WorldWideScience

Sample records for vertical gradient freeze

  1. Vertical gradient freeze of 4 inch Ge crystals in a heater-magnet module

    Science.gov (United States)

    Frank-Rotsch, Ch.; Rudolph, P.

    2009-04-01

    For the first time 4-in. Ge single crystals were grown using the vertical gradient freeze technique (VGF) in a traveling magnetic field (TMF) generated in a heater-magnet module (HMM). The HMM was placed closely around the growth container inside the chamber of the industrial Bridgman equipment "Kronos". The HMM generates heat and a TMF together. It has a coil-shaped design and replaces the standard meander-type heater. Direct current (DC) for heat production and out-of-phase-accelerated currents (AC) for TMF generation were simultaneously delivered to three equally spaced coil segments connected by star-type wiring. In order to achieve a nearly flat and slightly convex growing interface the AC amplitude, frequency and phase shift have been optimized numerically by using the 3D CrysMAS code and validated by striation analysis on as-grown crystals. Low-field frequencies in the range f=20-50 Hz proved to be of most suitable condition. TMF programming is required to obtain constant interface morphology over the whole growth run. First Ge single crystals grown under nearly optimal conditions show reduced macro- and micro-inhomogeneities, relatively low dislocation density of (3-10)×10 2 cm -2, and high carrier mobility of μp=2800 cm 2 V -1 s -1.

  2. Gradient porous hydroxyapatite ceramics fabricated by freeze casting method

    International Nuclear Information System (INIS)

    Zuo Kaihui; Zhang Yuan; Jiang Dongliang; Zeng Yuping

    2011-01-01

    By controlling the cooling rates and the composition of slurries, the gradient porous hydroxyapatite ceramics are fabricated by the freeze casting method. According to the different cooling rate, the pores of HAP ceramics fabricated by gradient freeze casting are divided into three parts: one is lamellar pores, another is column pore and the last one is fine round pores. The laminated freeze casting is in favour of obtaining the gradient porous ceramics composed of different materials and the ceramics have unclear interfaces.

  3. Vertical gradients of sunspot magnetic fields

    Science.gov (United States)

    Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.

    1983-01-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.

  4. Role of the vertical pressure gradient in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna

    2014-01-01

    By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressure...... gradient is also treated as any other turbulence quantity like velocity fluctuations and statistical properties of the vertical pressure gradient are calculated from the DNS data. The presence of a vertical pressure gradient in the near bed region has significant implications for sediment transport....

  5. Brown bear sperm double freezing: Effect of elapsed time and use of PureSperm(®) gradient between freeze-thaw cycles.

    Science.gov (United States)

    Alvarez-Rodríguez, Manuel; Alvarez, Mercedes; López-Urueña, Elena; Martínez-Rodriguez, Carmen; Borragan, Santiago; Anel-López, Luis; de Paz, Paulino; Anel, Luis

    2013-12-01

    The use of sexed spermatozoa has great potential to captive population management in endangered wildlife. The problem is that the sex-sorting facility is a long distance from the semen collection place and to overcome this difficulty two freeze-thaw cycles may be necessary. In this study, effects of refreezing on brown bear electroejaculated spermatozoa were analyzed. We carried out two experiments: (1) to assess the effects of the two freezing-thawing cycles on sperm quality and to analyze three different elapsed times between freezing-thawing cycles (30, 90 and 180 min), and (2) to analyze the use of PureSperm between freezing-thawing cycles to select a more motile and viable sperm subpopulation which better survived first freezing. The motility, viability and undamaged acrosomes were significantly reduced after the second thawing respect to first thawing into each elapsed time group, but the elapsed times did not significantly affect the viability and acrosome status although motility was damaged. Our results with the PureSperm gradient showed higher values of viability in freezability of select sample (pellet) respect to the rest of the groups and it also showed a significant decrease in the number of acrosome damaged. In summary, the double freezing of bear semen selected by gradient centrifugation is qualitatively efficient, and thus could be useful to carry out a sex-sorting of frozen-thawed bear spermatozoa before to send the cryopreserved sample to a biobank. Given the low recovery of spermatozoa after applying a selection gradient, further studies will be needed to increase the recovery rate without damaging of the cell quality. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Refining geoid and vertical gradient of gravity anomaly

    Directory of Open Access Journals (Sweden)

    Zhang Chijun

    2011-11-01

    Full Text Available We have derived and tested several relations between geoid (N and quasi-geoid (ζ with model validation. The elevation correction consists of the first-term (Bouguer anomaly and second-term (vertical gradient of gravity anomaly. The vertical gradient was obtained from direct measurement and terrain calculation. The test results demonstrated that the precision of geoid can reach centimeter-level in mountains less than 5000 meters high.

  7. How important are internal temperature gradients in french straws during freezing of bovine sperm in nitrogen vapor?

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2013-01-01

    The subject of present work was to predict internal temperature gradients developed during freezing of bovine sperm diluted in extender, packaged in 0.5 ml French plastic straws and suspended in static liquid nitrogen vapor at -100 degree C. For this purpose, a mathematical heat transfer model previously developed to predict freezing times (phase change was considered) of semen/extender packaged in straw was extended to predict internal temperature gradients during the cooling/freezing process. Results showed maximum temperature differences between the centre and the periphery of semen/extender "liquid" column was 1.5 degree C for an external heat transfer coefficient, h = 15 W per (m(2) K), and only 0.5 degree C for h = 5 W per (m(2) K). It is concluded that if a thermocouple wire were inserted in a 0.5 ml plastic straw to monitor the freezing process in nitrogen vapor, its radial position would have little importance since expected internal gradients may be safely neglected. This finding facilitates the interpretation of freezing rates in 0.5 ml plastic straws immersed in nitrogen vapor over liquid nitrogen, a widely used method for cryopreservation of bovine spermatozoa.

  8. 3D correlation imaging of the vertical gradient of gravity data

    International Nuclear Information System (INIS)

    Guo, Lianghui; Meng, Xiaohong; Shi, Lei

    2011-01-01

    We present a new 3D correlation imaging approach for vertical gradient of gravity data for deriving a 3D equivalent mass distribution in the subsurface. In this approach, we divide the subsurface space into a 3D regular grid, and then at each grid node calculate a cross correlation between the vertical gradient of the observed gravity data and the theoretical gravity vertical gradient due to a point mass source. The resultant correlation coefficients are used to describe the equivalent mass distribution in a probability sense. We simulate a geological syncline model intruded by a dike and later broken by two vertical faults. The vertical gradient of gravity anomaly of the model is calculated and used to test the approach. The results demonstrate that the equivalent mass distribution derived by the approach reflects the basic geological structures of the model. We also test the approach on the transformed vertical gradient of real Bouguer gravity data from a geothermal survey area in Northern China. The thermal reservoirs are located in the lower portion of the sedimentary basin. From the resultant equivalent mass distribution, we produce the depth distribution of the bottom interface of the basin and predict possible hidden faults present in the basin

  9. Calculation of Vertical Temperature Gradients in Heated Rooms

    DEFF Research Database (Denmark)

    Overby, H.; Steen-Thøde, Mogens

    This paper deals with a simple model which predicts the vertical temperature gradient in a heated room. The gradient is calculated from a dimensionless temperature profile which is determined by two room air temperatures only, the mean temperature in the occupied zone and the mean temperature...

  10. Consolidation by Prefabricated Vertical Drains with a Threshold Gradient

    Directory of Open Access Journals (Sweden)

    Xiao Guo

    2014-01-01

    Full Text Available This paper shows the development of an approximate analytical solution of radial consolidation by prefabricated vertical drains with a threshold gradient. To understand the effect of the threshold gradient on consolidation, a parametric analysis was performed using the present solution. The applicability of the present solution was demonstrated in two cases, wherein the comparisons with Hansbo’s results and observed data were conducted. It was found that (1 the flow with the threshold gradient would not occur instantaneously throughout the whole unit cell. Rather, it gradually occurs from the vertical drain to the outside; (2 the moving boundary would never reach the outer radius of influence if R+1gradient is, the greater the long-term excess pore pressure will be; and (5 the present solution could predict the consolidation behavior in soft clay better than previous methods.

  11. Freeze drying method

    International Nuclear Information System (INIS)

    Coppa, N.V.; Stewart, P.; Renzi, E.

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser

  12. Property Improvement in CZT via Modeling and Processing Innovations . Te-particles in vertical gradient freeze CZT: Size and Spatial Distributions and Constitutional Supercooling

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bliss, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, Jean A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-10-01

    A section of a vertical gradient freeze CZT boule approximately 2100-mm3 with a planar area of 300-mm2 was prepared and examined using transmitted IR microscopy at various magnifications to determine the three-dimensional spatial and size distributions of Te-particles over large longitudinal and radial length scales. The boule section was approximately 50-mm wide by 60-mm in length by 7-mm thick and was doubly polished for TIR work. Te-particles were imaged through the thickness using extended focal imaging to locate the particles in thickness planes spaced 15-µm apart and then in plane of the image using xy-coordinates of the particle center of mass so that a true three dimensional particle map was assembled for a 1-mm by 45-mm longitudinal strip and for a 1-mm by 50-mm radial strip. Te-particle density distributions were determined as a function of longitudinal and radial positions in these strips, and treating the particles as vertices of a network created a 3D image of the particle spatial distribution. Te-particles exhibited a multi-modal log-normal size density distribution that indicated a slight preference for increasing size with longitudinal growth time, while showing a pronounced cellular network structure throughout the boule that can be correlated to dislocation network sizes in CZT. Higher magnification images revealed a typical Rayleigh-instability pearl string morphology with large and small satellite droplets. This study includes solidification experiments in small crucibles of 30:70 mixtures of Cd:Te to reduce the melting point below 1273 K (1000°C). These solidification experiments were performed over a wide range of cooling rates and clearly demonstrated a growth instability with Te-particle capture that is suggested to be responsible for one of the peaks in the size distribution using size discrimination visualization. The results are discussed with regard to a manifold Te-particle genesis history as 1) Te

  13. Consolidation by Prefabricated Vertical Drains with a Threshold Gradient

    OpenAIRE

    Xiao Guo; Kang-He Xie; Yue-Bao Deng

    2014-01-01

    This paper shows the development of an approximate analytical solution of radial consolidation by prefabricated vertical drains with a threshold gradient. To understand the effect of the threshold gradient on consolidation, a parametric analysis was performed using the present solution. The applicability of the present solution was demonstrated in two cases, wherein the comparisons with Hansbo’s results and observed data were conducted. It was found that (1) the flow with the threshold gradie...

  14. High-gradient operators in the psl(2 vertical stroke 2) Gross-Neveu model

    International Nuclear Information System (INIS)

    Cagnazzo, Alessandra; Schomerus, Volker; Tlapak, Vaclav

    2014-10-01

    It has been observed more than 25 years ago that sigma model perturbation theory suffers from strongly RG-relevant high-gradient operators. The phenomenon was first seen in 1-loop calculations for the O(N) vector model and it is known to persist at least to two loops. More recently, Ryu et al. suggested that a certain deformation of the psl(N vertical stroke N) WZNW-model at level k=1, or equivalently the psl(N vertical stroke N) Gross-Neveu model, could be free of RG-relevant high-gradient operators and they tested their suggestion to leading order in perturbation theory. In this note we establish the absence of strongly RG-relevant high-gradient operators in the psl(2 vertical stroke 2) Gross-Neveu model to all loops. In addition, we determine the spectrum for a large subsector of the model at infinite coupling and observe that all scaling weights become half-integer. Evidence for a conjectured relation with the CP 1 vertical stroke 2 sigma model is not found.

  15. Vertical orbit excursion fixed field alternating gradient accelerators

    Directory of Open Access Journals (Sweden)

    Stephen Brooks

    2013-08-01

    Full Text Available Fixed field alternating gradient (FFAG accelerators with vertical orbit excursion (VFFAGs provide a promising alternative design for rings with fixed-field superconducting magnets. They have a vertical magnetic field component that increases with height in the vertical aperture, yielding a skew quadrupole focusing structure. Scaling-type VFFAGs are found with fixed tunes and no intrinsic limitation on momentum range. This paper presents the first multiparticle tracking of such machines. Proton driver rings to accelerate the 800 MeV beam from the ISIS synchrotron are presented, in terms of both magnet field geometry and longitudinal behavior during acceleration with space charge. The 12 GeV ring produces an output power of at least 2.18 MW. Possible applications of VFFAGs to waste transmutation, hadron therapy, and energy-recovery electron accelerators are also discussed.

  16. The innate origin of radial and vertical gradients in a simulated galaxy disc

    Science.gov (United States)

    Navarro, Julio F.; Yozin, Cameron; Loewen, Nic; Benítez-Llambay, Alejandro; Fattahi, Azadeh; Frenk, Carlos S.; Oman, Kyle A.; Schaye, Joop; Theuns, Tom

    2018-05-01

    We examine the origin of radial and vertical gradients in the age/metallicity of the stellar component of a galaxy disc formed in the APOSTLE cosmological hydrodynamical simulations. Some of these gradients resemble those in the Milky Way, where they have sometimes been interpreted as due to internal evolution, such as scattering off giant molecular clouds, radial migration driven by spiral patterns, or orbital resonances with a bar. Secular processes play a minor role in the simulated galaxy, which lacks strong spiral or bar patterns, and where such gradients arise as a result of the gradual enrichment of a gaseous disc that is born thick but thins as it turns into stars and settles into centrifugal equilibrium. The settling is controlled by the feedback of young stars; which links the star formation, enrichment, and equilibration time-scales, inducing radial and vertical gradients in the gaseous disc and its descendent stars. The kinematics of coeval stars evolve little after birth and provide a faithful snapshot of the gaseous disc structure at the time of their formation. In this interpretation, the age-velocity dispersion relation would reflect the gradual thinning of the disc rather than the importance of secular orbit scattering; the outward flaring of stars would result from the gas disc flare rather than from radial migration; and vertical gradients would arise because the gas disc gradually thinned as it enriched. Such radial and vertical trends might just reflect the evolving properties of the parent gaseous disc, and are not necessarily the result of secular evolutionary processes.

  17. The effect of vocal fold vertical stiffness gradient on sound production

    Science.gov (United States)

    Geng, Biao; Xue, Qian; Zheng, Xudong

    2015-11-01

    It is observed in some experimental studies on canine vocal folds (VFs) that the inferior aspect of the vocal fold (VF) is much stiffer than the superior aspect under relatively large strain. Such vertical difference is supposed to promote the convergent-divergent shape during VF vibration and consequently facilitate the production of sound. In this study, we investigate the effect of vertical variation of VF stiffness on sound production using a numerical model. The vertical variation of stiffness is produced by linearly increasing the Young's modulus and shear modulus from the superior to inferior aspects in the cover layer, and its effect on phonation is examined in terms of aerodynamic and acoustic quantities such as flow rate, open quotient, skewness of flow wave form, sound intensity and vocal efficiency. The flow-induced vibration of the VF is solved with a finite element solver coupled with 1D Bernoulli equation, which is further coupled with a digital waveguide model. This study is designed to find out whether it's beneficial to artificially induce the vertical stiffness gradient by certain implanting material in VF restoring surgery, and if it is beneficial, what gradient is the most favorable.

  18. The influence of vertical disparity gradient and cue conflict on EEG omega complexity in Panum's limiting case.

    Science.gov (United States)

    Li, Huayun; Jia, Huibin; Yu, Dongchuan

    2018-03-01

    Using behavioral measures and ERP technique, researchers discovered at least two factors could influence the final perception of depth in Panum's limiting case, which are the vertical disparity gradient and the degree of cue conflict between two- and three-dimensional shapes. Although certain event-related potential components have been proved to be sensitive to the different levels of these two factors, some methodological limitations existed in this technique. In this study, we proposed that the omega complexity of EEG signal may serve as an important supplement of the traditional event-related potential technique. We found that the trials with lower vertical gradient disparity have lower omega complexity (i.e., higher global functional connectivity) of the occipital region, especially that of the right-occipital hemisphere. Moreover, for occipital omega complexity, the trials with low-cue conflict have significantly larger omega complexity than those with medium- and high-cue conflict. It is also found that the electrodes located in the middle line of the occipital region (i.e., POz and Oz) are more crucial to the impact of different levels of cue conflict on omega complexity than the other electrodes located in the left- and right-occipital hemispheres. These evidences demonstrated that the EEG omega complexity could reflect distinct neural activities evoked by Panum's limiting case configurations, with different levels of vertical disparity gradient and cue conflict. Besides, the influence of vertical disparity gradient and cue conflict on omega complexity may be regional dependent. NEW & NOTEWORTHY The EEG omega complexity could reflect distinct neural activities evoked by Panum's limiting case configurations with different levels of vertical disparity gradient and cue conflict. The influence of vertical disparity gradient and cue conflict on omega complexity is regional dependent. The omega complexity of EEG signal can serve as an important supplement of the

  19. Transition from natural-convection-controlled freezing to conduction-controlled freezing

    International Nuclear Information System (INIS)

    Sparrow, E.M.; Ramsey, J.W.; Harris, J.S.

    1981-01-01

    Experiments were performed to study the transition between freezing controlled by natural convection in the liquid adjacent to a freezing interface and freezing controlled by heat conduction in the solidified material. The freezing took place on a cooled vertical tube immersed in an initially superheated liquid contained in an adiabatic-walled vessel. At early and intermediate times, temperature differences throughout the liquid induce a vigorous natural convection motion which retards freezing, but the temperature differences diminish with time and natural convection ebbs. At large times, the freezing rate is fully controlled by heat conduction in the solidified material. The frozen specimens for short and intermediate freezing times are smooth-surfaced and tapered, while those for large times are straight-sided and have surfaces that are overlaid with a thicket of large discrete crystals. These characteristics correspond respectively to those of natural-convection- controlled freezing and conduction-controlled freezing. At early times, the measured mass of the frozen material is identical to that for natural-convection-controlled freezing and conduction-controlled freezing. At early times, the measured mass of the frozen material is identical to that for natural-convection-controlled freezing. At later times, the frozen mass tends to approach that for conduction-controlled freezing, but a residual deficit remains

  20. Demonstration of an Enhanced Vertical Magnetic Gradient System for UXO

    Science.gov (United States)

    2008-12-01

    fluxgate magnetometers , data recording console, laser altimeter, and acoustic altimeters were tested to ensure proper operation and performance. The VG...Simultaneous Electromagnetic Induction and Magnetometer System WAA wide area assessment ACKNOWLEDGEMENTS We wish to express our sincere...sensors. The benefits of vertical gradient (VG) configurations in magnetometer systems are common knowledge, and these configurations are routinely

  1. Effect of freeze/thaw cycles on several biomarkers in urine from patients with kidney disease.

    Science.gov (United States)

    Zhang, Yinan; Luo, Yi; Lu, Huijuan; Wang, Niansong; Shen, Yixie; Chen, Ruihua; Fang, Pingyan; Yu, Hong; Wang, Congrong; Jia, Weiping

    2015-04-01

    Urine samples were collected from eleven randomly selected patients with kidney disease, including diabetic nephropathy, chronic nephritis, and nephritic syndrome. Urine samples were treated with one of four protocols for freezing and thawing: freeze directly and thaw directly; freeze directly and thaw by temperature gradient; freeze by temperature gradient and thaw directly; and freeze by temperature gradient and thaw by temperature gradient. After one to six freeze/thaw cycles at -20°C or -80°C, different biomarkers showed differential stabilities. The concentrations of total protein, calcium, and potassium did not change significantly after five freeze/thaw cycles at either -20°C or -80°C. Albumin could only sustain three freeze/thaw cycles at -20°C before it started to degrade. We recommend that urine be stored at -80°C as albumin and the organic ions could sustain five and six freeze/thaw cycles, respectively, using the simple "direct freeze and direct thaw" protocol. Furthermore, in most cases, gradient freeze/thaw cycles are not necessary for urine sample storage.

  2. Numerical Study on Density Gradient Carbon-Carbon Composite for Vertical Launching System

    Science.gov (United States)

    Yoon, Jin-Young; Kim, Chun-Gon; Lim, Juhwan

    2018-04-01

    This study presents new carbon-carbon (C/C) composite that has a density gradient within single material, and estimates its heat conduction performance by a numerical method. To address the high heat conduction of a high-density C/C, which can cause adhesion separation in the steel structures of vertical launching systems, density gradient carbon-carbon (DGCC) composite is proposed due to its exhibiting low thermal conductivity as well as excellent ablative resistance. DGCC is manufactured by hybridizing two different carbonization processes into a single carbon preform. One part exhibits a low density using phenolic resin carbonization to reduce heat conduction, and the other exhibits a high density using thermal gradient-chemical vapor infiltration for excellent ablative resistance. Numerical analysis for DGCC is performed with a heat conduction problem, and internal temperature distributions are estimated by the forward finite difference method. Material properties of the transition density layer, which is inevitably formed during DGCC manufacturing, are assumed to a combination of two density layers for numerical analysis. By comparing numerical results with experimental data, we validate that DGCC exhibits a low thermal conductivity, and it can serve as highly effective ablative material for vertical launching systems.

  3. Vertical density gradient in the eastern North Atlantic during the last 30,000 years

    Energy Technology Data Exchange (ETDEWEB)

    Rogerson, M.; Ramirez, J. [University of Hull, Geography Department, Hull (United Kingdom); Bigg, G.R. [University of Sheffield, Department of Geography, Sheffield (United Kingdom); Rohling, E.J. [University of Southampton, National Oceanography Centre, School of Ocean and Earth Science, Southampton (United Kingdom)

    2012-08-15

    Past changes in the density and momentum structure of oceanic circulation are an important aspect of changes in the Atlantic Meridional Overturning Circulation and consequently climate. However, very little is known about past changes in the vertical density structure of the ocean, even very extensively studied systems such as the North Atlantic. Here we exploit the physical controls on the settling depth of the dense Mediterranean water plume derived from the Strait of Gibraltar to obtain the first robust, observations-based, probabilistic reconstruction of the vertical density gradient in the eastern North Atlantic during the last 30,000 years. We find that this gradient was weakened by more than 50%, relative to the present, during the last Glacial Maximum, and that changes in general are associated with reductions in AMOC intensity. However, we find only a small change during Heinrich Event 1 relative to the Last Glacial Maximum, despite strong evidence that overturning was substantially altered. This implies that millennial-scale changes may not be reflected in vertical density structure of the ocean, which may be limited to responses on an ocean-overturning timescale or longer. Regardless, our novel reconstruction of Atlantic density structure can be used as the basis for a dynamical measure for validation of model-based AMOC reconstructions. In addition, our general approach is transferrable to other marginal sea outflow plumes, to provide estimates of oceanic vertical density gradients in other locations. (orig.)

  4. Contribution of Field Strength Gradients to the Net Vertical Current of Active Regions

    Science.gov (United States)

    Vemareddy, P.

    2017-12-01

    We examined the contribution of field strength gradients for the degree of net vertical current (NVC) neutralization in active regions (ARs). We used photospheric vector magnetic field observations of AR 11158 obtained by Helioseismic and Magnetic Imager on board SDO and Hinode. The vertical component of the electric current is decomposed into twist and shear terms. The NVC exhibits systematic evolution owing to the presence of the sheared polarity inversion line between rotating and shearing magnetic regions. We found that the sign of shear current distribution is opposite in dominant pixels (60%–65%) to that of twist current distribution, and its time profile bears no systematic trend. This result indicates that the gradient of magnetic field strength contributes to an opposite signed, though smaller in magnitude, current to that contributed by the magnetic field direction in the vertical component of the current. Consequently, the net value of the shear current is negative in both polarity regions, which when added to the net twist current reduces the direct current value in the north (B z > 0) polarity, resulting in a higher degree of NVC neutralization. We conjecture that the observed opposite signs of shear and twist currents are an indication, according to Parker, that the direct volume currents of flux tubes are canceled by their return currents, which are contributed by field strength gradients. Furthermore, with the increase of spatial resolution, we found higher values of twist, shear current distributions. However, the resolution effect is more useful in resolving the field strength gradients, and therefore suggests more contribution from shear current for the degree of NVC neutralization.

  5. In situ synthesis of bilayered gradient poly(vinyl alcohol)/hydroxyapatite composite hydrogel by directional freezing-thawing and electrophoresis method.

    Science.gov (United States)

    Su, Cui; Su, Yunlan; Li, Zhiyong; Haq, Muhammad Abdul; Zhou, Yong; Wang, Dujin

    2017-08-01

    Bilayered poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) composite hydrogels with anisotropic and gradient mechanical properties were prepared by the combination of directional freezing-thawing (DFT) and electrophoresis method. Firstly, PVA hydrogels with aligned channel structure were prepared by the DFT method. Then, HA nanoparticles were in situ synthesized within the PVA hydrogels via electrophoresis. By controlling the time of the electrophoresis process, a bilayered gradient hydrogel containing HA particles in only half of the gel region was obtained. The PVA/HA composite hydrogel exhibited gradient mechanical strength depending on the distance to the cathode. The gradient initial tensile modulus ranging from 0.18MPa to 0.27MPa and the gradient initial compressive modulus from 0.33MPa to 0.51MPa were achieved. The binding strength of the two regions was relatively high and no apparent internal stress or defect was observed at the boundary. The two regions of the bilayered hydrogel also showed different osteoblast cell adhesion properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Microgravity vertical gradient measurement in the site of VIRGO interferometric antenna (Pisa plain, Italy

    Directory of Open Access Journals (Sweden)

    F. Fidecaro

    2008-06-01

    Full Text Available The site of the European Gravitational Observatory (EGO located in the countryside near Pisa (Tuscany, Italy was investigated by a microgravity vertical gradient (MVG survey. The EGO site houses the VIRGO interferometric antenna for gravitational waves detection. The microgravity survey aims to highlight the gravity anomalies of high-frequency related to more superficial geological sources in order to obtain a detailed model of the lithologic setting of the VIRGO site, that will allow an estimate of the noise induced by seismic waves and by Newtonian interference. This paper presents the results of the gradiometric survey of 2006 in the area of the interferometric antenna. MVG measurements allow us to enhance the high frequency signal strongly associated with the shallow structures. The gradient gravity map shows a main negative pattern that seems related to the trending of the high density layer of gravel that was evidenced in geotechnical drillings executed along the orthogonal arms during the construction of the VIRGO complex. Calibrating the relationship between the vertical gradient and the depth of the gravel interface we have computed a model of gravity gradient for the whole VIRGO site, defining the 3D distribution of the top surface of this layer. This latter shows a NE-SW negative pattern that may represent a palaeo-bed alluvial of the Serchio from the Bientina River system.

  7. Oval gradient coils for an open magnetic resonance imaging system with a vertical magnetic field.

    Science.gov (United States)

    Matsuzawa, Koki; Abe, Mitsushi; Kose, Katsumi; Terada, Yasuhiko

    2017-05-01

    Existing open magnetic resonance imaging (MRI) systems use biplanar gradient coils for the spatial encoding of signals. We propose using novel oval gradient coils for an open vertical-field MRI. We designed oval gradients for a 0.3T open MRI system and showed that such a system could outperform a traditional biplanar gradient system while maintaining adequate gradient homogeneity and subject accessibility. Such oval gradient coils would exhibit high efficiency, low inductance and resistance, and high switching capability. Although the designed oval Y and Z coils showed more heat dissipation and less cooling capability than biplanar coils with the same gap, they showed an efficient heat-dissipation path to the surrounding air, which would alleviate the heat problem. The performance of the designed oval-coil system was demonstrated experimentally by imaging a human hand. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The vertical metallicity gradient of the Milky Way disk: transitions in [α/Fe] populations

    International Nuclear Information System (INIS)

    Schlesinger, Katharine J.; Johnson, Jennifer A.; Rockosi, Constance M.; Lee, Young Sun; Beers, Timothy C.; Harding, Paul; Allende Prieto, Carlos; Bird, Jonathan C.; Schönrich, Ralph; Yanny, Brian; Schneider, Donald P.; Weaver, Benjamin A.; Brinkmann, Jon

    2014-01-01

    Using G dwarfs from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey, we have determined the vertical metallicity gradient in the Milky Way's disk and examined how this gradient varies for different [α/Fe] subsamples. Our sample contains over 40,000 stars with low-resolution spectroscopy over 144 lines of sight. It also covers a significant disk volume, between ∼0.3 and 1.6 kpc from the Galactic plane, and allows us to examine the disk in situ, whereas previous analyses were more limited in scope. Furthermore, this work does not presuppose a disk structure, whether composed of a single complex population or distinct thin and thick disk components. We employ the SEGUE Stellar Parameter Pipeline to obtain estimates of stellar parameters, [Fe/H], and [α/Fe] and extract multiple volume-complete subsamples of approximately 1000 stars each. Based on SEGUE's target-selection algorithm, we adjust each subsample to determine an unbiased picture of disk chemistry; consequently, each individual star represents the properties of many. The metallicity gradient is –0.243 −0.053 +0.039 dex kpc –1 for the entire sample, which we compare to various literature results. This gradient stems from the different [α/Fe] populations inhabiting different ranges of height above the Galactic plane. Each [α/Fe] subsample shows little change in median [Fe/H] with height. If we associate [α/Fe] with age, the negligible gradients of our [α/Fe] subsamples suggest that stars formed in different epochs exhibit comparable vertical structure, implying similar star formation processes and evolution.

  9. Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    Science.gov (United States)

    Zhao, Wenqiang; Reich, Peter B.; Yu, Qiannan; Zhao, Ning; Yin, Chunying; Zhao, Chunzhang; Li, Dandan; Hu, Jun; Li, Ting; Yin, Huajun; Liu, Qing

    2018-04-01

    Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523-4685 m) on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3-47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2-75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub) could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m), likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer), their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most important factor explaining the overall leaf C : N : P variations

  10. A refined model of sedimentary rock cover in the southeastern part of the Congo basin from GOCE gravity and vertical gravity gradient observations

    Science.gov (United States)

    Martinec, Zdeněk; Fullea, Javier

    2015-03-01

    We aim to interpret the vertical gravity and vertical gravity gradient of the GOCE-GRACE combined gravity model over the southeastern part of the Congo basin to refine the published model of sedimentary rock cover. We use the GOCO03S gravity model and evaluate its spherical harmonic representation at or near the Earth's surface. In this case, the gradiometry signals are enhanced as compared to the original measured GOCE gradients at satellite height and better emphasize the spatial pattern of sedimentary geology. To avoid aliasing, the omission error of the modelled gravity induced by the sedimentary rocks is adjusted to that of the GOCO03S gravity model. The mass-density Green's functions derived for the a priori structure of the sediments show a slightly greater sensitivity to the GOCO03S vertical gravity gradient than to the vertical gravity. Hence, the refinement of the sedimentary model is carried out for the vertical gravity gradient over the basin, such that a few anomalous values of the GOCO03S-derived vertical gravity gradient are adjusted by refining the model. We apply the 5-parameter Helmert's transformation, defined by 2 translations, 1 rotation and 2 scale parameters that are searched for by the steepest descent method. The refined sedimentary model is only slightly changed with respect to the original map, but it significantly improves the fit of the vertical gravity and vertical gravity gradient over the basin. However, there are still spatial features in the gravity and gradiometric data that remain unfitted by the refined model. These may be due to lateral density variation that is not contained in the model, a density contrast at the Moho discontinuity, lithospheric density stratifications or mantle convection. In a second step, the refined sedimentary model is used to find the vertical density stratification of sedimentary rocks. Although the gravity data can be interpreted by a constant sedimentary density, such a model does not correspond to

  11. Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest.

    Science.gov (United States)

    Coble, Adam P; Cavaleri, Molly A

    2014-02-01

    Leaf mass per area (LMA, g m(-2)) is an essential trait for modeling canopy function due to its strong association with photosynthesis, respiration and leaf nitrogen. Leaf mass per area, which is influenced by both leaf thickness and density (LMA = thickness × density), generally increases from the bottom to the top of tree canopies, yet the mechanisms behind this universal pattern are not yet resolved. For decades, the light environment was assumed to be the most influential driver of within-canopy variation in LMA, yet recent evidence has shown hydrostatic gradients to be more important in upper canopy positions, especially in tall evergreen trees in temperate and tropical forests. The aim of this study was to disentangle the importance of various environmental drivers on vertical LMA gradients in a mature sugar maple (Acer saccharum Marshall) forest. We compared LMA, leaf density and leaf thickness relationships with height, light and predawn leaf water potential (ΨPre) within a closed and an exposed canopy to assess leaf morphological traits at similar heights but different light conditions. Contrary to our expectations and recent findings in the literature, we found strong evidence that light was the primary driver of vertical gradients in leaf morphology. At similar heights (13-23 m), LMA was greater within the exposed canopy than the closed canopy, and light had a stronger influence over LMA compared with ΨPre. Light also had a stronger influence over both leaf thickness and density compared with ΨPre; however, the increase in LMA within both canopy types was primarily due to increasing leaf thickness with increasing light availability. This study provides strong evidence that canopy structure and crown exposure, in addition to height, should be considered as a parameter for determining vertical patterns in LMA and modeling canopy function.

  12. Vertical Population Gradients in NGC 891. I. ∇Pak Instrumentation and Spectral Data

    Science.gov (United States)

    Eigenbrot, Arthur; Bershady, Matthew A.

    2018-02-01

    We have measured vertical and radial stellar population gradients in NGC 891. We compare these gradients to those known for the Milky Way from studies of resolved stars. Optical spectroscopic measurements extend spatially from the disk midplane up to 2.6 {kpc} in height and out to a radius of 12 {kpc} on both sides of the galaxy. Data were acquired with ∇Pak, a variable-pitch fiber integral field unit (IFU) on the WIYN telescope. We describe the laboratory and on-sky performance of ∇Pak, as well as modifications to the standard observational and analysis procedures necessary to calibrate data taken with this unique IFU. ∇Pak has a mean throughput of 80% at 5500 \\mathringA . To achieve an estimated precision of 10% in light-weighted mean age and metallicity, we define a set of spatial apertures in radius and height in which spectra are binned to achieve a signal-to-noise ratio of ∼20 Å‑1. We use spectral indices to measure age, metallicity, and abundance, indicating that NGC 891's stellar populations have 0.2 7 {Gyr}) stellar populations at 0.4 {kpc}, roughly the scale height of the thin disk. We also find a slight trend toward younger populations at larger radii, consistent with flaring in an inside-out disk formation scenario. The vertical age gradient in NGC 891 is in remarkable qualitative agreement with a model for disk heating tuned to studies of the Milk Way’s solar cylinder.

  13. Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils.

    Science.gov (United States)

    Kodama, Nao; Setoi, Ayana; Kose, Katsumi

    2018-04-10

    Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans.

  14. Increased spring freezing vulnerability for alpine shrubs under early snowmelt.

    Science.gov (United States)

    Wheeler, J A; Hoch, G; Cortés, A J; Sedlacek, J; Wipf, S; Rixen, C

    2014-05-01

    Alpine dwarf shrub communities are phenologically linked with snowmelt timing, so early spring exposure may increase risk of freezing damage during early development, and consequently reduce seasonal growth. We examined whether environmental factors (duration of snow cover, elevation) influenced size and the vulnerability of shrubs to spring freezing along elevational gradients and snow microhabitats by modelling the past frequency of spring freezing events. We sampled biomass and measured the size of Salix herbacea, Vaccinium myrtillus, Vaccinium uliginosum and Loiseleuria procumbens in late spring. Leaves were exposed to freezing temperatures to determine the temperature at which 50% of specimens are killed for each species and sampling site. By linking site snowmelt and temperatures to long-term climate measurements, we extrapolated the frequency of spring freezing events at each elevation, snow microhabitat and per species over 37 years. Snowmelt timing was significantly driven by microhabitat effects, but was independent of elevation. Shrub growth was neither enhanced nor reduced by earlier snowmelt, but decreased with elevation. Freezing resistance was strongly species dependent, and did not differ along the elevation or snowmelt gradient. Microclimate extrapolation suggested that potentially lethal freezing events (in May and June) occurred for three of the four species examined. Freezing events never occurred on late snow beds, and increased in frequency with earlier snowmelt and higher elevation. Extrapolated freezing events showed a slight, non-significant increase over the 37-year record. We suggest that earlier snowmelt does not enhance growth in four dominant alpine shrubs, but increases the risk of lethal spring freezing exposure for less freezing-resistant species.

  15. Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils

    Science.gov (United States)

    Kodama, Nao; Setoi, Ayana; Kose, Katsumi

    2018-01-01

    Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans. PMID:28367906

  16. Universal pion freeze-out in heavy-ion collisions.

    Science.gov (United States)

    Adamová, D; Agakichiev, G; Appelshäuser, H; Belaga, V; Braun-Munzinger, P; Castillo, A; Cherlin, A; Damjanović, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Z; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Lenkeit, B; Ludolphs, W; Maas, A; Marín, A; Milosević, J; Milov, A; Miśkowiec, D; Panebrattsev, Yu; Petchenova, O; Petrácek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Schukraft, J; Sedykh, S; Shimansky, S; Slívová, J; Specht, H J; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, I; Wessels, J P; Wienold, T; Windelband, B; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V

    2003-01-17

    Based on an evaluation of data on pion interferometry and on particle yields at midrapidity, we propose a universal condition for thermal freeze-out of pions in heavy-ion collisions. We show that freeze-out occurs when the mean free path of pions lambda(f) reaches a value of about 1 fm, which is much smaller than the spatial extent of the system at freeze-out. This critical mean free path is independent of the centrality of the collision and beam energy from the Alternating Gradient Synchrotron to the Relativistic Heavy Ion Collider.

  17. Al2O3 Coated Concentration-Gradient Li[Ni0.73Co0.12Mn0.15]O2 Cathode Material by Freeze Drying for Long-Life Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Wang, Jingpeng; Du, Chunyu; Yan, Chunqiu; He, Xiaoshu; Song, Bai; Yin, Geping; Zuo, Pengjian; Cheng, Xinqun

    2015-01-01

    Highlights: • Al 2 O 3 -coated concentration-gradient oxide is synthesized by a freeze drying method. • The effect of Al 2 O 3 -coating on concentration-gradient cathode is firstly studied. • Al 2 O 3 -coated sample exhibits high capacity and significantly enhanced cyclability. • Improved cyclability is ascribed to the effective protection of uniform Al 2 O 3 layer. - Abstract: In order to enhance the electrochemical performance of the high capacity layered oxide cathode with a Ni-rich core and a concentration-gradient shell (NRC-CGS), we use a freeze drying method to coat Al 2 O 3 layer onto the surface of NRC-CGS Li[Ni 0.73 Co 0.12 Mn 0.15 ]O 2 material. The samples are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, charge-discharge measurements and electrochemical impedance spectroscopy. It is revealed that an amorphous Al 2 O 3 layer of about 5 nm in thickness is uniformly formed on the surface of NRC-CGS Li[Ni 0.73 Co 0.12 Mn 0.15 ]O 2 material by the freeze drying procedure. The freeze drying Al 2 O 3 -coated (FD-Al 2 O 3 -coated) sample demonstrates similar discharge capacity and significantly enhanced cycling performances, in comparison to the pristine and conventional heating drying Al 2 O 3 -coated (HD-Al 2 O 3 -coated) samples. The capacity decay rate of FD-Al 2 O 3 -coated Li[Ni 0.73 Co 0.12 Mn 0.15 ]O 2 material is 1.7% after 150 cycles at 55 °C, which is 9 and 12 times lower than that of the pristine and HD-Al 2 O 3 -coated samples. The superior electrochemical stability of the FD-Al 2 O 3 -coated sample is attributed to the synergistic protection of CGS and high-quality Al 2 O 3 coating that effectively protect the active material from electrolyte attack. The freeze drying process provides an effective method to prepare the high performance surface-coated electrode materials

  18. Stable Computation of the Vertical Gradient of Potential Field Data Based on Incorporating the Smoothing Filters

    Science.gov (United States)

    Baniamerian, Jamaledin; Liu, Shuang; Abbas, Mahmoud Ahmed

    2018-04-01

    The vertical gradient is an essential tool in interpretation algorithms. It is also the primary enhancement technique to improve the resolution of measured gravity and magnetic field data, since it has higher sensitivity to changes in physical properties (density or susceptibility) of the subsurface structures than the measured field. If the field derivatives are not directly measured with the gradiometers, they can be calculated from the collected gravity or magnetic data using numerical methods such as those based on fast Fourier transform technique. The gradients behave similar to high-pass filters and enhance the short-wavelength anomalies which may be associated with either small-shallow sources or high-frequency noise content in data, and their numerical computation is susceptible to suffer from amplification of noise. This behaviour can adversely affect the stability of the derivatives in the presence of even a small level of the noise and consequently limit their application to interpretation methods. Adding a smoothing term to the conventional formulation of calculating the vertical gradient in Fourier domain can improve the stability of numerical differentiation of the field. In this paper, we propose a strategy in which the overall efficiency of the classical algorithm in Fourier domain is improved by incorporating two different smoothing filters. For smoothing term, a simple qualitative procedure based on the upward continuation of the field to a higher altitude is introduced to estimate the related parameters which are called regularization parameter and cut-off wavenumber in the corresponding filters. The efficiency of these new approaches is validated by computing the first- and second-order derivatives of noise-corrupted synthetic data sets and then comparing the results with the true ones. The filtered and unfiltered vertical gradients are incorporated into the extended Euler deconvolution to estimate the depth and structural index of a magnetic

  19. A new portable device for automatic controlled-gradient cryopreservation of blood mononuclear cells

    DEFF Research Database (Denmark)

    Hviid, L; Albeck, G; Hansen, B

    1993-01-01

    Protection of the functional integrity of mononuclear cells stored in liquid N2 requires careful control of the freezing procedure. Consequently, optimal quality of cryopreserved cells is usually assured by freezing according to a specified time-temperature gradient generated by computer......-controlled freezing devices. While such equipment offers large capacity and secures maximum survival and functional integrity of the lymphocytes upon thawing, it is quite costly and strictly stationary. We have previously developed and tested an alternative, manual device for controlled-gradient lymphocyte freezing...

  20. Estimation of the depth to the fresh-water/salt-water interface from vertical head gradients in wells in coastal and island aquifers

    Science.gov (United States)

    Izuka, Scot K.; Gingerich, Stephen B.

    An accurate estimate of the depth to the theoretical interface between fresh, water and salt water is critical to estimates of well yields in coastal and island aquifers. The Ghyben-Herzberg relation, which is commonly used to estimate interface depth, can greatly underestimate or overestimate the fresh-water thickness, because it assumes no vertical head gradients and no vertical flow. Estimation of the interface depth needs to consider the vertical head gradients and aquifer anisotropy that may be present. This paper presents a method to calculate vertical head gradients using water-level measurements made during drilling of a partially penetrating well; the gradient is then used to estimate interface depth. Application of the method to a numerically simulated fresh-water/salt-water system shows that the method is most accurate when the gradient is measured in a deeply penetrating well. Even using a shallow well, the method more accurately estimates the interface position than does the Ghyben-Herzberg relation where substantial vertical head gradients exist. Application of the method to field data shows that drilling, collection methods of water-level data, and aquifer inhomogeneities can cause difficulties, but the effects of these difficulties can be minimized. Résumé Une estimation précise de la profondeur de l'interface théorique entre l'eau douce et l'eau salée est un élément critique dans les estimations de rendement des puits dans les aquifères insulaires et littoraux. La relation de Ghyben-Herzberg, qui est habituellement utilisée pour estimer la profondeur de cette interface, peut fortement sous-estimer ou surestimer l'épaisseur de l'eau douce, parce qu'elle suppose l'absence de gradient vertical de charge et d'écoulement vertical. L'estimation de la profondeur de l'interface requiert de prendre en considération les gradients verticaux de charge et l'éventuelle anisotropie de l'aquifère. Cet article propose une méthode de calcul des

  1. Sunscreening fungal pigments influence the vertical gradient of pendulous lichens in boreal forest canopies.

    Science.gov (United States)

    Färber, Leonie; Sølhaug, Knut Asbjorn; Esseen, Per-Anders; Bilger, Wolfgang; Gauslaa, Yngvar

    2014-06-01

    Pendulous lichens dominate canopies of boreal forests, with dark Bryoria species in the upper canopy vs. light Alectoria and Usnea species in lower canopy. These genera offer important ecosystem services such as winter forage for reindeer and caribou. The mechanism behind this niche separation is poorly understood. We tested the hypothesis that species-specific sunscreening fungal pigments protect underlying symbiotic algae differently against high light, and thus shape the vertical canopy gradient of epiphytes. Three pale species with the reflecting pigment usnic acid (Alectoria sarmentosa, Usnea dasypoga, U. longissima) and three with dark, absorbing melanins (Bryoria capillaris, B. fremontii, B. fuscescens) were compared. We subjected the lichens to desiccation stress with and without light, and assessed their performance with chlorophyll fluorescence. Desiccation alone only affected U. longissima. By contrast, light in combination with desiccation caused photoinhibitory damage in all species. Usnic lichens were significantly more susceptible to light during desiccation than melanic ones. Thus, melanin is a more efficient light-screening pigment than usnic acid. Thereby, the vertical gradient of pendulous lichens in forest canopies is consistent with a shift in type and functioning of sunscreening pigments, from high-light-tolerant Bryoria in the upper to susceptible Alectoria and Usnea in the lower canopy.

  2. Immersion and contact freezing experiments in the Mainz wind tunnel laboratory

    Science.gov (United States)

    Eppers, Oliver; Mayer, Amelie; Diehl, Karoline; Mitra, Subir; Borrmann, Stephan; Szakáll, Miklós

    2016-04-01

    Immersion and contact freezing are of outmost important ice nucleation processes in mixed phase clouds. Experimental studies are carried out in the Mainz vertical wind tunnel laboratory in order to characterize these nucleation processes for different ice nucleating particles (INP), such as for mineral dust or biological particles. Immersion freezing is investigated in our laboratory with two different experimental techniques, both attaining contact-free levitation of liquid droplets and cooling of the surrounding air down to about -25 °C. In an acoustic levitator placed in the cold room of our laboratory, drops with diameters of 2 mm are investigated. In the vertical air stream of the wind tunnel droplets with diameter of 700 micron are freely floated at their terminal velocities, simulating the flow conditions of the free atmosphere. Furthermore, the wind tunnel offers a unique platform for contact freezing experiments. Supercooled water droplets are floated in the vertical air stream at their terminal velocities and INP are injected into the tunnel air stream upstream of them. As soon as INP collides with the supercooled droplet the contact freezing is initiated. The first results of immersion and contact freezing experiments with cellulose particles both in the acoustic levitator and in the wind tunnel will be presented. Cellulose is considered as typical INP of biological origin and a macrotracer for plant debris. Nucleating properties of cellulose will be provided, mainly focusing on the temperature, INP concentration, and specific surface area dependences of the freezing processes. Direct comparison between the different experimental techniques (acoustic levitator and wind tunnel), as well as between nucleation modes (immersion and contact freezing) will be presented. The work is carried out within the framework of the German research unit INUIT.

  3. Environment vs. Plant Ontogeny: Arthropod Herbivory Patterns on European Beech Leaves along the Vertical Gradient of Temperate Forests in Central Germany

    Directory of Open Access Journals (Sweden)

    Stephanie Stiegel

    2018-01-01

    Full Text Available Environmental and leaf trait effects on herbivory are supposed to vary among different feeding guilds. Herbivores also show variability in their preferences for plant ontogenetic stages. Along the vertical forest gradient, environmental conditions change, and trees represent juvenile and adult individuals in the understorey and canopy, respectively. This study was conducted in ten forests sites in Central Germany for the enrichment of canopy research in temperate forests. Arthropod herbivory of different feeding traces was surveyed on leaves of Fagus sylvatica Linnaeus (European beech; Fagaceae in three strata. Effects of microclimate, leaf traits, and plant ontogenetic stage were analyzed as determining parameters for herbivory. The highest herbivory was caused by exophagous feeding traces. Herbivore attack levels varied along the vertical forest gradient for most feeding traces with distinct patterns. If differences of herbivory levels were present, they only occurred between juvenile and adult F. sylvatica individuals, but not between the lower and upper canopy. In contrast, differences of microclimate and important leaf traits were present between the lower and upper canopy. In conclusion, the plant ontogenetic stage had a stronger effect on herbivory than microclimate or leaf traits along the vertical forest gradient.

  4. Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    Directory of Open Access Journals (Sweden)

    W. Zhao

    2018-04-01

    Full Text Available Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523–4685 m on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3–47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2–75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m, likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer, their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most

  5. Echo-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil.

    Science.gov (United States)

    Kodama, Nao; Kose, Katsumi

    2016-10-11

    Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (~54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach.

  6. Echo-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil

    Science.gov (United States)

    KODAMA, Nao; KOSE, Katsumi

    2016-01-01

    Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (∼54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach. PMID:27001398

  7. Freezing mechanisms of aqueous binary solution on the oscillating vertical cooled plate

    Energy Technology Data Exchange (ETDEWEB)

    Kawabe, Hiromichi; Fukusako, Shoichiro; Yamada, Masahiko; Yanagida, Koki

    1999-07-01

    An experimental and analytical study concerning the freezing characteristics of aqueous binary solution on the oscillating cooled wall was conducted for the purpose of establishment of the continuous production method of slush ice. Ethylene glycol solution was adopted as the test fluid and froze on a vertical cooled plate with an oscillation motion in a vessel. Experiments were carried out for a variety of conditions such as initial concentration of solution, oscillating acceleration, and stroke of the motion. As a result, it was found that the frozen layer being formed on the cooled plate continuously separated from it under the appropriate conditions. Furthermore, the condition range where the continuous production of slush ice may be available was well predicted by using the present analytical results. The experimental setup is depicted in Figure A-1. The essential components of the apparatus are the test section, a cooling brine circulation loop, and associated instrumentation. Figure A-2 presents the continuous production range of slush ice, in which the ordinate is the maximum acceleration of the cooled plate and the abscissa denotes the initial concentration of aqueous binary solution. It is evident from the figure that the tendency of the production range of slush ice obtained by the present analysis well predicts the experimental results.

  8. Estimates of gradient Richardson numbers from vertically smoothed data in the Gulf Stream region

    Directory of Open Access Journals (Sweden)

    Paul van Gastel

    2004-12-01

    Full Text Available We use several hydrographic and velocity sections crossing the Gulf Stream to examine how the gradient Richardson number, Ri, is modified due to both vertical smoothing of the hydrographic and/or velocity fields and the assumption of parallel or geostrophic flow. Vertical smoothing of the original (25 m interval velocity field leads to a substantial increase in the Ri mean value, of the same order as the smoothing factor, while its standard deviation remains approximately constant. This contrasts with very minor changes in the distribution of the Ri values due to vertical smoothing of the density field over similar lengths. Mean geostrophic Ri values remain always above the actual unsmoothed Ri values, commonly one to two orders of magnitude larger, but the standard deviation is typically a factor of five larger in geostrophic than in actual Ri values. At high vertical wavenumbers (length scales below 3 m the geostrophic shear only leads to near critical conditions in already rather mixed regions. At these scales, hence, the major contributor to shear mixing is likely to come from the interaction of the background flow with internal waves. At low vertical wavenumbers (scales above 25 m the ageostrophic motions provide the main source for shear, with cross-stream movements having a minor but non-negligible contribution. These large-scale motions may be associated with local accelerations taking place during frontogenetic phases of meanders.

  9. Abnormal optical anisotropy in correlated disorder KTa1-xNbxO3:Cu with refractive index gradient.

    Science.gov (United States)

    Zhang, Xin; He, Shan; Zhao, Zhuan; Wu, Pengfei; Wang, Xuping; Liu, Hongliang

    2018-02-13

    In this report, an abnormal optical anisotropy in KTa 1-x Nb x O 3 :Cu (Cu:KTN) crystals with refractive index gradient is presented. Contrary to general regulation in a cross-polarization setup, the transmitted intensity of both TE (horizontally polarized) and TM (vertically polarized) lasers aligned with the basic crystallographic directions can be modulated quasiperiodically. The mechanism is supposed to be based on the polarization induced by the temperature gradient and the refractive index gradient. Meanwhile, the correlated disorder property of the crystals in the range of the freezing temperature (T f ) and the intermediate temperature (T  * ) also plays an important role. With the results verified both theoretically and experimentally, we believe this work is not only beneficial for the development of the theory associated with the correlated disorder structures in relaxor ferroelectrics, but also significant for the exploitation of numerous optical functional devices.

  10. Nitrate and dissolved organic carbon mobilization in response to soil freezing variability

    Science.gov (United States)

    Colin B. Fuss; Charles T. Driscoll; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer; Jorge Durán; Jennifer L. Morse

    2016-01-01

    Reduced snowpack and associated increases in soil freezing severity resulting from winter climate change have the potential to disrupt carbon (C) and nitrogen (N) cycling in soils. We used a natural winter climate gradient based on elevation and aspect in a northern hardwood forest to examine the effects of variability in soil freezing depth, duration, and frequency on...

  11. Gravity Gradient Tensor of Arbitrary 3D Polyhedral Bodies with up to Third-Order Polynomial Horizontal and Vertical Mass Contrasts

    Science.gov (United States)

    Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang

    2018-03-01

    During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained

  12. A new portable device for automatic controlled-gradient cryopreservation of blood mononuclear cells.

    Science.gov (United States)

    Hviid, L; Albeck, G; Hansen, B; Theander, T G; Talbot, A

    1993-01-04

    Protection of the functional integrity of mononuclear cells stored in liquid N2 requires careful control of the freezing procedure. Consequently, optimal quality of cryopreserved cells is usually assured by freezing according to a specified time-temperature gradient generated by computer-controlled freezing devices. While such equipment offers large capacity and secures maximum survival and functional integrity of the lymphocytes upon thawing, it is quite costly and strictly stationary. We have previously developed and tested an alternative, manual device for controlled-gradient lymphocyte freezing, which has proved suitable for field conditions. We report here the development and testing of a similar micro-controller regulated device, allowing unattended and automatic controlled-gradient cell freezing. The equipment exploits the temperature gradient present between the liquid N2 surface and the neck in an ordinary liquid N2 refrigerator. The lymphocyte samples are placed in a small elevator, which is moved through the N2 gas phase by a stepper motor. Time and temperature are measured at regular intervals, and the position of the samples adjusted to ensure that the actual measurements closely match encoded ideal values. Results of assays of the functional integrity and phenotypic composition of human mononuclear cells frozen by the new system were comparable to those obtained when using cells frozen by a commercially available, stationary cell-freezing equipment, or fresh autologous cell samples tested in parallel. Furthermore, there was a good correlation between functional and phenotypic data obtained using frozen and autologous fresh samples of mononuclear cells. The equipment described is low weight and has low N2 consumption, and is thus suitable for the collection and cryopreservation of lymphocytes under field conditions. Furthermore, the technique provides an inexpensive alternative for researchers with a limited requirement for the simultaneous freezing of

  13. Giant panda (Ailuropoda melanoleuca) sperm morphometry and function after repeated freezing and thawing.

    Science.gov (United States)

    Santiago-Moreno, J; Esteso, M C; Pradiee, J; Castaño, C; Toledano-Díaz, A; O'Brien, E; Lopez-Sebastián, A; Martínez-Nevado, E; Delclaux, M; Fernández-Morán, J; Zhihe, Z

    2016-05-01

    This work examines the effects of subsequent cycles of freezing-thawing on giant panda (Ailuropoda melanoleuca) sperm morphometry and function, and assesses whether density-gradient centrifugation (DGC) can increase the number of freezing-thawing cycles this sperm can withstand. A sperm sample was collected by electroejaculation from a mature giant panda and subjected to five freezing-thawing cycles. Although repeated freezing-thawing negatively affected (P 60% of the sperm cells in both treatments showed acrosome integrity even after the fifth freezing cycle. In fresh semen, the sperm head length was 4.7 μm, the head width 3.6 μm, area 14.3 μm(2) and perimeter length 14.1 μm. The present results suggest that giant panda sperm trends to be resistant to repeated freezing-thawing, even without DGC selection. © 2015 Blackwell Verlag GmbH.

  14. Solid-Phase Fe Speciation along the Vertical Redox Gradients in Floodplains using XAS and Mössbauer Spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chunmei [Department; Kukkadapu, Ravi K. [Environmental; Lazareva, Olesya [Department; Sparks, Donald L. [Department

    2017-06-30

    Properties of Fe minerals are poorly understood in natural soils and sediments with variable redox conditions. In this study, we combined 57Fe Mössbauer and Fe K-edge X-ray absorption spectroscopic techniques to assess solid-phase Fe speciation along the vertical redox gradients of floodplain profiles, which exhibited a succession of oxic, anoxic and suboxic-oxic zones with increasing depth along the vertical profiles. The anoxic conditions at the intermediate horizon (55-80 cm) of the eastern floodplain resulted in extensive depletion of Fe(III)-oxides including both ferrihydrite and goethite, concurrent with a corresponding reduction of phyllosilicates(PS)-Fe(III) to PS-Fe(II). In addition, the anoxic conditions increased the crystallinity of Fe(III)-oxides in this reduced zone, relative to the oxic zones. In the most reduced intermediate sediments at 80-120cm of the western floodplain, the anoxic conditions drove the complete reductive dissolution of Fe(III) oxides, as well as the greatest reduction (48-55%) in PS-Fe(III). In both oxic near-surface horizon and oxic-suboxic gravel aquifers beneath the soil horizons, Fe(III)-oxides were mainly present as ferrihydrite with a less amount of goethite, which preferentially occurred as nanogoethite or Al/Si-substituted goethite. Ferrihydrite with varying crystallinity or impurities such as organic matter, Al or Si, persisted under suboxic-oxic conditions in the floodplain. This study indicates that vertical redox gradients exert a major control on the quantity and speciation of Fe(III) oxides as well as the oxidation state of structural Fe in PS, which could significantly affect nutrient cycling and carbon (de)stabilization.

  15. Use of sinkhole and specific capacity distributions to assess vertical gradients in a karst aquifer

    Science.gov (United States)

    McCoy, K.J.; Kozar, M.D.

    2008-01-01

    The carbonate-rock aquifer in the Great Valley, West Virginia, USA, was evaluated using a database of 687 sinkholes and 350 specific capacity tests to assess structural, lithologic, and topographic influences on the groundwater flow system. The enhanced permeability of the aquifer is characterized in part by the many sinkholes, springs, and solutionally enlarged fractures throughout the valley. Yet, vertical components of subsurface flow in this highly heterogeneous aquifer are currently not well understood. To address this problem, this study examines the apparent relation between geologic features of the aquifer and two spatial indices of enhanced permeability attributed to aquifer karstification: (1) the distribution of sinkholes and (2) the occurrence of wells with relatively high specific capacity. Statistical results indicate that sinkholes (funnel and collapse) occur primarily along cleavage and bedding planes parallel to subparallel to strike where lateral or downward vertical gradients are highest. Conversely, high specific capacity values are common along prominent joints perpendicular or oblique to strike. The similarity of the latter distribution to that of springs suggests these fractures are areas of upward-convergent flow. These differences between sinkhole and high specific capacity distributions suggest vertical flow components are primarily controlled by the orientation of geologic structure and associated subsurface fracturing. ?? 2007 Springer-Verlag.

  16. METALLICITY GRADIENTS OF THICK DISK DWARF STARS

    Energy Technology Data Exchange (ETDEWEB)

    Carrell, Kenneth; Chen Yuqin; Zhao Gang, E-mail: carrell@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2012-12-01

    We examine the metallicity distribution of the Galactic thick disk using F, G, and K dwarf stars selected from the Sloan Digital Sky Survey, Data Release 8. Using the large sample of dwarf stars with proper motions and spectroscopically determined stellar parameters, metallicity gradients in the radial direction for various heights above the Galactic plane and in the vertical direction for various radial distances from the Galaxy center have been found. In particular, we find a vertical metallicity gradient of -0.113 {+-} 0.010 (-0.125 {+-} 0.008) dex kpc{sup -1} using an isochrone (photometric) distance determination in the range 1 kpc <|Z| < 3 kpc, which is the vertical height range most consistent with the thick disk of our Galaxy. In the radial direction, we find metallicity gradients between +0.02 and +0.03 dex kpc{sup -1} for bins in the vertical direction between 1 kpc <|Z| < 3 kpc. Both of these results agree with similar values determined from other populations of stars, but this is the first time a radial metallicity gradient for the thick disk has been found at these vertical heights. We are also able to separate thin and thick disk stars based on kinematic and spatial probabilities in the vertical height range where there is significant overlap of these two populations. This should aid further studies of the metallicity gradients of the disk for vertical heights lower than those studied here but above the solar neighborhood. Metallicity gradients in the thin and thick disks are important probes into possible formation scenarios for our Galaxy and a consistent picture is beginning to emerge from results using large spectroscopic surveys, such as the ones presented here.

  17. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.

