilization for sustainable energy prospect. Also a full structure based data to derive concentrated solar energy in any geographical location of Bangladesh has been outlined in this study. These research findings can contribute to a large extent for setting up any solar based power plant in Bangladesh irrespective of its installation type.

  10. Two-phase distribution in the vertical flow line of a domestic wet central heating system

    Directory of Open Access Journals (Sweden)

    Ge Y.T.

    2013-04-01

    Full Text Available The theoretical and experimental aspects of bubble distribution in bubbly two-phase flow are reviewed in the context of the micro bubbles present in a domestic gas fired wet central heating system. The latter systems are mostly operated through the circulation of heated standard tap water through a closed loop circuit which often results in water supersaturated with dissolved air. This leads to micro bubble nucleation at the primary heat exchanger wall, followed by detachment along the flow. Consequently, a bubbly two-phase flow characterises the flow line of such systems. The two-phase distribution across the vertical and horizontal pipes was measured through a consideration of the volumetric void fraction, quantified through photographic techniques. The bubble distribution in the vertical pipe in down flow conditions was measured to be quasi homogenous across the pipe section with a negligible reduction in the void fraction at close proximity to the pipe wall. Such a reduction was more evident at lower bulk fluid velocities.

  11. An experimental study of naturally driven heated air flow in a vertical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Mostafa; Bayat, Mohammad Mehdi [Department of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2011-01-15

    Specifications of warm air flow within a vertical pipe which is induced by the buoyancy effect were investigated in this study. Air from surroundings was directed into a heating chamber connected to a vertical pipe to establish a flow within the pipe. The temperature and the velocity were measured at different points within the stable flow and the mean values of these parameters were computed. Mass flow rate of air was evaluated using ideal gas assumption. In order to investigate the effect of the thermal boundary condition of the pipe, two tests were conducted; once for the pipe exposed to the surroundings and then for the pipe with a thermal insulation. A model for predicting the induced flow rate of warm air was developed and the predictions of the model were compared with the experimental data over the tested range of the parameters. (author)

  12. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.

    Directory of Open Access Journals (Sweden)

    Aaiza Gul

    Full Text Available This study investigated heat transfer in magnetohydrodynamic (MHD mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4 was selected as a conventional base fluid. In addition, non-magnetic (Al2O3 aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.

  13. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.

    Science.gov (United States)

    Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad

    2015-01-01

    This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.

  14. New application of plate-fin heat exchanger with regenerative cryocoolers

    Science.gov (United States)

    Chang, Ho-Myung; Gwak, Kyung Hyun

    2015-09-01

    A design idea is newly proposed and investigated for the application of plate-fin heat exchanger (PFHX) with regenerative cryocoolers. The role of this heat exchanger is to effectively absorb heat from the stream of coolant and deliver it to the cold-head of a cryocooler. While various types of tubular HX's have been developed so far, a small PFHX could be more useful for this purpose by taking advantage of compactness and design flexibility. In order to confirm the feasibility and effectiveness, a prototype of aluminum-brazed PFHX is designed, fabricated, and tested with a single-stage GM cryocooler in experiments for subcooling liquid nitrogen from 78 K to 65-70 K. The results show that the PFHX is 30-50% more effective in cooling rate than the tubular HX's. Several potential applications of PFHX are presented and discussed with specific design concepts.

  15. A simple method to definethe heat conductivity of a limited plate

    Directory of Open Access Journals (Sweden)

    Evdokimov Andrey Sergeevich

    2014-02-01

    Full Text Available To the present moment there are a lot of ways to define heat conductivity and thermal diffusivity of solid bodies. The schemes of determining heat conductivity, which use transient methods, usually include a heater and a cooler. The sample is placed in between them. The temperature and temperature differential is determined using several thermocouples.The authors present a method of determining the thermal characteristics of a sample in the form of a rectangular plate, allowing to apply only one thermocouple, which leads to a simple analytical expression for thermal diffusivity. The described method provides high-precision determination of thermal diffusivity of the body of small size and with the accuracy sufficient for practice — conductivity coefficient. The method uses a simple mathematical model and minimal hardware resources compared to other methods. The exception is the heat-insulating materials. The determination of their thermal conductivity using this method can lead to poor accuracy.

  16. Development of flat-plate solar collectors for the heating and cooling of buildings

    Science.gov (United States)

    Ramsey, J. W.; Borzoni, J. T.; Holland, T. H.

    1975-01-01

    The relevant design parameters in the fabrication of a solar collector for heating liquids were examined. The objective was to design, fabricate, and test a low-cost, flat-plate solar collector with high collection efficiency, high durability, and requiring little maintenance. Computer-aided math models of the heat transfer processes in the collector assisted in the design. The preferred physical design parameters were determined from a heat transfer standpoint and the absorber panel configuration, the surface treatment of the absorber panel, the type and thickness of insulation, and the number, spacing and material of the covers were defined. Variations of this configuration were identified, prototypes built, and performance tests performed using a solar simulator. Simulated operation of the baseline collector configuration was combined with insolation data for a number of locations and compared with a predicted load to determine the degree of solar utilization.

  17. Three-Dimensional Numerical Simulation of Plate Forming by Line Heating

    DEFF Research Database (Denmark)

    Clausen, Henrik Bisgaard

    1999-01-01

    Line Heating is the process of forming (steel) plates into shape by means of localised heating often along a line. Though any focussed heat source will do, the inexpensive and widely available oxyacettylene gas torch is commonly applied in ship production.Over the years, many researchers have...... addressed the problem of simulating the process, and although very few have been successful in gaining accurate results valuable information about the mechanics have been derived. However, the increasing power of computers now allows for numerical simulations of the forming process using a three......-dimensional thermo-mechanical model. Although very few have been successful in gaining accurate results valuable information about the mechanics has been derived. However, the increasing power of computers now allows for numerical simulations of the forming process using a three-dimensional thermo-mechanical model....

  18. A comparison of micro-structured flat-plate and cross-cut heat sinks for thermoelectric generation application

    DEFF Research Database (Denmark)

    Rezania, Alireza; Rosendahl, L. A.

    2015-01-01

    Heat sink configuration has strong impact on net power output from thermoelectric generators (TEGs). A weak cooling strategy can even cause negative net power output from the thermoelectric device. However, the net power output can be significantly improved by optimal design of the heat sink....... In this study, a micro-structured plate-fin heat sink is compared to a modified design of cross-cut heat sink applied to TEGs over a range of temperatures and thermal conductivities. The particular focus of this study is to explore the net power output from the TEG module. The three-dimensional governing......-fin heat sink is higher, while the TEG with cross-cut heat sink has higher maximum net power output at high flow inlet velocity. The maximum net power output is equal in the TEGs with plate-fin heat sink and cross-cut heat sink....

  19. Experimental Investigation of Heat Transfer Coefficient in Vertical Tube Rising Film Evaporator

    Directory of Open Access Journals (Sweden)

    Syed Naveed Ul Hasan

    2011-10-01

    Full Text Available This paper reports the experimental evaluation of the heat transfer coefficient (U in a VRF (Vertical Tube Rising Film Evaporator. The aim is to describe the variation of U against different process parameters. Experiments were carried out for laminar flow conditions. The experimental unit is a floor standing tubular framework for a rising film evaporation system. There are many parameters affecting heat transfer coefficient in evaporators, but it was not possible to consider all of them, so parameters including, Reynolds Number (NRe, Temperature Difference (DT, Feed Temperature (Tf and Re-circulation Ratio (R were investigated while other factors were kept constant. The experimental results obtained showed that heat transfer coefficient increased with the increase in Reynolds number, feed temperature and temperature difference. The increase in re-circulation ratio also increased the heat transfer coefficient but up to the value of 0.85 and after this the heat transfer coefficient started decreasing slowly and then remained almost constant. An experimental correlation has been developed to relate the Nusselt number and the parameters investigated during the research work.

  20. Numerical study of combined convection heat transfer for thermally developing upward flow in a vertical cylinder

    Directory of Open Access Journals (Sweden)

    Mohammed Hussein A.

    2008-01-01

    Full Text Available The problem of the laminar upward mixed convection heat transfer for thermally developing air flow in the entrance region of a vertical circular cylinder under buoyancy effect and wall heat flux boundary condition has been numerically investigated. An implicit finite difference method and the Gauss elimination technique have been used to solve the governing partial differential equations of motion (Navier Stocks equations for two-dimensional model. This investigation covers Reynolds number range from 400 to 1600, heat flux is varied from 70 W/m2 to 400 W/m2. The results present the dimensionless temperature profile, dimensionless velocity profile, dimensionless surface temperature along the cylinder, and the local Nusselt number variation with the dimensionless axial distance Z+. The dimensionless velocity and temperature profile results have revealed that the secondary flow created by natural convection have a significant effect on the heat transfer process. The results have also shown an increase in the Nusselt number values as the heat flux increases. The results have been compared with the available experimental study and with the available analytical solution for pure forced convection in terms of the local Nusselt number. The comparison has shown satisfactory agreement. .

  1. A Prototype Flux-Plate Heat-Flow Sensor for Venus Surface Heat-Flow Determinations

    Science.gov (United States)

    Morgan, Paul; Reyes, Celso; Smrekar, Suzanne E.

    2005-01-01

    Venus is the most Earth-like planet in the Solar System in terms of size, and the densities of the two planets are almost identical when selfcompression of the two planets is taken into account. Venus is the closest planet to Earth, and the simplest interpretation of their similar densities is that their bulk compositions are almost identical. Models of the thermal evolution of Venus predict interior temperatures very similar to those indicated for the regions of Earth subject to solid-state convection, but even global analyses of the coarse Pioneer Venus elevation data suggest Venus does not lose heat by the same primary heat loss mechanism as Earth, i.e., seafloor spreading. The comparative paucity of impact craters on Venus has been interpreted as evidence for relatively recent resurfacing of the planet associated with widespread volcanic and tectonic activity. The difference in the gross tectonic styles of Venus and Earth, and the origins of some of the enigmatic volcano-tectonic features on Venus, such as the coronae, appear to be intrinsically related to Venus heat loss mechanism(s). An important parameter in understanding Venus geological evolution, therefore, is its present surface heat flow. Before the complications of survival in the hostile Venus surface environment were tackled, a prototype fluxplate heat-flow sensor was built and tested for use under synthetic stable terrestrial surface conditions. The design parameters for this prototype were that it should operate on a conforming (sand) surface, with a small, self-contained power and recording system, capable of operating without servicing for at least several days. The precision and accuracy of the system should be < 5 mW/sq m. Additional information is included in the original extended abstract.

  2. Convective Flow of a Colloidal Suspension in a Vertical Slot Heated from Side Wall

    Science.gov (United States)

    Cherepanov, I. N.; Smorodin, B. L.

    2017-12-01

    Convective flows and the transport of nanoparticles are numerically investigated in the vertical slot filled with a colloidal suspension and heated from the side. The thermodiffusion and gravitational sedimentation of the nanoparticles are taken into account. Two different regimes of laminar flow are found. The intensity of the first regime is much lower than in molecular liquids (the magnitudes of the convective and diffusion fluxes have the same order). The second regime is more intensive. The transitions between these two regimes are investigated. It is shown that intensive convective flow completely mixes the colloidal suspension to a homogeneous state as a result of the long transient process.

  3. Numerical Investigation of Deviation of Phase Change Characteristics of Horizontal and Vertical Flat Heat Pipe Configurations

    Directory of Open Access Journals (Sweden)

    Rakesh Hari

    2015-12-01

    Full Text Available The flow characteristics in the porous wick of a flat heat pipe subjected to boiling and condensation are analysed here using two-phase mixture model. Steady laminar boundary layer flow in the capillary wick structure is considered for both vertical and horizontal orientations. The governing boundary layer partial differential equations are simplified using similarity transformation. The transformed equations are then solved numerically by using shooting iterative technique. Investigation was carried out for the effects of the involved parameters such as saturation and temperature across the boundary layer. The behaviour of non-dimensional numbers due to the orientation of the heat pipe is also discussed. The study confirms that orientation plays a significant role in flow and temperature field.

  4. On Convective Dusty Flow Past a Vertical Stretching Sheet with Internal Heat Absorption

    Directory of Open Access Journals (Sweden)

    Raj Nandkeolyar

    2013-01-01

    Full Text Available The steady two-dimensional boundary layer flow of a viscous, incompressible, and electrically conducting dusty fluid past a vertical permeable stretching sheet under the influence of a transverse magnetic field with the viscous and Joule dissipation is investigated. The fluid particles are assumed to be heat absorbing and the temperature at the surface of the sheet is a result of convective heating. The governing nonlinear partial differential equations are transformed to a set of highly nonlinear coupled ordinary differential equations using a suitable similarity transformation and the resulting system is then solved numerically. It is found inter alia that the contributions of viscous and Joule dissipation in the flow are to increase the thickness of the thermal boundary layer.

  5. Enhance heat transfer in the channel with V-shaped wavy lower plate using liquid nanofluids

    Directory of Open Access Journals (Sweden)

    Azher M. Abed

    2015-03-01

    Full Text Available The heat transfer and flow characteristics in corrugated with V-shape lower plate using nanofluids are numerically studied. The computations are performed on uniform heat flux over a range of Reynolds number (Re 8000–20,000. The governing equations are numerically solved in the domain by a finite volume method (FVM using the k–ε standard turbulent model. Studies are carried out for different types of nanoparticles Al2O3,CuO, SiO2 and ZnO with different volume fractions in the range of 0–4%. Three different types of base fluid (water, glycerin, ethylene glycol are also examined. Results indicated that the average Nusselt number for nanofluids is greater than that of the base liquid. The SiO2 nanofluid yields the best heat transfer enhancement among all other type of nanofluids. Heat transfer enhancement increase with increases the volumetric concentration, but it is accompanied by increasing pressure drop values. Moreover, the average Nusselt number increases with an increase in Reynolds number and volume concentration. The SiO2–glycerin nanofluid has the highest Nusselt number compared with other base fluids. The present study shows that these V-shaped wavy channels have advantages by using nanofluids and thus serve as promising candidates for incorporation into efficient heat transfer devices.

  6. The influence of heat treatment by annealing on clad plates residual stresses

    Directory of Open Access Journals (Sweden)

    B. Mateša

    2011-10-01

    Full Text Available The influence of applied clad procedure as well as heat treatment by annealing (650 °C/2h on level and nature of residual stresses was researched. Three clad procedures are used i.e. hot rolling, submerged arc welding (SAW with strip electrode and explosion welding. The relaxed deformation measurement on clad plate surfaces was performed by applying centre-hole drilling method using special measuring electrical resistance strain gauges (rosettes. After performed measuring, size and nature of residual stresses were determined using analytical method. Depending of residual stresses on depth of drilled blind-hole is studied.

  7. Monitoring of a flat plate solar thermal field supplying process heat

    Directory of Open Access Journals (Sweden)

    Cozzini Marco

    2016-01-01

    Full Text Available The article reports the performance data of a flat plate collector field installed in Austria and supplying process heat to a meat factory, up to a temperature of about 95 °C. The presented data span an entire year, thereby including seasonal effects and allowing for a full characterization of the system performances. Sensor uncertainty is also discussed in detail. Finally, a bin method analysis of the field efficiency is provided. To this purpose, different operating conditions are concisely represented by the so-called reduced temperature, typically used in solar collector applications.

  8. Solution of the two- dimensional heat equation for a rectangular plate

    Directory of Open Access Journals (Sweden)

    Nurcan BAYKUŞ SAVAŞANERİL

    2015-11-01

    Full Text Available Laplace equation is a fundamental equation of applied mathematics. Important phenomena in engineering and physics, such as steady-state temperature distribution, electrostatic potential and fluid flow, are modeled by means of this equation. The Laplace equation which satisfies boundary values is known as the Dirichlet problem. The solutions to the Dirichlet problem form one of the most celebrated topics in the area of applied mathematics. In this study, a novel method is presented for the solution of two-dimensional heat equation for a rectangular plate. In this alternative method, the solution function of the problem is based on the Green function, and therefore on elliptic functions.

  9. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Søren Juhl; Chen, Min

    2012-01-01

    This paper presents a numerical model of an exhaust heat recovery system for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) stack. The system is designed as thermoelectric generators (TEGs) sandwiched in the walls of a compact plate-fin heat exchanger. Its model is based...

  10. On the vertical exchange of heat, mass and momentum over complex, mountainous terrain

    Directory of Open Access Journals (Sweden)

    Mathias Walter Rotach

    2015-12-01

    Full Text Available The role of the atmospheric boundary layer (ABL in the atmosphere-climate system is the exchange of heat, mass and momentum between ‘the earth’s surface’ and the atmosphere. Traditionally, it is understood that turbulent transport is responsible for this exchange and hence the understanding and physical description of the turbulence structure of the boundary layer is key to assess the effectiveness of earth-atmosphere exchange. This understanding is rooted in the (implicit assumption of a scale separation or spectral gap between turbulence and mean atmospheric motions, which in turn leads to the assumption of a horizontally homogeneous and flat (HHF surface as a reference, for which both physical understanding and model parameterizations have successfully been developed over the years. Over mountainous terrain, however, the ABL is generically inhomogeneous due to both thermal (radiative and dynamic forcing. This inhomogeneity leads to meso-scale and even sub-meso-scale flows such as slope and valley winds or wake effects. It is argued here that these (submeso-scale motions can significantly contribute to the vertical structure of the boundary layer and hence vertical exchange of heat and mass between the surface and the atmosphere. If model grid resolution is not high enough the latter will have to be parameterized (in a similar fashion as gravity wave drag parameterizations take into account the momentum transport due to gravity waves in large-scale models. In this contribution we summarize the available evidence of the contribution of (submeso-scale motions to vertical exchange in mountainous terrain from observational and numerical modeling studies. In particular, a number of recent simulation studies using idealized topography will be summarized and put into perspective – so as to identify possible limitations and areas of necessary future research.

  11. Real-time simulation of thermal stresses and creep in plates subjected to transient heat input

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Jacobsen, Torben Krogsdal; Hansen, P.N.

    1997-01-01

    -difference approach. It applies a general formulation which takes into account nonconstant material properties (e.g. temperature, material, or time dependency), heat-transfer coefficients, and creep. The temperature calculation applies a one-dimensional numerical model, whereas the stress analysis is semi......This paper presents a novel numerical technique for solving the temperature and stress fields in a plate subjected to arbitrarily varying transient boundary conditions (transient temperature and heat-flux variations) on a surface. The numerical method is based on the control-volume finite......-two-dimensional. Both plane stress and plane strain conditions are considered as extreme cases. It is shown that, by using the developed numerical technique, very fast real-time simulations can be performed. The method has proved its applicability in e.g. high-pressure die-casting, and applications to this industrial...

  12. Design of plate directional heat transmission structure based on layered thermal metamaterials

    Science.gov (United States)

    Sun, L. K.; Yu, Z. F.; Huang, J.

    2016-02-01

    Invisibility cloaks based on transformation optics are often closed structures; however, such a structure limits the kinds of objects that can be placed in the cloak. In this work, we adopt a transformation thermodynamics approach to design an "open cloak", called a plate directional heat transmission structure, which is capable of guiding heat fluxes to the flank region of the metamaterial device. The most fascinating and unique feature of the device is that the lower surface can remain at a lower temperature compared with the SiO2 aerogel thermal insulation material. Our results are expected to markedly enhance capabilities in thermal protection, thermal-energy utilization, and domains beyond. In addition to the theoretical analysis, the present design is demonstrated in numerical simulations based on finite element calculations.

  13. Multi-objective optimization of a plate and frame heat exchanger via genetic algorithm

    Science.gov (United States)

    Najafi, Hamidreza; Najafi, Behzad

    2010-06-01

    In the present paper, a plate and frame heat exchanger is considered. Multi-objective optimization using genetic algorithm is developed in order to obtain a set of geometric design parameters, which lead to minimum pressure drop and the maximum overall heat transfer coefficient. Vividly, considered objective functions are conflicting and no single solution can satisfy both objectives simultaneously. Multi-objective optimization procedure yields a set of optimal solutions, called Pareto front, each of which is a trade-off between objectives and can be selected by the user, regarding the application and the project’s limits. The presented work takes care of numerous geometric parameters in the presence of logical constraints. A sensitivity analysis is also carried out to study the effects of different geometric parameters on the considered objective functions. Modeling the system and implementing the multi-objective optimization via genetic algorithm has been performed by MATLAB.

  14. Design of plate directional heat transmission structure based on layered thermal metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L. K.; Yu, Z. F.; Huang, J., E-mail: slk-0-1999@163.com [China Aerodynamics Research and Development Center, Mianyang 621000 (China)

    2016-02-15

    Invisibility cloaks based on transformation optics are often closed structures; however, such a structure limits the kinds of objects that can be placed in the cloak. In this work, we adopt a transformation thermodynamics approach to design an “open cloak”, called a plate directional heat transmission structure, which is capable of guiding heat fluxes to the flank region of the metamaterial device. The most fascinating and unique feature of the device is that the lower surface can remain at a lower temperature compared with the SiO{sub 2} aerogel thermal insulation material. Our results are expected to markedly enhance capabilities in thermal protection, thermal-energy utilization, and domains beyond. In addition to the theoretical analysis, the present design is demonstrated in numerical simulations based on finite element calculations.

  15. The influence of distance between heat sources in hybrid welded plate on fusion zone geometry

    Directory of Open Access Journals (Sweden)

    W. Piekarska

    2011-04-01

    Full Text Available Results of numerical analysis into temperature field in hybrid laser-arc welding process with motion of liquid material taken intoaccount are presented in this study. On the basis of obtained results the influence of the distance between the arc foot point and the laserbeam focal point on the shape and size of fusion zone in hybrid butt welded plate. Temperature field was calculated on the basis ofsolution of transient heat transfer equation. The solution of Navier-Stokes equation allowed for simulation of fluid flow in the fusion zone.Fuzzy solidification front was assumed in calculations with linear approximation of solid fraction in solid-liquid region where liquidmaterial flow through porous medium is taken into consideration. Numerical solution algorithms were developed for three-dimensionalproblem. Established numerical model of hybrid welding process takes into account different electric arc and laser beam heat sourcespower distributions.

  16. Design of plate directional heat transmission structure based on layered thermal metamaterials

    Directory of Open Access Journals (Sweden)

    L. K. Sun

    2016-02-01

    Full Text Available Invisibility cloaks based on transformation optics are often closed structures; however, such a structure limits the kinds of objects that can be placed in the cloak. In this work, we adopt a transformation thermodynamics approach to design an “open cloak”, called a plate directional heat transmission structure, which is capable of guiding heat fluxes to the flank region of the metamaterial device. The most fascinating and unique feature of the device is that the lower surface can remain at a lower temperature compared with the SiO2 aerogel thermal insulation material. Our results are expected to markedly enhance capabilities in thermal protection, thermal-energy utilization, and domains beyond. In addition to the theoretical analysis, the present design is demonstrated in numerical simulations based on finite element calculations.

  17. Numerical simulation of a plate-fin heat exchanger with offset fins using porous media approach

    Science.gov (United States)

    Juan, Du; Hai-Tao, Zhao

    2017-09-01

    In this paper, the study was focused on a double flow plate-fin heat exchanger (PFHE) whose heat transfer element was offset staggered fin. Numerical simulations have been carried out to investigate the thermodynamic characteristics of a full-size PFHE via the porous media approach. Based on the numerical model, the effects of the dynamic viscosity and the locations of the inlet and outlet tubes on flow distribution and pressure drop of the PFHE were studied. The results showed that flow distribution of the PFHE was improved by increasing the dynamic viscosity. Therefore, the relationship between flow distribution and pressure drop was analyzed under various inlet velocity, and a correlation among flow distribution, pressure drop, and Reynolds number was derived. Finally, the middle-based strategy was proposed and numerically verified to improve flow distribution of the PFHE.

  18. Armor plate protection for the Doublet III vacuum vessel for neutral beam heating

    Energy Technology Data Exchange (ETDEWEB)

    Colleraine, A.P.; Kamperschroer, J.H.; Pipkins, J.F.

    1979-10-01

    The design of vacuum vessel armor plate for neutral beam systems presents a number of challenges to the engineer. Heat fluxes of several hundred watts/cm/sup 2/ must be handled on a routine basis during normal plasma operations, and a factor of ten increase in these fluxes can occur during plasma disruptions. At the present time, a graphite tile system appears to be the best candidate for such a situation. Heat fluxes in excess of 4 kW/cm/sup 2/ can be routinely sustained and the material sputtered or evaporated from the surface has a low atomic number. The system proposed for Doublet III will provide valuable data for the designers of future fusion reactors and will also provide proof-of-principle demonstrations for such machines as TFTR and JET.

  19. Multi-objective optimization of a plate and frame heat exchanger via genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Hamidreza; Najafi, Behzad [K. N. Toosi University of Technology, Department of Mechanical Engineering, Tehran (Iran)

    2010-06-15

    In the present paper, a plate and frame heat exchanger is considered. Multi-objective optimization using genetic algorithm is developed in order to obtain a set of geometric design parameters, which lead to minimum pressure drop and the maximum overall heat transfer coefficient. Vividly, considered objective functions are conflicting and no single solution can satisfy both objectives simultaneously. Multi-objective optimization procedure yields a set of optimal solutions, called Pareto front, each of which is a trade-off between objectives and can be selected by the user, regarding the application and the project's limits. The presented work takes care of numerous geometric parameters in the presence of logical constraints. A sensitivity analysis is also carried out to study the effects of different geometric parameters on the considered objective functions. Modeling the system and implementing the multi-objective optimization via genetic algorithm has been performed by MATLAB. (orig.)

  20. The study and development of the empirical correlations equation of natural convection heat transfer on vertical rectangular sub-channels

    Science.gov (United States)

    Kamajaya, Ketut; Umar, Efrizon; Sudjatmi, K. S.

    2012-06-01

    This study focused on natural convection heat transfer using a vertical rectangular sub-channel and water as the coolant fluid. To conduct this study has been made pipe heaters are equipped with thermocouples. Each heater is equipped with five thermocouples along the heating pipes. The diameter of each heater is 2.54 cm and 45 cm in length. The distance between the central heating and the pitch is 29.5 cm. Test equipment is equipped with a primary cooling system, a secondary cooling system and a heat exchanger. The purpose of this study is to obtain new empirical correlations equations of the vertical rectangular sub-channel, especially for the natural convection heat transfer within a bundle of vertical cylinders rectangular arrangement sub-channels. The empirical correlation equation can support the thermo-hydraulic analysis of research nuclear reactors that utilize cylindrical fuel rods, and also can be used in designing of baffle-free vertical shell and tube heat exchangers. The results of this study that the empirical correlation equations of natural convection heat transfer coefficients with rectangular arrangement is Nu = 6.3357 (Ra.Dh/x)0.0740.

  1. MHD mixed convection flow of power law non-Newtonian fluids over an isothermal vertical wavy plate

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaei Nejad, Mehrzad [Faculty of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht (Iran, Islamic Republic of); Javaherdeh, K., E-mail: Javaherdeh@guilan.ac.ir [Faculty of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht (Iran, Islamic Republic of); Moslemi, M. [Ayandegan Institute of Higher Education, Tonekabon (Iran, Islamic Republic of)

    2015-09-01

    Mixed convection flow of electrically conducting power law fluids along a vertical wavy surface in the presence of a transverse magnetic field is studied numerically. Prandtl coordinate transformation together with the spline alternating direction implicit method is employed to solve the boundary layer equations. The influences of both flow structure and dominant convection mode on the overall parameters of flow and heat transfer are well discussed. Also, the role of magnetic field in controlling the boundary layers is investigated. The variation of Nusselt number and skin friction coefficient are studied as functions of wavy geometry, magnetic field, buoyancy force and material parameters. Results reveal the interrelation of the contributing factors. - Highlights: • Magnetic field effects undermine the heat transfer for n<1 more markedly. • Magnetic field decreases the values of Nu number and C{sub f} downstream of the plat. • The magnetic field opposes the second harmonic in the curve of Nu number and C{sub f}. • The wavy geometry influences the pseudo-plastic fluids (n<1) more profoundly.

  2. Vertical Variations In Heat Flow Inferred From Experiments In Deep Boreholes

    Science.gov (United States)

    Popov, Y.; Romushkevich, R.; Gorobtsov, D.; Korobkov, D.