    Science.gov (United States)

    Chavan, Shreyas; Park, Deokgeun; Singla, Nitish; Sokalski, Peter; Boyina, Kalyan; Miljkovic, Nenad

    2018-05-21

    Frost spreads on nonwetting surfaces during condensation frosting via an interdroplet frost wave. When a supercooled condensate water droplet freezes on a hydrophobic or superhydrophobic surface, neighboring droplets still in the liquid phase begin to evaporate. Two possible mechanisms govern the evaporation of neighboring water droplets: (1) The difference in saturation pressure of the water vapor surrounding the liquid and frozen droplets induces a vapor pressure gradient, and (2) the latent heat released by freezing droplets locally heats the substrate, leading to evaporation of nearby droplets. The relative significance of these two mechanisms is still not understood. Here, we study the significance of the latent heat released into the substrate by freezing droplets, and its effect on adjacent droplet evaporation, by studying the dynamics of individual water droplet freezing on aluminum-, copper-, and glass-based hydrophobic and superhydrophobic surfaces. The latent heat flux released into the substrate was calculated from the measured droplet sizes and the respective freezing times ( t f ), defined as the time from initial ice nucleation within the droplet to complete droplet freezing. To probe the effect of latent heat release, we performed three-dimensional transient finite element simulations showing that the transfer of latent heat to neighboring droplets is insignificant and accounts for a negligible fraction of evaporation during microscale frost wave propagation. Furthermore, we studied the effect of substrate thermal conductivity on the transfer of latent heat transfer to neighboring droplets by investigating the velocity of ice bridge formation. The velocity of the ice bridge was independent of the substrate thermal conductivity, indicating that adjacent droplet evaporation during condensation frosting is governed solely by vapor pressure gradients. This study not only provides key insights into the individual droplet freezing process but also

  18. Modeling the effects of the vertical temperature gradient in the furnace in an edge-defined film-fed growth technique

    International Nuclear Information System (INIS)

    Epure, S.; Braescu, L.; Balint, St.

    2006-01-01

    In this paper, the mathematical model for the growth of cylindrical bars described elsewhere is considered. Using MathCAD 11 Enterprise Edition and mathematical tools, the asymptotically stable steady-states (r*, h*) of the nonlinear system of differential equations which governs the evolution of the bar radius r=r(t) and the meniscus height h=h(t), for different values of the pulling rate v, the melt temperature T 0 at the meniscus basis and the vertical temperature gradient k in the furnace, respectively, are found. For a given k, the range of the stable growth regions in the (v, T 0 ) plane (i.e. those couples (v, T 0 ) for which (r*, h*) has physical sense) are determined. The effects of the changes of the vertical temperature gradient k are investigated and it is shown that if v and T 0 are constant, and k increases, then the bar radius r increases and the meniscus height h decreases. Numerical results are given for the silicon bar grown in an edge-defined film-fed growth (E.F.G.) system with a die radius r 0e =20(cmx10 -2 )

  19. Alignment of stress, mean wind, and vertical gradient of the velocity vector

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, E.G.

    2012-01-01

    In many applications in the atmospheric surface layer the turbulent-viscosity hypothesis is applied, i.e. the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where the Coriolis force and baroclinic effects are considered negligible......, this is supposedly a good approximation. High resolution large-eddy simulation (LES) data show that it is indeed the case. Through analysis of WindCube lidar measurements accompanied by sonic measurements we show that this is, on the other hand, rarely the case in the real atmosphere. This might indicate that large...... of atmospheric boundary layer modeling. The measurements are from the Danish wind turbine test sites at Høvsøre. With theWindCube lidar we are able to reach heights of 250 meters and hence capture the entire atmospheric surface layer both in terms of wind speed and the direction of the mean stress vector....

  20. Solid-Phase Fe Speciation along the Vertical Redox Gradients in Floodplains using XAS and Mössbauer Spectroscopies.

    Science.gov (United States)

    Chen, Chunmei; Kukkadapu, Ravi K; Lazareva, Olesya; Sparks, Donald L

    2017-07-18

    Properties of Fe minerals are poorly understood in natural soils and sediments with variable redox conditions. In this study, we combined 57 Fe Mössbauer and Fe K-edge X-ray absorption spectroscopic (XAS) techniques to assess solid-phase Fe speciation along the vertical redox gradients of floodplains, which exhibited a succession of oxic, anoxic, and suboxic-oxic zones with increasing depth along the vertical profiles. The incised stream channel is bounded on the east by a narrow floodplain and a steep hillslope, and on the west by a broad floodplain. In the eastern floodplain, the anoxic conditions at the intermediate horizon (55-80 cm) coincided with lower Fe(III)-oxides (particularly ferrihydrite), in concurrence with a greater reduction of phyllosilicates(PS)-Fe(III) to PS-Fe(II), relative to the oxic near-surface and sandy gravel layers. In addition, the anoxic conditions in the eastern floodplain coincided with increased crystallinity of goethite, relative to the oxic layers. In the most reduced intermediate sediments at 80-120 cm of the western floodplain, no Fe(III)-oxides were detected, concurrent with the greatest PS-Fe(III) reduction (PS-Fe(II)/Fe(III) ratio ≈ 1.2 (Mössbauer) or 0.8 (XAS)). In both oxic near-surface horizon and oxic-suboxic gravel aquifers beneath the soil horizons, Fe(III)-oxides were mainly present as ferrihydrite with a much less amount of goethite, which preferentially occurred as nanogoethite or Al/Si-substituted goethite. Ferrihydrite with varying crystallinity or impurities such as organic matter, Al or Si, persisted under suboxic-oxic conditions in the floodplain. This study indicates that vertical redox gradients exert a major control on the quantity and speciation of Fe(III) oxides as well as the oxidation state of structural Fe in PS, which could significantly affect nutrient cycling and carbon (de)stabilization.

  1. Fracture gradient: a new methodology that allows for more safety and economy; Gradiente de fratura: nova metodologia proporciona seguranca e economia

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Helio M.R. dos [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Setor de Tecnologia de Perfuracao; Foutoura, Sergio A.B. da [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil)

    1990-12-31

    The purpose of this paper is to show the influence of in-situ stresses and well geometry (direction and inclinational) on the fracture gradient. The results that are presented, obtained through computer simulation using an analytical model of the stresses around the well, show that in some cases it may be very dangerous to use fracture gradient data from vertical wells when dealing with non vertical wells. Likewise, it may also be unsafe to use results from absorption tests as the fracture gradient for the complete phase. The paper also indicates that, depending on the in-situ stresses and on the geometry of the well, the fracture gradient of a non-vertical well may be larger or smaller than that of vertical wells. Another aspects emphasized is that, through the use of more accurate calculations of the fracture gradient, it is possible to obtain great cost reduction, due to the fact that the casing strings will be designed in a more appropriate manner. (author) 12 refs., 4 figs.

  2. Separation of Contaminants in The Freeze/Thaw Process

    Directory of Open Access Journals (Sweden)

    Szpaczyński Janusz A.

    2017-06-01

    Full Text Available These studies examined the concept of concentration and purification of several types of wastewater by freezing and thawing. The experiments demonstrated that freezing of contaminated liquid contributed to concentration of contaminants in solution as well as significant concentration and agglomeration of solid particles. A high degree of purification was achieved for many parameters. The results of comparative laboratory tests for single and multiple freezing are presented. It was found that there was a higher degree of concentration of pollutants in wastewater frozen as man-made snow than in bulk ice. Furthermore, the hypothesis that long storage time of liquid as snow and sufficient temperature gradient metamorphism allows for high efficiency of the concentration process was confirmed. It was reported that the first 30% of the melted liquid volume contained over 90% of all impurities. It gives great opportunities to use this method to concentrate pollutants. The results revealed that the application of this process in full scale is possible. Significant agglomeration of solid particles was also noted. Tests with clay slurry showed that repeated freezing and thawing processes significantly improve the characteristics of slurry for sedimentation and filtration.

  3. Thermodynamical effects accompanied freezing of two water layers separated by sea ice sheet

    Science.gov (United States)

    Bogorodsky, Petr; Marchenko, Aleksey

    2014-05-01

    The process of melt pond freezing is very important for generation of sea ice cover thermodynamic and mass balance during winterperiod. However, due to significant difficulties of field measurements the available data of model estimations still have no instrumental confirmation. In May 2009 the authors carried out laboratory experiment on freezing of limited water volume in the University Centre in Svalbard ice tank. In the course of experiment fresh water layer of 27.5 cm thickness at freezing point poured on the 24 cm sea ice layer was cooled during 50 hours at the temperature -10º C and then once again during 60 hours at -20º C. For revealing process typical characteristics the data of continuous measurements of temperature and salinity in different phases were compared with data of numerical computations obtained with thermodynamic model which was formulated in the frames of 1-D equation system (infinite extension of water freezing layer) and adapted to laboratory conditions. The known surprise of the experiment became proximity of calculated and measured estimates of process dynamics that confirmed the adequacy of the problem mathematical statement (excluding probably process finale stage). This effect can be explained by formation of cracks on the upper layer of ice at sharp decreases of air temperature, which temporary compensated hydrostatic pressure growth during freezing of closed water volume. Another compensated mechanism can be migration of brine through the lower layer of ice under influence of vertical pressure gradient and also rejection of gas dissolved in water which increased its compressibility. During 110 hours cooling thickness of water layer between ice layers reduced approximately to 2 cm. According to computations this layer is not chilled completely but keeps as thin brine interlayer within ice body whose thickness (about units of mm) is determined by temperature fluctuations of cooled surface. Nevertheless, despite good coincidence of

  4. Microgravimetry and the Measurement and Application of Gravity Gradients,

    Science.gov (United States)

    1980-06-01

    Neumann, R., 1972, High precision gravimetry--recent develop- ments: Report to Paris Commission of E.A.E.G., Compagnie Generale de Geophysique , Massy...experimentation on vertical gradient: Compagnie Generale de Geophysique , Massy, France. 12. Fajklewicz, Z. J., 1976, Gravity vertical gradient

  5. Vertical gradients of nitrous acid (HONO) measured in Beijing during winter smog events.

    Science.gov (United States)

    Kramer, Louisa; Crilley, Leigh; Thomson, Steven; Bloss, William; Tong, Shengrui

    2017-04-01

    HONO is an important atmospheric constituent, as the photolysis of HONO leads to the formation of OH radicals in the boundary layer, with contributions of up to 60% in urban regions. This is particularly important in mega-cities, such as Beijing, where measured HONO levels can reach parts per billion. Research has shown that direct emissions, homogeneous gas phase reactions and heterogeneous conversion of NO2 on surfaces all contribute to HONO in urban areas. There are, however, still uncertainties regarding the magnitude of these sources, and models are still unable to account for total measured HONO mixing ratios. To assess the sources of HONO, vertical profile measurements were performed up to an altitude of 260 m on the Institute of Atmospheric Physics (IAP) Meteorological Tower in Beijing. These measurements were performed as part of the Air Pollution and Human Health (APHH) project, during Nov/Dec 2016. Here we present HONO profile measurements using a long-path absorption photometer (LOPAP), during both clear and hazy days. HONO levels near the ground were very high during smog events with concentrations over 10 ppb observed. The data show a strong negative gradient with altitude, suggesting a source close to the surface. The largest gradients were observed overnight during smog events, with differences in HONO between the ground and the highest level up to 6 ppb.

  6. Analytical solution and numerical simulation of the liquid nitrogen freezing-temperature field of a single pipe

    Science.gov (United States)

    Cai, Haibing; Xu, Liuxun; Yang, Yugui; Li, Longqi

    2018-05-01

    Artificial liquid nitrogen freezing technology is widely used in urban underground engineering due to its technical advantages, such as simple freezing system, high freezing speed, low freezing temperature, high strength of frozen soil, and absence of pollution. However, technical difficulties such as undefined range of liquid nitrogen freezing and thickness of frozen wall gradually emerge during the application process. Thus, the analytical solution of the freezing-temperature field of a single pipe is established considering the freezing temperature of soil and the constant temperature of freezing pipe wall. This solution is then applied in a liquid nitrogen freezing project. Calculation results show that the radius of freezing front of liquid nitrogen is proportional to the square root of freezing time. The radius of the freezing front also decreases with decreased the freezing temperature, and the temperature gradient of soil decreases with increased distance from the freezing pipe. The radius of cooling zone in the unfrozen area is approximately four times the radius of the freezing front. Meanwhile, the numerical simulation of the liquid nitrogen freezing-temperature field of a single pipe is conducted using the Abaqus finite-element program. Results show that the numerical simulation of soil temperature distribution law well agrees with the analytical solution, further verifies the reliability of the established analytical solution of the liquid nitrogen freezing-temperature field of a single pipe.

  7. Chemistry of ice: Migration of ions and gases by directional freezing of water

    Directory of Open Access Journals (Sweden)

    Umer Shafique

    2016-09-01

    Full Text Available Redistribution of anions and cations creates an electrical imbalance in ice grown from electrolyte solutions. Movement of acidic and basic ions in cooling solutions can permanently change the pH of frozen and unfrozen parts of the system, largely. The extent of pH change associated with freezing is determined by solute concentration and the extent of cooling. In the present work, redistribution of hydrogen, hydroxyl, carbonate, and bicarbonate ions was studied during directional freezing in batch aqueous systems. Controlled freezing was employed vertically as well as radially in acidic and basic solutions. In each case, the ions substantially migrated along with moving freezing front. Conductometry and pH-metry were employed to monitor the moving ions. Besides, some other experiments were carried out with molecular gases, such as oxygen, carbon dioxide, and chlorine and an azeotropic mixture like water–ethanol. Findings can be used to understand possible changes that can occur in preserving materials by freezing.

  8. An Experimental Study of Pressure Gradients for Flow of Boiling Water in a Vertical Round Duct. (Part 2)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, Gunnar; Bode, Manfred

    1962-03-15

    The present report contains the results of the second phase of an experimental investigation concerning frictional pressure gradients for the flow of boiling water in vertical channels. The test section for this phase consisted of an electric heated stainless steel tube of 3120 mm length and 7.76 mm inner diameter. Data were obtained for pressures between 6 and 41 ata, steam qualities between 0 and 70 per cent, flow rates between 0.025 and 0.210 Kg/sec and surface heat flux between 30 and 91 W/cm. The results are in excellent agreement with our earlier data for flow in a 9.93 mm inner diameter ducts which were presented in report AE-69. From the measurements we conclude that in the range investigated the non dimensional pressure gradient ratio, {phi}{sup 2} is independent of mass flow rate, inlet sub-cooling and surface heat flux. On the basis of the measured pressure gradients, the following empirical equation has been established for engineering use, {phi}{sup 2} = 1 + 2400 (x/p){sup 0.96} This equation correlates our data (more than 1000 points) with a discrepancy of less than {+-} 15 per cent.

  9. Capitalizing Resolving Power of Density Gradient Ultracentrifugation by Freezing and Precisely Slicing Centrifuged Solution: Enabling Identification of Complex Proteins from Mitochondria by Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Haiqing Yu

    2016-01-01

    Full Text Available Density gradient centrifugation is widely utilized for various high purity sample preparations, and density gradient ultracentrifugation (DGU is often used for more resolution-demanding purification of organelles and protein complexes. Accurately locating different isopycnic layers and precisely extracting solutions from these layers play a critical role in achieving high-resolution DGU separations. In this technique note, we develop a DGU procedure by freezing the solution rapidly (but gently after centrifugation to fix the resolved layers and by slicing the frozen solution to fractionate the sample. Because the thickness of each slice can be controlled to be as thin as 10 micrometers, we retain virtually all the resolution produced by DGU. To demonstrate the effectiveness of this method, we fractionate complex V from HeLa mitochondria using a conventional technique and this freezing-slicing (F-S method. The comparison indicates that our F-S method can reduce complex V layer thicknesses by ~40%. After fractionation, we analyze complex V proteins directly on a matrix assisted laser desorption/ionization, time-of-flight mass spectrometer. Twelve out of fifteen subunits of complex V are positively identified. Our method provides a practical protocol to identify proteins from complexes, which is useful to investigate biomolecular complexes and pathways in various conditions and cell types.

  10. The role of the geothermal gradient in the emplacement and replenishment of ground ice on Mars

    Science.gov (United States)

    Clifford, Stephen M.

    1993-01-01

    Knowledge of the mechanisms by which ground ice is emplaced, removed, and potentially replenished, are critical to understanding the climatic and hydrologic behavior of water on Mars, as well as the morphologic evolution of its surface. Because of the strong temperature dependence of the saturated vapor pressure of H2O, the atmospheric emplacement or replenishment of ground ice is prohibited below the depth at which crustal temperatures begin to monotonically increase due to geothermal heating. In contrast, the emplacement and replenishment of ground ice from reservoirs of H2O residing deep within the crust can occur by at least three different thermally-driven processes, involving all three phases of water. In this regard, Clifford has discussed how the presence of a geothermal gradient as small as 15 K/km can give rise to a corresponding vapor pressure gradient sufficient to drive the vertical transport of 1 km of water from a reservoir of ground water at depth to the base of the cryosphere every 10(exp 6) - 10(exp 7) years. This abstract expands on this earlier treatment by considering the influence of thermal gradients on the transport of H2O at temperatures below the freezing point.

  11. Crosswind Shear Gradient Affect on Wake Vortices

    Science.gov (United States)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  12. An Experimental Study of Pressure Gradients for Flow of Boiling Water in a Vertical Round Duct. (Part 3)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, Gunnar; Bode, Manfred

    1962-07-01

    The present report contains the results of the third phase of an experimental investigation concerning frictional pressure gradients for flow of boiling water in vertical channels. The test section for this phase consisted of an electric heated stainless steel tube of 3120 mm length and 3.94 mm inner diameter. Data were obtained for pressures between 8 and 41 ata, steam qualities between 0 and 58 %, flow rates between 0.0075 and 0.048 kg/sec and surface heat flux between 20 and 83 W/cm. The results are in excellent agreement with our earlier data for flow in 9.93 and 7.76 mm inner diameter ducts which were presented in reports AE-69 and AE-70. The present measurements substantiate our earlier conclusion that the non dimensional pressure gradient ratio, {psi}{sup 2} , is, in the range investigated, independent of mass flow rate, inlet subcooling and surface heat flux. On the basis of the measured pressure gradients, the following empirical equation has been established for engineering use: {psi}{sup 2} = 1 + 2400(x/p){sup 0.96} This equation correlates our data (about 800 points) with a discrepancy less than {+-} 15 per cent and is identical with the corresponding equation obtained from measurements with the 7.76 mm duct.

  13. Analysis of vertical wind direction and speed gradients for data from the met. mast at Høvsøre

    DEFF Research Database (Denmark)

    Cariou, Nicolas; Wagner, Rozenn; Gottschall, Julia

    The task of this project has been to study the vertical gradient of the wind direction from experimental data obtained with different measurement instruments at the Høvsøre test site, located at the west coast of Denmark. The major part of the study was based on data measured by wind vanes mounted...... at a meteorological (met.) mast. These measurements enabled us to make an analysis of the variation of the direction with altitude, i.e. the wind direction shear. For this purpose, four years of wind direction measurements at two heights (60 m and 100 m) were analysed with special respect to the diurnal and seasonal...... variations of the direction gradient. The location of the test site close to the sea allowed for an investigation of specific trends for offshore and onshore winds, dependent on the considered wind direction sector. Furthermore, a comparison to lidar measurements showed the existence of an offset between...

  14. Near-surface temperature gradient in a coastal upwelling regime

    Science.gov (United States)

    Maske, H.; Ochoa, J.; Almeda-Jauregui, C. O.; Ruiz-de la Torre, M. C.; Cruz-López, R.; Villegas-Mendoza, J. R.

    2014-08-01

    In oceanography, a near homogeneous mixed layer extending from the surface to a seasonal thermocline is a common conceptual basis in physics, chemistry, and biology. In a coastal upwelling region 3 km off the coast in the Mexican Pacific, we measured vertical density gradients with a free-rising CTD and temperature gradients with thermographs at 1, 3, and 5 m depths logging every 5 min during more than a year. No significant salinity gradient was observed down to 10 m depth, and the CTD temperature and density gradients showed no pronounced discontinuity that would suggest a near-surface mixed layer. Thermographs generally logged decreasing temperature with depth with gradients higher than 0.2 K m-1 more than half of the time in the summer between 1 and 3 m, 3 and 5 m and in the winter between 1 and 3 m. Some negative temperature gradients were present and gradients were generally highly variable in time with high peaks lasting fractions of hours to hours. These temporal changes were too rapid to be explained by local heating or cooling. The pattern of positive and negative peaks might be explained by vertical stacks of water layers of different temperatures and different horizontal drift vectors. The observed near-surface gradient has implications for turbulent wind energy transfer, vertical exchange of dissolved and particulate water constituents, the interpretation of remotely sensed SST, and horizontal wind-induced transport.

  15. Freezing for Love

    DEFF Research Database (Denmark)

    Carroll, Katherine; Kroløkke, Charlotte

    2018-01-01

    The promise of egg freezing for women’s fertility preservation entered feminist debate in connection with medical and commercial control over, and emancipation from, biological reproduction restrictions. In this paper we explore how women negotiate and make sense of the decision to freeze...... their eggs. Our analysis draws on semi-structured interviews with 16 women from the Midwest and East Coast regions of the USA who froze their eggs. Rather than freezing to balance career choices and ‘have it all’, the women in this cohort were largely ‘freezing for love’ and in the hope of having their ‘own...... healthy baby’. This finding extends existing feminist scholarship and challenges bioethical concerns about egg freezing by drawing on the voices of women who freeze their eggs. By viewing egg freezing as neither exclusively liberation nor oppression or financial exploitation, this study casts egg freezing...

  16. Freezing Bubbles

    Science.gov (United States)

    Kingett, Christian; Ahmadi, Farzad; Nath, Saurabh; Boreyko, Jonathan

    2017-11-01

    The two-stage freezing process of a liquid droplet on a substrate is well known; however, how bubbles freeze has not yet been studied. We first deposited bubbles on a silicon substrate that was chilled at temperatures ranging from -10 °C to -40 °C, while the air was at room temperature. We observed that the freeze front moved very slowly up the bubble, and in some cases, even came to a complete halt at a critical height. This slow freezing front propagation can be explained by the low thermal conductivity of the thin soap film, and can be observed more clearly when the bubble size or the surface temperature is increased. This delayed freezing allows the frozen portion of the bubble to cool the air within the bubble while the top part is still liquid, which induces a vapor pressure mismatch that either collapses the top or causes the top to pop. In cases where the freeze front reaches the top of the bubble, a portion of the top may melt and slowly refreeze; this can happen more than just once for a single bubble. We also investigated freezing bubbles inside of a freezer where the air was held at -20 °C. In this case, the bubbles freeze quickly and the ice grows radially from nucleation sites instead of perpendicular to the surface, which provides a clear contrast with the conduction limited room temperature bubbles.

  17. Vertical gradients in water chemistry and age in the Northern High Plains Aquifer, Nebraska, 2003

    Science.gov (United States)

    McMahon, P.B.; Böhlke, J.K.; Carney, C.P.

    2007-01-01

    The northern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of Colorado, Kansas, Nebraska, South Dakota, and Wyoming. Despite the aquifer’s importance to the regional economy, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey’s National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the northern High Plains aquifer were analyzed for major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, dissolved gases, and other parameters to evaluate vertical gradients in water chemistry and age in the aquifer. Chemical data and tritium and radiocarbon ages show that water in the aquifer was chemically and temporally stratified in the study area, with a relatively thin zone of recently recharged water (less than 50 years) near the water table overlying a thicker zone of older water (1,800 to 15,600 radiocarbon years). In areas where irrigated agriculture was an important land use, the recently recharged ground water was characterized by elevated concentrations of major ions and nitrate and the detection of pesticide compounds. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions. The concentration increases were accounted for primarily by dissolved calcium, sodium, bicarbonate, sulfate, and silica. In general, the chemistry of ground water throughout the aquifer was of high quality. None of the approximately 90 chemical constituents analyzed in each sample exceeded primary drinking-water standards.Mass-balance models indicate that changes in groundwater chemistry along flow paths in the aquifer can be accounted for by small amounts of feldspar and calcite dissolution; goethite

  18. Investigating the Mpemba Effect: When Hot Water Freezes Faster than Cold Water

    Science.gov (United States)

    Ibekwe, R. T.; Cullerne, J. P.

    2016-01-01

    Under certain conditions a body of hot liquid may cool faster and freeze before a body of colder liquid, a phenomenon known as the Mpemba Effect. An initial difference in temperature of 3.2 °C enabled warmer water to reach 0 °C in 14% less time than colder water. Convection currents in the liquid generate a temperature gradient that causes more…

  19. An Experimental Study of Pressure Gradients for Flow of Boiling Water in a Vertical Round Duct. (Part 1)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, Gunnar; Bode, Manfred

    1962-03-15

    Frictional pressure gradients for flow of boiling water in a vertical channel have been measured in a wide range of variables. The test section consisted of an electrically heated 10 mm inner diameter stainless steel tube of 3120 mm length. Data were obtained for pressures between 6 and 42 ata, steam qualities between 0 and 80 %, flow rates between 0.03 and 0.40 kg/sec and surface heat flux between 24 and 80 W/cm{sup 2}. Preliminary measurements of heat transfer and pressure drop for one phase flow of water showed an excellent agreement with one phase flow theory. Extrapolating our data to 100 % quality, an excellent agreement with one-phase flow theory is also found for this case. The two phase flow results are generally 0 - 40 % higher than the results of Martinelli and Nelson. Extrapolating our data to 137 ata fine agreement is found with the results of Sher and Green. On the basis of the measured pressure gradients, a very simple empirical equation has been established for engineering use. This equation correlates our data (more than 1000 points) with a maximum discrepancy of - 20 % and with an average discrepancy of - 5 %.

  20. A practical method to detect the freezing/thawing onsets of seasonal frozen ground in Alaska

    Science.gov (United States)

    Chen, Xiyu; Liu, Lin

    2017-04-01

    Microwave remote sensing can provide useful information about freeze/thaw state of soil at the Earth surface. An edge detection method is applied in this study to estimate the onsets of soil freeze/thaw state transition using L band space-borne radiometer data. The Soil Moisture Active Passive (SMAP) mission has a L band radiometer and can provide daily brightness temperature (TB) with horizontal/vertical polarizations. We use the normalized polarization ratios (NPR) calculated based on the Level-1C TB product of SMAP (spatial resolution: 36 km) as the indicator for soil freeze/thaw state, to estimate the freezing and thawing onsets in Alaska in the year of 2015 and 2016. NPR is calculated based on the difference between TB at vertical and horizontal polarizations. Therefore, it is strongly sensitive to liquid water content change in the soil and independent with the soil temperature. Onset estimation is based on the detection of abrupt changes of NPR in transition seasons using edge detection method, and the validation is to compare estimated onsets with the onsets derived from in situ measurement. According to the comparison, the estimated onsets were generally 15 days earlier than the measured onsets in 2015. However, in 2016 there were 4 days in average for the estimation earlier than the measured, which may be due to the less snow cover. Moreover, we extended our estimation to the entire state of Alaska. The estimated freeze/thaw onsets showed a reasonable latitude-dependent distribution although there are still some outliers caused by the noisy variation of NPR. At last, we also try to remove these outliers and improve the performance of the method by smoothing the NPR time series.

  1. Quality changes and freezing time prediction during freezing and thawing of ginger

    OpenAIRE

    Singha, Poonam; Muthukumarappan, Kasiviswanathan

    2015-01-01

    Abstract Effects of different freezing rates and four different thawing methods on chemical composition, microstructure, and color of ginger were investigated. Computer simulation for predicting the freezing time of cylindrical ginger for two different freezing methods (slow and fast) was done using ANSYS ? Multiphysics. Different freezing rates (slow and fast) and thawing methods significantly (P?

  2. To freeze or not to freeze embryos: clarity, confusion and conflict.

    Science.gov (United States)

    Goswami, Mohar; Murdoch, Alison P; Haimes, Erica

    2015-06-01

    Although embryo freezing is a routine clinical practice, there is little contemporary evidence on how couples make the decision to freeze their surplus embryos, or of their perceptions during that time. This article describes a qualitative study of 16 couples who have had in vitro fertilisation (IVF) treatment. The study question was 'What are the personal and social factors that patients consider when deciding whether to freeze embryos?' We show that while the desire for a baby is the dominant drive, couples' views revealed more nuanced and complex considerations in the decision-making process. It was clear that the desire to have a baby influenced couples' decision-making and that they saw freezing as 'part of the process'. However, there were confusions associated with the term 'freezing' related to concerns about the safety of the procedure. Despite being given written information, couples were confused about the practical aspects of embryo freezing, which suggests they were preoccupied with the immediate demands of IVF. Couples expressed ethical conflicts about freezing 'babies'. We hope the findings from this study will inform clinicians and assist them in providing support to couples confronted with this difficult decision-making.

  3. Substrate Dependence of the Freezing Dynamics of Supercooled Water Films: A High-Speed Optical Microscope Study.

    Science.gov (United States)

    Pach, E; Rodriguez, L; Verdaguer, A

    2018-01-18

    The freezing of supercooled water films on different substrates was investigated using a high-speed camera coupled to an optical microscope, obtaining details of the freezing process not described in the literature before. We observed the two well known freezing stages (fast dendritic growth and slow freezing of the water liquid left after the dendritic growth), but we separated the process into different phenomena that were studied separately: two-dimensional dendrite growth on the substrate interface, vertical dendrite growth, formation and evolution of ice domains, trapping of air bubbles and freezing of the water film surface. We found all of these processes to be dependent on both the supercooling temperature and the substrate used. Ice dendrite (or ice front) growth during the first stage was found to be dependent on thermal properties of the substrate but could not be unequivocally related to them. Finally, for low supercooling, a direct relationship was observed between the morphology of the dendrites formed in the first stage, which depends on the substrate, and the roughness and the shape of the surface of the ice, when freezing of the film was completed. This opens the possibility of using surfaces and coatings to control ice morphology beyond anti-icing properties.

  4. An Experimental Study of Pressure Gradients for Flow of Boiling Water in Vertical Round Ducts (Part 4)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, Gunnar; Bode, Manfred

    1962-07-01

    The present report contains the experimental results from the fourth and last phase of an investigation concerning frictional pressure gradients for flow of boiling water in vertical channels. The test section for this phase consisted of an electric heated stainless steel tube of 3120 mm length and 12.99 mm inner diameter. Data were obtained for pressures between 6 and 10 ata, steam qualities between 0 and 0.70, mass flow rates between 0.04 and 0.164 kg/sec. Only one value of 65 W/cm{sup 2} were used for the surface heat flux. The results are in excellent agreement with our earlier data for flow in 9. 93, 7. 76 and 3. 94 mm inner diameter ducts previously presented, and our conclusions given in those reports have been verified. On the basis of the measured pressure gradients, the following empirical equation has been established for engineering use. {chi}{sup 2} = 1 + 2600*(x/p){sup 0.96} This equation correlates our data within an accuracy of {+-} 15 per cent. Considering the data from all four ducts investigated, we have found that the following equation correlates the data with a discrepancy less than {+-} 20 per cent: {chi}{sup 2} = 1 + 2500*(x/p){sup 0.96} and we conclude that for engineering purposes, the effect of diameter is of no significance.

  5. Effect of Freeze-Thaw Cycles on Soil Nitrogen Reactive Transport in a Polygonal Arctic Tundra Ecosystem at Barrow AK Using 3-D Coupled ALM-PFLOTRAN

    Science.gov (United States)

    Yuan, F.; Wang, G.; Painter, S. L.; Tang, G.; Xu, X.; Kumar, J.; Bisht, G.; Hammond, G. E.; Mills, R. T.; Thornton, P. E.; Wullschleger, S. D.

    2017-12-01

    In Arctic tundra ecosystem soil freezing-thawing is one of dominant physical processes through which biogeochemical (e.g., carbon and nitrogen) cycles are tightly coupled. Besides hydraulic transport, freezing-thawing can cause pore water movement and aqueous species gradients, which are additional mechanisms for soil nitrogen (N) reactive-transport in Tundra ecosystem. In this study, we have fully coupled an in-development ESM(i.e., Advanced Climate Model for Energy, ACME)'s Land Model (ALM) aboveground processes with a state-of-the-art massively parallel 3-D subsurface thermal-hydrology and reactive transport code, PFLOTRAN. The resulting coupled ALM-PFLOTRAN model is a Land Surface Model (LSM) capable of resolving 3-D soil thermal-hydrological-biogeochemical cycles. This specific version of PFLOTRAN has incorporated CLM-CN Converging Trophic Cascade (CTC) model and a full and simple but robust soil N cycle. It includes absorption-desorption for soil NH4+ and gas dissolving-degasing process as well. It also implements thermal-hydrology mode codes with three newly-modified freezing-thawing algorithms which can greatly improve computing performance in regarding to numerical stiffness at freezing-point. Here we tested the model in fully 3-D coupled mode at the Next Generation Ecosystem Experiment-Arctic (NGEE-Arctic) field intensive study site at the Barrow Environmental Observatory (BEO), AK. The simulations show that: (1) synchronous coupling of soil thermal-hydrology and biogeochemistry in 3-D can greatly impact ecosystem dynamics across polygonal tundra landscape; and (2) freezing-thawing cycles can add more complexity to the system, resulting in greater mobility of soil N vertically and laterally, depending upon local micro-topography. As a preliminary experiment, the model is also implemented for Pan-Arctic region in 1-D column mode (i.e. no lateral connection), showing significant differences compared to stand-alone ALM. The developed ALM-PFLOTRAN coupling

  6. Freezing during tapping tasks in patients with advanced Parkinson's disease and freezing of gait.

    Science.gov (United States)

    Delval, Arnaud; Defebvre, Luc; Tard, Céline

    2017-01-01

    Parkinson's disease patients with freezing of gait also experience sudden motor blocks (freezing) during other repetitive motor tasks. We assessed the proportion of patients with advanced PD and freezing of gait who also displayed segmental "freezing" in tapping tasks. Fifteen Parkinson's disease patients with freezing of gait were assessed. Freezing of gait was evaluated using a standardized gait trajectory with the usual triggers. Patients performed repetitive tapping movements (as described in the MDS-UPDRS task) with the hands or the feet in the presence or absence of a metronome set to 4 Hz. Movements were recorded with a video motion system. The primary endpoint was the occurrence of segmental freezing in these tapping tasks. The secondary endpoints were (i) the relationship between segmental episodic phenomena and FoG severity, and (ii) the reliability of the measurements. For the upper limbs, freezing was observed more frequently with a metronome (21% of trials) than without a metronome (5%). For the lower limbs, the incidence of freezing was higher than for the upper limbs, and was again observed more frequently in the presence of an auditory cue (47%) than in its absence (14%). Although freezing of the lower limbs was easily assessed during an MDS-UPDRS task with a metronome, it was not correlated with the severity of freezing of gait (as evaluated during a standardized gait trajectory). Only this latter was a reliable measurement in patients with advanced Parkinson's disease.

  7. LEC- and VGF-growth of SI GaAs single crystals—recent developments and current issues

    Science.gov (United States)

    Jurisch, M.; Börner, F.; Bünger, Th.; Eichler, St.; Flade, T.; Kretzer, U.; Köhler, A.; Stenzenberger, J.; Weinert, B.

    2005-02-01

    The paper reviews the progress made in crystal growth of semi-insulating GaAs by liquid encapsulation Czochralski and vertical gradient freeze techniques during the last few years under the continuous need for cost reduction of the production process.

  8. Well-plate freeze-drying

    DEFF Research Database (Denmark)

    Trnka, Hjalte; Rantanen, Jukka; Grohganz, Holger

    2015-01-01

    Abstract Context: Freeze-drying in presence of excipients is a common practice to stabilize biomacromolecular formulations. The composition of this formulation is known to affect the quality of the final product. Objective: The aim of this study was to evaluate freeze-drying in well-plates as a h......Abstract Context: Freeze-drying in presence of excipients is a common practice to stabilize biomacromolecular formulations. The composition of this formulation is known to affect the quality of the final product. Objective: The aim of this study was to evaluate freeze-drying in well......-plates as a high throughput platform for formulation screening of freeze-dried products. Methods: Model formulations consisting of mannitol, sucrose and bovine serum albumin were freeze-dried in brass well plates, plastic well plates and vials. Physical properties investigated were solid form, residual moisture......, cake collapse and reconstitution time. Results: Samples freeze-dried in well-plates had an acceptable visual cake appearance. Solid form analysis by high throughput X-ray powder diffraction indicated comparable polymorphic outcome independent of the container. The expected increase in moisture level...

  9. Important role of vertical migration of compressed gas, oil and water in formation of AVPD (abnormally high pressure gradient) zones

    Energy Technology Data Exchange (ETDEWEB)

    Anikiyev, K.A.

    1980-01-01

    The principal role of vertical migration of compressed gases, gas-saturated petroleum and water during formation of abnormally high pressure gradients (AVPD) is confirmed by extensive factual data on gas production, grifons, blowouts and gushers that accompany drilling formations with AVPD from early history to the present time; the sources of vertical migration of compressed fluids, in accordance with geodynamic AVPD theory, are the deep degasified centers of the earth mantle. Among the various types of AVPD zones especially notable are the large (often massive or massive-layer) deposits and the intrusion aureoles that top them in the overlapping covering layers. Prediction of AVPD zones and determining their field and energy potential must be based on field-baric simulation of the formations being drilled in light of laws regarding the important role of the vertical migration of compressed fluids. When developing field-baric models, it is necessary to utilize the extensive and valuable data on grifons, gas production and blowouts that has been collected and categorized by drilling engineers and production geologists. To further develop data on field-baric conditions of the earth, it is necessary to collect and study signals of AVPD. First of all, there is a need to evaluate potential elastic resources of compressed fluids which can move from the bed into the well. Thus it is necessary to study and standardize intrusion aureoles and other AVPD zones within the aspect of fieldbaric modeling.

  10. Using Power Ultrasound to Accelerate Food Freezing Processes: Effects on Freezing Efficiency and Food Microstructure.

    Science.gov (United States)

    Zhang, Peizhi; Zhu, Zhiwei; Sun, Da-Wen

    2018-05-31

    Freezing is an effective way of food preservation. However, traditional freezing methods have the disadvantages of low freezing efficiency and generation of large ice crystals, leading to possible damage of food quality. Power ultrasound assisted freezing as a novel technique can effectively reduce the adverse effects during freezing process. This paper gives an overview on recent researches of power ultrasound technique to accelerate the food freezing processes and illustrates the main principles of power ultrasound assisted freezing. The effects of power ultrasound on liquid food, model solid food as well as fruit and vegetables are discussed, respectively, from the aspects of increasing freezing rate and improving microstructure. It is shown that ultrasound assisted freezing can effectively improve the freezing efficiency and promote the formation of small and evenly distributed ice crystals, resulting in better food quality. Different inherent properties of food samples affect the effectiveness of ultrasound application and optimum ultrasound parameters depend on the nature of the samples. The application of ultrasound to the food industry is more likely on certain types of food products and more efforts are still needed to realize the industrial translation of laboratory results.

  11. Surface freezing of water

    OpenAIRE

    P?rez-D?az, J. L.; ?lvarez-Valenzuela, M. A.; Rodr?guez-Celis, F.

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered?exclusively?by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on ...

  12. A comparison of freezing-damage during isochoric and isobaric freezing of the potato

    OpenAIRE

    Lyu, Chenang; Nastase, Gabriel; Ukpai, Gideon; Serban, Alexandru; Rubinsky, Boris

    2017-01-01

    Background Freezing is commonly used for food preservation. It is usually done under constant atmospheric pressure (isobaric). While extending the life of the produce, isobaric freezing has detrimental effects. It causes loss of food weight and changes in food quality. Using thermodynamic analysis, we have developed a theoretical model of the process of freezing in a constant volume system (isochoric). The mathematical model suggests that the detrimental effects associated with isobaric freez...

  13. Solvent effects in time-dependent self-consistent field methods. II. Variational formulations and analytical gradients

    International Nuclear Information System (INIS)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2015-01-01

    This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performing microcanonical excited state molecular dynamics with p-nitroaniline

  14. Surface freezing of water.

    Science.gov (United States)

    Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided.

  15. Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics

    Science.gov (United States)

    Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao

    2016-08-01

    Understanding the spatial and temporal characteristics of water flux into or out of shallow aquifers is imperative for water resources management and eco-environmental conservation. In this study, the spatial variability in the vertical specific fluxes and hydraulic conductivities in a streambed were evaluated by integrating distributed temperature sensing (DTS) data and vertical hydraulic gradients into an ensemble Kalman filter (EnKF) and smoother (EnKS) and an empirical thermal-mixing model. The formulation of the EnKF/EnKS assimilation scheme is based on a discretized 1D advection-conduction equation of heat transfer in the streambed. We first systematically tested a synthetic case and performed quantitative and statistical analyses to evaluate the performance of the assimilation schemes. Then a real-world case was evaluated to calculate assimilated specific flux. An initial estimate of the spatial distributions of the vertical hydraulic gradients was obtained from an empirical thermal-mixing model under steady-state conditions using a constant vertical hydraulic conductivity. Then, this initial estimate was updated by repeatedly dividing the assimilated specific flux by estimates of the vertical hydraulic gradients to obtain a refined spatial distribution of vertical hydraulic gradients and vertical hydraulic conductivities. Our results indicate that optimal parameters can be derived with fewer iterations but greater simulation effort using the EnKS compared with the EnKF. For the field application in a stream segment of the Heihe River Basin in northwest China, the average vertical hydraulic conductivities in the streambed varied over three orders of magnitude (5 × 10-1 to 5 × 102 m/d). The specific fluxes ranged from near zero (qz < ±0.05 m/d) to ±1.0 m/d, while the vertical hydraulic gradients were within the range of -0.2 to 0.15 m/m. The highest and most variable fluxes occurred adjacent to a debris-dam and bridge pier. This phenomenon is very likely

  16. Tree mortality from a short-duration freezing event and global-change-type drought in a Southwestern piñon-juniper woodland, USA

    OpenAIRE

    Helen M. Poulos

    2014-01-01

    This study documents tree mortality in Big Bend National Park in Texas in response to the most acute one-year drought on record, which occurred following a five-day winter freeze. I estimated changes in forest stand structure and species composition due to freezing and drought in the Chisos Mountains of Big Bend National Park using permanent monitoring plot data. The drought killed over half (63%) of the sampled trees over the entire elevation gradient. Significant mortality occurred in trees...

  17. Slab Geometry and Segmentation on Seismogenic Subduction Zone; Insight from gravity gradients

    Science.gov (United States)

    Saraswati, A. T.; Mazzotti, S.; Cattin, R.; Cadio, C.

    2017-12-01

    Slab geometry is a key parameter to improve seismic hazard assessment in subduction zones. In many cases, information about structures beneath subduction are obtained from geophysical dedicated studies, including geodetic and seismic measurements. However, due to the lack of global information, both geometry and segmentation in seismogenic zone of many subductions remain badly-constrained. Here we propose an alternative approach based on satellite gravity observations. The GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission enables to probe Earth deep mass structures from gravity gradients, which are more sensitive to spatial structure geometry and directional properties than classical gravitational data. Gravity gradients forward modeling of modeled slab is performed by using horizontal and vertical gravity gradient components to better determine slab geophysical model rather than vertical gradient only. Using polyhedron method, topography correction on gravity gradient signal is undertaken to enhance the anomaly signal of lithospheric structures. Afterward, we compare residual gravity gradients with the calculated signals associated with slab geometry. In this preliminary study, straightforward models are used to better understand the characteristic of gravity gradient signals due to deep mass sources. We pay a special attention to the delineation of slab borders and dip angle variations.

  18. The influence of freezing rates on bovine pericardium tissue Freeze-drying

    Directory of Open Access Journals (Sweden)

    Camila Figueiredo Borgognoni

    2009-12-01

    Full Text Available The bovine pericardium has been used as biomaterial in developing bioprostheses. Freeze-drying is a drying process that could be used for heart valve's preservation. The maintenance of the characteristics of the biomaterial is important for a good heart valve performance. This paper describes the initial step in the development of a bovine pericardium tissue freeze-drying to be used in heart valves. Freeze-drying involves three steps: freezing, primary drying and secondary drying. The freezing step influences the ice crystal size and, consequently, the primary and secondary drying stages. The aim of this work was to investigate the influence of freezing rates on the bovine pericardium tissue freeze-drying parameters. The glass transition temperature and the structural behaviour of the lyophilized tissues were determined as also primary and secondary drying time. The slow freezing with thermal treatment presented better results than the other freeze-drying protocols.O pericárdio bovino é um material utilizado na fabricação de biopróteses. A liofilização é um método de secagem que vem sendo estudado para a conservação de válvulas cardíacas. A preservação das características do biomaterial é de fundamental importância no bom funcionamento das válvulas. Este artigo é a primeira etapa do desenvolvimento do ciclo de liofilização do pericárdio bovino. Liofilização é o processo de secagem no qual a água é removida do material congelado por sublimação e desorção da água incongelável, sob pressão reduzida. O congelamento influencia o tamanho do cristal de gelo e, consequentemente, a secagem primária e secundária. O objetivo deste estudo foi verificar a influência das taxas de congelamento nos parâmetros de liofilização do pericárdio bovino. Determinou-se a temperatura de transição vítrea e o comportamento estrutural do pericárdio bovino liofilizado. Determinou-se o tempo da secagem primária e secundária. O

  19. A novel vertical comb-drive electrostatic actuator using a one layer process

    International Nuclear Information System (INIS)

    Hailu, Zewdu; He, Siyuan; Mrad, Ridha Ben

    2014-01-01

    This paper presents the design, fabrication and testing of a new residual stress gradient based vertical comb-drive actuator. Conventional vertical comb-drive actuators need two structural layers, i.e. one for the moving fingers and a second for the fixed fingers. A vertical comb-drive actuator based on a single structural layer micromachining process, using the residual stress gradient along the thickness of the nickel of the MetalMUMPs (Metal Multi-User MEMS process) fabrication process, is developed. The MetalMUMPs provides a 20 μm thick nickel film and is subject to residual stress gradients along its thickness. Two curve-up beams are devised to curve out of plane after release. The curve-up beams raise a plate with comb fingers above the substrate to form the moving fingers. The fixed comb fingers are connected to the substrate via anchors. When a voltage is applied across the moving and the fixed fingers, the moving fingers move down towards the fixed fingers. Experimental measurements on prototypes have verified the design principle. A vertical displacement of 4.81 µm at 150 V was measured. (paper)

  20. Objective video quality assessment method for freeze distortion based on freeze aggregation

    Science.gov (United States)

    Watanabe, Keishiro; Okamoto, Jun; Kurita, Takaaki

    2006-01-01

    With the development of the broadband network, video communications such as videophone, video distribution, and IPTV services are beginning to become common. In order to provide these services appropriately, we must manage them based on subjective video quality, in addition to designing a network system based on it. Currently, subjective quality assessment is the main method used to quantify video quality. However, it is time-consuming and expensive. Therefore, we need an objective quality assessment technology that can estimate video quality from video characteristics effectively. Video degradation can be categorized into two types: spatial and temporal. Objective quality assessment methods for spatial degradation have been studied extensively, but methods for temporal degradation have hardly been examined even though it occurs frequently due to network degradation and has a large impact on subjective quality. In this paper, we propose an objective quality assessment method for temporal degradation. Our approach is to aggregate multiple freeze distortions into an equivalent freeze distortion and then derive the objective video quality from the equivalent freeze distortion. Specifically, our method considers the total length of all freeze distortions in a video sequence as the length of the equivalent single freeze distortion. In addition, we propose a method using the perceptual characteristics of short freeze distortions. We verified that our method can estimate the objective video quality well within the deviation of subjective video quality.

  1. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    Science.gov (United States)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; hide

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  2. Freezing of Gait Detection in Parkinson's Disease: A Subject-Independent Detector Using Anomaly Scores.

    Science.gov (United States)

    Pham, Thuy T; Moore, Steven T; Lewis, Simon John Geoffrey; Nguyen, Diep N; Dutkiewicz, Eryk; Fuglevand, Andrew J; McEwan, Alistair L; Leong, Philip H W

    2017-11-01

    Freezing of gait (FoG) is common in Parkinsonian gait and strongly relates to falls. Current clinical FoG assessments are patients' self-report diaries and experts' manual video analysis. Both are subjective and yield moderate reliability. Existing detection algorithms have been predominantly designed in subject-dependent settings. In this paper, we aim to develop an automated FoG detector for subject independent. After extracting highly relevant features, we apply anomaly detection techniques to detect FoG events. Specifically, feature selection is performed using correlation and clusterability metrics. From a list of 244 feature candidates, 36 candidates were selected using saliency and robustness criteria. We develop an anomaly score detector with adaptive thresholding to identify FoG events. Then, using accuracy metrics, we reduce the feature list to seven candidates. Our novel multichannel freezing index was the most selective across all window sizes, achieving sensitivity (specificity) of (). On the other hand, freezing index from the vertical axis was the best choice for a single input, achieving sensitivity (specificity) of () for ankle and () for back sensors. Our subject-independent method is not only significantly more accurate than those previously reported, but also uses a much smaller window (e.g., versus ) and/or lower tolerance (e.g., versus ).Freezing of gait (FoG) is common in Parkinsonian gait and strongly relates to falls. Current clinical FoG assessments are patients' self-report diaries and experts' manual video analysis. Both are subjective and yield moderate reliability. Existing detection algorithms have been predominantly designed in subject-dependent settings. In this paper, we aim to develop an automated FoG detector for subject independent. After extracting highly relevant features, we apply anomaly detection techniques to detect FoG events. Specifically, feature selection is performed using correlation and clusterability metrics. From

  3. Effects of drop freezing on microphysics of an ascending cloud parcel under biomass burning conditions

    Science.gov (United States)

    Diehl, K.; Simmel, M.; Wurzler, S.

    There is some evidence that the initiation of warm rain is suppressed in clouds over regions with vegetation fires. Thus, the ice phase becomes important as another possibility to initiate precipitation. Numerical simulations were performed to investigate heterogeneous drop freezing for a biomass-burning situation. An air parcel model with a sectional two-dimensional description of the cloud microphysics was employed with parameterizations for immersion and contact freezing which consider the different ice nucleating efficiencies of various ice nuclei. Three scenarios were simulated resulting to mixed-phase or completely glaciated clouds. According to the high insoluble fraction of the biomass-burning particles drop freezing via immersion and contact modes was very efficient. The preferential freezing of large drops followed by riming (i.e. the deposition of liquid drops on ice particles) and the evaporation of the liquid drops (Bergeron-Findeisen process) caused a further decrease of the liquid drops' effective radius in higher altitudes. In turn ice particle sizes increased so that they could serve as germs for graupel or hailstone formation. The effects of ice initiation on the vertical cloud dynamics were fairly significant leading to a development of the cloud to much higher altitudes than in a warm cloud without ice formation.

  4. Effects of various freezing containers for vitrification freezing on mouse oogenesis.

    Science.gov (United States)

    Kim, Ji Chul; Kim, Jae Myeoung; Seo, Byoung Boo

    2016-01-01

    In the present study, various freezing containers were tested for mouse embryos of respective developmental stages; embryos were vitrified and then their survival rate and developmental rate were monitored. Mouse two cell, 8 cell, and blastula stage embryos underwent vitrification freezing-thawing and then their recovery rate, survival rate, development rate, and hatching rate were investigated. EM-grid, OPS, and cryo-loop were utilized for vitrification freezing-thawing of mouse embryos. It was found that recovery rate and survival rate were higher in the group of cryo-loop compared to those of EM-grid (p containers on vitrified embryos of respective developmental stages; it was demonstrated that higher developmental rate was shown in more progressed (or developed) embryos with more blastomeres. There was however, no difference in embryonic development rate was shown amongst containers. Taken together, further additional studies are warranted with regards to 1) manipulation techniques of embryos for various vitrification freezing containers and 2) preventive measures against contamination via liquid nitrogen.

  5. The value of a freeze

    International Nuclear Information System (INIS)

    Bethe, H.A.; Long, F.A.

    1988-01-01

    This paper reports on the rapid increase in public support for a nuclear-freeze agreement---that is, a mutual freeze on the testing, production and further deployment of nuclear weapons---which has been a remarkable political phenomenon. In less than a year, support has grown from a few volunteers collecting signatures on petitions to a congressional vote in which supporters of a freeze very nearly prevailed. This fall, eight states and the District of Columbia will vote on freeze referendums. Already Wisconsin voters have overwhelmingly voted yes in such a referendum. There are many reasons for this strong support for a freeze, including fear of nuclear war, resistance to high levels of military spending and opposition to particular military policies of the Reagan administration. But to most supporters, the chief purpose of a freeze is simple: it is to help stop an immense, continuing, dangerous and incredibly costly arms race between the two superpowers

  6. The Freezing Bomb

    Science.gov (United States)

    Mills, Allan

    2010-01-01

    The extreme pressures that are generated when water freezes were traditionally demonstrated by sealing a small volume in a massive cast iron "bomb" and then surrounding it with a freezing mixture of ice and salt. This vessel would dramatically fail by brittle fracture, but no quantitative measurement of bursting pressure was available. Calculation…

  7. Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy

    Science.gov (United States)

    Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum "cast" intended for examination by transmission electron microscopy. Specimens are subjected to u...

  8. Metallicity gradient of the thick disc progenitor at high redshift

    Science.gov (United States)

    Kawata, Daisuke; Allende Prieto, Carlos; Brook, Chris B.; Casagrande, Luca; Ciucă, Ioana; Gibson, Brad K.; Grand, Robert J. J.; Hayden, Michael R.; Hunt, Jason A. S.

    2018-01-01

    We have developed a novel Markov Chain Monte Carlo chemical 'painting' technique to explore possible radial and vertical metallicity gradients for the thick disc progenitor. In our analysis, we match an N-body simulation to the data from the Apache Point Observatory Galactic Evolution Experiment survey. We assume that the thick disc has a constant scaleheight and has completed its formation at an early epoch, after which time radial mixing of its stars has taken place. Under these assumptions, we find that the initial radial metallicity gradient of the thick disc progenitor should not be negative, but either flat or even positive, to explain the current negative vertical metallicity gradient of the thick disc. Our study suggests that the thick disc was built-up in an inside-out and upside-down fashion, and older, smaller and thicker populations are more metal poor. In this case, star-forming discs at different epochs of the thick disc formation are allowed to have different radial metallicity gradients, including a negative one, which helps to explain a variety of slopes observed in high-redshift disc galaxies. This scenario helps to explain the positive slope of the metallicity-rotation velocity relation observed for the Galactic thick disc. On the other hand, radial mixing flattens the slope of an existing gradient.

  9. Impregnation of leather during "freeze-drying"

    DEFF Research Database (Denmark)

    Storch, Mikkel; Vestergaard Poulsen Sommer, Dorte; Hovmand, Ida

    2016-01-01

    Freeze-drying is a recognized method for the preservation of waterlogged objects. Naturally, freeze-drying has also been used for waterlogged archaeological leather often after treatment with Na2.EDTA and impregnation with PEG; but the treated leather sometimes suffers from “excessive drying......” becoming too stiff and brittle. The aim of this study was to examine the effect of a conventional freeze-drying method against an alternative freeze-drying method that preserves the natural moisture content of the leather. Both new and archaeological waterlogged leather were included in the study...... suggest that the process which takes place within the leather during the freeze-drying in not actual freeze-drying, but rather a sophisticated way of distributing the impregnating agent. The pure ice phase freezes out, but the impregnating agent remains liquid as the temperature does not become low enough...

  10. The effect of density gradients on hydrometers

    Science.gov (United States)

    Heinonen, Martti; Sillanpää, Sampo

    2003-05-01

    Hydrometers are simple but effective instruments for measuring the density of liquids. In this work, we studied the effect of non-uniform density of liquid on a hydrometer reading. The effect induced by vertical temperature gradients was investigated theoretically and experimentally. A method for compensating for the effect mathematically was developed and tested with experimental data obtained with the MIKES hydrometer calibration system. In the tests, the method was found reliable. However, the reliability depends on the available information on the hydrometer dimensions and density gradients.

  11. Building the Method to Determine the Rate of Freezing Water in Penaeus monodon of the Freezing Process

    OpenAIRE

    Nguyen Tan Dzung; Trinh Van Dzung; Tran Duc Ba

    2012-01-01

    The method of determination the rate of freezing water in Penaeus monodon of freezing process was established on base the equation of energy balance in warming up process Penaeus monodon after freezing to determine specific heat of Penaeus monodon. The result obtained was built the mathematical model (19) to determine the rate of freezing water according to the freezing temperature of Penaeus monodon. The results indicated that when water was completely frozen (ω = 1 or 100%), the optimal fre...

  12. A new method for mapping variability in vertical seepage flux in streambeds

    Science.gov (United States)

    Chen, Xunhong; Song, Jinxi; Cheng, Cheng; Wang, Deming; Lackey, Susan O.

    2009-05-01

    A two-step approach was used to measure the flux across the water-sediment interface in river channels. A hollow tube was pressed into the streambed and an in situ sediment column of the streambed was created inside the tube. The hydraulic gradient between the two ends of the sediment column was measured. The vertical hydraulic conductivity of the sediment column was determined using a falling-head permeameter test in the river. Given the availability of the hydraulic gradient and vertical hydraulic conductivity of the streambed, Darcy’s law was used to calculate the specific discharge. This approach was applied to the Elkhorn River and one tributary in northeastern Nebraska, USA. The results suggest that the magnitude of the vertical flux varied greatly within a short distance. Furthermore, the flux can change direction from downward to upward between two locations only several meters apart. This spatial pattern of variation probably represents the inflow and outflow within the hyporheic zone, not the regional ambient flow systems. In this study, a thermal infrared camera was also used to detect the discharge locations of groundwater in the streambed. After the hydraulic gradient and the vertical hydraulic conductivity were estimated from the groundwater spring, the discharge rate was calculated.

  13. Advantages of liquid nitrogen freezing of Penaeus monodon over conventional plate freezing

    OpenAIRE

    Chakrabarti, R.; Chaudhury, D.R.

    1987-01-01

    Liquid nitrogen frozen products are biochemically and organoleptically superior to conventional plate frozen products but beneficial effect of liquid nitrogen freezing over conventional plate freezing can exist only up to 59 days at a commercial storage temperature of -18°C.

  14. Polymerization with freezing

    International Nuclear Information System (INIS)

    Ben-Naim, E; Krapivsky, P L

    2005-01-01

    Irreversible aggregation processes involving reactive and frozen clusters are investigated using the rate equation approach. In aggregation events, two clusters join irreversibly to form a larger cluster; additionally, reactive clusters may spontaneously freeze. Frozen clusters do not participate in merger events. Generally, freezing controls the nature of the aggregation process, as demonstrated by the final distribution of frozen clusters. The cluster mass distribution has a power-law tail, F k ∼k -γ , when the freezing process is sufficiently slow. Different exponents, γ = 1 and 3, are found for the constant and the product aggregation rates, respectively. For the latter case, the standard polymerization model, either no gels, or a single gel, or even multiple gels, may be produced

  15. The role of the meridional sea surface temperature gradient in controlling the Caribbean low-level jet

    Science.gov (United States)

    Maldonado, Tito; Rutgersson, Anna; Caballero, Rodrigo; Pausata, Francesco S. R.; Alfaro, Eric; Amador, Jorge

    2017-06-01

    The Caribbean low-level jet (CLLJ) is an important modulator of regional climate, especially precipitation, in the Caribbean and Central America. Previous work has inferred, due to their semiannual cycle, an association between CLLJ strength and meridional sea surface temperature (SST) gradients in the Caribbean Sea, suggesting that the SST gradients may control the intensity and vertical shear of the CLLJ. In addition, both the horizontal and vertical structure of the jet have been related to topographic effects via interaction with the mountains in Northern South America (NSA), including funneling effects and changes in the meridional geopotential gradient. Here we test these hypotheses, using an atmospheric general circulation model to perform a set of sensitivity experiments to examine the impact of both SST gradients and topography on the CLLJ. In one sensitivity experiment, we remove the meridional SST gradient over the Caribbean Sea and in the other, we flatten the mountains over NSA. Our results show that the SST gradient and topography have little or no impact on the jet intensity, vertical, and horizontal wind shears, contrary to previous works. However, our findings do not discount a possible one-way coupling between the SST and the wind over the Caribbean Sea through friction force. We also examined an alternative approach based on barotropic instability to understand the CLLJ intensity, vertical, and horizontal wind shears. Our results show that the current hypothesis about the CLLJ must be reviewed in order to fully understand the atmospheric dynamics governing the Caribbean region.

  16. Generalized structural theory of freezing

    International Nuclear Information System (INIS)

    Yussouff, M.

    1980-10-01

    The first-principles order parameter theory of freezing, proposed in an earlier work, has been successful in yielding quantitative agreement with known freezing parameters for monoatomic liquids forming solids with one atom per unit cell. A generalization of this theory is presented here to include the effects of a basis set of many atoms per unit cell. The basic equations get modified by the 'density structure factors' fsub(i) which arise from the density variations within the unit cell. Calculations are presented for the important case of monoatomic liquids freezing into hexagonal close packed solids. It is concluded that all freezing transitions can be described by using structural correlations in the liquid instead of the pair potential; and that the three body correlations are important in deciding the type of solid formed after freezing. (author)

  17. Anhydrobiosis and Freezing-Tolerance

    DEFF Research Database (Denmark)

    McGill, Lorraine; Shannon, Adam; Pisani, Davide

    2015-01-01

    Anhydrobiotic animals can survive the loss of both free and bound water from their cells. While in this state they are also resistant to freezing. This physiology adapts anhydrobiotes to harsh environments and it aids their dispersal. Panagrolaimus davidi, a bacterial feeding anhydrobiotic nematode...... Panagrolaimus strains from tropical, temperate, continental and polar habitats and we analysed their phylogenetic relationships. We found that several other Panagrolaimus isolates can also survive freezing when fully hydrated and that tissue extracts from these freezing-tolerant nematodes can inhibit the growth...

  18. Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior.

    Science.gov (United States)

    Oh, Se Heang; An, Dan Bi; Kim, Tae Ho; Lee, Jin Ho

    2016-04-15

    Although stiffness-controllable substrates have been developed to investigate the effect of stiffness on cell behavior and function, the use of separate substrates with different degrees of stiffness, substrates with a narrow range stiffness gradient, toxicity of residues, different surface composition, complex fabrication procedures/devices, and low cell adhesion are still considered as hurdles of conventional techniques. In this study, a cylindrical polyvinyl alcohol (PVA)/hyaluronic acid (HA) hydrogel with a wide-range stiffness gradient (between ∼20kPa and ∼200kPa) and cell adhesiveness was prepared by a liquid nitrogen (LN2)-contacting gradual freezing-thawing method that does not use any additives or specific devices to produce the stiffness gradient hydrogel. From an in vitro cell culture using the stiffness gradient PVA/HA hydrogel, it was observed that human bone marrow mesenchymal stem cells have favorable stiffness ranges for induction of differentiation into specific cell types (∼20kPa for nerve cell, ∼40kPa for muscle cell, ∼80kPa for chondrocyte, and ∼190kPa for osteoblast). The PVA/HA hydrogel with a wide range of stiffness spectrum can be a useful tool for basic studies related with the stem cell differentiation, cell reprogramming, cell migration, and tissue regeneration in terms of substrate stiffness. It is postulated that the stiffness of the extracellular matrix influences cell behavior. To prove this concept, various techniques to prepare substrates with a stiffness gradient have been developed. However, the narrow ranges of stiffness gradient and complex fabrication procedures/devices are still remained as limitations. Herein, we develop a substrate (hydrogel) with a wide-range stiffness gradient using a gradual freezing-thawing method which does not need specific devices to produce a stiffness gradient hydrogel. From cell culture experiments using the hydrogel, it is observed that human bone marrow mesenchymal stem cells have

  19. The Critical Depth of Freeze-Thaw Soil under Different Types of Snow Cover

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2017-05-01

    Full Text Available Snow cover is the most common upper boundary condition influencing the soil freeze-thaw process in the black soil farming area of northern China. Snow is a porous dielectric cover, and its unique physical properties affect the soil moisture diffusion, heat conduction, freezing rate and other variables. To understand the spatial distribution of the soil water-heat and the variable characteristics of the critical depth of the soil water and heat, we used field data to analyze the freezing rate of soil and the extent of variation in soil water-heat in a unit soil layer under bare land (BL, natural snow (NS, compacted snow (CS and thick snow (TS treatments. The critical depth of the soil water and heat activity under different snow covers were determined based on the results of the analysis, and the variation fitting curve of the difference sequences on the soil temperature and water content between different soil layers and the surface 5-cm soil layer were used to verify the critical depth. The results were as follows: snow cover slowed the rate of soil freezing, and the soil freezing rate under the NS, CS and TS treatments decreased by 0.099 cm/day, 0.147 cm/day and 0.307 cm/day, respectively, compared with that under BL. In addition, the soil thawing time was delayed, and the effect was more significant with increased snow cover. During freeze-thaw cycles, the extent of variation in the water and heat time series in the shallow soil was relatively large, while there was less variation in the deep layer. There was a critical stratum in the vertical surface during hydrothermal migration, wherein the critical depth of soil water and heat change gradually increased with increasing snow cover. The variance in differences between the surface layer and both the soil water and heat in the different layers exhibited “steady-rising-steady” behavior, and the inflection point of the curve is the critical depth of soil freezing and thawing. This critical

  20. Freeze-Casting Produces a Graphene Oxide Aerogel with a Radial and Centrosymmetric Structure.

    Science.gov (United States)

    Wang, Chunhui; Chen, Xiong; Wang, Bin; Huang, Ming; Wang, Bo; Jiang, Yi; Ruoff, Rodney S

    2018-05-14

    We report the assembly of graphene oxide (G-O) building blocks into a vertical and radially aligned structure by a bidirectional freeze-casting approach. The crystallization of water to ice assembles the G-O sheets into a structure, a G-O aerogel whose local structure mimics turbine blades. The centimeter-scale radiating structure in this aerogel has many channels whose width increases with distance from the center. This was achieved by controlling the formation of the ice crystals in the aqueous G-O dispersion that grew radially in the shape of lamellae during freezing. Because the shape and size of ice crystals is influenced by the G-O sheets, different additives (ethanol, cellulose nanofibers, and chitosan) that can form hydrogen bonds with H 2 O were tested and found to affect the interaction between the G-O and formation of ice crystals, producing ice crystals with different shapes. A G-O/chitosan aerogel with a spiral pattern was also obtained. After chemical reduction of G-O, our aerogel exhibited elasticity and absorption capacity superior to that of graphene aerogels with "traditional" pore structures made by conventional freeze-casting. This methodology can be expanded to many other configurations and should widen the use of G-O (and reduced G-O and "graphenic") aerogels.

  1. On the metallicity gradients of the Galactic disk as revealed by LSS-GAC red clump stars

    Science.gov (United States)

    Huang, Yang; Liu, Xiao-Wei; Zhang, Hua-Wei; Yuan, Hai-Bo; Xiang, Mao-Sheng; Chen, Bing-Qiu; Ren, Juan-Juan; Sun, Ning-Chen; Wang, Chun; Zhang, Yong; Hou, Yong-Hui; Wang, Yue-Fei; Yang, Ming

    2015-08-01

    Using a sample of over 70 000 red clump (RC) stars with 5%-10% distance accuracy selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC), we study the radial and vertical gradients of the Galactic disk(s) mainly in the anti-center direction, covering a significant volume of the disk in the range of projected Galactocentric radius 7 ≤ RGC ≤ 14 kpc and height from the Galactic midplane 0 ≤ |Z| ≤ 3 kpc. Our analysis shows that both the radial and vertical metallicity gradients are negative across much of the volume of the disk that is probed, and they exhibit significant spatial variations. Near the solar circle (7 ≤ RGC ≤ 115 kpc), the radial gradient has a moderately steep, negative slope of -0.08 dex kpc-1 near the midplane (|Z| plane, suggesting that the outer disk may have experienced an evolutionary path different from that of the inner disk. The vertical gradients are found to flatten largely with increasing RGC. However, the vertical gradient of the lower disk (0 ≤ |Z| ≤ 1 kpc) is found to flatten with RGC quicker than that of the upper disk (1 < |Z| ≤ 3 kpc). Our results should provide strong constraints on the theory of disk formation and evolution, as well as the underlying physical processes that shape the disk (e.g. gas flows, radial migration, and internal and external perturbations).

  2. Theoretic base of Edge Local Mode triggering by vertical displacements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z. T. [Southwestern Institute of Physics, Chengdu 610041 (China); College of Physics Science and Technology, Sichuan University, Chengdu 610065 (China); He, Z. X.; Wang, Z. H. [Southwestern Institute of Physics, Chengdu 610041 (China); Wu, N.; Tang, C. J. [College of Physics Science and Technology, Sichuan University, Chengdu 610065 (China)

    2015-05-15

    Vertical instability is studied with R-dependent displacement. For Solovev's configuration, the stability boundary of the vertical instability is calculated. The pressure gradient is a destabilizing factor which is contrary to Rebhan's result. Equilibrium parallel current density, j{sub //}, at plasma boundary is a drive of the vertical instability similar to Peeling-ballooning modes; however, the vertical instability cannot be stabilized by the magnetic shear which tends towards infinity near the separatrix. The induced current observed in the Edge Local Mode (ELM) triggering experiment by vertical modulation is derived. The theory provides some theoretic explanation for the mitigation of type-I ELMS on ASDEX Upgrade. The principle could be also used for ITER.

  3. Freeze out in heavy ion reactions

    International Nuclear Information System (INIS)

    Csernai, Laszlo P.; Lazar, Zs.I.; Grassi, F.; Hama, Y.

    1998-01-01

    In fluid dynamical models the freeze out of particles across a three dimensional space-time hypersurface is discussed. The calculation of final momentum distribution of emitted particles is described for freeze out surfaces, with both space-like and time-like normals, taking into account conservation laws across the freeze out discontinuity. Generally the conservation laws lead to a change of temperature, baryon density and flow velocity at freeze out. (author)

  4. Dip and anisotropy effects on flow using a vertically skewed model grid.

    Science.gov (United States)

    Hoaglund, John R; Pollard, David

    2003-01-01

    Darcy flow equations relating vertical and bedding-parallel flow to vertical and bedding-parallel gradient components are derived for a skewed Cartesian grid in a vertical plane, correcting for structural dip given the principal hydraulic conductivities in bedding-parallel and bedding-orthogonal directions. Incorrect-minus-correct flow error results are presented for ranges of structural dip (0 strike and dip, and a solver that can handle off-diagonal hydraulic conductivity terms.

  5. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    Science.gov (United States)

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  6. Freeze-dried microarterial allografts

    International Nuclear Information System (INIS)

    Raman, J.; Hargrave, J.C.

    1990-01-01

    Rehydrated freeze-dried microarterial allografts were implanted to bridge arterial defects using New Zealand White rabbits as the experimental model. Segments of artery from the rabbit ear and thigh were harvested and preserved for a minimum of 2 weeks after freeze-drying. These allografts, approximately 1 mm in diameter and ranging from 1.5 to 2.5 cm in length, were rehydrated and then implanted in low-pressure and high-pressure arterial systems. Poor patency was noted in low-pressure systems in both allografts and autografts, tested in 12 rabbits. In the high-pressure arterial systems, allografts that were freeze-dried and reconstituted failed in a group of 10 rabbits with an 8-week patency rate of 30 percent. Gamma irradiation in an effort to reduce infection and antigenicity of grafts after freeze-drying was associated with a patency rate of 10 percent at 8 weeks in this system in another group of 10 rabbits. Postoperative cyclosporin A therapy was associated with a patency rate of 22.2 percent in the high-pressure arterial system in a 9-rabbit group. Control autografts in this system in a group of 10 rabbits showed a 100 percent patency at 8 weeks. Microarterial grafts depend on perfusion pressure of the vascular bed for long-term patency. Rehydrated freeze-dried microarterial allografts do not seem to function well in lengths of 1 to 2.5 cm when implanted in a high-pressure arterial system. Freeze-dried arterial allografts are probably not antigenic

  7. Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar

    Science.gov (United States)

    Anderson, Dylan; Cox, Dan; Mieras, Ryan; Puleo, Jack A.; Hsu, Tian-Jian

    2017-06-01

    Horizontal and vertical pressure gradients may be important physical mechanisms contributing to onshore sediment transport beneath steep, near-breaking waves in the surf zone. A barred beach was constructed in a large-scale laboratory wave flume with a fixed profile containing a mobile sediment layer on the crest of the sandbar. Horizontal and vertical pore pressure gradients were obtained by finite differences of measurements from an array of pressure transducers buried within the upper several centimeters of the bed. Colocated observations of erosion depth were made during asymmetric wave trials with wave heights between 0.10 and 0.98 m, consistently resulting in onshore sheet flow sediment transport. The pore pressure gradient vector within the bed exhibited temporal rotations during each wave cycle, directed predominantly upward under the trough and then rapidly rotating onshore and downward as the wavefront passed. The magnitude of the pore pressure gradient during each phase of rotation was correlated with local wave steepness and relative depth. Momentary bed failures as deep as 20 grain diameters were coincident with sharp increases in the onshore-directed pore pressure gradients, but occurred at horizontal pressure gradients less than theoretical critical values for initiation of the motion for compact beds. An expression combining the effects of both horizontal and vertical pore pressure gradients with bed shear stress and soil stability is used to determine that failure of the bed is initiated at nonnegligible values of both forces.type="synopsis">type="main">Plain Language SummaryThe pressure gradient present within the seabed beneath breaking waves may be an important physical mechanism transporting sediment. A large-scale laboratory was used to replicate realistic surfzone conditions in controlled tests, allowing for horizontal and vertical pressure gradient magnitudes and the resulting sediment bed response to be observed with precise instruments

  8. Application of the Quality by Design Approach to the Freezing Step of Freeze-Drying: Building the Design Space.

    Science.gov (United States)

    Arsiccio, Andrea; Pisano, Roberto

    2018-06-01

    The present work shows a rational method for the development of the freezing step of a freeze-drying cycle. The current approach to the selection of freezing conditions is still empirical and nonsystematic, thus resulting in poor robustness of control strategy. The final aim of this work is to fill this gap, describing a rational procedure, based on mathematical modeling, for properly choosing the freezing conditions. Mechanistic models are used for the prediction of temperature profiles during freezing and dimension of ice crystals being formed. Mathematical description of the drying phase of freeze-drying is also coupled with the results obtained by freezing models, thus providing a comprehensive characterization of the lyophilization process. In this framework, deep understanding of the phenomena involved is required, and according to the Quality by Design approach, this knowledge can be used to build the design space. The step-by-step procedure for building the design space for freezing is thus described, and examples of applications are provided. The calculated design space is validated upon experimental data, and we show that it allows easy control of the freezing process and fast selection of appropriate operating conditions. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze-thaw cycles.

    Science.gov (United States)

    Charra-Vaskou, Katline; Badel, Eric; Charrier, Guillaume; Ponomarenko, Alexandre; Bonhomme, Marc; Foucat, Loïc; Mayr, Stefan; Améglio, Thierry

    2016-02-01

    Freeze-thaw cycles induce major hydraulic changes due to liquid-to-ice transition within tree stems. The very low water potential at the ice-liquid interface is crucial as it may cause lysis of living cells as well as water fluxes and embolism in sap conduits, which impacts whole tree-water relations. We investigated water fluxes induced by ice formation during freeze-thaw cycles in Juglans regia L. stems using four non-invasive and complementary approaches: a microdendrometer, magnetic resonance imaging, X-ray microtomography, and ultrasonic acoustic emissions analysis. When the temperature dropped, ice nucleation occurred, probably in the cambium or pith areas, inducing high water potential gradients within the stem. The water was therefore redistributed within the stem toward the ice front. We could thus observe dehydration of the bark's living cells leading to drastic shrinkage of this tissue, as well as high tension within wood conduits reaching the cavitation threshold in sap vessels. Ultrasonic emissions, which were strictly emitted only during freezing, indicated cavitation events (i.e. bubble formation) following ice formation in the xylem sap. However, embolism formation (i.e. bubble expansion) in stems was observed only on thawing via X-ray microtomography for the first time on the same sample. Ultrasonic emissions were detected during freezing and were not directly related to embolism formation. These results provide new insights into the complex process and dynamics of water movements and ice formation during freeze-thaw cycles in tree stems. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Seasonal differences in freezing tolerance of yellow-cedar and western hemlock trees at a site affected by yellow-cedar decline

    Science.gov (United States)

    Paul G. Schaberg; Paul E. Hennon; Amore, David V. D; Gary J. Hawley; Catherine H. Borer; Catherine H. Borer

    2005-01-01

    To assess whether inadequate cold hardiness could be a contributor to yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach) decline, we measured the freezing tolerance of foliage from yellow-cedar trees in closed-canopy (nondeclining) and open-canopy (declining at elevations below 130 m) stands at three sites along an elevational gradient in the heart of the decline...

  11. Cognitive Factors Affecting Freeze-like Behavior in Humans.

    Science.gov (United States)

    Alban, Michael W; Pocknell, Victoria

    2017-01-01

    Contemporary research on survival-related defensive behaviors has identified physiological markers of freeze/flight/fight. Our research focused on cognitive factors associated with freeze-like behavior in humans. Study 1 tested if an explicit decision to freeze is associated with the psychophysiological state of freezing. Heart rate deceleration occurred when participants chose to freeze. Study 2 varied the efficacy of freezing relative to other defense options and found "freeze" was responsive to variations in the perceived effectiveness of alternative actions. Study 3 tested if individual differences in motivational orientation affect preference for a "freeze" option when the efficacy of options is held constant. A trend in the predicted direction suggested that naturally occurring cognitions led loss-avoiders to select "freeze" more often than reward-seekers. In combination, our attention to the cognitive factors affecting freeze-like behavior in humans represents a preliminary step in addressing an important but neglected research area.

  12. Vertical gradients in species richness and community composition across the twilight zone in the North Pacific Subtropical Gyre.

    Science.gov (United States)

    Sommer, Stephanie A; Van Woudenberg, Lauren; Lenz, Petra H; Cepeda, Georgina; Goetze, Erica

    2017-11-01

    Although metazoan animals in the mesopelagic zone play critical roles in deep pelagic food webs and in the attenuation of carbon in midwaters, the diversity of these assemblages is not fully known. A metabarcoding survey of mesozooplankton diversity across the epipelagic, mesopelagic and upper bathypelagic zones (0-1500 m) in the North Pacific Subtropical Gyre revealed far higher estimates of species richness than expected given prior morphology-based studies in the region (4,024 OTUs, 10-fold increase), despite conservative bioinformatic processing. Operational taxonomic unit (OTU) richness of the full assemblage peaked at lower epipelagic-upper mesopelagic depths (100-300 m), with slight shoaling of maximal richness at night due to diel vertical migration, in contrast to expectations of a deep mesopelagic diversity maximum as reported for several plankton groups in early systematic and zoogeographic studies. Four distinct depth-stratified species assemblages were identified, with faunal transitions occurring at 100 m, 300 m and 500 m. Highest diversity occurred in the smallest zooplankton size fractions (0.2-0.5 mm), which had significantly lower % OTUs classified due to poor representation in reference databases, suggesting a deep reservoir of poorly understood diversity in the smallest metazoan animals. A diverse meroplankton assemblage also was detected (350 OTUs), including larvae of both shallow and deep living benthic species. Our results provide some of the first insights into the hidden diversity present in zooplankton assemblages in midwaters, and a molecular reappraisal of vertical gradients in species richness, depth distributions and community composition for the full zooplankton assemblage across the epipelagic, mesopelagic and upper bathypelagic zones. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  13. Immersion freezing by SnomaxTM particles: Comparison of results from different instruments

    Science.gov (United States)

    Wex, Heike; Stratmann, Frank; Rösch, Michael; Niedermeier, Dennis; Nilius, Björn; Möhler, Ottmar; Mitra, Subir K.; Koop, Thomas; Jantsch, Evelyn; Hiranuma, Naruki; Diehl, Karoline; Curtius, Joachim; Budke, Carsten; Boose, Yvonne; Augustin, Stefanie

    2014-05-01

    Within the DFG funded research unit INUIT (Ice Nucleation research UnIT, FOR 1525), an effort was made to compare results on immersion freezing from a suite of different instruments. Besides mineral dusts, SnomaxTM was picked as one of the substances that were examined by all participating groups. Here, the comparison of the results for SnomaxTM is presented. Every participating group used SnomaxTM from the same batch and, as far as possible, the same particle generation set-up. Instruments participating in the comparison were, in alphabetical order, an acoustic levitator (Diehl et al., 2009), AIDA (Connolly et al., 2009), BINARY (Budke et al., 2013), FINCH (Bundke et al., 2008), LACIS (Hartmann et al., 2011), PINC (Chou et al., 2011) and the Mainz vertical windtunnel (Diehl et al., 2011). Some of the instruments examined droplets directly produced from SnomaxTM suspensions, where the suspensions could have a wide range of concentrations. Other instruments used size segregated particles which were generated via atomization from a SnomaxTM suspension and subsequent drying, followed by size selection with a DMA (Differential Mobility Analyzer). These particles were then activated to droplets and cooled subsequently. For these, the number of ice nucleation active protein complexes present in the droplets depended on the original particle size (for details see e.g. Hartmann et al., 2013). Also, the different measurements spanned a range of different time scales. The shortest residence time of roughly 1 second was used for LACIS measurements, and the longest one was about 6 seconds used in the BINARY setup with a cooling rate of 1 K/min. All data were evaluated using two different approaches: 1) a time dependent approach following Classical Nucleation Theory which included the use of a contact angle distribution (see Niedermeier et al., 2014); 2) a singular approach using an active site density per mass (see Vali, 1971, Murray et al., 2012). Both approaches were found

  14. 9 CFR 590.536 - Freezing operations.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Freezing operations. 590.536 Section 590.536 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG..., and Facility Requirements § 590.536 Freezing operations. (a) Freezing rooms shall be kept clean and...

  15. 9 CFR 590.534 - Freezing facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Freezing facilities. 590.534 Section 590.534 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG..., and Facility Requirements § 590.534 Freezing facilities. (a) Freezing rooms, either on or off the...

  16. 3 CFR - Pay Freeze

    Science.gov (United States)

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Pay Freeze Presidential Documents Other Presidential Documents Memorandum of January 21, 2009 Pay Freeze Memorandum for the Assistant to the President and Chief... the White House staff forgo pay increases until further notice. Accordingly, as a signal of our shared...

  17. Gradient computation for VTI acoustic wavefield tomography

    KAUST Repository

    Li, Vladimir

    2016-09-06

    Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a pseudospectral operator that employes a separable approximation of the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified stack-power objective functions. We also obtain the gradient expressions for the data-domain objective function, which can incorporate borehole information necessary for stable VTI velocity analysis. These gradients are compared to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations. Whereas the kernels computed with the two wave-equation operators are similar, the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show that the modified stack-power objective function produces cleaner gradients than the more conventional DSO operator.

  18. Soil respiration and carbon loss relationship with temperature and land use conversion in freeze-thaw agricultural area.

    Science.gov (United States)

    Ouyang, Wei; Lai, Xuehui; Li, Xia; Liu, Heying; Lin, Chunye; Hao, Fanghua

    2015-11-15

    Soil respiration (Rs) was hypothesized to have a special response pattern to soil temperature and land use conversion in the freeze-thaw area. The Rs differences of eight types of land use conversions during agricultural development were observed and the impacts of Rs on soil organic carbon (SOC) loss were assessed. The land use conversions during last three decades were categorized into eight types, and the 141 SOC sampling sites were grouped by conversion type. The typical soil sampling sites were subsequently selected for monitoring of soil temperature and Rs of each land use conversion types. The Rs correlations with temperature at difference depths and different conversion types were identified with statistical analysis. The empirical mean error model and the biophysical theoretical model with Arrhenius equation about the Rs sensitivity to temperature were both analyzed and shared the similar patterns. The temperature dependence of soil respiration (Q10) analysis further demonstrated that the averaged value of eight types of land use in this freeze-thaw agricultural area ranged from 1.15 to 1.73, which was lower than the other cold areas. The temperature dependence analysis demonstrated that the Rs in the top layer of natural land covers was more sensitive to temperature and experienced a large vertical difference. The natural land covers exhibited smaller Rs and the farmlands had the bigger value due to tillage practices. The positive relationships between SOC loss and Rs were identified, which demonstrated that Rs was the key chain for SOC loss during land use conversion. The spatial-vertical distributions of SOC concentration with the 1.5-km grid sampling showed that the more SOC loss in the farmland, which was coincided with the higher Rs in farmlands. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze-thaw agricultural area. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze

  19. The role of vertical shear on the horizontal oceanic dispersion

    OpenAIRE

    A. S. Lanotte; R. Corrado; G. Lacorata; L. Palatella; C. Pizzigalli; I. Schipa; R. Santoleri

    2015-01-01

    The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of South Mediterranean is investigated by means of observative and model data. In-situ current measurements reveal that vertical velocity gradients in the upper mixed layer decorrelate quite fast (∼ 1 day), whereas basin-scale ocean circulation models tend to overestimate such decorrelation time because of finite resolution effects. Horizontal dispers...

  20. Vertical distribution and fluxes of ammonia at Great Dun Fell

    Science.gov (United States)

    Sutton, M. A.; Perthue, E.; Fowler, D.; Storeton-West, R. L.; Cape, J. N.; Arends, B. G.; Möls, J. J.

    As part of the study of the ammonia budget over Great Dun Fell, measurements of fluxes of gaseous ammonia (NH 3) with the hill surface (grass moorland and blanket bog) were made using micrometeorological techniques, to provide information on NH 3 removal by the hill surface and on vertical concentration gradients. Measurements of vertical concentration, χ, profiles of NH 3 concentration were coupled with turbulent diffusivities to determine fluxes, Fg deposition velocities, and canopy resistances, Rc to uptake by the ground. Consistent with published measurements for this site, NH 3 was generally found to deposit efficiently to the vegetation canopy, with mean Rc of 5 and 27 s m - for example days shown. However, short periods of NH 3 emission from the moorland were also observed at small χ (cloud processing: depletion of χ by in-cloud reaction would be expected to favour NH 3 emission from down-wind agricultural land and moorland, though emission from the hill itself during immersion in cloud is unlikely. Comparison of two measurement techniques to determine air concentrations (batch wet rotating denuder, inlet 0.5 m height; continuous wet denuder, inlets 0.3, 2 m heights) showed acceptable agreement, although because vertical concentration gradients were large (small Rc) the height of sampling had a substantial effect. Vertical gradients are also relevant to the use of the measured concentrations as estimates of NH 3 in the air mass passing over the hill, for modelling atmospheric budgets. Where NH 3 deposition occurs at the maximum rate, concentrations measured at 1 m require a 35% correction in neutral conditions when scaling to a reference height of 10 m.

  1. Tree mortality from a short-duration freezing event and global-change-type drought in a Southwestern piñon-juniper woodland, USA

    Science.gov (United States)

    2014-01-01

    This study documents tree mortality in Big Bend National Park in Texas in response to the most acute one-year drought on record, which occurred following a five-day winter freeze. I estimated changes in forest stand structure and species composition due to freezing and drought in the Chisos Mountains of Big Bend National Park using permanent monitoring plot data. The drought killed over half (63%) of the sampled trees over the entire elevation gradient. Significant mortality occurred in trees up to 20 cm diameter (P Pinus cembroides Zucc. experienced the highest seedling and tree mortality (P droughts under climate change will likely cause even greater damage to trees that survived this record drought, especially if such events follow freezes. The results from this study highlight the vulnerability of trees in the Southwest to climatic change and that future shifts in forest structure can have large-scale community consequences. PMID:24949231

  2. Facile Route to Vertically Aligned High-Aspect Ratio Block Copolymer Films via Dynamic Zone Annealing

    Science.gov (United States)

    Singh, Gurpreet; Kulkarni, Manish; Yager, Kevin; Smilgies, Detlef; Bucknall, David; Karim, Alamgir

    2012-02-01

    Directed assembly of block copolymers (BCP) can be used to fabricate a diversity of nanostructures useful for nanotech applications. The ability to vertically orient etchable high aspect ratio (˜30) ordered BCP domains on flexible substrates via continuous processing methods are particularly attractive for nanomanufacturing. We apply sharp dynamic cold zone annealing (CZA-S) to create etchable, and predominantly vertically oriented 30nm cylindrical domains in 1 μm thick poly(styrene-b-methylmethacrylate) films on low thermal conductivity rigid (quartz) and flexible (PDMS & Kapton) substrates. Under similar static conditions, temporally stable vertical cylinders form within a narrow zone above a critical temperature gradient. Primary ordering mechanism of CZA-S involves sweeping this vertically orienting zone created at maximum thermal gradient. An optimal speed is needed since the process competes with preferential surface wetting dynamics that favors parallel orientation. GISAXS of etched BCP films confirms internal morphology.

  3. The photospheric vector magnetic field of a sunspot and its vertical gradient

    Science.gov (United States)

    Hagyard, M. J.; West, E. A.; Tandberg-Hanssen, E.; Smith, J. E.; Henze, W., Jr.; Beckers, J. M.; Bruner, E. C.; Hyder, C. L.; Gurman, J. B.; Shine, R. A.

    1981-01-01

    The results of direct comparisons of photospheric and transition region line-of-sight field observations of sunspots using the SMM UV spectrometer and polarimeter are reported. The analysis accompanying the data is concentrated on demonstrating that the sunspot concentrated magnetic field extends into the transition region. An observation of a sunspot on Oct. 23, 1980 at the S 18 E 03 location is used as an example. Maximum field strengths ranged from 2030-2240 gauss for large and small umbrae viewed and inclination of the field to the line-of-sight was determined for the photosphere and transition region. The distribution of the magnetic field over the sunspot and variation of the line-of-sight gradient are discussed, as are the magnitudes and gradients of the photospheric field across the penumbral-photospheric boundaries.

  4. Canalization of freeze tolerance in an alpine grasshopper.

    Science.gov (United States)

    Hawes, Timothy C

    2015-10-01

    In the Rock and Pillar Range, New Zealand, the alpine grasshopper, Sigaus australis Hutton, survives equilibrium freezing (EF) all-year round. A comparison of freeze tolerance (FT) in grasshoppers over four austral seasons for a 1 year period finds that: (a) the majority (>70%) of the sample population of grasshoppers survive single freeze-stress throughout the year; (b) exposure to increased freeze stress (multiple freeze-stress events) does not lead to a loss of freeze tolerance; and (c) responses to increased freeze stress reveal seasonal tuning of the FT adaptation to environmental temperatures. The Rock and Pillar sample population provides a clear example of the canalization of the FT adaptation. Seasonal variability in the extent of tolerance of multiple freezing events indicates that physiology is modulated to environmental temperatures by phenotypic plasticity - i.e. the FT adaptation is permanent and adjustable. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    OpenAIRE

    Mingkai Liu; Yuqing Liu; Yuting Zhang; Yiliao Li; Peng Zhang; Yan Yan; Tianxi Liu

    2016-01-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of ?closed? pores which cannot load the active SnO2 nanoparticles, further ensure quick immersio...

  6. Freezing of bentonite. Experimental studies and theoretical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, Martin; Karnland, Ola; Nilsson, Ulf (Clay Technology AB, Lund (Sweden))

    2010-01-15

    recorded continuously. The samples have been varied with respect to bentonite type (e.g. calcium or sodium dominated), smectite content and density. The experimental results basically confirm all predictions of the developed theory. In particular: - A weak swelling pressure response above 0 deg C. - A strong and positive swelling pressure response below the freezing point of the external aqueous reservoir, in the order of 1.2 MPa/deg C. - The swelling pressure is completely lost at a specific temperature T{sub C}. The value of T{sub C} is determined solely by the value of the swelling pressure at 0 deg C. - Ice formation (i.e. freezing) occurs in the bentonite only below T{sub C}. - The freezing/thawing is completely reversible. The success of the single pore-type model to describe the process together with the observation that no pressure peaks was observed as the 0 deg C level was passed suggests that water saturated bentonite do contain a negligible amount of larger pores (> 50 nm) since these should freeze at temperatures close to 0 deg C with a resulting pressure increase. From a safety assessment point of view it can be concluded that freezing of the buffer will not occur during the repository lifetime as the reference density corresponds to a T{sub C} below -5 deg C and the lowest predicted temperature at repository depth is approximately -2 deg C. The possibility that the backfilled parts of the repository will freeze during its lifetime cannot be excluded as the backfill has a higher freezing temperature and will also be exposed to lower temperatures in vertically extended structures (ramps and shafts). The possible freezing of the backfill will not impose a problem however as freezing/thawing has been shown to be a reversible process. Part of the bentonite in the borehole seals will also freeze because of its location closer to ground level. The possibility of forming ice lenses by transporting water from lower unfrozen parts of the surrounding rock via the

  7. Freezing heat transfer within water-saturated porous media

    International Nuclear Information System (INIS)

    Sasaki, Akira; Aiba, Shinya; Fukusako, Shoichiro.

    1990-01-01

    In the present study, analytical and experimental investigations were performed so as to clarify the characteristics of freezing heat transfer in porous media saturated with water in a vertical rectangular cavity. In order to establish the momentum equation, the law of conservation of momentum was applied to the fluid in our control volume, and the equation took into account Forchheimer's extension as the resistance to flow in the porous media. Three different sizes of glass, iron and copper beads were used as the porous media in this study. The temperature of the cold wall was kept at -10degC, while that of the hot wall was varied from 2degC to 22 degC. Comparisons between the analytical results and the experimental ones show good agreement with the exception of the copper bead results. (author)

  8. On combined gravity gradient components modelling for applied geophysics

    International Nuclear Information System (INIS)

    Veryaskin, Alexey; McRae, Wayne

    2008-01-01

    Gravity gradiometry research and development has intensified in recent years to the extent that technologies providing a resolution of about 1 eotvos per 1 second average shall likely soon be available for multiple critical applications such as natural resources exploration, oil reservoir monitoring and defence establishment. Much of the content of this paper was composed a decade ago, and only minor modifications were required for the conclusions to be just as applicable today. In this paper we demonstrate how gravity gradient data can be modelled, and show some examples of how gravity gradient data can be combined in order to extract valuable information. In particular, this study demonstrates the importance of two gravity gradient components, Txz and Tyz, which, when processed together, can provide more information on subsurface density contrasts than that derived solely from the vertical gravity gradient (Tzz)

  9. Inflorescences of alpine cushion plants freeze autonomously and may survive subzero temperatures by supercooling

    Science.gov (United States)

    Hacker, Jürgen; Ladinig, Ursula; Wagner, Johanna; Neuner, Gilbert

    2011-01-01

    Freezing patterns in the high alpine cushion plants Saxifraga bryoides, Saxifraga caesia, Saxifraga moschata and Silene acaulis were studied by infrared thermography at three reproductive stages (bud, anthesis, fruit development). The single reproductive shoots of a cushion froze independently in all four species at every reproductive stage. Ice formation caused lethal damage to the respective inflorescence. After ice nucleation, which occurred mainly in the stalk or the base of the reproductive shoot, ice propagated throughout that entire shoot, but not into neighboring shoots. However, anatomical ice barriers within cushions were not detected. The naturally occurring temperature gradient within the cushion appeared to interrupt ice propagation thermally. Consequently, every reproductive shoot needed an autonomous ice nucleation event to initiate freezing. Ice nucleation was not only influenced by minimum temperatures but also by the duration of exposure. At moderate subzero exposure temperatures (−4.3 to −7.7 °C) the number of frozen inflorescences increased exponentially. Due to efficient supercooling, single reproductive shoots remained unfrozen down to −17.4 °C (cooling rate 6 K h−1). Hence, the observed freezing pattern may be advantageous for frost survival of individual inflorescences and reproductive success of high alpine cushion plants, when during episodic summer frosts damage can be avoided by supercooling. PMID:21151351

  10. Analysis of hydraulic gradients across the host rock at the proposed Texas Panhandle nuclear-waste repository site

    International Nuclear Information System (INIS)

    Bair, E.S.

    1987-01-01

    Analysis of the direction of ground-water flow across the host rock at the proposed high-level nuclear-waste repository site in Deaf Smith County, Texas, is complicated by vertical and lateral changes in the density of formation fluids in the various hydrogeologic units that overlie and underlie the proposed host rock. Because the concept of hydraulic head is not valid when evaluating vertical hydraulic gradients in a variably-density flow system, other methods were used to determine the direction and magnitude of vertical hydraulic gradients at the proposed site where the specific gravity of formation fluids varies between 1.00 and 1.28. The direction of ground-water flow across the proposed host rock, an 80-foot-thick salt bed in the Lower San Andres Formation, was determined by calculating vertical hydraulic gradients based on formation pressure and fluid density data, and by analysis of pressure-depth diagrams. Based on data from the vicinity of the proposed site, both methods indicate the potential for downflow across the host rock. Downflow or predominantly horizontal flow is considered a favorable prewaste emplacement condition because it prolongs the travel time to the biosphere of any naturally or accidentally released radionuclides

  11. Effect of magnetic field on food freezing

    OpenAIRE

    村田, 圭治; 奥村, 太一; 荒賀, 浩一; 小堀, 康功

    2010-01-01

    [Abstract] This paper presents an experimental investigation on effects of magnetic field on food freezing process. Although purpose of food freezing is to suppress the deterioration of food, freezing breaks food tissue down, and some nutrient and delicious element flow out after thawing. Recently, a few of refrigeration equipments with electric and magnetic fields have attracted attention from food production companies and mass media. Water and tuna were freezed in magnetic field (100kH, 1.3...

  12. Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology

    Directory of Open Access Journals (Sweden)

    I. Gouttevin

    2012-04-01

    Full Text Available Soil freezing is a major feature of boreal regions with substantial impact on climate. The present paper describes the implementation of the thermal and hydrological effects of soil freezing in the land surface model ORCHIDEE, which includes a physical description of continental hydrology. The new soil freezing scheme is evaluated against analytical solutions and in-situ observations at a variety of scales in order to test its numerical robustness, explore its sensitivity to parameterization choices and confront its performance to field measurements at typical application scales.

    Our soil freezing model exhibits a low sensitivity to the vertical discretization for spatial steps in the range of a few millimetres to a few centimetres. It is however sensitive to the temperature interval around the freezing point where phase change occurs, which should be 1 °C to 2 °C wide. Furthermore, linear and thermodynamical parameterizations of the liquid water content lead to similar results in terms of water redistribution within the soil and thermal evolution under freezing. Our approach does not allow firm discrimination of the performance of one approach over the other.

    The new soil freezing scheme considerably improves the representation of runoff and river discharge in regions underlain by permafrost or subject to seasonal freezing. A thermodynamical parameterization of the liquid water content appears more appropriate for an integrated description of the hydrological processes at the scale of the vast Siberian basins. The use of a subgrid variability approach and the representation of wetlands could help capture the features of the Arctic hydrological regime with more accuracy.

    The modeling of the soil thermal regime is generally improved by the representation of soil freezing processes. In particular, the dynamics of the active layer is captured with more accuracy, which is of crucial importance in the prospect of

  13. Measurement of the vertical temperature gradient at the Saclay Nuclear Research Centre

    International Nuclear Information System (INIS)

    Santelli, F.; Le Quino, R.

    1962-01-01

    A 109 m mast has been erected at the Saclay Nuclear Research Centre for the precise measurement of thermal gradients and gaseous effluents. This note describes the temperature measurement devices (thermocouple and thermo-resistor) and the first results obtained

  14. Measurement of electric field and gradient in the plasma sheath using clusters of floating microspheres

    International Nuclear Information System (INIS)

    Sheridan, T. E.; Katschke, M. R.; Wells, K. D.

    2007-01-01

    A method for measuring the time-averaged vertical electric field and its gradient in the plasma sheath using clusters with n=2 or 3 floating microspheres of known mass is described. The particle charge q is found by determining the ratio of the breathing frequency to the center-of-mass frequency for horizontal (in-plane) oscillations. The electric field at the position of the particles is then calculated using the measured charge-to-mass ratio, and the electric-field gradient is determined from the vertical resonance frequency. The Debye length is also found. Experimental results are in agreement with a simple sheath model

  15. Freezing of Lennard-Jones-type fluids

    International Nuclear Information System (INIS)

    Khrapak, Sergey A.; Chaudhuri, Manis; Morfill, Gregor E.

    2011-01-01

    We put forward an approximate method to locate the fluid-solid (freezing) phase transition in systems of classical particles interacting via a wide range of Lennard-Jones-type potentials. This method is based on the constancy of the properly normalized second derivative of the interaction potential (freezing indicator) along the freezing curve. As demonstrated recently it yields remarkably good agreement with previous numerical simulation studies of the conventional 12-6 Lennard-Jones (LJ) fluid [S.A.Khrapak, M.Chaudhuri, G.E.Morfill, Phys. Rev. B 134, 052101 (2010)]. In this paper, we test this approach using a wide range of the LJ-type potentials, including LJ n-6 and exp-6 models, and find that it remains sufficiently accurate and reliable in reproducing the corresponding freezing curves, down to the triple-point temperatures. One of the possible application of the method--estimation of the freezing conditions in complex (dusty) plasmas with ''tunable'' interactions--is briefly discussed.

  16. Freeze-thaw durability of air-entrained concrete.

    Science.gov (United States)

    Shang, Huai-Shuai; Yi, Ting-Hua

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to "the test method of long-term and durability on ordinary concrete" GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results.

  17. Momentum anisotropy at freeze out

    International Nuclear Information System (INIS)

    Feld, S.; Borghini, N.; Lang, C.

    2017-01-01

    The transition from a hydrodynamical modeling to a particle-based approach is a crucial element of the description of high-energy heavy-ion collisions. Assuming this “freeze out” happens instantaneously at each point of the expanding medium, we show that the local phase-space distribution of the emitted particles is asymmetric in momentum space. This suggests the use of anisotropic hydrodynamics for the last stages of the fluid evolution. We discuss how observables depend on the amount of momentum-space anisotropy at freeze out and how smaller or larger anisotropies allow for different values of the freeze-out temperature. (paper)

  18. Tree mortality from a short-duration freezing event and global-change-type drought in a Southwestern piñon-juniper woodland, USA.

    Science.gov (United States)

    Poulos, Helen M

    2014-01-01

    This study documents tree mortality in Big Bend National Park in Texas in response to the most acute one-year drought on record, which occurred following a five-day winter freeze. I estimated changes in forest stand structure and species composition due to freezing and drought in the Chisos Mountains of Big Bend National Park using permanent monitoring plot data. The drought killed over half (63%) of the sampled trees over the entire elevation gradient. Significant mortality occurred in trees up to 20 cm diameter (P Quercus emoryi Leibmann also experienced significant declines in tree density (P < 0.02) (30.9% and 20.7%, respectively). Subsequent droughts under climate change will likely cause even greater damage to trees that survived this record drought, especially if such events follow freezes. The results from this study highlight the vulnerability of trees in the Southwest to climatic change and that future shifts in forest structure can have large-scale community consequences.

  19. Bulk water freezing dynamics on superhydrophobic surfaces

    Science.gov (United States)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.

    2017-01-01

    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  20. Applicable technical method for freeze-substitution of high pressure ...

    African Journals Online (AJOL)

    bmshsj

    2011-11-02

    Quintana, 1994) are available for the microscopic visualization of intracellular organelles. Cryo- fixation, plunge freezing, propane jet freezing, cold metal block freezing, and high pressure freezing provide advantages over chemical ...

  1. Mechanisms of deterioration of nutrients. [of freeze dried foods

    Science.gov (United States)

    Karel, M.; Flink, J. M.

    1976-01-01

    Methods which produce freeze dried foods of improved quality were examined with emphasis on storage stability. Specific topics discussed include: microstructure of freeze dried systems, investigation of structural changes in freeze dried systems, artificial food matrices, osmotic preconcentration to yield improved quality freeze dried fruits, and storage stability of osmotically preconcentrated freeze dried fruits.

  2. The effect of water-soluble polymers on the microstructure and properties of freeze-cast alumina ceramics

    Science.gov (United States)

    Pekor, Christopher Michael

    Porous ceramics can be divided into three separate classes based on their pore size: microporous ceramics with pores less than 2 nm, mesoporous ceramics with pores in the range of 2--50 nm and macroporous ceramics with pores that are greater than 50 nm. In particular, macroporous ceramics are used in a variety of applications such as refractories, molten metal filtration, diesel particulate filters, heterogeneous catalyst supports and biomedical scaffolds. Freeze casting is a novel method used to create macroporous ceramics. In this method growing ice crystals act as a template for the pores and are solidified, often directionally, through a ceramic dispersion and removed from the green body through a freeze drying procedure. This method has attracted some attention over the past few years due to its relative simplicity, flexibility and environmental friendliness. On top of this freeze casting is capable of producing materials with high pore volume fractions, which is an advantage over processing by packing and necking of particles, where the pore volume fraction is typically less than 50%. Many of the basic processing variables that affect the freeze cast microstructure, such as the temperature gradient, interfacial velocity and solid loading of the dispersion have been well established in the literature. On the other hand, areas such as the effect of additives on the microstructure and mechanical properties have not been covered in great detail. In this study the concept of constitutional supercooling from basic solidification theory is used to explain the effects of two water-soluble polymers, polyethylene glycol and polyvinyl alcohol, on the microstructure of freeze cast alumina ceramics. In addition, changes in the observed microstructure will be related to experimentally determined values of permeability and compressive strength.

  3. Phenomena accompanying gradient-B drift injection of energetic ions into Tokamak plasmas

    International Nuclear Information System (INIS)

    Goldston, R.J.; Jassby, D.L.

    1976-01-01

    The application of vertically asymmetric toroidal-field ripple, in order to permit the gradient B-drift injection and subsequent capture of energetic ions, results in a new radial diffusion of banana orbits. The nearly mono-kinetic velocity distribution of gradient B-drifting ions in the outer plasma region represents a large source of free energy; and the nonambipolar inward drift of these ions modifies the radial electric field

  4. Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer

    International Nuclear Information System (INIS)

    Sorrentino, F.; Lien, Y.-H.; Rosi, G.; Tino, G. M.; Bertoldi, A.; Bodart, Q.; Cacciapuoti, L.; Angelis, M. de; Prevedelli, M.

    2012-01-01

    We demonstrate a method to measure the gravitational acceleration with a dual cloud atom interferometer; the use of simultaneous atom interferometers reduces the effect of seismic noise on the gravity measurement. At the same time, the apparatus is capable of accurate measurements of the vertical gravity gradient. The ability to determine the gravity acceleration and gravity gradient simultaneously and with the same instrument opens interesting perspectives in geophysical applications.

  5. Freeze Protection in Gas Holders

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Duursma, Gail

    In cold weather, the water seals of gasholders need protection from freez- ing to avoid compromising the seal. These holders have a large reservoir of “tank water” at the base which is below ground. At present freeze- protection is achieved by external heating of the seal water which...

  6. Horizontal and vertical structure of reactive bromine events probed by bromine monoxide MAX-DOAS

    Directory of Open Access Journals (Sweden)

    W. R. Simpson

    2017-08-01

    Full Text Available Heterogeneous photochemistry converts bromide (Br− to reactive bromine species (Br atoms and bromine monoxide, BrO that dominate Arctic springtime chemistry. This phenomenon has many impacts such as boundary-layer ozone depletion, mercury oxidation and deposition, and modification of the fate of hydrocarbon species. To study environmental controls on reactive bromine events, the BRomine, Ozone, and Mercury EXperiment (BROMEX was carried out from early March to mid-April 2012 near Barrow (Utqiaġvik, Alaska. We measured horizontal and vertical gradients in BrO with multiple-axis differential optical absorption spectroscopy (MAX-DOAS instrumentation at three sites, two mobile and one fixed. During the campaign, a large crack in the sea ice (an open lead formed pushing one instrument package ∼ 250 km downwind from Barrow (Utqiaġvik. Convection associated with the open lead converted the BrO vertical structure from a surface-based event to a lofted event downwind of the lead influence. The column abundance of BrO downwind of the re-freezing lead was comparable to upwind amounts, indicating direct reactions on frost flowers or open seawater was not a major reactive bromine source. When these three sites were separated by ∼ 30 km length scales of unbroken sea ice, the BrO amount and vertical distributions were highly correlated for most of the time, indicating the horizontal length scales of BrO events were typically larger than ∼ 30 km in the absence of sea ice features. Although BrO amount and vertical distribution were similar between sites most of the time, rapid changes in BrO with edges significantly smaller than this ∼ 30 km length scale episodically transported between the sites, indicating BrO events were large but with sharp edge contrasts. BrO was often found in shallow layers that recycled reactive bromine via heterogeneous reactions on snowpack. Episodically, these surface-based events propagated aloft when

  7. Freeze dehydration of milk using microwave energy

    International Nuclear Information System (INIS)

    Souda, K.B.; Akyel, C.; Bilgen, E.

    1989-01-01

    This paper presents the results of experimental studies on heat and mass transfer during a microwave freeze dehydration process. An experimental system and procedure was developed to freeze dry milk. A 2500-W microwave system with an appropriate wave guide was set up and instrumented, and a procedure was experimentally developed to obtain milk powder first by freezing milk and then dehydrating it at low pressure using microwave energy. An unsteady-state analysis was used to derive a one-dimensional mathematical model of the freeze dehydration process in a microwave electromagnetic field

  8. Freeze-Thaw Durability of Air-Entrained Concrete

    Directory of Open Access Journals (Sweden)

    Huai-Shuai Shang

    2013-01-01

    Full Text Available One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles. The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss and internal crack growth (characterized by the loss of dynamic modulus of elasticity. The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to “the test method of long-term and durability on ordinary concrete” GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results.

  9. A Theory of Immersion Freezing

    Science.gov (United States)

    Barahona, Donifan

    2017-01-01

    Immersion freezing is likely involved in the initiation of precipitation and determines to large extent the phase partitioning in convective clouds. Theoretical models commonly used to describe immersion freezing in atmospheric models are based on the classical nucleation theory which however neglects important interactions near the immersed particle that may affect nucleation rates. This work introduces a new theory of immersion freezing based on two premises. First, immersion ice nucleation is mediated by the modification of the properties of water near the particle-liquid interface, rather than by the geometry of the ice germ. Second, the same mechanism that leads to the decrease in the work of germ formation also decreases the mobility of water molecules near the immersed particle. These two premises allow establishing general thermodynamic constraints to the ice nucleation rate. Analysis of the new theory shows that active sites likely trigger ice nucleation, but they do not control the overall nucleation rate nor the probability of freezing. It also suggests that materials with different ice nucleation efficiency may exhibit similar freezing temperatures under similar conditions but differ in their sensitivity to particle surface area and cooling rate. Predicted nucleation rates show good agreement with observations for a diverse set of materials including dust, black carbon and bacterial ice nucleating particles. The application of the new theory within the NASA Global Earth System Model (GEOS-5) is also discussed.

  10. Simulations of Flame Acceleration and DDT in Mixture Composition Gradients

    Science.gov (United States)

    Zheng, Weilin; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine

    2017-11-01

    Unsteady, multidimensional, fully compressible numerical simulations of methane-air in an obstructed channel with spatial gradients in equivalence ratios have been carried to determine the effects of the gradients on flame acceleration and transition to detonation. Results for gradients perpendicular to the propagation direction were considered here. A calibrated, optimized chemical-diffusive model that reproduces correct flame and detonation properties for methane-air over a range of equivalence ratios was derived from a combination of a genetic algorithm with a Nelder-Mead optimization scheme. Inhomogeneous mixtures of methane-air resulted in slower flame acceleration and longer distance to DDT. Detonations were more likely to decouple into a flame and a shock under sharper concentration gradients. Detailed analyses of temperature and equivalence ratio illustrated that vertical gradients can greatly affect the formation of hot spots that initiate detonation by changing the strength of leading shock wave and local equivalence ratio near the base of obstacles. This work is supported by the Alpha Foundation (Grant No. AFC215-20).

  11. A measurement system for vertical seawater profiles close to the air-sea interface

    Science.gov (United States)

    Sims, Richard P.; Schuster, Ute; Watson, Andrew J.; Yang, Ming Xi; Hopkins, Frances E.; Stephens, John; Bell, Thomas G.

    2017-09-01

    This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s-1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.

  12. Viral lysis of marine microbes in relation to vertical stratification

    NARCIS (Netherlands)

    Mojica, K.D.A.

    2015-01-01

    The overall aim of this thesis is to investigate how changes in vertical stratification affect autotrophic and heterotrophic microbial communities along a meridional gradient in the Atlantic Ocean. The Northeast Atlantic Ocean is a key area in global ocean circulation and a important sink for

  13. Tight junction regulates epidermal calcium ion gradient and differentiation

    International Nuclear Information System (INIS)

    Kurasawa, Masumi; Maeda, Tetsuo; Oba, Ai; Yamamoto, Takuya; Sasaki, Hiroyuki

    2011-01-01

    Research highlights: → We disrupted epidermal tight junction barrier in reconstructed epidermis. → It altered Ca 2+ distribution and consequentially differentiation state as well. → Tight junction should affect epidermal homeostasis by maintaining Ca 2+ gradient. -- Abstract: It is well known that calcium ions (Ca 2+ ) induce keratinocyte differentiation. Ca 2+ distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca 2+ gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca 2+ gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca 2+ flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca 2+ gradient.

  14. Inversion gradients for acoustic VTI wavefield tomography

    KAUST Repository

    Li, Vladimir; Wang, Hui; Tsvankin, Ilya; Dí az, Esteban; Alkhalifah, Tariq Ali

    2017-01-01

    Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a generalized pseudospectral operator based on a separable approximation for the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified image-power objective functions. We also obtain the gradient expressions for a data-domain objective function that can more easily incorporate borehole information necessary for stable VTI velocity analysis. These gradients are similar to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations but the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show the potential advantages of the modified image-power objective function in estimating the anellipticity parameter η.

  15. Inversion gradients for acoustic VTI wavefield tomography

    KAUST Repository

    Li, Vladimir

    2017-03-21

    Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a generalized pseudospectral operator based on a separable approximation for the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified image-power objective functions. We also obtain the gradient expressions for a data-domain objective function that can more easily incorporate borehole information necessary for stable VTI velocity analysis. These gradients are similar to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations but the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show the potential advantages of the modified image-power objective function in estimating the anellipticity parameter η.

  16. Freezing tolerance of conifer seeds and germinants.

    Science.gov (United States)

    Hawkins, B J; Guest, H J; Kolotelo, D

    2003-12-01

    Survival after freezing was measured for seeds and germinants of four seedlots each of interior spruce (Picea glauca x engelmannii complex), lodgepole pine (Pinus contorta Dougl. ex Loud.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western red cedar (Thuja plicata Donn ex D. Donn). Effects of eight seed treatments on post-freezing survival of seeds and germinants were tested: dry, imbibed and stratified seed, and seed placed in a growth chamber for 2, 5, 10, 15, 20 or 30 days in a 16-h photoperiod and a 22/17 degrees C thermoperiod. Survival was related to the water content of seeds and germinants, germination rate and seedlot origin. After freezing for 3 h at -196 degrees C, dry seed of most seedlots of interior spruce, Douglas-fir and western red cedar had 84-96% germination, whereas lodgepole pine seedlots had 53-82% germination. Freezing tolerance declined significantly after imbibition in lodgepole pine, Douglas-fir and interior spruce seed (western red cedar was not tested), and mean LT50 of imbibed seed of these species was -30, -24.5 and -20 degrees C, respectively. Freezing tolerance continued to decline to a minimum LT50 of -4 to -7 degrees C after 10 days in a growth chamber for interior spruce, Douglas-fir and lodgepole pine, or after 15 days for western red cedar. Minimum freezing tolerance was reached at the stage of rapid hypocotyl elongation. In all species, a slight increase in freezing tolerance of germinants was observed once cotyledons emerged from the seed coat. The decrease in freezing tolerance during the transition from dry to germinating seed correlated with increases in seed water content. Changes in freezing tolerance between 10 and 30 days in the growth chamber were not correlated with seedling water content. Within a species, seedlots differed significantly in freezing tolerance after 2 or 5 days in the growth chamber. Because all seedlots of interior spruce and lodgepole pine germinated quickly, there was no correlation

  17. Physical Stability of Freeze-Dried Isomalt Diastereomer Mixtures

    DEFF Research Database (Denmark)

    Koskinen, Anna-Kaisa; Fraser-Miller, Sara J.; Bøtker, Johan P.

    2016-01-01

    Purpose Isomalt is a sugar alcohol used as an excipient in commercially available solid oral dosage forms. The potential of isomalt as a novel freeze-drying excipient was studied in order to increase knowledge of the behavior of isomalt when it is freeze-dried. Methods Isomalt was freeze-dried in......Purpose Isomalt is a sugar alcohol used as an excipient in commercially available solid oral dosage forms. The potential of isomalt as a novel freeze-drying excipient was studied in order to increase knowledge of the behavior of isomalt when it is freeze-dried. Methods Isomalt was freeze......-dried in four different diastereomer compositions and its physical stability was investigated with differential scanning calorimetry, Fourier-transform infrared and Raman spectroscopy, X-ray powder diffraction, Karl-Fischer titration and thermogravimetric analysis in order to verify the solid state form...... of the diastereomer compositions showed signs of physical instability when stored in the highest relative humidity condition. The four different crystalline diastereomer mixtures showed specific identifiable solid state properties. Conclusions Isomalt was shown to be a suitable excipient for freeze-drying. Preferably...

  18. Vertical stratification of physical, chemical and biological components in two saline lakes Shira and Shunet (South Siberia, Russia)

    NARCIS (Netherlands)

    Degermendzhy, A.G.; Zadereev, E.S.; Rogozin, D.Y.; Prokopkin, I.; Barkhatov, Y.V.; Tolomeev, A.; Khromechek, E.B.; Janse, J.H.; Mooij, W.M.; Gulati, R.D.

    2010-01-01

    A feature of meromictic lakes is that several physicochemical and biological gradients affect the vertical distribution of different organisms. The vertical stratification of physical, chemical and biological components in saline, fishless meromictic lakes Shira and Shunet (Siberia, Russia) is quite

  19. The Metallicity Gradient of the Old Galactic Bulge Population

    Science.gov (United States)

    Sans Fuentes, Sara Alejandra; De Ridder, Joris

    Understanding the structure, formation and evolution of the Galactic Bulge requires the proper determination of spatial metallicity gradients in both the radial and vertical directions. RR Lyrae pulsators, known to be excellent distance indicators, may hold the key to determining these gradients. Jurcsik and Kovacs (A&A 312:111, 1996) has shown that RR Lyrae light curves and the phase difference of their Fourier decomposition, ϕ 31, can be used to estimate photometric metallicities. The existence of galactic bulge metallicity gradients is a currently debated topic that would help pinpoint the Galaxy's formation and evolution. A recent study of the OGLE-III Galactic Bulge RR Lyrae Population by Pietrukowicz et al. (ApJ 750:169, 2012) suggests that the spatial distribution is uniform. We investigate how small a gradient would be detectable within the current S/N levels of the present data set, given the random and systematic errors associated with the derivation of a photometric metallicity versus spatial position relationship.

  20. Freezing the Master Production Schedule Under Rolling Planning Horizons

    OpenAIRE

    V. Sridharan; William L. Berry; V. Udayabhanu

    1987-01-01

    The stability of the Master Production Schedule (MPS) is a critical issue in managing production operations with a Material Requirements Planning System. One method of achieving stability is to freeze some portion or all of the MPS. While freezing the MPS can limit the number of schedule changes, it can also produce an increase in production and inventory costs. This paper examines three decision variables in freezing the MPS: the freezing method, the freeze interval length, and the planning ...

  1. Light gradients and optical microniches in coral tissues

    Directory of Open Access Journals (Sweden)

    Daniel eWangpraseurt

    2012-08-01

    Full Text Available Light quantity and quality are among the most important factors determining the physiology and stress response of zooxanthellate corals. Yet, almost nothing is known about the light field that Symbiodinium experiences within their coral host, and the basic optical properties of coral tissue are unknown. We used scalar irradiance microprobes to characterise vertical and lateral light gradients within and across tissues of several coral species. Our results revealed the presence of steep light gradients with PAR (photosynthetically available radiation decreasing by about one order of magnitude from the tissue surface to the coral skeleton. Surface scalar irradiance was consistently higher over polyp tissue than over coenosarc tissue in faviid corals. Coral bleaching increased surface scalar irradiance by ~150% (between 500-700 nm relative to a healthy coral. Photosynthesis peaked around 300 µm within the tissue, which corresponded to a zone exhibiting strongest depletion of scalar irradiance. Deeper coral tissue layers, e.g. ~1000 µm into aboral polyp tissues, harbor optical microniches, where only ~10% of the incident irradiance remains. We conclude that the optical microenvironment of corals exhibits strong lateral and vertical gradients of scalar irradiance, which are affected by both tissue and skeleton optical properties. Our results imply that zooxanthellae populations inhabit a strongly heterogeneous light environment and highlight the presence of different optical microniches in corals; an important finding for understanding the photobiology, stress response, as well as the phenotypic and genotypic plasticity of coral symbionts.

  2. Scattering-angle based filtering of the waveform inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it's ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.

  3. Scattering-angle based filtering of the waveform inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-11-22

    Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it\\'s ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.