    2012-04-01

    Deep scientific and parametric continental boreholes allow to obtain representative experimental data on combination of the geothermal parameters of the crust - temperature, temperature gradient, rock thermal properties, and, as the result, heat flow density values - which are more reliable compared to the previous data from shallow boreholes. Special advantages of the scientific boreholes include also a possibility for many repeated temperature logging during long time intervals (several years often) after a finish of the drilling that allowed (1) to determine temperatures and temperature gradient values corresponding to thermal equilibrium of the formations studied, (2) to study temporal regularities in temperature and temperature gradient behaviour within different formation layers during the formation recovery process. Scientific boreholes are drilled with numerous coring (often - with continuous coring) that provides the possibility to obtain detailed information on a distribution of rock thermal conductivity along the borehole. As a result, the scientific deep and super-deep boreholes provided the unique possibility for the determination of vertical distributions of the heat flow density that can not be reached normally in other boreholes. Experimental geothermal and petrothermal investigations performed for the super-deep boreholes Kola, Ural, Vorotilovo, Tyumen, Yen-Yakha (all - Russia), Saatly (Azerbaidzhan), and deep scientific and parametric boreholes Kolva, Timano-Pechora, Tyrnyaus, (all - Russia), Krivoy Rog (Ukraine), Muruntau (Uzbekistan), Nordlingen-72 (Germany), Yaxcopoil-1 (Mexico) allowed us to establish the following important peculiarities in geothermal parameters of the crustal blocks studied with scientific deep drilling were established from the investigations: (1) temperature gradient recovery up to undisturbed values occurs essentially faster than it was assumed earlier; (2) a rate of temperature gradient recovery was found to be different

  3. Boiling Heat Transfer and Pressure Drop of a Refrigerant Flowing Vertically Downward in a Small Diameter Tube

    Science.gov (United States)

    Miyata, Kazushi; Mori, Hideo; Ohishi, Katsumi; Tanaka, Hirokazu

    Experiments were performed on boiling heat transfer and pressure drop of a refrigerant R410A flowing vertically downward in a copper smooth tube of 1.0 mm inside diameter for the development of a high-performance heat exchanger using small diameter tubes for air conditioning systems. Local heat transfer coefficients were measured in a range of mass fluxes from 30 to 200 kg/(m2•s), heat fluxes from 1 to 16 kW/m2 and quality from 0.1 to over 1 at evaporation temperature of 10°C. Pressure drops were measured and flow patterns were observed at mass fluxes from 30 to 200 kg/(m2•s) and quality from 0.1 to 0.9. The characteristics of frictional pressure drop, heat transfer coefficient and dryout qualities were clarified by comparing the measurements with the data for the vertically upward flow previously obtained.

  4. Study on heat transfer characteristics of the one side-heated vertical channel with inserted porous materials applied as a vessel cooling system

    Directory of Open Access Journals (Sweden)

    Shinji Kuriyama

    2015-08-01

    Full Text Available In the very high temperature reactor (VHTR, which is a next generation nuclear reactor system, ceramics are used as a fuel coating material and graphite is used as a core structural material. Even if a depressurization accident occurs and the reactor power goes up instantly, the temperature of the core will change only slowly. This is because the thermal capacity of the core is so high. Therefore, the VHTR system can passively remove the decay heat of the core by natural convection and radiation from the surface of the reactor pressure vessel. The objectives of this study are to investigate the heat transfer characteristics of natural convection of a one-side heated vertical channel with inserted porous materials of high porosity and also to develop the passive cooling system for the VHTR. An experiment was carried out using a one-side heated vertical rectangular channel. To obtain the heat transfer and fluid flow characteristics of the vertical channel with inserted porous material, we have also carried out a numerical analysis using a commercial Computational Fluid Dynamics (CFD code. This paper describes the thermal performances of the one-side heated vertical rectangular channel with an inserted copper wire of high porosity.

  5. Modeling the dynamic operation of a small fin plate heat exchanger – parametric analysis

    Directory of Open Access Journals (Sweden)

    Motyliński Konrad

    2015-09-01

    Full Text Available Given its high efficiency, low emissions and multiple fuelling options, the solid oxide fuel cells (SOFC offer a promising alternative for stationary power generators, especially while engaged in micro-combined heat and power (μ-CHP units. Despite the fact that the fuel cells are a key component in such power systems, other auxiliaries of the system can play a critical role and therefore require a significant attention. Since SOFC uses a ceramic material as an electrolyte, the high operating temperature (typically of the order of 700–900 °C is required to achieve sufficient performance. For that reason both the fuel and the oxidant have to be preheated before entering the SOFC stack. Hot gases exiting the fuel cell stack transport substantial amount of energy which has to be partly recovered for preheating streams entering the stack and for heating purposes. Effective thermal integration of the μ-CHP can be achieved only when proper technical measures are used. The ability of efficiently preheating the streams of oxidant and fuel relies on heat exchangers which are present in all possible configurations of power system with solid oxide fuel cells. In this work a compact, fin plate heat exchanger operating in the high temperature regime was under consideration. Dynamic model was proposed for investigation of its performance under the transitional states of the fuel cell system. Heat exchanger was simulated using commercial modeling software. The model includes key geometrical and functional parameters. The working conditions of the power unit with SOFC vary due to the several factors, such as load changes, heating and cooling procedures of the stack and others. These issues affect parameters of the incoming streams to the heat exchanger. The mathematical model of the heat exchanger is based on a set of equations which are simultaneously solved in the iterative process. It enables to define conditions in the outlets of both the hot and the

  6. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: The mechanism of the drilling of holes in vertical metallic plates by cw CO2 laser radiation

    Science.gov (United States)

    Likhanskii, V. V.; Loboiko, A. I.; Antonova, G. F.; Krasyukov, A. G.; Sayapin, V. P.

    1999-02-01

    The possibility of making a hole in a vertical plate with the aid of laser radiation at a surface temperature not exceeding the boiling point is analysed neglecting the vapour pressure. The mechanism of the degradation of the liquid layer involving a reduction of its thickness, as a result of the redistribution of the molten mass owing to the operation of the force of gravity and of thermocapillary convection, is examined. The theoretical dependence of the critical size of the molten zone on the plate thickness is obtained and a comparison is made with experimental data.

  7. Numerical/Laplace transform analysis for MHD radiating heat/mass transport in a Darcian porous regime bounded by an oscillating vertical surfac

    Directory of Open Access Journals (Sweden)

    Sahin Ahmed

    2015-03-01

    Full Text Available Analytical and numerical solutions of a non-linear MHD flow with heat and mass transfer characteristics of an incompressible, viscous, electrically conducting and Boussinesq’s fluid over a vertical oscillating plate embedded in a Darcian porous medium in the presence of thermal radiation effect have been presented. The fluid considered here is gray, absorbing/emitting radiating, but non-scattering medium. At time t > 0, the plate temperature and concentration near the plate raised linearly with time t. The dimensionless governing coupled, non-linear boundary layer partial differential equations are solved by an efficient, accurate, extensively validated and unconditionally stable finite difference scheme of the Crank–Nicolson type as well as by the Laplace Transform technique. An increase in porosity parameter (K is found to depress fluid velocities and shear stress in the regime. Also it has been found that, when the conduction-radiation (R increased, the fluid velocity and the temperature profiles decreased. Applications of the study arise in materials processing and solar energy collector systems.

  8. Developing Buoyancy Driven Flow of a Nanofluid in a Vertical Channel Subject to Heat Flux

    Directory of Open Access Journals (Sweden)

    Nirmal C. Sacheti

    2014-01-01

    Full Text Available The developing natural convective flow of a nanofluid in an infinite vertical channel with impermeable bounding walls has been investigated. It is assumed that the nanofluid is dominated by two specific slip mechanisms and that the channel walls are subject to constant heat flux and isothermal temperature, respectively. The governing nonlinear partial differential equations coupling different transport processes have been solved numerically. The variations of velocity, temperature, and nanoparticles concentration have been discussed in relation to a number of physical parameters. It is seen that the approach to the steady-state profiles of velocity and temperature in the present work is different from the ones reported in a previous study corresponding to isothermal wall conditions.

  9. Numerical investigation of MHD heat transfer in a vertical round tube affected by transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zikanov, Oleg [University of Michigan - Dearborn, MI 48128-1491 (United States); Listratov, Yaroslav [Moscow Power Engineering Institute, 14 Karsnokazarmennaya St., Moscow 111250 (Russian Federation)

    2016-12-15

    Numerical simulations of the flow of a liquid metal in a vertical pipe are performed. The configuration reproduces the test section of the recent experiment . The mean flow is directed downward, a half of the pipe's wall is heated, and a strong horizontal magnetic field perpendicular to the temperature gradient is imposed. The simulations produce results in good agreement with the experiment and lead us to an explanation of the observed phenomenon of anomalous high-amplitude temperature fluctuations. The fluctuations are caused by growth and quasi-periodic breakdown of the pairs of ascending and descending jets related to the elevator-mode thermal convection. Implications for operation of liquid metal blankets with poloidal ducts are discussed.

  10. Convective heat transfer for a gaseous slip flow in micropipe and parallel-plate microchannel with uniform wall heat flux: effect of axial heat conduction

    Science.gov (United States)

    Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2017-12-01

    Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.

  11. Analytical Model of Cyclic Heat Exchange of the Plate of Finite Sizes Adjusted for the Thermal Relaxation

    Science.gov (United States)

    Kirsanov, Yu A.; Makarushkin, D. V.; Yudakhin, A. E.; Kirsanov, A. Yu

    2017-11-01

    The hyperbolic boundary value problem of heat conduction in a two-dimensional rectangular plate with the third kind boundary conditions was formulated. The model of transient thermal processes in the body takes into account changes in time and along the flow direction of the ambient temperature. An analytical solution was obtained for the temperature field in the plate, adjusted for the phenomena of thermal relaxation and thermal damping.

  12. A screening method for the optimal selection of plate heat exchanger configurations

    Directory of Open Access Journals (Sweden)

    Pinto J.M.

    2002-01-01

    Full Text Available An optimization method for determining the best configuration(s of gasketed plate heat exchangers is presented. The objective is to select the configuration(s with the minimum heat transfer area that still satisfies constraints on the number of channels, the pressure drop of both fluids, the channel flow velocities and the exchanger thermal effectiveness. The configuration of the exchanger is defined by six parameters, which are as follows: the number of channels, the numbers of passes on each side, the fluid locations, the feed positions and the type of flow in the channels. The resulting configuration optimization problem is formulated as the minimization of the exchanger heat transfer area and a screening procedure is proposed for its solution. In this procedure, subsets of constraints are successively applied to eliminate infeasible and nonoptimal solutions. Examples show that the optimization method is able to successfully determine a set of optimal configurations with a minimum number of exchanger evaluations. Approximately 5 % of the pressure drop and channel velocity calculations and 1 % of the thermal simulations are required for the solution.

  13. Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sanaye, Sepehr; Hajabdollahi, Hassan [Energy Systems Improvement Laboratory (ESIL), Department of Mechanical Engineering, Iran University of Science and Technology (IUST) (Iran)

    2010-06-15

    Thermal modeling and optimal design of compact heat exchangers are presented in this paper. {epsilon}NTU method was applied to estimate the heat exchanger pressure drop and effectiveness. Fin pitch, fin height, fin offset length, cold stream flow length, no-flow length and hot stream flow length were considered as six design parameters. Fast and elitist non-dominated sorting genetic-algorithm (NSGA-II) was applied to obtain the maximum effectiveness and the minimum total annual cost (sum of investment and operation costs) as two objective functions. The results of optimal designs were a set of multiple optimum solutions, called 'Pareto optimal solutions'. The sensitivity analysis of change in optimum effectiveness and total annual cost with change in design parameters of the plate fin heat exchanger was also performed and the results are reported. As a short cut for choosing the system optimal design parameters the correlations between two objectives and six decision variables with acceptable precision were presented using artificial neural network analysis. (author)

  14. Heat transfer in a low latitude flat-plate solar collector

    Directory of Open Access Journals (Sweden)

    Oko C.O.C.

    2012-01-01

    Full Text Available Study of rate of heat transfer in a flat-plate solar collector is the main subject of this paper. Measurements of collector and working fluid temperatures were carried out for one year covering the harmattan and rainy seasons in Port Harcourt, Nigeria, which is situated at the latitude of 4.858oN and longitude of 8.372oE. Energy balance equations for heat exchanger were employed to develop a mathematical model which relates the working fluid temperature with the vital collector geometric and physical design parameters. The exit fluid temperature was used to compute the rate of heat transfer to the working fluid and the efficiency of the transfer. The optimum fluid temperatures obtained for the harmattan, rainy and yearly (or combined seasons were: 317.4, 314.9 and 316.2 [K], respectively. The corresponding insolation utilized were: 83.23, 76.61 and 79.92 [W/m2], respectively, with the corresponding mean collector efficiency of 0.190, 0.205 and 0.197 [-], respectively. The working fluid flowrate, the collector length and the range of time that gave rise to maximum results were: 0.0093 [kg/s], 2.0 [m] and 12PM - 13.00PM, respectively. There was good agreement between the computed and the measured working fluid temperatures. The results obtained are useful for the optimal design of the solar collector and its operations.

  15. Analysis technology in the thick plate free drop impact, heat and thermal stress of the cask for radioactive material transport

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dew Hey [Korea Institute of Nuclear and Safety, Taejon (Korea, Republic of); Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Choi, Kyung Joo; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun; Kim, Seong Jong [Chungnam National Univ., Taejon (Korea, Republic of)

    2002-03-15

    In this study, The regulatory condition and analysis condition is analyzed for thick plate free drop, heat and thermal stress analysis to develop the safety assessment technology. Analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. ANSYS, LS-DYNA3D and ABAQUS is suitable for thick plate free drop, heat and thermal stress analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS for thick plate free drop and the results of ANSYS, LS-DYNA3D and ABAQUS for heat and thermal stress analysis is completely corresponded. And the integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology.

  16. The Development and Microstructure Analysis of High Strength Steel Plate NVE36 for Large Heat Input Welding

    Science.gov (United States)

    Peng, Zhang; Liangfa, Xie; Ming, Wei; Jianli, Li

    In the shipbuilding industry, the welding efficiency of the ship plate not only has a great effect on the construction cost of the ship, but also affects the construction speed and determines the delivery cycle. The steel plate used for large heat input welding was developed sufficiently. In this paper, the composition of the steel with a small amount of Nb, Ti and large amount of Mn had been designed in micro-alloyed route. The content of C and the carbon equivalent were also designed to a low level. The technology of oxide metallurgy was used during the smelting process of the steel. The rolling technology of TMCP was controlled at a low rolling temperature and ultra-fast cooling technology was used, for the purpose of controlling the transformation of the microstructure. The microstructure of the steel plate was controlled to be the mixed microstructure of low carbon bainite and ferrite. Large amount of oxide particles dispersed in the microstructure of steel, which had a positive effects on the mechanical property and welding performance of the steel. The mechanical property of the steel plate was excellent and the value of longitudinal Akv at -60 °C is more than 200 J. The toughness of WM and HAZ were excellent after the steel plate was welded with a large heat input of 100-250 kJ/cm. The steel plate processed by mentioned above can meet the requirement of large heat input welding.

  17. On the Influence of Soret and Dufour Effects on MHD Free Convective Heat and Mass Transfer Flow over a Vertical Channel with Constant Suction and Viscous Dissipation

    Science.gov (United States)

    Uwanta, Ime Jimmy; Usman, Halima

    2014-01-01

    The present paper investigates the combined effects of Soret and Dufour on free convective heat and mass transfer on the unsteady one-dimensional boundary layer flow over a vertical channel in the presence of viscous dissipation and constant suction. The governing partial differential equations are solved numerically using the implicit Crank-Nicolson method. The velocity, temperature, and concentration distributions are discussed numerically and presented through graphs. Numerical values of the skin-friction coefficient, Nusselt number, and Sherwood number at the plate are discussed numerically for various values of physical parameters and are presented through tables. It has been observed that the velocity and temperature increase with the increase in the viscous dissipation parameter and Dufour number, while an increase in Soret number causes a reduction in temperature and a rise in the velocity and concentration. PMID:27419208

  18. On the Influence of Soret and Dufour Effects on MHD Free Convective Heat and Mass Transfer Flow over a Vertical Channel with Constant Suction and Viscous Dissipation.

    Science.gov (United States)

    Uwanta, Ime Jimmy; Usman, Halima

    2014-01-01

    The present paper investigates the combined effects of Soret and Dufour on free convective heat and mass transfer on the unsteady one-dimensional boundary layer flow over a vertical channel in the presence of viscous dissipation and constant suction. The governing partial differential equations are solved numerically using the implicit Crank-Nicolson method. The velocity, temperature, and concentration distributions are discussed numerically and presented through graphs. Numerical values of the skin-friction coefficient, Nusselt number, and Sherwood number at the plate are discussed numerically for various values of physical parameters and are presented through tables. It has been observed that the velocity and temperature increase with the increase in the viscous dissipation parameter and Dufour number, while an increase in Soret number causes a reduction in temperature and a rise in the velocity and concentration.

  19. Mixed Convection Boundary Layer Stagnation-Point Flow of a Jeffery Fluid Past a Permeable Vertical Flat Plate

    Science.gov (United States)

    Rahman, Mohammad M.; Ioan, Pop

    2014-12-01

    This paper analyzes the combined effects of buoyancy force, mass flux, and variable surface temperature on the stagnation point flow and heat transfer due to a Jeffery fluid over a vertical surface. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations and then solved numerically using the function bvp4c from computer algebra software Matlab. Numerical results are obtained for skin friction coefficient, Nusselt number as well as dimensionless velocity and temperature profiles for various values of the controlling parameters namely mixed convection parameter λ, mass flux parameter s, elastic parameter (Deborah number) γ, and the ratio of relaxation and retardation time parameter λ1. The results indicate that dual solutions exist in a certain range of the mixed convection and mass flux parameters. In order to establish the physically realizable of these solutions, a stability analysis has also been performed. The results indicate that mixed convection and mass flux significantly affects the nature of the solutions, skin friction, and Nusselt number of a Jeffery fluid.

  20. A thermal design method for the performance optimization of multi-stream plate-fin heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhe; Li, Yanzhong [Xi’an Jiaotong University, Xi’an (China); Sunden, Bengt [Lund University, Lund (Sweden); Han, Fenghui [Dalian Maritime University, Dalian (China)

    2017-06-15

    An optimization design method based on field synergy principle is developed for Multi-stream plate-fin heat exchangers (MPHEs) with a segmented differential model. The heat exchanger is divided into a number of sub-exchangers along the main stream, and each sub-exchanger consists of N passages along the height of the exchanger. Compared with the traditional heat exchanger design, this method allows temperature and pressure fields to be obtained via coupling calculation with consideration of variable physical properties and the axial heat loss of the heat exchanger. Finally, the heat exchanger is optimally designed using a temperature-difference uniformity optimization factor based on field synergy principle. This design model can provide an accurate temperature field and pressure field, because the stream properties are determined by the mean temperature and pressure of each local sub-exchanger. Optimum results indicate that the temperature distribution on the cross section of the heat exchanger is relatively uniform and that the temperature difference of heat transfer for each stream is always a small value. These characteristics prove the feasibility and effectiveness of this design model. In this paper, a case of five stream plate-fin heat exchangers for an ethylene plant is designed under a practical cold box operating condition with the proposed model, the structure and heat transfer of which are optimally determined. The design model and optimization method proposed in this work can provide theoretical and technical support to the optimization design of MPHEs.

  1. Heat Transfer Experiments with Supercritical CO{sub 2} in a Vertical Circular Tube (9.0 mm)

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Tae Ho; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sim, Woo Gun; Bae, Yoon Yeong [Hannam University, Daejeon (Korea, Republic of)

    2008-10-15

    Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic behaviors of supercritical CO{sub 2} at several test sections with a different geometry. The loop uses CO{sub 2} because it has critical pressure and temperature which is much lower than water. Experimental study of heat transfer to supercritical CO{sub 2} in a vertical circular tube with and inner diameter of 9.0mm has been performed. CO{sub 2} flows downward through the vertical circular tube for the simulation of the water rod which may be used for a moderation of the reactor. The heat transfer characteristics were analyzed and compared with the upward flow test results previously performed at the same test section at KAERI.

  2. Group method analysis of magneto-elastico-viscous flow along a semi-infinite flat plate with heat transfer

    Science.gov (United States)

    Helal, M. M.; Abd-El-Malek, M. B.

    2005-01-01

    The group theoretic method is applied for solving problem of the flow of an elastico-viscous liquid past an infinite flat plate in the presence of a magnetic field normal to the plate. The application of one-parameter transformation group reduces the number of independent variables, by one, and consequently the system of governing partial differential equations with boundary conditions reduces to a system of ordinary differential equations with appropriate corresponding conditions. Numerical solution of the velocity field and heat transfer have been obtained. The effect of the magnetic parameter M on velocity field, shear stress, temperature fields and heat transfer has been discussed.

  3. Boundary Layer Flow and Heat Transfer of FMWCNT/Water Nanofluids over a Flat Plate

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Safaei

    2016-09-01

    Full Text Available In the present study, the heat transfer and flow of water/FMWCNT (functionalized multi-walled carbon nanotube nanofluids over a flat plate was investigated using a finite volume method. Simulations were performed for velocity ranging from 0.17 mm/s to 1.7 mm/s under laminar regime and nanotube concentrations up to 0.2%. The 2-D governing equations were solved using an in-house FORTRAN code. For a specific free stream velocity, the presented results showed that increasing the weight percentage of nanotubes increased the Nusselt number. However, an increase in the solid weight percentage had a negligible effect on the wall shear stress. The results also indicated that increasing the free stream velocity for all cases leads to thinner boundary layer thickness, while increasing the FMWCNT concentration causes an increase in the boundary layer thickness.

  4. Forta FDX 27 - duplex stainless steel for high strength gasket plate heat exchangers

    Science.gov (United States)

    Groth, A.; Schedin, E.; Sun, CC; He, Hailan; Guan, Li

    2017-09-01

    Outokumpu has developed a new duplex stainless steel with improved formability compared to other duplex grades. The so-called Forta FDX grades allows the utilization of duplex grades in more forming intensive products previously not possible and at the same time benefit from other duplex stainless steel properties for increased application performance. In this paper a Gasket Plate Heat Exchanger (GPHE) plate is formed with the new duplex grade Forta FDX 27 and compared to the baseline grade Supra 316L/4404. Detailed material characterization, strain measurements and Finite Element Analysis (FEA) were performed to further investigate the case. Small differences in measured strain distribution between Forta FDX 27 and Supra 316L/4404 were found after the stamping operation for both material grades and for the same design feature. Strain measurements showed reasonable agreement between measured experimental results and the numerical simulation for Forta FDX 27. Additionally, FEA predicts an improvement of the final strength of the product up to 30 % at the final configuration by using Forta FDX 27 instead of Supra 316L/4404.

  5. Bubble detachment and lift-off diameters at a vertical heated wall for subcooled boiling flow

    Energy Technology Data Exchange (ETDEWEB)

    Montout, Michael; Haynes, Pierre-Antoine; Peturaud, Pierre [EDF, R and D Division, Fluid Dynamics, Power Generation and Environnement Department, 6 quai Watier, 78401 Chatou Cedex (France); Colin, Catherine [Institut de Mecanique des Fluides de Toulouse, Allee du Professeur Camille Soula, 31400 Toulouse (France)

    2008-07-01

    bubble growing on a vertical heating wall, following preceding works from Klausner et al. (1993) and Thorncroft et al. (2001). However, it would be rather complex to implement such a comprehensive approach in a CFD code. Therefore, in a second step, supported simplifications are brought to the force balance model, leading to analytical relations for both detachment and lift-off diameters. An assessment of this 2-step analytical work is made by means of comparisons with existing correlations and experimental data. (authors)

  6. A Microstructural Evaluation of Friction Stir Welded 7075 Aluminum Rolled Plate Heat Treated to the Semi-Solid State

    Directory of Open Access Journals (Sweden)

    Ava Azadi Chegeni

    2018-01-01

    Full Text Available Two rolled plates of 7075 aluminum alloy were used as starting material. The plates were welded using a simultaneous double-sided friction stir welding (FSW process. One way of obtaining feedstock materials for Semi-solid processing or thixoforming is via deformation routes followed by partial melting in the semi-solid state. As both the base plate materials and the friction weld area have undergone extensive deformation specimens were subjected to a post welding heat-treatment in the semi-solid range at a temperature of 628 °C, for 3 min in order to observe the induced microstructural changes. A comparison between the microstructural evolution and mechanical properties of friction stir welded plates was performed before and after the heat-treatment in the Base Metal (BM, the Heat Affected Zone (HAZ, the Thermomechanically Affected Zone (TMAZ and the Nugget Zone (NZ using optical microscopy, Scanning Electron microscopy (SEM and Vickers hardness tests. The results revealed that an extremely fine-grained structure, obtained in the NZ after FSW, resulted in a rise of hardness from the BM to the NZ. Furthermore, post welding heat-treatment in the semi-solid state gave rise to a consistent morphology throughout the material which was similar to microstructures obtained by the thixoforming process. Moreover, a drop of hardness was observed after heat treatment in all regions as compared to that in the welded microstructure.

  7. ANALYSIS OF GAMMA HEATING AT TRIGA MARK REACTOR CORE BANDUNG USING PLATE TYPE FUEL

    Directory of Open Access Journals (Sweden)

    Setiyanto Setiyanto

    2016-10-01

    Full Text Available ABSTRACT In accordance with the discontinuation of TRIGA fuel element production by its producer, the operation of all TRIGA type reactor of at all over the word will be disturbed, as well as TRIGA reactor in Bandung. In order to support the continuous operation of Bandung TRIGA reactor, a study on utilization of fuel plate mode, as used at RSG-GAS reactor, to replace the cylindrical model has been done. Various assessments have been done, including core design calculation and its safety aspects. Based on the neutronic calculation, utilization of fuel plate shows that Bandung TRIGA reactor can be operated by 20 fuel elements only. Compared with the original core, the new reactor core configuration is smaller and it results in some empty space that can be used for in-core irradiation facilities. Due to the existing of in-core irradiation facilities, the gamma heating value became a new factor that should be evaluated for safety analysis. For this reason, the gamma heating for TRIGA Bandung reactor using fuel plate was calculated by Gamset computer code. The calculations based on linear attenuation equations, line sources and gamma propagation on space. Calculations were also done for reflector positions (Lazy Susan irradiation facilities and central irradiation position (CIP, especially for any material samples. The calculation results show that gamma heating for CIP is significantly important (0,87 W/g, but very low value for Lazy Susan position (lest then 0,11 W/g. Based on this results, it can be concluded that the utilization of CIP as irradiation facilities need to consider of gamma heating as data for safety analysis report. Keywords: gamma heating, nuclear reactor, research reactor, reactor safety.   ABSTRAK Dengan dihentikannya produksi elemen bakar reaktor jenis Triga oleh produsen, maka semua reaktor TRIGA di dunia terganggu operasinya, termasuk juga reaktor TRIGA 2000 di Bandung. Untuk mendukung pengoperasian reaktor TRIGA Bandung

  8. Interpretation of ongoing thermal response tests of vertical (BHE) borehole heat exchangers with predictive uncertainty based stopping criterion

    DEFF Research Database (Denmark)

    Poulsen, Søren Erbs; Alberdi Pagola, Maria

    2015-01-01

    A method for real-time interpretation of ongoing thermal response tests of vertical borehole heat exchangers is presented. The method utilizes a statistically based stopping criterion for ongoing tests. The study finds minimum testing times for synthetic and actual TRTs to be in the interval 12–2...

  9. Laminar thermally developing flow in rectangular channels and parallel plates: uniform heat flux

    Science.gov (United States)

    Smith, Andrew N.; Nochetto, Horacio

    2014-05-01

    Numerical simulations were conducted for thermally developing laminar flow in rectangular channels with aspect ratios ranging from 1 to 100, and for parallel plates. The simulations were for laminar, thermally developing flow with H1 boundary conditions: uniform heat flux along the length of the channel and constant temperature around the perimeter. In the limit as the non-dimensional length, x* = x/(D h RePr), goes to zero, the Nusselt number is dependent on x* to the negative exponent m. As the non-dimensional length goes to infinity the Nusselt number approaches fully developed values that are independent of x*. General correlations for the local and mean heat transfer coefficients are presented that use an asymptotic blending function to transition between these limiting cases. The discrepancy between the correlation and the numerical results is less than 2.5 % for all aspect ratios. The correlations presented are applicable to all aspect ratios and all non-dimensional lengths, and decrease the discrepancy relative to existing correlations.

  10. Computational Fluid Dynamics Uncertainty Analysis Applied to Heat Transfer over a Flat Plate

    Science.gov (United States)

    Groves, Curtis Edward; Ilie, Marcel; Schallhorn, Paul A.