  4. Comparing contact and immersion freezing from continuous flow diffusion chambers

    Directory of Open Access Journals (Sweden)

    B. Nagare

    2016-07-01

    Full Text Available Ice nucleating particles (INPs in the atmosphere are responsible for glaciating cloud droplets between 237 and 273 K. Different mechanisms of heterogeneous ice nucleation can compete under mixed-phase cloud conditions. Contact freezing is considered relevant because higher ice nucleation temperatures than for immersion freezing for the same INPs were observed. It has limitations because its efficiency depends on the number of collisions between cloud droplets and INPs. To date, direct comparisons of contact and immersion freezing with the same INP, for similar residence times and concentrations, are lacking. This study compares immersion and contact freezing efficiencies of three different INPs. The contact freezing data were obtained with the ETH CoLlision Ice Nucleation CHamber (CLINCH using 80 µm diameter droplets, which can interact with INPs for residence times of 2 and 4 s in the chamber. The contact freezing efficiency was calculated by estimating the number of collisions between droplets and particles. Theoretical formulations of collision efficiencies gave too high freezing efficiencies for all investigated INPs, namely AgI particles with 200 nm electrical mobility diameter, 400 and 800 nm diameter Arizona Test Dust (ATD and kaolinite particles. Comparison of freezing efficiencies by contact and immersion freezing is therefore limited by the accuracy of collision efficiencies. The concentration of particles was 1000 cm−3 for ATD and kaolinite and 500, 1000, 2000 and 5000 cm−3 for AgI. For concentrations  <  5000 cm−3, the droplets collect only one particle on average during their time in the chamber. For ATD and kaolinite particles, contact freezing efficiencies at 2 s residence time were smaller than at 4 s, which is in disagreement with a collisional contact freezing process but in accordance with immersion freezing or adhesion freezing. With “adhesion freezing”, we refer to a contact nucleation

  5. 7 CFR 58.620 - Freezing and packaging rooms.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Freezing and packaging rooms. 58.620 Section 58.620 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....620 Freezing and packaging rooms. The rooms used for freezing and packaging frozen desserts shall be...

  6. Modeling chemical gradients in sediments under losing and gaining flow conditions: The GRADIENT code

    Science.gov (United States)

    Boano, Fulvio; De Falco, Natalie; Arnon, Shai

    2018-02-01

    Interfaces between sediments and water bodies often represent biochemical hotspots for nutrient reactions and are characterized by steep concentration gradients of different reactive solutes. Vertical profiles of these concentrations are routinely collected to obtain information on nutrient dynamics, and simple codes have been developed to analyze these profiles and determine the magnitude and distribution of reaction rates within sediments. However, existing publicly available codes do not consider the potential contribution of water flow in the sediments to nutrient transport, and their applications to field sites with significant water-borne nutrient fluxes may lead to large errors in the estimated reaction rates. To fill this gap, the present work presents GRADIENT, a novel algorithm to evaluate distributions of reaction rates from observed concentration profiles. GRADIENT is a Matlab code that extends a previously published framework to include the role of nutrient advection, and provides robust estimates of reaction rates in sediments with significant water flow. This work discusses the theoretical basis of the method and shows its performance by comparing the results to a series of synthetic data and to laboratory experiments. The results clearly show that in systems with losing or gaining fluxes, the inclusion of such fluxes is critical for estimating local and overall reaction rates in sediments.

  7. Digital Microfluidic System with Vertical Functionality

    Directory of Open Access Journals (Sweden)

    Brian F. Bender

    2015-11-01

    Full Text Available Digital (droplet microfluidics (DµF is a powerful platform for automated lab-on-a-chip procedures, ranging from quantitative bioassays such as RT-qPCR to complete mammalian cell culturing. The simple MEMS processing protocols typically employed to fabricate DµF devices limit their functionality to two dimensions, and hence constrain the applications for which these devices can be used. This paper describes the integration of vertical functionality into a DµF platform by stacking two planar digital microfluidic devices, altering the electrode fabrication process, and incorporating channels for reversibly translating droplets between layers. Vertical droplet movement was modeled to advance the device design, and three applications that were previously unachievable using a conventional format are demonstrated: (1 solutions of calcium dichloride and sodium alginate were vertically mixed to produce a hydrogel with a radially symmetric gradient in crosslink density; (2 a calcium alginate hydrogel was formed within the through-well to create a particle sieve for filtering suspensions passed from one layer to the next; and (3 a cell spheroid formed using an on-chip hanging-drop was retrieved for use in downstream processing. The general capability of vertically delivering droplets between multiple stacked levels represents a processing innovation that increases DµF functionality and has many potential applications.

  8. Parameter Sensitivity of the Microdroplet Vacuum Freezing Process

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2015-01-01

    Full Text Available The vacuum freezing process of microdroplets (1 mm. Pressure and droplet diameter have an effect on cooling and freezing stages, but initial temperature only affects the cooling stage. The thermal conductivity coefficient kl affected the cooling stage, whereas ki affected the freezing stage. Heat capacity Cl affected the cooling stage, but Ci has virtually no effect on all stages. The actual latent heat of freezing ΔH was also affected. Higher density corresponds to lower cooling rate in the cooling stage.

  9. Air-cooled steam condensers non-freeze warranties

    Energy Technology Data Exchange (ETDEWEB)

    Larinoff, M.W.

    1995-09-01

    What this paper is suggesting is the seller quote a condenser package with a LIMITED NON-FREEZE WARRANTY. Relieve the inexperienced buyer of the responsibility for selecting freeze protection design options. The seller cannot afford to over-design because of the added costs and the need for a competitive price. Yet he cannot under-design and allow the condenser tubes to freeze periodically and then pay the repair bills in accordance with the warranty.

  10. The evolution of stellar metallicity gradients of the Milky Way disk from LSS-GAC main sequence turn-off stars: a two-phase disk formation history?

    International Nuclear Information System (INIS)

    Xiang, Mao-Sheng; Liu, Xiao-Wei; Huang, Yang; Wang, Chun; Ren, Juan-Juan; Chen, Bing-Qiu; Sun, Ning-Chen; Zhang, Hua-Wei; Yuan, Hai-Bo; Rebassa-Mansergas, Alberto; Huo, Zhi-Ying

    2015-01-01

    Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk. We use 297 042 main sequence turn-off stars selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC) to determine the radial and vertical gradients of stellar metallicity, Δ[Fe/H]/ΔR and Δ[Fe/H]/Δ|Z| of the Milky Way disk in the direction of the anticenter. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. We have carried out a detailed analysis of the selection effects resulting from the selection, observation and data reduction of LSS-GAC targets and the potential biases of a magnitude limited sample on the determinations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars with the oldest ages (≳ 11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars with the oldest ages (≳ 11 Gyr) are negative and only show very weak variations with Galactocentric distance in the disk plane, R, while those yielded by younger stars show strong variations with R. After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maximum (steepest) at age 7–8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assembly of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are

  11. A measurement system for vertical seawater profiles close to the air–sea interface

    Directory of Open Access Journals (Sweden)

    R. P. Sims

    2017-09-01

    Full Text Available This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s−1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.

  12. Study on dewatering of chemical sludge by freeze-thaw process

    International Nuclear Information System (INIS)

    Xu Shikun; Liu Pin

    1993-01-01

    The treatment of radioactive sludge that is produced from treating radioactive waste water contains radioactively is different from that of non-radioactive sludge. The methods of immersing freeze and simulated two-step freeze have been studied for the elementary properties of simulated low-level radioactive sledge, the effect of freezing temperature, freeze time, and settling time on volume-reduction factor. Some parameters for design of freeze-thaw device are provided

  13. Biogeochemical gradients above a coal tar DNAPL

    Energy Technology Data Exchange (ETDEWEB)

    Scherr, Kerstin E., E-mail: kerstin.brandstaetter-scherr@boku.ac.at [University of Natural Resources and Life Sciences Vienna (BOKU), Department IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln (Austria); Backes, Diana [University of Natural Resources and Life Sciences Vienna (BOKU), Department IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln (Austria); Scarlett, Alan G. [University of Plymouth, Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, Drake Circus, Plymouth, Devon PL4 8AA (United Kingdom); Lantschbauer, Wolfgang [Government of Upper Austria, Directorate for Environment and Water Management, Division for Environmental Protection, Kärntner Strasse 10-12, 4021 Linz (Austria); Nahold, Manfred [GUT Gruppe Umwelt und Technik GmbH, Ingenieurbüro für Technischen Umweltschutz, Plesching 15, 4040 Linz (Austria)

    2016-09-01

    Naturally occurring distribution and attenuation processes can keep hydrocarbon emissions from dense non aqueous phase liquids (DNAPL) into the adjacent groundwater at a minimum. In a historically coal tar DNAPL-impacted site, the de facto absence of a plume sparked investigations regarding the character of natural attenuation and DNAPL resolubilization processes at the site. Steep vertical gradients of polycyclic aromatic hydrocarbons, microbial community composition, secondary water quality and redox-parameters were found to occur between the DNAPL-proximal and shallow waters. While methanogenic and mixed-electron acceptor conditions prevailed close to the DNAPL, aerobic conditions and very low dissolved contaminant concentrations were identified in three meters vertical distance from the phase. Comprehensive two-dimensional gas chromatography–mass spectrometry (GC × GC–MS) proved to be an efficient tool to characterize the behavior of the present complex contaminant mixture. Medium to low bioavailability of ferric iron and manganese oxides of aquifer samples was detected via incubation with Shewanella alga and evidence for iron and manganese reduction was collected. In contrast, 16S rDNA phylogenetic analysis revealed the absence of common iron reducing bacteria. Aerobic hydrocarbon degraders were abundant in shallow horizons, while nitrate reducers were dominating in deeper aquifer regions, in addition to a low relative abundance of methanogenic archaea. Partial Least Squares – Canonical Correspondence Analysis (PLS-CCA) suggested that nitrate and oxygen concentrations had the greatest impact on aquifer community structure in on- and offsite wells, which had a similarly high biodiversity (H’ and Chao1). Overall, slow hydrocarbon dissolution from the DNAPL appears to dominate natural attenuation processes. This site may serve as a model for developing legal and technical strategies for the treatment of DNAPL-impacted sites where contaminant plumes are

  14. Hot big bang or slow freeze?

    Science.gov (United States)

    Wetterich, C.

    2014-09-01

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze - a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple ;crossover model; without a big bang singularity. In the infinite past space-time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  15. Recent developments in smart freezing technology applied to fresh foods.

    Science.gov (United States)

    Xu, Ji-Cheng; Zhang, Min; Mujumdar, Arun S; Adhikari, Benu

    2017-09-02

    Due to the increased awareness of consumers in sensorial and nutritional quality of frozen foods, the freezing technology has to seek new and innovative technologies for better retaining the fresh like quality of foods. In this article, we review the recent developments in smart freezing technology applied to fresh foods. The application of these intelligent technologies and the associated underpinning concepts have greatly improved the quality of frozen foods and the freezing efficiency. These technologies are able to automatically collect the information in-line during freezing and help control the freezing process better. Smart freezing technology includes new and intelligent technologies and concepts applied to the pretreatment of the frozen product, freezing processes, cold chain logistics as well as warehouse management. These technologies enable real-time monitoring of quality during the freezing process and help improve product quality and freezing efficiency. We also provide a brief overview of several sensing technologies used to achieve automatic control of individual steps of freezing process. These sensing technologies include computer vision, electronic nose, electronic tongue, digital simulation, confocal laser, near infrared spectroscopy, nuclear magnetic resonance technology and ultrasound. Understanding of the mechanism of these new technologies will be helpful for applying them to improve the quality of frozen foods.

  16. Spatial and vertical distribution of bacteria in the Pearl River estuary ...

    African Journals Online (AJOL)

    In order to investigate the spatial and vertical change of bacteria community structure in the Pearl River estuary sediment, denaturing gradient gel electrophoresis (DGGE) and multivariate statistical analyses were carried out in this study. Results of multidimensional scaling analyses (MDS) were in good agreement with the ...

  17. Freeze-all cycle for all normal responders?

    Science.gov (United States)

    Roque, Matheus; Valle, Marcello; Guimarães, Fernando; Sampaio, Marcos; Geber, Selmo

    2017-02-01

    The purpose of this study is to evaluate the freeze-all strategy in subgroups of normal responders, to assess whether this strategy is beneficial regardless of ovarian response, and to evaluate the possibility of implementing an individualized embryo transfer (iET) based on ovarian response. This was an observational, cohort study performed in a private IVF center. A total of 938 IVF cycles were included in this study. The patients were submitted to controlled ovarian stimulation (COS) with a gonadotropin-releasing hormone (GnRH) antagonist protocol and a cleavage-stage day 3 embryo transfer. We performed a comparison of outcomes between the fresh embryo transfer (n = 523) and the freeze-all cycles (n = 415). The analysis was performed in two subgroups of patients based on the number of retrieved oocytes: Group 1 (4-9 oocytes) and Group 2 (10-15 oocytes). In Group 1 (4-9 retrieved oocytes), the implantation rates (IR) were 17.9 and 20.5% (P = 0.259) in the fresh and freeze-all group, respectively; the ongoing pregnancy rates (OPR) were 31 and 33% (P = 0.577) in the fresh and freeze-all group, respectively. In Group 2 (10-15 oocytes), the IR were 22.1 and 30.1% (P = 0.028) and the OPR were 34 and 47% (P = 0.021) in the fresh and freeze-all groups, respectively. Although the freeze-all policy may be related to better in vitro fertilization (IVF) outcomes in normal responders, these potential advantages decrease with worsening ovarian response. Patients with poorer ovarian response do not benefit from the freeze-all strategy.

  18. Rational design of an influenza subunit vaccine powder with sugar glass technology : preventing conformational changes of haemagglutinin during freezing and freeze-drying

    NARCIS (Netherlands)

    Amorij, J-P; Meulenaar, J; Hinrichs, W L J; Stegmann, T; Huckriede, A; Coenen, F; Frijlink, H W

    2007-01-01

    The development of a stable influenza subunit vaccine in the dry state was investigated. The influence of various carbohydrates, buffer types and freezing rates on the integrity of haemagglutinin after freeze-thawing or freeze-drying was investigated with a range of analytical and immunological

  19. Medical and social egg freezing

    DEFF Research Database (Denmark)

    Lallemant, Camille; Vassard, Ditte; Andersen, Anders Nyboe

    2016-01-01

    INTRODUCTION: Until recently, limited options for preserving fertility in order to delay childbearing were available. Although egg freezing and successful thawing is now possible, it remains unclear to what extent women are aware of the availability of this technique, their attitudes towards its...... use, or the circumstances under which this technique may be considered. MATERIAL AND METHODS: An online cross-sectional survey was designed to investigate knowledge and attitudes of women in Denmark and the UK on egg freezing and their potential intentions regarding the procedure. RESULTS: Data...... was collected from September 2012 to September 2013 and the responses of 973 women were analyzed. In total, 83% of women reported having heard of egg freezing, and nearly all considered it acceptable for medical indications, whilst 89% considered it acceptable for social reasons. Overall, 19% expressed active...

  20. Response of seasonal soil freeze depth to climate change across China

    Science.gov (United States)

    Peng, Xiaoqing; Zhang, Tingjun; Frauenfeld, Oliver W.; Wang, Kang; Cao, Bin; Zhong, Xinyue; Su, Hang; Mu, Cuicui

    2017-05-01

    The response of seasonal soil freeze depth to climate change has repercussions for the surface energy and water balance, ecosystems, the carbon cycle, and soil nutrient exchange. Despite its importance, the response of soil freeze depth to climate change is largely unknown. This study employs the Stefan solution and observations from 845 meteorological stations to investigate the response of variations in soil freeze depth to climate change across China. Observations include daily air temperatures, daily soil temperatures at various depths, mean monthly gridded air temperatures, and the normalized difference vegetation index. Results show that soil freeze depth decreased significantly at a rate of -0.18 ± 0.03 cm yr-1, resulting in a net decrease of 8.05 ± 1.5 cm over 1967-2012 across China. On the regional scale, soil freeze depth decreases varied between 0.0 and 0.4 cm yr-1 in most parts of China during 1950-2009. By investigating potential climatic and environmental driving factors of soil freeze depth variability, we find that mean annual air temperature and ground surface temperature, air thawing index, ground surface thawing index, and vegetation growth are all negatively associated with soil freeze depth. Changes in snow depth are not correlated with soil freeze depth. Air and ground surface freezing indices are positively correlated with soil freeze depth. Comparing these potential driving factors of soil freeze depth, we find that freezing index and vegetation growth are more strongly correlated with soil freeze depth, while snow depth is not significant. We conclude that air temperature increases are responsible for the decrease in seasonal freeze depth. These results are important for understanding the soil freeze-thaw dynamics and the impacts of soil freeze depth on ecosystem and hydrological process.

  1. Effects of freezing conditions on quality changes in blueberries.

    Science.gov (United States)

    Cao, Xuehui; Zhang, Fangfang; Zhao, Dongyu; Zhu, Danshi; Li, Jianrong

    2018-03-12

    Freezing preservation is one of the most effective methods used to maintain the flavour and nutritional value of fruit. This research studied the effects of different freezing conditions, -20 °C, -40 °C, -80 °C, and immersion in liquid nitrogen, on quality changes of freeze-thawed blueberries. The water distribution estimates of blueberries were measured based on low-field nuclear magnetic resonance (LF-NMR) analysis. The pectin content, drip loss, and fruit texture were also detected to evaluate quality changes in samples. The freezing curves of blueberry showed super-cooling points at -20 °C and - 40 °C, whereas super-cooling points were not observed at -80 °C or in liquid nitrogen. After freeze-thaw treatment, the relaxation time of the cell wall water (T 21 ), cytoplasm water and extracellular space (T 22 ), and vacuole water (T 23 ) were significantly shortened compared to fresh samples, which suggested a lower liquidity. Although the freezing speed for samples immersed in liquid nitrogen was faster than other treatments, samples treated at -80 °C showed better quality regarding vacuole water holding, drip loss, and original pectin content retention. This study contributed to understanding how freezing temperature affects the qualities of blueberries. The super-fast freezing rate might injure fruit, and an appropriate freezing rate could better preserve blueberries. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  2. Air temperature gradient in large industrial hall

    Science.gov (United States)

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  3. Spatial and temporal dynamics of disturbance interactions along an ecological gradient

    Science.gov (United States)

    Christopher D. O' Connor

    2013-01-01

    Interactions among site conditions, disturbance events, and climate determine the patterns of forest species recruitment and mortality across landscapes. Forests of the American Southwest have undergone significant changes over a century of altered disturbance regimes, human land uses, and changing environmental conditions. Along steep vertical gradients such as those...

  4. The freezing and supercooling of garlic (Allium sativum L.)

    Energy Technology Data Exchange (ETDEWEB)

    James, Christian; Seignemartin, Violaine; James, Stephen J. [Food Refrigeration and Process Engineering Research Centre (FRPERC), University of Bristol, Churchill Building, Langford, Bristol BS40 5DU (United Kingdom)

    2009-03-15

    This work shows that peeled garlic cloves demonstrate significant supercooling during freezing under standard conditions and can be stored at temperatures well below their freezing point (-2.7 C) without freezing. The nucleation point or 'metastable limit temperature' (the point at which ice crystal nucleation is initiated) of peeled garlic cloves was found to be between -7.7 and -14.6 C. Peeled garlic cloves were stored under static air conditions at temperatures between -6 and -9 C for up to 69 h without freezing, and unpeeled whole garlic bulbs and cloves were stored for 1 week at -6 C without freezing. (author)

  5. Effect of freezing conditions on β-Tricalcium Phosphate /Camphene scaffold with micro sized particles fabricated by freeze casting.

    Science.gov (United States)

    Singh, Gurdev; Soundarapandian, S

    2018-03-01

    The long standing need of the implant manufacturing industries is to fabricate multi-matrix, customized porous scaffold as cost-effectively. In recent years, freeze casting has shown greater opportunity in the fabrication of porous scaffolds (tricalcium phosphate, hydroxyapatite, bioglass, alumina, etc.) such as at ease and good control over pore size, porosity, a range of materials and economic feasibility. In particular, tricalcium phosphate (TCP) has proved as it possesses good biocompatible (osteoinduction, osteoconduction, etc.) and biodegradability hence beta-tricalcium phosphate (β-TCP, particle size of 10µm) was used as base material and camphene was used as a freezing vehicle in this study. Both freezing conditions such as constant freezing temperature (CFT) and constant freezing rate (CFR) were used for six different conditional samples (CFT: 30, 35 and 40vol% solid loading; similarly CFR: 30, 35 and 40vol% solid loading) to study and understand the effect of various properties (pore size, porosity and compressive strength) of the freeze-cast porous scaffold. It was observed that the average size of the pore was varying linearly as from lower to higher when the solid loading was varying higher to lower. With the help of scanning electron micrographs (SEM), it was observed that the average size of pore during CFR (9.7/ 6.5/ 4.9µm) was comparatively higher than the process of CFT (6.0/ 4.8/ 2.6µm) with respect to the same solid loading (30/ 35/ 40vol%) conditions. From the Gas pycnometer analysis, it was found that the porosity in both freezing conditions (CFT, CFR) were almost near values such as 32.8% and 28.5%. Further to be observed that with the increase in solid loading, the total porosity value has decreased due to the reduction in the concentration of the freezing vehicle. Hence, the freezing vehicle was found as responsible for the formation of appropriate size and orientation of pores during freeze casting. The compressive strength (CS

  6. Review. Freeze-casting: Fabrication of highly porous and hierarchical ceramic supports for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Gaudillere, C.; Serra, J. M.

    2016-05-01

    The manufacture of structured ceramic porous support knows an important boom since more than a decade with the development of new shaping techniques. Among the most promising ones, the freeze-casting also called Ice-Tem plating allows the fabrication of ceramic parts exhibiting high porosity (>50%) and vertically aligned and hierarchically organized pores. Such structures were firstly conceived for biomedical applications like bone substitute and tissue engineering, but the distinctive features of freeze-cast structures have attracted the attention of diverse scientific fields, especially in high temperature ceramic-based energy production systems. Indeed, technologies like (a) Solid Oxide Fuel Cell (SOFC) and Electrolyser Cell (SOEC), (b) gas separation (O{sub 2}, H{sub 2}) by asymmetric supported membranes based on mixed ionic and electronic conductors (MIEC) or hydrogen-permeable metals, and (c) Catalytic Membrane Reactor (CMR) systems present a porous component in their physical structure. This latest, presenting a tortuous pathway for gas access and as a consequence, a high transport limitation, is known to be a limiting component for the operation at high flow streams that would enable to reach industrial target. (Author)

  7. The choice of a suitable oligosaccharide to prevent aggregation of PEGylated nanoparticles during freeze thawing and freeze drying

    NARCIS (Netherlands)

    Hinrichs, Wouter; Manceñido, F A; Sanders, N N; Braeckmans, K; De Smedt, S C; Demeester, J; Frijlink, H W

    2006-01-01

    In a previous Study we have shown that the oligosaccharide inulin can prevent aggregation of poly(ethylene glycol) (PEG) coated plasmid DNA/cationic liposome complexes ('' PEGylated lipoplexes '') during freeze thawing and freeze drying [Hinrichs et al., 2005. J. Control. Release 103, 465]. By

  8. Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste.

    Science.gov (United States)

    Mikkonen, Anu; Hakala, Kati P; Lappi, Kaisa; Kondo, Elina; Vaalama, Anu; Suominen, Leena

    2012-03-01

    Horizontal and vertical contaminant gradients in an old landfarming field for oil refinery waste were characterised with the aim to assess parallel changes in hydrocarbon groups and general, microbiological and ecotoxicological soil characteristics. In the surface soil polar compounds were the most prevalent fraction of heptane-extractable hydrocarbons, superseding GC-FID-resolvable and high-molar-mass aliphatics and aromatics, but there was no indication of their relatively higher mobility or toxicity. The size of the polar fraction correlated poorly with soil physical, chemical and microbiological properties, which were better explained by the total heptane-extractable and total petroleum hydrocarbons (TPH). Deleterious effects on soil microbiology in situ were observed at surprisingly low TPH concentrations (0.3%). Due to the accumulation of polar and complexed degradation products, TPH seems an insufficient measure to assess the quality and monitor the remediation of soil with weathered hydrocarbon contamination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Faktor Influencing the Vacuum Freezing Rate of Liquid Food

    OpenAIRE

    Tambunan, Armansyah H

    2000-01-01

    Many,freezing methods, mechanicul as well as cryogenic, have been in wide application in food industries. Each method has its own advantage, but in regard with the food quality, freezing rule can be accomplished by the method is one of the tnost important factors. Nowadays, many researchers are conducting experiment in order to enhance thefi.eezing rate. This paper deals with the advantage of vacuum freezing method in enhancing the freezing rate and its applicability for liquidfood.Experinren...

  10. Hot big bang or slow freeze?

    Energy Technology Data Exchange (ETDEWEB)

    Wetterich, C.

    2014-09-07

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  11. Hot big bang or slow freeze?

    International Nuclear Information System (INIS)

    Wetterich, C.

    2014-01-01

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe

  12. Hot big bang or slow freeze?

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2014-09-01

    Full Text Available We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  13. FREEZE DRYING PROCESS: A REVIEW

    OpenAIRE

    Soham Shukla

    2011-01-01

    Among the various methods of drying, this article has mentioned only one most important method, “Freeze drying”. This method is mainly used for the drying of thermo labile materials. This method works on the principle of sublimation. This method is divided into 3 steps for its better understanding; these are Freezing, Primary drying, and secondary drying. There are many advantages and disadvantages of this method, but still this is the most useful drying method nowadays.

  14. Effect of pool rotation on three-dimensional flow in a shallow annular pool of silicon melt with bidirectional temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Quan-Zhuang; Peng, Lan; Liu, Jia [Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, College of Power Engineering, Chongqing University, Chongqing, 400044 (China); Wang, Fei, E-mail: penglan@cqu.edu.cn [Chongqing Special Equipment Inspection and Research Institute, Chongqing, 401121 (China)

    2016-08-15

    In order to understand the effect of pool rotation on silicon melt flow with the bidirectional temperature gradients, we conducted a series of unsteady three-dimensional (3D) numerical simulations in a shallow annular pool. The bidirectional temperature gradients are produced by the temperature difference between outer and inner walls as well as a constant heat flux at the bottom. Results show that when Marangoni number is small, a 3D steady flow is common without pool rotation. But it bifurcates to a 3D oscillatory flow at a low rotation Reynolds number. Subsequently, the flow becomes steady and axisymmetric at a high rotation Reynolds number. When the Marangoni number is large, pool rotation can effectively suppress the temperature fluctuation on the free surface, meanwhile, it improves the flow stability. The critical heat flux density diagrams are mapped, and the effects of radial and vertical temperature gradients on the flow are discussed. Additionally, the transition process from the flow dominated by the radial temperature gradient to the one dominated by the vertical temperature gradient is presented. (paper)

  15. Stirring Up the Biological Pump: Vertical Mixing and Carbon Export in the Southern Ocean

    Science.gov (United States)

    Stukel, Michael R.; Ducklow, Hugh W.

    2017-09-01

    The biological carbon pump (BCP) transports organic carbon from the surface to the ocean's interior via sinking particles, vertically migrating organisms, and passive transport of organic matter by advection and diffusion. While many studies have quantified sinking particles, the magnitude of passive transport remains poorly constrained. In the Southern Ocean weak thermal stratification, strong vertical gradients in particulate organic matter, and weak vertical nitrate gradients suggest that passive transport from the euphotic zone may be particularly important. We compile data from seasonal time series at a coastal site near Palmer Station, annual regional cruises in the Western Antarctic Peninsula (WAP), cruises throughout the broader Southern Ocean, and SOCCOM (Southern Ocean Carbon and Climate Observations and Modeling) autonomous profiling floats to estimate spatial and temporal patterns in vertical gradients of nitrate, particulate nitrogen (PN), and dissolved organic carbon. Under a steady state approximation, the ratio of ∂PN/∂z to ∂NO3-/∂z suggests that passive transport of PN may be responsible for removing 46% (37%-58%) of the nitrate introduced into the surface ocean of the WAP (with dissolved organic matter contributing an additional 3-6%) and for 23% (19%-28%) of the BCP in the broader Southern Ocean. A simple model parameterized with in situ nitrate, PN, and primary production data suggested that passive transport was responsible for 54% of the magnitude of the BCP in the WAP. Our results highlight the potential importance of passive transport (by advection and diffusion) of organic matter in the Southern Ocean but should only be considered indicative of high passive transport (rather than conclusive evidence) due to our steady state assumptions.

  16. Thermal Shock Property of Al/Ni-ZrO2 Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    FANJin-juan; WANGQuan-sheng; ZHANGWei-fang

    2004-01-01

    Al/Ni-ZrO2 gradient thermal barrier coatings are made on aluminum substrate using plasma spraying method and one direction thermal shock properties of the coatings are studied in this paper. The results show that pores in coatings link to form cracks vertical to coating surface. They go through the whole ZrO2 coating once vertical cracks form. When thermal shock cycles increase, horizontal cracks that result in coatings failure forms in the coatings and interface. And vertical cracks delay appearance of horizontal cracks and enhance thermal shock property of coatings. Failure mechanisms of coating thermal shock are discussed using experiments and finite element method.

  17. Successful long-term preservation of rat sperm by freeze-drying.

    Directory of Open Access Journals (Sweden)

    Takehito Kaneko

    Full Text Available BACKGROUND: Freeze-drying sperm has been developed as a new preservation method where liquid nitrogen is no longer necessary. An advantage of freeze-drying sperm is that it can be stored at 4 °C and transported at room temperature. Although the successful freeze-drying of sperm has been reported in a number of animals, the possibility of long-term preservation using this method has not yet been studied. METHODOLOGY/PRINCIPAL FINDINGS: Offspring were obtained from oocytes fertilized with rat epididymal sperm freeze-dried using a solution containing 10 mM Tris and 1 mM EDTA adjusted to pH 8.0. Tolerance of testicular sperm to freeze-drying was increased by pre-treatment with diamide. Offspring with normal fertility were obtained from oocytes fertilized with freeze-dried epididymal sperm stored at 4 °C for 5 years. CONCLUSIONS AND SIGNIFICANCE: Sperm with -SS- cross-linking in the thiol-disulfide of their protamine were highly tolerant to freeze-drying, and the fertility of freeze-dried sperm was maintained for 5 years without deterioration. This is the first report to demonstrate the successful freeze-drying of sperm using a new and simple method for long-term preservation.

  18. One-shot 3D scanning by combining sparse landmarks with dense gradient information

    Science.gov (United States)

    Di Martino, Matías; Flores, Jorge; Ferrari, José A.

    2018-06-01

    Scene understanding is one of the most challenging and popular problems in the field of robotics and computer vision and the estimation of 3D information is at the core of most of these applications. In order to retrieve the 3D structure of a test surface we propose a single shot approach that combines dense gradient information with sparse absolute measurements. To that end, we designed a colored pattern that codes fine horizontal and vertical fringes, with sparse corners landmarks. By measuring the deformation (bending) of horizontal and vertical fringes, we are able to estimate surface local variations (i.e. its gradient field). Then corner sparse landmarks are detected and matched to infer spare absolute information about the test surface height. Local gradient information is combined with the sparse absolute values which work as anchors to guide the integration process. We show that this can be mathematically done in a very compact and intuitive way by properly defining a Poisson-like partial differential equation. Then we address in detail how the problem can be formulated in a discrete domain and how it can be practically solved by straight forward linear numerical solvers. Finally, validation experiment are presented.

  19. Optimization of protectant, salinity and freezing condition for freeze-drying preservation of Edwardsiella tarda

    Science.gov (United States)

    Yu, Yongxiang; Zhang, Zheng; Wang, Yingeng; Liao, Meijie; Li, Bin; Xue, Liangyi

    2017-10-01

    Novel preservation condition without ultra-low temperature is needed for the study of pathogen in marine fishes. Freeze-drying is such a method usually used for preservation of terrigenous bacteria. However, studies using freeze-drying method to preserving marine microorganisms remain very limited. In this study, we optimized the composition of protectants during the freeze-drying of Edwardsiella tarda, a fish pathogen that causes systemic infection in marine fishes. We found that the optimal composition of protectant mixture contained trehalose (8.0%), skim milk (12.0%), sodium citrate (2.0%), serum (12.0%) and PVP (2.0%). Orthogonal and interaction analyses demonstrated the interaction between serum and skim milk or sodium citrate. The highest survival rate of E. tarda was observed when the concentration of NaCl was 10.0, 30.0 and between 5.0 and 10.0 g L-1 for preparing TSB medium, E. tarda suspension and protectant mixture, respectively. When E. tarda was frozen at -80°C or -40°C for 6 h, its survival rate was higher than that under other tested conditions. Under the optimized conditions, when the protectant mixture was used during freeze-drying process, the survival rate (79.63%-82.30%) of E. tarda was significantly higher than that obtained using single protectant. Scanning electron microscopy (SEM) image indicated that E. tarda was embedded in thick matrix with detectable aggregation. In sum, the protectant mixture may be used as a novel cryoprotective additive for E. tarda.

  20. Tunable high-gradient permanent magnet quadrupoles

    CERN Document Server

    Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A

    2014-01-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  1. Particle-size dependence of immersion freezing: Investigation of INUIT test aerosol particles with freely suspended water drops.

    Science.gov (United States)

    Diehl, Karoline; Debertshäuser, Michael; Eppers, Oliver; Jantsch, Evelyn; Mitra, Subir K.

    2014-05-01

    One goal of the research group INUIT (Ice Nuclei research UnIT) is to investigate the efficiencies of several test ice nuclei under comparable conditions but with different experimental techniques. In the present studies, two methods are used: the Mainz vertical wind tunnel and an acoustic levitator placed inside a cold chamber. In both cases drops are freely levitated, either at their terminal velocity in the wind tunnel updraft or around the nodes of a standing ultrasonic wave in the acoustic levitator. Thus, heat transfer conditions are well approximated, and wall contact effects on freezing as well as electrical charges of the drops are avoided. Drop radii are 370 μm and 1 mm, respectively. In the wind tunnel, drops are investigated at constant temperatures within a certain time period and the onset of freezing is observed directly. In the acoustic levitator, the drop temperature decreases during the experiments and is measured by an in-situ calibrated Infrared thermometer. The onset of freezing is indicated by a rapid rise of the drop surface temperature because of the release of latent heat. Investigated test ice nuclei are Snomax® as a proxy of biological particles and illite NX as well as K-feldspar as represents of mineral dust. The particle concentrations are 1 × 10-12 to 3 × 10-6 g Snomax® per drop and 5 × 10-9 to 5 × 10-5 g mineral dust per drop. Freezing temperatures are between -2 and -18° C in case of Snomax® and between -14 and -26° C in case of mineral dust. The lower the particle masses per drop the lower are the freezing temperatures. For similar particle concentrations in the drops, the median freezing temperatures determined by the two techniques agree well within the measurement errors. With the knowledge of the specific particle surface area of the mineral dusts, the results are interpreted also in terms of particle surface area per drop. Results from the wind tunnel experiments which are performed at constant temperatures indicate

  2. Optimization Of Freeze-Dried Starter For Yogurt By Full Factorial Experimental Design

    Directory of Open Access Journals (Sweden)

    Chen He

    2015-12-01

    Full Text Available With the rapidly development of fermented milk product, it is significant for enhancing the performance of starter culture. This paper not only investigated the influence of anti-freeze factors and freeze-drying protective agents on viable count, freeze-drying survival rate and yield of Lactobacillus bulgaricus (LB and Streptococcus thermophilus (ST, but also optimized the bacteria proportion of freeze-dried starter culture for yogurt by full factorial experimental design. The results showed as following: the freeze-drying protective agents or anti-freeze factors could enhanced survival rate of LB and ST; the freeze-dried LB and ST powders containing both of anti-freeze factors and freeze-drying protective agents had higher viable count and freeze-drying survival rate that were 84.7% and 79.7% respectively; In terms of fermentation performance, the best group of freeze-dried starter for yogurt was the compound of LB3 and ST2.

  3. Estimates of the temperature flux-temperature gradient relation above a sea floor

    NARCIS (Netherlands)

    Cimatoribus, A.; van Haren, H.

    2016-01-01

    The relation between the ux of temperature (or buoyancy), the verti-cal temperature gradient and the height above the bottom, is investigatedin an oceanographic context, using high-resolution temperature measure-ments. The model for the evolution of a strati?ed layer by Balmforthet al. (1998) is

  4. Determination Gradients of the Earth's Magnetic Field from the Measurements of the Satellites and Inversion of the Kursk Magnetic Anomaly

    Science.gov (United States)

    Karoly, Kis; Taylor, Patrick T.; Geza, Wittmann

    2014-01-01

    We computed magnetic field gradients at satellite altitude, over Europe with emphasis on the Kursk Magnetic Anomaly (KMA). They were calculated using the CHAMP satellite total magnetic anomalies. Our computations were done to determine how the magnetic anomaly data from the new ESA/Swarm satellites could be utilized to determine the structure of the magnetization of the Earths crust, especially in the region of the KMA. Since the ten years of 2 CHAMP data could be used to simulate the Swarm data. An initial East magnetic anomaly gradient map of Europe was computed and subsequently the North, East and Vertical magnetic gradients for the KMA region were calculated. The vertical gradient of the KMA was determined using Hilbert transforms. Inversion of the total KMA was derived using Simplex and Simulated Annealing algorithms. Our resulting inversion depth model is a horizontal quadrangle with upper 300-329 km and lower 331-339 km boundaries.

  5. Radial oxygen gradients over rat cortex arterioles

    OpenAIRE

    Galler, Michael

    2011-01-01

    Purpose: We present the results of the visualisation of radial oxygen gradients in rats’ cortices and their use in neurocritical management. Methods: PO2 maps of the cortex of 10 wistar rats were obtained with a camera (SensiMOD, PCO, Kehlheim, Germany). Those pictures were analyzed and edited by a custom-made software. We chose a vessel for examination. A matrix, designed to evaluate the cortical O2 partial pressure, was placed vertically to the artery and afterwards multiple regio...

  6. A rapidly negotiable first-stage nuclear freeze

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This paper reports on the objective of a nuclear freeze which is to slow down or stop the so-far inexorable development and deployment of more and more (read destructive and deadly) nuclear warheads. The essential notion is not new. The proposed treaty for a comprehensive ban on nuclear tests that was very nearly negotiated in 1959 was perhaps the first serious effort to obtain a nuclear freeze, albeit a partial one. Growing concern about the nuclear arms race has led to greatly increased interest in much broader and more effective freezes. A comprehensive nuclear freeze, one that would stop all stages in the manufacture, testing, and deployment of nuclear warheads, would clearly be very desirable and have a great impact. It would not, however, deal with the other worrisome aspects of nuclear weapons, which is the very large number of such weapons that already exist

  7. Numerical study of ion thermal gradient driven modes

    International Nuclear Information System (INIS)

    Garbet, X.; Laurent, L.; Mourgues, F.; Samain, A.

    1987-01-01

    Anomalous ion thermal confinement has been observed in tokamaks (1). The ion temperature gradient driven modes could provide a possible explanation of this fact. The goal of this paper is to examine the stability of such modes by a linear, analytical and numerical study. The value of the threshold parameter and the radial profiles of the modes are computed. The effects of the particles vertical drift due to the field curvature are discussed

  8. Mechanisms of deterioration of nutrients. [improved quality of freeze-dried foods

    Science.gov (United States)

    Karel, M.; Flink, J. M.

    1978-01-01

    Methods for improving the quality of freeze-dried foods were investigated. Areas discussed include: (1) microstructure of freeze-dried systems, (2) structural changes in freeze-dried systems, (3) artificial food matrices, and (4) osmotic preconcentration to yield improved freeze-dried products.

  9. Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers

    Science.gov (United States)

    Inaba, Shusei; Vohra, Varun

    2017-01-01

    Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED–EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows. PMID:28772878

  10. Cost-Effectiveness of the Freeze-All Policy.

    Science.gov (United States)

    Roque, Matheus; Valle, Marcello; Guimarães, Fernando; Sampaio, Marcos; Geber, Selmo

    2015-08-01

    To evaluate the cost-effectiveness of freeze-all cycles when compared to fresh embryo transfer. This was an observational study with a cost-effectiveness analysis. The analysis consisted of 530 intracytoplasmic sperm injection (ICSI) cycles in a private center in Brazil between January 2012 and December 2013. A total of 530 intracytoplasmic sperm injection (ICSI) cycles - 351 fresh embryo transfers and 179 freeze-all cycles - with a gonadotropin-releasing hormone (GnRH) antagonist protocol and day 3 embryo transfers. The pregnancy rate was 31.1% in the fresh group and 39.7% in the freeze-all group. We performed two scenario analyses for costs. In scenario 1, we included those costs associated with the ICSI cycle (monitoring during controlled ovarian stimulation [COS], oocyte retrieval, embryo transfer, IVF laboratory, and medical costs), embryo cryopreservation of supernumerary embryos, hormone measurements during COS and endometrial priming, medication use (during COS, endometrial priming, and luteal phase support), ultrasound scan for frozen- thawed embryo transfer (FET), obstetric ultrasounds, and miscarriage. The total cost (in USD) per pregnancy was statistically lower in the freeze-all cycles (19,156.73 ± 1,732.99) when compared to the fresh cycles (23,059.72 ± 2,347.02). Even in Scenario 2, when charging all of the patients in the freeze-all group for cryopreservation (regardless of supernumerary embryos) and for FET, the fresh cycles had a statistically significant increase in treatment costs per ongoing pregnancy. The results presented in this study suggest that the freeze-all policy is a cost-effective strategy when compared to fresh embryo transfer.

  11. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar; Thingbaijam, Kiran Kumar; Adhikari, M. D.; Nayak, Avinash; Devaraj, N.; Ghosh, Soumalya K.; Mahajan, Arun K.

    2013-01-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  12. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  13. Metabolic changes in Avena sativa crowns recovering from freezing.

    Directory of Open Access Journals (Sweden)

    Cynthia A Henson

    Full Text Available Extensive research has been conducted on cold acclimation and freezing tolerance of fall-sown cereal plants due to their economic importance; however, little has been reported on the biochemical changes occurring over time after the freezing conditions are replaced by conditions favorable for recovery and growth such as would occur during spring. In this study, GC-MS was used to detect metabolic changes in the overwintering crown tissue of oat (Avena sativa L. during a fourteen day time-course after freezing. Metabolomic analysis revealed increases in most amino acids, particularly proline, 5-oxoproline and arginine, which increased greatly in crowns that were frozen compared to controls and correlated very significantly with days after freezing. In contrast, sugar and sugar related metabolites were little changed by freezing, except sucrose and fructose which decreased dramatically. In frozen tissue all TCA cycle metabolites, especially citrate and malate, decreased in relation to unfrozen tissue. Alterations in some amino acid pools after freezing were similar to those observed in cold acclimation whereas most changes in sugar pools after freezing were not. These similarities and differences suggest that there are common as well as unique genetic mechanisms between these two environmental conditions that are crucial to the winter survival of plants.

  14. Applications of Simulator Freeze to Carrier Glideslope Tracking Instruction.

    Science.gov (United States)

    1982-07-01

    Showing Datum Bars and Meatball . .. .. .. ... .. ... .... 19 4 Freezes Per Trial Averaged Across Freeze Conditions and Across 4-Trial Blocks of Training...algorithm linearly increased the criterion in meatball units from 1.0 at 6000 feet from the ramp to 1.5 at the ramp. "Freezes" did not occur beyond 6000

  15. Freeze block testing of buried waste lines

    International Nuclear Information System (INIS)

    Robbins, E.D.; Willi, J.C.

    1976-01-01

    An investigation was conducted to demonstrate application of freeze blocking in waste transfer lines such that a hydrostatic pressure test can be applied. A shop test was conducted on a 20-foot length, 3-inch schedule 40, carbon steel pipe using a coolant of dry ice and Freon. The positive results from these tests prompted a similar employment of the freeze block method in hydrostatic pressure testing the feed inlet leading to 241-S-101 Waste Tank. This pipeline is a 3-inch schedule 10, stainless steel pipe approximately 800 feet long. The freeze block was formed near the lower end of the pipe as it entered the 101-S Waste Tank and a pressure hold test was applied to this pipeline. This test proved the integrity of the pipeline in question, and demonstrated the validity of freeze blocking an open-ended pipeline which could not be hydrotested in other conventional ways. The field demonstration facility, costing $30,200 was completed late in 1975

  16. Predictive modeling of freezing and thawing of frost-susceptible soils.

    Science.gov (United States)

    2015-09-01

    Frost depth is an essential factor in design of various transportation infrastructures. In frost : susceptible soils, as soils freezes, water migrates through the soil voids below the freezing line : towards the freezing front and causes excessive he...

  17. Multiple Glass Transitions and Freezing Events of Aqueous Citric Acid

    Science.gov (United States)

    2014-01-01

    Calorimetric and optical cryo-microscope measurements of 10–64 wt % citric acid (CA) solutions subjected to moderate (3 K/min) and slow (0.5 and 0.1 K/min) cooling/warming rates and also to quenching/moderate warming between 320 and 133 K are presented. Depending on solution concentration and cooling rate, the obtained thermograms show one freezing event and from one to three liquid–glass transitions upon cooling and from one to six liquid–glass and reverse glass–liquid transitions, one or two freezing events, and one melting event upon warming of frozen/glassy CA/H2O. The multiple freezing events and glass transitions pertain to the mother CA/H2O solution itself and two freeze-concentrated solution regions, FCS1 and FCS2, of different concentrations. The FCS1 and FCS2 (or FCS22) are formed during the freezing of CA/H2O upon cooling and/or during the freezing upon warming of partly glassy or entirely glassy mother CA/H2O. The formation of two FCS1 and FCS22 regions during the freezing upon warming to our best knowledge has never been reported before. Using an optical cryo-microscope, we are able to observe the formation of a continuous ice framework (IF) and its morphology and reciprocal distribution of IF/(FCS1 + FCS2). Our results provide a new look at the freezing and glass transition behavior of aqueous solutions and can be used for the optimization of lyophilization and freezing of foods and biopharmaceutical formulations, among many other applications where freezing plays a crucial role. PMID:25482069

  18. Application of freeze-drying technology in manufacturing orally disintegrating films.

    Science.gov (United States)

    Liew, Kai Bin; Odeniyi, Michael Ayodele; Peh, Kok-Khiang

    2016-01-01

    Freeze drying technology has not been maximized and reported in manufacturing orally disintegrating films. The aim of this study was to explore the freeze drying technology in the formulation of sildenafil orally disintegrating films and compare the physical properties with heat-dried orally disintegrating film. Central composite design was used to investigate the effects of three factors, namely concentration of carbopol, wheat starch and polyethylene glycol 400 on the tensile strength and disintegration time of the film. Heat-dried films had higher tensile strength than films prepared using freeze-dried method. For folding endurance, freeze-dried films showed improved endurance than heat-dried films. Moreover, films prepared using freeze-dried methods were thicker and had faster disintegration time. Formulations with higher amount of carbopol and starch showed higher tensile strength and thickness whereas formulations with higher PEG 400 content showed better flexibility. Scanning electron microscopy showed that the freeze-dried films had more porous structure compared to the heat-dried film as a result of the release of water molecule from the frozen structure when it was subjected to freeze drying process. The sildenafil film was palatable. The dissolution profiles of freeze-dried and heat-dried films were similar to Viagra® with f2 of 51.04 and 65.98, respectively.

  19. Three-Dimensional Microstructure of Biological Tissues during Freezing and Thawing

    Science.gov (United States)

    Ishiguro, Hiroshi; Horimizu, Takashi; Kataori, Akinobu; Kajigaya, Hiroshi

    Three-dimensional behavior of ice crystals and cells during the freezing and thawing of biological tissues was investigated microscopically in real time by using a confocal laser scanning microscope(CLSM) and a fluorescent dye, acridine orange (AO). Fresh tender meat (2nd pectoral muscles) of chicken was stained with the AO in physiological saline to distinguish ice crystals and cells by their different colors, and then frozen and thawed under two different thermal protocols: a) slow-cooling and rapid-warming and b) rapid-cooling and rapid-warming. The CLSM noninvasively produced optical tomograms of the tissues to clarify the pattern of freezing, morphology of ice crystals in the tissues, and the interaction between ice crystals and cells. Also, the tissues were morphologically investigated by pathological means after the freezing and thawing. Typical freezing pattern during the slow-cooling was extracellular-freezing, and those during the rapid-cooling were extracellular-freezing and intracellular freezing with a lot of fine ice crystals in the cells. Cracks caused by the extracellular and intracellular ice crystals remained in the muscle tissues after the thawing. The results obtained by using the CLSM/dye method were consistent with pathologically morphological changes in the tissues through freezing and thawing.

  20. Static delectric behavior of charged fluids near freezing

    International Nuclear Information System (INIS)

    Fasolino, A.; Parrinello, M.; Tosi, M.P.

    1978-01-01

    The wavenumber-dependent, static dielectric function of classical charged fluids near freezing is obtained from structural data based on computer simulation or neutron diffraction, and its behavior is connected with the freezing process. (Auth.)

  1. Cryogenic freezing of fresh date fruits for quality preservation during frozen storage

    Directory of Open Access Journals (Sweden)

    Abdullah Alhamdan

    2018-01-01

    Full Text Available Fresh date fruits, especially Barhi cultivar, are favored and widely consumed at the Khalal maturity stage (first color edible stage. These fruits are seasonal and perishable and there is a need for extending their shelf life. This study evaluates two different freezing methods, namely cryogenic freezing using liquid nitrogen and conventional deep freezing on preserving the quality and stability of date fruits (cv. Barhi at Khalal maturity stage. Fresh date fruits (cv. Barhi at Khalal stage were frozen utilizing the two methods. The produced frozen dates were stored under frozen storage conditions for nine months (at −20 °C and −40 °C for the conventional and cryogenic freezing, respectively. Color values, textural properties (hardness, elasticity, chewiness and resilience, and nutrition attributes (enzymes and sugars for fresh dates before freezing and for the frozen dates were measured every three months during the frozen storage. Color values of the frozen dates were affected by the freezing method and the frozen storage period. There are substantial differences in the quality of the frozen fruits in favor of cryogenic freezing compared to the conventional slow freezing. The results revealed a large disparity between the times of freezing of the two methods. The freezing time accounted to 10 min in the cryogenic freezing method, whereas it was 1800 min for the conventional slow freezing system.

  2. Experimental analysis and modeling of ultrasound assisted freezing of potato spheres.

    Science.gov (United States)

    Kiani, Hossein; Zhang, Zhihang; Sun, Da-Wen

    2015-09-01

    In recent years, innovative methods such as ultrasound assisted freezing have been developed in order to improve the freezing process. During freezing of foods, accurate prediction of the temperature distribution, phase ratios, and process time is very important. In the present study, ultrasound assisted immersion freezing process (in 1:1 ethylene glycol-water solution at 253.15K) of potato spheres (0.02 m diameter) was evaluated using experimental, numerical and analytical approaches. Ultrasound (25 kHz, 890 W m(-2)) was irradiated for different duty cycles (DCs=0-100%). A finite volume based enthalpy method was used in the numerical model, based on which temperature and liquid fraction profiles were simulated by a program developed using OpenFOAM® CFD software. An analytical technique was also employed to calculate freezing times. The results showed that ultrasound irradiation could decrease the characteristic freezing time of potatoes. Since ultrasound irradiation increased the heat transfer coefficient but simultaneously generated heat at the surface of the samples, an optimum DC was needed for the shortest freezing time which occurred in the range of 30-70% DC. DCs higher than 70% increased the freezing time. DCs lower than 30% did not provide significant effects on the freezing time compared to the control sample. The numerical model predicted the characteristic freezing time in accordance with the experimental results. In addition, analytical calculation of characteristic freezing time exhibited qualitative agreement with the experimental results. As the numerical simulations provided profiles of temperature and water fraction within potatoes frozen with or without ultrasound, the models can be used to study and control different operation situations, and to improve the understanding of the freezing process. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Freeze-drying and related preparation techniques for biological microprobe analysis

    International Nuclear Information System (INIS)

    Wroblewski, R.; Wroblewski, J.; Anniko, M.; Edstroem, L.P.

    1985-01-01

    An X-ray microanalytical and morphological investigation has been carried out on rapidly frozen, freeze-dried or freeze-substituted tissues. A comparison was made between different embedding and polymerization procedures following freeze-substitution and freeze-drying. The investigation also included an analysis of specimens infiltrated, embedded and polymerized by ultraviolet irradiation at low temperatures with Lowicryl HM20. The morphological preservation of Lowicryl embedded tissue was adequate for the identification of different cell structures like nuclei, mitochondria, lysosomes and different types of endoplasmic reticulum. X-ray microanalytical investigation of low temperature embedded material displayed an elemental composition of cells and organelles similar to that found in freeze-dried cyosections. Compared with freeze-dried cryosections, low temperature embedded material could be sectioned for light microscopy and area of interest chosen for further thin sectioning. This is of great importance in work with tissues with complicated morphology and heterogenous cell populations

  4. Storage of human platelets by freezing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B K; Tanoue, K; Baldini, M G

    1976-01-01

    Prolonged, probably indefinite storage of viable and functional human platelets is now possible by freezing with dimethylsulfoxide (DMSO). The platelets have a nearly normal survival upon reinfusion and are capable of sustained hemostatic effectiveness in thrombocytopenic patients. Adaptation of the freezing technique for large-scale usage has more recently been achieved. The method is mainly based on the following principles: (1) use of plasma for suspension of the platelet concentrate; (2) gradual addition (0.5% every 2 min) of DMSO to a final concentration of 5% and its gradual removal; (3) a slow cooling rate of about 1/sup 0/C per min and rapid thawing (in 1 min); (4) use of a polyolefin plastic bag for freezing; (5) a washing medium of 20% plasma in Hanks' balanced salt solution; (6) final resuspension of the platelets in 50% plasma in Hanks' solution.

  5. Heterogeneous freezing of super cooled water droplets in micrometre range- freezing on a chip

    Science.gov (United States)

    Häusler, Thomas; Witek, Lorenz; Felgitsch, Laura; Hitzenberger, Regina; Grothe, Hinrich

    2017-04-01

    A new setup to analyse the freezing behaviour of ice nucleation particles (INPs) dispersed in aqueous droplets has been developed with the aim to analyse ensembles of droplets with sizes in the micrometre range, in which INPs are immersed. Major disadvantages of conventional drop-freezing experiments like varying drop sizes or interactions between the water- oil mixture and the INP, were solved by introducing a unique freezing- chip consisting of an etched and sputtered 15x15x1 mm gold-plated silicon or pure gold film (Pummer et al., 2012; Zolles et al., 2015). Using this chip, isolated micrometre-sized droplets can be generated with sizes similar to droplets in real world clouds. The experimental set-up for drop-freezing experiments was revised and improved by establishing automated process control and image evaluation. We were able to show the efficiency and accuracy of our setup by comparing measured freezing temperatures of different INPs (Snomax®, K- feldspar, birch pollen (Betula pendula) washing water, juniper pollen suspension (Juniperus communis) and ultrapure water) with already published results (Atkinson et al., 2013; Augustin et al., 2013; Pruppacher and Klett, 1997; Pummer et al., 2012; Wex et al., 2015; Zolles et al., 2015). Comparison of our measurements with literature data show the important impact of droplet size, INP concentration and number of active sites on the T50 values. Here, the new set-up exhibits its strength in reproducibility and accuracy which is due to the defined and isolated droplets. Finally, it opens a temperature window down to -37˚ C for freezing experiments which was not accessible with former traditional approaches .Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds (vol 498, pg 355, 2013), Nature, 500, 491-491, 2013. Augustin, S., Wex, H

  6. Preparation of freezing quantum state for quantum coherence

    Science.gov (United States)

    Yang, Lian-Wu; Man, Zhong-Xiao; Zhang, Ying-Jie; Han, Feng; Du, Shao-jiang; Xia, Yun-Jie

    2018-06-01

    We provide a method to prepare the freezing quantum state for quantum coherence via unitary operations. The initial product state consists of the control qubit and target qubit; when it satisfies certain conditions, the initial product state converts into the particular Bell diagonal state under the unitary operations, which have the property of freezing of quantum coherence under quantum channels. We calculate the frozen quantum coherence and corresponding quantum correlations, and find that the quantities are determined by the control qubit only when the freezing phenomena occur.

  7. Vertically transmitted cytomegalovirus infection in newborn preterm infants.

    Science.gov (United States)

    Balcells, Carla; Botet, Francesc; Gayete, Sònia; Marcos, M Ángeles; Dorronsoro, Izaskun; de Alba, Concepción; Figueras-Aloy, Josep

    2016-07-01

    To determine the epidemiology of congenital and acquired cytomegalovirus (CMV) infections in preterm infants and to analyze the efficacy of breast milk freezing in decreasing the vertical transmission rate of CMV. During 2013 and 2014, preterm newborns who weighed ≤1500 g and were admitted to 22 Spanish neonatal units were included and screened for CMV infection according to the Spanish Neonatology Society recommendations. Each hospital treated the breast milk according to its own protocols. Among the 1236 preterm neonates included, 10 had a congenital infection (0.8%) and 49 had an acquired infection (4.0%) (82% demonstrated positive PCR-CMV in breast milk). The neonates who received only frozen milk presented less frequently with acquired infection (1.2%) than those fed fresh milk (5.5%) (RR=0.22; 95% CI 0.05-0.90; P=0.017). The newborns who received bank milk followed by frozen or fresh breast milk more frequently had an acquired infection (2.1% or 2.2%, respectively) than those fed only frozen breast milk. The incidence of congenital CMV infection in our sample is low, as described in the literature. To reduce acquired CMV infection, freezing breast milk might be an advisable procedure for preterm neonates born from seropositive mothers, either from the beginning of lactation or after a period of bank milk administration.

  8. Complete p-type activation in vertical-gradient freeze GaAs co-implanted with gallium and carbon

    Science.gov (United States)

    Horng, S. T.; Goorsky, M. S.

    1996-03-01

    High-resolution triple-axis x-ray diffractometry and Hall-effect measurements were used to characterize damage evolution and electrical activation in gallium arsenide co-implanted with gallium and carbon ions. Complete p-type activation of GaAs co-implanted with 5×1014 Ga cm-2 and 5×1014 C cm-2 was achieved after rapid thermal annealing at 1100 °C for 10 s. X-ray diffuse scattering was found to increase after rapid thermal annealing at 600-900 °C due to the aggregation of implantation-induced point defects. In this annealing range, there was ˜10%-72% activation. After annealing at higher annealing temperatures, the diffuse scattered intensity decreased drastically; samples that had been annealed at 1000 °C (80% activated) and 1100 °C (˜100% activated) exhibited reciprocal space maps that were indicative of high crystallinity. The hole mobility was about 60 cm2/V s for all samples annealed at 800 °C and above, indicating that the crystal perfection influences dopant activation more strongly than it influences mobility. Since the high-temperature annealing simultaneously increases dopant activation and reduces x-ray diffuse scattering, we conclude that point defect complexes which form at lower annealing temperatures are responsible for both the diffuse scatter and the reduced activation.

  9. Vertical Gradient Freezing Using Submerged Heater Growth With Rotation and With Weak Magnetic and Electric Fields

    National Research Council Canada - National Science Library

    Bliss, D. F; Holmes, A. M; Wang, X; Ma, N; Iseler, G. W

    2005-01-01

    ...) method utilizing a submerged heater. Electromagnetic stirring can be induced in the gallium-antimonide melt just above the crystal growth interface by applying a weak radial electric current in the melt together with a weak axial magnetic field...

  10. Freezing temperature protection admixture for Portland cement concrete

    Science.gov (United States)

    1996-10-01

    A number of experimental admixtures were compared to Pozzutec 20 admixture for their ability to protect fresh concrete from freezing and for increasing the rate of cement hydration at below-freezing temperatures. The commercial accelerator and low-te...

  11. Investigation of Ionospheric Spatial Gradients for Gagan Error Correction

    Science.gov (United States)

    Chandra, K. Ravi

    In India, Indian Space Research Organization (ISRO) has established with an objective to develop space technology and its application to various national tasks. The national tasks include, establishment of major space systems such as Indian National Satellites (INSAT) for communication, television broadcasting and meteorological services, Indian Remote Sensing Satellites (IRS), etc. Apart from these, to cater to the needs of civil aviation applications, GPS Aided Geo Augmented Navigation (GAGAN) system is being jointly implemented along with Airports Authority of India (AAI) over the Indian region. The most predominant parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of total number of electrons present in one square meter cylindrical cross-sectional area in the line of site direction between the satellite and the user on the earth, i.e. Total Electron Content (TEC). In the equatorial and low latitude regions such as India, TEC is often quite high with large spatial gradients. Carrier phase data from the GAGAN network of Indian TEC Stations is used for estimating and identifying ionospheric spatial gradients inmultiple viewing directions. In this paper amongst the satellite signals arriving in multipledirections,Vertical ionospheric gradients (σVIG) are calculated, inturn spatial ionospheric gradients are identified. In addition, estimated temporal gradients, i.e. rate of TEC Index is also compared. These aspects which contribute to errors can be treated for improved GAGAN system performance.

  12. Research on strength attenuation law of concrete in freezing - thawing environment

    Science.gov (United States)

    Xiao, qianhui; Cao, zhiyuan; Li, qiang

    2018-03-01

    By rapid freezing and thawing method, the experiments of concrete have been 300 freeze-thaw cycles specimens in the water. The cubic compression strength value under different freeze-thaw cycles was measured. By analyzing the test results, the water-binder ratio of the concrete under freeze-thaw environments, fly ash and air entraining agent is selected dosage recommendations. The exponential attenuation prediction model and life prediction model of compression strength of concrete under freezing-thawing cycles considering the factors of water-binder ratio, fly ash content and air-entraining agent dosage were established. The model provides the basis for predicting the durability life of concrete under freezing-thawing environment. It also provides experimental basis and references for further research on concrete structures with antifreeze requirements.

  13. Water vapor movement in freezing aggregate base materials.

    Science.gov (United States)

    2014-06-01

    The objectives of this research were to 1) measure the extent to which water vapor movement results in : water accumulation in freezing base materials; 2) evaluate the effect of soil stabilization on water vapor movement : in freezing base materials;...

  14. Soil Organic δ13C Change Along a Vertical Gradient in the Northern Slop of Tianshan Mountains

    Directory of Open Access Journals (Sweden)

    XU Wen-qiang

    2016-09-01

    Full Text Available Soil organic carbon (SOC pool integrated the vegetation succession information from several years to thousands of years scales. It is an ideal tool to understand carbon isotope composition change and terrestrial ecosystem pathways. In this study, the Sangong river watershed was taken as a case. We had estimated the change of vegetation and soil organic along a vertical gradient using the carbon isotopic method, and analyzed the variations of mean SOC δ13C values with the annual precipitation, and researched the variations in SOC and δ13C values with profile depth in the study area. The results showed that the SOC δ13C decreased significantly with the increasing annual precipitation (R2=0.97 where the annual precipitation was less than 300 mm. When the annual precipitation was 300 mm~500 mm, the SOC δ13C was not significant changed with the increasing annual precipitation (R2=0.04. The enrichment effect of SOC δ13C with depth was significant in the sample site of pure C3 vegetation, that means lower layer SOC δ13C of profile was greater than the upper layer. The average difference of SOC δ13C between lower layer and upper layer was 1.01‰. The opposite trend of SOC δ13C was presented in the Desert and Shrubland sites. And that, the SOC δ13C value of upper layer closed to C4 vegetation source, and the lower layer closed to C3 vegetation source. Therefore, we can infer that the vegetation may have experienced from C3 to C4 in the sandy desert and terrene desert sites.

  15. A freeze-stable formulation for DTwP and DTaP vaccines.

    Science.gov (United States)

    Xue, Honggang; Yang, Bangling; Kristensen, Debra D; Chen, Dexiang

    2014-01-01

    Inadvertent vaccine freezing often occurs in the cold chain and may cause damage to freeze‑sensitive vaccines. Liquid vaccines that contain aluminum salt adjuvants are particularly vulnerable. Polyol cryoprotective excipients have been shown to prevent freeze damage to hepatitis B vaccine. In this study, we examined the freeze-protective effect of propylene glycol on diphtheria-tetanus-pertussis-whole-cell (DTwP) and acellular (DTaP) vaccines. Pilot lots of DTwP and DTaP formulated with 7.5% propylene glycol underwent 3 freeze-thaw treatments. The addition of propylene glycol had no impact on pH, particle size distribution, or potency of the vaccines prior to freeze-thaw treatment; the only change noted was an increase in osmolality. The potencies and the physical properties of the vaccines containing cryoprotectant were maintained after freeze-thawing and for 3 months in accelerated stability studies. The results from this study indicate that formulating vaccines with propylene glycol can protect diphtheria-tetanus-pertussis vaccines against freeze damages.

  16. Freeze-drying-induced changes in the properties of graphene oxides

    International Nuclear Information System (INIS)

    Ham, Heon; Van Khai, Tran; Gil Na, Han; Jung Kwon, Yong; Yeon Cho, Hong; Woo Kim, Hyoun; Park, No-Hyung; So, Dae Sup; Lee, Joon-Woo

    2014-01-01

    We have characterized and evaluated changes in graphene oxide (GO) induced by means of freeze-drying. In order to evaluate these changes, we investigated the effects of freeze-drying and chemical reduction processes on the structure, morphology, chemical composition, and Raman properties of GO and reduced GO. The freeze-dried GO had a pore structure, maintaining a pored morphology even after thermal annealing. The freeze-dried samples were composed of a single folded nanosheet or a few nanosheets stacked and folded. The oxygen-containing functional groups were removed not only during the freeze-drying but also during the reduction processes, with an accompanying decrease in the average size of the sp 2 carbon domain (i.e. an increase in the I D /I G value). (papers)

  17. Nanocrystals-based Macroporous Materials Synthesized by Freeze-drying Combustion

    International Nuclear Information System (INIS)

    Yan, Ruiqiang; Chen, Yu; Lin, Ye; Chen, Fanglin

    2016-01-01

    We present a novel freeze-drying combustion method for synthesis of macroporous powders with nano-network, using Sm 0.2 Ce 0.8 O 1.9 (SDC) as an example. The metal nitrate salt solution mixed with glycine is frozen to form homogeneous nitrate/glycine mixture and then freeze-dried through sublimation of ice crystals. Upon combustion of the freeze-dried mixture, SDC powders with macroporous microstructure consisting of 10–20 nm nanocrystals, high surface area and excellent sinterability are achieved. High resolution transmission electron microscopy (HRTEM) analysis indicates that nanodomains due to aggregation/segregation of dopants in the SDC powders obtained from freeze-drying combustion are much smaller than those in the SDC powders synthesized by the conventional nitrate solution combustion approach, demonstrating better elemental homogeneity and improved conductivity. Using low cost precursors and simple processing conditions, freeze-drying combustion can be a versatile method to synthesize nanocrystalline powders with excellent composition homogeneity for broad applications.

  18. Application of vertical micro-disk MHD electrode to the analysis of heterogeneous magneto-convection

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, A. [Saitama Industrial Technology Center, Japan Society for the Promotion of Science, Kawaguchi (Japan). Domestic Research Fellowship; Hashiride, M.; Morimoto, R.; Nagai, Y. [Saitama Industrial Technology Center, Kawaguchi (Japan). Materials Engineering Division; Aogaki, R. [Polytechnic University, Sagamihara (Japan). Department of Product Design

    2004-11-01

    With a micro-disk electrode in vertical magnetic fields, heterogeneous magneto-convection in vertical magnetic fields was quantitatively examined for the redox reaction of ferrocyanide-ferricyanide ions. It was concluded that the current density controlled by the magneto-convection is in proportion to the 1/3rd power of the product of the magnetic flux density and its gradient. Then, by using the same electrode system, the diffusion current induced by the vertical MHD (magnetohydrodynamic) flow was measured for the reduction of cuprous ions to copper atoms. The current density in this case was, as theoretically predicted, a function of the 1st power of the magnetic flux density. Finally, to visualize this characteristic flow pattern of the vertical MHD flow, copper electrodeposition onto the micro-disk electrode in a vertical magnetic field was performed; a typical morphological pattern of the deposit (single micro-mystery circle) was observed, as expected. (author)

  19. Application of vertical micro-disk MHD electrode to the analysis of heterogeneous magneto-convection

    International Nuclear Information System (INIS)

    Sugiyama, Atsushi; Hashiride, Makoto; Morimoto, Ryoichi; Nagai, Yutaka; Aogaki, Ryoichi

    2004-01-01

    With a micro-disk electrode in vertical magnetic fields, heterogeneous magneto-convection in vertical magnetic fields was quantitatively examined for the redox reaction of ferrocyanide-ferricyanide ions. It was concluded that the current density controlled by the magneto-convection is in proportion to the 1/3rd power of the product of the magnetic flux density and its gradient. Then, by using the same electrode system, the diffusion current induced by the vertical MHD (magnetohydrodynamic) flow was measured for the reduction of cuprous ions to copper atoms. The current density in this case was, as theoretically predicted, a function of the 1st power of the magnetic flux density. Finally, to visualize this characteristic flow pattern of the vertical MHD flow, copper electrodeposition onto the micro-disk electrode in a vertical magnetic field was performed; a typical morphological pattern of the deposit (single micro-mystery circle) was observed, as expected

  20. Thermal Gradient During Vacuum-Deposition Dramatically Enhances Charge Transport in Organic Semiconductors: Toward High-Performance N-Type Organic Field-Effect Transistors.

    Science.gov (United States)

    Kim, Joo-Hyun; Han, Singu; Jeong, Heejeong; Jang, Hayeong; Baek, Seolhee; Hu, Junbeom; Lee, Myungkyun; Choi, Byungwoo; Lee, Hwa Sung

    2017-03-22

    A thermal gradient distribution was applied to a substrate during the growth of a vacuum-deposited n-type organic semiconductor (OSC) film prepared from N,N'-bis(2-ethylhexyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboxyimide) (PDI-CN2), and the electrical performances of the films deployed in organic field-effect transistors (OFETs) were characterized. The temperature gradient at the surface was controlled by tilting the substrate, which varied the temperature one-dimensionally between the heated bottom substrate and the cooled upper substrate. The vacuum-deposited OSC molecules diffused and rearranged on the surface according to the substrate temperature gradient, producing directional crystalline and grain structures in the PDI-CN2 film. The morphological and crystalline structures of the PDI-CN2 thin films grown under a vertical temperature gradient were dramatically enhanced, comparing with the structures obtained from either uniformly heated films or films prepared under a horizontally applied temperature gradient. The field effect mobilities of the PDI-CN2-FETs prepared using the vertically applied temperature gradient were as high as 0.59 cm 2 V -1 s -1 , more than a factor of 2 higher than the mobility of 0.25 cm 2 V -1 s -1 submitted to conventional thermal annealing and the mobility of 0.29 cm 2 V -1 s -1 from the horizontally applied temperature gradient.

  1. Evaluation of Freezing Tolerance of Three Ajowan (Trachyspermum ammi (Linn. Sprague Ecotypes in Controlled Conditions

    Directory of Open Access Journals (Sweden)

    Z Boroumand Rezazadeh

    2013-08-01

    Full Text Available Ajowan is one of the endemic plants in Khorasan province, and there is a little information on its tolerance to cold stress. In order to study freezing tolerance of ajowan, an experiment was conducted in faculty of agriculture, Ferdowsi University of Mashhad, based on factorial-completely randomized design with three replications and three ecotypes of ajowan (Neishabour, Birjand and Torbat-e-Heidarieh were imposed on eight freezing temperatures (0 (control, -1.5, -3, -4.5, -6,-7.5, -9 and -10.5 °C. Plants were grown in natural environment till 4-5 leaf stage, then for freezing treatments transferred to thermo-gradient freezer. The cell membrane stability was evaluated by electrolyte leakage index (EL and temperature for killing 50% of samples according to the electrolyte leakage (LT50el was determined. Furthermore, survival percentage, leaf number and dry weight, temperature for killing 50% of samples according to survival (LT50su and reduced dry matter temperature 50 (RDMT50 were determined after three weeks recovery in the glasshouse. Response of ajowan ecotypes for electrolyte leakage was different and birjand ecotype had the lowest %EL, whereas the slope of %EL in mentioned ecotype was lower than two other ecotypes. However there were no significant differences among ajowan ecotypes on LT50su. Decreasing temperature to -7.5 °C reduced survival percentage of Neishabour and Torbat-e-Heidarieh ecotypes to lower than 20 percent, whiles in this temperature Birjand’s survival percentage was about 60 percent. It seems that Birjand ecotype with the lowest electrolyte leakage, the highest survival and dry matter and the lowest LT50su was more tolerant than two other ecotypes.

  2. RESEARCH OF MOISTURE MIGRATION DURING PARTIAL FREEZING OF GROUND BEEF

    Directory of Open Access Journals (Sweden)

    V. M. Stefanovskiy

    2016-01-01

    Full Text Available The concept of «ideal product» is proposed for the study of mass transfer during partial freezing of food products by freezing plate. The ideal product is a product, in which number of factors affecting the «real product» (meat are excluded. These factors include chemical composition of meat, quality grade of raw material (NOR, DFD, PSE, cryoscopic temperature that determines the degree of water transformation into ice, the phenomenon of osmosis, rate of freezing, etc. By using the concept of «ideal product» and its implementation in a physical experiment, it is proved that the “piston effect” causing the migration of moisture is due to frozen crust formation during partial freezing of the body. During partial freezing of the product by freezing plate, «ideal» and «real» food environment is transformed from closed system into open one with inflow of moisture to unfrozen part of the body. In the «ideal product», there is an expulsion of unfrozen moisture from freezing front, so the water appears on the body surface. Thus, the displacement of moisture increases by the same law, according to which the thickness (weight of frozen layer increases. During partial freezing of ground meat, moisture does not appear on the surface of the product, but hydrates the unfrozen part of meat. The reason of this phenomenon is the expulsion of water during formation of frozen crust and water-binding capacity of meat.

  3. Non-Toxic, Low-Freezing, Drop-In Replacement Heat Transfer Fluids

    Science.gov (United States)

    Cutbirth, J. Michael

    2012-01-01

    A non-toxic, non-flammable, low-freezing heat transfer fluid is being developed for drop-in replacement within current and future heat transfer loops currently using water or alcohol-based coolants. Numerous water-soluble compounds were down-selected and screened for toxicological, physical, chemical, compatibility, thermodynamic, and heat transfer properties. Two fluids were developed, one with a freezing point near 0 C, and one with a suppressed freezing point. Both fluids contain an additive package to improve material compatibility and microbial resistance. The optimized sub-zero solution had a freezing point of 30 C, and a freezing volume expansion of 10-percent of water. The toxicity of the solutions was experimentally determined as LD(50) greater than 5g/kg. The solutions were found to produce minimal corrosion with materials identified by NASA as potentially existing in secondary cooling loops. Thermal/hydrodynamic performance exceeded that of glycol-based fluids with comparable freezing points for temperatures Tf greater than 20 C. The additive package was demonstrated as a buffering agent to compensate for CO2 absorption, and to prevent microbial growth. The optimized solutions were determined to have physically/chemically stable shelf lives for freeze/thaw cycles and longterm test loop tests.

  4. Freeze injury to roots of southern pine seedlings in the USA | South ...

    African Journals Online (AJOL)

    ... and therefore root injury was often overlooked. Many freeze-injured seedlings died within two months of the freeze event. Since freeze injury symptoms to roots were overlooked, foresters offered various reasons (other than the freeze) for the poor seedling performance. Keywords: acclimation, frost, nursery, Pinus elliottii, ...

  5. Step scaling and the Yang-Mills gradient flow

    International Nuclear Information System (INIS)

    Lüscher, Martin

    2014-01-01

    The use of the Yang-Mills gradient flow in step-scaling studies of lattice QCD is expected to lead to results of unprecedented precision. Step scaling is usually based on the Schrödinger functional, where time ranges over an interval [0,T] and all fields satisfy Dirichlet boundary conditions at time 0 and T. In these calculations, potentially important sources of systematic errors are boundary lattice effects and the infamous topology-freezing problem. The latter is here shown to be absent if Neumann instead of Dirichlet boundary conditions are imposed on the gauge field at time 0. Moreover, the expectation values of gauge-invariant local fields at positive flow time (and of other well localized observables) that reside in the center of the space-time volume are found to be largely insensitive to the boundary lattice effects.

  6. DSC and TMA studies on freezing and thawing gelation of galactomannan polysaccharide

    International Nuclear Information System (INIS)

    Iijima, Mika; Hatakeyama, Tatsuko; Hatakeyama, Hyoe

    2012-01-01

    Research highlights: ► Locust bean gum forms hydrogels by freezing and thawing. ► Syneresis was observed when freezing and thawing cycle (n) increased. ► Dynamic Young's modulus increased with increasing n. ► Non-freezing water content restrained by hydrogels decreased with increasing n. ► Strong gel with densely packed network structure formed with increasing n. - Abstract: Among various kinds of polysaccharides known to form hydrogels, locust bean gum (LBG) consisting of a mannose backbone and galactose side chains has unique characteristics, since LBG forms hydrogels by freezing and thawing. In this study, effect of thermal history on gelation was investigated by differential scanning calorimetry (DSC) and thermomechanical analysis (TMA). Gel/sol ratio calculated by weighing method was found to be affected by sol concentration, freezing rate and the number of freezing and thawing cycle (n). Once LBG hydrogels are formed, they are thermally stable, although syneresis was observed when n increased. Dynamic Young's modulus (E′) of hydrogels measured by TMA in water increased with increasing n and decreasing freezing rate. Non-freezing water calculated from DSC melting peak of ice in the gel decreased with increasing n and decreasing freezing rate. Morphological observation of freeze-dried gels was carried out by scanning electron microscopy (SEM). The above results indicate that weak hydrogel having large molecular network structure transformed into strong gel with densely packed network structure by increasing n and decreasing freezing rate.

  7. Freezing and low temperature photoinhibition tolerance in cultivated potato and potato hybrids

    Directory of Open Access Journals (Sweden)

    M.M. SEPPÄNEN

    2008-12-01

    Full Text Available Four Solanum tuberosum L. cultivars (Nicola, Pito, Puikula, Timo and somatic hybrids between freezing tolerant S. commersonii and freezing sensitive S. tuberosum were evaluated for their tolerance to freezing and low temperature photoinhibition. Cellular freezing tolerance was studied using ion leakage tests and the sensitivity of the photosynthetic apparatus to freezing and high light intensity stress by measuring changes in chlorophyll fluorescence (FV/FM and oxygen evolution. Exposure to high light intensities after freezing stress increased frost injury significantly in all genotypes studied. Compared with S. tuberosum cultivars, the hybrids were more tolerant both of freezing and intense light stresses. In field experiments the mechanism of frost injury varied according to the severity of night frosts. During night frosts in 1999, the temperature inside the potato canopy was significantly higher than at ground level, and did not fall below the lethal temperature for potato cultivars (from -2.5 to -3.0°C. As a result, frost injury developed slowly, indicating that damage occurred to the photosynthetic apparatus. However, as the temperature at ground level and inside the canopy fell below -4°C, cellular freezing occurred and the canopy was rapidly destroyed. This suggests that in the field visual frost damage can follow from freezing or non-freezing temperatures accompanied with high light intensity. Therefore, in an attempt to improve low temperature tolerance in potato, it is important to increase tolerance to both freezing and chilling stresses.

  8. Tree mortality from a short-duration freezing event and global-change-type drought in a Southwestern piñon-juniper woodland, USA

    Directory of Open Access Journals (Sweden)

    Helen M. Poulos

    2014-06-01

    Full Text Available This study documents tree mortality in Big Bend National Park in Texas in response to the most acute one-year drought on record, which occurred following a five-day winter freeze. I estimated changes in forest stand structure and species composition due to freezing and drought in the Chisos Mountains of Big Bend National Park using permanent monitoring plot data. The drought killed over half (63% of the sampled trees over the entire elevation gradient. Significant mortality occurred in trees up to 20 cm diameter (P < 0.05. Pinus cembroides Zucc. experienced the highest seedling and tree mortality (P < 0.0001 (55% of piñon pines died, and over five times as many standing dead pines were observed in 2012 than in 2009. Juniperus deppeana vonSteudal and Quercus emoryi Leibmann also experienced significant declines in tree density (P < 0.02 (30.9% and 20.7%, respectively. Subsequent droughts under climate change will likely cause even greater damage to trees that survived this record drought, especially if such events follow freezes. The results from this study highlight the vulnerability of trees in the Southwest to climatic change and that future shifts in forest structure can have large-scale community consequences.

  9. Freezing tolerance of ectomycorrhizal fungi in pure culture.

    Science.gov (United States)

    Lehto, Tarja; Brosinsky, Arlena; Heinonen-Tanski, Helvi; Repo, Tapani

    2008-10-01

    The ability to survive freezing and thawing is a key factor for the existence of life forms in large parts of the world. However, little is known about the freezing tolerance of mycorrhizal fungi and their role in the freezing tolerance of mycorrhizas. Threshold temperatures for the survival of these fungi have not been assessed experimentally. We grew isolates of Suillus luteus, Suillus variegatus, Laccaria laccata, and Hebeloma sp. in liquid culture at room temperature. Subsequently, we exposed samples to a series of temperatures between +5 degrees C and -48 degrees C. Relative electrolyte leakage (REL) and re-growth measurements were used to assess the damage. The REL test indicated that the lethal temperature for 50% of samples (LT(50)) was between -8.3 degrees C and -13.5 degrees C. However, in the re-growth experiment, all isolates resumed growth after exposure to -8 degrees C and higher temperatures. As many as 64% of L. laccata samples but only 11% in S. variegatus survived -48 degrees C. There was no growth of Hebeloma and S. luteus after exposure to -48 degrees C, but part of their samples survived -30 degrees C. The fungi tolerated lower temperatures than was expected on the basis of earlier studies on fine roots of ectomycorrhizal trees. The most likely freezing tolerance mechanism here is tolerance to apoplastic freezing and the concomitant intracellular dehydration with consequent concentrating of cryoprotectant substances in cells. Studying the properties of fungi in isolation promotes the understanding of the role of the different partners of the mycorrhizal symbiosis in the freezing tolerance.

  10. CONSIDERA TIONS OF ICE MORPHOLOGY AND DRIVING FORCES IN FREEZE CONCENTRATION

    OpenAIRE

    PETZOLD MALDONADO, GUILLERMO

    2013-01-01

    Ice rnorphology (size and shape) influence decisively in sensory appreciation, texture and quality of rnany frozen foods. Ice rnorphology is also irnportant in sorne technological processes such as freeze drying and freeze concentration, which influences the efficiency ofthese processes. The overall objective of this thesis was to increase our knowledge about the control on rnorphology of the ice phase in freezing food and related processes such as freeze concentration. Freezin...

  11. Canopy gradients in leaf functional traits for species that differ in growth strategies and shade tolerance.

    Science.gov (United States)

    Coble, Adam P; Fogel, Marilyn L; Parker, Geoffrey G

    2017-10-01

    In temperate deciduous forests, vertical gradients in leaf mass per area (LMA) and area-based leaf nitrogen (Narea) are strongly controlled by gradients in light availability. While there is evidence that hydrostatic constraints on leaf development may diminish LMA and Narea responses to light, inherent differences among tree species may also influence leaf developmental and morphological response to light. We investigated vertical gradients in LMA, Narea and leaf carbon isotope composition (δ13C) for three temperate deciduous species (Carpinus caroliniana Walter, Fagus grandifolia Ehrh., Liriodendron tulipifera L.) that differed in growth strategy (e.g., indeterminate and determinate growth), shade tolerance and leaf area to sapwood ratio (Al:As). Leaves were sampled across a broad range of light conditions within three vertical layers of tree crowns to maximize variation in light availability at each height and to minimize collinearity between light and height. All species displayed similar responses to light with respect to Narea and δ13C, but not for LMA. Light was more important for gradients in LMA for the shade-tolerant (C. caroliniana) and -intolerant (L. tulipifera) species with indeterminate growth, and height (e.g., hydrostatic gradients) and light were equally important for the shade-tolerant (F. grandifolia) species with determinate growth. Fagus grandifolia had a higher morphological plasticity in response to light, which may offer a competitive advantage in occupying a broader range of light conditions throughout the canopy. Differences in responses to light and height for the taller tree species, L. tulipifera and F. grandifolia, may be attributed to differences in growth strategy or Al:As, which may alter morphological and functional responses to light availability. While height was important in F. grandifolia, height was no more robust in predicting LMA than light in any of the species, confirming the strong role of light availability in

  12. Universal pion freeze-out in heavy-ion collisions

    CERN Document Server

    Adamova, D; Appelshäuser, H; Belaga, V; Braun-Munzinger, P; Castillo, A; Cherlin, A; Damjanovic, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Zeev; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Lenkeit, B C; Ludolphs, W; Maas, A; Marin, A; Milosevic, J; Milov, A; Miskowiec, D; Panebratsev, Yu A; Petchenova, O Yu; Petracek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schükraft, Jürgen; Sedykh, S; Shimansky, S S; Slivova, J; Specht, H J; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, Itzhak; Wessels, J P; Wienold, T; Windelband, B; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V; Schmitz, W

    2003-01-01

    Based on an evaluation of recent systematic data on two-pion interferometry and on measured particle yields at mid-rapidity, we propose a universal condition for thermal freeze-out of pions in heavy-ion collisions. We show that freeze-out occurs when the mean free path of pions lambda_f reaches a value of approximately 2.5 fm, which is much smaller than the spatial extent of the system at freeze-out. This critical mean free path is independent of the centrality of the collision and its value is constant at all currently available beam energies from AGS to RHIC.

  13. Anti-freezing of air-cooled heat exchanger by switching off sectors

    International Nuclear Information System (INIS)

    Wang, Weijia; Kong, Yanqiang; Huang, Xianwei; Yang, Lijun; Du, Xiaoze; Yang, Yongping

    2017-01-01

    Highlights: • The anti-freezing of air-cooled heat exchanger by switching off sectors is studied. • The water side heat loads of various sectors are compared for different cases. • Anti-freezing turbine back pressure is proposed and obtained for various cases. • As wind speed increases, the energy efficiency can be clearly improved by sector off. • By switching frontal sector off, anti-freezing operation is most energy efficient. - Abstract: With the air side huge heat transfer surface, the air-cooled heat exchanger will take a serious freezing risk in cold winter. Therefore, it is of benefit to the safe operation of natural draft dry cooling system to propose the anti-freezing measures. In this work, the flow and heat transfer models of the cooling air coupling with the circulating water, are developed and numerically simulated for the anti-freezing by switching various sectors off. The local thermo-flow fields of cooling air are presented, and the water side heat loads of various sectors are compared for various cases. The anti-freezing turbine back pressure is proposed and obtained for the energy efficiency analysis. The results show that the sector switching off approach can effectively prevent the air-cooled heat exchanger from freezing and improve the energy efficiency of the cooling system, especially at high wind speeds. Moreover, with the frontal sector switching off, the most energy efficient anti-freezing operation of natural draft dry cooling system can be achieved.

  14. Effect of Hexaconazole and Penconazole on Kochia (Kochia scoparia Freezing Tolerance

    Directory of Open Access Journals (Sweden)

    A. Kamandy

    2016-07-01

    on CRBD with three replications at research greenhouse of college of agriculture, Ferdowsi University of Mashhad in 2009. Plants were kept in natural condition until three weeks after planting, which in this stage they had three leaves, and then treated with fungicide. After 24 hours plants were frozen in thermo gradient freezer, in the dark. At first, the temperature of thermo gradient freezer was five degrees centigrade, and then temperature decreased two degree centigrade per hour. In order to make ice nucleation in plant at -3-degree centigrade ice nucleation active bacteria was sprayed. Plants were keeping an hour in each temperature treatment. In order to balance the ambient temperature, the plants are kept at the desired temperature for one hour and then the pots transport in a cold chamber at a temperature of 5 ± 2°C for 24 hours. The cell membrane stability was measured through electrolyte leakage (EL and the lethal temperature 50 (LT50el (according to El also were determined in the youngest developed leaf from each plant. The electrolyte leakage in the solution was measured after 24 h of floating at room temperature using a conductivity meter. Total conductivity was obtained after keeping the flasks in an oven (75°C for 90 minutes. Results were expressed as percentage of total conductivity. Survival percentage, plant height, dry weight and (LT50su (according to survival were determined after three weeks recovery in the natural condition. The data were analyzed statistically using a two-way ANOVA, applied to the various measured and calculated parameters, followed by a Duncan test for mean comparison between treatments at a 95 % confidence level by MSTAT-C program. Results and Discussion The results showed that increase of fungicide concentration by 10 and 20 mg.L-1 higher than control decreased electrolyte leakage but, electrolyte leakage build-up with decrease freezing temperature. Fungicide application increased -2 °C freezing tolerance in kochia

  15. Reduced freezing in posttraumatic stress disorder patients while watching affective pictures

    NARCIS (Netherlands)

    Fragkaki, I.; Roelofs, K.; Stins, J.F.; Jongedijk, R.A.; Hagenaars, M.A.

    2017-01-01

    Besides fight and flight responses, animals and humans may respond to threat with freezing, an adaptive response characterized by bradycardia and physical immobility. Risk assessment is enhanced during freezing to promote optimal decision-making. Indeed, healthy participants showed freezing-like

  16. Apparatus for freeze drying of biologic and sediment samples

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Freeze drying to obtain water from individual samples, though not complicated, usually requires considerable effort to maintain the cold traps on a 24-hr basis. In addition, the transfer of a sample from sample containers to freeze-dry flasks is usually made with some risk of contamination to the sample. If samples are large, 300 g to 600 g, usually several days are required to dry the samples. The use of an unattended system greatly improves personnel and drying efficiency. Commercial freeze dryers are not readily applicable to the problems of collecting water from individual samples, and lab-designed collectors required sample transfer and continual replenishment of the dry ice. A freeze-dry apparatus for collecting water from individual sediment and/or biological samples was constructed to determine the tritium concentrations in fish for dose calcaluations and the tritium distribution in sediment cores for water movement studies. The freeze, dry apparatus, which can handle eight samples simultaneously and conveniently, is set up for unattended 24-hr operation and is designed to avoid sample transfer problems

  17. Comparison Study of Three Common Technologies for Freezing-Thawing Measurement

    Directory of Open Access Journals (Sweden)

    Xinbao Yu

    2010-01-01

    Full Text Available This paper describes a comparison study on three different technologies (i.e., thermocouple, electrical resistivity probe and Time Domain Reflectometry (TDR that are commonly used for frost measurement. Specially, the paper developed an analyses procedure to estimate the freezing-thawing status based on the dielectric properties of freezing soil. Experiments were conducted where the data of temperature, electrical resistivity, and dielectric constant were simultaneously monitored during the freezing/thawing process. The comparison uncovered the advantages and limitations of these technologies for frost measurement. The experimental results indicated that TDR measured soil dielectric constant clearly indicates the different stages of the freezing/thawing process. Analyses method was developed to determine not only the onset of freezing or thawing, but also the extent of their development. This is a major advantage of TDR over other technologies.

  18. Adaptive Control of Freeze-Form Extrusion Fabrication Processes (Preprint)

    National Research Council Canada - National Science Library

    Zhao, Xiyue; Landers, Robert G; Leu, Ming C

    2008-01-01

    Freeze-form Extrusion Fabrication (FEF) is an additive manufacturing process that extrudes high solids loading aqueous ceramic pastes in a layer-by-layer fashion below the paste freezing temperature for component fabrication...

  19. "On" freezing in Parkinson's disease: resistance to visual cue walking devices.

    Science.gov (United States)

    Kompoliti, K; Goetz, C G; Leurgans, S; Morrissey, M; Siegel, I M

    2000-03-01

    To measure "on" freezing during unassisted walking (UW) and test if two devices, a modified inverted stick (MIS) and a visual laser beam stick (LBS) improved walking speed and number of "on" freezing episodes in patients with Parkinson's disease (PD). Multiple visual cues can overcome "off' freezing episodes and can be useful in improving gait function in parkinsonian patients. These devices have not been specifically tested in "on" freezing, which is unresponsive to pharmacologic manipulations. Patients with PD, motor fluctuations and freezing while "on," attempted walking on a 60-ft track with each of three walking conditions in a randomized order: UW, MIS, and LBS. Total time to complete a trial, number of freezes, and the ratio of walking time to the number of freezes were compared using Friedman's test. Twenty-eight patients with PD, mean age 67.81 years (standard deviation [SD] 7.54), mean disease duration 13.04 years (SD 7.49), and mean motor Unified Parkinson's Disease Rating Scale score "on" 32.59 (SD 10.93), participated in the study. There was a statistically significant correlation of time needed to complete a trial and number of freezes for all three conditions (Spearman correlations: UW 0.973, LBS 0.0.930, and MIS 0.842). The median number of freezes, median time to walk in each condition, and median walking time per freeze were not significantly different in pairwise comparisons of the three conditions (Friedman's test). Of the 28 subjects, six showed improvement with the MIS and six with the LBS in at least one outcome measure. Assisting devices, specifically based on visual cues, are not consistently beneficial in overcoming "on" freezing in most patients with PD. Because this is an otherwise untreatable clinical problem and because occasional subjects do respond, cautious trials of such devices under the supervision of a health professional should be conducted to identify those patients who might benefit from their long-term use.

  20. Frost heave susceptibility of saturated soil under constant rate of freezing

    Science.gov (United States)

    Ryokai, K.; Iguro, M.; Yoneyama, K.

    Introduced are the results of experiments carried out to quantitatively obtain the frost heave pressure and displacement of soil subjected to artificial freezing or freezing around in-ground liquefied natural gas storage tanks. This experiment is conducted to evaluate the frost heave susceptibility of saturated soil under overconsolidation. In other words, this experiment was carried out to obtain the relation of the over-burden pressure and freezing rate to the frost heave ratio by observing the frost heave displacement and freezing time of specimens by freezing the specimens at a constant freezing rate under a constant overburden pressure, while letting water freely flow in and out of the system. Introduced are the procedures for frost heave test required to quantitatively obtain the frost heave displacement and pressure of soil. Furthermore, the relation between the frost heave susceptibility and physical properties of soil obtained by this test is reported.

  1. Immersion transmission ellipsometry (ITE) for the determination of orientation gradients in photoalignment layers

    Science.gov (United States)

    Jung, C. C.; Stumpe, J.

    2014-09-01

    The capability of the method of immersion transmission ellipsometry (ITE) (Jung et al. Int Patent WO, 2004/109260) to not only determine three-dimensional refractive indices in anisotropic thin films (which was already possible in the past), but even their gradients along the z-direction (perpendicular to the film plane) is investigated in this paper. It is shown that the determination of orientation gradients in deep-sub-μm films becomes possible by applying ITE in combination with reflection ellipsometry. The technique is supplemented by atomic force microscopy for measuring the film thickness. For a photo-oriented thin film, no gradient was found, as expected. For a photo-oriented film, which was subsequently annealed in a nematic liquid crystalline phase, an order was found similar to the one applied in vertically aligned nematic displays, with a tilt angle varying along the z-direction. For fresh films, gradients were only detected for the refractive index perpendicular to the film plane, as expected.

  2. Use of freeze-casting in advanced burner reactor fuel design

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models

  3. Experimental research on durability of recycled aggregate concrete under freeze- thaw cycles

    Science.gov (United States)

    Cheng, Yanqiu; Shang, Xiaoyu; Zhang, Youjia

    2017-07-01

    The freeze-thaw durability of recycled aggregate concrete has significance for the concrete buildings in the cold region. In this paper, the rapid freezing and thawing cycles experience on recycle aggregate concrete was conducted to study on the effects of recycle aggregate amount, water-binder ratio and fly ash on freeze-thaw durability of recycle aggregate concrete. The results indicates that recycle aggregate amount makes the significant influence on the freeze-thaw durability. With the increase of recycled aggregates amount, the freeze-thaw resistance for recycled aggregate concrete decreases. Recycled aggregate concrete with lower water cement ratio demonstrates better performance of freeze-thaw durability. It is advised that the amount of fly ash is less than 30% for admixture of recycled aggregates in the cold region.

  4. Recent developments in novel freezing and thawing technologies applied to foods.

    Science.gov (United States)

    Wu, Xiao-Fei; Zhang, Min; Adhikari, Benu; Sun, Jincai

    2017-11-22

    This article reviews the recent developments in novel freezing and thawing technologies applied to foods. These novel technologies improve the quality of frozen and thawed foods and are energy efficient. The novel technologies applied to freezing include pulsed electric field pre-treatment, ultra-low temperature, ultra-rapid freezing, ultra-high pressure and ultrasound. The novel technologies applied to thawing include ultra-high pressure, ultrasound, high voltage electrostatic field (HVEF), and radio frequency. Ultra-low temperature and ultra-rapid freezing promote the formation and uniform distribution of small ice crystals throughout frozen foods. Ultra-high pressure and ultrasound assisted freezing are non-thermal methods and shorten the freezing time and improve product quality. Ultra-high pressure and HVEF thawing generate high heat transfer rates and accelerate the thawing process. Ultrasound and radio frequency thawing can facilitate thawing process by volumetrically generating heat within frozen foods. It is anticipated that these novel technologies will be increasingly used in food industries in the future.

  5. Transient heat characteristics of water-saturated porous media with freezing; Toketsu wo tomonau gansui takoshitsu sonai no hiteijo netsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, A [Akita National College of Technology, Akita (Japan)

    1998-02-25

    Analytical and experimental investigations were performed to examine the transient heat characteristics of water-saturated porous media with freezing. As a physical model, a two-dimensional vertical cavity was considered. One vertical wall was abruptly cooled below the fusion temperature. Other three walls were thermally insulated. Three different sizes of glass, and iron, alumina and copper beads were used as the porous media in this study. The cold energy stored up in the porous media and the average thickness of frozen layer were measured in the experiments. Comparisons of the analytical results with the experimental ones were made, and the effects of Darcy number, Stefan number and modified Prandtl number on the transient heat characteristics were discussed. The dimensionless equations for predicting the averaged frozen layer thickness and the stored cold energy were obtained as a function of various dimensionless parameters. 8 refs., 16 figs., 1 tab.

  6. Effect of freezing temperature on the color of frozen salmon.

    Science.gov (United States)

    Ottestad, Silje; Enersen, Grethe; Wold, Jens Petter

    2011-09-01

    New freezing methods developed with the purpose of improved product quality after thawing can sometimes be difficult to get accepted in the market. The reason for this is the formation of ice crystals that can give the product a temporary color loss and make it less appealing. We have here used microscopy to study ice crystal size as a function of freezing temperature by investigating the voids in the cell tissue left by the ice crystals. We have also investigated how freezing temperature affects the color and the visible absorption spectra of frozen salmon. Freezing temperatures previously determined to be the best for quality after thawing (-40 to -60 °C) were found to cause a substantial loss in perceived color intensity during frozen state. This illustrated the conflict between optimal freezing temperatures with respect to quality after thawing against visual appearance during frozen state. Low freezing temperatures gave many small ice crystals, increased light scattering and an increased absorption level for all wavelengths in the visible region. Increased astaxanthin concentration on the other hand would give higher absorption at 490 nm. The results showed a clear potential of using visible interactance spectroscopy to differentiate between poor product coloration due to lack of pigmentation and temporary color loss due to light scattering by ice crystal. This type of measurements could be a useful tool in the development of new freezing methods and to monitor ice crystal growth during frozen storage. It could also potentially be used by the industry to prove good product quality. In this article we have shown that freezing food products at intermediate to low temperatures (-40 to -80 °C) can result in paler color during frozen state, which could affect consumer acceptance. We have also presented a spectroscopic method that can separate between poor product color and temporary color loss due to freezing. © 2011 Institute of Food Technologists®

  7. Protein and solute distribution in drug substance containers during frozen storage and post-thawing: a tool to understand and define freezing-thawing parameters in biotechnology process development.

    Science.gov (United States)

    Kolhe, Parag; Badkar, Advait

    2011-01-01

    Active pharmaceutical ingredient for biotechnology-based drugs, commonly known as drug substance (DS), is often stored frozen for longer shelf-life. Freezing DS enhances stability by slowing down reaction rates that lead to protein instability, minimizes the risk of microbial growth, and eliminates the risk of transport-related stress. High density polyethylene bottles are commonly used for storing monoclonal antibody DS due to good mechanical stress/strain resistant properties even at low temperatures. Despite the aforementioned advantages for frozen storage of DS, this is not devoid of risks. Proteins are known to undergo ice-water surface denaturation, cryoconcentration, and cold denaturation during freezing. A systematic investigation was performed to better understand the protein and solute distribution along with potential of aggregate formation during freeze and thaw process. A significant solute and protein concentration gradient was observed for both frozen and thawed DS bottles. In case of thawed DS, cryoconcentration was localized in the bottom layer and a linear increase in concentration as a function of liquid depth was observed. On the other hand, for frozen DS, a "bell shaped" cryoconcentration distribution was observed between the bottom layers and centre position. A cryoconcentration of almost three-fold was observed for frozen DS in the most concentrated part when freezing was conducted at -20 and -40 °C and 2.5-fold cryoconcentration was observed in the thawed DS before mixing. The information obtained in this study is critical to design freeze thaw experiments, storage condition determination, and process improvement in manufacturing environment. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  8. DNA comet assay to identify different freezing temperatures of irradiated liver chicken

    International Nuclear Information System (INIS)

    Duarte, Renato C.; Mozeika, Michel A.; Fanaro, Gustavo B.; Villavicencio, Anna L.C.H.; Marchioni, Eric

    2009-01-01

    The cold chain is a succession of steps which maintain the food at low temperature. The thawed food never be frozen again and the best solution being to consume it quickly to avoid the microorganism growth which causes decay and nutrients damage. One of most important point is that freezing process, unlike irradiation, do not destroy microorganisms, only inactive them as long as they remain in a frozen state. The Comet Assay is an original test used to detect irradiated foods that's recognize the DNA damage and can then be used to control the overall degradation of the food and in a certain extend to evaluate the damage caused by irradiation, different forms of freeze and storage time on liver chicken cells. Different freezing temperatures were used, deep freeze -196 deg C and slow freeze -10 deg C. Samples were irradiated in a 60 Co irradiator with 1.5, 3.0 and 4.5 kGy radiation doses. Fast freezing technique induces a low percent of DNA degradation comparing to slow freezing technique. This procedure could be a good choose to chicken freezing processing. (author)

  9. DNA comet assay to identify different freezing temperatures of irradiated liver chicken

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Renato C.; Mozeika, Michel A.; Fanaro, Gustavo B.; Villavicencio, Anna L.C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: renatocduarte@yahoo.com.br; Marchioni, Eric [Universite de Strasbourg, Illkirch (France). Faculte de Pharmacie. Lab. de Chimie Analytique et Sciences de l' Aliment

    2009-07-01

    The cold chain is a succession of steps which maintain the food at low temperature. The thawed food never be frozen again and the best solution being to consume it quickly to avoid the microorganism growth which causes decay and nutrients damage. One of most important point is that freezing process, unlike irradiation, do not destroy microorganisms, only inactive them as long as they remain in a frozen state. The Comet Assay is an original test used to detect irradiated foods that's recognize the DNA damage and can then be used to control the overall degradation of the food and in a certain extend to evaluate the damage caused by irradiation, different forms of freeze and storage time on liver chicken cells. Different freezing temperatures were used, deep freeze -196 deg C and slow freeze -10 deg C. Samples were irradiated in a {sup 60}Co irradiator with 1.5, 3.0 and 4.5 kGy radiation doses. Fast freezing technique induces a low percent of DNA degradation comparing to slow freezing technique. This procedure could be a good choose to chicken freezing processing. (author)

  10. Does anxiety cause freezing of gait in Parkinson's disease?

    Directory of Open Access Journals (Sweden)

    Kaylena A Ehgoetz Martens

    Full Text Available Individuals with Parkinson's disease (PD commonly experience freezing of gait under time constraints, in narrow spaces, and in the dark. One commonality between these different situations is that they may all provoke anxiety, yet anxiety has never been directly examined as a cause of FOG. In this study, virtual reality was used to induce anxiety and evaluate whether it directly causes FOG. Fourteen patients with PD and freezing of gait (Freezers and 17 PD without freezing of gait (Non-Freezers were instructed to walk in two virtual environments: (i across a plank that was located on the ground (LOW, (ii across a plank above a deep pit (HIGH. Multiple synchronized motion capture cameras updated participants' movement through the virtual environment in real-time, while their gait was recorded. Anxiety levels were evaluated after each trial using self-assessment manikins. Freezers performed the experiment on two separate occasions (in their ON and OFF state. Freezers reported higher levels of anxiety compared to Non-Freezers (p < 0.001 and all patients reported greater levels of anxiety when walking across the HIGH plank compared to the LOW (p < 0.001. Freezers experienced significantly more freezing of gait episodes (p = 0.013 and spent a significantly greater percentage of each trial frozen (p = 0.005 when crossing the HIGH plank. This finding was even more pronounced when comparing Freezers in their OFF state. Freezers also had greater step length variability in the HIGH compared to the LOW condition, while the step length variability in Non-Freezers did not change. In conclusion, this was the first study to directly compare freezing of gait in anxious and non-anxious situations. These results present strong evidence that anxiety is an important mechanism underlying freezing of gait and supports the notion that the limbic system may have a profound contribution to freezing in PD.

  11. Freeze-drying wet digital prints: An option for salvage?

    International Nuclear Information System (INIS)

    Juergens, M C; Schempp, N

    2010-01-01

    On the occasion of the collapse of the Historical Archive of the City of Cologne in March 2009 and the ensuing salvage effort, questions were raised about the use of freeze-drying for soaked digital prints, a technique that has not yet been evaluated for these materials. This study examines the effects of immersion, air-drying, drying in a blotter stack, freezing and freeze-drying on 35 samples of major digital printing processes. The samples were examined visually before, during and after testing; evaluation of the results was qualitative. Results show that some prints were already damaged by immersion alone (e.g. bleeding inks and soluble coatings) to the extent that the subsequent choice of drying method made no significant difference any more. For those samples that did survive immersion, air-drying proved to be crucial for water-sensitive prints, since any contact with the wet surface caused serious damage. Less water-sensitive prints showed no damage throughout the entire procedure, regardless of drying method. Some prints on coated media suffered from minor surface disruption up to total delamination of the surface coating due to the formation of ice crystals during shock-freezing. With few exceptions, freeze-drying did not cause additional damage to any of the prints that hadn't already been damaged by freezing. It became clear that an understanding of the process and materials is important for choosing an appropriate drying method.

  12. Intact preservation of environmental samples by freezing under an alternating magnetic field.

    Science.gov (United States)

    Morono, Yuki; Terada, Takeshi; Yamamoto, Yuhji; Xiao, Nan; Hirose, Takehiro; Sugeno, Masaya; Ohwada, Norio; Inagaki, Fumio

    2015-04-01

    The study of environmental samples requires a preservation system that stabilizes the sample structure, including cells and biomolecules. To address this fundamental issue, we tested the cell alive system (CAS)-freezing technique for subseafloor sediment core samples. In the CAS-freezing technique, an alternating magnetic field is applied during the freezing process to produce vibration of water molecules and achieve a stable, super-cooled liquid phase. Upon further cooling, the temperature decreases further, achieving a uniform freezing of sample with minimal ice crystal formation. In this study, samples were preserved using the CAS and conventional freezing techniques at 4, -20, -80 and -196 (liquid nitrogen) °C. After 6 months of storage, microbial cell counts by conventional freezing significantly decreased (down to 10.7% of initial), whereas that by CAS-freezing resulted in minimal. When Escherichia coli cells were tested under the same freezing conditions and storage for 2.5 months, CAS-frozen E. coli cells showed higher viability than the other conditions. In addition, an alternating magnetic field does not impact on the direction of remanent magnetization in sediment core samples, although slight partial demagnetization in intensity due to freezing was observed. Consequently, our data indicate that the CAS technique is highly useful for the preservation of environmental samples. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Heat transfer coefficient of cryotop during freezing.

    Science.gov (United States)

    Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J

    2013-01-01

    Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).

  14. Optoacoustic laser monitoring of cooling and freezing of tissues

    International Nuclear Information System (INIS)

    Larin, Kirill V; Larina, I V; Motamedi, M; Esenaliev, R O

    2002-01-01

    Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast. (laser biology and medicine)

  15. Exploring high-density baryonic matter: Maximum freeze-out density

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, Joergen [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Cleymans, Jean [University of Cape Town, UCT-CERN Research Centre and Department of Physics, Rondebosch (South Africa)

    2016-08-15

    The hadronic freeze-out line is calculated in terms of the net baryon density and the energy density instead of the usual T and μ{sub B}. This analysis makes it apparent that the freeze-out density exhibits a maximum as the collision energy is varied. This maximum freeze-out density has μ{sub B} = 400 - 500 MeV, which is above the critical value, and it is reached for a fixed-target bombarding energy of 20-30 GeV/N well within the parameters of the proposed NICA collider facility. (orig.)

  16. Freeze-thaw performance testing of whole concrete railroad ties.

    Science.gov (United States)

    2013-10-01

    Freezing and thawing durability tests of prestressed concrete ties are normally performed according to ASTM C666 specifications. Small specimens are cut from the shoulders of concrete ties and tested through 300 cycles of freezing and thawing. Saw-cu...

  17. Positron probe to study the freezing of nanodroplets

    International Nuclear Information System (INIS)

    Pujari, P.K.

    2010-01-01

    Positron is an excellent in situ probe to study the phase behavior of fluid confined in nanodomains. The study of phase behavior (freezing/melting) of nano confined fluid or nanodroplet has great relevance in fundamental research as well as applications in nano-tribology, nanofabrication, membrane separation, interfacial adhesion and lubrication. It is seen that the properties of freezing/melting of nanodroplets are different from their bulk behavior due to the combined effects of finite size, surface force, surface anisotropy, pore disorder and reduced dimensionality. We have used positron annihilation spectroscopy (PAS) to study the freezing/melting behavior of different organic liquids like benzene, ethylene glycol and isopropanol confined in nanopores of ZSM5 zeolite and silica gel

  18. Adaptive traits are maintained on steep selective gradients despite gene flow and hybridization in the intertidal zone.

    Directory of Open Access Journals (Sweden)

    Gerardo I Zardi

    Full Text Available Gene flow among hybridizing species with incomplete reproductive barriers blurs species boundaries, while selection under heterogeneous local ecological conditions or along strong gradients may counteract this tendency. Congeneric, externally-fertilizing fucoid brown algae occur as distinct morphotypes along intertidal exposure gradients despite gene flow. Combining analyses of genetic and phenotypic traits, we investigate the potential for physiological resilience to emersion stressors to act as an isolating mechanism in the face of gene flow. Along vertical exposure gradients in the intertidal zone of Northern Portugal and Northwest France, the mid-low shore species Fucus vesiculosus, the upper shore species Fucus spiralis, and an intermediate distinctive morphotype of F. spiralis var. platycarpus were morphologically characterized. Two diagnostic microsatellite loci recovered 3 genetic clusters consistent with prior morphological assignment. Phylogenetic analysis based on single nucleotide polymorphisms in 14 protein coding regions unambiguously resolved 3 clades; sympatric F. vesiculosus, F. spiralis, and the allopatric (in southern Iberia population of F. spiralis var. platycarpus. In contrast, the sympatric F. spiralis var. platycarpus (from Northern Portugal was distributed across the 3 clades, strongly suggesting hybridization/introgression with both other entities. Common garden experiments showed that physiological resilience following exposure to desiccation/heat stress differed significantly between the 3 sympatric genetic taxa; consistent with their respective vertical distribution on steep environmental clines in exposure time. Phylogenetic analyses indicate that F. spiralis var. platycarpus is a distinct entity in allopatry, but that extensive gene flow occurs with both higher and lower shore species in sympatry. Experimental results suggest that strong selection on physiological traits across steep intertidal exposure gradients

  19. Mechanism study of freeze-valve for molten salt reactor (MSR)

    International Nuclear Information System (INIS)

    Qinhua, Zhang

    2014-01-01

    Molten salt reactor (MSR) is one of the fourth generation nuclear reactor, ordinary nuclear grade valve is unsuitable for MSR due to its special coolant and extraordinary working temperature. Freeze-valve is proposed as the most appropriate valve for MSR, but the technology issue about freeze-valve has not been report in recent decades. Its significance to test the comprehensive property of freeze-valve for the application in MSR. A high temperature molten salt test loop was built which the physics property of salt is similar to the coolant of MSR. The results indicate that freeze-valve has a good performance use in the molten salt circumstances of high temperature (max 700 deg. C) and strong corrosion (authors)

  20. Post Thawing Sperm Quality and Ca+2 Intensity Characters of Local Goat Sperm After Freezing by Simple Method Using Deep Freezing

    Directory of Open Access Journals (Sweden)

    Gatot Ciptadi

    2018-02-01

    Full Text Available The objective of this research was to determine the effect of the simple modified freezing method, 1°C/minute freezing rate with different diluter ration on a post-thawing quality of local goat sperm namely Peranakan Etawah (PE. This work is aimed to study the quality of post-thawing sperm and to characterize the calcium intensity profile of both fresh and post thawing goat sperm. The method used is the experimental design of a laboratory. Freezing semen was performed in 2 main temperatures of -45°C then -196°C respectively using Mr. Frosty (® System. Early Sperm characters of Ca+2 intensity was performed by Confocal Laser Scanning Microscope (CLSM through Fluo-3 staining and Ca++ intensity was analysis descriptively. The result showed that post-thawing qualities are considered as good as standard qualities, at least, more than 40% based on Indonesian National Standard (SNI, 2014. The different level diluents commercial of Andromeda used were influenced highly significant (P<0.01. The best diluents ration is 1:4 (v/v for final sperms stocked at -196°C. However freezing sperm conserved in -196°C is better than in -45°C. Meanwhile, the sperm characters of two condition showed the important variation of Ca+2 intensity, with the length of region measurement of 39.06±4.595 and 32.696±9.011 µm each.  It was concluded that the calcium intensity pattern was varied more and higher in fresh sperm than in freezing sperms. This simple modified method of a freezing system was considered as a feasible alternative method for goat semen in a reason for both for sperm post-thawing quality and practical purposes.

  1. Summer freezing resistance: a critical filter for plant community assemblies in Mediterranean high mountains

    Directory of Open Access Journals (Sweden)

    David Sánchez Pescador

    2016-02-01

    Full Text Available Assessing freezing community response and whether freezing resistance is related to other functional traits is essential for understanding alpine community assemblages, particularly in Mediterranean environments where plants are exposed to freezing temperatures and summer droughts. Thus, we characterized the leaf freezing resistance of 42 plant species in 38 plots at Sierra de Guadarrama (Spain by measuring their ice nucleation temperature, freezing point (FP, and low-temperature damage (LT50, as well as determining their freezing resistance mechanisms (i.e., tolerance or avoidance. The community response to freezing was estimated for each plot as community weighted means (CWMs and functional diversity, and we assessed their relative importance with altitude. We established the relationships between freezing resistance, growth forms, and four key plant functional traits (i.e., plant height, specific leaf area, leaf dry matter content, and seed mass. There was a wide range of freezing resistance responses and more than in other alpine habitats. At the community level, the CWMs of FP and LT50 responded negatively to altitude, whereas the functional diversity of both traits increased with altitude. The proportion of freezing-tolerant species also increased with altitude. The ranges of FP and LT50 varied among growth forms, and only the leaf dry matter content correlated negatively with freezing-resistance traits. Summer freezing events represent important abiotic filters for assemblies of Mediterranean high mountain communities, as suggested by the CWMs. However, a concomitant summer drought constraint may also explain the high freezing resistance of species that thrive in these areas and the lower functional diversity of freezing resistance traits at lower altitudes. Leaves with high dry matter contents may maintain turgor at lower water potential and enhance drought tolerance in parallel to freezing resistance. This adaptation to drought seems to

  2. Emerging techniques for assisting and accelerating food freezing processes: A review of recent research progresses.

    Science.gov (United States)

    Cheng, Lina; Sun, Da-Wen; Zhu, Zhiwei; Zhang, Zi

    2017-03-04

    Freezing plays an important role in food preservation and the emergence of rapid freezing technologies can be highly beneficial to the food industry. This paper reviews some novel food freezing technologies, including high-pressure freezing (HPF), ultrasound-assisted freezing (UAF), electrically disturbed freezing (EF) and magnetically disturbed freezing (MF), microwave-assisted freezing (MWF), and osmo-dehydro-freezing (ODF). HPF and UAF can initiate ice nucleation rapidly, leading to uniform distribution of ice crystals and the control of their size and shape. Specifically, the former is focused on increasing the degree of supercooling, whereas the latter aims to decrease it. Direct current electric freezing (DC-EF) and alternating current electric freezing (AC-EF) exhibit different effects on ice nucleation. DC-EF can promote ice nucleation and AC-EF has the opposite effect. Furthermore, ODF has been successfully used for freezing various vegetables and fruit. MWF cannot control the nucleation temperature, but can decrease supercooling degree, thus decreasing the size of ice crystals. The heat and mass transfer processes during ODF have been investigated experimentally and modeled mathematically. More studies should be carried out to understand the effects of these technologies on food freezing process.

  3. Shrinkage of spray-freeze-dried microparticles of pure protein for ballistic injection by manipulation of freeze-drying cycle.

    Science.gov (United States)

    Straller, Georg; Lee, Geoffrey

    2017-10-30

    Spray-freeze-drying was used to produce shrivelled, partially-collapsed microparticles of pure proteins that may be suitable for use in a ballistic injector. Various modifications of the freeze drying cycle were examined for their effects on collapse of the pure protein microparticles. The use of annealing at a shelf temperature of up to +10°C resulted in no visible particle shrinkage. This was because of the high T g ' of the pure protein. Inclusion of trehalose or sucrose led to particle shrinkage because of the plasticizing effects of the disaccharides on the protein. Only by extending the duration of primary drying from 240 to 2745min at shelf temperatures in the range -12 to -8°C were shrivelled, wrinkled particles of bSA and bCA of reduced porosity obtained. Manipulation of the freeze-drying cycle used for SFD can therefore be used to modify particle morphology and increase particle density. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Freeze-Thaw Cycles and Soil Biogeochemistry: Implications for Greenhouse Gas emission

    Science.gov (United States)

    Rezanezhad, F.; Milojevic, T.; Oh, D. H.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.

    2016-12-01

    Freeze-thaw cycles represent a major natural climate forcing acting on soils at middle and high latitudes. Repeated freezing and thawing of soils changes their physical properties, geochemistry, and microbial community structure, which together govern the biogeochemical cycling of carbon and nutrients. In this presentation, we focus on how freeze-thaw cycles regulate carbon and nitrogen cycling and how these transformations influence greenhouse gas (GHG) fluxes. We present a novel approach, which combines the acquisition of physical and chemical data in a newly developed experimental soil column system. This system simulates realistic soil temperature profiles during freeze-thaw cycles. A high-resolution, Multi-Fiber Optode (MuFO) microsensor technique was used to detect oxygen (O2) continuously in the column at multiple depths. Surface and subsurface changes to gas and aqueous phase chemistry were measured to delineate the pathways and quantify soil respiration rates during freeze-thaw cycles. The results indicate that the time-dependent release of GHG from the soil surface is influenced by a combination of two key factors. Firstly, fluctuations in temperature and O2 availability affect soil biogeochemical activity and GHG production. Secondly, the recurrent development of a physical ice barrier prevents exchange of gaseous compounds between the soil and atmosphere during freezing conditions; removal of this barrier during thaw conditions increases GHG fluxes. During freezing, O2 levels in the unsaturated zone decreased due to restricted gas exchange with the atmosphere. As the soil thawed, O2 penetrated deeper into the soil enhancing the aerobic mineralization of organic carbon and nitrogen. Additionally, with the onset of thawing a pulse of gas flux occurred, which is attributed to the build-up of respiratory gases in the pore space during freezing. The latter implies enhanced anaerobic respiration as O2 supply ceases when the upper soil layer freezes.

  5. Alcohol Brine Freezing of Japanese Horse Mackerel (Trachurus japonicus) for Raw Consumption

    Science.gov (United States)

    Maeda, Toshimichi; Yuki, Atsuhiko; Sakurai, Hiroshi; Watanabe, Koichiro; Itoh, Nobuo; Inui, Etsuro; Seike, Kazunori; Mizukami, Yoichi; Fukuda, Yutaka; Harada, Kazuki

    In order to test the possible application of alcohol brine freezing to Japanese horse mackerel (Trachurus japonicus) for raw consumption, the quality and taste of fish frozen by direct immersion in 60% ethanol brine at -20, -25 and -30°C was compared with those by air freezing and fresh fish without freezing. Cracks were not found during the freezing. Smell of ethanol did not remain. K value, an indicator of freshness, of fish frozen in alcohol brine was less than 8.3%, which was at the same level as those by air freezing and fresh fish. Oxidation of lipid was at the same level as air freezing does, and lower than that of fresh fish. The pH of fish frozen in alcohol brine at -25 and -30°C was 6.5 and 6.6, respectively, which were higher than that by air freezing and that of fresh fish. Fish frozen in alcohol brine was better than that by air and at the same level as fresh fish in total evaluation of sensory tests. These results show that the alcohol brine freezing is superior to air freezing, and fish frozen in alcohol brine can be a material for raw consumption. The methods of thawing in tap water, cold water, refrigerator, and at room temperature were compared. Thawing in tap water is considered to be convenient due to the short thaw time and the quality of thawed fish that was best among the methods.