    2013-01-01

    There have been few discussions on using Computational Fluid Dynamics (CFD) without experimental validation. Pairing experimental data, uncertainty analysis, and analytical predictions provides a comprehensive approach to verification and is the current state of the art. With pressed budgets, collecting experimental data is rare or non-existent. This paper investigates and proposes a method to perform CFD uncertainty analysis only from computational data. The method uses current CFD uncertainty techniques coupled with the Student-T distribution to predict the heat transfer coefficient over a at plate. The inputs to the CFD model are varied from a specified tolerance or bias error and the difference in the results are used to estimate the uncertainty. The variation in each input is ranked from least to greatest to determine the order of importance. The results are compared to heat transfer correlations and conclusions drawn about the feasibility of using CFD without experimental data. The results provide a tactic to analytically estimate the uncertainty in a CFD model when experimental data is unavailable

  11. Interfacial heat transfer behavior at metal/die in finger-plated casting during high pressure die casting process

    Directory of Open Access Journals (Sweden)

    Wen-bo Yu

    2017-07-01

    Full Text Available Heat transfer at the metal-die interface has a great influence on the solidification process and casting structure. As thin-wall components are extensively produced by high pressure die casting process (HPDC, the B390 alloy finger-plate casting was cast against an H13 steel die on a cold-chamber HPDC machine. The interfacial heat transfer behavior at different positions of the die was carefully studied using an inverse approach based on the temperature measurements inside the die. Furthermore, the filling process and the solidification rate in different finger-plates were also given to explain the distribution of interfacial heat flux (q and interfacial heat transfer coefficient (h. Measurement results at the side of sprue indicates that qmax and hmax could reach 9.2 MW昺-2 and 64.3 kW昺-2昁-1, respectively. The simulation of melt flow in the die reveals that the thinnest (T1 finger plate could accelerate the melt flow from 50 m晄-1 to 110 m晄-1. Due to this high velocity, the interfacial heat flux at the end of T1 could firstly reach a highest value 7.92 MW昺-2 among the ends of Tn (n=2,3,4,5. In addition, the qmax and hmax values of T2, T4 and T5 finger-plates increase with the increasing thickness of the finger plate. Finally, at the rapid decreasing stage of interfacial heat transfer coefficient (h, the decreasing rate of h has an exponential relationship with the increasing rate of solid fraction (f.

  12. Effect of jet-mainstream velocity ratio on flow characteristics and heat transfer enhancement of jet on flat plate flow

    Science.gov (United States)

    Puzu, N.; Prasertsan, S.; Nuntadusit, C.

    2017-09-01

    The aim of this research was to study the effect of jet-mainstream velocity ratio on flow and heat transfer characteristics of jet on flat plate flow. The jet from pipe nozzle with inner diameter of D=14 mm was injected perpendicularly to mainstream on flat plate. The flat plate was blown by mainstream with uniform velocity profile at 10 m/s. The velocity ratio (jet to mainstream velociy) was varied at VR=0.25 and 3.5 by adjusting velocity of jet flow. For heat transfer measurement, a thin foil technique was used to evaluate the heat transfer coefficient by measuring temperature distributions on heat transfer surface with constant heat flux by using infrared camera. Flow characteristics were simulated by using a computational fluid dynamics (CFD) with commercial software ANSYS Fluent (Ver.15.0). The results showed that the enhancement of heat transfer along downstream direction for the case of VR=0.25 was from the effect of jet stream whereas for the case of VR=3.5 was from the effect of mainstream.

  13. Efficiency Analysis of the Main Components of a Vertical Closed-Loop System in a Borehole Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Cristina Sáez Blázquez

    2017-02-01

    Full Text Available In vertical closed-loop systems, it is common to use single or double U-tube heat exchangers separated by longitudinal spacers. In addition, the helical-shaped pipe is another configuration that requires lower drilling lengths but it is less used. The aim of the present research is to study the influence of these components on the total efficiency of a borehole heat exchanger (BHE. Thus, the differences between using single/double U-tubes (with or without spacers and helical pipes are analysed in terms of efficiency. Through different laboratory tests, a small vertical closed-loop system was simulated in order to analyse all these possible configurations. The grouting materials and the temperatures of the ground were modified at the same time in these tests. Regarding the heat exchange process between the ground and the heat carrier fluid, it must be highlighted that the best results were obtained for the helical-shaped pipe configuration. Some of the improvements offered by this heat exchanger typology with respect to the vertical configuration is that a lower drilling depth is required even it requires a larger diameter. This leads to significant economic savings in the performing drilling process. Finally, it is also worth noting the importance of using spacers in vertical U-tubes and that no improvements have been found regarding the use of single or double configuration of U-tubes. Thanks to the laboratory results derived from this study it is possible to establish the optimum behaviour pattern for the entire vertical closed-loop systems.

  14. Simultaneous heat and mass transfer inside a vertical tube in evaporating a heated falling alcohols liquid film into a stream of dry air

    Science.gov (United States)

    Senhaji, S.; Feddaoui, M.; Mediouni, T.; Mir, A.

    2009-03-01

    A numerical study of the evaporation in mixed convection of a pure alcohol liquid film: ethanol and methanol was investigated. It is a turbulent liquid film falling on the internal face of a vertical tube. A laminar flow of dry air enters the vertical tube at constant temperature in the downward direction. The wall of the tube is subjected to a constant and uniform heat flux. The model solves the coupled parabolic governing equations in both phases including turbulent liquid film together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by TDMA method. A Van Driest model is adopted to simulate the turbulent liquid film flow. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied alcohols and water in the same conditions is made.

  15. Study on natural convection heat transfer in a vertical enclosure of double coaxial cylinder. Cooling by natural circulation of air

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Youjie [Institute on Nuclear Energy Technology, Tsinghua Univ., Beijing (China); Takeda, Tetsuaki; Inaba, Yoshitomo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2000-11-01

    To investigate a heat transfer characteristic in a vertical cavity between the pressure vessel and the cooling panel of a high-temperature engineering test reactor (HTTR), we carried out an experiment of natural convection coupled with thermal radiation in a vertical enclosure of a double coaxial cylinder. Rayleigh number based on the width of the double coaxial cylinder was set to be 5.6x10{sup 5} < Ra{sub d} < 1.04x10{sup 8}. A heat transfer coefficient of natural convection coupled with thermal radiation was obtained as function of Rayleigh number, aspect ratio of the enclosure, and the temperature of the hot and cold surface. We also carried out the numerical analysis using a heat transfer and fluid flow analytical code, which is named FLUENT/UNS. The numerical results of the temperature distribution in the apparatus showed good agreement with the experimental ones. (J.P.N.)

  16. Unsteady convection flow and heat transfer over a vertical stretching surface.

    Directory of Open Access Journals (Sweden)

    Wenli Cai

    Full Text Available This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  17. Unsteady convection flow and heat transfer over a vertical stretching surface.

    Science.gov (United States)

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  18. Hindlimb heating increases vascular access of large molecules to murine tibial growth plates measured by in vivo multiphoton imaging.

    Science.gov (United States)

    Serrat, Maria A; Efaw, Morgan L; Williams, Rebecca M

    2014-02-15

    Advances in understanding the molecular regulation of longitudinal growth have led to development of novel drug therapies for growth plate disorders. Despite progress, a major unmet challenge is delivering therapeutic agents to avascular-cartilage plates. Dense extracellular matrix and lack of penetrating blood vessels create a semipermeable "barrier," which hinders molecular transport at the vascular-cartilage interface. To overcome this obstacle, we used a hindlimb heating model to manipulate bone circulation in 5-wk-old female mice (n = 22). Temperatures represented a physiological range of normal human knee joints. We used in vivo multiphoton microscopy to quantify temperature-enhanced delivery of large molecules into tibial growth plates. We tested the hypothesis that increasing hindlimb temperature from 22°C to 34°C increases vascular access of large systemic molecules, modeled using 10, 40, and 70 kDa dextrans that approximate sizes of physiological regulators. Vascular access was quantified by vessel diameter, velocity, and dextran leakage from subperichondrial plexus vessels and accumulation in growth plate cartilage. Growth plate entry of 10 kDa dextrans increased >150% at 34°C. Entry of 40 and 70 kDa dextrans increased vascular carrying capacity and bioavailability of large molecules around growth plates, suggesting that temperature could be a noninvasive strategy for modulating delivery of therapeutics to impaired growth plates of children.

  19. Design, Construction, and Performance Analysis of a Wood Thermal Conductivity Measurement Device using Flat Plate Heat Pipes

    Directory of Open Access Journals (Sweden)

    Rasouli Moien

    2011-12-01

    Full Text Available In this paper, the design, construction, and performance analysis of a wood thermal conductivity measurement device using flat plate heat pipes has been experimentally studied. The device was designed to measure the thermal conductivity of wood in various ranges of temperature. Thermal conductivity of hornbeam (Carpinus betulus has been measured at various temperatures between 40-80 ºC and a relationship has been recommended for the sample. The results show that the thermal conductivity of this species increases linearly with temperature. Also, it has been concluded that flat plate heat pipes distribute heat flux on the surface of the wood uniformly leading to a faster steady state condition, which can reduce time of the test and result in energy saving and more accurate results.

  20. An experimental study on critical heat flux in vertical annulus under low flow and low pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Gusztáv, E-mail: gusztav.mayer@energia.mta.hu; Nagy, Richárd, E-mail: nagy.richard@energia.mta.hu; Nagy, Imre, E-mail: imre.nagy@energia.mta.hu

    2016-12-15

    Highlights: • Critical heat flux experiments were carried out in internally heated vertical annulus. • Despite the uniform heating, in some cases, the CHF was detected at lower heater positions. • The experimental data were compared with five selected correlations. • The correlation of El-Genk et al. (1988) is the closest to our measured data with an RMS error of 8.2%. - Abstract: An experimental study was carried out to investigate the phenomenon of critical heat flux (CHF) at low flow and low pressure conditions in an internally heated vertical annulus. The rod heater of the test section was made of solid stainless steel with diameter of 6 mm and heated length of 454 mm. The unheated outer glass tube had an inner diameter of 16.3 mm. The pressure of the water coolant ranged between 116 and 228 kPa, the mass flux was varied in the range of 49.88–108.53 kg/(m{sup 2} s) and the inlet subcooling was kept at 3 °C below the saturation temperature. Among the 111 measured CHF data points 107 was detected at the uppermost thermocouple position, but four CHF were detected at lower thermocouple positions. Despite the uniform heating, the measurements showed that the CHF-location may shift from the uppermost position at L/D{sub he} = 11.86 (heated length/heated equivalent diameter) ratio if the mass flux is lower than 63.22 kg/(m{sup 2} s). Five selected correlations for the low flow and low pressure range were compared with our CHF data points.

  1. The sizes of Flat Plate and Evacuated Tube Collectors with Heat Pipe area as a function of the share of solar system in the heat demand

    Directory of Open Access Journals (Sweden)

    Olek Małgorzata

    2016-01-01

    Full Text Available The popularity of solar collectors in Poland is still increasing. The correct location of the collectors and a relatively high density of solar radiation allow delivering heat even in spite of relatively low ambient temperature. Moreover, solar systems used for heating domestic heat water (DHW in summer allow nearly complete elimination of conventional energy sources (e.g. gas, coal. That is why more and more house owners in Poland decide to install solar system installations. In Poland the most common types of solar collectors are flat plate collectors (FPC and evacuated tube collectors with heat pipe (ETCHP; both were selected for the analysis. The heat demand related to the preparation of hot water, connected with the size of solar collectors’ area, has been determined. The analysis includes FPC and ETCHP and heat demand of less than 10 000 kWh/year. Simulations were performed with the Matlab software and using data from a typical meteorological year (TMY. In addition, a 126–year period of measurements of insolation for Krakow has been taken into account. The HDKR model (Hay, Davis, Klucher, Reindl was used for the calculation of solar radiation on the absorber surface. The monthly medium temperature of the absorber depends on the amount of solar system heat and on the heat demand. All the previously mentioned data were used to determine solar efficiency. Due to the fact that solar efficiency and solar system heat are connected, the calculations were made with the use of an iterative method. Additionally, the upper limit for monthly useful solar system heat is resulted from the heat demand and thus the authors prepared a model of statistical solar system heat deviations based on the Monte Carlo method. It has been found that an increase in the useful solar system heat in reference to the heat demand is associated with more than proportional increase in the sizes of the analyzed surfaces of solar collector types.

  2. Denaturation Kinetics of Whey Protein Isolate Solutions and Fouling Mass Distribution in a Plate Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Marwa Khaldi

    2015-01-01

    Full Text Available Few investigations have attempted to connect the mechanism of dairy fouling to the chemical reaction of denaturation (unfolding and aggregation occurring in the bulk. The objective of this study is to contribute to this aspect in order to propose innovative controls to limit fouling deposit formation. Experimental investigations have been carried out to observe the relationship between the deposit mass distribution generated in plate heat exchangers (PHE by a whey protein isolate (WPI mainly composed of β-lactoglobulin (β-Lg and the ratio between the unfolding and aggregation rate constants. Experiments using a PHE were carried out at a pilot scale to identify the deposit distribution of a model fouling solution with different calcium contents. In parallel, laboratory experiments were performed to determine the unfolding/aggregation rate constants. Data analysis showed that (i β-Lg denaturation is highly dependent on the calcium content, (ii for each fouling solution, irrespective of the imposed temperature profile, the deposit mass in each channel and the ratio between the unfolding and aggregation rate constants seem to be well correlated. This study demonstrates that both the knowledge of the thermal profile and the β-Lg denaturation rate constants are required in order to predict accurately the deposit distribution along the PHE.

  3. Heat transfer analysis for squeezing flow of a Casson fluid between parallel plates

    Directory of Open Access Journals (Sweden)

    Umar Khan

    2016-03-01

    Full Text Available Heat transfer analysis for the squeezing flow of a Casson fluid between parallel circular plates has been presented. Viable mathematical model has been constructed by using conservation laws coupled with suitable similarity transforms. This model ends up on a set of two highly nonlinear ordinary differential equations. Resulting equations have been solved by using a well-known analytical technique homotopy perturbation method (HPM. A numerical solution using forth order Runge–Kutta method has also been sought to support our analytical solution and the comparison shows an excellent agreement. Flow behavior under altering involved physical parameters is also discussed and explained in detail with graphical aid. For the presented problem, values of parameters are restricted. Analysis is carried out using the following ranges of parameters; squeeze number (-4⩽S⩽4, Casson fluid parameter (0.1⩽β⩽∞, Prandtl number (0.1⩽Pr⩽0.7, Eckert number (0.1⩽Ec⩽0.7 and 0.1⩽δ⩽0.4. Increase in velocity for squeeze number and Casson fluid parameter is observed. Temperature profile is found to be decreasing function of squeeze number and Casson fluid parameter and increasing function of Pr, Ec and δ.

  4. Numerical investigation of cryogen re-gasification in a plate heat exchanger

    Science.gov (United States)

    Malecha, Ziemowit; Płuszka, Paweł; Brenk, Arkadiusz

    2017-12-01

    The efficient re-gasification of cryogen is a crucial process in many cryogenic installations. It is especially important in the case of LNG evaporators used in stationary and mobile applications (e.g. marine and land transport). Other gases, like nitrogen or argon can be obtained at highest purity after re-gasification from their liquid states. Plate heat exchangers (PHE) are characterized by a high efficiency. Application of PHE for liquid gas vaporization processes can be beneficial. PHE design and optimization can be significantly supported by numerical modelling. Such calculations are very challenging due to very high computational demands and complexity related to phase change modelling. In the present work, a simplified mathematical model of a two phase flow with phase change was introduced. To ensure fast calculations a simplified two-dimensional (2D) numerical model of a real PHE was developed. It was validated with experimental measurements and finally used for LNG re-gasification modelling. The proposed numerical model showed to be orders of magnitude faster than its full 3D original.

  5. A numerical study of the supercritical CO2 plate heat exchanger subject to U-type, Z-type, and multi-pass arrangements

    Science.gov (United States)

    Zhu, Chen-Xi; Wang, Chi-Chuan

    2018-01-01

    This study proposes a numerical model for plate heat exchanger that is capable of handling supercritical CO2 fluid. The plate heat exchangers under investigation include Z-type (1-pass), U-type (1-pass), and 1-2 pass configurations. The plate spacing is 2.9 mm with a plate thickness of 0.8 mm, and the size of the plate is 600 mm wide and 218 mm in height with 60 degrees chevron angle. The proposed model takes into account the influence of gigantic change of CO2 properties. The simulation is first compared with some existing data for water-to-water plate heat exchangers with good agreements. The flow distribution, pressure drop, and heat transfer performance subject to the supercritical CO2 in plate heat exchangers are then investigated. It is found that the flow velocity increases consecutively from the entrance plate toward the last plate for the Z-type arrangement, and this is applicable for either water side or CO2 side. However, the flow distribution of the U-type arrangement in the water side shows opposite trend. Conversely, the flow distribution for U-type arrangement of CO2 depends on the specific flow ratio (C*). A lower C* like 0.1 may reverse the distribution, i.e. the flow velocity increases moderately alongside the plate channel like Z-type while a large C* of 1 would resemble the typical distribution in water channel. The flow distribution of CO2 side at the first and last plate shows a pronounced drop/surge phenomenon while the channels in water side does not reveal this kind of behavior. The performance of 2-pass plate heat exchanger, in terms of heat transfer rate, is better than that of 1-pass design only when C* is comparatively small (C* < 0.5). Multi-pass design is more effective when the dominant thermal resistance falls in the CO2 side.

  6. Heat transfer in fluctuating flow of an elastico-viscous fluid past an infinite plate with constant suction

    Science.gov (United States)

    Soundalgekar, V. M.; Uplekar, A. G.

    1981-06-01

    An analysis of heat transfer in a two dimensional flow of an elastico-viscous fluid (Walters liquid B) past an infinite porous plate has been carried out under the following conditions: (1) constant suction, (2) free stream oscillates in time about a constant mean, (3) the plate is thermally insulated. Approximate solutions to the temperature field have been derived on taking into consideration viscous dissipative terms. The mean wall temperature has been shown graphically and it is observed that it decreases with increasing frequency.

  7. Chemical reaction effect on an unsteady MHD free convection flow past a vertical porous plate in the presence of suction or injection

    Directory of Open Access Journals (Sweden)

    Shivaiah S.

    2012-01-01

    Full Text Available The objective of this paper is to analyze the effect of chemical reaction on unsteady magneto hydrodynamic free convective fluid flow past a vertical porous plate in the presence of suction or injection. The governing equations of the flow field are solved numerically by a finite element method. The effects of the various parameters on the velocity, temperature and concentration profiles are presented graphically and values of skin-friction coefficient, Nusselt number and Sherwood number for various values of physical parameters are presented through tables.

  8. Experimental Study on the Effect of Initial Temperature on CHF in a Vertical Annulus Narrow Channel with Bilateral Heated

    Directory of Open Access Journals (Sweden)

    M. Juarsa

    2011-08-01

    Full Text Available Study on understanding of the complexities of boiling in the narrow channel which was occured in a severe accident on nuclear power plant has been carried out in experimentally using simulation apparatus in order to achieve the safety management capability. Critical Heat Flux (CHF is one important parameter to control heat during transient accident. The methodology of research is an experiment using experiment apparatus called HeaTiNG-01 test section with modifications in the outside pipe using stainless steel material as the reactor vessel wall simulation. Experiments were conducted by heating the heated rod as a simulation of debris until the desired initial temperature by bilateral heated. Then water with a saturation temperature in atmospheric was poured gravitationally into the narrow channel. Data acquisition system recorded temperature changes in transient during the cooling process. The transient temperature profile in double heating surface and rewetting point (rewet fronts was characterized. Experiment was conducted at three initial temperature variations i.e. 650oC, 750oC and 850oC and using channel width 1 mm. Experiment data was used to calculate heat flux then to fitting CHF form boiling curve. The results showed that CHF in outer pipe is higher than heated rod, these conditions explain that more heat is released through the outer pipe, so that the heat control can be done from outside the system to reduce the temperature quickly. The average value of CHF for each vertical position 100 mm and 400 mm at outer pipe are 380 kW/m2 and 733 kW/m2, and then at the heated rod are 250 kW/m2 and 497 kW/m2

  9. Effect of radiation on free convection heat and mass transfer flow through porous medium in a vertical channel with heat absorption/generation and chemical reaction

    Science.gov (United States)

    Lavanya, B.

    2017-07-01

    The present paper analyses a solution for the transient free flow on a viscous and incompressible fluid between two vertical walls as a result of heta and mass transfer. The perturbation technique ahs been used to find the solutions for the velocity and temperature fields by solving the governing partial differential equations. The temperature of the one plate is assumed to be fluctuating. The effcets of the various parametrs entering into the problem, on the velocity and the temprature are depivted graphically. The impact of various parameters (Da, Rv, Pr, R and S) on velocity and temperature fields are shown graphically. The expressions for skin friction at both walls are also obtained.

  10. Free Convection Heat and Mass Transfer MHD Flow in a Vertical Channel in the Presence of Chemical Reaction

    Directory of Open Access Journals (Sweden)

    R. N. Barik

    2013-09-01

    Full Text Available An analysis is made to study the effects of diffusion-thermo and chemical reaction on fully developed laminar MHD flow of electrically conducting viscous incompressible fluid in a vertical channel formed by two vertical parallel plates was taken into consideration with uniform temperature and concentration. The analytical solution by Laplace transform technique of partial differential equations is used to obtain the expressions for the velocity, temperature and concentration. It is interesting to note that during the course of computation, the transient solution at large time coincides with steady state solution derived separately and the diffusion-thermo effect creates an anomalous situation in temperature and velocity profiles for small Prandtl numbers. The study is restricted to only destructive reaction and non-conducting case cannot be derived as a particular case still it is quite interesting and more realistic than the earlier one.

  11. Numerical modeling of a 2K J-T heat exchanger used in Fermilab Vertical Test Stand VTS-1

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Prabhat Kumar [Raja Ramanna Centre for Advanced Technology (RRCAT), Indore (MP), India; Rabehl, Roger [FNAL

    2014-07-01

    Fermilab Vertical Test Stand-1 (VTS-1) is in operation since 2007 for testing the superconducting RF cavities at 2 K. This test stand has single layer coiled finned tubes heat exchanger before J-T valve. A finite difference based thermal model has been developed in Engineering Equation Solver (EES) to study its thermal performance during filling and refilling to maintain the constant liquid level of test stand. The model is also useful to predict its performance under other various operating conditions and will be useful to design the similar kind of heat exchanger for future needs. Present paper discusses the different operational modes of this heat exchanger and its thermal characteristics under these operational modes. Results of this model have also been compared with the experimental data gathered from the VTS-1 heat exchanger and they are in good agreement with the present model.

  12. Thermal stratification in vertical mantle heat-exchangers with application to solar domestic hot-water systems

    DEFF Research Database (Denmark)

    Knudsen, Søren; Furbo, Simon

    2004-01-01

    Experimental and numerical investigations of vertical mantle heat exchangers for solar domestic hot water (SDHW) systems have been carried out. Two different inlet positions are investigated. Experiments based on typical operation conditions are carried out to investigate how the thermal...... stratification is affected by different positions of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the tank is analysed by CFD-simulations. Furthermore, side-by-side laboratory tests have been carried out with SDHW systems with different mantle...

  13. Simulation and experimental validation of a 400 m vertical CO2 heat pipe for geothermal application

    Science.gov (United States)

    Ebeling, Johann-Christoph; Kabelac, Stephan; Luckmann, Sebastian; Kruse, Horst

    2017-11-01

    Geothermal heat pipes are an effective heat source for heat pumps used for space heating. Because the area for the installation of borehole heat exchangers is limited in urban areas (one site per borehole), the maximum heat extractable from one borehole shall rise. In cooperation with the FKW Hannover, the Institute for Thermodynamics of the Leibniz University of Hannover is investigating the thermodynamic behavior of CO2 driven geothermal heat pipes of higher thermal power. Therefore two different types of geothermal heat pipes with a length of 400 m each have been installed. Furthermore a numerical simulation of the heat and mass transfer within the pipes is under development. The experimental setup and first results of the experiments are presented as well as the current status of the numerical simulation. A comparison of the two different types of heat pipes and a comparison of the experimental data with the numerical simulation is given.

  14. Analysis of Heat Transfer and Pressure Drop for a Gas Flowing Through a set of Multiple Parallel Flat Plates at High Temperatures

    Science.gov (United States)

    Einstein, Thomas H.

    1961-01-01

    Equations were derived representing heat transfer and pressure drop for a gas flowing in the passages of a heater composed of a series of parallel flat plates. The plates generated heat which was transferred to the flowing gas by convection. The relatively high temperature level of this system necessitated the consideration of heat transfer between the plates by radiation. The equations were solved on an IBM 704 computer, and results were obtained for hydrogen as the working fluid for a series of cases with a gas inlet temperature of 200 R, an exit temperature of 5000 0 R, and exit Mach numbers ranging from 0.2 to O.8. The length of the heater composed of the plates ranged from 2 to 4 feet, and the spacing between the plates was varied from 0.003 to 0.01 foot. Most of the results were for a five- plate heater, but results are also given for nine plates to show the effect of increasing the number of plates. The heat generation was assumed to be identical for each plate but was varied along the length of the plates. The axial variation of power used to obtain the results presented is the so-called "2/3-cosine variation." The boundaries surrounding the set of plates, and parallel to it, were assumed adiabatic, so that all the power generated in the plates went into heating the gas. The results are presented in plots of maximum plate and maximum adiabatic wall temperatures as functions of parameters proportional to f(L/D), for the case of both laminar and turbulent flow. Here f is the Fanning friction factor and (L/D) is the length to equivalent diameter ratio of the passages in the heater. The pressure drop through the heater is presented as a function of these same parameters, the exit Mach number, and the pressure at the exit of the heater.

  15. Thermal protection system gap heating rates of the Rockwell International flat plate heat transfer model (OH2A/OH2B)

    Science.gov (United States)

    Foster, T. F.; Lockman, W. K.; Grifall, W. J.

    1973-01-01

    Heat transfer data for the Rockwell International Flat Plate Thermocouple Model are presented. The model simulated the Space Shuttle Vehicle Thermal Protection System. Data were recorded for locations in and around various size gaps for various gap orientation configurations. The test was conducted at Mach 5.1 for free-stream Reynolds number per foot values from 500,000 to 1,500,000.

  16. Prediction of Heat Transfer Characteristics of Binary Refrigerant Mixtures in a Falling Film Type Plate-fin Evaporator

    Science.gov (United States)

    Yara, Tomoyasu; Koyama, Shigeru

    This paper deals with the characteristics of heat transfer and pressure drop of R 22, R 134a pure refrigerant and R 134a/R123 refrigerant mixtures in a falling film type plate-fin evaporator. The refrigerants have been tested in the ranges of heat flux from 3 to 20 kW/m2 and mass velocity from 50 to 100 kg/m2s. It is clarified that heat transfer characteristics of evaporation in the present experimental range are not affected by shear stress. Taking the fin efficiency into consideration, a correlation equation of heat transfer coefficient is proposed. The characteristic of pressure drop is also proposed by modifying friction factor of Soliman's equation. Furthermore, a prediction model for evaporation of mixtures in a plate fin heat exchanger is developed based on the assumption that the phase equilibrium in a cross-section of the refrigerant path is established. The prediction results are in good agreement with the experimental data.

  17. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; de Jager, B.; Willems, F.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat

  18. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate.

    Science.gov (United States)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-26

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  19. Modeling of various heat adapter plate 4 and 6 array for optimization of thermoelectric generator element using modified diffusion equation

    Science.gov (United States)

    Defrianto; Tambunan, W.; Lazuardi

    2017-07-01

    The use of waste heat from exhaust gas and converting it to electricity is now an alternative to harvest a cheap and clean energy. Thermoelectric generator (TEG) has the ability to directly recover such waste heat and generate electricity. The aim of this study is to simulate the heat transfer on the aluminum adapter plate for homogeneity temperature distribution coupled with hot side of TEG type 40-40-10/100 from Firma Eureka and adjust their high temperatures to the TEG operating temperature to avoid the element damage. Modelling was carried out using MATLAB modified diffusion equation with Dirichlet boundary conditions at defined temperature which has been set at the ends of the heat source at 463K and 373K ± 10% on the hot side of the TEG element. The use of nylon insulated material is modeled after Neumann boundary condition in which the temperature gradient is ∂T/∂n = 0 out of boundary. Realization of the modelling is done by designing a heat conductive plate using software ACAD 2015 and converted into a binary file format of Mathlab to form a finite element mesh with geometry variations of solid model. The solid cubic model of aluminum adapter plate has a dimension of 40mm length, 40mm width and also 20mm, 30mm and 40mm thickness arranged in two arrays of 2×2 and 2×3 of TEG elements. Results showed a temperature decrease about 40.95% and 50.02% respectively from the initial source and appropriate with TEG temperature tolerance.

  20. Numerical Solutions by EFGM of MHD Convective Fluid Flow Past a Vertical Plate Immersed in a Porous Medium in the Presence of Cross Diffusion Effects via Biot Number and Convective Boundary Condition

    Science.gov (United States)

    Raju, R. S.; Reddy, B. M.; Rashidi, M. M.; Gorla, R. S. R.