  6. Applicability of Stokes method for measuring viscosity of mixtures with concentration gradient

    Directory of Open Access Journals (Sweden)

    César Medina

    2017-12-01

    Full Text Available After measuring density and viscosity of a mixture of glycerin and water contained in a vertical pipe, a variation of these properties according to depth is observed. These gradients are typical of non-equilibrium states related to the lower density of water and the fact that relatively long times are necessary to achieve homogeneity. In the same pipe, the falling velocity of five little spheres is measured as a function of depth, and then a numerical fit is performed which agrees very well with experimental data. Based on the generalization of these results, the applicability of Stokes method is discussed for measuring viscosity of mixtures with a concentration gradient.

  7. Behaviour of Prestressed CFRP Anchorages during and after Freeze-Thaw Cycle Exposure

    Directory of Open Access Journals (Sweden)

    Yunus Emre Harmanci

    2018-05-01

    Full Text Available The long-term performance of externally-bonded reinforcements (EBR on reinforced concrete (RC structures highly depends on the behavior of constituent materials and their interfaces to various environmental loads, such as temperature and humidity exposure. Although significant efforts have been devoted to understanding the effect of such conditions on the anchorage resistance of unstressed EBR, with or without sustained loading, the effect of a released prestressing has not been thoroughly investigated. For this purpose, a series of experiments has been carried out herein, with concrete blocks strengthened with carbon fiber-reinforced polymer (CFRP strips, both unstressed, as well as prestressed using the gradient anchorage. The gradient anchorage is a non-mechanical technique to anchor prestressed CFRP by exploiting the accelerated curing property of epoxy under higher temperatures and segment-wise prestress-force releasing. Subsequently, strengthened blocks are transferred into a chamber for exposure in dry freeze-thaw cycles (FTC. Following FTC exposure, the blocks are tested in a conventional lap-shear test setup to determine their residual anchorage resistance and then compared with reference specimens. Blocks were monitored during FTC by conventional and Fabry–Pérot-based fiber optic strain (FOS sensors and a 3D-digital image correlation (3D-DIC system during gradient application and lap-shear testing. Results indicate a reduction of residual anchorage resistance, stiffness and deformation capacity of the system after FTC and a change in the failure mode from concrete substrate to epoxy-concrete interface failure. It was further observed that all of these properties experienced a more significant reduction for prestressed specimens. These findings are presented with a complementary finite element model to shed more light onto the durability of such systems.

  8. Model for heat and mass transfer in freeze-drying of pellets.

    Science.gov (United States)

    Trelea, Ioan Cristian; Passot, Stéphanie; Marin, Michèle; Fonseca, Fernanda

    2009-07-01

    Lyophilizing frozen pellets, and especially spray freeze-drying, have been receiving growing interest. To design efficient and safe freeze-drying cycles, local temperature and moisture content in the product bed have to be known, but both are difficult to measure in the industry. Mathematical modeling of heat and mass transfer helps to determine local freeze-drying conditions and predict effects of operation policy, and equipment and recipe changes on drying time and product quality. Representative pellets situated at different positions in the product slab were considered. One-dimensional transfer in the slab and radial transfer in the pellets were assumed. Coupled heat and vapor transfer equations between the temperature-controlled shelf, the product bulk, the sublimation front inside the pellets, and the chamber were established and solved numerically. The model was validated based on bulk temperature measurement performed at two different locations in the product slab and on partial vapor pressure measurement in the freeze-drying chamber. Fair agreement between measured and calculated values was found. In contrast, a previously developed model for compact product layer was found inadequate in describing freeze-drying of pellets. The developed model represents a good starting basis for studying freeze-drying of pellets. It has to be further improved and validated for a variety of product types and freeze-drying conditions (shelf temperature, total chamber pressure, pellet size, slab thickness, etc.). It could be used to develop freeze-drying cycles based on product quality criteria such as local moisture content and glass transition temperature.

  9. Effect of Repeated Freeze-Thaw Cycles on Beef Quality and Safety

    Science.gov (United States)

    Rahman, Mohammad Hafizur; Hossain, Mohammad Mujaffar; Rahman, Syed Mohammad Ehsanur; Hashem, Mohammad Abul

    2014-01-01

    The objectives of this study were to know the effect of repeated freeze-thaw cycles of beef on the sensory, physicochemical quality and microbiological assessment. The effects of three successive freeze-thaw cycles on beef forelimb were investigated comparing with unfrozen fresh beef for 75 d by keeping at −20±1℃. The freeze-thaw cycles were subjected to three thawing methods and carried out to know the best one. As the number of freeze-thaw cycles increased color and odor declined significantly before cook within the cycles and tenderness, overall acceptability also declined among the cycles after cook by thawing methods. The thawing loss increased and dripping loss decreased significantly (pcycles and then decreased. Cooking loss increased in cycle 1 and 3, but decreased in cycle 2. pH decreased significantly (pcycles. Moreover, drip loss, cooking loss and WHC were affected (pcycles. 2-Thiobarbituric acid (TBARS) value increased (pcycles and among the cycles by thawing methods. Total viable bacteria, total coliform and total yeast-mould count decreased significantly (pcycles in comparison to the initial count in repeated freeze-thaw cycles. As a result, repeated freeze-thaw cycles affected the sensory, physicochemical and microbiological qua- lity of beef, causing the deterioration of beef quality, but improved the microbiological quality. Although repeated freeze-thaw cycles did not affect much on beef quality and safety but it may be concluded that repeated freeze and thaw should be minimized in terms of beef color for commercial value and WHC and tenderness/juiciness for eating quality. PMID:26761286

  10. Folic acid content in thermostabilized and freeze-dried space shuttle foods

    Science.gov (United States)

    Lane, H. W.; Nillen, J. L.; Kloeris, V. L.

    1995-01-01

    This study was designed to determine whether freeze-dried and thermostabilized foods on a space shuttle contain adequate folate and to investigate any effects of freeze-drying on folacin. Frozen vegetables were analyzed after three states of processing: thawed; cooked; and rehydrated. Thermostabilized items were analyzed as supplied with no further processing. Measurable folate decreased in some freeze-dried vegetables and increased in others. Folacin content of thermostabilized food items was comparable with published values. We concluded that although the folacin content of some freeze-dried foods was low, adequate folate is available from the shuttle menu to meet RDA guidelines.

  11. Waveform LiDAR across forest biomass gradients

    Science.gov (United States)

    Montesano, P. M.; Nelson, R. F.; Dubayah, R.; Sun, G.; Ranson, J.

    2011-12-01

    Detailed information on the quantity and distribution of aboveground biomass (AGB) is needed to understand how it varies across space and changes over time. Waveform LiDAR data is routinely used to derive the heights of scattering elements in each illuminated footprint, and the vertical structure of vegetation is related to AGB. Changes in LiDAR waveforms across vegetation structure gradients can demonstrate instrument sensitivity to land cover transitions. A close examination of LiDAR waveforms in footprints across a forest gradient can provide new insight into the relationship of vegetation structure and forest AGB. In this study we use field measurements of individual trees within Laser Vegetation Imaging Sensor (LVIS) footprints along transects crossing forest to non-forest gradients to examine changes in LVIS waveform characteristics at sites with low (field AGB measurements to original and adjusted LVIS waveforms to detect the forest AGB interval along a forest - non-forest transition in which the LVIS waveform lose the ability to discern differences in AGB. Our results help identify the lower end the forest biomass range that a ~20m footprint waveform LiDAR can detect, which can help infer accumulation of biomass after disturbances and during forest expansion, and which can guide the use of LiDAR within a multi-sensor fusion biomass mapping approach.

  12. Does Anxiety Cause Freezing of Gait in Parkinson's Disease?

    Science.gov (United States)

    Ehgoetz Martens, Kaylena A.; Ellard, Colin G.; Almeida, Quincy J.

    2014-01-01

    Individuals with Parkinson's disease (PD) commonly experience freezing of gait under time constraints, in narrow spaces, and in the dark. One commonality between these different situations is that they may all provoke anxiety, yet anxiety has never been directly examined as a cause of FOG. In this study, virtual reality was used to induce anxiety and evaluate whether it directly causes FOG. Fourteen patients with PD and freezing of gait (Freezers) and 17 PD without freezing of gait (Non-Freezers) were instructed to walk in two virtual environments: (i) across a plank that was located on the ground (LOW), (ii) across a plank above a deep pit (HIGH). Multiple synchronized motion capture cameras updated participants' movement through the virtual environment in real-time, while their gait was recorded. Anxiety levels were evaluated after each trial using self-assessment manikins. Freezers performed the experiment on two separate occasions (in their ON and OFF state). Freezers reported higher levels of anxiety compared to Non-Freezers (panxiety when walking across the HIGH plank compared to the LOW (panxiety is an important mechanism underlying freezing of gait and supports the notion that the limbic system may have a profound contribution to freezing in PD. PMID:25250691

  13. Impact of nucleon mass shift on the freeze-out process

    International Nuclear Information System (INIS)

    Zschocke, Sven; Csernai, Laszlo Pal; Molnar, Etele; Nyiri, Agnes; Manninen, Jaakko

    2005-01-01

    The freeze-out of a massive nucleon gas through a finite layer with a timelike normal is studied. The impact of the in-medium nucleon mass shift on the freeze-out process is investigated. A considerable modification of the thermodynamic variables of temperature, flow velocity, energy density, and particle density has been found. Because of the nucleon mass shift the freeze-out particle distribution functions are changed noticeably in comparison with the evaluations, which use the vacuum nucleon mass

  14. Freezing of Water Droplet due to Evaporation

    Science.gov (United States)

    Satoh, Isao; Fushinobu, Kazuyoshi; Hashimoto, Yu

    In this study, the feasibility of cooling/freezing of phase change.. materials(PCMs) due to evaporation for cold storage systems was experimentally examined. A pure water was used as the test PCM, since the latent heat due to evaporation of water is about 7 times larger than that due to freezing. A water droplet, the diameter of which was 1-4 mm, was suspended in a test cell by a fine metal wire (O. D.= 100μm),and the cell was suddenly evacuated up to the pressure lower than the triple-point pressure of water, so as to enhance the evaporation from the water surface. Temperature of the droplet was measured by a thermocouple, and the cooling/freezing behavior and the temperature profile of the droplet surface were captured by using a video camera and an IR thermo-camera, respectively. The obtained results showed that the water droplet in the evacuated cell is effectively cooled by the evaporation of water itself, and is frozen within a few seconds through remarkable supercooling state. When the initial temperature of the droplet is slightly higher than the room temperature, boiling phenomena occur in the droplet simultaneously with the freezing due to evaporation. Under such conditions, it was shown that the degree of supercooling of the droplet is reduced by the bubbles generated in the droplet.

  15. Analyses of out-of-pile freezing experiments by SIMMER-II

    International Nuclear Information System (INIS)

    Sawada, Tetsuo; Ninokata, Hisashi

    1994-01-01

    This paper describes the interpretation of the TRAN Simulation experiments performed by SIMBATH facility of KfK. Two typical TRAN Simulation experiments were analyzed by using the SIMMER-II code. The original TRAN experiments were performed at SNL in order to examine the freezing behavior of molten UO 2 injected into an annular channel. In the TRAN Simulation experiments of SIMBATH series, similar freezing phenomena were investigated for molten thermite, i.e., a mixture of Al 2 O 3 and iron, instead of UO 2 . The analyses of the simulation experiments by SIMMER-II code aimed at clarifying the applicability of the code and interpreting the freezing process during the experiments. Distribution of molten materials that had deposited in the test section was compared between experimental measurements and calculation by SIMMER-II. Through this study, it has been confirmed that SIMMER-II can well reproduce the TRAN Simulation experiments with allowable difference. The calculations by SIMMER-II also suggested that further model improvements, e.g., freezing on a convex surface, would be effective for a better interpretation of the freezing phenomena. (author)

  16. A note on the effective evaluation height for flux-gradient relationships and its application to herbicide fluxes

    Science.gov (United States)

    Volatilization represents a significant loss pathway for many pesticides, herbicides and other agrochemicals. One common method for measuring the volatilization of agrochemicals is the flux-gradient method. Using this method, the chemical flux is estimated as the product of the vertical concentratio...

  17. Entree Production Guides for Cook/Freeze Systems

    Science.gov (United States)

    1983-03-01

    92.29 50.00 22,680 1. Fill roasting pans with cut-up chicken . Salt 0.35 0.19 86 2. Combine ingredients listed Pepper, black 0.07 0.04 18 in this...INSTALLATIONS FREEZING RECIPES HOSPITAL FEEDING i, WACT (Vmentbs m reves - W neete y lsmer ~lr y block nguber) Entree production guides have been...control and better use of personnel. Standard recipes must be adapted to production guides for use in cook/freeze systems. Products must withstand the

  18. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress.

    Directory of Open Access Journals (Sweden)

    Gyoungju Nah

    Full Text Available Prairie cordgrass (Spartina pectinata, a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY. The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation.

  19. Quality Evaluation of Pork with Various Freezing and Thawing Methods

    Science.gov (United States)

    2014-01-01

    In this study, the physicochemical and sensory quality characteristics due to the influence of various thawing methods on electro-magnetic and air blast frozen pork were examined. The packaged pork samples, which were frozen by air blast freezing at −45℃ or electro-magnetic freezing at −55℃, were thawed using 4 different methods: refrigeration (4±1℃), room temperature (RT, 25℃), cold water (15℃), and microwave (2450 MHz). Analyses were carried out to determine the drip and cooking loss, water holding capacity (WHC), moisture content and sensory evaluation. Frozen pork thawed in a microwave indicated relatively less thawing loss (0.63-1.24%) than the other thawing methods (0.68-1.38%). The cooking loss after electro-magnetic freezing indicated 37.4% by microwave thawing, compared with 32.9% by refrigeration, 36.5% by RT, and 37.2% by cold water in ham. The thawing of samples frozen by electro-magnetic freezing showed no significant differences between the methods used, while the moisture content was higher in belly thawed by microwave (62.0%) after electro-magnetic freezing than refrigeration (54.8%), RT (61.3%), and cold water (61.1%). The highest overall acceptability was shown for microwave thawing after electro-magnetic freezing but there were no significant differences compared to that of the other samples. PMID:26761493

  20. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation

    International Nuclear Information System (INIS)

    Sultana, Naznin; Wang Min

    2012-01-01

    Tissue engineering combines living cells with biodegradable materials and/or bioactive components. Composite scaffolds containing biodegradable polymers and nanosized osteoconductive bioceramic with suitable properties are promising for bone tissue regeneration. In this paper, based on blending two biodegradable and biocompatible polymers, namely poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(l-lactic acid) (PLLA) with incorporated nano hydroxyapatite (HA), three-dimensional composite scaffolds with controlled microstructures and an interconnected porous structure, together with high porosity, were fabricated using an emulsion freezing/freeze-drying technique. The influence of various parameters involved in the emulsion freezing/freeze-drying technique was studied for the fabrication of good-quality polymer scaffolds based on PHBV polymers. The morphology, mechanical properties and crystallinity of PHBV/PLLA and HA in PHBV/PLLA composite scaffolds and PHBV polymer scaffolds were studied. The scaffolds were coated with collagen in order to improve wettability. During in vitro biological evaluation study, it was observed that SaOS-2 cells had high attachment on collagen-coated scaffolds. Significant improvement in cell proliferation and alkaline phosphatase activity for HA-incorporated composite scaffolds was observed due to the incorporation of HA. After 3 and 7 days of culture on all scaffolds, SaOS-2 cells also had normal morphology and growth. These results indicated that PHBV/PLLA-based scaffolds fabricated via an emulsion freezing/freeze-drying technique were favorable sites for osteoblastic cells and are promising for the applications of bone tissue engineering.

  1. Accelerated redox reaction between chromate and phenolic pollutants during freezing

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Jinjung; Kim, Jaesung [Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252 (Korea, Republic of); Vetráková, Ľubica [Department of Chemistry and Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Seo, Jiwon [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919 (Korea, Republic of); Heger, Dominik [Department of Chemistry and Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Lee, Changha [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919 (Korea, Republic of); Yoon, Ho-Il [Korea Polar Research Institute (KOPRI), Incheon 21990 (Korea, Republic of); Kim, Kitae, E-mail: ktkim@kopri.re.kr [Korea Polar Research Institute (KOPRI), Incheon 21990 (Korea, Republic of); Kim, Jungwon, E-mail: jwk@hallym.ac.kr [Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252 (Korea, Republic of)

    2017-05-05

    Highlights: • Redox conversion of 4-CP/Cr(VI) was significantly accelerated during freezing. • Accelerated redox conversion in ice is ascribed to the freeze concentration effect. • 4-CP, Cr(VI), and protons are concentrated in the liquid brine by freezing. • Redox conversions of various phenolic pollutants/Cr(VI) were significant in ice. • Freezing-accelerated redox conversion was observed in real polluted water. - Abstract: The redox reaction between 4-chlorophenol (4-CP) and chromate (Cr(VI)) (i.e., the simultaneous oxidation of 4-CP by Cr(VI) and reduction of Cr(VI) by 4-CP) in ice (i.e., at −20 °C) was compared with the corresponding reaction in water (i.e., at 25 °C). The redox conversion of 4-CP/Cr(VI), which was negligible in water, was significantly accelerated in ice. This accelerated redox conversion of 4-CP/Cr(VI) in ice is ascribed to the freeze concentration effect occurring during freezing, which excludes solutes (i.e., 4-CP and Cr(VI)) and protons from the ice crystals and subsequently concentrates them in the liquid brine. The concentrations of Cr(VI) and protons in the liquid brine were confirmed by measuring the optical image and the UV–vis absorption spectra of cresol red (CR) as a pH indicator of frozen solution. The redox conversion of 4-CP/Cr(VI) was observed in water when the concentrations of 4-CP/protons or Cr(VI)/protons increased by 100/1000-fold. These results corroborate the freeze concentration effect as the reason for the accelerated redox conversion of 4-CP/Cr(VI) in ice. The redox conversion of various phenolic pollutants/Cr(VI) and 4-CP/Cr(VI) in real wastewater was successfully achieved in ice, which verifies the environmental relevance and importance of freezing-accelerated redox conversion of phenolic pollutants/Cr(VI) in cold regions.

  2. Accelerated redox reaction between chromate and phenolic pollutants during freezing

    International Nuclear Information System (INIS)

    Ju, Jinjung; Kim, Jaesung; Vetráková, Ľubica; Seo, Jiwon; Heger, Dominik; Lee, Changha; Yoon, Ho-Il; Kim, Kitae; Kim, Jungwon

    2017-01-01

    Highlights: • Redox conversion of 4-CP/Cr(VI) was significantly accelerated during freezing. • Accelerated redox conversion in ice is ascribed to the freeze concentration effect. • 4-CP, Cr(VI), and protons are concentrated in the liquid brine by freezing. • Redox conversions of various phenolic pollutants/Cr(VI) were significant in ice. • Freezing-accelerated redox conversion was observed in real polluted water. - Abstract: The redox reaction between 4-chlorophenol (4-CP) and chromate (Cr(VI)) (i.e., the simultaneous oxidation of 4-CP by Cr(VI) and reduction of Cr(VI) by 4-CP) in ice (i.e., at −20 °C) was compared with the corresponding reaction in water (i.e., at 25 °C). The redox conversion of 4-CP/Cr(VI), which was negligible in water, was significantly accelerated in ice. This accelerated redox conversion of 4-CP/Cr(VI) in ice is ascribed to the freeze concentration effect occurring during freezing, which excludes solutes (i.e., 4-CP and Cr(VI)) and protons from the ice crystals and subsequently concentrates them in the liquid brine. The concentrations of Cr(VI) and protons in the liquid brine were confirmed by measuring the optical image and the UV–vis absorption spectra of cresol red (CR) as a pH indicator of frozen solution. The redox conversion of 4-CP/Cr(VI) was observed in water when the concentrations of 4-CP/protons or Cr(VI)/protons increased by 100/1000-fold. These results corroborate the freeze concentration effect as the reason for the accelerated redox conversion of 4-CP/Cr(VI) in ice. The redox conversion of various phenolic pollutants/Cr(VI) and 4-CP/Cr(VI) in real wastewater was successfully achieved in ice, which verifies the environmental relevance and importance of freezing-accelerated redox conversion of phenolic pollutants/Cr(VI) in cold regions.

  3. Vertical profiles of BC direct radiative effect over Italy: high vertical resolution data and atmospheric feedbacks

    Science.gov (United States)

    Močnik, Griša; Ferrero, Luca; Castelli, Mariapina; Ferrini, Barbara S.; Moscatelli, Marco; Grazia Perrone, Maria; Sangiorgi, Giorgia; Rovelli, Grazia; D'Angelo, Luca; Moroni, Beatrice; Scardazza, Francesco; Bolzacchini, Ezio; Petitta, Marcello; Cappelletti, David

    2016-04-01

    observed below the MH. The radiative power density absorbed into each atmospheric layer was normalized by the layer height to compare measurements taken at different sites with different vertical resolutions. The atmospheric absorption of radiative power below the MH ranged from +45.2±5.1 mW/m3 up to +103.3±16.2 mW/m3 and was ~2-3 times higher than above MH. The resulting heating rate was characterized by a vertical negative gradient with increasing height, from -2.6±0.2 K/(day km) up to -8.3±1.2 K/(day km), exerting a negative feedback on the atmospheric stability over basin valleys, weakening the ground-based thermal inversions and increasing the dispersal conditions.

  4. Effect of baking and steaming on physicochemical and thermal properties of sweet potato puree preserved by freezing and freeze-drying

    Directory of Open Access Journals (Sweden)

    Bernarda Svrakačić

    2016-01-01

    Full Text Available Thermal treatments could be one of the hurdles in applications of sweet potato purees for food different products formulation. Sweet potato purees (SPP were prepared from raw, baked and steamed roots and they were preserved by freezing and freeze-drying. The effects of baking and steaming on thermal properties (melting temperature-Tm, melting transition energy - ΔH, and glass transition temperatures - Tg of sweet potato (cultivar Beauregard, were measured by means of a Differential scanning calorimetry (DSC. The SPP made from baked roots had higher total and soluble solids (20.32 and 18.95%, respectively than SPP made from raw and steamed roots. It can be also noticed that starch content was reduced by steaming and baking which reflected on amount of total and reducing sugars. The increase of reducing sugars level in baked SPP for 3.78% and steamed for 0.86% SPP was the result of yielding the maltose. The chemical changes of SPP also influenced the thermal behavior such that SPP prepared from baked sweet potato roots had the lowest initial freezing point (-2.80 °C followed by SPP prepared from steamed (-2.63 °C and raw (-0.71 °C roots. The highest energy for melting (transition was needed for SPP prepared from raw potato roots followed by steamed and baked roots, -103.79, -103.63, and -102.90 J/g, respectively. The glass transition in freeze-dried SPP prepared from raw roots was not detected. However, in the freeze-dried SPP prepared from baked and steamed roots the glass transition was detected in the range of 39 and 42 °C but with no significant difference (p > 0.05.

  5. A 3D numerical simulation of mixed convection of a magnetic nanofluid in the presence of non-uniform magnetic field in a vertical tube using two phase mixture model

    Energy Technology Data Exchange (ETDEWEB)

    Aminfar, Habib, E-mail: hh_aminfar@tabrizu.ac.i [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Mohammadpourfard, Mousa, E-mail: Mohammadpour@azaruniv.ed [Department of Mechanical Engineering, Azarbaijan University of Tarbiat Moallem, Tabriz, P.O. Box 53751-71379 (Iran, Islamic Republic of); Narmani Kahnamouei, Yousef, E-mail: Narmani87@ms.tabrizu.ac.i [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2011-08-15

    In this paper, results of applying a non-uniform magnetic field on a ferrofluid (kerosene and 4 vol% Fe{sub 3}O{sub 4}) flow in a vertical tube have been reported. The hydrodynamics and thermal behavior of the flow are investigated numerically using the two phase mixture model and the control volume technique. Two positive and negative magnetic field gradients have been examined. Based on the obtained results the Nusselt number can be controlled externally using the magnetic field with different intensity and gradients. It is concluded that the magnetic field with negative gradient acts similar to Buoyancy force and augments the Nusselt number, while the magnetic field with positive gradient decreases it. Also with the negative gradient of the magnetic field, pumping power increases and vice versa for the positive gradient case. - Highlights: We model hydrothermal behavior of a ferrofluid flow using two phase mixture model. Various external non-uniform magnetic fields were implemented in a vertical tube. Nusselt number can be controlled using the magnetic field with different gradients. The magnetic field is more effective in low Reynolds numbers. Heat transfer enhancement using the magnetic field needs high pumping power.

  6. Freezing process in unsaturated packed beds; Fuhowa ryushi sonai ni okeru suibun toketsu

    Energy Technology Data Exchange (ETDEWEB)

    Akahori, M; Aoki, K; Hattori, M [Nagaoka University of Technology, Niigata (Japan); Tani, T [Oji Paper Co. Ltd., Tokyo (Japan)

    1998-04-25

    The freezing process in unsaturated packed beds has been investigated experimentally and theoretically. Water transport to the frozen front plays an important part on freezing. The rate of the absorption of water into frozen layer depended on the freezing heat flux and the water saturation at the freezing front. As a result, ice content in the frozen layer was related to the rate of the absorption of water and the freezing heat flux. A one-dimensional freezing model in unsaturated packed beds has been presented, accounting for the water transport. The predicted water saturation and temperature distributions in the body and the thickness of frozen layer were compared with the experimental results using a porous bed composed of glass beads. 12 refs., 10 figs., 1 tab.

  7. Does freeze-all policy affect IVF outcomes in poor responders?

    Science.gov (United States)

    Roque, Matheus; Valle, Marcello; Sampaio, Marcos; Geber, Selmo

    2017-12-27

    To evaluate whether the freeze-all strategy affects in vitro fertilization (IVF) outcomes in poor ovarian responders following the Bologna criteria. We performed a retrospective cohort study conducted between January 2012 and December 2016. A total of 433 poor responders (per the Bologna criteria) fulfilled the inclusion/exclusion criteria and were included in the study, with 277 patients included in the fresh group and 156 in the freeze-all group. All patients were submitted to controlled ovarian stimulation (COS) with a gonadotropin-releasing hormone antagonist protocol and cleavage-stage embryo transfer (ET). The main outcome measure was ongoing pregnancy rate. Secondary outcomes included implantation and clinical pregnancy rates. The freeze-all strategy was implemented when the progesterone serum level was >1.5 ng/mL on the trigger day, when the endometrium was <7 mm on the trigger day, or as a patient preference. Patients with previous failed fresh embryo transfer were also submitted to fresh or freeze-all strategy considering the indications mentioned above. The patients' mean age in the freeze-all group was 39.5±3.6 years, while that of patients in the fresh group was 39.7±3.8 years (P=0.54). The mean number of embryos transferred (nET) was 1.53±0.6 and 1.60±0.6 (P=0.12) in the freeze-all and fresh groups, respectively. Ongoing pregnancy rates did not significantly differ between the freeze-all and fresh groups (9.6% versus 10.1%, respectively; Relative Risk [RR]: 0.95; 95% CI: 0.52-1.73), nor did the clinical pregnancy rates (14.1% versus 13.7%, respectively; RR: 1.03; 95% CI: 0.63-1.76). Implantation rates were 9.6% and 9.8% (P=0.82) in the freeze-all and fresh groups, respectively. The logistic regression analysis (including age, antral follicle count [AFC], the number of retrieved oocytes, the number of mature oocytes, nET, and fresh versus freeze-all strategy) indicated that age (P<0.001) and the nET (P=0.039) were the only independent variables

  8. Breeding of Freeze-tolerant Yeast and the Mechanisms of Stress-tolerance

    Science.gov (United States)

    Hino, Akihiro

    Frozen dough method have been adopted in the baking industry to reduce labor and to produce fresh breads in stores. New freeze-tolerant yeasts for frozen dough preparations were isolated from banana peel and identified. To obtain strains that have fermentative ability even after several months of frozen storage in fermented dough, we attempted to breed new freeze-tolerantstrain. The hybrid between S.cerevisiae, which is a isolated freeze-tolerant strain, and a strain isolated from bakers' yeast with sexual conjugation gave a good quality bread made from frozen dough method. Freeze-tolerant strains showed higher surviving and trehalose accumulating abilities than freeze-sensitive strains. The freeze tolerance of the yeasts was associated with the basal amount of intracellular trehalose after rapid degradation at the onset of the prefermentation period. The complicated metabolic pathway and the regulation system of trehalose in yeast cells are introduced. The trehalose synthesis may act as a metabolic buffer system which contribute to maintain the intracellular inorganic phosphate and as a feedback regulation system in the glycolysis. However, it is not known enough how the trehalose protects yeast cells from stress.

  9. A coupled melt-freeze temperature index approach in a one-layer model to predict bulk volumetric liquid water content dynamics in snow

    Science.gov (United States)

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2016-04-01

    Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.

  10. Visual Indicators on Vaccine Boxes as Early Warning Tools to Identify Potential Freeze Damage.

    Science.gov (United States)

    Angoff, Ronald; Wood, Jillian; Chernock, Maria C; Tipping, Diane

    2015-07-01

    The aim of this study was to determine whether the use of visual freeze indicators on vaccines would assist health care providers in identifying vaccines that may have been exposed to potentially damaging temperatures. Twenty-seven sites in Connecticut involved in the Vaccine for Children Program participated. In addition to standard procedures, visual freeze indicators (FREEZEmarker ® L; Temptime Corporation, Morris Plains, NJ) were affixed to each box of vaccine that required refrigeration but must not be frozen. Temperatures were monitored twice daily. During the 24 weeks, all 27 sites experienced triggered visual freeze indicator events in 40 of the 45 refrigerators. A total of 66 triggered freeze indicator events occurred in all 4 types of refrigerators used. Only 1 of the freeze events was identified by a temperature-monitoring device. Temperatures recorded on vaccine data logs before freeze indicator events were within the 35°F to 46°F (2°C to 8°C) range in all but 1 instance. A total of 46,954 doses of freeze-sensitive vaccine were stored at the time of a visual freeze indicator event. Triggered visual freeze indicators were found on boxes containing 6566 doses (14.0% of total doses). Of all doses stored, 14,323 doses (30.5%) were of highly freeze-sensitive vaccine; 1789 of these doses (12.5%) had triggered indicators on the boxes. Visual freeze indicators are useful in the early identification of freeze events involving vaccines. Consideration should be given to including these devices as a component of the temperature-monitoring system for vaccines.

  11. Chromosomal integrity of freeze-dried mouse spermatozoa after 137Cs γ-ray irradiation

    International Nuclear Information System (INIS)

    Kusakabe, Hirokazu; Kamiguchi, Yujiroh

    2004-01-01

    This study demonstrated that freeze-dried mouse spermatozoa possess strong resistance to 137 Cs γ-ray irradiation at doses of up to 8 Gy. Freeze-dried mouse spermatozoa were rehydrated and injected into mouse oocytes with an intracytoplasmic sperm injection (ICSI) technique. Most oocytes can be activated after ICSI by using spermatozoa irradiated with γ-rays before and after freeze-drying. Sperm chromosome complements were analyzed at the first cleavage metaphase. Chromosome aberrations increased in a dose-dependent manner in the spermatozoa irradiated before freeze-drying. However, no increase in oocytes with chromosome aberrations was observed when fertilized by spermatozoa that had been irradiated after freeze-drying, as compared with freeze-dried spermatozoa that had not been irradiated. These results suggest that both the chromosomal integrity of freeze-dried spermatozoa, as well as their ability to activate oocytes, were protected from γ-ray irradiation at doses at which chromosomal damage is found to be strongly induced in spermatozoa suspended in solution

  12. Ultrasound assisted immersion freezing of broccoli (Brassica oleracea L. var. botrytis L.).

    Science.gov (United States)

    Xin, Ying; Zhang, Min; Adhikari, Benu

    2014-09-01

    The aim of this study was to research the ultrasound-assisted freezing (UAF) of broccoli. CaCl2 solution was used as freezing medium. The comparative advantage of using UAF over normal freezing on the freezing time, cell-wall bound calcium to total calcium ratio, textural properties, color, drip loss and L-ascorbic acid contents was evaluated. The application of UAF at selected acoustic intensity with a range of 0.250-0.412 W/cm(2) decreased the freezing time and the loss of cell-wall bound calcium content. Compared to normal freezing, the values of textural properties, color, L-ascorbic acid content were better preserved and the drip loss was significantly minimized by the application of UAF. However, when outside that range of acoustic intensity, the quality of the ultrasound-assisted frozen broccoli was inferior compared to that of the normally frozen samples. Selected the appropriate acoustic intensity was very important for the application of UAF. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Spiral density waves and vertical circulation in protoplanetary discs

    Science.gov (United States)

    Riols, A.; Latter, H.

    2018-06-01

    Spiral density waves dominate several facets of accretion disc dynamics - planet-disc interactions and gravitational instability (GI) most prominently. Though they have been examined thoroughly in two-dimensional simulations, their vertical structures in the non-linear regime are somewhat unexplored. This neglect is unwarranted given that any strong vertical motions associated with these waves could profoundly impact dust dynamics, dust sedimentation, planet formation, and the emissivity of the disc surface. In this paper, we combine linear calculations and shearing box simulations in order to investigate the vertical structure of spiral waves for various polytropic stratifications and wave amplitudes. For sub-adiabatic profiles, we find that spiral waves develop a pair of counter-rotating poloidal rolls. Particularly strong in the non-linear regime, these vortical structures issue from the baroclinicity supported by the background vertical entropy gradient. They are also intimately connected to the disc's g modes which appear to interact non-linearly with the density waves. Furthermore, we demonstrate that the poloidal rolls are ubiquitous in gravitoturbulence, emerging in the vicinity of GI spiral wakes, and potentially transporting grains off the disc mid-plane. Other than hindering sedimentation and planet formation, this phenomena may bear on observations of the disc's scattered infrared luminosity. The vortical features could also impact on the turbulent dynamo operating in young protoplanetary discs subject to GI, or possibly even galactic discs.

  14. Cognitive Contributions to Freezing of Gait in Parkinson Disease: Implications for Physical Rehabilitation.

    Science.gov (United States)

    Peterson, Daniel S; King, Laurie A; Cohen, Rajal G; Horak, Fay B

    2016-05-01

    People with Parkinson disease (PD) who show freezing of gait also have dysfunction in cognitive domains that interact with mobility. Specifically, freezing of gait is associated with executive dysfunction involving response inhibition, divided attention or switching attention, and visuospatial function. The neural control impairments leading to freezing of gait have recently been attributed to higher-level, executive and attentional cortical processes involved in coordinating posture and gait rather than to lower-level, sensorimotor impairments. To date, rehabilitation for freezing of gait primarily has focused on compensatory mobility training to overcome freezing events, such as sensory cueing and voluntary step planning. Recently, a few interventions have focused on restitutive, rather than compensatory, therapy. Given the documented impairments in executive function specific to patients with PD who freeze and increasing evidence of overlap between cognitive and motor function, incorporating cognitive challenges with mobility training may have important benefits for patients with freezing of gait. Thus, a novel theoretical framework is proposed for exercise interventions that jointly address both the specific cognitive and mobility challenges of people with PD who freeze. © 2016 American Physical Therapy Association.

  15. Leaf water 18 O and 2 H enrichment along vertical canopy profiles in a broadleaved and a conifer forest tree.

    Science.gov (United States)

    Bögelein, Rebekka; Thomas, Frank M; Kahmen, Ansgar

    2017-07-01

    Distinguishing meteorological and plant-mediated drivers of leaf water isotopic enrichment is prerequisite for ecological interpretations of stable hydrogen and oxygen isotopes in plant tissue. We measured input and leaf water δ 2 H and δ 18 O as well as micrometeorological and leaf morpho-physiological variables along a vertical gradient in a mature angiosperm (European beech) and gymnosperm (Douglas fir) tree. We used these variables and different enrichment models to quantify the influence of Péclet and non-steady state effects and of the biophysical drivers on leaf water enrichment. The two-pool model accurately described the diurnal variation of leaf water enrichment. The estimated unenriched water fraction was linked to leaf dry matter content across the canopy heights. Non-steady state effects and reduced stomatal conductance caused a higher enrichment of Douglas fir compared to beech leaf water. A dynamic effect analyses revealed that the light-induced vertical gradients of stomatal conductance and leaf temperature outbalanced each other in their effects on evaporative enrichment. We conclude that neither vertical canopy gradients nor the Péclet effect is important for estimates and interpretation of isotopic leaf water enrichment in hypostomatous trees. Contrarily, species-specific non-steady state effects and leaf temperatures as well as the water vapour isotope composition need careful consideration. © 2017 John Wiley & Sons Ltd.

  16. SOME STUDIES ABOUT CEREALS BEHAVIOR DURING FREEZE DRYING PROCESS

    Directory of Open Access Journals (Sweden)

    GABRIELA-VICTORIA MNERIE

    2009-05-01

    Full Text Available The paper presents some special method and equipment and the principal advantages of freeze-dried food. The freeze drying is a good method of freeze-drying for make some experiments with many kind of cereals, for the improvement that in food production. It is necessary and is possible to study the corn oil extract, wheat flour, the maltodextrin from corn, modified cornstarch, spice extracts, soy sauce, hydrolyzed wheat gluten, partially hydrogenated soybean and cottonseed oil etc. That is very porous, since it occupies the same volume as the original and so rehydrates rapidly. There is less loss of flavour and texture than with most other methods of drying.

  17. [Freeze drying process optimization of ginger juice-adjuvant for Chinese materia medica processing and stability of freeze-dried ginger juice powder].

    Science.gov (United States)

    Yang, Chun-Yu; Guo, Feng-Qian; Zang, Chen; Cao, Hui; Zhang, Bao-Xian

    2018-02-01

    Ginger juice, a commonly used adjuvant for Chinese materia medica, is applied in processing of multiple Chinese herbal decoction pieces. Because of the raw materials and preparation process of ginger juice, it is difficult to be preserved for a long time, and the dosage of ginger juice in the processing can not be determined base on its content of main compositions. Ginger juice from different sources is hard to achieve consistent effect during the processing of traditional Chinese herbal decoction pieces. Based on the previous studies, the freeze drying of ginger juice under different shelf temperatures and vacuum degrees were studied, and the optimized freeze drying condition of ginger juice was determined. The content determination method for 6-gingerol, 8-gingerol, 10-gingerol and 6-shagaol in ginger juice and redissolved ginger juice was established. The content changes of 6-gingerol, 8-gingerol, 10-gingerol, 6-gingerol, 6-shagaol, volatile oil and total phenol were studied through the drying process and 30 days preservation period. The results showed that the freeze drying time of ginger juice was shortened after process optimization; the compositions basically remained unchanged after freeze drying, and there was no significant changes in the total phenol content and gingerol content, but the volatile oil content was significantly decreased( P <0.05). Within 30 days, the contents of gingerol, total phenol, and volatile oil were on the decline as a whole. This study has preliminarily proved the feasibility of freeze-drying process of ginger juice as an adjuvant for Chinese medicine processing. Copyright© by the Chinese Pharmaceutical Association.

  18. Estimation of mesospheric vertical winds from a VHF meteor radar at King Sejong Station, Antarctica (62.2S, 58.8W)

    Science.gov (United States)

    Kim, Y.; Lee, C.; Kim, J.; Jee, G.

    2013-12-01

    For the first time, vertical winds near the mesopause region were estimated from radial velocities of meteor echoes detected by a VHF meteor radar at King Sejong Station (KSS) in 2011 and 2012. Since the radar usually detects more than a hundred echoes every hour in an altitude bin of 88 - 92 km, much larger than other radars, we were able to fit measured radial velocities of these echoes with a 6 component model that consists of horizontal winds, spatial gradients of horizontal winds and vertical wind. The conventional method of deriving horizontal winds from meteor echoes utilizes a 2 component model, assuming that vertical winds and spatial gradients of horizontal winds are negligible. We analyzed the radar data obtained for 8400 hours in 2012 and 8100 hours in 2011. We found that daily mean values of vertical winds are mostly within +/- 1 m/s, whereas those of zonal winds are a few tens m/s mostly eastward. The daily mean vertical winds sometimes stay positive or negative for more than 20 days, implying that the atmosphere near the mesopause experiences episodically a large scale low and high pressure environments, respectively, like the tropospheric weather system. By conducting Lomb-normalized periodogram analysis, we also found that the vertical winds have diurnal, semidiurnal and terdiurnal tidal components with about equal significance, in contrast to horizontal winds that show a dominant semidiurnal one. We will discuss about uncertainties of the estimated vertical wind and possible reasons of its tidal and daily variations.

  19. The impact of freeze-drying on microstructure and rehydration properties of carrot

    NARCIS (Netherlands)

    Voda, A.; Homan, N.; Witek, M.; Duijster, A.; Dalen, van G.; Sman, van der R.G.M.; Nijsse, J.; Vliet, van L.J.; As, van H.; Duynhoven, van J.P.M.

    2012-01-01

    The impact of freeze-drying, blanching and freezing rate pre-treatments on the microstructure and on the rehydration properties of winter carrots were studied by µCT, SEM, MRI and NMR techniques. The freezing rate determines the size of ice crystals being formed that leave pores upon drying. Their

  20. Magnetometer-inferred, Equatorial, Daytime Vertical ExB Drift Velocities Observed in the African Longitude Sector

    Science.gov (United States)

    Anderson, D. N.; Yizengaw, E.

    2011-12-01

    A recent paper has investigated the sharp longitude gradients in the dayside ExB drift velocities associated with the 4-cell, non-migrating structures thought to be connected with the eastward propagating, diurnal, non-migrating (DE3) tides. Observations of vertical ExB drift velocities obtained from the Ion Velocity Meter (IVM) on the Communication/Navigation Outage Forecast System (C/NOFS) satellite were obtained in the Western Pacific, Eastern Pacific, Peruvian and Atlantic sectors for a few days during the months of October, March and December, 2009. Respective ExB drift velocity gradients at the cell boundaries for these 4 longitude sectors were a.) -1.3m/sec/degree, b.) 3m/sec/degree, c.) -4m/sec/degree and d.) 1m/sec/degree and were observed on a day-to-day basis. In this talk, we estimate the longitude gradients in the dayside, vertical ExB drift velocities from magnetometer H-component observations in the African sector. We briefly describe the technique for obtaining realistic ExB drift velocities associated with the difference in the H-component values between a magnetometer on the magnetic equator and one off the magnetic equator at 6 to 9 degrees dip latitude (delta H). We present magnetometer-inferred, dayside ExB drift velocities obtained from the AMBER (African Meridian B-field Education and Research) magnetometer chain in the East Africa (Ethiopian) longitude sector and the West African (Nigerian) longitude sector. We compare the longitude gradients in ExB drift velocities in the African sector with the C/NOFS- observed longitude gradients mentioned above. We also discuss the advantages of using ground-based magnetometer observations to infer ExB drift velocities compared with the C/NOFS satellite observations.

  1. Physicochemical interaction mechanism between nanoparticles and tetrasaccharides (stachyose) during freeze-drying.

    Science.gov (United States)

    Kamiya, Seitaro; Nakashima, Kenichiro

    2017-12-01

    Nanoparticle suspensions are thermodynamically unstable and subject to aggregation. Freeze-drying on addition of saccharides is a useful method for preventing aggregation. In the present study, tetrasaccharides (stachyose) was employed as an additive. In addition, we hypothesize the interactive mechanism between stachyose and the nanoparticles during freeze-drying for the first time. The mean particle size of the rehydrated freeze-dried stachyose-containing nanoparticles (104.7 nm) was similar to the initial particle size before freeze-drying (76.8 nm), indicating that the particle size had been maintained. The mean particle size of the rehydrated normal-dried stachyose-containing nanoparticles was 222.2 nm. The powder X-ray diffraction of the freeze-dried stachyose-containing nanoparticles revealed a halo pattern. The powder X-ray diffraction of the normally dried stachyose-containing nanoparticles produced mainly a halo pattern and a partial peak. These results suggest an interaction between the nanoparticles and stachyose, and that this relationship depends on whether the mixture is freeze-dried or dried normally. In the case of normal drying, although most molecules cannot move rapidly thereby settling irregularly, some stachyose molecules can arrange regularly leading to some degree of crystallization and potentially some aggregation. In contrast, during freeze-drying, the moisture sublimed, while the stachyose molecules and nanoparticles were immobilized in the ice. After sublimation, stachyose remained in the space occupied by water and played the role of a buffer material, thus preventing aggregation.

  2. A theoretical extension of the soil freezing curve paradigm

    Science.gov (United States)

    Amiri, Erfan A.; Craig, James R.; Kurylyk, Barret L.

    2018-01-01

    Numerical models of permafrost evolution in porous media typically rely upon a smooth continuous relation between pore ice saturation and sub-freezing temperature, rather than the abrupt phase change that occurs in pure media. Soil scientists have known for decades that this function, known as the soil freezing curve (SFC), is related to the soil water characteristic curve (SWCC) for unfrozen soils due to the analogous capillary and sorptive effects experienced during both soil freezing and drying. Herein we demonstrate that other factors beyond the SFC-SWCC relationship can influence the potential range over which pore water phase change occurs. In particular, we provide a theoretical extension for the functional form of the SFC based upon the presence of spatial heterogeneity in both soil thermal conductivity and the freezing point depression of water. We infer the functional form of the SFC from many abrupt-interface 1-D numerical simulations of heterogeneous systems with prescribed statistical distributions of water and soil properties. The proposed SFC paradigm extension has the appealing features that it (1) is determinable from measurable soil and water properties, (2) collapses into an abrupt phase transition for homogeneous media, (3) describes a wide range of heterogeneity within a single functional expression, and (4) replicates the observed hysteretic behavior of freeze-thaw cycles in soils.

  3. Vitality of oligozoospermic semen samples is improved by both swim-up and density gradient centrifugation before cryopreservation.

    Science.gov (United States)

    Counsel, Madeleine; Bellinge, Rhys; Burton, Peter

    2004-05-01

    To ascertain whether washing sperm from oligozoospermic and normozoospermic samples before cryopreservation improves post-thaw vitality. Normozoospermic (n = 18) and oligozoospermic (n = 16) samples were divided into three aliquots. The first aliquot remained untreated and the second and third aliquots were subjected to the swim-up and discontinuous density gradient sperm washing techniques respectively. Vitality staining was performed, samples mixed with cryopreservation media and frozen. Spermatozoa were thawed, stained, and vitality quantified and expressed as the percentage of live spermatozoa present. Post-thaw vitality in untreated aliquots from normozoospermic samples (24.9% +/- 2.3; mean +/- SEM) was significantly higher (unpaired t-tests; P vitality was significantly higher after swim-up in normozoospermic samples (35.6% +/- 2.1; P vitality in oligozoospermic (22.4% +/- 1.0; P vitality in cryopreserved oligozoospermic samples was improved by both the swim-up and density gradient centrifugation washing techniques prior to freezing.

  4. Utilizing NASA DISCOVER-AQ Data to Examine Spatial Gradients in Complex Emission Environments

    Science.gov (United States)

    Buzanowicz, M. E.; Moore, W.; Crawford, J. H.; Schroeder, J.

    2017-12-01

    Although many regulations have been enacted with the goal of improving air quality, many parts of the US are still classified as `non-attainment areas' because they frequently violate federal air quality standards. Adequately monitoring the spatial distribution of pollutants both within and outside of non-attainment areas has been an ongoing challenge for regulators. Observations of near-surface pollution from space-based platforms would provide an unprecedented view of the spatial distribution of pollution, but this goal has not yet been realized due to fundamental limitations of satellites, specifically because the footprint size of satellite measurements may not be sufficiently small enough to capture true gradients in pollution, and rather represents an average over a large area. NASA's DISCOVER-AQ was a multi-year field campaign aimed at improving our understanding of the role that remote sensing, including satellite-based remote sensing, could play in air quality monitoring systems. DISCOVER-AQ data will be utilized to create a metric to examine spatial gradients and how satellites can capture those gradients in areas with complex emission environments. Examining horizontal variability within a vertical column is critical to understanding mixing within the atmosphere. Aircraft spirals conducted during DISCOVER-AQ were divided into octants, and averages of a given a species were calculated, with certain points receiving a flag. These flags were determined by calculating gradients between subsequent octants. Initial calculations have shown that over areas with large point source emissions, such as Platteville and Denver-La Casa in Colorado, and Essex, Maryland, satellite retrievals may not adequately capture spatial variability in the atmosphere, thus complicating satellite inversion techniques and limiting our ability to understand human exposure on sub-grid scales. Further calculations at other locations and for other trace gases are necessary to determine

  5. Freeze Tolerance of Seed-Producing Turf Bermudagrasses.

    Science.gov (United States)

    Anderson, Jeffrey A.; Taliaferro, Charles M.

    2002-01-01

    Bermudagrass, Cynodon dactylon (L.) Pers., suffers periodic severe winter-kill throughout much of its area of use in the contiguous USA. A research goal is to increase freeze tolerance in cultivars to lessen the risk of such damage. An identified research need is for Cynodon germplasm resources to be characterized for freeze tolerance and hybridization potential. Accordingly, the objective of this research was to characterize the relative freeze tolerance of selected fertile bermudagrass plants. Nine tetraploid (2n = 4x = 36) C. dactylon and two triploid (2n = 3x = 27) hybrid (C. dactylon x C. transvaalensis Burtt Davy) clonal plants (standards) were evaluated in two experiments. Plants were propagated clonally and established in Cone-tainers (Ray Leach Cone-tainer Nursery, Canby, OR) for about 10 wk. Acclimation took place for 4 wk in controlled environment chambers at 8/2 degrees C (day/night) temperatures with a 10-h photoperiod. Following acclimation, Cone-tainers were placed into a freeze chamber and cooled rapidly to -2 degrees C, induced to freeze with ice chips, then held overnight at -2 degrees C. The freeze chamber was then programmed to cool linearly at 1 degrees C per hour. For each cultivar, three Cone-tainers were removed at each test temperature. Following thawing, Cone-tainers were transferred to a greenhouse and regrowth was evaluated visually. Nonlinear regression was used to estimate T(mid), which corresponded to the midpoint of the sigmoidal response curve of survival vs temperature. Within experiment one, Tifgreen (T(mid) = -7.2 degrees C) was significantly less cold hardy than Quickstand (-9.0 degrees C), A-12204 (-9.2 degrees C), Midiron (-9.9 degrees C), and A-12195 (-10.5 degrees C). A-12195 was significantly hardier than all genotypes except Midiron. In the second experiment, Arizona Common (-6.6 degrees C), Tifgreen (-7.1 degrees C), and A-12205 (-7.1 degrees C) were less hardy than A-9959 (-8.7 degrees C), A-12156 (-8.9 degrees C), A

  6. Validation of the shake test for detecting freeze damage to adsorbed vaccines.

    Science.gov (United States)

    Kartoglu, Umit; Ozgüler, Nejat Kenan; Wolfson, Lara J; Kurzatkowski, Wiesław

    2010-08-01

    To determine the validity of the shake test for detecting freeze damage in aluminium-based, adsorbed, freeze-sensitive vaccines. A double-blind crossover design was used to compare the performance of the shake test conducted by trained health-care workers (HCWs) with that of phase contrast microscopy as a "gold standard". A total of 475 vials of 8 different types of World Health Organization prequalified freeze-sensitive vaccines from 10 different manufacturers were used. Vaccines were kept at 5 degrees C. Selected numbers of vials from each type were then exposed to -25 degrees C and -2 degrees C for 24-hour periods. There was complete concordance between HCWs and phase-contrast microscopy in identifying freeze-damaged vials and non-frozen samples. Non-frozen samples showed a fine-grain structure under phase contrast microscopy, but freeze-damaged samples showed large conglomerates of massed precipitates with amorphous, crystalline, solid and needle-like structures. Particles in the non-frozen samples measured from 1 microm (vaccines against diphtheria-tetanus-pertussis; Haemophilus influenzae type b; hepatitis B; diphtheria-tetanus-pertussis-hepatitis B) to 20 microm (diphtheria and tetanus vaccines, alone or in combination). By contrast, aggregates in the freeze-damaged samples measured up to 700 microm (diphtheria-tetanus-pertussis) and 350 microm on average. The shake test had 100% sensitivity, 100% specificity and 100% positive predictive value in this study, which confirms its validity for detecting freeze damage to aluminium-based freeze-sensitive vaccines.

  7. The human milk oligosaccharides are not affected by pasteurization and freeze-drying.

    Science.gov (United States)

    Hahn, Won-Ho; Kim, Jaehan; Song, Seunghyun; Park, Suyeon; Kang, Nam Mi

    2017-11-06

    Human milk oligosaccharides (HMOs) are known as important factors in neurologic and immunologic development of neonates. Moreover, freeze-drying seems to be a promising storage method to improve the processes of human milk banks. However, the effects of pasteurization and freeze-drying on HMOs were not evaluated yet. The purpose of this study is to analyze and compare the HMOs profiles of human milk collected before and after the pasteurization and freeze-drying. Totally nine fresh human milk samples were collected from three healthy mothers at the first, second, and third week after delivery. The samples were treated with Holder pasteurization and freeze-drying. HMOs profiles were analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight (TOF/TOF) mass spectrometry and compared between samples collected before and after the treatments. Human milk samples showed significantly different HMO patterns between mothers. However, HMOs were not affected by lactation periods within 3 weeks after delivery (r 2  = 0.972-0.999, p pasteurization and freeze-drying were found not to affect HMO patterns in a correlation analysis (r 2  = 0.989-0.999, p pasteurization and freeze-drying of donor milks. We hope that introducing freeze-drying to the human milk banks would be encouraged by the present study. However, the storage length without composition changes of HMOs after freeze-drying needs to be evaluated in the further studies.

  8. Full Tensor Gradient of Simulated Gravity Data for Prospect Scale Delineation

    Directory of Open Access Journals (Sweden)

    Hendra Grandis

    2014-07-01

    Full Text Available Gravity gradiometry measurement allows imaging of anomalous sources in more detail than conventional gravity data. The availability of this new technique is limited to airborne gravity surveys using very specific instrumentation. In principle, the gravity gradients can be calculated from the vertical component of the gravity commonly measured in a ground-based gravity survey. We present a calculation of the full tensor gradient (FTG of the gravity employing the Fourier transformation. The calculation was applied to synthetic data associated with a simple block model and also with a more realistic model. The latter corresponds to a 3D model in which a thin coal layer is embedded in a sedimentary environment. Our results show the utility of the FTG of the gravity for prospect scale delineation.

  9. A Determination of the Ratio of the Zinc Freezing Point to the Tin Freezing Point by Noise Thermometry

    Science.gov (United States)

    Labenski, J. R.; Tew, W. L.; Benz, S. P.; Nam, S. W.; Dresselhaus, P.

    2008-02-01

    A Johnson-noise thermometer (JNT) has been used with a quantized voltage noise source (QVNS), as a calculable reference to determine the ratio of temperatures near the Zn freezing point to those near the Sn freezing point. The temperatures are derived in a series of separate measurements comparing the synthesized noise power from the QVNS with that of Johnson noise from a known resistance. The synthesized noise power is digitally programed to match the thermal noise powers at both temperatures and provides the principle means of scaling the temperatures. This produces a relatively flat spectrum for the ratio of spectral noise densities, which is close to unity in the low-frequency limit. The data are analyzed as relative spectral ratios over the 4.8 to 450 kHz range averaged over a 3.2 kHz bandwidth. A three-parameter model is used to account for differences in time constants that are inherently temperature dependent. A drift effect of approximately -6 μK·K-1 per day is observed in the results, and an empirical correction is applied to yield a relative difference in temperature ratios of -11.5 ± 43 μK·K-1 with respect to the ratio of temperatures assigned on the International Temperature Scale of 1990 (ITS-90). When these noise thermometry results are combined with results from acoustic gas thermometry at temperatures near the Sn freezing point, a value of T - T 90 = 7 ± 30 mK for the Zn freezing point is derived.

  10. Normal freezing of ideal ternary systems of the pseudobinary type

    Science.gov (United States)

    Li, C. H.

    1972-01-01

    Perfect liquid mixing but no solid diffusion is assumed in normal freezing. In addition, the molar compositions of the freezing solid and remaining liquid, respectively, follow the solidus and liquidus curves of the constitutional diagram. For the linear case, in which both the liquidus and solidus are perfectly straight lines, the normal freezing equation giving the fraction solidified at each melt temperature and the solute concentration profile in the frozen solid was determined as early as 1902, and has since been repeatedly published. Corresponding equations for quadratic, cubic or higher-degree liquidus and solidus lines have also been obtained. The equation of normal freezing for ideal ternary liquid solutions solidified into ideal solid solutions of the pseudobinary type is given. Sample computations with the use of this new equation were made and are given for the Ga-Al-As system.

  11. Freezing and melting line invariants of the Lennard-Jones system

    DEFF Research Database (Denmark)

    Costigliola, Lorenzo; Schrøder, Thomas; Dyre, Jeppe C.

    2016-01-01

    The invariance of several structural and dynamical properties of the Lennard-Jones (LJ) system along the freezing and melting lines is interpreted in terms of isomorph theory. First the freezing/melting lines of the LJ system are shown to be approximated by isomorphs. Then we show...... that the invariants observed along the freezing and melting isomorphs are also observed on other isomorphs in the liquid and crystalline phases. The structure is probed by the radial distribution function and the structure factor and dynamics are probed by the mean-square displacement, the intermediate scattering...... function, and the shear viscosity. Studying these properties with reference to isomorph theory explains why the known single-phase melting criteria hold, e.g., the Hansen–Verlet and the Lindemann criteria, and why the Andrade equation for the viscosity at freezing applies, e.g., for most liquid metals. Our...

  12. FY 2017 Status of Sodium Freezing and Remelting Tests

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States); Boron, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Momozaki, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Chojnowski, D. B. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Reed, C. B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-15

    The Sodium Freezing and Remelting experiment facility at Argonne National Laboratory has been significantly modified and improved. The main improvement was replacement of the two original stainless steel test sections that had strain gages limited by their bonds to the stainless steel to maximum temperatures of 350°C with a single new test section with strain gages that can be utilized up to 980°C and a thin wall to enhance measured strains. Wetting of stainless steel by sodium within a practical time of one to a few days is expected to require temperatures of 450°C or greater. Thus, the higher temperature strain gages enable wetting in a short time of a few days. Wetting below 350°C would have required an impractically long time of at least weeks. Other improvements included upgrading of the loop configuration, incorporation of a cold finger to purify sodium, a new data acquisition system, and reinstallation of the many heaters, heater controllers, and thermocouples. After the loop had been heated to 400°C for about two hours, an initial sodium freezing test was conducted. It is thought that the sodium might have at least partially wetted the stainless steel wall under these conditions. The strain gage measurements indicate that an incremental step inward deformation of the test section thin wall occurred as the temperature decreased through the sodium freezing temperature. This behavior is consistent with sodium initially adhering to the stainless steel inner wall but breaking away from the wall as the freezing sodium contracted. Conduct of additional sodium freezing tests under well wetted conditions was prevented as a result of stoppage of all electrical work at Argonne by the Laboratory Director on July 25, 2017. A pathway to resuming electrical work is now in place at Argonne and additional sodium freezing testing will resume next fiscal year.