    2017-08-01

    In this investigation, the numerical results of a mixed convective MHD chemically reacting flow past a vertical plate embedded in a porous medium are presented in the presence of cross diffusion effects and convective boundary condition. Instead of the commonly used conditions of constant surface temperature or constant heat flux, a convective boundary condition is employed which makes this study unique and the results more realistic and practically useful. The momentum, energy, and concentration equations derived as coupled second-order, ordinary differential equations are solved numerically using a highly accurate and thoroughly tested element free Galerkin method (EFGM). The effects of the Soret number, Dufour number, Grashof number for heat and mass transfer, the viscous dissipation parameter, Schmidt number, chemical reaction parameter, permeability parameter and Biot number on the dimensionless velocity, temperature and concentration profiles are presented graphically. In addition, numerical results for the local skin-friction coefficient, the local Nusselt number, and the local Sherwood number are discussed through tabular forms. The discussion focuses on the physical interpretation of the results as well as their comparison with the results of previous studies.

  1. Numerical Solutions by EFGM of MHD Convective Fluid Flow Past a Vertical Plate Immersed in a Porous Medium in the Presence of Cross Diffusion Effects via Biot Number and Convective Boundary Condition

    Directory of Open Access Journals (Sweden)

    Raju R.S.

    2017-08-01

    Full Text Available In this investigation, the numerical results of a mixed convective MHD chemically reacting flow past a vertical plate embedded in a porous medium are presented in the presence of cross diffusion effects and convective boundary condition. Instead of the commonly used conditions of constant surface temperature or constant heat flux, a convective boundary condition is employed which makes this study unique and the results more realistic and practically useful. The momentum, energy, and concentration equations derived as coupled second-order, ordinary differential equations are solved numerically using a highly accurate and thoroughly tested element free Galerkin method (EFGM. The effects of the Soret number, Dufour number, Grashof number for heat and mass transfer, the viscous dissipation parameter, Schmidt number, chemical reaction parameter, permeability parameter and Biot number on the dimensionless velocity, temperature and concentration profiles are presented graphically. In addition, numerical results for the local skin-friction coefficient, the local Nusselt number, and the local Sherwood number are discussed through tabular forms. The discussion focuses on the physical interpretation of the results as well as their comparison with the results of previous studies.

  2. Boiling Heat Transfer and Pressure Drop of a Refrigerant Flowing Vertically Upward in a Small Diameter Tube

    Science.gov (United States)

    Miyata, Kazushi; Mori, Hideo; Ohishi, Katsumi; Tanaka, Hirokazu

    In the present study, experiments were performed to examine characteristics of flow boiling heat transfer and pressure drop of a refrigerant R410A flowing vertically upward in a copper smooth tube with 1.0 mm inside diameter for the development of a high-performance heat exchanger using small diameter tubes for air conditioning systems. Local heat transfer coefficients were measured in a range of mass fluxes from 30 to 200 kg/(m2•s), heat fluxes from 1 to 16 kW/m2 and qualities from 0.1 to over 1 at evaporation temperature of 10°C, and pressure drops were also measured at mass fluxes of 100 and 200 kg/(m2•s) and qualities from 0.1 to 0.9. Three types of flow pattern were observed in the tube: A slug, a slug-annular and an annular flow. Based on the measurements, the characteristics of frictional pressure drop, heat transfer coefficient and dryout qualities were clarified. The measured pressure drop and heat transfer coefficient were compared with correlations.

  3. Effects of Heat Treatment on Interface Microstructure and Mechanical Properties of Explosively Welded Ck60/St37 Plates

    Science.gov (United States)

    Yazdani, Majid; Toroghinejad, Mohammad Reza; Hashemi, Seyyed Mohammad

    2016-12-01

    This study explores the effects of heat treatment on the microstructure and mechanical properties of explosively welded Ck60 steel/St37 steel. The objective is to find an economical way for manufacturing bimetallic plates that can be used in the rolling stand of hot rolling mill units. The explosive ratio and stand-off distance are set at 1.7 and 1.5 t ( t = flyer thickness), respectively. Since explosive welding is accompanied by such undesirable metallurgical effects as remarkable hardening, severe plastic deformation, and even formation of local melted zones near the interface, heat treatment is required to overcome or alleviate these adverse effects. For this purpose, the composites are subjected to heat treatment in a temperature range of 600-700 °C at a rate of 90 °C/h for 1 h. Results demonstrate well-bonded composite plates with a wavy interface. In the as-welded case, vortex zones are formed along the interface; however, they are transformed into fine grains upon heat treatment. Microhardness is also observed to be maximum near the interface in the welded case before it decreases with increasing temperature. Shear strength is the highest in the as-welded specimen, which later decreases as a result of heat treatment. Moreover, the energy absorbed by the heat-treated specimens is observed to increase with increasing temperature so that the lowest value of absorbed energy belongs to the as-welded specimen. Finally, fractography is carried out using the scanning electron microscope to examine the specimens subjected to shear and impact tests. As a result of heat treatment, fracture surfaces exhibit dimpled ruptures and fail in the mixed mode, while failure in the as-welded specimens predominantly occurs in the brittle mode.

  4. Numerical investigation on MHD micropolar fluid flow toward a stagnation point on a vertical surface with heat source and chemical reaction

    Directory of Open Access Journals (Sweden)

    S. Baag

    2017-01-01

    Full Text Available In this paper, the steady magnetohydrodynamic (MHD mixed convection stagnation point flow of an incompressible and electrically conducting micropolar fluid past a vertical flat plate is investigated. The effects of induced magnetic field, heat generation/absorption and chemical reaction have been taken into account during the present study. Numerical solutions are obtained by using the Runge–Kutta fourth order scheme with shooting technique. The skin friction and rate of heat and mass transfer at the bounding surface are also calculated. The generality of the present study is assured of by discussing the works of Ramachandran et al. (1988, Lok et al. (2005 and Ishak et al. (2008 as particular cases. It is interesting to note that the results of the previous authors are in good agreement with the results of the present study tabulated which is evident from the tabular values. Further, the novelty of the present analysis is to account for the effects of first order chemical reaction in a flow of reactive diffusing species in the presence of heat source/sink. The discussion of the present study takes care of both assisting and opposing flows. From the computational aspect, it is remarked that results of finite difference (Ishak et al. (2008 and Runge–Kutta associated with shooting technique (present method yield same numerical results with a certain degree of accuracy. It is important to note that the thermal buoyancy parameter in opposing flow acts as a controlling parameter to prevent back flow. Diffusion of lighter foreign species, suitable for initiating a destructive reaction, is a suggestive measure for reducing skin friction.

  5. Seismic-geodynamic constraints on three-dimensional structure, vertical flow, and heat transfer in the mantle

    Science.gov (United States)

    Forte, A.M.; Woodward, R.L.

    1997-01-01

    Joint inversions of seismic and geodynamic data are carried out in which we simultaneously constrain global-scale seismic heterogeneity in the mantle as well as the amplitude of vertical mantle flow across the 670 km seismic discontinuity. These inversions reveal the existence of a family of three-dimensional (3-D) mantle models that satisfy the data while at the same time yielding predictions of layered mantle flow. The new 3-D mantle models we obtain demonstrate that the buoyancy forces due to the undulations of the 670 km phase-change boundary strongly inhibit the vertical flow between the upper and lower mantle. The strong stabilizing effect of the 670 km topography also has an important impact on the predicted dynamic topography of the Earth's solid surface and on the surface gravity anomalies. The new 3-D models that predict strongly or partially layered mantle flow provide essentially identical fits to the global seismic data as previous models that have, until now, predicted only whole-mantle flow. The convective vertical transport of heat across the mantle predicted on the basis of the new 3-D models shows that the heat flow is a minimum at 1000 km depth. This suggests the presence at this depth of a globally defined horizon across which the pattern of lateral heterogeneity changes rapidly. Copyright 1997 by the American Geophysical Union.

  6. Heating produced by therapeutic ultrasound in the presence of a metal plate in the femur of canine cadavers

    Directory of Open Access Journals (Sweden)

    A.O. Andrades

    2014-10-01

    Full Text Available The present study aimed to assess the heat generated by a therapeutic ultrasound (TUS in a metal bone plate and adjacent structures after fixation to the femur of canine cadavers. Ten pairs of hind limbs were used, and they were equally distributed between groups that were subjected to 1- and 3-MHz frequencies, with each frequency testing 1- and 2-W/cm² intensities. The right hind limb was defined as the control group (absence of the metal plate, and the left hind limb was the test group (presence of the metal plate. Therefore, the control groups (CG were denominated CGI, using TUS with 1-MHz frequency and 1-W/cm² intensity; CGII, using 1-MHz frequency and 2-W/cm² intensity; CGIII, using 3-MHz frequency and 1-W/cm² intensity; and CGIV, using 3-MHz frequency and 2-W/cm² intensity. For each control group, its respective test group (TG was denominated TGI, TGII, TGIII and TGIV. The TUS was applied to the lateral aspect of the thigh using the continuous mode and a 3.5-cm² transducer in a 6.25-cm² area for 2 minutes. Sensors were coupled to digital thermometers that measured the temperature in different sites before (t0 and after (t1 of the TUS application. The temperatures in t1 were higher in all tested groups. The intramuscular temperature was significantly higher (P<0.05 in the groups used to test the 3-MHz frequency in the presence of the metal plate. The therapeutic ultrasound in the continuous mode using frequencies of 1 and 3 MHz and intensities of 1 and 2 W/cm2 for 2 minutes caused heating of the metal plate and adjacent structures after fixation to the femur of canine cadavers.

  7. Experimental investigation of the effect vertical oscillation on the heat transfer coefficient of the finned tube

    Directory of Open Access Journals (Sweden)

    Kadhim S. K.

    2016-01-01

    Full Text Available The aim of this work is to investigate experimentally the effect of the forced vibrations on the free convection heat transfer coefficient using heated longitudinally finned cylinder made of Aluminium. The effect of the vibration frequency ranged from 2 to16 Hz with various heat fluxes ranged from 500-1500 W/m2. It was found that, the relation between the heat transfer coefficient and amplitude of vibration increased for all inclination angles from (0°-45°, while the increment of inclination angle decreases the values of convection heat transfer coefficient. The results show that the heat transfer coefficient ratio (hv/ho of longitudinal finned cylinders in (0° angle was (8% and (30% greater than those for the (30° and (45° respectively.

  8. New similarity solution of boundary layer flow along a continuously moving convectively heated horizontal plate by deductive group method

    Directory of Open Access Journals (Sweden)

    Uddin Mohammed Jashim

    2015-01-01

    Full Text Available A mathematical model is presented and analyzed for steady two-dimensional non-isothermal laminar free convective boundary layer flow along a convectively heated moving horizontal plate. New similarity transformations are developed using one parameter deductive group transformations and hence the governing transport equations are reduced to a system of coupled, nonlinear ordinary differential equations with associated boundary conditions. The reduced equations are then solved numerically by an implicit finite difference numerical method. The effects of pertinent parameters on the non-dimensional velocity, temperature, friction factor and heat transfer rates are investigated and presented graphically. It is found that friction factor decreases with the free convective parameter and rate of heat transfer increases with the convection-conduction parameter.

  9. The turbulent boundary layer on a porous plate: An experimental study of the heat transfer behavior with adverse pressure gradients

    Science.gov (United States)

    Blackwell, B. F.; Kays, W. M.; Moffat, R. J.

    1972-01-01

    An experimental investigation of the heat transfer behavior of the near equilibrium transpired turbulent boundary layer with adverse pressure gradient has been carried out. Stanton numbers were measured by an energy balance on electrically heated plates that form the bottom wall of the wind tunnel. Two adverse pressure gradients were studied. Two types of transpiration boundary conditions were investigated. The concept of an equilibrium thermal boundary layer was introduced. It was found that Stanton number as a function of enthalpy thickness Reynolds number is essentially unaffected by adverse pressure gradient with no transpiration. Shear stress, heat flux, and turbulent Prandtl number profiles were computed from mean temperature and velocity profiles. It was concluded that the turbulent Prandtl number is greater than unity in near the wall and decreases continuously to approximately 0.5 at the free stream.

  10. Mixing rates and vertical heat fluxes north of Svalbard from Arctic winter to spring

    Science.gov (United States)

    Meyer, Amelie; Fer, Ilker; Sundfjord, Arild; Peterson, Algot K.

    2017-06-01

    Mixing and heat flux rates collected in the Eurasian Basin north of Svalbard during the N-ICE2015 drift expedition are presented. The observations cover the deep Nansen Basin, the Svalbard continental slope, and the shallow Yermak Plateau from winter to summer. Mean quiescent winter heat flux values in the Nansen Basin are 2 W m-2 at the ice-ocean interface, 3 W m-2 in the pycnocline, and 1 W m-2 below the pycnocline. Large heat fluxes exceeding 300 W m-2 are observed in the late spring close to the surface over the Yermak Plateau. The data consisting of 588 microstructure profiles and 50 days of high-resolution under-ice turbulence measurements are used to quantify the impact of several forcing factors on turbulent dissipation and heat flux rates. Wind forcing increases turbulent dissipation seven times in the upper 50 m, and doubles heat fluxes at the ice-ocean interface. The presence of warm Atlantic Water close to the surface increases the temperature gradient in the water column, leading to enhanced heat flux rates within the pycnocline. Steep topography consistently enhances dissipation rates by a factor of four and episodically increases heat flux at depth. It is, however, the combination of storms and shallow Atlantic Water that leads to the highest heat flux rates observed: ice-ocean interface heat fluxes average 100 W m-2 during peak events and are associated with rapid basal sea ice melt, reaching 25 cm/d.

  11. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  12. Experimental and numerical analyses on a plate heat exchanger with phase change for waste heat recovery at off-design conditions

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Di Battista, Davide; Fatigati, Fabio

    2015-11-01

    This paper analyzes the performances of an evaporator for small scale waste heat recovery applications based on bottoming Organic Rankine Cycles with net output power in the range 2-5 kW. The heat recovery steam generator is a plate heat exchanger with oil as hot stream and an organic fluid on the cold side. An experimental characterization of the heat exchanger was carried out at different operating points measuring temperatures, pressures and flow rates on both sides. The measurement data further allowed to validate a numerical model of the evaporator whereas heat transfer coefficients were evaluated comparing several literature correlations, especially for the phase-change of the organic fluid. With reference to a waste heat recovery application in industrial compressed air systems, multiple off-design conditions were simulated considering the effects of oil mass flow rate and temperature on the superheating of the organic fluid, a key parameter to ensure a proper operation of the expansion machine, thus of the energy recovery process.

  13. Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate

    KAUST Repository

    Kedia, Kushal S.

    2012-03-01

    The objective of this work is to investigate the flame stabilization mechanism and the conditions leading to the blowoff of a laminar premixed flame anchored downstream of a heat-conducting perforated-plate/multi-hole burner, with overall nearly adiabatic conditions. We use unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. Results show a bell-shaped flame stabilizing above the burner plate hole, with a U-shaped section anchored between neighboring holes. The base of the positively curved U-shaped section of the flame is positioned near the stagnation point, at a location where the flame displacement speed is equal to the flow speed. This location is determined by the combined effect of heat loss and flame stretch on the flame displacement speed. As the mass flow rate of the reactants is increased, the flame displacement speed at this location varies non-monotonically. As the inlet velocity is increased, the recirculation zone grows slowly, the flame moves downstream, and the heat loss to the burner decreases, strengthening the flame and increasing its displacement speed. As the inlet velocity is raised, the stagnation point moves downstream, and the flame length grows to accommodate the reactants mass flow. Concomitantly, the radius of curvature of the flame base decreases until it reaches an almost constant value, comparable to the flame thickness. While the heat loss decreases, the higher flame curvature dominates thereby reducing the displacement speed of the flame base. For a stable flame, the gradient of the flame base displacement speed normal to the flame is higher than the gradient of the flow speed along the same direction, leading to dynamic stability. As inlet velocity is raised further, the former decreases while the latter increases until the stability condition is violated, leading to blowoff. The flame speed during blow off is determined by the feedback between the

  14. Optimal design of the first stage of the plate-fin heat exchanger for the EAST cryogenic system

    Science.gov (United States)

    Qingfeng, JIANG; Zhigang, ZHU; Qiyong, ZHANG; Ming, ZHUANG; Xiaofei, LU

    2018-03-01

    The size of the heat exchanger is an important factor determining the dimensions of the cold box in helium cryogenic systems. In this paper, a counter-flow multi-stream plate-fin heat exchanger is optimized by means of a spatial interpolation method coupled with a hybrid genetic algorithm. Compared with empirical correlations, this spatial interpolation algorithm based on a kriging model can be adopted to more precisely predict the Colburn heat transfer factors and Fanning friction factors of offset-strip fins. Moreover, strict computational fluid dynamics simulations can be carried out to predict the heat transfer and friction performance in the absence of reliable experimental data. Within the constraints of heat exchange requirements, maximum allowable pressure drop, existing manufacturing techniques and structural strength, a mathematical model of an optimized design with discrete and continuous variables based on a hybrid genetic algorithm is established in order to minimize the volume. The results show that for the first-stage heat exchanger in the EAST refrigerator, the structural size could be decreased from the original 2.200 × 0.600 × 0.627 (m3) to the optimized 1.854 × 0.420 × 0.340 (m3), with a large reduction in volume. The current work demonstrates that the proposed method could be a useful tool to achieve optimization in an actual engineering project during the practical design process.

  15. Heat Transfer Characteristics and Prediction Model of Supercritical Carbon Dioxide (SC-CO2 in a Vertical Tube

    Directory of Open Access Journals (Sweden)

    Can Cai

    2017-11-01

    Full Text Available Due to its distinct capability to improve the efficiency of shale gas production, supercritical carbon dioxide (SC-CO2 fracturing has attracted increased attention in recent years. Heat transfer occurs in the transportation and fracture processes. To better predict and understand the heat transfer of SC-CO2 near the critical region, numerical simulations focusing on a vertical flow pipe were performed. Various turbulence models and turbulent Prandtl numbers (Prt were evaluated to capture the heat transfer deterioration (HTD. The simulations show that the turbulent Prandtl number model (TWL model combined with the Shear Stress Transport (SST k-ω turbulence model accurately predicts the HTD in the critical region. It was found that Prt has a strong effect on the heat transfer prediction. The HTD occurred under larger heat flux density conditions, and an acceleration process was observed. Gravity also affects the HTD through the linkage of buoyancy, and HTD did not occur under zero-gravity conditions.

  16. Study on the sensitivity of the vertical cooling (heat sink) on the ...

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging) 1461 1996 Oct 15 13:05:22

    ment of the mid-tropospheric ridge. The effect of excessive winter and spring snow cover over Eura- sia is that less solar energy is available to heat the atmosphere due to high albedo of snow. They modeled the anomalous cooling associated with the increased snow cover in Eurasia as a heat sink and prescribed the same ...

  17. Chemical reaction and radiation effects on the transient MHD free convection flow of dissipative fluid past an infinite vertical porous plate with ramped wall temperature

    Directory of Open Access Journals (Sweden)

    V. RAJESH

    2011-06-01

    Full Text Available A finite-difference analysis is performed to study the effects of thermal radiation and chemical reaction on the transient MHD free convection and mass transform flow of a dissipative fluid past an infinite vertical porous plate subject to ramped wall temperature. The fluid considered here is a gray, absorbing/ /emitting radiation but a non-scattering medium. The dimensionless governing equations are unsteady, coupled and non-linear partial differential equations. An analytical method fails to give a solution. Hence an implicit finite difference scheme of Crank-Nicolson method is employed. The effect of the magnetic parameter (M, chemical reaction parameter (K, radiation parameter (F, buoyancy ratio parameter (N, Schmidt number (Sc on the velocity field and skin friction for both air (Pr = 0.71 and water (Pr = 7 in the presence of both aiding (N>0 and opposing (N<0 flows are extensively discussed with the help of graphs.

  18. Some Exact Solutions of Boundary Layer Flows along a Vertical Plate with Buoyancy Forces Combined with Lorentz Forces under Uniform Suction

    Directory of Open Access Journals (Sweden)

    Asterios Pantokratoras

    2008-01-01

    Full Text Available Exact analytical solutions of boundary layer flows along a vertical porous plate with uniform suction are derived and presented in this paper. The solutions concern the Blasius, Sakiadis, and Blasius-Sakiadis flows with buoyancy forces combined with either MHD Lorentz or EMHD Lorentz forces. In addition, some exact solutions are presented specifically for water in the temperature range of 0∘C≤≤8∘C, where water density is nearly parabolic. Except for their use as benchmarking means for testing the numerical solution of the Navier-Stokes equations, the presented exact solutions with EMHD forces have use in flow separation control in aeronautics and hydronautics, whereas the MHD results have applications in process metallurgy and fusion technology. These analytical solutions are valid for flows with strong suction.

  19. Time dependent Oldroyd-B liquid film flow over an oscillating and porous vertical plate with the effect of thermal radiation

    Science.gov (United States)

    Mohmand, Muhammad Ismail; Shah, Qayyum; Mamat, Mustafa Bin; Shah, Zahir; Khan, Abdul Samad

    2017-05-01

    In the current research work, a liquid film flow of Oldroyd-B fluid with internal heat in vertical porous medium in an oscillating belt is being examined in unsteady state. For this phenomenon, by using basic equations of fluid motion we get a mathematical model. The obtained model problem is solved for the exact analytic solutions by Optimal Homotopy Asymptotic Method (OHAM). Velocity, temperature fields with the mass flow-rate and heat transfer rate of the fluid flow at the belt are also calculated. The effect of pertinent parameters like κ1 relaxation time parameter, κ2 retardation time parameter, Λ porosity parameter, R radiation parameter and Pr temperature fields are also deliberated and then are presented graphically.

  20. Heat transfer in vertical pipe flow at supercritical pressures of water; Waermeuebergang von Wasser in vertikalen Rohrstroemungen bei ueberkritischem Druck

    Energy Technology Data Exchange (ETDEWEB)

    Loewenberg, M.F.

    2007-05-15

    A new reactor concept with light water at supercritical conditions is investigated in the framework of the European project ''High Performance Light Water Reactor'' (HPLWR). Characteristics of this reactor are the system pressure and the coolant outlet temperature above the critical point of water. Water is regarded as a single phase fluid under these conditions with a high energy density. This high energy density should be utilized in a technical application. Therefore in comparison with up to date nuclear power plants some constructive savings are possible. For instance, steam dryers or steam separators can be avoided in contrast to boiling water reactors. A thermal efficiency of about 44% can be accomplished at a system pressure of 25MPa through a water heat-up from 280 C to 510 C. To ensure this heat-up within the core reliable predictions of the heat transfer are necessary. Water as the working fluid changes its fluid properties dramatically during the heat up in the core. As such; the density in the core varies by the factor of seven. The motivation to develop a look-up table for heat transfer predications in supercritical water is due to the significant temperature dependence of the fluid properties of water. A systematic consolidation of experimental data was performed. Together with further developments of the methods to derive a look-up table made it possible to develop a look-up table for heat transfer in supercritical water in vertical flows. A look-up table predicts the heat transfer for different boundary conditions (e.g. pressure or heat flux) with tabulated data. The tabulated wall temperatures for fully developed turbulent flows can be utilized for different geometries by applying hydraulic diameters. With the developed look-up table the difficulty of choosing one of the many published correlations can be avoided. In general, the correlations have problems with strong fluid property variations. Strong property variations

  1. Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    2012-01-01

    Full Text Available The steady boundary layer flow and heat transfer of a viscous fluid on a moving flat plate in a parallel free stream with variable fluid properties are studied. Two special cases, namely, constant fluid properties and variable fluid viscosity, are considered. The transformed boundary layer equations are solved numerically by a finite-difference scheme known as Keller-box method. Numerical results for the flow and the thermal fields for both cases are obtained for various values of the free stream parameter and the Prandtl number. It is found that dual solutions exist for both cases when the fluid and the plate move in the opposite directions. Moreover, fluid with constant properties shows drag reduction characteristics compared to fluid with variable viscosity.

  2. Post-dryout heat transfer in a vertical straight tube of a steam generator. Experiments and analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Roko, K.; Shiraha, M. (Kawasaki Heavy Industries Ltd., Akashi, Hyogo (Japan). Technical Inst.)

    1980-09-01

    Importance of the problem of post-dryout heat transfer is increasing in the field of the new technologies being developed lately. This is because the correct understanding of post-dryout heat transfer characteristics together with the position of dryout point is important in designing steam generators and evaluating their safety. By this experiment, the data on the post-dryout heat transfer coefficient in vapor/water system in a vertical straight tube by sodium heating were obtained in the ranges of pressure from 8.2 to 14.3 MPa and mass flow from 240 to 550 kg/m/sup 2/s, for the straight tube steam generators for fast breeder reactors. Based on the result, the investigation by the comparison with the existing correlating equations showed that all equations except the Remizov's equation gave considerably higher values than the experimental value, and the difference was larger as the pressure and flow rate were lower. Next, from the viewpoint that the thermal non-equilibrium of droplets and vapor basically governs the post-dryout heat transfer, the initial diameter of droplets was arranged in the form of a correlating equation after establishing an analytical model and determining the diameter capable of evaluating the experimental values most reasonably. Comparison of the calculated value of heat transfer coefficient by this equation with this experimental value and with the experimental value obtained by electric heating in the region including high flow rate range of 5200 kg/m/sup 2/s or less by Bennett showed good agreement.

  3. Annual measured and simulated thermal performance analysis of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2017-01-01

    the district heating network to about 70 °C and then the parabolic trough collectors would heat the preheated water to the required supply temperature of the district heating network. Annual measured and simulated thermal performances of both the parabolic trough collector field and the flat plate collector...... in large solar heating plants for a district heating network, a hybrid solar collector field with 5960 m2 flat plate collectors and 4039 m2 parabolic trough collectors in series was constructed in Taars, Denmark. The design principle is that the flat plate collectors preheat the return water from...... field are presented in this paper. The thermal performance of both collector fields with weather data of a Design Reference Year was simulated to have a whole understanding of the application of both collectors under Danish climate conditions as well. These results not only can provide a design basis...

  4. Influence of wick properties in a vertical LHP on remove waste heat from electronic equipment

    Science.gov (United States)

    Smitka, Martin; Nemec, Patrik; Malcho, Milan

    2014-08-01

    The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work is to develop porous wick of sintered nickel powder with different grain sizes. These porous wicks were used in LHP and there were performed a series of measurements to remove waste heat from the insulated gate bipolar transistor (IGBT).

  5. Effects of Ramped Wall Temperature on Unsteady Two-Dimensional Flow Past a Vertical Plate with Thermal Radiation and Chemical Reaction

    Directory of Open Access Journals (Sweden)

    V. Rajesh

    2014-08-01

    Full Text Available The interaction of free convection with thermal radiation of a viscous incompressible unsteady flow past a vertical plate with ramped wall temperature and mass diffusion is presented here, taking into account the homogeneous chemical reaction of first order. The fluid is gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative flux in the energy equation. The dimensionless governing equations are solved using an implicit finite-difference method of the Crank-Nicolson type, which is stable and convergent. The velocity profiles are compared with the available theoretical solution and are found to be in good agreement. Numerical results for the velocity, the temperature, the concentration, the local and average skin friction, the Nusselt number and Sherwood number are shown graphically. This work has wide application in chemical and power engineering and also in the study of vertical air flow into the atmosphere. The present results can be applied to an important class of flows in which the driving force for the flow is provided by combination of the thermal and chemical species diffusion effects.

  6. Local distribution of wall static pressure and heat transfer on a rough flat plate impinged by a slot air jet

    Science.gov (United States)

    Meda, Adimurthy; Katti, Vadiraj V.

    2017-08-01

    The present work experimentally investigates the local distribution of wall static pressure and the heat transfer coefficient on a rough flat plate impinged by a slot air jet. The experimental parameters include, nozzle-to-plate spacing (Z /D h = 0.5-10.0), axial distance from stagnation point ( x/D h ), size of detached rib ( b = 4-12 mm) and Reynolds number ( Re = 2500-20,000). The wall static pressure on the surface is recorded using a Pitot tube and a differential pressure transmitter. Infrared thermal imaging technique is used to capture the temperature distribution on the target surface. It is observed that, the maximum wall static pressure occurs at the stagnation point ( x/D h = 0) for all nozzle-to-plate spacing ( Z/D h ) and rib dimensions studied. Coefficient of wall static pressure ( C p ) decreases monotonically with x/D h . Sub atmospheric pressure is evident in the detached rib configurations for jet to plate spacing up to 6.0 for all ribs studied. Sub atmospheric region is stronger at Z/D h = 0.5 due to the fluid accelerating under the rib. As nozzle to plate spacing ( Z/D h ) increases, the sub-atmospheric region becomes weak and vanishes gradually. Reasonable enhancement in both C p as well as Nu is observed for the detached rib configuration. Enhancement is found to decrease with the increase in the rib width. The results of the study can be used in optimizing the cooling system design.

  7. Air to air fixed plate enthalpy heat exchanger, performance variation and energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nasif, Mohammad Shakir [Universiti Teknologi Petronas, Bandar Seri Iskandar (Malaysia); Alwaked, Rafat [Prince Mohammad Bin Fahd University, Al Khobar (Saudi Arabia); Behnia, Masud [University of Sydney, Sydney (Australia); Morrison, Graham [The University of New South Wales, Sydney (Australia)

    2013-11-15

    The thermal performance of a Z shape enthalpy heat exchanger utilising 70 gsm Kraft paper as the heat and moisture transfer surface has been investigated. Effects of different inlet air humidity ratio conditions on the heat exchanger effectiveness and on the energy recovered by the heat exchanger have been the main focus of this investigation. A typical air conditioning cooling coil which incorporates an enthalpy heat exchanger has been modelled for tropical climate. Under test conditions, results have shown that latent effectiveness and the moisture resistance coefficient have strong dependency on the inlet air humidity ratio. Moreover, the latent effectiveness has been found to be strongly dependent on the moisture resistance coefficient rather than the convective mass transfer coefficient. Finally, annual energy analysis for Singapore weather conditions have also shown that energy recovered under variable inlet air conditions is 15% less than that recovered under constant inlet air conditions for the same heat exchanger.

  8. Numerical modelling of temperature fields in the flow boiling liquid through a vertical minichannel with an enhanced heating surface

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2014-03-01

    Full Text Available The paper presents results of heat transfer research on flow boiling in a rectangular minichannel positioned vertically, with an enhanced surface. One of the channel walls was made of thin foil powered by direct current. This foil is enhanced on the side contacting fluid in the minichannel. It is possible to observe both surfaces of the minichannel through two openings covered with glass panes. One allows detecting temperature of the plain side of the foil by liquid crystal thermography. The opposite surface of the minichannel (from the enhanced side of the foil can be observed through the other glass pane. The observations of the flow structures allowed to calculate the void fraction for some cross-sections of selected two phase flow images. In mathematical modelling of the considered process stationary heat transfer in a glass pane, heating foil and boiling liquid can be described with Laplace equation, Poisson equation and energy equation, respectively. For completeness of the model a corresponding system of boundary conditions was given. The two-dimensional temperature fields of glass pane, heating foil and fluid was computed with the Trefftz method. The equalizing calculus used to smooth the measured data has reduced errors.

  9. Dufour and Soret Effects on Convection Heat and Mass Transfer in an Electrical Conducting Power Law Flow over a Heated Porous Plate

    Science.gov (United States)

    Olanrewaju, P. O.; Fenuga, O. J.; Gbadeyan, J. A.; Okedayo, T. G.

    2013-01-01

    In this paper, the influence of thermal and thermo diffusion on convection heat and mass transfer in an electrically conducting power law flow over a heated porous plate in the presence of magnetic field has been considered. The similarity solution is used to transform the system of partial differential equations into a boundary value problem of coupled ordinary differential equations. Runge Kutta of sixth order has been used along with a shooting method for better accuracy. The results were presented as velocity, temperature, and concentration fields for pseudoplastic and dilatant fluids for different values of the embedded flow parameters. The results are presented graphically and the conclusion is drawn that the flow field and other quantities of physical interests are significantly influenced by these parameters.

  10. Preliminary design review package on air flat plate collector for solar heating and cooling system

    Science.gov (United States)

    1977-01-01

    Guidelines to be used in the development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet (10-4 ft x 8 ft panels) of collector area are presented. Topics discussed include: (1) verification plan; (2) thermal analysis; (3) safety hazard analysis; (4) drawing list; (5) special handling, installation and maintenance tools; (6) structural analysis; and (7) selected drawings.

  11. Analytical Thermal and Cost Optimization of Micro-Structured Plate-Fin Heat Sink

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Rosendahl, Lasse

    sizes of the substrate plat of the heat sink. Results show that, at any pumping power there are specific values of the channel width and fin thickness which produce minimum thermal resistance in the heat sink. The results also illustrate that, a larger channel width and a smaller fin thickness lead...

  12. Engineering applications and analysis of vibratory motion fourth order fluid film over the time dependent heated flat plate

    Science.gov (United States)

    Mohmand, Muhammad Ismail; Mamat, Mustafa Bin; Shah, Qayyum

    2017-07-01

    This article deals with the time dependent analysis of thermally conducting and Magneto-hydrodynamic (MHD) liquid film flow of a fourth order fluid past a vertical and vibratory plate. In this article have been developed for higher order complex nature fluids. The governing-equations have been modeled in the terms of nonlinear partial differential equations with the help of physical boundary circumstances. Two different analytical approaches i.e. Adomian decomposition method (ADM) and the optimal homotopy asymptotic method (OHAM), have been used for discoveryof the series clarification of the problems. Solutions obtained via two diversemethods have been compared using the graphs, tables and found an excellent contract. Variants of the embedded flow parameters in the solution have been analysed through the graphical diagrams.

  13. Mixed convection of a micropolar fluid in a vertical channel with ...

    African Journals Online (AJOL)

    plate vertical channel has been investigated analytically. The plates exchange heat with an external fluid. Both conditions of equal and of different reference temperatures of the external fluid are considered. The effect of important parameters, namely vortex viscosity parameter, ratio of Grashof number to Reynolds number ...

  14. Mixed convection flow and heat transfer in a vertical wavy channel ...

    African Journals Online (AJOL)

    user

    Buoyancy effects distort the velocity and temperature profiles relative to the forced convection case. This phenomenon is of ... temperatures and stability of the flow. Convective heat ... vaporization in combustion chambers, the finishing of painted walls and in reducing friction of drag on the hulls of ships and submarines.

  15. Study on the sensitivity of the vertical cooling (heat sink) on the ...

    Indian Academy of Sciences (India)

    A linear model of the response of a stratified atmosphere to isolated heat sources in spherical coordinates is used to study the maintenance of the mean position of the mid tropospheric ridge and its displacement. It is well known that the performance of the southwest Indian monsoon is related to the latitudinal position of the ...

  16. TRACE assessment on local condensation heat transfer in presence of non-condensable gas inside a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Jin; Ahn, Seung Hoon; Kim, Kap; Kim, Hho Jung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-07-01

    TRACE assessment was performed to investigate local condensation heat transfer coefficients in the presence of a noncondensable gas inside a vertical tube. The data obtained from pure steam and steam/nitrogen mixture condensation experiments were compared to study the effects of noncondensable nitrogen gas on the annular film condensation phenomena. The condenser tube had a small inner diameter of 13mm (about 1/2-in.) and this experiment had been performed to prove the effectiveness of the a Passive Residual Heat Removal System (PRHRS) of SMART (System-integrated Modular Advanced ReacTor), which is a small modular integral-type pressurized water reactor that is developed for the dual purposes of seawater desalination and small-scaled power generation. In the case of nitrogen presence, TRACE results show the converged results but the prediction is different from experimental data. The candidate reasons can be focused on several models, such as the film thickness calculation, surface area, and condensation heat transfer correlations, etc. In the case of pure steam condensation case, TRACE results shows large oscillations and do not converge. This should be investigated in detail to identify the reason. Until now, the oscillation in thermal hydraulic parameters results from the film thickness calculation and surface area calculation. For future works, the whole sets of the experiment will be assessed and the improvement of TRACE will be performed.

  17. Peculiarities of heat transfer at the liquid metal flow in a vertical channel in a coplanar magnetic field

    Science.gov (United States)

    Razuvanov, N. G.; Poddubnyi, I. I.; Kostychev, P. V.

    2017-11-01

    The research of hydrodynamics and heat transfer at the liquid metal (LM) downward flow and upflow in a vertical duct of a rectangular cross section with a ratio of sides ∼1/3 in a coplanar magnetic field (MF) under conditions of bilateral symmetrical heating is performed. The problem simulates the LM flow in the heat exchange channels for cooling the liquid metal module of the blanket of the thermonuclear reactor (TNR) of the TOKAMAK type. The experiments were carried out on the basis of the mercury magnetohydrodynamic test-bed (MHD) Moscow Power Engineering Institute (MPEI) – Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS). The probe measurement technique was used in the flow. Profiles of averaged velocity and averaged temperature, as well as profiles of temperature pulsations in the axial planes of the channel cross-section, are obtained; the distribution of the dimensionless wall temperature along the perimeter unfolding of the channel in the section and along the length of the channel. A significant effect of thermogravitational convection (TGC), which leads to unexpected effects, is found. At the downflow in a magnetic field, in some modes, low-frequency pulsations of anomalously high intensity occur.

  18. Transient Heat Transfer Model for Car Body Primer Curing

    OpenAIRE

    D. Zabala; N. Sánchez; J. Pinto

    2010-01-01

    A transient heat transfer mathematical model for the prediction of temperature distribution in the car body during primer baking has been developed by considering the thermal radiation and convection in the furnace chamber and transient heat conduction governing equations in the car framework. The car cockpit is considered like a structure with six flat plates, four vertical plates representing the car doors and the rear and front panels. The other two flat plates are the...

  19. Numerical Study of Thermal and Flow Characteristics of Plate-Fin Heat Sink with Longitudinal Vortex Generator Installed on the Ground

    Directory of Open Access Journals (Sweden)

    Yen-Tso Chang

    2014-01-01

    Full Text Available This study applied the commercial software ANSYS CFD (FLUENT, for simulating the transient flow field and investigating the influence of each parameter of longitudinal vortex generators (LVGs on the thermal flux of a plate-fin heat sink. Vortex generator was set in front of plate-fin heat sink and under the channel, which was in common-flow-down (CFD and common-flow-up (CFU conditions, which have the result of vortex generator of delta winglet pair (DWP. In this study the parameters were varied, such as the minimum transverse distance between winglet pair, the attack angle of the vortex generator, fins number, the fin height, and the distance between the vortex generator and plate-fin. The coolant fluid flew into the fin-to-fin channel and pushed the vortex from different geometry toward the bottom. This phenomenon took off the heat from the plate to enhance the heat transfer. The numerical results indicated that the LVGs located close to the plate-fin heat sink are zero with the attack angle being 30°, presenting optimal overall conditions.

  20. Natural convection flow of Cu-H2O nanofluid along a vertical wavy surface with uniform heat flux

    Science.gov (United States)

    Habiba, Farjana; Molla, Md. Mamun; Khan, M. A. Hakim

    2016-07-01

    A numerical study on natural convection flow of Cu-Water nanofluid along a vertical wavy surface with uniform heat flux has been carried out. The governing boundary layer equations are transformed into parabolic partial differential equations by applying a suitable set of variables. The resulting nonlinear system of equations are then mapped into a regular rectangular computational domain and solved numerically by using an implicit finite difference method. Numerical results are thoroughly discussed in terms of velocity and temperature distributions, surface temperature distribution, skin friction coefficient and Nusselt number coefficient for selected key parameters such as solid volume fraction of nanofluid (ϕ) and amplitude (α) of surface waviness. In addition, velocity vectors, streamlines and isotherms are plotted to visualize momentum and thermal flow pattern within the boundary layer region.

  1. Baroclinic wave laboratory experiment with radial heating and vertical stratification to study IGW emission from baroclinic fronts

    Science.gov (United States)

    Rodda, Costanza; Borcia, Ion; Harlander, Uwe

    2017-04-01

    The differentially heated rotating annulus is a widely studied experimental apparatus for modelling large- scale features of the mid-latitude atmosphere. In the classic set-up, the instability is studied using a homogeneous fluid. In the present work, we study a modified version of the classical baroclinic experiment where the working fluid consists of sodium-chloride/de-ionized water solution. A continuously stratified salinity profile is initially prepared in the annular cavity with the standard double-bucket technique. The vertical salt stratification opposes the thermal convective motions until the ratio of the (horizontal) thermal density difference and the (vertical) salinity-induced density difference exceeds a certain critical threshold. Then double-diffusive convection rolls develop in thin layers located at top and bottom, where the salt stratification is weaker. This laboratory arrangement mimics the presence of a stratosphere above a baroclinic unstable troposphere. PIV velocity maps describe the wavy flow pattern at different altitudes. A baroclinic wave on top, and one at the bottom arise, but with different azimuthal wave numbers. These waves are decoupled by the presence of the motionless stratified layer between them. In some regimes, small scale wave trains have been detected along the baroclinic wave front. These waves might be traces of Internal Gravity Waves generated by the fluid motions in the baroclinic unstable layers.

  2. A study on prediction methods of the critical heat flux for upward flow in a vertical narrow rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gil Sik, E-mail: choigs@kaist.ac.kr; Jeong, Yong Hoon; Chang, Soon Heung

    2015-12-01

    Highlights: • The empirical CHF correlations for upward flow in a vertical narrow rectangular channel were reviewed, for high pressure condition over 40 bar. • New Correlation-A/B, which were derived by ACE algorithm, show much more improved prediction errors than other previous CHF correlations. • The Look-Up Table (LUT) of ACEL predicts CHF as well as New Correlations. • Comparative analysis shows that LUT with correction factors has potential application greater than New Correlations, for low pressure condition. - Abstract: The previous empirical CHF correlations for upward flow in a vertical narrow rectangular channel which is uniformly heated from both wide sides were reviewed and analyzed by using the experimental data points at pressure condition over 40 bar. The new correlations, that is, Simple Correlation and New Correlation-A/B were derived and proposed by using simple regression and ACE algorithm, and it was shown that they have more improved prediction errors than the other previous correlations. The Look-Up Table (LUT) of AECL also estimates CHF as well as New Correlation—A/B even though LUT was generated from the CHF data points in circular channels. As a result of comparative assessments of LUT and the empirical correlation of low pressure condition, it is reasonably concluded that for wider pressure condition, LUT with proper correction factors is the most pragmatic and universal CHF prediction method for rectangular channel in this study.

  3. Finite line-source model for borehole heat exchangers. Effect of vertical temperature variations

    Energy Technology Data Exchange (ETDEWEB)

    Bandos, Tatyana V.; Fernandez, Esther; Santander, Juan Luis G.; Isidro, Jose Maria; Perez, Jezabel; Cordoba, Pedro J. Fernandez de [Instituto Universitario de Matematica Pura y Aplicada, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Montero, Alvaro; Urchueguia, Javier F. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2009-06-15

    A solution to the three-dimensional finite line-source (FLS) model for borehole heat exchangers (BHEs) that takes into account the prevailing geothermal gradient and allows arbitrary ground surface temperature changes is presented. Analytical expressions for the average ground temperature are derived by integrating the exact solution over the line-source depth. A self-consistent procedure to evaluate the in situ thermal response test (TRT) data is outlined. The effective thermal conductivity and the effective borehole thermal resistance can be determined by fitting the TRT data to the time-series expansion obtained for the average temperature. (author)

  4. MHD boundary layer slip flow and radiative nonlinear heat transfer over a flat plate with variable fluid properties and thermophoresis

    Directory of Open Access Journals (Sweden)

    S.K. Parida

    2015-12-01

    Full Text Available This work considers the two-dimensional steady MHD boundary layer flow of heat and mass transfer over a flat plate with partial slip at the surface subjected to the convective heat flux. The particular attraction lies in searching the effects of variable viscosity and variable thermal diffusivity on the behavior of the flow. In addition, non-linear thermal radiation effects and thermophoresis are taken into account. The governing nonlinear partial differential equations for the flow, heat and mass transfer are transformed into a set of coupled nonlinear ordinary differential equations by using similarity variable, which are solved numerically by applying Runge–Kutta fourth–fifth order integration scheme in association with quasilinear shooting technique. The novel results for the dimensionless velocity, temperature, concentration and ambient Prandtl number within the boundary layer are displayed graphically for various parameters that characterize the flow. The local skin friction, Nusselt number and Sherwood number are shown graphically. The numerical results obtained for the particular case are fairly in good agreement with the result of Rahman [6].

  5. Influence of the elliptical and circular orifices on the local heat transfer distribution of a flat plate impinged by under-expanded jets

    Science.gov (United States)

    Vinze, Ravish; Limeye, M. D.; Prabhu, S. V.

    2017-04-01

    Experimental study is carried out to explore the influence of nozzle profile on heat transfer for underexpanded impinging jets. Circular and elliptical orifices are used to generate underexpanded jets for underexpantion ratio ranging from 1.25 to 2.67. The supply pressure maintained in the present study ranges from 2.36 to 5.08 times the ambient pressure. IR thermal imaging camera is used to measure surface temperature of thin foil at different nozzle to plate distances. Shadowgraph and pressure distribution are used to understand the flow structure and distribution of circular and elliptical nozzle. It is observed that plate shock and pressure distribution over the plate have significant influence on the local heat transfer. The performance of the circular orifice is far better at lower z/d. The axis switching is observed for an elliptical orifice. Correlation for local heat transfer predicts Nusselt number comparable within 15 % of experimental results.

  6. Coeficientes de transferencia de calor experimental para el enfriamiento de licor en intercambiadores de placas//Experimental heat transfer coefficients for the liquor cooling in plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Enrique Torres‐Tamayo

    2014-01-01

    Full Text Available La pérdida de eficiencia del proceso de enfriamiento del licor amoniacal, mediante el uso de intercambiadores de calor de placas, está asociada a imprecisiones en la estimación de los coeficientes de transferencia de calor y la acumulación de incrustaciones en la superficie de intercambio. El objetivo de la investigación es determinar los coeficientes de transferencia de calor y la influencia de lasincrustaciones en la pérdida de eficiencia de la instalación. Mediante un procedimiento iterativo se estableció la ecuación del número de Nusselt y su relación con el número de Reynolds y Prandtl. Se utilizó un diseño experimental multifactorial. Los resultados predicen el conocimiento de los coeficientespara el cálculo del número de Nusselt en ambos fluidos. Los valores de los coeficientes del licor amoniacal son inferiores, ello se debe a la presencia de componentes gaseosos. La ecuación obtenida muestra correspondencia con el modelo de Buonapane, el error comparativo es del 3,55 %.Palabras claves: intercambiador de calor de placas, coeficientes de transferencia de calor, eficiencia térmica.______________________________________________________________________________AbstractThe loss of efficiency of the ammonia liquor cooling process, by means of the plate heat exchanger, is associated to the incorrect estimate of the heat transfer coefficients and the accumulation of inlays in the exchange surface. The objective of the investigation is to determine the transfer coefficients and the influence of the inlays in the efficiency loss of the installation. By means of an iterative procedure was obtained the Nusselt number equation and the relationship with the Reynolds and Prandtl number, for it was used it a design experimental multifactorial. The results predict the knowledge of the coefficients forthe calculation of the Nusselt number for both fluids. The ammonia liquor coefficients values are inferior, due to the presence of gassy

  7. Heat and fluid flow properties of circular impinging jet with a low nozzle to plate spacing. Improvement by nothched nozzle; Nozzle heibankan kyori ga chiisai baai no enkei shototsu funryu no ryudo dennetsu tokusei. Kirikaki nozzle ni yoru kaizen kojo

    Energy Technology Data Exchange (ETDEWEB)

    Shakouchih, T. [Mie University, Mie (Japan). Faculty of Engineering; Matsumoto, A.; Watanabe, A.

    2000-10-25

    It is well known that as decreasing the nozzle to plate spacing considerably the heat transfer coefficient of circular impinging jet, which impinges to the plate normally, increases remarkably. At that time, the flow resistance of nozzle-plate system also increases rapidly. In this study, in order to reduce the flow resistance and to enhance the heat transfer coefficient of the circular impinging jet with a considerably low nozzle to plate spacing, a special nozzle with notches is proposed, and considerable improvement of the flow and heat transfer properties are shown. The mechanism of enhancement of the heat transfer properties is also discussed. (author)

  8. New data on two-phase two-component heat transfer and hydrodynamics in a vertical tube

    Science.gov (United States)

    Rezkallah, K. S.; Sims, G. E.

    1987-06-01

    In forced-convective two-phase, two component (gas-liquid) flow, experimental data for mean heat-transfer coefficients, pressure drop and flow patterns were taken simultaneously for the flow in a 1.17-cm i.d. electrically heated vertical tube using three liquids: water, glycerine and water and silicone liquid with air as the gas phase. The combination of silicone liquid and the glycerine and water solution provided a set of data in which the surface tension changed by a factor of 3.4 (being lower for the silicone liquid) with a rough matching of other hydrodynamic properties and a precise matching of the Prandtl number (63 at 25 C). The flow-pattern results showed a significant change in the bubble-slug boundary for the silicone liquid compared with the glycerine and water solution, while the pressure drop results for silicone-air, in the range of V(SL) between 0.277 and 0.690 m/s at high V(SC) showed a sudden drop in Delta/P(tot) followed by a subsequent increase.

  9. Effect of an inserted porous layer on heat and fluid flow in a vertical channel with mixed convection

    Directory of Open Access Journals (Sweden)

    Celik Hasan

    2015-01-01

    Full Text Available Temperature and velocity fields in a vertical channel partially filled with porous medium under mixed convection heat transfer condition are obtained. The heat transfer equation and equation of motion for clear and porous layer regions are written and solved analytically. The nondimensionalization of the governing equations yields two Grashof numbers as Grc and Grd for clear and porous sections where Grd=Da.Grc. The dimensionless governing parameters for the problem are Grc (or Grd, Da, thermal conductivity ratio (i.e., K and thickness of porous layer. The temperature and velocity profiles for different values of Grc, Da, K and thickness of porous layer are plotted and their changes with the governing parameters are discussed. Moreover, the variation of pressure drop with the governing parameters is investigated. The decrease of porous layer thickness or thermal conductivity ratio increases the possibility of the downward flows. Thermal conductivity ratio plays important role on pressure drop, particularly for the channels with high values of Grc/Re.

  10. Results and analysis of high heat flux tests on a full scale vertical target prototype of ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M.; Escourbiac, F.; Schlosser, J.; Durocher, A. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Merola, M. [EFDA Close Support Unit, Garching (Germany); Bobin-Vastra, I. [Framatome, 71 - Le Creusot (France)

    2004-07-01

    After an extensive development program, a Full-Scale Divertor Target prototype (VTFS) manufactured with all the main features of the corresponding ITER divertor, was intensively tested in the high heat flux FE200 facility. The prototype consists of four units having a full mono-block geometry. The lower part (CFC armour) and the upper part (W armour) of each mono-block were joined to the solution annealed, quenched and cold worked CuCrZr tube by HIP technique. The CFC mono-block was successfully tested up to 1000 cycles at 23 MW/m{sup 2} without any indication of failure. This value is well beyond the ITER design target of 300 cycles at 20 MW/m{sup 2}. The W mono-block endured {approx}600 cycles at 10 MW/m{sup 2}. This value of flux is one order of magnitude higher than the ITER design target for the upper part of the vertical target. Fatigue damage is observed when pursuing the cycling up to 15 MW/m{sup 2}. A first stress analysis seems to predict these factual results. However, macro-graphic examinations should bring a better damage valuation. Meanwhile, the fatigue testing will continue on the W healthy part of the VTFS prototype with castellation located on the heated surface (reducing the stresses close to the W-Cu interface). (authors)

  11. Effect of Heat Input During Disk Laser Bead-On-Plate Welding of Thermomechanically Rolled Steel on Penetration Characteristics and Porosity Formation in the Weld Metal

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2016-03-01

    Full Text Available The paper presents a detailed analysis of the influence of heat input during laser bead-on-plate welding of 5.0 mm thick plates of S700MC steel by modern Disk laser on the mechanism of steel penetration, shape and depth of penetration, and also on tendency to weld porosity formation. Based on the investigations performed in a wide range of laser welding parameters the relationship between laser power and welding speed, thus heat input, required for full penetration was determined. Additionally the relationship between the laser welding parameters and weld quality was determined.

  12. Heat transfer, pressure drop and void fraction in two- phase, two-component flow in a vertical tube

    Science.gov (United States)

    Sujumnong, Manit

    1998-09-01

    There are very few data existing in two-phase, two- component flow where heat transfer, pressure drop and void fraction have all been measured under the same conditions. Such data are very valuable for two-phase heat-transfer model development and for testing existing heat-transfer models or correlations requiring frictional pressure drop (or wall shear stress) and/or void fraction. An experiment was performed which adds markedly to the available data of the type described in terms of the range of gas and liquid flow rates and liquid Prandtl number. Heat transfer and pressure drop measurements were taken in a vertical 11.68-mm i.d. tube for two-phase (gas-liquid) flows covering a wide range of conditions. Mean void fraction measurements were taken, using quick- closing valves, in a 12.7-mm i.d. tube matching very closely pressures, temperatures, gas-phase superficial velocities and liquid-phase superficial velocities to those used in the heat-transfer and pressure-drop experiments. The gas phase was air while water and two aqueous solutions of glycerine (59 and 82% by mass) were used as the liquid phase. In the two-phase experiments the liquid Prandtl number varied from 6 to 766, the superficial liquid velocity from 0.05 to 8.5 m/s, and the superficial gas velocity from 0.02 to 119 m/s. The measured two-phase heat-transfer coefficients varied by a factor of approximately 1000, the two-phase frictional pressure drop ranged from small negative values (in slug flow) to 93 kPa and the void fraction ranged from 0.01 to 0.99; the flow patterns observed included bubble, slug, churn, annular, froth, the various transitions and annular-mist. Existing heat-transfer models or correlations requiring frictional pressure drop (or wall shear stress) and/or void fraction were: tested against the present data for mean heat-transfer coefficients. It was found that the methods with more restrictions (in terms of the applicable range of void fraction, liquid Prandtl number or liquid

  13. Mathematical Model for Fluid Flow and Heat Transfer Processes in Plate Exchanger

    Directory of Open Access Journals (Sweden)

    Cvete B. Dimitrieska

    2015-11-01

    Full Text Available Within the analytical solution of the system of equations which solve fluid flow and heat transfer processes, the elliptical and parabolic differential equations based on initial and boundary conditions is usually unfamiliar in a closed form. Numerical solution of equation system is necessarily obtained by discretization of equations. When system of equations relate to estimation of two dimensional stationary problems, the applicable method for estimation in basic two – dimensional form is recommended.

  14. Prediction of the critical heat flux for saturated upward flow boiling water in vertical narrow rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gil Sik, E-mail: choigs@kaist.ac.kr; Chang, Soon Heung; Jeong, Yong Hoon

    2016-07-15

    A study, on the theoretical method to predict the critical heat flux (CHF) of saturated upward flow boiling water in vertical narrow rectangular channels, has been conducted. For the assessment of this CHF prediction method, 608 experimental data were selected from the previous researches, in which the heated sections were uniformly heated from both wide surfaces under the high pressure condition over 41 bar. For this purpose, representative previous liquid film dryout (LFD) models for circular channels were reviewed by using 6058 points from the KAIST CHF data bank. This shows that it is reasonable to define the initial condition of quality and entrainment fraction at onset of annular flow (OAF) as the transition to annular flow regime and the equilibrium value, respectively, and the prediction error of the LFD model is dependent on the accuracy of the constitutive equations of droplet deposition and entrainment. In the modified Levy model, the CHF data are predicted with standard deviation (SD) of 14.0% and root mean square error (RMSE) of 14.1%. Meanwhile, in the present LFD model, which is based on the constitutive equations developed by Okawa et al., the entire data are calculated with SD of 17.1% and RMSE of 17.3%. Because of its qualitative prediction trend and universal calculation convergence, the present model was finally selected as the best LFD model to predict the CHF for narrow rectangular channels. For the assessment of the present LFD model for narrow rectangular channels, effective 284 data were selected. By using the present LFD model, these data are predicted with RMSE of 22.9% with the dryout criterion of zero-liquid film flow, but RMSE of 18.7% with rivulet formation model. This shows that the prediction error of the present LFD model for narrow rectangular channels is similar with that for circular channels.

  15. The Correlation of Coupled Heat and Mass Transfer Experimental Data for Vertical Falling Film Absorption

    Energy Technology Data Exchange (ETDEWEB)

    Keyhani, M; Miller, W A

    1999-11-14

    Absorption chillers are gaining global acceptance as quality comfort cooling systems. These machines are the central chilling plants and the supply for cotnfort cooling for many large commercial buildings. Virtually all absorption chillers use lithium bromide (LiBr) and water as the absorption fluids. Water is the refrigerant. Research has shown LiBr to he one of the best absorption working fluids because it has a high affinity for water, releases water vapor at relatively low temperatures, and has a boiling point much higher than that of water. The heart of the chiller is the absorber, where a process of simultaneous heat and mass transfer occurs as the refrigerant water vapor is absorbed into a falling film of aqueous LiBr. The more water vapor absorbed into the falling film, the larger the chiller's capacity for supporting comfort cooling. Improving the performance of the absorber leads directly to efficiency gains for the chiller. The design of an absorber is very empirical and requires experimental data. Yet design data and correlations are sparse in the open literature. The experimental data available to date have been derived at LiBr concentrations ranging from 0.30 to 0.60 mass fraction. No literature data are readily available for the design operating conditions of 0.62 and 0.64 mass fraction of LiBr and absorber pressures of 0.7 and 1.0 kPa.

  16. A Variationally Formulated Problem of the Stationary Heat Conduction in a Plate with Radiation Reduction Factor Increased under Temperature

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    dependence of the absorption factor on the local intensity of this radiation. Furthermore, it can be a significant dependence of this factor on the local value of the material temperature, reflecting the above-mentioned relationship between the absorption of electromagnetic wave energy and the excitation of material microparticles. This process can be described by Boltzmann distribution function that comprises the energy to activate microparticles and the local value of temperature.This paper presents a variational formulation of the nonlinear problem of stationary heat conduction in a plate for the case when the radiation reduction factor in relation to the Bouguer law depends on the local temperature. This formulation includes a functional that can have several fixed points corresponding to different steady states of the plate temperature. Analysis of the properties of this functional enabled us to identify the stationary points, which correspond to the realized temperature distribution in the plate.