  13. Key composition optimization of meat processed protein source by vacuum freeze-drying technology

    Directory of Open Access Journals (Sweden)

    Yan Ma

    2018-05-01

    Full Text Available Vacuum freeze-drying technology is a high technology content, a wide range of knowledge of technology in the field of drying technology is involved, it is also a method of the most complex drying equipment, the largest energy consumption, the highest cost of drying method, but due to the particularity of its dry goods: the freeze-drying food has the advantages of complex water performance is good, cooler and luster of freezing and drying food to maintain good products, less nutrient loss, light weight, easy to carry transportation, easy to long-term preservation, and on the quality is far superior to the obvious advantages of other dried food, making it become the forefront of drying technology research and development. The freeze-drying process of Chinese style ham and western Germany fruit tree tenderloin is studied in this paper, their eutectic point, melting point and collapse temperature, freeze-drying curve and its heat and mass transfer characteristics are got, then the precool temperature and the highest limiting temperature of sublimation interface are determined. The effect of system pressure on freeze-dried rate in freeze-drying process is discussed, and the method of regulating pressure circularly is determined. Keywords: Ham, Tenderloin, Vacuum freeze-dry, Processing, Optimization

  14. Saccharomyces cerevisiae glycerol/H+ symporter Stl1p is essential for cold/near-freeze and freeze stress adaptation. A simple recipe with high biotechnological potential is given

    Directory of Open Access Journals (Sweden)

    Ferreira Célia

    2010-11-01

    Full Text Available Abstract Background Freezing is an increasingly important means of preservation and storage of microbial strains used for many types of industrial applications including food processing. However, the yeast mechanisms of tolerance and sensitivity to freeze or near-freeze stress are still poorly understood. More knowledge on this regard would improve their biotechnological potential. Glycerol, in particular intracellular glycerol, has been assigned as a cryoprotectant, also important for cold/near-freeze stress adaptation. The S. cerevisiae glycerol active transporter Stl1p plays an important role on the fast accumulation of glycerol. This gene is expressed under gluconeogenic conditions, under osmotic shock and stress, as well as under high temperatures. Results We found that cells grown on STL1 induction medium (YPGE and subjected to cold/near-freeze stress, displayed an extremely high expression of this gene, also visible at glycerol/H+ symporter activity level. Under the same conditions, the strains harbouring this transporter accumulated more than 400 mM glycerol, whereas the glycerol/H+ symporter mutant presented less than 1 mM. Consistently, the strains able to accumulate glycerol survive 25-50% more than the stl1Δ mutant. Conclusions In this work, we report the contribution of the glycerol/H+ symporter Stl1p for the accumulation and maintenance of glycerol intracellular levels, and consequently cell survival at cold/near-freeze and freeze temperatures. These findings have a high biotechnological impact, as they show that any S. cerevisiae strain already in use can become more resistant to cold/freeze-thaw stress just by simply adding glycerol to the broth. The combination of low temperatures with extracellular glycerol will induce the transporter Stl1p. This solution avoids the use of transgenic strains, in particular in food industry.

  15. Freeze desalination of seawater using LNG cold energy

    KAUST Repository

    Chang, Jian; Zuo, Jian; Lu, Kang-Jia; Chung, Neal Tai-Shung

    2016-01-01

    With the aid of cold energy from regasification of liquefied natural gas (LNG), freeze desalination (FD) is an emerging technology for seawater desalination because of its low energy characteristics and insensitivities to fouling problems. This work aims to investigate the major operating parameters of FD such as coolant temperature, freezing duration, supercooling, seeding, agitation, crystallizer material and subsequent washing procedure on ice production and water quality. It was found that the optimal freezing duration per batch was 1 h for an iron crystallizer and 1.5 h for a glass crystallizer. The optimal coolant temperature should be around −8 °C. The optimal amount of washing water to clean the raw ice was about 50 wt% of the raw ice. Over 50 wt% of the feed could be recovered as raw ice within 1 h, which means an overall ice recovery rate of higher than 25% (of the original seawater), considering the consumption of washing water. Both artificial and real seawater were tested under the optimized conditions. The total dissolved solid in the product ice was around 300 ppm, which met the World Health Organization (WHO) potable water salinity standard of 500 ppm. Therefore, the process parameters optimized in this study can be directly used for the freeze desalination of seawater.

  16. Freeze desalination of seawater using LNG cold energy

    KAUST Repository

    Chang, Jian

    2016-06-23

    With the aid of cold energy from regasification of liquefied natural gas (LNG), freeze desalination (FD) is an emerging technology for seawater desalination because of its low energy characteristics and insensitivities to fouling problems. This work aims to investigate the major operating parameters of FD such as coolant temperature, freezing duration, supercooling, seeding, agitation, crystallizer material and subsequent washing procedure on ice production and water quality. It was found that the optimal freezing duration per batch was 1 h for an iron crystallizer and 1.5 h for a glass crystallizer. The optimal coolant temperature should be around −8 °C. The optimal amount of washing water to clean the raw ice was about 50 wt% of the raw ice. Over 50 wt% of the feed could be recovered as raw ice within 1 h, which means an overall ice recovery rate of higher than 25% (of the original seawater), considering the consumption of washing water. Both artificial and real seawater were tested under the optimized conditions. The total dissolved solid in the product ice was around 300 ppm, which met the World Health Organization (WHO) potable water salinity standard of 500 ppm. Therefore, the process parameters optimized in this study can be directly used for the freeze desalination of seawater.

  17. A New Freezing Method Using Pre-Dehydration by Microwave-Vacuum Drying

    Science.gov (United States)

    Tsuruta, Takaharu; Hamidi, Nurkholis

    Partial dehydration by microwave-vacuum drying has been applied to tuna and strawberry in order to reduce cell-damages caused by the formation of large ice-crystals during freezing. The samples were subjected to microwave vacuum drying at pressure of 5 kPa and temperature less than 27°C to remove small amount of water prior to freezing. The tuna were cooled by using the freezing chamber at temperature -50°C or -150°C, while the strawberries were frozen at temperature -30°C or -80°C, respectively. The temperature transients in tuna showed that removing some water before freezing made the freezing time shorter. The observations of ice crystal clearly indicated that rapid cooling and pre-dehydration prior to freezing were effective in minimizing the size of ice crystal. It is also understood that the formation of large ice crystals has a close relation to the cell damages. After thawing, the observation of microstructure was done on the tuna and strawberry halves. The pre-dehydrated samples showed a better structure than the un-dehydrated one. It is concluded that the pre-dehydration by microwave-vacuum drying is one promising method for the cryo-preservation of foods.

  18. Constraining fault interpretation through tomographic velocity gradients: application to northern Cascadia

    Directory of Open Access Journals (Sweden)

    K. Ramachandran

    2012-02-01

    Full Text Available Spatial gradients of tomographic velocities are seldom used in interpretation of subsurface fault structures. This study shows that spatial velocity gradients can be used effectively in identifying subsurface discontinuities in the horizontal and vertical directions. Three-dimensional velocity models constructed through tomographic inversion of active source and/or earthquake traveltime data are generally built from an initial 1-D velocity model that varies only with depth. Regularized tomographic inversion algorithms impose constraints on the roughness of the model that help to stabilize the inversion process. Final velocity models obtained from regularized tomographic inversions have smooth three-dimensional structures that are required by the data. Final velocity models are usually analyzed and interpreted either as a perturbation velocity model or as an absolute velocity model. Compared to perturbation velocity model, absolute velocity models have an advantage of providing constraints on lithology. Both velocity models lack the ability to provide sharp constraints on subsurface faults. An interpretational approach utilizing spatial velocity gradients applied to northern Cascadia shows that subsurface faults that are not clearly interpretable from velocity model plots can be identified by sharp contrasts in velocity gradient plots. This interpretation resulted in inferring the locations of the Tacoma, Seattle, Southern Whidbey Island, and Darrington Devil's Mountain faults much more clearly. The Coast Range Boundary fault, previously hypothesized on the basis of sedimentological and tectonic observations, is inferred clearly from the gradient plots. Many of the fault locations imaged from gradient data correlate with earthquake hypocenters, indicating their seismogenic nature.

  19. A subspecies of region crossing change, region freeze crossing change

    OpenAIRE

    Inoue, Ayumu; Shimizu, Ryo

    2016-01-01

    We introduce a local move on a link diagram named a region freeze crossing change which is close to a region crossing change, but not the same. We study similarity and difference between region crossing change and region freeze crossing change.

  20. Gelatin-Filtered Consomme: A Practical Demonstration of the Freezing and Thawing Processes

    Science.gov (United States)

    Lahne, Jacob B.; Schmidt, Shelly J.

    2010-01-01

    Freezing is a key food processing and preservation technique widely used in the food industry. Application of best freezing and storage practices extends the shelf-life of foods for several months, while retaining much of the original quality of the fresh food. During freezing, as well as its counterpart process, thawing, a number of critical…

  1. Geometric origin of dynamically induced freezing of quantum evolution

    International Nuclear Information System (INIS)

    Matos-Abiague, A.; Berakdar, J.

    2006-01-01

    The phenomenon of dynamical, field-induced freezing of quantum evolution is discussed. It occurs when a time-dependent state is dynamically driven in such a way that the evolution of the corresponding wave function is effectively localized within a small region in the projective Hilbert space. As a consequence, the dynamics of the system is frozen and the expectation values of all physical observables hardly change with time. Necessary and sufficient conditions for inducing dynamical freezing are inferred from a general analysis of the geometry of quantum evolution. The relevance of the dynamical freezing for a sustainable in time, dynamical control is discussed and exemplified by a study of the coherent control of the kicked rotor motion

  2. Improved cryopreservability of stallion sperm using a sorbitol-based freezing extender.

    Science.gov (United States)

    Pojprasath, T; Lohachit, C; Techakumphu, M; Stout, T; Tharasanit, T

    2011-06-01

    Cryopreservation of stallion semen is often associated with poor post-thaw sperm quality. Sugars are among the important components of a freezing extender and act as non-permeating cryoprotectants. This study aimed to compare the quality of stallion sperm frozen with glucose, fructose or sorbitol-containing freezing extenders. Semen was collected from six stallions of proven fertility and cryopreserved using a freezing extender containing different types of monosaccharide sugars (glucose, fructose or sorbitol). After thawing, the semen was examined for sperm motility, viability, acrosome integrity, plasma membrane functionality and sperm longevity. The fertility of semen frozen in the presence of sorbitol was also tested by artificial insemination. Sperm quality was significantly decreased following freezing and thawing (P sorbitol and glucose (P sorbitol-based extender when examined at 2 and 4 h post-thaw, all of these parameters plus plasma membrane functionality were improved for sperm frozen in the sorbitol extender than in the glucose extender when examined 10 min post-thaw. Two of four mares (50%) inseminated with semen frozen with a sorbitol-containing freezing extender became pregnant. It is concluded that different sugars have different abilities to protect against cryoinjury during freezing and thawing of stallion sperm. This study demonstrated that an extender containing sorbitol as primary sugar can be used to successfully cryopreserve equine sperm; moreover, the quality of frozen-thawed sperm appeared to be better than when glucose or fructose was the principle sugar in the freezing extender. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Nucleation in Synoptically Forced Cirrostratus

    Science.gov (United States)

    Lin, R.-F.; Starr, D. OC.; Reichardt, J.; DeMott, P. J.

    2004-01-01

    Formation and evolution of cirrostratus in response to weak, uniform and constant synoptic forcing is simulated using a one-dimensional numerical model with explicit microphysics, in which the particle size distribution in each grid box is fully resolved. A series of tests of the model response to nucleation modes (homogeneous-freezing-only/heterogeneous nucleation) and heterogeneous nucleation parameters are performed. In the case studied here, nucleation is first activated in the prescribed moist layer. A continuous cloud-top nucleation zone with a depth depending on the vertical humidity gradient and one of the nucleation parameters is developed afterward. For the heterogeneous nucleation cases, intermittent nucleation zones in the mid-upper portion of the cloud form where the relative humidity is on the rise, because existent ice crystals do not uptake excess water vapor efficiently, and ice nuclei (IN) are available. Vertical resolution as fine as 1 m is required for realistic simulation of the homogeneous-freezing-only scenario, while the model resolution requirement is more relaxed in the cases where heterogeneous nucleation dominates. Bulk microphysical and optical properties are evaluated and compared. Ice particle number flux divergence, which is due to the vertical gradient of the gravity-induced particle sedimentation, is constantly and rapidly changing the local ice number concentration, even in the nucleation zone. When the depth of the nucleation zone is shallow, particle number concentration decreases rapidly as ice particles grow and sediment away from the nucleation zone. When the depth of the nucleation zone is large, a region of high ice number concentration can be sustained. The depth of nucleation zone is an important parameter to be considered in parametric treatments of ice cloud generation.

  4. Do freeze events create a demographic bottleneck for Colophospermum mopane?

    CSIR Research Space (South Africa)

    Whitecross, MA

    2012-11-01

    Full Text Available capacity of the effected plants. A severely freeze-damaged stand of Colophospermum mopane along a slope in the Venetia Limpopo Nature Reserve provided an opportunity to investigate the nature of freeze-damage impacts on C. mopane. Is this disturbance a...

  5. Influence of the freezing process on the pore structure of freeze-dried collagen sponges; Einfluss des Einfriervorganges auf die Porenstruktur gefriergetrockneter Kollagenschwaemme

    Energy Technology Data Exchange (ETDEWEB)

    Schoof, H.; Bruns, L.; Apel, J.; Heschel, I.; Rau, G. [Helmholz-Inst. fuer Biomedizinische Technik, Aachen (Germany)

    1997-12-31

    Freeze-dried sponges are used as colonisable tissue implants. As their porous structure is important for rapid colonisation it was found desirable to be able to produce homogeneous pore structures to specification. The structure of freeze-dried sponges is largely the same as the ice crystal morphology of frozen samples. In industrial manufacture suspensions are solidified in a cold bath. Freezing conditions are not stationary in this process, rendering ice crystal morphology inhomogeneous. However, studies on directed solidification as it is used in the Bridgman or the power-down method have shown that certain freezing conditions permit the production of collagen sponges of homogenous predefined pore size. [Deutsch] Gefriergetrocknete Kollagenschwaemme werden als besiedelbare Gewebeimplantate eingesetzt. Da die poroese Struktur fuer eine zuegige Besiedelung von grosser Bedeutung ist, sollen Kollagenschwaemme mit einer einstellbaren und homogenen Porenstruktur hergestellt werden. Die Struktur der gefriergetrockneten Schwaemme entspricht weitestgehend der Eiskristallmorphologie der gefrorenen Probe. Bei der industriellen Herstellung werden Suspensionen in einem Kaeltebad erstarrt. Die Einfrierbedingungen sind dabei nicht stationaer, was zu einer inhomogenen Eiskristallmorphologie fuehrt. Untersuchungen zur gerichteten Erstarrung nach dem Bridgman- und dem Power-Down-Verfahren ergaben jedoch, dass unter bestimmten Einfrierbedingungen Kollagenschwaemme mit homogener und definierbarer Porengroesse hergestellt werden koennen. (orig.)

  6. NMR Pore Structure and Dynamic Characteristics of Sandstone Caused by Ambient Freeze-Thaw Action

    Directory of Open Access Journals (Sweden)

    Bo Ke

    2017-01-01

    Full Text Available For a deeper understanding of the freeze-thaw weathering effects on the microstructure evolution and deterioration of dynamic mechanical properties of rock, the present paper conducted the nuclear magnetic resonance (NMR tests and impact loading experiments on sandstone under different freeze-thaw cycles. The results of NMR test show that, with the increase of freeze-thaw cycles, the pores expand and pores size tends to be uniform. The experimental results show that the stress-strain curves all go through four stages, namely, densification, elasticity, yielding, and failure. The densification curve is shorter, and the slope of elasticity curve decreases as the freeze-thaw cycles increase. With increasing freeze-thaw cycles, the dynamic peak stress decreases and energy absorption of sandstone increases. The dynamic failure form is an axial splitting failure, and the fragments increase and the size diminishes with increasing freeze-thaw cycles. The higher the porosity is, the more severe the degradation of dynamic characteristics is. An increase model for the relationships between the porosity or energy absorption and freeze-thaw cycles number was built to reveal the increasing trend with the freeze-thaw cycles increase; meanwhile, a decay model was built to predict the dynamic compressive strength degradation of rock after repeated freeze-thaw cycles.

  7. Degradation of ATP and glycogen in cod ( Gadus morhua ) muscle during freezing

    DEFF Research Database (Denmark)

    Cappeln, Gertrud; Jessen, Flemming

    2001-01-01

    Changes in ATP, IMP, lactate and glycogen contents in the muscle of cod were followed during freezing at temperatures of -20C and -45C. ATP degradation was accompanied by a corresponding increase in IMP content. Simultaneous measurement of temperature showed that at both freezing rates......, the greatest decrease in ATP content was observed when the temperature reached -0.8C. Glycolysis occurred during freezing of cod as indicated by an increase in lactate content. The changes found in all measured metabolites were more pronounced when freezing was performed at a slow rate compared to a fast rate...

  8. Freeze-all policy: fresh vs. frozen-thawed embryo transfer.

    Science.gov (United States)

    Roque, Matheus; Valle, Marcello; Guimarães, Fernando; Sampaio, Marcos; Geber, Selmo

    2015-05-01

    To compare in vitro fertilization (IVF) outcomes between fresh embryo transfer (ET) and frozen-thawed ET (the "freeze-all" policy), with fresh ET performed only in cases without progesterone (P) elevation. Prospective, observational, cohort study. Private IVF center. A total of 530 patients submitted to controlled ovarian stimulation (COS) with a gonadotropin-releasing hormone-antagonist protocol, and cleavage-stage, day-3 ET. None. Ongoing pregnancy rates. A total of 530 cycles were included in the analysis: 351 in the fresh ET group (when P levels were ≤1.5 ng/mL on the trigger day); and 179 cycles in the freeze-all group (ET performed after endometrial priming with estradiol valerate, at 6 mg/d, taken orally). For the fresh ET group vs. the freeze-all group, respectively, the implantation rate was 19.9% and 26.5%; clinical pregnancy rate was 35.9% and 46.4%; and ongoing pregnancy rate was 31.1% and 39.7%. The IVF outcomes were significantly better in the group using the freeze-all policy, compared with the group using fresh ET. These results suggest that even in a select group of patients that underwent fresh ET (P levels ≤1.5 ng/mL), endometrial receptivity may have been impaired by COS, and outcomes may be improved by using the freeze-all policy. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. An Equipment to Measure the Freezing Point of Soils under Higher Pressure

    Science.gov (United States)

    Wang, Dayan; Guan, Hui; Wen, Zhi; Ma, Wei

    2014-05-01

    Soil freezing point is the highest temperature at which ice can be presented in the system and soil can be referred to as frozen. The freezing temperature of soil is an important parameter for solving many practical problems in civil engineering, such as evaluation of soil freezing depth, prediction of soil heaving, force of soil suction, etc. However, as the freezing temperature is always affected by many factors like soil particle size, mineral composition, water content and the external pressure endured by soils, to measure soil freezing point is a rather difficult task until now, not to mention the soil suffering higher pressure. But recently, with the artificial freezing technology widely used in the excavation of deep underground space, the frozen wall thickness is a key factor to impact the security and stability of deep frozen wall. To determine the freeze wall thickness, the location of the freezing front must be determined firstly, which will deal with the determination of the soil freezing temperature. So how to measure the freezing temperature of soil suffering higher pressure is an important problem to be solved. This paper will introduce an equipment which was developed lately by State Key Laboratory of Frozen Soil Engineering to measure the freezing-point of soils under higher pressure. The equipment is consisted of cooling and keeping temperature system, temperature sensor and data collection system. By cooling and keeping temperature system, not only can we make the higher pressure soil sample's temperature drop to a discretionary minus temperature, but also keep it and reduce the heat exchange of soil sample with the outside. The temperature sensor is the key part to our measurement, which is featured by high precision and high sensitivity, what is more important is that the temperature sensor can work in a higher pressure condition. Moreover, the major benefit of this equipment is that the soil specimen's loads can be loaded by any microcomputer

  10. Determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke from baryonic Λ{sub b} decays

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Y.K. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Geng, C.Q. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Changsha (China)

    2017-10-15

    We present the first attempt to extract vertical stroke V{sub cb} vertical stroke from the Λ{sub b} → Λ{sub c}{sup +}l anti ν{sub l} decay without relying on vertical stroke V{sub ub} vertical stroke inputs from the B meson decays. Meanwhile, the hadronic Λ{sub b} → Λ{sub c}M{sub (c)} decays with M = (π{sup -},K{sup -}) and M{sub c} =(D{sup -},D{sup -}{sub s}) measured with high precisions are involved in the extraction. Explicitly, we find that vertical stroke V{sub cb} vertical stroke =(44.6 ± 3.2) x 10{sup -3}, agreeing with the value of (42.11 ± 0.74) x 10{sup -3} from the inclusive B → X{sub c}l anti ν{sub l} decays. Furthermore, based on the most recent ratio of vertical stroke V{sub ub} vertical stroke / vertical stroke V{sub cb} vertical stroke from the exclusive modes, we obtain vertical stroke V{sub ub} vertical stroke = (4.3 ± 0.4) x 10{sup -3}, which is close to the value of (4.49 ± 0.24) x 10{sup -3} from the inclusive B → X{sub u}l anti ν{sub l} decays. We conclude that our determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke favor the corresponding inclusive extractions in the B decays. (orig.)

  11. Effects of Pressure-shift Freezing on the Structural and Physical Properties of Gelatin Hydrogel Matrices

    Science.gov (United States)

    Kim, Byeongsoo; Gil, Hyung Bae; Min, Sang-Gi; Lee, Si-Kyung; Choi, Mi-Jung

    2014-01-01

    This study investigates the effects of the gelatin concentration (10-40%, w/v), freezing temperatures (from -20℃ to -50℃) and freezing methods on the structural and physical properties of gelatin matrices. To freeze gelatin, the pressure-shift freezing (PSF) is being applied at 0.1 (under atmospheric control), 50 and 100 MPa, respectively. The freezing point of gelatin solutions decrease with increasing gelatin concentrations, from -0.2℃ (10% gelatin) to -6.7℃ (40% gelatin), while the extent of supercooling did not show any specific trends. The rheological properties of the gelatin indicate that both the storage (G') and loss (G") moduli were steady in the strain amplitude range of 0.1-10%. To characterize gelatin matrices formed by the various freezing methods, the ice crystal sizes which were being determined by the scanning electron microscopy (SEM) are affected by the gelatin concentrations. The ice crystal sizes are affected by gelatin concentrations and freezing temperature, while the size distributions of ice crystals depend on the freezing methods. Smaller ice crystals are being formed with PSF rather than under the atmospheric control where the freezing temperature is above -40℃. Thus, the results of this study indicate that the PSF processing at a very low freezing temperature (-50℃) offers a potential advantage over commercial atmospheric freezing points for the formation of small ice crystals. PMID:26760743

  12. Monitoring Freeze Thaw Transitions in Arctic Soils using Complex Resistivity Method

    Science.gov (United States)

    Wu, Y.; Hubbard, S. S.; Ulrich, C.; Dafflon, B.; Wullschleger, S. D.

    2012-12-01

    The Arctic region, which is a sensitive system that has emerged as a focal point for climate change studies, is characterized by a large amount of stored carbon and a rapidly changing landscape. Seasonal freeze-thaw transitions in the Arctic alter subsurface biogeochemical processes that control greenhouse gas fluxes from the subsurface. Our ability to monitor freeze thaw cycles and associated biogeochemical transformations is critical to the development of process rich ecosystem models, which are in turn important for gaining a predictive understanding of Arctic terrestrial system evolution and feedbacks with climate. In this study, we conducted both laboratory and field investigations to explore the use of the complex resistivity method to monitor freeze thaw transitions of arctic soil in Barrow, AK. In the lab studies, freeze thaw transitions were induced on soil samples having different average carbon content through exposing the arctic soil to temperature controlled environments at +4 oC and -20 oC. Complex resistivity and temperature measurements were collected using electrical and temperature sensors installed along the soil columns. During the laboratory experiments, resistivity gradually changed over two orders of magnitude as the temperature was increased or decreased between -20 oC and 0 oC. Electrical phase responses at 1 Hz showed a dramatic and immediate response to the onset of freeze and thaw. Unlike the resistivity response, the phase response was found to be exclusively related to unfrozen water in the soil matrix, suggesting that this geophysical attribute can be used as a proxy for the monitoring of the onset and progression of the freeze-thaw transitions. Spectral electrical responses contained additional information about the controls of soil grain size distribution on the freeze thaw dynamics. Based on the demonstrated sensitivity of complex resistivity signals to the freeze thaw transitions, field complex resistivity data were collected over

  13. Bulk specimen X-ray microanalysis of freeze-fractured, freeze-dried tissues in gerontological research

    International Nuclear Information System (INIS)

    Nagy, I.

    1988-01-01

    The rationale for choosing the freeze-fracture freeze-drying (FFFD) method of biological bulk specimen preparation as well as the theoretical and practical problems of this method are treated. FFFD specimens are suitable for quantitative X-ray microanalysis of biologically relevant elements. Although the spatial resolution of this analytical technique is low, the application of properly selected bulk standard crystals as well as the measurement of the intracellular water and dry mass content by means of another method developed in the same laboratory, allow us to obtain useful information about the age-dependent changes of ionic composition in the main intracellular compartments. The paper summarizes the problems with regard to specimen preparation, beam penetration and the quantitative analysis of FFFD specimens. The method has been applied so far mainly for the analysis of intranuclear and intracytoplasmic concentrations of Na, C1 and K in various types of cells and has resulted in a significant contribution to our understanding of the cellular mechanisms of aging. 84 references

  14. Apseudo-fluid representation of vertical liquid–coarse solids flow

    Directory of Open Access Journals (Sweden)

    ZORANA ARSENIJEVIC

    2005-05-01

    Full Text Available The pseudo–fluid concept has been applied for the prediction of the pressure gradient and voidage in vertical liquid-coarse solids flow. Treating the flowing mixture as a single homogenous fluid, the correlation for the friction coefficient of the suspension–wall was developed, as was the correlation between the true voidage and the apparent (volumetric voidage in the transport tube. Experiments were performed using water and spherical glass particles 1.20, 1.94 and 2.98 mm in diameter in a transport tube of 24 mm in diameter. The loading ratio (Gp/Gf was varied between 0.05 and 1.05 and the fluid superficial velocity was between 0.4 Ut and 4.95 Ut where Ut represents the single particle terminal velocity. The voidage ranged from 0.648 to 0.951 for these ratios. Experimental data for the pressure gradient and voidage from the literature agree well with the proposed correlations.

  15. Geophysical logging of bedrock wells for geothermal gradient characterization in New Hampshire, 2013

    Science.gov (United States)

    Degnan, James R.; Barker, Gregory; Olson, Neil; Wilder, Leland

    2014-01-01

    The U.S. Geological Survey, in cooperation with the New Hampshire Geological Survey, measured the fluid temperature of groundwater and other geophysical properties in 10 bedrock wells in the State of New Hampshire in order to characterize geothermal gradients in bedrock. The wells selected for the study were deep (five ranging from 375 to 900 feet and five deeper than 900 feet) and 6 had low water yields, which correspond to low groundwater flow from fractures. This combination of depth and low water yield reduced the potential for flow-induced temperature changes that would mask the natural geothermal gradient in the bedrock. All the wells included in this study are privately owned, and permission to use the wells was obtained from landowners before geophysical logs were acquired for this study. National Institute of Standards and Technology thermistor readings were used to adjust the factory calibrated geophysical log data. A geometric correction to the gradient measurements was also necessary due to borehole deviation from vertical.

  16. Scaling-Up Eutectic Freeze Crystallization

    NARCIS (Netherlands)

    Genceli, F.E.

    2008-01-01

    A novel crystallization technology, Eutectic Freeze Crystallization (EFC) has been investigated and further developed in this thesis work. EFC operates around the eutectic temperature and composition of aqueous solutions and can be used for recovery of (valuable) dissolved salts (and/or or acids)

  17. Development of Three-Layer Simulation Model for Freezing Process of Food Solution Systems

    Science.gov (United States)

    Kaminishi, Koji; Araki, Tetsuya; Shirakashi, Ryo; Ueno, Shigeaki; Sagara, Yasuyuki

    A numerical model has been developed for simulating freezing phenomena of food solution systems. The cell model was simplified to apply to food solution systems, incorporating with the existence of 3 parts such as unfrozen, frozen and moving boundary layers. Moreover, the moving rate of freezing front model was also introduced and calculated by using the variable space network method proposed by Murray and Landis (1957). To demonstrate the validity of the model, it was applied to the freezing processes of coffee solutions. Since the model required the phase diagram of the material to be frozen, the initial freezing temperatures of 1-55 % coffee solutions were measured by the DSC method. The effective thermal conductivity for coffee solutions was determined as a function of temperature and solute concentration by using the Maxwell - Eucken model. One-dimensional freezing process of 10 % coffee solution was simulated based on its phase diagram and thermo-physical properties. The results were good agreement with the experimental data and then showed that the model could accurately describe the change in the location of the freezing front and the distributions of temperature as well as ice fraction during a freezing process.

  18. A Case of Apparent Upper-Body Freezing in Parkinsonism while Using a Wheelchair

    Directory of Open Access Journals (Sweden)

    Samuel T. Nemanich

    2017-05-01

    Full Text Available Freezing of gait (FOG is a common, disabling gait disturbance in Parkinson’s disease (PD and other Parkinsonian syndromes. Freezing also occurs during non-gait movements involving the upper limbs. The mechanisms underlying freezing are complex, likely involving motor, cognitive, and sensory systems that contribute to the episodes. Here, we reported a 60-year-old female with a 24-year history of parkinsonism who experienced significant FOG when ambulatory. Disease progression resulted in her permanent use of a powered wheelchair. While using the power chair, the patient experiences apparent paroxysmal freezing in the hand and arm used to steer and propel the chair. These episodes, some lasting up to several minutes, occur only in circumstances (e.g., entering and leaving an elevator that are similar to environments known to elicit and exacerbate FOG. Episodes are transient and can be volitionally interrupted by the patient but sometimes require external assistance. Therapeutic intervention for this type of potential freezing has yet to be determined. This case may provide insight into the complex nature of freezing behavior and suggests a need for new approaches to treating non-traditional freezing behavior.

  19. Key composition optimization of meat processed protein source by vacuum freeze-drying technology.

    Science.gov (United States)

    Ma, Yan; Wu, Xingzhuang; Zhang, Qi; Giovanni, Vigna; Meng, Xianjun

    2018-05-01

    Vacuum freeze-drying technology is a high technology content, a wide range of knowledge of technology in the field of drying technology is involved, it is also a method of the most complex drying equipment, the largest energy consumption, the highest cost of drying method, but due to the particularity of its dry goods: the freeze-drying food has the advantages of complex water performance is good, cooler and luster of freezing and drying food to maintain good products, less nutrient loss, light weight, easy to carry transportation, easy to long-term preservation, and on the quality is far superior to the obvious advantages of other dried food, making it become the forefront of drying technology research and development. The freeze-drying process of Chinese style ham and western Germany fruit tree tenderloin is studied in this paper, their eutectic point, melting point and collapse temperature, freeze-drying curve and its heat and mass transfer characteristics are got, then the precool temperature and the highest limiting temperature of sublimation interface are determined. The effect of system pressure on freeze-dried rate in freeze-drying process is discussed, and the method of regulating pressure circularly is determined.

  20. Freeze-thaw processes and intense winter rainfall: The one-two punch for high streambank legacy sediment and nutrient loads from Mid-Atlantic watersheds

    Science.gov (United States)

    Inamdar, S. P.; Johnson, E. R.; Rowland, R. D.; Walter, R. C.; Merritts, D.

    2017-12-01

    Historic and contemporary anthropogenic soil erosion combined with early-American milldams resulted in large deposits of legacy sediments in the valley bottoms of Piedmont watersheds of the eastern US. Breaching of milldams subsequently yielded highly incised streams with exposed vertical streambanks that are vulnerable to erosion. Streambank erosion is attributed to fluvial scouring, freeze-thaw processes and mass wasting. While streambanks represent a large reservoir of fine sediments and nutrients, there is considerable uncertainty about the contribution of these sources to watershed nonpoint source pollution. Using high-frequency hydrologic, sediment, and turbidity data we show that freeze-thaw events followed by intense winter rainstorms can export unusually high concentrations of suspended sediment and particulate nutrients from watersheds. Data from a 12 ha forested, Piedmont, stream following an intense rain event (54 mm) on February 2016 yielded suspended sediment and particulate nutrient (organic carbon and nitrogen) concentrations and exports that exceeded those from tropical storms Irene, Lee, and Sandy that had much greater rainfall and discharge amounts, but which occurred later in the year. A similar response was also observed with regards to turbidity data for USGS stream monitoring locations at Brandywine Creek (813 km2) and White Clay Creek (153 km2). We hypothesize that much of the sediment export associated with winter storms is likely due to erosion of streambank sediments and was driven by the coupled occurrence of freeze-thaw conditions and intense rainfall events. We propose that freeze-thaw erosion represents an important and underappreciated mechanism in streams that "recharges" the sediment supply, which then is available for flushing by moderate to large storms. Future climate projections indicate increased intensification of storm events and increased variability of winter temperatures. Freeze-thaw cycles coupled with winter rain events

  1. Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L.) Heynh.

    Science.gov (United States)

    Warren, G; McKown, R; Marin, A L; Teutonico, R

    1996-08-01

    We screened for mutations deleterious to the freezing tolerance of Arabidopsis thaliana (L.) Heynh. ecotype Columbia. Tolerance was assayed by the vigor and regrowth of intact plants after cold acclimation and freezing. From a chemically mutagenized population, we obtained 13 lines of mutants with highly penetrant phenotypes. In 5 of these, freezing sensitivity was attributable to chilling injury sustained during cold acclimation, but in the remaining 8 lines, the absence of injury prior to freezing suggested that they were affected specifically in the development of freezing tolerance. In backcrosses, freezing sensitivity from each line segregated as a single nuclear mutation. Complementation tests indicated that the 8 lines contained mutations in 7 different genes. The mutants' freezing sensitivity was also detectable in the leakage of electrolytes from frozen leaves. However, 1 mutant line that displayed a strong phenotype at the whole-plant level showed a relatively weak phenotype by the electrolyte leakage assay.

  2. The interaction between freezing tolerance and phenology in temperate deciduous trees

    Directory of Open Access Journals (Sweden)

    Yann eVitasse

    2014-10-01

    Full Text Available Temperate climates are defined by a distinct temperature seasonality with large and often unpredictable weather during any of the four seasons. To thrive in such climates, trees have to withstand a cold winter and the stochastic occurrence of freeze events during any time of the year. The physiological mechanisms trees adopt to escape, avoid and tolerate freezing temperatures include a cold acclimation in autumn, a dormancy period during winter (leafless in deciduous trees, and the maintenance of a certain freezing tolerance during dehardening in early spring. The change from one phase to the next is mediated by complex interactions between temperature and photoperiod. This review aims at providing an overview of the interplay between phenology of leaves and species-specific freezing resistance. First, we address the long-term evolutionary responses that enabled temperate trees to tolerate certain low temperature extremes. We provide evidence that short term acclimation of freezing resistance plays a crucial role both in dormant and active buds, including re-acclimation to cold conditions following warm spells. This ability declines to almost zero during leaf emergence. Second, we show that the risk that native temperate trees encounter freeze injuries is low and is confined to spring and underline that this risk might be altered by climate warming depending on species-specific phenological responses to environmental cues.

  3. Cell growth and resistance of Lactococcus lactis subsp. lactis TOMSC161 following freezing, drying and freeze-dried storage are differentially affected by fermentation conditions.

    Science.gov (United States)

    Velly, H; Fonseca, F; Passot, S; Delacroix-Buchet, A; Bouix, M

    2014-09-01

    To investigate the effects of fermentation parameters on the cell growth and on the resistance to each step of the freeze-drying process of Lactococcus lactis subsp. lactis TOMSC161, a natural cheese isolate, using a response surface methodology. Cells were cultivated at different temperatures (22, 30 and 38°C) and pH (5·6, 6·2 and 6·8) and were harvested at different growth phases (0, 3 and 6 h of stationary phase). Cultivability and acidification activity losses of Lc. lactis were quantified after freezing, drying, 1 and 3 months of storage at 4 and 25°C. Lactococcus lactis was not damaged by freezing but was sensitive to drying and to ambient temperature storage. Moreover, the fermentation temperature and the harvesting time influenced the drying resistance of Lc. lactis. Lactococcus lactis cells grown in a whey-based medium at 32°C, pH 6·2 and harvested at late stationary phase exhibited both an optimal growth and the highest resistance to freeze-drying and storage. A better insight on the individual and interaction effects of fermentation parameters made it possible the freeze-drying and storage preservation of a sensitive strain of technological interest. Evidence on the particularly damaging effect of the drying step and the high-temperature storage is presented. © 2014 The Society for Applied Microbiology.

  4. 9 CFR 354.244 - Temperatures and cooling and freezing procedures.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Temperatures and cooling and freezing procedures. 354.244 Section 354.244 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... and cooling and freezing procedures. Temperatures and procedures which are necessary for cooling and...

  5. A gradient of endogenous calcium forms in mucilage of graviresponding roots of Zea mays

    Science.gov (United States)

    Moore, R.; Fondren, W. M.

    1988-01-01

    Agar blocks that contacted the upper sides of tips of horizontally-oriented roots of Zea mays contain significantly less calcium (Ca) than blocks that contacted the lower sides of such roots. This gravity-induced gradient of Ca forms prior to the onset of gravicurvature, and does not form across tips of vertically-oriented roots or roots of agravitropic mutants. These results indicate that (1) Ca can be collected from mucilage of graviresponding roots, (2) gravity induces a downward movement of endogenous Ca in mucilage overlying the root tip, (3) this gravity-induced gradient of Ca does not form across tips of agravitropic roots, and (4) formation of a Ca gradient is not a consequence of gravicurvature. These results are consistent with gravity-induced movement of Ca being a trigger for subsequent redistribution of growth effectors (e.g. auxin) that induce differential growth and gravicurvature.

  6. Freeze-casting: Fabrication of highly porous and hierarchical ceramic supports for energy applications

    Directory of Open Access Journals (Sweden)

    Cyril Gaudillere

    2016-03-01

    The aim of this paper is to give an overview of the freeze-casting ceramic shaping method and to show how its implementation could be useful for several energy applications where key components comprise a porous scaffold. A detailed presentation of the freeze-casting process and of the characteristics of the resulting porous parts is firstly given. The characteristic of freeze-cast parts and the drawbacks of conventional porous scaffolds existing in energy applications are drawn in order to highlight the expected beneficial effect of this new shaping technique as possible substitute to the conventional ones. Finally, a review of the state of the art freeze-cast based energy applications developed up to now and expected to be promising is given to illustrate the large perspectives opened by the implementation of the freeze-casting of ceramics for energy fields. Here we suggest discussing about the feasibility of incorporate freeze-cast porous support in high temperature ceramic-based energy applications.

  7. Deep freezing of cattle embryos in glass ampules or French straws.

    Science.gov (United States)

    Massip, A; Van der Zwalmen, P; Ectors, F; De Coster, R; D'Ieteren, G; Hanzen, C

    1979-08-01

    Ninety four cow embryos recovered on day 7-8 after onset of oestrus were frozen by the "Two Step" freezing procedure: 49 in pyrex glass ampules and 45 in .25 ml French semen straws. The overall survival rate was 33.7% (36.2% for embryos frozen in glass ampules; 31.1% for embryos frozen in plastic straws). 45.2% of transferred embryos resulted in pregnancies (35.7% after freezing in glass ampules v.s 52.9% after freezing in plastic straws).

  8. Limited Impact of Subglacial Supercooling Freeze-on for Greenland Ice Sheet Stratigraphy

    Science.gov (United States)

    Dow, Christine F.; Karlsson, Nanna B.; Werder, Mauro A.

    2018-02-01

    Large units of disrupted radiostratigraphy (UDR) are visible in many radio-echo sounding data sets from the Greenland Ice Sheet. This study investigates whether supercooling freeze-on rates at the bed can cause the observed UDR. We use a subglacial hydrology model to calculate both freezing and melting rates at the base of the ice sheet in a distributed sheet and within basal channels. We find that while supercooling freeze-on is a phenomenon that occurs in many areas of the ice sheet, there is no discernible correlation with the occurrence of UDR. The supercooling freeze-on rates are so low that it would require tens of thousands of years with minimal downstream ice motion to form the hundreds of meters of disrupted radiostratigraphy. Overall, the melt rates at the base of the ice sheet greatly overwhelm the freeze-on rates, which has implications for mass balance calculations of Greenland ice.

  9. Freeze-drying of mononuclear cells derived from umbilical cord blood followed by colony formation.

    Directory of Open Access Journals (Sweden)

    Dity Natan

    Full Text Available BACKGROUND: We recently showed that freeze-dried cells stored for 3 years at room temperature can direct embryonic development following cloning. However, viability, as evaluated by membrane integrity of the cells after freeze-drying, was very low; and it was mainly the DNA integrity that was preserved. In the present study, we improved the cells' viability and functionality after freeze-drying. METHODOLOGY/PRINCIPAL FINDINGS: We optimized the conditions of directional freezing, i.e. interface velocity and cell concentration, and we added the antioxidant EGCG to the freezing solution. The study was performed on mononuclear cells (MNCs derived from human umbilical cord blood. After freeze-drying, we tested the viability, number of CD34(+-presenting cells and ability of the rehydrated hematopoietic stem cells to differentiate into different blood cells in culture. The viability of the MNCs after freeze-drying and rehydration with pure water was 88%-91%. The total number of CD34(+-presenting cells and the number of colonies did not change significantly when evaluated before freezing, after freeze-thawing, and after freeze-drying (5.4 x 10(4+/-4.7, 3.49 x 10(4+/-6 and 6.31 x 10(4+/-12.27 cells, respectively, and 31+/-25.15, 47+/-45.8 and 23.44+/-13.3 colonies, respectively. CONCLUSIONS: This is the first report of nucleated cells which have been dried and then rehydrated with double-distilled water remaining viable, and of hematopoietic stem cells retaining their ability to differentiate into different blood cells.

  10. Freeze-all cycle in reproductive medicine: current perspectives.

    Science.gov (United States)

    Roque, Matheus; Valle, Marcello; Kostolias, Alessandra; Sampaio, Marcos; Geber, Selmo

    2017-02-01

    The freeze-all strategy has emerged as an alternative to fresh embryo transfer (ET) during in vitro fertilization (IVF) cycles. Although fresh ET is the norm during assisted reproductive therapies (ART), there are many concerns about the possible adverse effects of controlled ovarian stimulation (COS) over the endometrium. The supra-physiologic hormonal levels that occur during a conventional COS are associated with modifications in the peri-implantation endometrium, which may be related to a decrease in pregnancy rates and poorer obstetric and perinatal outcomes when comparing fresh to frozen-thawed embryo transfers. The main objective of this study was to assess the available literature regarding the freeze-all strategy in IVF cycles, in regards to effectiveness and safety. Although there are many potential advantages in performing a freeze-all cycle over a fresh ET, it seems that the freeze-all strategy is not designed for all IVF patients. There is a need to develop a non-invasive clinical tool to evaluate the endometrial receptivity during a fresh cycle, which enables the selection of patients that would benefit from this strategy. Today, it is reasonable to perform elective cryopreservation of all oocytes/embryos in cases with a risk of OHSS development, and in patients with supra-physiologic hormonal levels during the follicular phase of COS. It is not clear if all normal responders and poor responders may benefit from this strategy.

  11. Asymptotic freeze-out of the perturbations generated inside a corrugated rarefaction wave

    International Nuclear Information System (INIS)

    Wouchuk, J.G.; Serrano Rodrigo, A.D.

    2004-01-01

    Based on previous work [J. G. Wouchuk and R. Carretero, Phys. Plasmas 10, 4237 (2003)], the conditions of asymptotic freeze-out of the ripples at the tail of a corrugated rarefaction wave are analyzed. The precise location of the freezing-out regions in the space of preshock parameters is tried, and an efficient algorithm for their determination is given. It is seen that asymptotic freeze-out can only happen for gases that have an isentropic exponent γ cr ≅2.2913hellip. It is shown that the late time freeze-out of the ripple perturbations is correlated to the initial tangential velocity profile (at t=0+) inside the expansion fan

  12. FREEZING AND THAWING TIME PREDICTION METHODS OF FOODS II: NUMARICAL METHODS

    Directory of Open Access Journals (Sweden)

    Yahya TÜLEK

    1999-03-01

    Full Text Available Freezing is one of the excellent methods for the preservation of foods. If freezing and thawing processes and frozen storage method are carried out correctly, the original characteristics of the foods can remain almost unchanged over an extended periods of time. It is very important to determine the freezing and thawing time period of the foods, as they strongly influence the both quality of food material and process productivity and the economy. For developing a simple and effectively usable mathematical model, less amount of process parameters and physical properties should be enrolled in calculations. But it is a difficult to have all of these in one prediction method. For this reason, various freezing and thawing time prediction methods were proposed in literature and research studies have been going on.

  13. Sperm preservation by freeze-drying for the conservation of wild animals.

    Directory of Open Access Journals (Sweden)

    Takehito Kaneko

    Full Text Available Sperm preservation is a useful technique for the maintenance of biological resources in experimental and domestic animals, and in wild animals. A new preservation method has been developed that enables sperm to be stored for a long time in a refrigerator at 4 °C. Sperm are freeze-dried in a solution containing 10 mM Tris and 1 mM EDTA. Using this method, liquid nitrogen is not required for the storage and transportation of sperm. We demonstrate that chimpanzee, giraffe, jaguar, weasel and the long-haired rat sperm remain viable after freeze-drying. In all species, pronuclei were formed after the injection of freeze-dried sperm into the mouse oocytes. Although preliminary, these results may be useful for the future establishment of "freeze-drying zoo" to conserve wild animals.

  14. Freezing and refrigerated storage in fisheries

    National Research Council Canada - National Science Library

    Johnston, W. A

    1994-01-01

    ...; the factors affecting cold storage conditions, etc. In addition, the publication describes the methods used to calculate cold storage refrigeration loads as well as the costs of freezing and cold storage...

  15. 9 CFR 381.66 - Temperatures and chilling and freezing procedures.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Temperatures and chilling and freezing procedures. 381.66 Section 381.66 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT... Procedures § 381.66 Temperatures and chilling and freezing procedures. (a) General. Temperatures and...

  16. Study on irradiaiton of freezing-dried Wuchang fish

    International Nuclear Information System (INIS)

    Chen Xueling; Cheng Wei; Xiong Guangquan; Ye Lixiu; Chen Yuxia; Guan Jian; He Jianjun

    2008-01-01

    The effects of irradiation on sterilization and storage time for the freezing-dried Wuchang fish were studied. The results show that the number of the coliform group in freezing-dried Wuchang fish irradiated at 1kGy can be acceptable according to the national industrial standard and the number of bacteria decrease from 3100cfu/g to <10cfu/g after irradiation. With the optimal irradiation dose 1kGy the shelf life of Wuchang fish can be extended over one year. (authors)

  17. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Science.gov (United States)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  18. Social Freezing in Medical Practice. Experiences and Attitudes of Gynecologists in Germany.

    Science.gov (United States)

    Schochow, Maximilian; Rubeis, Giovanni; Büchner-Mögling, Grit; Fries, Hansjakob; Steger, Florian

    2017-09-09

    Surveys of the German public have revealed a high acceptance of social freezing, i.e. oocyte conservation without medical indication. Up to now, there are no investigations available on the experiences and attitudes of health professionals towards social freezing. Between August 2015 and January 2016, we surveyed gynecologists Germany-wide on the topic social freezing. Five gynecologists specialized in reproductive medicine and five office-based gynecologists in standard care were chosen for the survey. The survey was conducted with an explorative, qualitative research design. The demand for social freezing in Germany is low. With regard to their fertility age, most women attend consultations too late, they have only little previous knowledge and false expectations. The gynecologists consider it the duty of society and politics to provide for the compatibility of family and work. They relate late parenthood to disadvantages primarily for the children. A majority of the gynecologists interviewed tend to advise natural reproduction. Social freezing is often mistaken as a kind of fertility insurance. Thus, it is necessary that physicians inform women early about the possibilities and limitations of social freezing. In the first place, social freezing is not a medical or medical-ethical topic. Women consider the method as a possibility to ensure the compatibility of family and work. This compatibility should be mostly perceived as a political topic. It cannot be a medical task to solve this issue. In fact, a debate in society as a whole is necessary that includes all relevant actors.

  19. Fabrication of polystyrene porous films with gradient pore structures

    International Nuclear Information System (INIS)

    Yan Hongwei; Zhang Lin; Li Bo; Yin Qiang

    2010-01-01

    Silica opals and multilayer heterostructures were fabricated by vertical deposition technique. Polystyrene inverse opals and gradient porous structures were obtained by colloidal templating, in order to control the pore microstructure of polymer porous materials. As shown in the scanning electron microscopy images, the polystyrene porous structures are precise replicas of inverse structures of the original templates. After being infiltrated with the polystyrene, the photonic stop-band position of the opal composite is redshifted compared with the original template, and it is blueshifted after the opal template being removed. The filling ratio of polystyrene was calculated according to the Bragg formula. (authors)

  20. High efficiency polymer solar cells with vertically modulated nanoscale morphology

    International Nuclear Information System (INIS)

    Kumar, Ankit; Hong Ziruo; Yang Yang; Li Gang

    2009-01-01

    Nanoscale morphology has been shown to be a critical parameter governing charge transport properties of polymer bulk heterojunction (BHJ) solar cells. Recent results on vertical phase separation have intensified the research on 3D morphology control. In this paper, we intend to modify the distribution of donors and acceptors in a classical BHJ polymer solar cell by making the active layer richer in donors and acceptors near the anode and cathode respectively. Here, we chose [6,6]-phenyl- C 61 -butyric acid methyl ester (PCBM) to be the acceptor material to be thermally deposited on top of [poly(3-hexylthiophene)] P3HT: the PCBM active layer to achieve a vertical composition gradient in the BHJ structure. Here we report on a solar cell with enhanced power conversion efficiency of 4.5% which can be directly correlated with the decrease in series resistance of the device.

  1. Application of two electrical methods for the rapid assessment of freezing resistance in Salix epichloro

    Energy Technology Data Exchange (ETDEWEB)

    Tsarouhas, V.; Kenney, W.A.; Zsuffa, L. [University of Toronto, Ontario (Canada). Faculty of Forestry

    2000-09-01

    The importance of early selection of frost-resistant Salix clones makes it desirable to select a rapid and accurate screening method for assessing freezing resistance among several genotypes. Two electrical methods, stem electrical impedance to 1 and 10 khz alternating current, and electrolyte leakage of leaf tissue, were evaluated for detecting freezing resistance on three North America Salix epichloro Michx., clones after subjecting them to five different freezing temperatures (-1, -2, -3, -4, and -5 deg C). Differences in the electrical impedance to 1 and 10 kHz, and the ratio of the impedance at the two frequencies (low/high) before and after the freezing treatment (DZ{sub low}, DZ{sub high}, and DZ{sub ratio}, respectively) were estimated. Electrolyte leakage was expressed as relative conductivity (RC{sub t}) and index of injury (IDX{sub t}). Results from the two methods, obtained two days after the freezing stress, showed that both electrical methods were able to detect freezing injury in S. eriocephala. However, the electrolyte leakage method detected injury in more levels of freezing stress (-3, -4, and -5 deg C) than the impedance (-4, and -5 deg C), it assessed clonal differences in S. eriocephala freezing resistance, and it was best suited to correlate electrical methods with the visual assessed freezing injury. No significant impedance or leakage changes were found after the -1 and -2 deg C freezing temperatures. (author)

  2. Distribution of pines in the Iberian Peninsula agrees with species differences in foliage frost tolerance, not with vulnerability to freezing-induced xylem embolism.

    Science.gov (United States)

    Fernández-Pérez, Laura; Villar-Salvador, Pedro; Martínez-Vilalta, Jordi; Toca, Andrei; Zavala, Miguel A

    2018-04-01

    Drought and frosts are major determinants of plant functioning and distribution. Both stresses can cause xylem embolism and foliage damage. The objective of this study was to analyse if the distribution of six common pine species along latitudinal and altitudinal gradients in Europe is related to their interspecific differences in frost tolerance and to the physiological mechanisms underlying species-specific frost tolerance. We also evaluate if frost tolerance depends on plant water status. We studied survival to a range of freezing temperatures in 2-year-old plants and assessed the percentage loss of hydraulic conductivity (PLC) due xylem embolism formation and foliage damage determined by needle electrolyte leakage (EL) after a single frost cycle to -15 °C and over a range of predawn water potential (ψpd) values. Species experiencing cold winters in their range (Pinus nigra J.F. Arnold, Pinus sylvestris L. and Pinus uncinata Raymond ex A. DC.) had the highest frost survival rates and lowest needle EL and soluble sugar (SS) concentration. In contrast, the pines inhabiting mild or cool winter locations (especially Pinus halepensis Mill. and Pinus pinea L. and, to a lesser extent, Pinus pinaster Ait.) had the lowest frost survival and highest needle EL and SS values. Freezing-induced PLC was very low and differences among species were not related to frost damage. Reduction in ψpd decreased leaf frost damage in P. pinea and P. sylvestris, increased it in P. uncinata and had a neutral effect on the rest of the species. This study demonstrates that freezing temperatures are a major environmental driver for pine distribution and suggests that interspecific differences in leaf frost sensitivity rather than vulnerability to freezing-induced embolism or SS explain pine juvenile frost survival.

  3. Hydraulic conductivity of compacted clay frozen and thawed in situ

    International Nuclear Information System (INIS)

    Benson, C.H.; Othman, M.A.

    1993-01-01

    A large specimen of compacted clay (diameter = 298 mm; thickness = 914 mm) was subjected to freeze-thaw in the field for 60 days. Afterward, the hydraulic conductivity was measured. The hydraulic conductivity of the entire specimen remained essentially unchanged, but increases in hydraulic conductivity of 1.5-2 orders of magnitude were observed above the freezing plane. The increase in hydraulic conductivity was highest at the top of the specimen and decreased with depth. Changes in hydraulic conductivity also occurred at depths 150 mm below the freezing plane, where desiccation occurred because of water redistribution. Numerous horizontal and vertical cracks formed in the soil mass. Dissection of the sample after permeation revealed that the cracks were laden with water. Cracking was greatest at the surface and became less frequent with depth. For depths greater than 150 mm below the freezing plane, cracking was absent. The frequency of cracks is consistent with principles of mechanistic models of soil freezing. The results of laboratory tests were used to predict the hydraulic conductivity of the large specimen. Tests were conducted on specimens subjected to various freeze-thaw cycles, temperature gradients, and states of stress. It was found that the predicted hydraulic conductivities were lower than those measured on the large specimen, but they closely resembled the trend in hydraulic conductivity with depth

  4. Effect of freeze-thaw cycles on greenhouse gas fluxes from peat soils

    Science.gov (United States)

    Oh, H. D.; Rezanezhad, F.; Markelov, I.; McCarter, C. P. R.; Van Cappellen, P.

    2017-12-01

    The ongoing displacement of climate zones by global warming is increasing the frequency and intensity of freeze-thaw cycles in middle and high latitude regions, many of which are dominated by organic soils such as peat. Repeated freezing and thawing of soils changes their physical properties, geochemistry, and microbial community structure, which together govern the biogeochemical cycling of carbon and nutrients. In this presentation, we focus on how freeze-thaw cycles influence greenhouse gas fluxes from peat using a newly developed experimental soil column system that simulates realistic soil temperature profiles during freeze-thaw cycles. We measured the surface and subsurface changes to gas and aqueous phase chemistry to delineate the diffusion pathways and quantify soil greenhouse gas fluxes during freeze-thaw cycles using sulfur hexafluoride (SF6) as a conservative tracer. Three peat columns were assembled inside a temperature controlled chamber with different soil structures. All three columns were packed with 40 cm of undisturbed, slightly decomposed peat, where the soil of two columns had an additional 10 cm layer on top (one with loose Sphagnum moss and one with an impermeable plug). The results indicate that the release of SF6 and CO2 gas from the soil surface was influenced by the recurrent development of a physical ice barrier, which prevented gas exchange between the soil and atmosphere during freezing conditions. With the onset of thawing a pulse of SF6 and CO2 occurred, resulting in a flux of 3.24 and 2095.52 µmol/m2h, respectively, due to the build-up of gases in the liquid-phase pore space during freezing. Additionally, we developed a model to determine the specific diffusion coefficients for each peat column. These data allow us to better predict how increased frequency and intensity of freeze-thaw cycles will affect greenhouse gas emissions in northern peat soils.

  5. Prediction of frozen food properties during freezing using product composition.

    Science.gov (United States)

    Boonsupthip, W; Heldman, D R

    2007-06-01

    Frozen water fraction (FWF), as a function of temperature, is an important parameter for use in the design of food freezing processes. An FWF-prediction model, based on concentrations and molecular weights of specific product components, has been developed. Published food composition data were used to determine the identity and composition of key components. The model proposed in this investigation had been verified using published experimental FWF data and initial freezing temperature data, and by comparison to outputs from previously published models. It was found that specific food components with significant influence on freezing temperature depression of food products included low molecular weight water-soluble compounds with molality of 50 micromol per 100 g food or higher. Based on an analysis of 200 high-moisture food products, nearly 45% of the experimental initial freezing temperature data were within an absolute difference (AD) of +/- 0.15 degrees C and standard error (SE) of +/- 0.65 degrees C when compared to values predicted by the proposed model. The predicted relationship between temperature and FWF for all analyzed food products provided close agreements with experimental data (+/- 0.06 SE). The proposed model provided similar prediction capability for high- and intermediate-moisture food products. In addition, the proposed model provided statistically better prediction of initial freezing temperature and FWF than previous published models.

  6. Effec t of Freeze-Thaw Cycles on Lipid Oxidation and Myowater in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    S Ali

    2016-03-01

    Full Text Available ABSTRACT The present study was carried out to investigate the influence of freezing-thawing cycles (0, 2, 4 and 6 on lipid oxidation and myowater contents and distribution. Nine replicates of chicken breast meat samples were used for each cycle. Lipid oxidation was determined by measuring peroxide value, and malondialdehyde (MDA concentrations, which reflect thiobarbituric acid reactive substance (TBARS. Color was determined with a digital colorimeter. Muscle moisture contents were determined by drip loss and thawing loss, water holding capacity, and nuclear magnetic resonance (NMR. The results showed that, as the number of freeze-thaw cycles increased, meat redness decreased and MDA and peroxide values increased. Drip loss and thawing loss tended to decreasing as the number of freeze-thaw cycles increased. Water holding capacity also decreased as a function of increasing freeze-thaw cycles. NMR relaxometry profile showed freeze-thaw cycles change the water distribution of meat subjected to multiple freeze-thaw cycles. In conclusion, multiple freezing and thawing rate (6 cycles increased lipid oxidation, decreased myowater, and impaired the color of chicken meat.

  7. Regional Quasi-Three-Dimensional Unsaturated-Saturated Water Flow Model Based on a Vertical-Horizontal Splitting Concept

    Directory of Open Access Journals (Sweden)

    Yan Zhu

    2016-05-01

    Full Text Available Due to the high nonlinearity of the three-dimensional (3-D unsaturated-saturated water flow equation, using a fully 3-D numerical model is computationally expensive for large scale applications. A new unsaturated-saturated water flow model is developed in this paper based on the vertical/horizontal splitting (VHS concept to split the 3-D unsaturated-saturated Richards’ equation into a two-dimensional (2-D horizontal equation and a one-dimensional (1-D vertical equation. The horizontal plane of average head gradient in the triangular prism element is derived to split the 3-D equation into the 2-D equation. The lateral flow in the horizontal plane of average head gradient represented by the 2-D equation is then calculated by the water balance method. The 1-D vertical equation is discretized by the finite difference method. The two equations are solved simultaneously by coupling them into a unified nonlinear system with a single matrix. Three synthetic cases are used to evaluate the developed model code by comparing the modeling results with those of Hydrus1D, SWMS2D and FEFLOW. We further apply the model to regional-scale modeling to simulate groundwater table fluctuations for assessing the model applicability in complex conditions. The proposed modeling method is found to be accurate with respect to measurements.

  8. Lesions causing freezing of gait localize to a cerebellar functional network

    Science.gov (United States)

    Fasano, Alfonso; Laganiere, Simon E.; Lam, Susy; Fox, Michael D.

    2016-01-01

    Objective Freezing of gait is a disabling symptom in Parkinson’s disease and related disorders, but the brain regions involved in symptom generation remain unclear. Here we analyze brain lesions causing acute onset freezing of gait to identify regions causally involved in symptom generation. Methods Fourteen cases of lesion-induced freezing of gait were identified from the literature and lesions were mapped to a common brain atlas. Because lesion-induced symptoms can come from sites connected to the lesion location, not just the lesion location itself, we also identified brain regions functionally connected to each lesion location. This technique, termed lesion network mapping, has been recently shown to identify regions involved in symptom generation across a variety of lesion-induced disorders. Results Lesion location was heterogeneous and no single region could be considered necessary for symptom generation. However, over 90% (13/14) of lesions were functionally connected to a focal area in the dorsal medial cerebellum. This cerebellar area overlapped previously recognized regions that are activated by locomotor tasks, termed the cerebellar locomotor region. Connectivity to this region was specific to lesions causing freezing of gait compared to lesions causing other movement disorders (hemichorea or asterixis). Interpretation Lesions causing freezing of gait are located within a common functional network characterized by connectivity to the cerebellar locomotor region. These results based on causal brain lesions complement prior neuroimaging studies in Parkinson’s disease patients, advancing our understanding of the brain regions involved in freezing of gait. PMID:28009063

  9. Running out of time: exploring women's motivations for social egg freezing.

    Science.gov (United States)

    Baldwin, Kylie; Culley, Lorraine; Hudson, Nicky; Mitchell, Helene

    2018-04-12

    Few qualitative studies have explored women's use of social egg freezing. Derived from an interview study of 31 participants, this article explores the motivations of women using this technology. Semi-structured interviews were conducted with 31 users of social egg freezing resident in UK (n = 23), USA (n = 7) and Norway (n = 1). Interviews were face to face (n = 16), through Skype and Facetime (n = 9) or by telephone (n = 6). Data were analyzed using interpretive thematic analysis. Women's use of egg freezing was shaped by fears of running out of time to form a conventional family, difficulties in finding a partner and concerns about "panic partnering", together with a desire to avoid future regrets and blame. For some women, use of egg freezing was influenced by recent fertility or health diagnoses as well as critical life events. A fifth of the participants also disclosed an underlying fertility or health issue as affecting their decision. The study provides new insights in to the complex motivations women have for banking eggs. It identifies how women's use of egg freezing was an attempt to "preserve fertility" in the absence of the particular set of "life conditions" they regarded as crucial for pursuing parenthood. It also demonstrates that few women were motivated by a desire to enhance their career and that the boundaries between egg freezing for medical and for social reasons may be more porous than first anticipated.