  17. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow

    Science.gov (United States)

    Kurylyk, Barret; Masaki, Masaki; Quinton, William L.; McKenzie, Jeffrey M.; Voss, Clifford I.

    2016-01-01

    Recent climate change has reduced the spatial extent and thickness of permafrost in many discontinuous permafrost regions. Rapid permafrost thaw is producing distinct landscape changes in the Taiga Plains of the Northwest Territories, Canada. As permafrost bodies underlying forested peat plateaus shrink, the landscape slowly transitions into unforested wetlands. The expansion of wetlands has enhanced the hydrologic connectivity of many watersheds via new surface and near-surface flow paths, and increased streamflow has been observed. Furthermore, the decrease in forested peat plateaus results in a net loss of boreal forest and associated ecosystems. This study investigates fundamental processes that contribute to permafrost thaw by comparing observed and simulated thaw development and landscape transition of a peat plateau-wetland complex in the Northwest Territories, Canada from 1970 to 2012. Measured climate data are first used to drive surface energy balance simulations for the wetland and peat plateau. Near-surface soil temperatures simulated in the surface energy balance model are then applied as the upper boundary condition to a three-dimensional model of subsurface water flow and coupled energy transport with freeze-thaw. Simulation results demonstrate that lateral heat transfer, which is not considered in many permafrost models, can influence permafrost thaw rates. Furthermore, the simulations indicate that landscape evolution arising from permafrost thaw acts as a positive feedback mechanism that increases the energy absorbed at the land surface and produces additional permafrost thaw. The modeling results also demonstrate that flow rates in local groundwater flow systems may be enhanced by the degradation of isolated permafrost bodies.

  18. A system for vertical profile measurements of sensible heat and chemical concentrations near the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Hyppoenen, M.; Walden, J.A.

    1996-12-31

    The design, construction and measurements of a computer controlled system applicable to flux measurements of a scalar quantity by the gradient technique are described. Accuracy requirements for the measured variables which are used for flux calculations are considered, together with some practical aspects concerning data storage and control. The construction includes the hardware and the data acquisition, sample intake, and temperature measurement systems. The measurements comprise laboratory tests of the temperature probes and the hardware as well as field tests over wheat and grass land for temperature and wind speed and ozone (O{sub 3}), carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O) concentration profiles. The hardware takes care of most of the operation and only the necessary part is done by the software. The data acquisition system is flexible, accepting the input of either digital and/or analog signals. It also controls the whole system, storing all the data in a single data file. The sample intake unit is designed to take continuous samples in to the monitors as well as grab samples into the canisters. Samples can be selected from one to four levels with no dead volumes in the sampling tubes. The temperature measurement system is constructed using a pair of temperature probes, Pt-100, which are connected to the same signal processing card, in order to remove the offset of the electronic components as well as the bias associated with single probes. This ensures the accuracy of the probes down to 0.005 deg C. According to the field measurements, the relative error limits for the sensible heat fluxes varied from 7 to 20 % in an unstable atmospheric situation. For the ozone flux, the error limits varied from 20 to 100 %, indicating a much poorer accuracy of the monitor compared to the temperature probes. (orig.) 16 refs.

  19. Characterizing fractured rock aquifers using heated Distributed Fiber-Optic Temperature Sensing to determine borehole vertical flow

    Science.gov (United States)

    Read, T. O.; Bour, O.; Selker, J. S.; Le Borgne, T.; Bense, V.; Hochreutener, R.; Lavenant, N.

    2013-12-01

    In highly heterogeneous media, fracture network connectivity and hydraulic properties can be estimated using methods such as packer- or cross-borehole pumping-tests. Typically, measurements of hydraulic head or vertical flow in such tests are made either at a single location over time, or at a series of depths by installing a number of packers or raising or lowering a probe. We show how this often encountered monitoring problem, with current solutions sacrificing either one of temporal or spatial information, can be addressed using Distributed Temperature Sensing (DTS). Here, we electrically heat the conductive cladding materials of cables deployed in boreholes to determine the vertical flow profile. We present results from heated fiber optic cables deployed in three boreholes in a fractured rock aquifer at the much studied experimental site near Ploemeur, France, allowing detailed comparisons with alternative methods (e.g. Le Borgne et al., 2007). When submerged in water and electrically heated, the cable very rapidly reaches a steady state temperature (less than 60 seconds). The steady state temperature of the heated cable, measured using the DTS method, is then a function of the velocity of the fluid in the borehole. We find that such cables are sensitive to a wide range of fluid velocities, and thus suitable for measuring both ambient and pumped flow profiles at the Ploemeur site. The cables are then used to monitor the flow profiles during all possible configurations of: ambient flow, cross-borehole- (pumping one borehole, and observing in another), and dipole-tests (pumping one borehole, re-injection in another). Such flow data acquired using DTS may then be used for tomographic flow inversions, for instance using the approach developed by Klepikova et al., (submitted). Using the heated fiber optic method, we are able to observe the flow response during such tests in high spatial detail, and are also able to capture temporal flow dynamics occurring at the

  20. Study on the effect of post weld heat treatment parameters on the relaxation of welding residual stresses in electron beam welded P91 steel plates

    OpenAIRE

    Venkata, K. Abburi; Kumar, S.; Dey, H.C.; Smith, D. J.; Bouchard, P J; Truman, C.E

    2014-01-01

    Residual stresses are created by localised heating effects that occur during the welding process. Post weld heat treatment (PWHT) is the most convenient method for stress relief of welds. But PWHT cannot completely eliminate the residual stresses. So, it is essential to determine the influence of PWHT parameters like holding temperature and time on the stress relaxation for optimising the process. The selected material is modified 9Cr-1Mo (Grade 91) steel in the form of plates welded together...

  1. HFO1234ze(Z) saturated vapour condensation inside a brazed plate heat exchanger

    OpenAIRE

    Longo, Giovanni A.; Zilio, Claudio; Righetti, Giulia; Brown, J. Steven

    2014-01-01

    All commonly used Hydro-Fluoro-Carbon (HFC) refrigerants have a high Global Warming Potential (GWP), higher than 1000, and some countries have already enacted legislative measures towards a limitation in the use or a gradual phase-out of HFCs. HFO1234ze(Z) was identified as a new low GWP refrigerant, which has the potential to be a global sustainable solution particularly for heat pump application. HFO1234ze(Z) is a pure compound which exhibits low pressure and is classified by ANSI / ASHRAE ...

  2. Numerical investigation for heat transfer enhancement using nanofluids over ribbed confined one-end closed flat-plate

    Directory of Open Access Journals (Sweden)

    Mohamed M. Hassan

    2017-09-01

    Full Text Available Impinging jet is one of various methods of cooling with the ability to achieve high heat transfer rates and improve average surface’s Nusselt number. This method has vast industrial applications including integrated use in solar collectors, gas turbine cooling, refrigeration, air conditioning and electronics cooling. A numerical study is conducted to study the effects of using nanofluids on impinging slot jet over a flat plate with a ribbed surface. The main objective of the study was to investigate the possibility of improving the overall heat transfer rate by focusing on the improvements in the local and average surface Nusselt number values. Several parameters effects are studied including Solid Volume Fraction, Richardson number and Reynolds number. These results indicated a marked improvement in average Nusselt number with the increase in the solid volume fraction. Also, there is an amended value when the buoyancy effect is dominant over the whole domain. The results are shown in the form of streamlines, isotherms and Nusselt numbers contra other variables. The current work was simulated using a FORTRAN CFD Code, which discretizes the non-dimensional forms of the governing equations utilizing the finite volume method and solving the consequent algebraic equations using Gauss-Seidel method Utilizing TDMA.

  3. Numerical Study of Solidification in a Plate Heat Exchange Device with a Zigzag Configuration Containing Multiple Phase-Change-Materials

    Directory of Open Access Journals (Sweden)

    Peilun Wang

    2016-05-01

    Full Text Available Latent heat thermal energy storage (TES plays an important role in the advocation of TES in contrast to sensible energy storage because of the large storage energy densities per unit mass/volume possible at a nearly constant thermal energy. In the current study, a heat exchange device with a zigzag configuration containing multiple phase-change-materials (m-PCMs was considered, and an experimental system was built to validate the model for a single PCM. A two-dimensional numerical model was developed using the ANSYS Fluent 14.0 software program. The energy fractions method was put forward to calculate the average Ste number and the influence of Re and Ste numbers on the discharge process were studied. The influence of phase change temperature among m-PCMs on the solidification process has also been studied. A new boundary condition was defined to determine the combined effect of the Re and Ste numbers on the discharging process. The modelling results show that for a given input power, the Ste (or Re number has a significant impact on the discharging process; however, the period value of inlet velocity has almost no impact on it. Besides, the zigzag plate with m-PCMs has a good impact on the temperature shock as “filter action” in the discharging process.

  4. Numerical heat transfer in a cavity with a solar control coating deposited to a vertical semitransparent wall

    Science.gov (United States)

    Alvarez, G.; Estrada, C. A.

    2000-12-01

    A transient two-dimensional computational model of combined natural convection, conduction, and radiation in a cavity with an aspect ratio of one, containing air as a laminar and non-participating fluid, is presented. The cavity has two opaque adiabatic horizontal walls, one opaque isothermal vertical wall, and an opposite semitransparent wall, which consists of a 6-mm glass sheet with a solar control coating of SnS-CuxS facing the cavity. The semitransparent wall also exchanges heat by convection and radiation from its external surface to the surroundings and allows solar radiation pass through into the interior of the cavity. The momentum and energy equations in the transient state were solved by finite differences using the alternating direction implicit (ADI) technique. The transient conduction equation and the radiative energy flux boundary conditions are coupled to these equations. The results in this paper are limited to the following conditions: 104Gr106, an isothermal vertical cold wall of 21°C, outside air temperatures in the range 30°CT040°C and incident solar radiation of AM2 (750 W m-2) normal to the semitransparent wall. The model allows calculation of the redistribution of the absorbed component of solar radiation to the inside and outside of the cavity. The influences of the time step and mesh size were considered. Using arguments of energy balance in the cavity, it was found that the percentage difference was less than 4 per cent, showing a possible total numerical error less than this number. For Gr=106 a wave appeared in the upper side of the cavity, suggesting the influence of the boundary walls over the air flow inside the cavity. A Nusselt number correlation as a function of the Rayleigh number is presented. Copyright

  5. An experimental study on single phase convection heat transfer and pressure drop in two brazed plate heat exchangers with different chevron shapes and hydraulic diameters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Bae; Park, Chang Yong [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2017-05-15

    An experimental study on heat transfer and pressure drop characteristics was performed at single phase flow in two Brazed plate heat exchangers (BPHEs) with different geometries. The corrugation density of one of the BPHE (Type II) was two times as high as that of the other BPHE (Type I). The hydraulic diameter of the type II BPHE was 2.13 mm, which was 38 % smaller than that of the type I BPHE. Also, the cross section shape of the flow channels for the type II BPHE was different from that for conventional BPHEs due to the unusual corrugation patterns and brazing points. The experimental conditions for temperatures were varied from 4.6 °C to 49.1 °C, and for mass flow rates were changed from 0.07 kg/s to 1.24 kg/s. The measured results showed that pressure drop in the type II BPHE was about 110 % higher than that in the type I BPHE. Nu of the type II was higher than that of the type I BPHE and the enhancement became larger with the increase of Re at the ranges above 800. New correlations for fF and Nu were proposed by this study and their prediction accuracy could be improved by considering the surface enlargement factor in the correlations. The performance evaluation of the two BPHEs was performed by (j/f{sub F}1{sup /3}) which represented the ratio of heat transfer and pressure drop performance. Also, a new parameter, the capacity compactness of PHE, was proposed and it presented the PHE capacity per unit volume and unit log mean temperature difference. The comparison showed that the two BPHEs had similar values of the (j/f{sub F}1{sup /3}), whereas they had significantly different values of the capacity compactness. The capacity compactness of the type II BPHE was 1.5 times higher than that for the type I BPHE.

  6. Instability of a binary liquid film flowing down a slippery heated plate

    Science.gov (United States)

    Ellaban, E.; Pascal, J. P.; D'Alessio, S. J. D.

    2017-09-01

    In this paper, we study the stability of a binary liquid film flowing down a heated slippery inclined surface. It is assumed that the heating induces concentration differences in the liquid mixture (Soret effect), which together with the differences in temperature affects the surface tension. A mathematical model is constructed by coupling the Navier-Stokes equations governing the flow with equations for the concentration and temperature. A Navier slip condition is applied at the liquid-solid interface. We carry out a linear stability analysis in order to obtain the critical conditions for the onset of instability. We use a Chebyshev spectral collocation method to obtain numerical solutions to the resulting Orr-Sommerfeld-type equations. We also obtain an asymptotic solution that yields an expression for the state of neutral stability of long perturbations as a function of the parameters controlling the problem. A weighted residual approximation is employed to derive a reduced model that is used to analyse the nonlinear effects. Good agreement between the linear stability analysis and nonlinear simulations provided by the weighted residual model is found.

  7. Experimental determination of new statistical correlations for the calculation of the heat transfer coefficient by convection for flat plates, cylinders and tube banks

    Directory of Open Access Journals (Sweden)

    Ismael Fernando Meza Castro

    2017-07-01

    Full Text Available Introduction: This project carried out an experimental research with the design, assembly, and commissioning of a convection heat transfer test bench. Objective: To determine new statistical correlations that allow knowing the heat transfer coefficients by air convection with greater accuracy in applications with different heating geometry configurations. Methodology: Three geometric configurations, such as flat plate, cylinders and tube banks were studied according to their physical properties through Reynolds and Prandtl numbers, using a data transmission interface using Arduino® controllers Measured the air temperature through the duct to obtain real-time data and to relate the heat transferred from the heating element to the fluid and to perform mathematical modeling in specialized statistical software. The study was made for the three geometries mentioned, one power per heating element and two air velocities with 10 repetitions. Results: Three mathematical correlations were obtained with regression coefficients greater than 0.972, one for each heating element, obtaining prediction errors in the heat transfer convective coefficients of 7.50% for the flat plate, 2.85% for the plate Cylindrical and 1.57% for the tube bank. Conclusions: It was observed that in geometries constituted by several individual elements, a much more accurate statistical adjustment was obtained to predict the behavior of the convection heat coefficients, since each unit reaches a stability in the surface temperature profile with Greater speed, giving the geometry in general, a more precise measurement of the parameters that govern the transfer of heat, as it is in the case of the geometry of the tube bank.

  8. Implementation of one and three dimensional models for heat transfer coeffcient identification over the plate cooled by the circular water jets

    Science.gov (United States)

    Malinowski, Zbigniew; Cebo-Rudnicka, Agnieszka; Hadała, Beata; Szajding, Artur; Telejko, Tadeusz

    2017-10-01

    A cooling rate affects the mechanical properties of steel which strongly depend on microstructure evolution processes. The heat transfer boundary condition for the numerical simulation of steel cooling by water jets can be determined from the local one dimensional or from the three dimensional inverse solutions in space and time. In the present study the inconel plate has been heated to about 900 °C and then cooled by six circular water jets. The plate temperature has been measured by 30 thermocouples. The heat transfer coefficient and the heat flux distributions at the plate surface have been determined in time and space. The one dimensional solutions have given a local error to the heat transfer coefficient of about 35%. The three dimensional inverse solution has allowed reducing the local error to about 20%. The uncertainty test has confirmed that a better approximation of the heat transfer coefficient distribution over the cooled surface can be obtained even for limited number of thermocouples. In such a case it was necessary to constrain the inverse solution with the interpolated temperature sensors.

  9. Building physics: wood fiber plates - insulating materials as a heat storage system; Bauphysik: Holzfaserdaemmplatten - Daemmstoffe als Waermespeicher

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, G.

    2006-12-13

    A high heat storage cabability is very effectful due to summer heat behaviour. Advanced heat insulating materials with high heat capacities and raw densities enable the enhancement of heat storage without losses on thermal protection. (GL)

  10. An experimental analysis of flow boiling and pressure drop in a brazed plate heat exchanger for organic Rankine cycle power systems

    DEFF Research Database (Denmark)

    Desideri, Adriano; Zhang, Ji; Kærn, Martin Ryhl

    2017-01-01

    Organic Rankine cycle power systems for low quality waste heat recovery applications can play a major role in achieving targets of increasing industrial processes efficiency and thus reducing the emissions of greenhouse gases. Low capacity organic Rankine cycle systems are equipped with brazed...... and pressure drop during vaporization at typical temperatures for low quality waste heat recovery organic Rankine cycle systems are presented for the working fluids HFC-245fa and HFO-1233zd. The experiments were carried out at saturation temperatures of 100°C, 115°C and 130°C and inlet and outlet qualities...... plate heat exchangers which allows for efficient heat transfer with a compact design. Accurate heat transfer correlations characterizing these devices are required from the design phase to the development of model-based control strategies. In this paper, the experimental heat transfer coefficient...

  11. Heat Transfer Mechanism of a Vertical Wall Inside a Two-Phase Closed Thermosiphon Evaporator and Its Estimation

    Science.gov (United States)

    O-Uchi, Masaki; Hirose, Koichi; Saito, Futami

    The inside heat transfer coefficient, overall heat transfer coefficient, and heat flow rate at the heating section of the thermosiphon were determined for each heating method. In order to observe the heat transfer mechanism in the evaporator, a thermosiphon unit made of glass was assembled and conducted separately. The results of these experiments with these two units are summarized as follows. (1) Nucleate boiling due to the internal heat transfer mechanism improves the heat transfer characteristics of the thermosiphon unit. Under the specific heating conditions with dropwise condensation, there are two types of heat transfer mechanism occur in the evaporator accompanying nucleate boiling, i. e. latent heat transfer and sensible heat transfer. (2) In the case of latent heat transfer, the inside heat transfer coefficient has an upper limit which can be used as a criterion to determine the type of internal heat transfer mechanism.

  12. Effect of Plane Couette Flow on Natural Convection in a Vertical Slot with Side-Wall Heating

    Science.gov (United States)

    Tsunoda, Shuhei; Fujimura, Kaoru

    2018-01-01

    In a vertical slot with side-wall heating, and depending on the Prandtl number Pr, both steady and oscillatory modes are known to yield a critical condition. Linear stability analysis reveals that a superimposed plane Couette flow yields an instability of the third kind that arises with a Reynolds number in the range - 0.3 ≲ Re ≲ - 0.1 for Pr ≳ 2.15. We focus on this third instability mode. Weakly nonlinear analysis indicates a nonlinear degeneracy occurring on the linear critical curve in the (Re,Gr)-plane where Gr is the Grashof number. Near the upper bound of the Reynolds number range for the existence of the mode, bifurcation on a segment of the critical curve is subcritical. Fully-numerical analysis shows the solution branch extending far from the linearly unstable wavenumber band and exhibiting a complicated bifurcation structure. Near the lower bound, in contrast, bifurcation is supercritical and its characteristics are well explained using weakly nonlinear analyses.

  13. Convective flow, heat and mass transfer of Ostwald-de Waele fluid over a vertical stretching sheet

    Directory of Open Access Journals (Sweden)

    K. Vajravelu

    2017-01-01

    Full Text Available In this paper we study the combined buoyancy (due to thermal and species diffusion effects on the flow, heat and mass transfer of a viscous, incompressible, Ostwald-de Waele fluid over a vertical stretching surface in the presence of a chemical reaction. The effects of variable thermal conductivity and the variable mass diffusivity are also considered. A similarity transformation is used to convert the partial differential equations into coupled nonlinear ordinary differential equations. Numerical solutions are obtained by the Keller-box method. The influences of sundry parameters on the velocity, temperature and the concentration fields are presented in figures and discussed in detail. The values of the skin friction coefficient, Nusselt number and the surface mass transfer for various values of the governing parameters are presented in tables. One of the interesting observations is that the influence of the buoyancy parameters increases the velocity. However, quite the opposite is true with the temperature and the mass concentration, for all values of the power law index and the reaction rate parameter. The results obtained reveal many interesting behaviors that warrant a further study of the non-Newtonian fluid phenomena, especially shear thinning phenomena. Shear thinning reduces the wall shear stress.

  14. Development of a Convective Heat Transfer Correlation of a Supercritical CO{sub 2} with Vertical Downward Flow in Circular Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Tae Ho; Kim, Hwan Yeol; Bae, Yoon Yeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    Pressure of coolant flowing through a SCWR core subchannel is supercritical and the heat transfer behavior is known to be quite different from those at a subcritical pressure. Therefore the heat transfer study in a supercritical pressure is required for the acquisition of a reliable heat transfer correlation. A downward flow as well as an upward flow occurs in a multi-pass reactor core. The heat transfer at a supercritical pressure in downward channel has been known to result in a quite different behavior from an upward flow. An experiment for a supercritical CO{sub 2} flowing vertically downward in circular tubes with inner diameters of 6.32 mm and 9 mm was performed by using SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation) at KAERI. The obtained test results are compared with the estimations from the existing correlations and an empirical formula for a downward flow is suggested.

  15. Three-Dimensional Thermal Boundary Layer Corrections for Circular Heat Flux Gauges Mounted in a Flat Plate with a Surface Temperature Discontinuity

    Science.gov (United States)

    Kandula, M.; Haddad, G. F.; Chen, R.-H.

    2006-01-01

    Three-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis has been performed in an effort to determine thermal boundary layer correction factors for circular convective heat flux gauges (such as Schmidt-Boelter and plug type)mounted flush in a flat plate subjected to a stepwise surface temperature discontinuity. Turbulent flow solutions with temperature-dependent properties are obtained for a free stream Reynolds number of 1E6, and freestream Mach numbers of 2 and 4. The effect of gauge diameter and the plate surface temperature have been investigated. The 3-D CFD results for the heat flux correction factors are compared to quasi-21) results deduced from constant property integral solutions and also 2-D CFD analysis with both constant and variable properties. The role of three-dimensionality and of property variations on the heat flux correction factors has been demonstrated.

  16. Analysis and validation of a quasi-dynamic model for a solar collector field with flat plate collectors and parabolic trough collectors in series for district heating

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2018-01-01

    performance of the hybrid solar district heating plants is also presented. The measured and simulated results show that the integration of parabolic trough collectors in solar district heating plants can guarantee that the system produces hot water with relatively constant outlet temperature. The daily energy......A quasi-dynamic TRNSYS simulation model for a solar collector field with flat plate collectors and parabolic trough collectors in series was described and validated. A simplified method was implemented in TRNSYS in order to carry out long-term energy production analyses of the whole solar heating...... plant. The advantages of the model include faster computation with fewer resources, flexibility of different collector types in solar heating plant configuration and satisfactory accuracy in both dynamic and long-term analyses. In situ measurements were taken from a pilot solar heating plant with 5960 m...

  17. Lie Group Analysis of Natural Convective Flow from a Convectively Heated Upward Facing Radiating Permeable Horizontal Plate in Porous Media Filled with Nanofluid

    Directory of Open Access Journals (Sweden)

    Md. Jashim Uddin

    2012-01-01

    Full Text Available Two-dimensional, steady, laminar and incompressible natural convective flow of a nanofluid over a connectively heated permeable upward facing radiating horizontal plate in porous medium is studied numerically. The present model incorporates Brownian motion and thermophoresis effects. The similarity transformations for the governing equations are developed by Lie group analysis. The transformed equations are solved numerically by Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Effects of the governing parameters on the dimensionless velocity, temperature and nanoparticle volume fraction as well as on the dimensionless rate of heat and mass transfer are presented graphically and the results are compared with the published data for special cases. Good agreement is found between numerical results of the present paper and published results. It is found that Lewis number, Brownian motion and convective heat transfer parameters increase the heat and mass transfer rates whilst thermophoresis decreases both heat and mass transfer rates.

  18. Effect of calcium ions on the evolution of biofouling by Bacillus subtilis in plate heat exchangers simulating the heat pump system used with treated sewage in the 2008 Olympic Village.

    Science.gov (United States)

    Tian, Lei; Chen, Xiao Dong; Yang, Qian Peng; Chen, Jin Chun; Shi, Lin; Li, Qiong

    2012-06-01

    Heat pump systems using treated sewage water as the heat source were used in the Beijing Olympic Village for domestic heating and cooling. However, considerable biofouling occurred in the plate heat exchangers used in the heat pump system, greatly limiting the system efficiency. This study investigates the biofouling characteristics using a plate heat exchanger in parallel with a flow cell system to focus on the effect of calcium ions on the biofilm development. The interactions between the microorganisms and Ca(2+) enhances both the extent and the rate of biofilm development with increasing Ca(2+) concentration, leading to increased heat transfer and flow resistances. Three stages of biofouling development were identified in the presence of Ca(2+) from different biofouling mass growth rates with an initial stage, a rapid growth stage and an extended growth stage. Each growth stage had different biofouling morphologies influenced by the Ca(2+) concentration. The effects of Ca(2+) on the biofouling heat transfer and flow resistances had a synergistic effect related to both the biofouling mass and the morphology. The effect of Ca(2+) on the biofouling development was most prominent during the rapid growth stage. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Magnetic field effect on Poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with Casson fluid

    Directory of Open Access Journals (Sweden)

    Sidra Aman

    2017-01-01

    Full Text Available Applications of carbon nanotubes, single walls carbon nanotubes (SWCNTs and multiple walls carbon nanotubes (MWCNTs in thermal engineering have recently attracted significant attention. However, most of the studies on CNTs are either experimental or numerical and the lack of analytical studies limits further developments in CNTs research particularly in channel flows. In this work, an analytical investigation is performed on heat transfer analysis of SWCNTs and MWCNTs for mixed convection Poiseuille flow of a Casson fluid along a vertical channel. These CNTs are suspended in three different types of base fluids (Water, Kerosene and engine Oil. Xue [Phys. B Condens. Matter 368, 302–307 (2005] model has been used for effective thermal conductivity of CNTs. A uniform magnetic field is applied in a transverse direction to the flow as magnetic field induces enhancement in the thermal conductivity of nanofluid. The problem is modelled by using the constitutive equations of Casson fluid in order to characterize the non-Newtonian fluid behavior. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the perturbation method is utilized to solve the governing equations with some physical conditions. Velocity and temperature solutions are obtained and discussed graphically. Expressions for skin friction and Nusselt number are also evaluated in tabular form. Effects of different parameters such as Casson parameter, radiation parameter and volume fraction are observed on the velocity and temperature profiles. It is found that velocity is reduced under influence of the exterior magnetic field. The temperature of single wall CNTs is found greater than MWCNTs for all the three base fluids. Increase in volume fraction leads to a decrease in velocity of the fluid as the nanofluid become more viscous by adding CNTs.

  20. Magnetic field effect on Poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with Casson fluid

    Science.gov (United States)

    Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Alshomrani, Ali Saleh; Alghamdi, Metib Said

    2017-01-01

    Applications of carbon nanotubes, single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) in thermal engineering have recently attracted significant attention. However, most of the studies on CNTs are either experimental or numerical and the lack of analytical studies limits further developments in CNTs research particularly in channel flows. In this work, an analytical investigation is performed on heat transfer analysis of SWCNTs and MWCNTs for mixed convection Poiseuille flow of a Casson fluid along a vertical channel. These CNTs are suspended in three different types of base fluids (Water, Kerosene and engine Oil). Xue [Phys. B Condens. Matter 368, 302-307 (2005)] model has been used for effective thermal conductivity of CNTs. A uniform magnetic field is applied in a transverse direction to the flow as magnetic field induces enhancement in the thermal conductivity of nanofluid. The problem is modelled by using the constitutive equations of Casson fluid in order to characterize the non-Newtonian fluid behavior. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the perturbation method is utilized to solve the governing equations with some physical conditions. Velocity and temperature solutions are obtained and discussed graphically. Expressions for skin friction and Nusselt number are also evaluated in tabular form. Effects of different parameters such as Casson parameter, radiation parameter and volume fraction are observed on the velocity and temperature profiles. It is found that velocity is reduced under influence of the exterior magnetic field. The temperature of single wall CNTs is found greater than MWCNTs for all the three base fluids. Increase in volume fraction leads to a decrease in velocity of the fluid as the nanofluid become more viscous by adding CNTs.

  1. Critical heat flux on a flat plate heater located at the middle of a duct in forced flow of pressurized He II

    Science.gov (United States)

    Okamura, T.; Saeki, M.; Hata, K.; Hama, K.; Shirai, Y.; Shiotsu, M.

    2004-09-01

    Critical heat fluxes (CHFs) were measured for two types of rectangular ducts containing horizontal flat plate heaters. One has the flat plate heater of 6 mm wide and 20 mm long located on the inner lower wall at 50 mm from the inlet. The other duct has two horizontal flat plates of 6 mm wide and 20 mm long on inner upper and lower walls at 50 mm from the inlet. The equation of CHF for the forced convection containing a new nondimensional-parameter m introduced in order to calculate cross-sectionally averaged liquid temperature at the center of the duct was derived based on two fluid model, ordinary convection theorem and experimental results. It was confirmed that this correlation can describe not only the author's data on the duct but also other worker's data for channels with different shapes and sizes.

  2. Continuum-based 4D Plate Reconstructions: Linking Non-rigid Lithospheric Kinematics to Rigid Plate Motion

    Science.gov (United States)

    Kneller, E. A.; Johnson, C. A.; Queffelec, T. A.; Nachtegaele, L.

    2010-12-01

    Non-rigid deformation in regions of continental extension and compression can lead to large lateral strain and changes in the shape and surface area of continental plates. This large lateral strain in turn leads to vertical strain in the lithosphere, which is a fundamental control on mechanical and thermal subsidence. Traditional plate reconstruction approaches only describe 2D changes in the shape of tectonic plates and do not include lateral strain gradients and vertical strain. Incorporating lateral and vertical strain into kinematic plate tectonic models is necessary for quantifying the past configuration of tectonic plates, modeling paleogeography and for linking subsidence and heat flow to lateral plate motion. Furthermore, traditional approaches are limited to describing processes at the surface of the Earth and cannot be used to investigate 3D slab kinematics. We build on previous work and overcome the limitations of traditional methods by developing an inverse non-rigid continuum-based plate reconstruction approach that links lateral plate tectonic motion to large-scale 4D deformation of continental plates and subducting slabs. We also describe how this approach can be implemented in open source 3D animation software that can be used to create extendable and easily maintained interactive tools. These tools allow the modeler to rapidly reconstruct deformation and map data and constrain plate models with 3D information. The methods presented in this work can improve paleogeographic reconstructions, help visualize complicated 4D deformation processes in a reconstructed framework, and constrain subsidence and lithospheric stretching, all of which are important for understanding thermal history and estimating heat flow in sedimentary basins.

  3. Experimental Investigation of a Solar Greenhouse Heating System Equipped with a Parabolic Trough Solar Concentrator and a Double-Purpose Flat Plate Solar Collector

    Directory of Open Access Journals (Sweden)

    M Jafari

    2017-10-01

    Full Text Available Introduction Greenhouses provide a suitable environment in which all the parameters required for growing the plants can be controlled throughout the year. Greenhouse heating is one of the most important issues in productivity of a greenhouse. In many countries, heating costs in the greenhouses are very high, having almost 60-80% of the total production costs. In recent years, several studies have attempted to reduce the heating costs of the greenhouses by applying more energy efficient equipment and using the renewable energy sources as alternatives or supplementary to the fossil fuels. In the present study a novel solar greenhouse heating system equipped with a parabolic trough solar concentrator (PTC and a flat-plate solar collector has been developed. Therefore, the aim of this paper is to investigate the performance of the proposed heating system at different working conditions. Materials and Methods The presented solar greenhouse heating system was comprised of a parabolic trough solar concentrator (PTC, a heat storage tank, a pump and a flat plate solar collector. The PTC was constructed from a polished stainless steel sheet (as the reflector and a vacuum tube receiver. The PTC was connected to the tank by using insulated tubes and a water pump was utilized to circulate the working fluid trough the PTC and the heat exchanger installed between walls of the tank. The uncovered solar collector was located inside the greenhouse. During the sunshine time, a fraction of the total solar radiation received inside the greenhouse is absorbed by the solar collector. This rises the temperature of the working fluid inside the collector which led to density reduction and natural flow of the fluid. In other words, the collector works as a natural flow flat plate solar collector during the sunshine time. At night, when the greenhouse temperature is lower than tank temperature, the fluid flows in a reverse direction through the solar collector and the

  4. Computational heat transfer analysis and combined ANN–GA ...

    Indian Academy of Sciences (India)

    In the present work, the heat transfer characteristics of hollow cylindrical pin fin array on a vertical rectangular base plate is studied using commercial CFD code ... The analysis using the numerical simulation and neural network shows that the hollow fins provide an increased heat transfer and a weight reduction of about ...

  5. Thermosolutal MHD flow and radiative heat transfer with viscous ...

    African Journals Online (AJOL)

    This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...

  6. Free convection effects and radiative heat transfer in MHD Stokes ...

    Indian Academy of Sciences (India)

    The present note deals with the effects of radiative heat transfer and free convection in MHD for a flow of an electrically conducting, incompressible, dusty viscous fluid past an impulsively started vertical non-conducting plate, under the influence of transversely applied magnetic field. The heat due to viscous dissipation and ...

  7. Numerical simulation of gas flow and droplet motion in a wave-plate eliminator of the separator-steam-generator system in the waste-heat-utilisation complex

    Science.gov (United States)

    Artemov, Valerij; Minko, Konstantin; Yankov, Georgij; Ptakhin, Anton; Kondratev, Anton; Milman, Oleg

    2017-10-01

    This paper studied the droplet transport and deposition in the turbulent flow inside a wave-plate eliminator of the waste-heat utilisation complex (WHUC). The Lagrangian discrete particle approach was used to simulate the process of liquid separation from wet steam flow. Two different models for droplet-eddy interaction were tested using data from the available literature. The tested numerical model was used to predict the WHUC performance.

  8. A comparison between heat transfer correlations obtained from experimental data and numerical simulation of flow of stirred yoghurt during cooling in plate heat exchangers

    OpenAIRE

    Afonso, Isabel M.; Fernandes, Carla S.; Maia, João M.; Luis F. Melo

    2004-01-01

    Thermal processing is widely used in the food industry mainly to improve quality and safety of food products. The investigation of heat transfer problems of non-Newtonian fluids during heating and cooling in heat exchangers is of major interest since the main factor limiting heat transfer is the viscous behaviour of these fluids. Therefore, the knowledge of the interface heat transfer coefficients is important in the design of food processes and processing equipment. In the present work, s...

  9. Endwall heat transfer in the junction region of a circular cylinder normal to a flat plate at 30 and 60 degrees from stagnation point of the cylinder

    Science.gov (United States)

    Nagamatsu, H. T.; Choi, K. Y.

    1987-01-01

    The objective of this experimental study was to investigate the influence of horseshoe vortex on the heat transfer on a flat plate near the base of a protruding cylinder. The partial shock reflection technique was used to produce the flow Mach number of 0.14 which simulated the mean inlet flow Mach number for the first stage vanes of the turbine after combustor. Fast response thin-film platinum heat gages were used to measure the heat transfer flux for radial distances of 0.75, 0.875, 1.0, 1.125 cylinder diameter. For a low Reynolds number of 20,000, r/D = 0.75, and angular location from the stagnation point = 60 deg, the maximum increase in the heat transfer rate with the cylinder was observed to be approximately 460 percent greater than without the cylinder. On the other hand, the increase in the heat flux for a high Reynolds number of 300,000 was approximately 70 percent greater. For the heat gages located along 30 deg and 60 deg angular locations from the stagnation point, the strong effect of the horseshoe vortex was observed in the junction region. The increase in the heat transfer rate depended on the type of boundary layer and on the boundary layer thickness ahead of the cylinder.

  10. Excellent scalability including self-heating phenomena of vertical-channel field-effect-diode type capacitor-less one transistor dynamic random access memory cell

    Science.gov (United States)

    Imamoto, Takuya; Endoh, Tetsuo

    2014-01-01

    The scalability study and the impact of the self-heating effect (SHE) on memory operation of the bulk vertical-channel field effect diode (FED) type capacitorless one transistor (1T) dynamic random access memory (DRAM) cell are investigated via device simulator for the first time. The vertical-channel FED type 1T-DRAM cell shows the excellent hold characteristics (100 ms at 358 K of ambient temperature) with large enough read current margin (1 µA/cell) even when silicon pillar diameter (D) is scaled down from 20 to 12 nm. It is also shown that by employing the vertical-channel FED type, maximum lattice temperature in the memory cell due to SHE (T_{\\text{L}}^{\\text{Max}}) can be suppressed to a negligible small value and only reach 300.6 from 300 K ambient temperature due to the low lateral electric field, while the vertical-channel bipolar junction transistor (BJT) type 1T-DRAM shows significant SHE (T_{\\text{L}}^{\\text{Max}} = 330.6 K). Moreover, this excellent thermal characteristic can be maintained even when D is scaled down from 20 to 12 nm.

  11. Forced convection heat transfer of power law non-Newtonian fluids between two semi-infinite plates with variable thermal conductivity

    Science.gov (United States)

    Li, Botong; Zhang, Wei; Zhu, Liangliang

    2016-09-01

    This paper presents an investigation of forced convection heat transfer in power-law non-Newtonian fluids between two semi-infinite plates with variable thermal conductivity. Three cases of different thermal conductivity models are considered: (i) thermal conductivity is a constant, (ii) thermal conductivity is a linear function of temperature, (iii) thermal conductivity is a power-law function of temperature gradient (Zheng's model). Governing equations are solved using the finite element method with the ‘ghost’ time introduced to the control equations, which does not affect the results because the velocity and temperature will remain unchanged when the steady state is reached. Results for the solutions of different variable models are presented as well as the analysis of the associated heat transfer characteristics. It is shown that the heat transfer behaviours are strongly dependent on the power-law index (n) in all models. For example, when n 1.

  12. Influence of Heat Shock Temperatures and Fast Freezing on Viability of Probiotic Sporeformers and the Issue of Spore Plate Count Versus True Numbers

    Directory of Open Access Journals (Sweden)

    Mojtaba Jafari

    2016-02-01

    Full Text Available Background and Objectives: The purpose of the present study was to investigate effects of various heat shock conditions and fast freezing and subsequent thawing on the viability and recovery of Bacillus coagulans and Bacillus subtilis as probiotic sporeformers, and also to compare spore plate and microscopic counts. Materials and Methods: After preparing the final suspensions of B. coagulans and Bacillus subtilis subsp. Natto spores, they were spread-plated before and after fast freezing treatment (-70°C for about 1 min. Heat shock treatments of the spores were carried out at 68oC for 15, 20, and 30 min as well as at 80oC for 10 and 15 min. Concentrations of the examined probiotic sporeformers were determined simultaneously by plate enumerations and microscopically determined counts. Student’s t-test and one-way analysis of variance (ANOVA of SPSS were used for statistical analysis of the data. Analysis of DoE results was carried out using Minitab. Results: The results presented here show that the highest recovery rates for B. coagulans (14.75 log CFU/mL and B. subtilis spores (14.80 log CFU/mL were under a heat shock condition of 68°C for 20 min in nutrient agar (p<0.05. In addition, the survival rates of B. coagulans and B. subtilis spores under the fast freezing and subsequent thawing condition were about 90% and 88%, respectively. Plate counts differed significantly from counts determined microscopically, with differences of almost 0.5 and 0.8 log for B. coagulans and B. subtilis spores, respectively (p<0.05. In addition, DoE results of the study revealed that both factors of spore count method and only freezing factor in fast freezing treatment have a significant effect on concentrations of the spores examined (p<0.05. Conclusions: Heat shock conditions, freezing and subsequent thawing circumstances, and plate counts or enumerations determined microscopically have significant influences on the viability of probiotic sporeformers and

  13. Influence of Lorentz force, Cattaneo-Christov heat flux and viscous dissipation on the flow of micropolar fluid past a nonlinear convective stretching vertical surface

    Science.gov (United States)

    Gnaneswara Reddy, Machireddy

    2017-12-01

    The problem of micropolar fluid flow over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation is investigated. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model effect is properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton's methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent parameters on velocity, micropolar velocity and temperature profiles are presented graphically for two cases (linear and nonlinear) and analyzed in detail. Further, the variations of skin friction coefficient and local Nusselt number are reported with the aid of plots for the sundry flow parameters. The temperature and the related boundary enhances enhances with the boosting values of M. It is found that fluid temperature declines for larger thermal relaxation parameter. Also, it is revealed that the Nusselt number declines for the hike values of Bi.

  14. Experimental studies on the enhanced flow boiling heat transfer and pressure drop of organic fluid with high saturation temperature in vertical porous coated tube

    Science.gov (United States)

    Yang, Dong; Shen, Zhi; Chen, Tingkuan; Zhou, Chenn Q.

    2013-07-01

    The characteristics of flow boiling heat transfer and pressure drop of organic fluid with high saturation temperature in a vertical porous coated tube are experimentally studied in this paper. The experiments are performed at evaporation pressure of 0.16-0.31MPa, mass flux of 390-790kg/m2s, and vapor quality of 0.06-0.58. The variations of heat transfer coefficient and pressure drop with vapor quality are measured and compared to the results of smooth tube. Boiling curves are generated at mass flux of 482 and 675kg/m2s. The experimental results indicate that the heat transfer coefficients of the porous tube are 1.8-3.5 times those of smooth tube, and that the frictional pressure drops of the porous tube are 1.1-2.9 times those of smooth tube. The correlations for heat transfer coefficient and frictional pressure drop are derived, in which the effect of fluid molecular weight is included. The experiments show that significant heat transfer enhancement is accompanied by a little pressure drop penalty, the application of the porous coated tube is promising in the process industries.

  15. Finite Difference Study of MHD Stokes Problem for a Vertical Infinite ...

    African Journals Online (AJOL)

    The explicit finite difference method is employed to study the effects of both the Hall and ionslip currents on a free convective flow of a viscous heat generating rotating fluid past an impulsively started infinite vertical plate, to which a strong magnetic field is applied perpendicularly. The velocity (both primary and secondary) ...

  16. Near-field radiative heat transfer between metasurfaces: A full-wave study based on two-dimensional grooved metal plates

    Science.gov (United States)

    Dai, Jin; Dyakov, Sergey A.; Bozhevolnyi, Sergey I.; Yan, Min

    2016-09-01

    Metamaterials possess artificial bulk and surface electromagnetic states. Tamed dispersion properties of surface waves allow one to achieve a controllable super-Planckian radiative heat transfer (RHT) process between two closely spaced objects. We numerically demonstrate enhanced RHT between two two-dimensional grooved metal plates by a full-wave scattering approach. The enhancement originates from both transverse-magnetic spoof surface-plasmon polaritons and a series of transverse-electric bonding- and anti-bonding-waveguide modes at surfaces. The RHT spectrum is frequency selective and highly geometrically tailorable. Our simulation also reveals thermally excited nonresonant surface waves in constituent metallic materials may play a prevailing role for RHT at an extremely small separation between two metal plates, rendering metamaterial modes insignificant for the energy-transfer process.

  17. Influence of Soret, Hall and Joule heating effects on mixed convection flow saturated porous medium in a vertical channel by Adomian Decomposition Method

    Science.gov (United States)

    Reddy, Ch. Ram; Kaladhar, K.; Srinivasacharya, D.; Pradeepa, T.

    2016-02-01

    This paper analyzes the laminar, incompressible mixed convective transport inside vertical channel in an electrically conducting fluid saturated porous medium. In addition, this model incorporates the combined effects of Soret, Hall current and Joule heating. The nonlinear governing equations and their related boundary conditions are initially cast into a dimensionless form using suitable similarity transformations and hence solved using Adomian Decomposition Method (ADM). In order to explore the influence of various parameters on fluid flow properties, quantitative analysis is exhibited graphically and shown in tabular form.

  18. Understanding the role of heat recirculation in enhancing the speed of premixed laminar flames in a parallel plate micro-combustor

    Science.gov (United States)

    Veeraragavan, Ananthanarayanan

    This dissertation investigates the role of heat recirculation in enhancing the flame speeds of laminar flames stabilized in a parallel plate reactor by: (1) developing analytical models that account for conjugate heat transfer with the wall; and (2) making measurements of temperature profiles in a simulated microcombustor using non-intrusive FTIR spectroscopy from which heat recirculation is inferred. The analytical models have varying degrees of complexity. A simple heat transfer model simulates the flame by incorporating a concentrated heat release function along with constant temperature wall model. The next level model accommodates conjugate heat transfer with the wall along with a built in heat loss model to the environment. The heat transfer models identify the thermal design parameters influencing the temperature profiles and the Nusselt number. The conjugate heat transfer model is coupled with a species transport equation to develop a 2-D model that predicts the flame speed as an eigenvalue of the problem. The flame speed model shows that there are three design parameters (wall thermal conductivity ratio (kappa), wall thickness ratio (tau) and external heat loss parameter (NuE)) that influence the flame speed. Finally, it is shown that all these three parameters really control the total heat recirculation which is a single valued function of the flame speed and independent of the velocity profile (Plug or Poiseuille flow). On the experimental side, a previously developed non-intrusive diagnostic technique based on FTIR spectroscopy of CO2 absorbance is improved by identifying the various limitations (interferences from other species, temperature profile fitting, ... etc) and suggesting improvements to each limitation to make measurements in a silicon walled, simulated microcombustor. Methane/Air and Propane/Air flames were studied for different equivalence ratios and burning velocities. From the temperature profiles it can be seen that increasing the flame

  19. Non-iterative model for condensation heat transfer in presence of non-condensable gases inside passive containment cooling vertical tubes

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Juan Carlos de la [Department of Chemical and Nuclear Engineering, Institute of Energetic Engineering, Polytechnic University of Valencia, Camino de Vera, 14, 46022 Valencia (Spain)], E-mail: juadela3@upvnet.upv.es; Munoz-Cobo, Jose L.; Escriva, Alberto [Department of Chemical and Nuclear Engineering, Institute of Energetic Engineering, Polytechnic University of Valencia, Camino de Vera, 14, 46022 Valencia (Spain)

    2008-01-15

    Some contributions have been stated in order to improve the modeling of concurrent downflow condensation in presence of non-condensables inside vertical tubes. In particular, the influence of non-condensables over the liquid side heat transfer has been considered. The new proposed mechanistic models solve explicitly the real interface temperature by means of a cubic or a fourth order equation. As these models have a non-iterative nature, they can avoid the weakest point of the traditional mechanistic models, which is the slowdown computation if the model had to be implemented in a code. Moreover, as the main non-condensables effects can be accounted for in the heat and mass transfer processes, the new models will be more realistic. The models have been validated with the Vierow experimental data, obtaining a total average relative error, for the fourth order equation method model, of 21% for 268 points.

  20. Conjugate Heat Transfer of MHD non-Darcy Mixed Convection Flow of a Nanofluid over a Vertical Slender Hollow Cylinder Embedded in Porous Media

    Directory of Open Access Journals (Sweden)

    B. Jafarian

    2016-01-01

    Full Text Available In this paper, conjugate heat transfer of magneto hydrodynamic mixed convection of nanofluid about a vertical slender hollow cylinder embedded in a porous medium with high porosity have been numerically studied. The Forchheimer’s modification of Darcy’s law was used in representing the nanofluid motion inside the porous media. The governing boundary layer equations were transformed to non-dimensional differential equations by taking suitable similarity variables and solved numerically using differential quadrature method (DQM. The interfacial (solid-liquid temperature distribution and the variations of velocity and temperature within boundary layer for different values of governing parameter in presence of uniform magnetic field have been presented and discussed. Our results demonstrate that heat transfer rate can enhance using nanofluid as well as porous medium, while magnetic field has no remarkable effect on the parameter. The computed results were also compared with those available in the existing literature and a good agreement was observed.

  1. Charts Adapted from Van Driest's Turbulent Flat-plate Theory for Determining Values of Turbulent Aerodynamic Friction and Heat-transfer Coefficients

    Science.gov (United States)

    Lee, Dorothy B; Faget, Maxime A

    1956-01-01

    A modified method of Van Driest's flat-plate theory for turbulent boundary layer has been found to simplify the calculation of local skin-friction coefficients which, in turn, have made it possible to obtain through Reynolds analogy theoretical turbulent heat-transfer coefficients in the form of Stanton number. A general formula is given and charts are presented from which the modified method can be solved for Mach numbers 1.0 to 12.0, temperature ratios 0.2 to 6.0, and Reynolds numbers 0.2 times 10 to the 6th power to 200 times 10 to the 6th power.

  2. Heat Transfer Characteristics for an Upward Flowing Supercritical Pressure CO{sub 2} in a Vertical Circular Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Deog Ji

    2008-02-15

    The SCWR(Super Critical Water-cooled Reactor) is one of the feasible options for the 4th generation nuclear power plant, which is being pursued by an international collaborative organization, the Gen IV International Forum(GIF). The major advantages of the SCWR include a high thermal efficiency and a maximum use of the existing technologies. In the SCWR, the coolant(water) of a supercritical pressure passes the pseudo-critical temperature as it flows upward through the sub-channels of the fuel assemblies. At certain conditions a heat transfer deterioration occurs near the pseudo-critical temperature and it may cause an excessive rise of the fuel surface temperature. Therefore, an accurate estimation of the heat transfer coefficient is necessary for the thermal-hydraulic design of the reactor core. A test facility, SPHINX(Supercritical Pressure Heat Transfer Investigation for the Next Generation), dedicated to produce heat transfer data and study flow characteristics, uses supercritical pressure CO{sub 2} as a surrogate medium to take advantage of the relatively low critical temperature and pressure: and similar physical properties with water. The produced data includes the temperature of the heating surface and the heat transfer coefficient at varying mass fluxes, heat fluxes, and operating pressures. The test section is a circular tube of ID 6.32 mm: it is almost the same as the hydraulic diameter of the sub-channel in the conceptional design presented by KAERI. The test range of the mass flux is 285 to 1200 kg/m{sup 2}s and the maximum heat flux is 170 kW/m{sup 2}. The tests were mainly performed for an inlet pressure of 8.12 MPa which is 1.1 times of critical pressure. With the test results of the wall temperature and the heat transfer coefficient, effects of mass flux, heat flux, inlet pressure, and the tube diameter on the heat transfer were studied. And the test results were compared with the existing correlations of the Nusselt number. In addition, New

  3. MHD free convection flow past an oscillating plate in the presence of ...

    African Journals Online (AJOL)

    The study of unsteady magnetohydrodynamic heat and mass transfer in MHD flow past an infinite vertical oscillating plate through porous medium, taking account of the presence of free convection and mass transfer. The energy and chemical species equations are solved in closed form by Laplace-transform technique and ...

  4. DNB heat flux in forced convection of liquid hydrogen for a wire set in central axis of vertically mounted flow channel

    Science.gov (United States)

    Matsumoto, T.; Shirai, Y.; Shiotsu, M.; Fujita, K.; Kainuma, T.; Tatsumoto, H.; Naruo, Y.; Kobayashi, H.; Nonaka, S.; Inatani, Y.

    2017-12-01

    Liquid hydrogen has excellent physical properties, high latent heat and low viscosity of liquid, as a coolant for superconductors like MgB2. The knowledge of Departure from Nucleate Boiling (DNB) heat flux of liquid hydrogen is necessary for designing and cooling analysis of high critical temperature superconducting devices. In this paper, DNB heat fluxes of liquid hydrogen were measured under saturated and subcooled conditions at absolute pressures of 400, 700 and 1100 kPa for various flow velocities. Two wire test heaters made by Pt-Co alloy with the length of 200 mm and the diameter of 0.7 mm were used. And these round heaters were set in central axis of a flow channel made of Fiber Reinforced Plastic (FRP) with inner diameters of 8 mm and 12 mm. These test bodies were vertically mounted and liquid hydrogen flowed upward through the channel. From these experimental values, the correlations of DNB heat flux under saturated and subcooled conditions are presented in this paper.

  5. Heat Transfer Analysis for Stationary Boundary Layer Slip Flow of a Power-Law Fluid in a Darcy Porous Medium with Plate Suction/Injection.

    Science.gov (United States)

    Aziz, Asim; Ali, Yasir; Aziz, Taha; Siddique, J I

    2015-01-01

    In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined.

  6. Effects of aligned magneticfield and radiation on the flow of ferrofluids over a flat plate with non-uniform heat source/sink

    Directory of Open Access Journals (Sweden)

    Sandeep N

    2015-03-01

    Full Text Available In this study we analyzed the influence of radiation and aligned magneticfield on the flow of ferrofluids over a flat plate in presence of non-uniform heat source/sink and slip velocity.  We considered Fe3O4 magnetic nano particles embedded within the two types of base fluids namely water and kerosene. The governing partial differential equations are transformed into nonlinear ordinary differential equations by using similarity transformation and solved numerically using bvp5c Matlab package. The effects of dimensionless quantities on the flow and temperature profiles along with the friction factor and Nusselt number is discussed and presented through graphs and tables. It is found that present results have an excellent agreement with the existed studies under some special assumptions. Results indicate that a raise in the aligned angle enhances the skin friction coefficient and heat transfer rate.

  7. Plate heat exchangers in refrigeration. Space-saving systems in accordance with energy conservation and pollution abatement. Plattenwaermeaustauscher in der Kaeltetechnik. Das Platzwunder spart Energie und schont die Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Boettger, J. (Stal-Astra GmbH Kaelteanlagen, Glinde (Germany))

    1991-09-01

    Plate heat exchangers (PHE) have become routine systems in refrigeration. Stal-Astra has been familiar with PHE since it developed a cold-water unit for underground use at a depth of 2700 m about seven years ago. The company was charged with replacing a gigantic tubular heat exchanger by space-saving plate heat exchangers. The developed 4.3 MW system used R 12 to cool water to 0.5degC. It was tested extensively at a northern German dockyard before shipping. For some years PHE techniques have been successfully applied to cool fluids within evaporation temperatures of -60degC. Plate heat exchangers are also ideal for condensation of refrigerants such as NH{sub 3}, R 22 or propane. (orig.).

  8. Influence of Cross-Diffusion on Slip Flow and Heat Transfer of Chemically Reacting UCM Fluid between Porous Parallel Plates with Hall and Ion Slip Currents

    Directory of Open Access Journals (Sweden)

    Odelu Ojjela

    2016-01-01

    Full Text Available The present paper deals with the Hall and ion slip currents on an incompressible unsteady free convection flow and heat transfer of an upper convected Maxwell fluid between porous parallel plates with Soret and Dufour effects by considering the velocity slip and convective boundary conditions. Assume that there are periodic injection and suction at the lower and upper plates, respectively. The temperature and concentration at the lower and upper plates change periodically with time. The flow field equations are reduced to nonlinear ordinary differential equations by using similarity transformations and a semi-analytical-numerical solution has been obtained by the differential transform method. The velocity components, temperature distribution, and concentration with respect to different fluid and geometric parameters are discussed in detail and presented in the form of graphs. It is observed that the Biot number increases the temperature and concentration of the fluid. Further, the concentration of the fluid is enhanced whereas the temperature decreases with increasing slip. The present results are compared with the existing literature and are found to be in good agreement.

  9. Vertical GPS ground motion rates in the Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary

    OpenAIRE

    Serpelloni, Enrico; Faccenna, Claudio; Spada, Giorgio; DONG Danan; Williams, Simon D.P.

    2013-01-01

    We use 2.5 to 14 years long position time series from >800 continuous Global Positioning System (GPS) stations to study vertical deformation rates in the Euro-Mediterranean region. We estimate and remove common mode errors in position time series using a principal component analysis, obtaining a significant gain in the signal-to-noise ratio of the displacements data. Following the results of a maximum likelihood estimation analysis, which gives a mean spectral index ~ −0.7, we adopt a power l...

  10. New methods to cope with temperature elevations in heated segments of flat plates cooled by boundary layer flow

    Directory of Open Access Journals (Sweden)

    Hajmohammadi Mohammad R.

    2016-01-01

    Full Text Available This paper documents two reliable methods to cope with the rising temperature in an array of heated segments with a known overall heat load and exposed to forced convective boundary layer flow. Minimization of the hot spots (peak temperatures in the array of heated segments constitutes the primary goal that sets the platform to develop the methods. The two proposed methods consist of: 1 Designing an array of unequal heaters so that each heater has a different size and generates heat at different rates, and 2 Distancing the unequal heaters from each other using an insulated spacing. Multi-scale design based on constructal theory is applied to estimate the optimal insulated spacing, heaters size and heat generation rates, such that the minimum hot spots temperature is achieved when subject to space constraint and fixed overall heat load. It is demonstrated that the two methods can considerably reduce the hot spot temperatures and consequently, both can be utilized with confidence in industry to achieve optimized heat transfer.

  11. Second-law analysis of laminar nonnewtonian gravity-driven liquid film along an inclined heated plate with viscous dissipation effect

    Directory of Open Access Journals (Sweden)

    S. Saouli

    2009-06-01

    Full Text Available A second-law analysis of a gravity-driven film of non-Newtonian fluid along an inclined heated plate is investigated. The flow is assumed to be steady, laminar and fully-developed. The upper surface of the liquid film is considered to be free and adiabatic. The effect of heat generation by viscous dissipation is included. Velocity, temperature and entropy generation profiles are presented. The effects of the flow behaviour index, the Brinkman number and the group parameter on velocity, temperature and entropy generation number are discussed. The results show that velocity profile depends largely on the flow behaviour index. They are flat near the free surface for pseudoplastic fluids and linear for dilatant fluids. Temperature profiles are higher for higher flow behaviour index and Brinkman number. The entropy generation number increases with Brinkman number and the group parameter because of the heat generated by the viscous dissipation effect. For pseudoplastic fluids, the irreversibility is dominated by heat transfer, whereas, for dilatant fluids, irreversibility due to fluid friction is more dominant.

  12. A study on EMI shielding enhancement behaviors of Ni-plated CFs-reinforced polymer matrix composites by post heat treatment

    Science.gov (United States)

    Kim, Kwan-Woo; Han, Woong; Kim, Byoung-Suhk; Kim, Byung-Joo; An, Kay-Hyeok

    2017-09-01

    In order to develop the high quality electromagnetic interference shielding efficiency (EMI-SE) materials, Ni-plated carbon fiber fabrics (Ni-CFFs) were prepared by an electroless method. Effects of post heat-treatment conditions on EMI-SE and electrical conductivity of Ni-CFFs/epoxy composites were also investigated. The morphologies and structural properties of Ni-CFFs were measured by a SEM and a XRD. It was found that all the Ni peaks increased with increasing post-heat treatment temperature, indicating that some impurities were removed and nickel particle sharp crystalline peaks. Also, It was found that the EMI-SE of composites enhanced was increased after post heat-treatment. In the frequency range of electromagnetic wave occurred from appliances (3.0 × 107-6.0 × 108), EMI-SE of post-heat treatment Ni-CFs was increased. This result concludes that the EMI-SE of the composites can be enhanced according to the microstructure of Ni in the Ni-CFFs/epoxy composites.

  13. A study of heat and mass transfer in a fractional MHD flow over an infinite oscillating plate.

    Science.gov (United States)

    Shahid, N

    2015-01-01

    Exact expressions of velocity, temperature and mass concentration have been calculated for free convective flow of fractional MHD viscous fluid over an oscillating plate. Expressions of velocity have been obtained both for sine and cosine oscillations of plate. Corresponding fractional differential equations have been solved by using Laplace transform and inverse Laplace transform. The expression of temperature and mass concentration have been presented in the form of Fox-H function and in the form of general Wright function, respectively and velocity is presented in the form of integral solutions using Generalized function. Some limiting cases of fluid and fractional parameters have been discussed to retrieve some solutions present in literature. The influence of thermal radiation, mass diffusion and fractional parameters on fluid flow has been analyzed through graphical illustrations.

  14. Liquid flat plate collector and pump for solar heating and cooling systems: A collection of quarterly reports

    Science.gov (United States)

    1978-01-01

    Progress in the development, fabrication, and delivery of solar subsystems consisting of a solar operated pump, and solar collectors which can be used in solar heating and cooling, or hot water, for single family, multifamily, or commercial applications is reported.

  15. Seismic heating signatures in the Japan Trench subduction plate-boundary fault zone : evidence from a preliminary rock magnetic 'geothermometer'

    NARCIS (Netherlands)

    Yang, T.; Dekkers, M.J.; Zhang, Bo

    2016-01-01

    Frictional heating during earthquake rupture reveals important information on earthquake mechanisms and energy dissipation. The amount of annealing varies widely and is, as yet, poorly constrained. Here we use magnetic susceptibility versus temperature measurements during cycling to increasingly

  16. Biomechanical stability of a supra-acetabular pedicle screw Internal Fixation device (INFIX vs External Fixation and plates for vertically unstable pelvic fractures

    Directory of Open Access Journals (Sweden)

    Vigdorchik Jonathan M

    2012-09-01

    Full Text Available Abstract Background We have recently developed a subcutaneous anterior pelvic fixation technique (INFIX. This internal fixator permits patients to sit, roll over in bed and lie on their sides without the cumbersome external appliances or their complications. The purpose of this study was to evaluate the biomechanical stability of this novel supraacetabular pedicle screw internal fixation construct (INFIX and compare it to standard internal fixation and external fixation techniques in a single stance pelvic fracture model. Methods Nine synthetic pelves with a simulated anterior posterior compression type III injury were placed into three groups (External Fixator, INFIX and Internal Fixation. Displacement, total axial stiffness, and the stiffness at the pubic symphysis and SI joint were calculated. Displacement and stiffness were compared by ANOVA with a Bonferroni adjustment for multiple comparisons Results The mean displacement at the pubic symphysis was 20, 9 and 0.8 mm for external fixation, INFIX and internal fixation, respectively. Plate fixation was significantly stiffer than the INFIX and external Fixator (P = 0.01 at the symphysis pubis. The INFIX device was significantly stiffer than external fixation (P = 0.017 at the symphysis pubis. There was no significant difference in SI joint displacement between any of the groups. Conclusions Anterior plate fixation is stiffer than both the INFIX and external fixation in single stance pelvic fracture model. The INFIX was stiffer than external fixation for both overall axial stiffness, and stiffness at the pubic symphysis. Combined with the presumed benefit of minimizing the complications associated with external fixation, the INFIX may be a more preferable option for temporary anterior pelvic fixation in situations where external fixation may have otherwise been used.

  17. Trends in Solar energy Driven Vertical Ground Source Heat Pump Systems in Sweden - An Analysis Based on the Swedish Well Database

    Science.gov (United States)

    Juhlin, K.; Gehlin, S.

    2016-12-01

    Sweden is a world leader in developing and using vertical ground source heat pump (GSHP) technology. GSHP systems extract passively stored solar energy in the ground and the Earth's natural geothermal energy. Geothermal energy is an admitted renewable energy source in Sweden since 2007 and is the third largest renewable energy source in the country today. The Geological Survey of Sweden (SGU) is the authority in Sweden that provides open access geological data of rock, soil and groundwater for the public. All wells drilled must be registered in the SGU Well Database and it is the well driller's duty to submit registration of drilled wells.Both active and passive geothermal energy systems are in use. Large GSHP systems, with at least 20 boreholes, are active geothermal energy systems. Energy is stored in the ground which allows both comfort heating and cooling to be extracted. Active systems are therefore relevant for larger properties and industrial buildings. Since 1978 more than 600 000 wells (water wells, GSHP boreholes etc) have been registered in the Well Database, with around 20 000 new registrations per year. Of these wells an estimated 320 000 wells are registered as GSHP boreholes. The vast majority of these boreholes are single boreholes for single-family houses. The number of properties with registered vertical borehole GSHP installations amounts to approximately 243 000. Of these sites between 300-350 are large GSHP systems with at least 20 boreholes. While the increase in number of new registrations for smaller homes and households has slowed down after the rapid development in the 80's and 90's, the larger installations for commercial and industrial buildings have increased in numbers over the last ten years. This poster uses data from the SGU Well Database to quantify and analyze the trends in vertical GSHP systems reported between 1978-2015 in Sweden, with special focus on large systems. From the new aggregated data, conclusions can be drawn about

  18. Experimental study of heat transfer during pseudo-dropwise condensation of water-ethanol and water-isopropanol vapor mixtures on a vertical tube

    Science.gov (United States)

    Chindyakov, A. A.; Smirnov, Yu B.; Vinogradov, A. A.; Mikhailova, E. V.

    2017-11-01

    In the present study experimental heat transfer data on condensation of almost immobile water-ethanol and water-isopropanol vapor mixtures on the vertical smooth copper tube 100 mm long with an outer diameter of 12.0 mm were obtained. Experiments for water-ethanol mixture were carried out at mass concentrations of ethanol from 0.4 to 16% in the vapor phase, and for a water-isopropanol mixture - from 0.6 to 8.4%. The pressure was 0.12…0.13 MPa, vapor-to-surface temperature difference varied from 2 to 40K. The experimental data are represented as dependency of heat transfer coefficient and heat flux on the vapor-to-surface temperature difference. The results of high-speed photography of the condensation process are discussed. It is noted that the transition from film mode to pseudo-dropwise condensation occurs when vapor-to-surface temperature difference is close to dew point - bubble point temperature difference for a given composition of the mixture. According to experimental data, the diffusion thermal resistance and thermal resistance of the liquid phase at different concentrations of the mixture were calculated.

  19. Entropy analysis on MHD pseudo-plastic nanofluid flow through a vertical porous channel with convective heating

    OpenAIRE

    Das, S.; Banu, A.S.; Jana, R.N.; Makinde, O.D.

    2015-01-01

    This paper is concerned with the entropy generation in a magnetohydrodynamic (MHD) pseudo-plastic nanofluid flow through a porous channel with convective heating. Three different types of nanoparticles, namely copper, aluminum oxide and titanium dioxide are considered with pseudo-plastic carboxymethyl cellulose (CMC)–water used as base fluids. The governing equations are solved numerically by shooting technique coupled with Runge–Kutta scheme. The effects of the pertinent parameters on the fl...

  20. Investigation of the effect of sealer use on the heat generated at the external root surface during root canal obturation using warm vertical compaction technique with System B heat source.

    Science.gov (United States)

    Viapiana, Raqueli; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mario; Camilleri, Josette

    2014-04-01

    During warm vertical compaction of gutta-percha, root canal sealers with different chemical compositions absorb the heat generated inside the root canal. The aim of this research was to assess physicochemical modifications of sealers subjected to the System B heat source (Analytic Technology, Redmond, WA) and to evaluate the effect that the use of different sealers has on the heat transfer to the external root surface. Three proprietary brand sealers (AH Plus [Dentsply International, Addlestone, UK], Pulp Canal Sealer [Kerr Corporation, Orange, CA], MTA Fillapex [Angelus Dental Solutions, Londrina, PR, Brazil]) and a prototype sealer based on Portland cement were assessed. The heat generated on the surfaces of System pluggers and the heat dissipation at different levels (apical, midroot, and cervical) over root surface while using different sealers was assessed using thermocouples. Data were collected in 3 different environmental conditions with the tooth suspended in air, immersed in Hank's balanced salt solution, or gelatinized Hank's balanced salt solution. Chemical changes in the sealers induced by the heat were monitored by Fourier transform infrared spectroscopy. The effect of heat changes on the setting time and compressive strength of the sealers was also assessed. The continuous wave plugger sustained a rise in temperature at a maximum of 80°C at the instrument shank. The highest change in temperature on the external root surface was recorded after 1.5 minutes from the start of heating, and it was restored to body temperature by 6 minutes. Environmental conditions affected heat dissipation for all the sealers in the midroot and cervical regions and the highest increase in temperature (∼60°C) recorded in air. In the midroot and cervical regions, the type of sealer used did not affect the rise in temperature. In the apical region, AH Plus obturations resulted in a greater rise in temperature, and the chemical composition of this sealer was affected by

  1. Numerical analysis of natural convection of magnetohydrodynamic flow in vertical micro-channel with rarefaction effects and radiative heat transfer

    Directory of Open Access Journals (Sweden)

    Mohammad Yaghoub Abdollahzadeh Jamalabadi

    2016-04-01

    Full Text Available In this article, we present a comprehensive analysis of the flow and heat transfer characteristics of a fully developed incompressible, electrically conducting, and radiatively active fluid flow in micro-channel in the presence of transverse magnetic field. The Navier–Stokes and energy governing equations for magnetohydrodynamic flow, including thermal radiation and rarefaction effects, are considered to examine the wall properties (friction and heat transfer and the flow properties (temperature and velocity. Two rarefaction effects of velocity slip and temperature jump at the wall are modeled as the product of characteristic slip/jump length and the first derivatives of velocity and temperature, respectively. Since the natural convection of magnetohydrodynamic flow in channel is resulted from the competition between deriving forces by pressure gradient, temperature gradient, and magnetic field, its flow and heat transfer characteristics should be understood systematically. First, we obtain the system parameters representing thermal radiation, buoyancy, magnetic field, temperature difference, velocity slip length, and temperature jump length through the non-dimensionalization process, and then their influences are rigorously evaluated by solving the governing equations numerically using Runge–Kutta algorithm with shooting method.

  2. Numerical Study of Natural Convection in a Heated Enclosure with Two Wavy Vertical Walls Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Pensiri Sompong

    2014-01-01

    Full Text Available The effects of wavy geometry on natural convection in an enclosure with two wavy vertical walls and filled with fluid saturated porous media are investigated numerically by using finite element method. The wavy enclosure is transformed to a unit square in the computational domain and the finite element formulations are solved in terms of ξη-coordinate based on iterative method. In order to investigate the effects of interested parameters, the values of wave amplitude (λ = 0.05 and 0.1 and number of undulations (n = 1 and 2 are chosen with constants Ra = 105, Da = 10−3, and Pr = 0.71. It is found that the increase in number of undulations has small effect on natural convection inside the enclosure whereas the increase in wave amplitude reduces the strength of convection because higher wave volume plays a barricade role.

  3. Heat transfer analysis of MHD thin film flow of an unsteady second grade fluid past a vertical oscillating belt.

    Science.gov (United States)

    Gul, Taza; Islam, Saeed; Shah, Rehan Ali; Khan, Ilyas; Khalid, Asma; Shafie, Sharidan

    2014-01-01

    This article aims to study the thin film layer flowing on a vertical oscillating belt. The flow is considered to satisfy the constitutive equation of unsteady second grade fluid. The governing equation for velocity and temperature fields with subjected initial and boundary conditions are solved by two analytical techniques namely Adomian Decomposition Method (ADM) and Optimal Homotopy Asymptotic Method (OHAM). The comparisons of ADM and OHAM solutions for velocity and temperature fields are shown numerically and graphically for both the lift and drainage problems. It is found that both these solutions are identical. In order to understand the physical behavior of the embedded parameters such as Stock number, frequency parameter, magnetic parameter, Brinkman number and Prandtl number, the analytical results are plotted graphically and discussed.

  4. Heat transfer analysis of MHD thin film flow of an unsteady second grade fluid past a vertical oscillating belt.

    Directory of Open Access Journals (Sweden)

    Taza Gul

    Full Text Available This article aims to study the thin film layer flowing on a vertical oscillating belt. The flow is considered to satisfy the constitutive equation of unsteady second grade fluid. The governing equation for velocity and temperature fields with subjected initial and boundary conditions are solved by two analytical techniques namely Adomian Decomposition Method (ADM and Optimal Homotopy Asymptotic Method (OHAM. The comparisons of ADM and OHAM solutions for velocity and temperature fields are shown numerically and graphically for both the lift and drainage problems. It is found that both these solutions are identical. In order to understand the physical behavior of the embedded parameters such as Stock number, frequency parameter, magnetic parameter, Brinkman number and Prandtl number, the analytical results are plotted graphically and discussed.

  5. Flow boiling heat transfer and pressure drop characteristics of R134a, R1234yf and R1234ze in a plate heat exchanger for organic Rankine cycle units

    DEFF Research Database (Denmark)

    Zhang, Ji; Desideri, Adriano; Kærn, Martin Ryhl

    2017-01-01

    . This paper is aimed at obtaining flow boiling heat transfer and pressure drop characteristics in a plate heat exchanger under the working conditions prevailing in the evaporator of organic Rankine cycle units. Two hydrofluoroolefins R1234yf and R1234ze, and one hydrofluorocarbon R134a, were selected......The optimal design of the evaporator is one of the key issues to improve the efficiency and economics of organic Rankine cycle units. The first step in studying the evaporator design is to understand the thermal-hydraulic performance of the working fluid in the evaporator of organic Rankine cycles......, respectively. The working conditions covered relatively high saturation temperatures (corresponding reduced pressures of 0.35-0.74), which are prevailing in organic Rankine cycles yet absent in the open literature. The experimental data were compared with existing correlations, and new correlations were...

  6. Low order modelling and closed-loop thermal control of a ventilated plate subject to a heat source disturbance

    Science.gov (United States)

    Videcoq, E.; Girault, M.; Petit, D.

    2012-11-01

    A multi-input multi-output (MIMO) thermal control problem in real-time is investigated. An aluminum slab is heated on one side by a radiative heat source and cooled on the other side by a fan panel. Starting from a nominal steady state configuration of heat source power and ventilation level, the objective is to control temperature at 4 chosen locations on the rear side when the thermal system is subject to a perturbation: the heat source power. The 4 actuators are the ventilation levels of 4 fans. The hypothesis of small inputs and temperature responses deviations is made, resulting in the assumption of a linear control problem. The originality of this work is twofold: (i) instead of a (large-sized) classical heat transfer model built from spatial discretization of local partial differential equations governing physics over the system domain, a low order model is identified from experimental data using the Modal Identification Method, (ii) this low order model is used to perform state feedback control in real time through a Linear Quadratic Gaussian (LQG) compensator.

  7. Soret and dufour effects on free convection flow of a couple stress fluid in a vertical channel with chemical reaction

    OpenAIRE

    Srinivasacharya D.; Kaladhar K.

    2013-01-01

    The Soret and Dufour effects in the presence of chemical reaction on natural convection heat and mass transfer of a couple stress fluid in a vertical channel formed by two vertical parallel plates is presented. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using Homotopy Analysis Method (HAM). Profiles of dimensionless velocity, temperature...

  8. On demand shape-selective integration of individual vertical germanium nanowires on a Si(111) substrate via laser-localized heating.

    Science.gov (United States)

    Ryu, Sang-Gil; Kim, Eunpa; Yoo, Jae-Hyuck; Hwang, David J; Xiang, Bin; Dubon, Oscar D; Minor, Andrew M; Grigoropoulos, Costas P

    2013-03-26

    Semiconductor nanowire (NW) synthesis methods by blanket furnace heating produce structures of uniform size and shape. This study overcomes this constraint by applying laser-localized synthesis on catalytic nanodots defined by electron beam lithography in order to accomplish site- and shape-selective direct integration of vertically oriented germanium nanowires (GeNWs) on a single Si(111) substrate. Since the laser-induced local temperature field drives the growth process, each NW could be synthesized with distinctly different geometric features. The NW shape was dialed on demand, ranging from cylindrical to hexagonal/irregular hexagonal pyramid. Finite difference time domain analysis supported the tunability of the light absorption and scattering spectra via controlling the GeNW shape.

  9. Temperature of Heating and Cooling of Massive, Thin, and Wedge-Shaped Plates from Hard-to-Machine Steels During Their Grinding

    Science.gov (United States)

    Dement‧ev, V. B.; Ivanova, T. N.; Dolginov, A. M.

    2017-01-01

    Grinding of flat parts occurs by solid abrasive particles due to the physicomechanical process of deformation and to the action of a process liquid at high temperatures in a zone small in volume and difficult for observation. The rate of heating and cooling depends on the change in the intensity of the heat flux and in the velocity and time of action of the heat source. A study has been made of the regularities of the influence of each of these parameters on the depth and character of structural transformations during the grinding of flat parts from hard-to-machine steels. A procedure to calculate temperature in grinding massive, thin, and wedge-shaped parts has been developed with account taken of the geometric and thermophysical parameters of the tool and the treated part, and also of cutting regimes. The procedure can be used as a constituent part in developing a system for automatic design of the technological process of grinding of flat surfaces. A relationship between the temperature in the grinding zone and the regimes of treatment has been established which makes it possible to control the quality of the surface layer of massive, thin, and wedge-shaped plates from hard-to-machine steels. The rational boundaries of shift of cutting regimes have been determined.

  10. Results and analysis of high heat flux tests on a full-scale vertical target prototype of ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance, Cedex (France)]. E-mail: missir@drfc.cad.cea.fr; Escourbiac, F. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance, Cedex (France); Merola, M. [EFDA Close Support Unit, Garching (Germany); Bobin-Vastra, I. [FRAMATOME, Le Creusot (France); Schlosser, J. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance, Cedex (France); Durocher, A. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance, Cedex (France)

    2005-11-15

    After an extensive R and D development program, a full-scale divertor target prototype, manufactured with all the main features of the corresponding ITER divertor, was intensively tested in the high heat flux FE200 facility. The prototype consists of four units having a full monoblock geometry. The lower part (CFC armour) and the upper part (W armour) of each monoblock were joined to the solution annealed, quenched and cold worked CuCrZr tube by HIP technique. This paper summarises and analyses the main test results obtained on this prototype.

  11. Plate Tectonics: A Paradigm under Threat.

    Science.gov (United States)

    Pratt, David

    2000-01-01

    Discusses the challenges confronting plate tectonics. Presents evidence that contradicts continental drift, seafloor spreading, and subduction. Reviews problems posed by vertical tectonic movements. (Contains 242 references.) (DDR)

  12. Effect of Some External Crosswise Stiffeners on the Heat Transfer and Pressure Distribution on a Flat Plate at Mach Numbers of 0.77, 1.39, and 1.98. Coord. No. AF-AM-69

    Science.gov (United States)

    Carter, Howard S.

    1957-01-01

    The heat transfer and pressures on the surfaces of several flat-plate models with various external crosswise stiffener arrangements are presented. The tests were made in a free jet at Mach numbers of 0.77, 1.39, and 1.98 for Reynolds numbers of 3 x 10(exp 6), 7 x 10(exp 6), and 14 x 10(exp 6), respectively, based on a length of 1 foot. The addition of external crosswise stiffeners to the flat-plate models caused large pressure and heat-transfer variations on the surfaces of the models.

  13. Variable viscosity effects on mixed convection heat and mass ...

    African Journals Online (AJOL)

    An analysis is carried out to study the viscous dissipation and variable viscosity effects on the flow, heat and mass transfer characteristics in a viscous fluid over a semi-infinite vertical porous plate in the presence of chemical reaction. The governing boundary layer equations are written into a dimensionless form by similarity ...

  14. Estimation of lacustrine groundwater discharge using heat as a tracer and vertical hydraulic gradients – a comparison

    Directory of Open Access Journals (Sweden)

    S. Rudnick

    2015-03-01

    Full Text Available Lacustrine groundwater discharge (LGD can play a major role in water and nutrient balances of lakes. Unfortunately, studies often neglect this input path due to methodological difficulties in the determination. In a previous study we described a method which allows the estimation of LGD and groundwater recharge using hydraulic head data and groundwater net balances based on meteorological data. The aim of this study is to compare these results with discharge rates estimated by inverse modelling of heat transport using temperature profiles measured in lake bed sediments. We were able to show a correlation between the fluxes obtained with the different methods, although the time scales of the methods differ substantially. As a consequence, we conclude that the use of hydraulic head data and meteorologically-based groundwater net balances to estimate LGD is limited to time scales similar to the calibration period.

  15. Entropy analysis on MHD pseudo-plastic nanofluid flow through a vertical porous channel with convective heating

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-09-01

    Full Text Available This paper is concerned with the entropy generation in a magnetohydrodynamic (MHD pseudo-plastic nanofluid flow through a porous channel with convective heating. Three different types of nanoparticles, namely copper, aluminum oxide and titanium dioxide are considered with pseudo-plastic carboxymethyl cellulose (CMC–water used as base fluids. The governing equations are solved numerically by shooting technique coupled with Runge–Kutta scheme. The effects of the pertinent parameters on the fluid velocity, temperature, entropy generation, Bejan number as well as the shear stresses at the channel walls are presented graphically and analyzed in detail. It is possible to determine optimum values of magnetic parameter, power-law index, Eckert number and Boit number which lead to a minimum entropy generation rate.

  16. Critical Heat Flux on a Flat Plate Located at the Middle of a Duct in Forced Flow of Pressurized He II

    Science.gov (United States)

    Okamura, T.; Saeki, M.; Hata, K.; Hama, K.; Shirai, Y.; Shiotsu, M.

    2004-06-01

    Critical heat fluxes (CHFs) were measured on two horizontal flat plate heaters 6 mm wide and 20 mm long located on inner upper and lower walls of a rectangular duct at 50 mm from the inlet. The duct has 3 mm × 20 mm inner cross sectional area and 100 mm length. The flat plate heaters are made of Manganin and connected electrically in series. Therefore, the ratio of the cross-sectional area of duct to the heater area is 0.25. The measurements were made for the flow velocities from 0 m/s to 2.1 m/s and for the inlet liquid temperatures of 1.6 K, 1.8 K, 1.9 K, 2.0 K and 2.1 K. The measured CHFs were higher for larger flow velocity and lower liquid temperature. The equation of CHF for the forced convection was derived based on two fluid model, ordinary convection theorem and experimental results. It was confirmed that this correlation can describe not only the author's data on the duct but also other worker's data for channels with different shapes and sizes.

  17. Recovery of Chicken Growth Plate by Heat-Shock Protein 90 Inhibitors Epigallocatechin-3-Gallate and Apigenin in Thiram-Induced Tibial Dyschondroplasia.

    Science.gov (United States)

    Iqbal, Muhammad Kashif; Liu, Jingying; Nabi, Fazul; Rehman, Mujeeb Ur; Zhang, Hui; Tahir, Adnan Hassan; Li, Jiakui

    2016-12-01

    Tibial dyschondroplasia (TD) is an important tibiotarsal bone disorder characterized by an avascular and nonmineralized growth plate; it is attributed to abnormal differentiation of chondrocytes and causes lameness. Heat-shock protein 90 (Hsp90) is a proangiogenic factor in animal tissues; however, its gene expression increases in cases of chicken TD. The objective of this study was to evaluate the efficacy of epigallocatechin-3-gallate (EGCG) and apigenin in thiram-induced TD birds; these substances were used because of their Hsp90 inhibitory activities. The histologic study of growth plates was carried out with hematoxylin and eosin staining, and the Hsp90 gene expression was examined by reverse transcription quantitative real-time PCR. Results showed that as compared to a control group, TD-affected birds displayed changes in chondrocyte differentiation, with lack of blood vessels, and an increased expression of Hsp90 was observed significantly (P < 0.05). However, on administering the EGCG and apigenin to TD-affected birds, the normal chondrocyte columnar organization was restored with vascularization and decreased Hsp90 expression activity (P < 0.05), which ultimately abrogated the lameness. Our results suggested that Hsp90 is the key factor in the development of TD, and EGCG and apigenin have a novel effect on Hsp90 inhibition properties, thus reducing the lameness and leg deformity in chicken broilers.

  18. An analytical model for the prediction of the dynamic response of premixed flames stabilized on a heat-conducting perforated plate

    KAUST Repository

    Kedia, Kushal S.

    2013-01-01

    The dynamic response of a premixed flame stabilized on a heat-conducting perforated plate depends critically on their coupled thermal interaction. The objective of this paper is to develop an analytical model to capture this coupling. The model predicts the mean flame base standoff distance; the flame base area, curvature and speed; and the burner plate temperature given the operating conditions; the mean velocity, temperature and equivalence ratio of the reactants; thermal conductivity and the perforation ratio of the burner. This coupled model is combined with our flame transfer function (FTF) model to predict the dynamic response of the flame to velocity perturbations. We show that modeling the thermal coupling between the flame and the burner, while accounting for the two-dimensionality of the former, is critical to predicting the dynamic response characteristics such as the overshoot in the gain curve (resonant condition) and the phase delay. Good agreement with the numerical and experimental results is demonstrated over a range of conditions. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  19. Numerical Simulation of Williamson Combined Natural and Forced Convective Fluid Flow between Parallel Vertical Walls with Slip Effects and Radiative Heat Transfer in a Porous Medium

    Directory of Open Access Journals (Sweden)

    Mohammad Yaghoub Abdollahzadeh Jamalabadi

    2016-04-01

    Full Text Available Numerical study of the slip effects and radiative heat transfer on a steady state fully developed Williamson flow of an incompressible Newtonian fluid; between parallel vertical walls of a microchannel with isothermal walls in a porous medium is performed. The slip effects are considered at both boundary conditions. Radiative highly absorbing medium is modeled by the Rosseland approximation. The non-dimensional governing Navier–Stokes and energy coupled partial differential equations formed a boundary problem are solved numerically using the fourth order Runge–Kutta algorithm by means of a shooting method. Numerical outcomes for the skin friction coefficient, the rate of heat transfer represented by the local Nusselt number were presented even as the velocity and temperature profiles illustrated graphically and analyzed. The effects of the temperature number, Grashof number, thermal radiation parameter, Reynolds number, velocity slip length, Darcy number, and temperature jump, on the flow field and temperature field and their effects on the boundaries are presented and discussed.

  20. An analytical study on heat and mass transfer for ammonia-water system in a vertical falling-film type of absorber and generator

    Science.gov (United States)

    Honda, Katsumi; Matsuda, Akira

    A numerical analysis on simultaneous heat and mass transfer for ammonia-water air-conditioning with a vertical falling-film type of absorber and generator was performed by the one-dimensional difference method which takes into account only the change of flow direction. In the calculation, the geometries of absorber/generator and the temperature conditions were taken like as those in our previous works for water-lithium bromide system. Therefore, the liquid and vapor concentrations ranged 53-55 and 99-l00mass%NH3, respectively. The ratio of the liquid mass flow rate to the vapor mass flow rate, L/V, ranged up to 18000. For these thermal conditions, it was found that the vapor-phase mass transfer resistance is negligibly small, and the absorption/generation rates are almost constant regardless of the vapor flow rate, but increase with increasing liquid flow rate. It was also found that the calculated values of heat fluxes in the absorber/generator for ammonia-water system are equivalent or superior to those for water-lithium bromide system.