  10. Effect of food additives on egg yolk gelation induced by freezing.

    Science.gov (United States)

    Primacella, Monica; Fei, Tao; Acevedo, Nuria; Wang, Tong

    2018-10-15

    This study demonstrates technological advances in preventing yolk gelation during freezing and thawing. Gelation negatively affects yolk functionality in food formulation. Preventing gelation using 10% salt or sugar limits the application of the yolk. Novel food additives were tested to prevent gelation induced by freezing. Significant reduction (p freezing at -20 °C) indicates that hydrolyzed carboxymethyl cellulose (HCMC), proline, and hydrolyzed egg white and yolk (HEW and HEY) are effective gelation inhibitors. The mechanisms in which these additives prevented gelation were further studied through measuring the changes in the amount of freezable water, lipoprotein particle size, and protein surface hydrophobicity. Overall, this study provides several alternatives of gelation inhibitor that have great potentials in replacing the use of salt or sugar in commercial operation of freezing egg yolk for shelf-life extension. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Infant attachment predicts bodily freezing in adolescence: evidence from a prospective longitudinal study

    Directory of Open Access Journals (Sweden)

    Hannah C. M. Niermann

    2015-10-01

    Full Text Available Early life-stress, particularly maternal deprivation, is associated with long-lasting deviations in animals’ freezing responses. Given the relevance of freezing for stress-coping, translational research is needed to examine the relation between insecure infant-parent attachment and bodily freezing-like behavior in humans. Therefore, we investigated threat-related reductions in body sway (indicative of freezing-like behavior in 14-year-old adolescents (N=79, for whom attachment security was earlier assessed in infancy. As expected, insecure (versus secure attachment was associated with less body sway for angry versus neutral faces. This effect remained when controlling for intermediate life-events. These results suggest that the long-lasting effects of early negative caregiving experiences on the human stress and threat systems extend to the primary defensive reaction of freezing. Additionally, we replicated earlier work in adults, by observing a significant correlation (in adolescents assessed as securely attached between subjective state anxiety and reduced body sway in response to angry versus neutral faces. Together, this research opens venues to start exploring the role of freezing in the development of human psychopathology.

  12. Local relative density modulates failure and strength in vertically aligned carbon nanotubes.

    Science.gov (United States)

    Pathak, Siddhartha; Mohan, Nisha; Decolvenaere, Elizabeth; Needleman, Alan; Bedewy, Mostafa; Hart, A John; Greer, Julia R

    2013-10-22

    Micromechanical experiments, image analysis, and theoretical modeling revealed that local failure events and compressive stresses of vertically aligned carbon nanotubes (VACNTs) were uniquely linked to relative density gradients. Edge detection analysis of systematically obtained scanning electron micrographs was used to quantify a microstructural figure-of-merit related to relative local density along VACNT heights. Sequential bottom-to-top buckling and hardening in stress-strain response were observed in samples with smaller relative density at the bottom. When density gradient was insubstantial or reversed, bottom regions always buckled last, and a flat stress plateau was obtained. These findings were consistent with predictions of a 2D material model based on a viscoplastic solid with plastic non-normality and a hardening-softening-hardening plastic flow relation. The hardening slope in compression generated by the model was directly related to the stiffness gradient along the sample height, and hence to the local relative density. These results demonstrate that a microstructural figure-of-merit, the effective relative density, can be used to quantify and predict the mechanical response.

  13. Reduced freezing in posttraumatic stress disorder patients while watching affective pictures

    NARCIS (Netherlands)

    Fragkaki, Iro; Roelofs, Karin; Stins, John; Jongedijk, Ruud A.; Hagenaars, Muriel A.

    2017-01-01

    Besides fight and flight responses, animals and humans may respond to threat with freezing, a response characterized by bradycardia and physical immobility. Risk assessment is proposed to be enhanced during freezing to promote optimal decision making. Indeed, healthy participants showed

  14. Reduced freezing in posttraumatic stress disorder patients while watching affective pictures

    NARCIS (Netherlands)

    Fragkaki, Iro; Roelofs, Karin; Stins, John; Jongedijk, Ruud A.; Hagenaars, Muriel A.

    Besides fight and flight responses, animals and humans may respond to threat with freezing, a response characterized by bradycardia and physical immobility. Risk assessment is proposed to be enhanced during freezing to promote optimal decision making. Indeed, healthy participants showed

  15. Cortical correlates of susceptibility to upper limb freezing in Parkinson's disease

    NARCIS (Netherlands)

    Scholten, M.; Govindan, R.B.; Braun, C.; Bloem, B.R.; Plewnia, C.; Kruger, R.; Gharabaghi, A.; Weiss, D.

    2016-01-01

    OBJECTIVE: Freezing behavior is an unmet symptom in Parkinson's disease (PD), which reflects its complex pathophysiology. Freezing behavior can emerge when attentional capacity is reduced, i.e. under dual task interference. In this study, we characterized the cortical network signatures underlying

  16. The freezing point of raw and heat treated sheep milk and its variation during lactation

    Directory of Open Access Journals (Sweden)

    Bohumíra Janštová

    2013-01-01

    Full Text Available The freezing point of milk is an important indicator of the adulteration of the milk with water, but heat treatment may also affect its value. The aim of this study was determine freezing point of raw and heat treated sheep milk and its variation during lactation. The freezing point was determined in 42 bulk tank raw sheep milk samples and 42 pasteurized milk samples collected during lactation of sheep at one ecofarm in Moravian Walachia (Valašsko in the Czech Republic. The freezing point was determined in accordance with the standard ČSN 57 0538 using a thermistor cryoscope. The average freezing point of raw milk was -0.617 ± 0.052 °C, with a range from -0.560 to -0.875 °C. The freezing point was lower in the first months of lactation and increased at the end of lactation. The freezing point correlated (r = 0.8967 with the content of total non-fat solids. The average freezing point of sheep milk pasteurized at 65 °C for 30 min was -0.614 ± 0.053 °C, with a range from -0.564 to -0.702 °C. The median of freezing point differences between raw and pasteurized milk was 0.004 °C. Our study extends data about physico-chemical properties of sheep milk and registers for the first time specific changes in the freezing point value of sheep milk by heating.

  17. Identification and control of plasma vertical position using neural network in Damavand tokamak

    International Nuclear Information System (INIS)

    Rasouli, H.; Rasouli, C.; Koohi, A.

    2013-01-01

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg–Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  18. Identification and control of plasma vertical position using neural network in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Rasouli, H. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of); Advanced Process Automation and Control (APAC) Research Group, Faculty of Electrical Engineering, K.N. Toosi University of Technology, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of); Rasouli, C.; Koohi, A. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2013-02-15

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  19. The effect of dryer load on freeze drying process design.

    Science.gov (United States)

    Patel, Sajal M; Jameel, Feroz; Pikal, Michael J

    2010-10-01

    Freeze-drying using a partial load is a common occurrence during the early manufacturing stages when insufficient amounts of active pharmaceutical ingredient (API) are available. In such cases, the immediate production needs are met by performing lyophilization with less than a full freeze dryer load. However, it is not obvious at what fractional load significant deviations from full load behavior begin. The objective of this research was to systematically study the effects of variation in product load on freeze drying behavior in laboratory, pilot and clinical scale freeze-dryers. Experiments were conducted with 5% mannitol (high heat and mass flux) and 5% sucrose (low heat and mass flux) at different product loads (100%, 50%, 10%, and 2%). Product temperature was measured in edge as well as center vials with thermocouples. Specific surface area (SSA) was measured by BET gas adsorption analysis and residual moisture was measured by Karl Fischer. In the lab scale freeze-dryer, the molar flux of inert gas was determined by direct flow measurement using a flowmeter and the molar flux of water vapor was determined by manometric temperature measurement (MTM) and tunable diode laser absorption spectroscopy (TDLAS) techniques. Comparative pressure measurement (capacitance manometer vs. Pirani) was used to determine primary drying time. For both 5% mannitol and 5% sucrose, primary drying time decreases and product temperature increases as the load on the shelves decreases. No systematic variation was observed in residual moisture and vapor composition as load decreased. Further, SSA data suggests that there are no significant freezing differences under different load conditions. Independent of dryer scale, among all the effects, variation in radiation heat transfer from the chamber walls to the product seems to be the dominant effect resulting in shorter primary drying time as the load on the shelf decreases (i.e., the fraction of edge vials increases).

  20. Effect of freezing and thawing on UMTRA covers

    International Nuclear Information System (INIS)

    Rager, R.; Smith, G.; Brody, R.

    1988-01-01

    The proposed US Environmental Protection Agency (EPA) groundwater standards (40 CFR 192) require that Uranium Mill Tailings Remedial Action (UMTRA) Project remedial action designs meet low numerical limits for contaminants contained in water or vapor exiting the embankments. To meet the standards, a cover of compacted fine-grained soil is placed over UMTRA Project embankments. One of the functions of this cover is to limit infiltration. The hydraulic conductivity of this infiltration barrier must be low in order to reduce seepage from the cell to the extent necessary to comply with the proposed EPA groundwater standards. Analyses of infiltration barriers covered with rock erosion protection show that the infiltration barriers may become saturated. Accordingly, it is necessary to assure that freezing and thawing of the infiltration barrier materials do not affect the performance of the embankment. A study has been conducted to determine if the hydraulic conductivity of fine-grained clayey soils used or proposed for use in radon/infiltration barriers is affected by repeated freezing and thawing cycles. In addition, a procedure for determining the depth of frost penetration has been developed. Laboratory freeze-thaw tests were undertaken in order to determine if the saturated hydraulic conductivity of clay soils used in UMTRA Project radon/infiltration barriers was affected. The results indicate that an increase of an order of magnitude or more in saturated hydraulic conductivity may occur during repeated freeze-thaw cycles

  1. Monte Carlo simulation of the OCP freezing transition

    International Nuclear Information System (INIS)

    DeWitt, H.E.; Slattery, W.L.; Yang, Juxing

    1992-09-01

    The One Component Plasma (OCP) in three dimensions is a system of classical point charges moving in a fixed uniform neutralizing background. In nature the OCP is a rough approximation of the conditions in a white dwarf star in which one has fully ionized nuclei such as carbon, oxygen, and smaller amounts of heavier elements up to iron all moving in a nearly uniform background provided by relativistically degenerate electrons. The OCP is also a mathematical limiting model for a non-neutral plasma of ions in a Penning trap and cooled to strongly coupled conditions. Similarly, a collection of charge colloidal suspensions in water can exhibit the Coulomb freezing behavior of the OCP. A single dimensionless parameter, Γ is sufficient to describe the system. For very weak coupling, Γ much-lt 1, the thermodynamic properties of the OCP are given rigorously by the Debye-Huckel theory. This paper reports on Monte Carlo simulation of the freezing of the OCP from a random start for particle numbers ranging from 500 to 2000. In one case the authors obtained a perfect bcc lattice, but in most cases the final state would be an imperfect crystal or two different microcrystals, fcc and bcc, growing into each other. With a cluster analysis program the authors looked at the formation of nucleating clusters, and followed the actual freezing process. Roughly 80 particles are needed in a cluster before it starts to grow rapidly and freeze

  2. Chemical freeze out condition for central heavy-ion collisions at AGS, SPS, RHIC and LHC energies

    International Nuclear Information System (INIS)

    Chatterjee, Sandeep; Mishra, Debadeepti; Mohanty, Bedangadas; Das, Sabita; Sharma, Natasha; Kumar, Lokesh; Sahoo, Raghunath

    2014-01-01

    As a result of ultrarelativistic collision between two heavy ions, a fireball is expected to form that rapidly thermalized as it expands and hence cools. As the interparticle separation increases the particles cease to interact. The surface of last scattering is the freeze-out surface. It can be of two types: chemical freeze-out (CFO) where inelastic collisions cease and kinetic freeze-out where elastic collisions cease. But in general freeze-out can be a more complicated process in which different types of particles and reactions switch-off at different times giving rise to a series of freeze-out surfaces. Here we will discuss two CFO schemes: 1CFO, in which all hadrons freeze-out together and 2CFO, in which all strange and those with hidden strangeness freeze-out at the same surface and the other non strange hadrons freeze-out at a separate surface

  3. Elevated CO2 concentration affects vertical distribution of photosynthetic activity in Calamagrostis arundinacea (L.) Roth

    Czech Academy of Sciences Publication Activity Database

    Klem, Karel; Holub, Petr; Urban, Otmar

    2017-01-01

    Roč. 10, 1-2 (2017), s. 67-74 ISSN 1803-2451 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : chlorophyll * CO2 assimilation * elevated CO2 * concentration * transpiration * vertical gradient * water-use efficiency Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) https://beskydy.mendelu.cz/10/1/0067/

  4. Development of freeze-dried miyeokguk, Korean seaweed soup, as space food sterilized by irradiation

    International Nuclear Information System (INIS)

    Song, Beom-Seok; Park, Jin-Gyu; Kim, Jae-Hun; Choi, Jong-Il; Ahn, Dong-Hyun; Hao, Chen; Lee, Ju-Woon

    2012-01-01

    The purpose of this study was to evaluate microbial populations, Hunter's color values (L ⁎ , a ⁎ , b ⁎ ) and the sensory quality of freeze-dried miyeokguk, Korean seaweed soup, in order to use it as space food. Microorganisms were not detected in non-irradiated freeze-dried miyeokguk within the detection limit of 1.00 log CFU/g. However, the microbial population in rehydrated miyeokguk was 7.01 log CFU/g after incubation at 35 °C for 48 h, indicating that freeze-dried miyeokguk was not sterilized by heat treatment during the preparation process. Bacteria in the freeze-dried miyeokguk were tentatively identified as Bacillus cereus, B. subtilis, Enterobacter hormaechei, and Ancinetobacter genomosp. using the 16S rDNA sequencing. In samples that were gamma-irradiated above 10 kGy, it was confirmed that all microorganisms were inactivated. Hunter's color values of the samples irradiated at doses less than 10 kGy were not significantly altered from their baseline appearance (p>0.05). Sensory evaluation showed that preference scores in all sensory properties decreased when freeze-dried miyeokguk was irradiated at doses greater than 10 kGy. Therefore, the results of this study suggest that gamma irradiation at 10 kGy is sufficient to sterilize freeze-dried miyeokguk without significant deterioration in the sensory quality, and thus, the freeze-dried and irradiated miyeokguk at 10 kGy fulfills the microbiological requirements as space food. - Highlights: ► 10 kGy gamma-irradiation is sufficient for sterilization of freeze-dried miyeokguk. ► Sensory quality of freeze-dried miyeokguk decreased after >10 kGy gamma irradiation. ► 10 kGy gamma-irradiation sterilizes freeze-dried miyeokguk and makes it optimal for use as space food.

  5. Structure-property-processing correlations in freeze-cast composite scaffolds.

    Science.gov (United States)

    Hunger, Philipp M; Donius, Amalie E; Wegst, Ulrike G K

    2013-05-01

    Surprisingly few reports have been published, to date, on the structure-property-processing correlations observed in freeze-cast materials directionally solidified from polymer solutions, or ceramic or metal slurries. The studies that exist focus on properties of sintered ceramics, that is materials whose structure was altered by further processing. In this contribution, we report first results on correlations observed in alumina-chitosan-gelatin composites, which were chosen as a model system to test and compare the effect of particle size and processing parameters on their mechanical properties at a specific composition. Our study reveals that highly porous (>90%) hybrid materials can be manufactured by freeze casting, through the self-assembly of a polymer and a ceramic phase that occurs during directional solidification, without the need of additional processing steps such as sintering or infiltration. It further illustrates that the properties of freeze-cast hybrid materials can independently be tailored at two levels of their structural hierarchy, allowing for the simultaneous optimization of both mechanical and structural requirements. An increase in freezing rate resulted in decreases in lamellar spacing, cell wall thickness, pore aspect ratio and cross-sectional area, as well as increases in both Young's modulus and compressive yield strength. The mechanical properties of the composite scaffolds increased with an increasing particle size. The results show that both structure and mechanical properties of the freeze-cast composites can be custom-designed and that they are thus ideally suited for a large variety of applications that require high porosity at low or medium load-bearing capacity. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Optimum Remediation Conditions of Vertical Electrokinetic-Flushing Equipment to Decontaminate a Radioactive Soil

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Yang, Byeong IL; Moon, Jei Kwon; Lee, Kune Woo

    2009-01-01

    Vertical electrokintic-flushing remediation equipment was developed for the remediation of a radioactive soil near nuclear facilities. An optimum reagent was selected to decontaminate the radioactive soil near nuclear facilities with the developed vertical electrokintic-flushing remediation equipment, and the optimum remediation conditions were established to obtain a higher remediation efficiency. Namely, acetic acid was selected as an optimum reagent due to its higher remediation efficiency. When the electrokinetic remediation and the electrokinetic-flushing remediation results were compared, the removal efficiency of 4.6% and the soil waste solution volume of 1.5 times were increased in the electrokinetic remediation. When the potential gradient within an electrokinetic soil cell was increased by two times (4.0 V/cm), the removal efficiencies of Co 2+ and Cs + were increased by about 4.3%( Co 2+ : 98.9%, Cs + : 96.7%). Also, when the reagent concentration was increased from 0.01 M to 0.05 M, the removal efficiency of Co 2+ was increased but that of Cs + was decreased. Therefore, the optimum remediation conditions were that the acetic concentration was 0.01 M ∼ 0.05 M, the potential gradient was 4 V/cm, the injection of reagent 2.4 ml/g, and the remediation period was 20 days.

  7. High ice nucleation activity located in blueberry stem bark is linked to primary freeze initiation and adaptive freezing behaviour of the bark

    Science.gov (United States)

    Kishimoto, Tadashi; Yamazaki, Hideyuki; Saruwatari, Atsushi; Murakawa, Hiroki; Sekozawa, Yoshihiko; Kuchitsu, Kazuyuki; Price, William S.; Ishikawa, Masaya

    2014-01-01

    Controlled ice nucleation is an important mechanism in cold-hardy plant tissues for avoiding excessive supercooling of the protoplasm, for inducing extracellular freezing and/or for accommodating ice crystals in specific tissues. To understand its nature, it is necessary to characterize the ice nucleation activity (INA), defined as the ability of a tissue to induce heterogeneous ice nucleation. Few studies have addressed the precise localization of INA in wintering plant tissues in respect of its function. For this purpose, we recently revised a test tube INA assay and examined INA in various tissues of over 600 species. Extremely high levels of INA (−1 to −4 °C) in two wintering blueberry cultivars of contrasting freezing tolerance were found. Their INA was much greater than in other cold-hardy species and was found to be evenly distributed along the stems of the current year's growth. Concentrations of active ice nuclei in the stem were estimated from quantitative analyses. Stem INA was localized mainly in the bark while the xylem and pith had much lower INA. Bark INA was located mostly in the cell wall fraction (cell walls and intercellular structural components). Intracellular fractions had much less INA. Some cultivar differences were identified. The results corresponded closely with the intrinsic freezing behaviour (extracellular freezing) of the bark, icicle accumulation in the bark and initial ice nucleation in the stem under dry surface conditions. Stem INA was resistant to various antimicrobial treatments. These properties and specific localization imply that high INA in blueberry stems is of intrinsic origin and contributes to the spontaneous initiation of freezing in extracellular spaces of the bark by acting as a subfreezing temperature sensor. PMID:25082142

  8. Freezing Point Determination of Water–Ionic Liquid Mixtures

    DEFF Research Database (Denmark)

    Liu, Yanrong; Meyer, Anne S.; Nie, Yi

    2017-01-01

    .841 K in thefirst system and at a water mole fraction of 0.657 and 202.565 K inthe second system. Water activities in aqueous IL solutions were predictedby COSMO-RS and COSMO-SAC and compared to water activities derivedfrom the experimentally determined freezing points. The COSMO-RS predictionswere...... closer to the experimental water activities than the COSMO-SACpredictions. The experimental results indicate that the freezing pointsof IL+H2O systems are affected by the nature of both cationsand anions. However, according to the COSMO-RS excess enthalpy predictionresults, the anions have a relatively...

  9. Model-based optimization of the primary drying step during freeze-drying

    DEFF Research Database (Denmark)

    Mortier, Séverine Thérèse F.C.; Van Bockstal, Pieter-Jan; Nopens, Ingmar

    2015-01-01

    Since large molecules are considered the key driver for growth of the pharmaceutical industry, the focus of the pharmaceutical industry is shifting from small molecules to biopharmaceuticals: around 50% of the approved biopharmaceuticals are freeze-dried products. Therefore, freeze- drying is an ...

  10. Charge-charge liquid structure factor and the freezing of alkali halides

    International Nuclear Information System (INIS)

    March, N.H.; Tosi, M.P.

    1980-10-01

    The peak height of the charge-charge liquid structure factor Ssub(QQ) in molten alkali halides is proposed as a criterion for freezing. Available data on molten alkali chlorides, when extrapolated to the freezing point suggests Ssub(QQ)sup(max) approximately 5. (author)

  11. Cod and rainbow trout as freeze-chilled meal elements

    DEFF Research Database (Denmark)

    Jensen, Louise Helene Søgaard; Nielsen, Jette; Jørgensen, Bo

    2010-01-01

    Meal elements' are elements of a meal, e.g. portions of pre-fried meat, sauces, frozen fish or pre-processed vegetables typically prepared industrially. The meal elements are distributed to professional satellite kitchens, where the staff can combine them into complete meals. Freeze......-chilling is a process consisting of freezing and frozen storage followed by thawing and chilled storage. Combining the two would enable the manufacturer to produce large quantities of frozen meal elements to be released into the chill chain according to demand. We have studied the influence of freeze...... days of chilled storage, and the corresponding time for rainbow trout was 10 days. After this period the sensory quality decreased and chemical indicators of spoilage were seen to increase. CONCLUSION: The consistent quality during storage and the high-quality shelf life are practically applicable...

  12. Energy efficiency of freezing tunnels: towards an optimal operation of compressors and air fans

    Energy Technology Data Exchange (ETDEWEB)

    Widell, Kristina Norne

    2012-07-01

    Fish is one of Norway's main exports, and can be shipped fresh, frozen or dried. This thesis examines the freezing of fish in batch tunnels and ways to increase the energy efficiency of this process. A fish freezing plant on the west coast of Norway was used as a baseline case and measurements were made of the freezing system. Different aspects of this system were simulated, mainly using MATLAB.The focus was on the compressors and the freezing tunnels of an industrial refrigeration system. The compressors and the freezing tunnel fans are the largest consumers of electricity, but they are often not operated at the highest efficiency. An analysis of the compressor operation showed that it was far from optimal, with several compressors often operating at part-load simultaneously. These were screw compressors regulated by slide valves, which provide easy capacity control, but also have low energy efficiency. The refrigeration system had several different sized compressors, and the results showed that it was possible to run the system with only one compressor at part-load operation. The total coefficient of performance was improved by as much as 29% for a low production period. A further analysis showed that installing a variable speed drive on one compressor would also improve energy efficiency and make capacity regulation straightforward.The freezing system included five batch freezing tunnels, each of which had a freezing capacity of more than 100 tonnes of pelagic fish. A typical freezing period lasted typically 20 h and decreased the fish temperature to -18?C or below. The main task was to develop a computer program that could simulate the freezing process and the refrigeration system and locate opportunities for improvement. The air velocities inside the freezing tunnel varied with location, which were pinpointed using the computational fluid dynamics software program Airpak. These velocities were used in freezing time calculations. It was shown that a guide

  13. Freeze-tolerance of Trichinella muscle larvae in experimentally infected wild boars

    DEFF Research Database (Denmark)

    Lacour, Sandrine A.; Heckmann, Aurelie; Mace, Pauline

    2013-01-01

    served as negative controls. All wild boars were sacrificed 24 wpi. Muscle samples of 70 g were stored at -21 degrees C for 19,30 and 56h, and for 1-8 weeks. Larvae were recovered by artificial digestion. Their mobilities were recorded using Saisam (R) image analysis software and their infectivities were......Freeze-tolerance of encapsulated Trichinella muscle larvae (ML) is mainly determined by Trichinella species, but is also influenced by host species, the age of the infection and the storage time and temperature of the infected meat. Moreover, the freeze-tolerance of the encapsulated species appears...... to be correlated to the development of thick capsule walls which increases with age. An extended infection period and the muscle composition in some hosts (e.g. herbivores) may provide freeze-avoiding matrices due to high carbohydrate contents. The present experiment compares freeze-tolerance of Trichinella...

  14. Prediction model for carbonation depth of concrete subjected to freezing-thawing cycles

    Science.gov (United States)

    Xiao, Qian Hui; Li, Qiang; Guan, Xiao; Xian Zou, Ying

    2018-03-01

    Through the indoor simulation test of the concrete durability under the coupling effect of freezing-thawing and carbonation, the variation regularity of concrete neutralization depth under freezing-thawing and carbonation was obtained. Based on concrete carbonation mechanism, the relationship between the air diffusion coefficient and porosity in concrete was analyzed and the calculation method of porosity in Portland cement concrete and fly ash cement concrete was investigated, considering the influence of the freezing-thawing damage on the concrete diffusion coefficient. Finally, a prediction model of carbonation depth of concrete under freezing-thawing circumstance was established. The results obtained using this prediction model agreed well with the experimental test results, and provided a theoretical reference and basis for the concrete durability analysis under multi-factor environments.

  15. Assessing storage of stability and mercury reduction of freeze-dried Pseudomonas putida within different types of lyoprotectant

    Science.gov (United States)

    Azoddein, Abdul Aziz Mohd; Nuratri, Yana; Azli, Faten Ahada Mohd; Bustary, Ahmad Bazli

    2017-12-01

    Pseudomonas putida is a potential strain in biological treatment to remove mercury contained in the effluent of petrochemical industry due to its mercury reductase enzyme that able to reduce ionic mercury to elementary mercury. Freeze-dried P. putida allows easy, inexpensive shipping, handling and high stability of the product. This study was aimed to freeze dry P. putida cells with addition of lyoprotectant. Lyoprotectant was added into the cells suspension prior to freezing. Dried P. putida obtained was then mixed with synthetic mercury. Viability of recovery P. putida after freeze dry was significantly influenced by the type of lyoprotectant. Among the lyoprotectants, tween 80/ sucrose was found to be the best lyoprotectant. Sucrose was able to recover more than 78% (6.2E+09 CFU/ml) of the original cells (7.90E+09CFU/ml) after freeze dry and able to retain 5.40E+05 viable cells after 4 weeks storage at 4 °C without vacuum. Polyethylene glycol (PEG) pre-treated freeze dried cells and broth pre-treated freeze dried cells after the freeze-dry process recovered more than 64% (5.0 E+09CFU/ml) and >0.1% (5.60E+07CFU/ml). Freeze-dried P. putida cells in PEG and broth cannot survive after 4 weeks storage. Freeze dry also does not really change the pattern of growth P. putida but extension of lag time was found 1 hour after 3 weeks of storage. Additional time was required for freeze-dried P. putida cells to recover before introducing freeze-dried cells to more complicated condition such as mercury solution. The maximum mercury reduction of PEG pre-treated freeze-dried cells after freeze dry and after storage of 3 weeks was 17.91 %. The maximum of mercury reduction of tween 80/sucrose pre-treated freeze-dried cells after freeze dry and after storage 3 weeks was 25.03%. Freeze dried P. putida was found to have lower mercury reduction compare to the fresh P. putida that has been grown in agar. Result from this study may be beneficial and useful as initial reference before

  16. The influence of ALN-Al gradient material gradient index on ballistic performance

    International Nuclear Information System (INIS)

    Wang Youcong; Liu Qiwen; Li Yao; Shen Qiang

    2013-01-01

    Ballistic performance of the gradient material is superior to laminated material, and gradient materials have different gradient types. Using ls-dyna to simulate the ballistic performance of ALN-AL gradient target plates which contain three gradient index (b = 1, b = 0.5, b = 2). Through Hopkinson bar numerical simulation to the target plate materials, we obtained the reflection stress wave and transmission stress wave state of gradient material to get the best gradient index. The internal stress state of gradient material is simulated by amplification processing of the target plate model. When the gradient index b is equal to 1, the gradient target plate is best of all.

  17. A Numerical and Experimental Investigation of the Internal Flow of a Freezing Water Droplet

    OpenAIRE

    Karlsson, Linn

    2015-01-01

    The overarching aim of this work is to study the freezing process of a single water droplet freezing on a cold surface, which is an interesting and important phenomenon with possible applications in many areas. Understanding the freezing process of a single water droplet is for example an important step when preventing unwanted icing, e.g. in the case of airplane wings and propellers, wind turbine rotor blades, and road surfaces.As a step in understanding the freezing process, the study speci...

  18. Freeze concentration of dairy products Phase 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Best, D.E.; Vasavada, K.C.

    1993-09-01

    An efficient, electrically driven freeze concentration system offers potential for substantially increasing electricity demand while providing the mature dairy industry with new products for domestic and export markets together with enhanced production efficiencies. Consumer tests indicate that dairy products manufactured from freeze-concentrated ingredients are either preferred or considered equivalent in quality to fresh milk-based products. Economic analyses indicate that this technology should be competitive with thermal evaporation processes on a commercial basis.

  19. Simulation Study on Freeze-drying Characteristics of Mashed Beef

    OpenAIRE

    Tambunan, Armansyah H; Solahudin, M; Rahajeng, Estri

    2000-01-01

    Drying characteristic of a particular product is important in analyzing the appropriateness of the drying method for the product. This is especially important for freeze drying, which is known as the most expensive drying method, asideji-om its good drying quality. The objectives of this experiment are to develop a computer simulation program using a retreating drying-frontmodel for predicting freeze drying characteristics of mashed nteat, especially for the influence of sublimation temperatu...

  20. Hybrid permanent magnet gradient dipoles for the recycler ring at Fermilab

    International Nuclear Information System (INIS)

    Brown, B.C.; Dimarco, J.; Foster, G.W.; Glass, H.D.; Haggard, J.E.; Harding, D.J.; Jackson, G.R.; May, M.R.; Nicol, T.H.; Ostiguy, J.-F.; Schlabach, R.; Volk, J.T.

    1997-11-01

    Hybrid permanent magnets provide the magnetic fields for an anti- proton storage ring which is under construction at Fermilab. Using a combined function lattice, gradient magnets provide the bending, focusing and sextupole correction for the regular cells. Shorter magnets without sextupole are used in dispersion suppressor cells. These magnets use a 4.7 m ( 3 m) long iron shell for flux return, bricks of 25.4 mm thick strontium ferrite supply the flux and transversely tapered iron poles separated by aluminum spacers set the shape of the magnetic field. Central fields of 0.14 T with gradients of ∼6%/inch (∼13%/inch) are required. Field errors are expected to be less than 10 -4 of the bend field over an aperture of ±40 mm (horizontal) x ±20 mm (vertical). Design, procurement, fabrication, pole potential adjustment, field shape trimming and measured fields will be reported

  1. Sintering of a freeze-dried 10 mol% Y2O3-stabilized zirconia

    International Nuclear Information System (INIS)

    Rakotoson, A.; Paulus, M.

    1983-01-01

    After presenting the results of freeze drying a sulfate solution, the authors describe a preparation process in which the freeze-drying technique by addition of a suspension of stabilized zirconia in the liquid solution before freeze-drying. This process breaks the polymeric chains, increases the green density of the compact, and decreases the sintering temperature. The mechanisms involved are discussed

  2. The impact of heavy metal pollution gradients in sediments on benthic macrofauna at population and community levels

    International Nuclear Information System (INIS)

    Ryu, Jongseong; Khim, Jong Seong; Kang, Seong-Gil; Kang, Daeseok; Lee, Chang-hee; Koh, Chul-hwan

    2011-01-01

    The effect of sediment pollution on benthos was investigated in the vicinity of a large sewage treatment outflow at Incheon North Harbor, Korea. Animal size, vertical distribution and standard community parameters were analyzed along a 3 km transect line (n = 7). Univariate parameters showed a general trend of increasing species diversity with increasing distance from the pollution source. Multi-dimensional scaling analysis led to the clear separation of 3 locational groups, supporting gradient-dependent faunal composition. The innermost location was dominated by small sub-surface dwellers while the outer locations by large mid to deep burrowers. Looking for the size-frequency distribution, most abundance species (Heteromastus filiformis) showed the presence of larger size animals with increasing proximity to the pollution source. Meanwhile, species-specific vertical distributions, regardless of the pollution gradient, indicated that such shifts were due to species replacement resulting from a higher tolerance to pollutants over some species. - Highlights: → Hypotheses on benthic responses to sediment pollution were tested. → Decrease of species diversity with the proximity to the pollution source. → Shift of vertical distribution along the transect line attributes to species replacement. → Larger-size species occurred distant from the pollution source. → Larger individuals of Heteromastus filiformis occurred closer to the pollution source. - Community and population level response to the polluted environment of the harbor reflected an integration effect, together with biological interactions.

  3. Freeze-dried spermatozoa: An alternative biobanking option for endangered species.

    Science.gov (United States)

    Anzalone, Debora Agata; Palazzese, Luca; Iuso, Domenico; Martino, Giuseppe; Loi, Pasqualino

    2018-03-01

    In addition to the iconic wild species, such as the pandas and Siberian tigers, an ever-increasing number of domestic species are also threatened with extinction. Biobanking of spermatozoa could preserve genetic heritages of extinct species, and maintain biodiversity of existing species. Because lyophilized spermatozoa retain fertilizing capacity, the aim was to assess whether freeze-dried spermatozoa are an alternative option to save endangered sheep breeds. To achieve this objective, semen was collected from an Italian endangered sheep breed (Pagliarola), and a biobank of cryopreserved and freeze-dried spermatozoa was established, and evaluated using IVF (for frozen spermatozoa) and ICSI procedures (for frozen and freeze-dried spermatozoa). As expected, the fertilizing capacity of cryopreserved Pagliarola's spermatozoa was comparable to commercial semen stocks. To evaluate the activating capability of freeze-dried spermatozoa, 108 MII sheep oocytes were subjected to ICSI, and allocated to two groups: 56 oocytes were activated by incubation with ionomycin (ICSI-FDSa) and 52 were not activated (ICSI-FDSna). Pronuclear formation (2PN) was investigated at 14-16 h after ICSI in fixed presumptive zygotes. Only artificially activated oocytes developed into blastocysts after ICSI. In the present study, freeze-dried ram spermatozoa induced blastocyst development following ICSI at a relatively high proportion, providing evidence that sperm lyophilization is an alternative, low cost storage option for biodiversity preservation of domestic species. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers.

    Science.gov (United States)

    Pittermann, Jarmila; Sperry, John

    2003-09-01

    We tested the hypotheses that freezing-induced embolism is related to conduit diameter, and that conifers and angiosperms with conduits of equivalent diameter will exhibit similar losses of hydraulic conductivity in response to freezing. We surveyed the freeze-thaw response of conifers with a broad range of tracheid diameters by subjecting wood segments (root, stem and trunk wood) to a freeze-thaw cycle at -0.5 MPa in a centrifuge. Embolism increased as mean tracheid diameter exceeded 30 microm. Tracheids with a critical diameter greater than 43 microm were calculated to embolize in response to freezing and thawing at a xylem pressure of -0.5 MPa. To confirm that freezing-induced embolism is a function of conduit air content, we air-saturated stems of Abies lasiocarpa (Hook.) Nutt. (mean conduit diameter 13.7 +/- 0.7 microm) by pressurizing them 1 to 60 times above atmospheric pressure, prior to freezing and thawing. The air saturation method simulated the effect of increased tracheid size because the degree of super-saturation is proportional to a tracheid volume holding an equivalent amount of dissolved air at ambient pressure. Embolism increased when the dissolved air content was equivalent to a mean tracheid diameter of 30 microm at ambient air pressure. Our centrifuge and air-saturation data show that conifers are as vulnerable to freeze-thaw embolism as angiosperms with equal conduit diameter. We suggest that the hydraulic conductivity of conifer wood is maximized by increasing tracheid diameters in locations where freezing is rare. Conversely, the narrowing of tracheid diameters protects against freezing-induced embolism in cold climates.

  5. INFLUENCE OF THE FREEZING PROCESS ON NATIONAL QUALITY FLOUR PRODUCTS (OSSETIAN PIES

    Directory of Open Access Journals (Sweden)

    I. U. Kusova

    2014-01-01

    Full Text Available Summary. Satisfying the taste preferences of the main engine of people food. Abundance and diversity of varieties of products provided by the manufacturer to the consumer market, is a consequence of the increasing diversity of taste preferences. Along with the expansion of the range of bakery products, improve the quality and nutritional value, the main task is to preserve the manufacturers of products in a fresh state. To preserve freshness, extend shelf life without deterioration of organoleptic properties of bakery products is the most appropriate way to freeze them. This article determines the dynamics of the freezing process, depending on the kind of filling and semi-finished (raw blanks, blanks after proofing, baking blanks after partial or fully finished products and the relationship with the quality of products. The highest quality of frozen semi-finished products is achieved when subjected to freeze after partial baking the preform (50 % availability. The article shows that the freezing of products with filling blanks based on a change in his cheese lipid fractions decreased total lipid content due to their partial migration in the test portion of the blank, and there is some increase of peroxide and acid number. Similar changes occur during freezing most of the filling. In the case of freezing of products subjected to partial baking, lipid changes are less significant.

  6. Open Zinc Freezing-Point Cell Assembly and Evaluation

    Science.gov (United States)

    Žužek, V.; Batagelj, V.; Drnovšek, J.; Bojkovski, J.

    2014-07-01

    An open metal freezing-point cell design has been developed in the Laboratory of Metrology and Quality. According to our design, a zinc cell was successfully assembled. The paper presents the needed parts for the cell, the cleaning process, and sealing of the cell. The assembled cell was then evaluated by comparison with two commercial closed zinc cells of different manufacturers. The freezing plateaus of the cells were measured, and a direct cell comparison was made. It was shown that the assembled open cell performed better than the used closed cell and was close to the brand new closed cell. The nominal purity of the zinc used for the open cell was 7 N, but the freezing plateau measurement suggests a higher impurity concentration. It was assumed that the zinc was contaminated to some extent during the process of cutting as its original shape was an irregular cylinder. The uncertainty due to impurities for the assembled cell is estimated to be 0.3 mK. Furthermore, the immersion profile and the pressure coefficient were measured. Both results are close to their theoretical values.

  7. Immersion freezing of ice nucleation active protein complexes

    Directory of Open Access Journals (Sweden)

    S. Hartmann

    2013-06-01

    Full Text Available Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS, the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between −5 °C to −38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about −6 °C to about −10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice

  8. Mechanical properties and deformation mechanism of Mg-Al-Zn alloy with gradient microstructure in grain size and orientation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liu; Yuan, Fuping; Jiang, Ping; Xie, Jijia; Wu, Xiaolei, E-mail: xlwu@imech.ac.cn

    2017-05-10

    The surface mechanical attrition treatment was taken to fabricate the gradient structure in AZ31 magnesium alloy sheet. Microstructural investigations demonstrate the formation of dual gradients with respect to grain size and orientation, where the microstructural sizes decreased from several microns to about 200 nm from center area to treated surface, while the c-axis gradually inclined from being vertical to treated plane towards parallel with it. According to tensile results, the gradient structured sample has yield strength of 305 MPa in average, which is increased by about 4 times when compared with its coarse-grained counterpart. Meanwhile, contrary to quickly failure after necking in most traditional magnesium alloys, the failure process of gradient structure appears more gently, which makes it has 6.5% uniform elongation but 11.5% total elongation. The further comparative tensile tests for separated gradient layers and corresponding cores demonstrate that the gradient structured sample has higher elongation either in uniform or in post-uniform stages. In order to elucidate the relationship between mechanical properties and deformation mechanisms for this dual gradient structure, the repeated stress relaxation tests and pole figure examinations via X-ray diffraction were conducted in constituent gradient layer and corresponding core, as well as gradient structured sample. The results show that the pyramidal dislocations in dual gradient structure are activated through the whole thickness of sample. Together with the contribution of grain-size gradient, more dislocations are activated in dual gradient structure under tensile loading, which results in stronger strain hardening and hence higher tensile ductility.

  9. Mechanical properties and deformation mechanism of Mg-Al-Zn alloy with gradient microstructure in grain size and orientation

    International Nuclear Information System (INIS)

    Chen, Liu; Yuan, Fuping; Jiang, Ping; Xie, Jijia; Wu, Xiaolei

    2017-01-01

    The surface mechanical attrition treatment was taken to fabricate the gradient structure in AZ31 magnesium alloy sheet. Microstructural investigations demonstrate the formation of dual gradients with respect to grain size and orientation, where the microstructural sizes decreased from several microns to about 200 nm from center area to treated surface, while the c-axis gradually inclined from being vertical to treated plane towards parallel with it. According to tensile results, the gradient structured sample has yield strength of 305 MPa in average, which is increased by about 4 times when compared with its coarse-grained counterpart. Meanwhile, contrary to quickly failure after necking in most traditional magnesium alloys, the failure process of gradient structure appears more gently, which makes it has 6.5% uniform elongation but 11.5% total elongation. The further comparative tensile tests for separated gradient layers and corresponding cores demonstrate that the gradient structured sample has higher elongation either in uniform or in post-uniform stages. In order to elucidate the relationship between mechanical properties and deformation mechanisms for this dual gradient structure, the repeated stress relaxation tests and pole figure examinations via X-ray diffraction were conducted in constituent gradient layer and corresponding core, as well as gradient structured sample. The results show that the pyramidal dislocations in dual gradient structure are activated through the whole thickness of sample. Together with the contribution of grain-size gradient, more dislocations are activated in dual gradient structure under tensile loading, which results in stronger strain hardening and hence higher tensile ductility.

  10. Freeze-dried processing of tungsten heavy alloys

    International Nuclear Information System (INIS)

    White, G.D.; Gurwell, W.E.

    1989-06-01

    Tungsten heavy alloy powders were produced from freeze-dried aqueous solutions of ammonium metatungstate and, principally, sulfates of Ni and Fe. The freeze-dried salts were calcined and hydrogen reduced to form very fine, homogeneous, low-density, W heavy alloy powders having a coral-like structure with elements of approximately 0.1 μm in diameter. The powders yield high green strength and sinterability. Tungsten heavy alloy powders of 70%, 90%, and 96% W were prepared by freeze drying, compacted, and solid-state (SS) sintered to fully density at temperatures as low as 1200 degree C and also at conventional liquid-phase (LP) sintering temperatures. Solid-state sintered microstructures contained polygonal W grains with high contiguity; the matrix did not coat and separate the W grains to form low-contiguity, high-ductility structures. Liquid-phase sintered microstructures were very conventional in appearance, having W spheroids of low contiguity. All these materials were found to be brittle. High levels of residual S accompanied by segregation of the S to all the microstructural interfaces are principally responsible for the brittleness; problems with S could be eliminated by using Fe and Ni nitrates rather than the sulfates. 9 refs., 22 figs., 3 tabs

  11. Experimental Study Regarding the Freezing and Thawing Dynamics of Spruce Wood

    Directory of Open Access Journals (Sweden)

    Maria - Bernadett SZMUTKU

    2013-03-01

    Full Text Available The article presents the results regarding theevolution of the temperature field in spruce wood(Picea abies L. during freezing at two differentfreezing rates: -100C/h (rapid freezing and -10C/h(slow freezing and then during thawing at +50C,+30°C, +50°C temperature.This approach aimed at simulating thetemperature variations which occur inside timberduring open air storage in winter in two situations(sudden vs. gradual drop of temperature, and thenwhen the timber enters the drying kiln, depending onthe temperature applied in the initial heating phase.The results clearly show that the freezing ratesignificantly influences the thawing time and speed,which increase by 13-17% in the case of slowly frozenwood (at -10C/min compared to rapidly frozen wood(at -100C/min. It was also established that theoptimum temperature in the heating-up phase whendrying frozen spruce is 300C instead of the usual500C. This value leads to much better dryinguniformity without significantly prolonging the dryingtime.

  12. Effects of aging and freezing/thawing sequence on quality attributes of bovine and

    Directory of Open Access Journals (Sweden)

    Hyun-Wook Kim

    2017-02-01

    Full Text Available Objective The effects of aging and freezing/thawing sequence on color, physicochemical, and enzymatic characteristics of two beef muscles (Mm. gluteus medius, GM and biceps femoris, BF were evaluated. Methods Beef muscles at 3 d postmortem were assigned to four different combinations of aging and freezing/thawing sequence as follows; aging at 2°C for 3 wk (A3, never-frozen control, freezing at −28°C for 2 wk then thawing (F2, frozen/thawed-only, aging at 2°C for 3 wk, freezing at −28°C for 2 wk then thawing (A3F2, and freezing at −28°C for 2 wk, thawing then further aging at 2°C for 3 wk (F2A3. Results No significant interactions between different aging/freezing/thawing treatments and muscle type on all measurements were found. Postmortem aging, regardless of aging/freezing/thawing sequence, had no impact on color stability of frozen/thawed beef muscles (p<0.05. F2A3 resulted in higher purge loss than F2 and A3F2 treatments (p<0.05. A3F2 and F2A3 treatments resulted in lower shear force of beef muscles compared to F2 (p<0.05. Although there was no significant difference in glutathione peroxidase (GSH-Px activity, F2A3 had the highest β-N-acetyl glucominidase (BNAG activity in purge, but the lowest BNAG activity in muscle (p<0.05. GM muscle exhibited higher total color changes and purge loss, and lower GSH-Px activity than BF muscle. Conclusion The results from this present study indicate that different combinations of aging/freezing/thawing sequence would result in considerable impacts on meat quality attributes, particularly thaw/purge loss and tenderness. Developing a novel freezing strategy combined with postmortem aging will be beneficial for the food/meat industry to maximize its positive impacts on tenderness, while minimizing thaw/purge loss of frozen/thawed meat.

  13. Generalized enthalpy model of a high-pressure shift freezing process

    KAUST Repository

    Smith, N. A. S.

    2012-05-02

    High-pressure freezing processes are a novel emerging technology in food processing, offering significant improvements to the quality of frozen foods. To be able to simulate plateau times and thermal history under different conditions, in this work, we present a generalized enthalpy model of the high-pressure shift freezing process. The model includes the effects of pressure on conservation of enthalpy and incorporates the freezing point depression of non-dilute food samples. In addition, the significant heat-transfer effects of convection in the pressurizing medium are accounted for by solving the two-dimensional Navier-Stokes equations. We run the model for several numerical tests where the food sample is agar gel, and find good agreement with experimental data from the literature. © 2012 The Royal Society.

  14. Effects of Artificial Supercooling Followed by Slow Freezing on the Microstructure and Qualities of Pork Loin

    OpenAIRE

    Kim, Yiseul; Hong, Geun-Pyo

    2016-01-01

    This study investigated the effects of artificial supercooling followed by still air freezing (SSF) on the qualities of pork loin. The qualities of pork frozen by SSF were compared with the fresh control (CT, stored at 4? for 24 h), slow freezing (SAF, still air freezing) and rapid freezing (EIF, ethanol immersion freezing) treatments. Compared with no supercooling phenomena of SAF and EIF, the extent of supercooling obtained by SSF treatment was 1.4?. Despite that SSF was conducted with the ...

  15. The effect of variety and maturity on the quality of freeze-dried carrots. The effect of microwave blanching on the nutritional and textural quality of freeze-dried spinach

    Science.gov (United States)

    1979-01-01

    Using carrots, the quality of freeze-dried products was studied to determine the optimum varieties and maturation stages for quality attributes such as appearance, flavor, texture, and nutritive value. The quality of freeze-dried carrots is discussed in terms of Gardner color, alcohol insoluble solids, viscosity, and core/cortex ratio. Also, microwave blanching of freeze-dried spinach was studied to determine vitamin interrelationships, anatomical changes, and oxidative deteriorations in terms of preprocessing microwave treatments. Statistical methods were employed in the gathering of data and interpretation of results in both studies.

  16. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Directory of Open Access Journals (Sweden)

    A. S. Kowalski

    2017-07-01

    Full Text Available The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface. This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux–gradient relationships (eddy diffusivities requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube – with vapour transport into an overlying, horizontal airstream – was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  17. Contact freezing of supercooled cloud droplets on collision with mineral dust particles: effect of particle size

    Science.gov (United States)

    Hoffmann, Nadine; Duft, Denis; Kiselev, Alexei; Leisner, Thomas

    2013-04-01

    The contact freezing of supercooled cloud droplets is one of the potentially important and the least investigated heterogeneous mechanism of ice formation in the tropospheric clouds [1]. On the time scales of cloud lifetime the freezing of supercooled water droplets via contact mechanism may occur at higher temperature compared to the same IN immersed in the droplet. However, the laboratory experiments of contact freezing are very challenging due to the number of factors affecting the probability of ice formation. In our experiment we study single water droplets freely levitated in the laminar flow of mineral dust particles acting as the contact freezing nuclei. By repeating the freezing experiment sufficient number of times we are able to reproduce statistical freezing behavior of large ensembles of supercooled droplets and measure the average rate of freezing events. We show that the rate of freezing at given temperature is governed only by the rate of droplet -particle collision and by the properties of the contact ice nuclei. In this contribution we investigate the relationship between the freezing probability and the size of mineral dust particle (represented by illite) and show that their IN efficiency scales with the particle size. Based on this observation, we discuss the similarity between the freezing of supercooled water droplets in immersion and contact modes and possible mechanisms of apparent enhancement of the contact freezing efficiency. [1] - K.C. Young, The role of contact nucleation in ice phase initiation in clouds, Journal of the Atmospheric Sciences 31, 1974

  18. Gradient waveform synthesis for magnetic propulsion using MRI gradient coils

    International Nuclear Information System (INIS)

    Han, B H; Lee, S Y; Park, S

    2008-01-01

    Navigating an untethered micro device in a living subject is of great interest for both diagnostic and therapeutic applications. Magnetic propulsion of an untethered device carrying a magnetic core in it is one of the promising methods to navigate the device. MRI gradients coils are thought to be suitable for navigating the device since they are capable of magnetic propulsion in any direction while providing magnetic resonance images. For precise navigation of the device, especially in the peripheral region of the gradient coils, the concomitant gradient fields, as well as the linear gradient fields in the main magnetic field direction, should be considered in driving the gradient coils. For simple gradient coil configurations, the Maxwell coil in the z-direction and the Golay coil in the x- and y-directions, we have calculated the magnetic force fields, which are not necessarily the same as the conventional linear gradient fields of MRI. Using the calculated magnetic force fields, we have synthesized gradient waveforms to navigate the device along a desired path

  19. Simulation of the cladding freezing during the loss of flow accident in a Gas-Cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Chu, N.N.; Eggen, D.T.

    1977-06-01

    The accident condition of the stainless steel cladding melting, relocation and freezing, following a loss of flow situation in gas-cooled fast reactors has not been determined yet. An alloy of 50 Pb/ 50 Sn was selected to facilitate experimental procedures because of its workability and its wide phase transition temperature range (183 to 216 0 C) similar to that of stainless steel (1375 to 1500 0 C). The objective of the experiment is to simulate the motion of liquid alloy through a tube and observe the conditions where it solidifies in the tube. The objective of the theoretical model is to use transient heat transfer analysis to describe the freezing front of the moving liquid metal and the plugging of the channel. Tests were conducted in alloy tubes having inside diameters 0.5 to 0.95 cm. Molten solder was poured through the vertically held tubes. The average falling velocity of the melt was measured to be about 89 cm/sec. The distance in the tube where the molten Pb/Sn solidifed across the diameter was measured. This penetration length varies from 20 to 40 cm as the initial liquid temperature ranges from 216 (liquidus point) to 500 0 C. The plugging time is calculated for those temperatures under which data on both the penetration distance and the falling velocity were obtained

  20. FREEZE-OUT YIELDS OF RADIOACTIVITIES IN CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Magkotsios, Georgios; Wiescher, Michael; Timmes, F. X.

    2011-01-01

    We explore the nucleosynthesis trends from two mechanisms during freeze-out expansions in core-collapse supernovae. The first mechanism is related to the convection and instabilities within homogeneous stellar progenitor matter that is accreted through the supernova shock. The second mechanism is related to the impact of the supersonic wind termination shock (reverse shock) within the tumultuous inner regions of the ejecta above the proto-neutron star. Our results suggest that isotopes in the mass range 12 ≤ A ≤ 122 that are produced during the freeze-out expansions may be classified in two families. The isotopes of the first family manifest a common mass fraction evolutionary profile, whose specific shape per isotope depends on the characteristic transition between two equilibrium states (equilibrium state transition) during each type of freeze-out expansion. The first family includes the majority of isotopes in this mass range. The second family is limited to magic nuclei and isotopes in their locality, which do not sustain any transition, become nuclear flow hubs, and dominate the final composition. We use exponential and power-law adiabatic profiles to identify dynamic large-scale and small-scale equilibrium patterns among nuclear reactions. A reaction rate sensitivity study identifies those reactions that are crucial to the synthesis of radioactivities in the mass range of interest. In addition, we introduce non-monotonic parameterized profiles to probe the impact of the reverse shock and multi-dimensional explosion asymmetries on nucleosynthesis. Cases are shown in which the non-monotonic profiles favor the production of radioactivities. Non-monotonic freeze-out profiles involve longer non-equilibrium nucleosynthesis intervals compared with the exponential and power-law profiles, resulting in mass fraction trends and yield distributions that may not be achieved by the monotonic freeze-out profiles.

  1. Products and stability of phosphate reactions with lead under freeze-thaw cycling in simple systems

    International Nuclear Information System (INIS)

    Hafsteinsdottir, Erla G.; White, Duanne A.; Gore, Damian B.; Stark, Scott C.

    2011-01-01

    Orthophosphate fixation of metal contaminated soils in environments that undergo freeze-thaw cycles is understudied. Freeze-thaw cycling potentially influences the reaction rate, mineral chemical stability and physical breakdown of particles during fixation. This study determines what products form when phosphate (triple superphosphate [Ca(H 2 PO 4 ) 2 ] or sodium phosphate [Na 3 PO 4 ]) reacts with lead (PbSO 4 or PbCl 2 ) in simple chemical systems in vitro, and assesses potential changes in formation during freeze-thaw cycles. Systems were subjected to multiple freeze-thaw cycles from +10 deg. C to -20 deg. C and then analysed by X-ray diffractometry. Pyromorphite formed in all systems and was stable over multiple freeze-thaw cycles. Low temperature lead orthophosphate reaction efficiency varied according to both phosphate and lead source; the most time-efficient pyromorphite formation was observed when PbSO 4 and Na 3 PO 4 were present together. These findings have implications for the manner in which metal contaminated materials in freezing ground can be treated with phosphate. - Highlights: → Formation of lead phosphate products in cold environments is identified. → Potential change in formation during freeze-thaw cycling is assessed. → Lead phosphate reaction efficiency varies according to phosphate and lead source. → Pyromorphite formation is stable during 240 freeze-thaw cycles. - Pyromorphite, formed from Pb phosphate fixation, is stable during multiple freeze-thaw cycles but the efficiency of the fixation depends on the phosphate source and the type of Pb mineral.

  2. A search for thermospheric composition perturbations due to vertical winds

    Science.gov (United States)

    Krynicki, Matthew P.

    The thermosphere is generally in hydrostatic equilibrium, with winds blowing horizontally along stratified constant-pressure surfaces, driven by the dayside-to-nightside pressure gradient. A marked change in this paradigm resulted after Spencer et al. [1976] reported vertical wind measurements of 80 m·s-1 from analyses of AE-C satellite data. It is now established that the thermosphere routinely supports large-magnitude (˜30-150 m·s-1) vertical winds at auroral latitudes. These vertical winds represent significant departure from hydrostatic and diffusive equilibrium, altering locally---and potentially globally---the thermosphere's and ionosphere's composition, chemistry, thermodynamics and energy budget. Because of their localized nature, large-magnitude vertical wind effects are not entirely known. This thesis presents ground-based Fabry-Perot Spectrometer OI(630.0)-nm observations of upper-thermospheric vertical winds obtained at Inuvik, NT, Canada and Poker Flat, AK. The wind measurements are compared with vertical displacement estimates at ˜104 km2 horizontal spatial scales determined from a new modification to the electron transport code of Lummerzheim and Lilensten [1994] as applied to FUV-wavelength observations by POLAR spacecraft's Ultraviolet Imager [Torr et al. , 1995]. The modification, referred to as the column shift, simulates vertical wind effects such as neutral transport and disruption of diffusive equilibrium by vertically displacing the Hedin [1991] MSIS-90 [O2]/[N2] and [O]/([N2]+[O2]) mixing ratios and subsequently redistributing the O, O2, and N 2 densities used in the transport code. Column shift estimates are inferred from comparisons of UVI OI(135.6)-nm auroral observations to their corresponding modeled emission. The modeled OI(135.6)-nm brightness is determined from the modeled thermospheric response to electron precipitation and estimations of the energy flux and characteristic energy of the precipitation, which are inferred from UVI

  3. Reagan and the Nuclear Freeze: "Stars Wars" as a Rhetorical Strategy.

    Science.gov (United States)

    Bjork, Rebecca S.

    1988-01-01

    Analyzes the interaction between nuclear freeze activists and proponents of a Strategic Defense Initiative (SDI). Argues that SDI strengthens Reagan's rhetorical position concerning nuclear weapons policy because it reduces the argumentative ground of the freeze movement by envisioning a defensive weapons system that would nullify nuclear weapons.…

  4. Effects of annealing on the physical properties of therapeutic proteins during freeze drying process.

    Science.gov (United States)

    Lim, Jun Yeul; Lim, Dae Gon; Kim, Ki Hyun; Park, Sang-Koo; Jeong, Seong Hoon

    2018-02-01

    Effects of annealing steps during the freeze drying process on etanercept, model protein, were evaluated using various analytical methods. The annealing was introduced in three different ways depending on time and temperature. Residual water contents of dried cakes varied from 2.91% to 6.39% and decreased when the annealing step was adopted, suggesting that they are directly affected by the freeze drying methods Moreover, the samples were more homogenous when annealing was adopted. Transition temperatures of the excipients (sucrose, mannitol, and glycine) were dependent on the freeze drying steps. Size exclusion chromatography showed that monomer contents were high when annealing was adopted and also they decreased less after thermal storage at 60°C. Dynamic light scattering results exhibited that annealing can be helpful in inhibiting aggregation and that thermal storage of freeze-dried samples preferably induced fragmentation over aggregation. Shift of circular dichroism spectrum and of the contents of etanercept secondary structure was observed with different freeze drying steps and thermal storage conditions. All analytical results suggest that the physicochemical properties of etanercept formulation can differ in response to different freeze drying steps and that annealing is beneficial for maintaining stability of protein and reducing the time of freeze drying process. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of Novel Quick Freezing Techniques Combined with Different Thawing Processes on Beef Quality

    Science.gov (United States)

    Yoo, Seon-Mi; Han, Gui-Jung

    2014-01-01

    This study investigated the effect of various freezing and thawing techniques on the quality of beef. Meat samples were frozen using natural convection freezing (NF), individual quick freezing (IQF), or cryogenic freezing (CF) techniques, followed by natural convection thawing (NCT) or running water thawing (RT). The meat was frozen until the core temperature reached -12℃ and then stored at -24℃, followed by thawing until the temperature reached 5℃. Quality parameters, such as the pH, water binding properties, CIE color, shear force, and microstructure of the beef were elucidated. Although the freezing and thawing combinations did not cause remarkable changes in the quality parameters, rapid freezing, in the order of CF, IQF, and NF, was found to minimize the quality deterioration. In the case of thawing methods, NCT was better than RT and the meat quality was influence on the thawing temperature rather than the thawing rate. Although the microstructure of the frozen beef exhibited an excessive loss of integrity after the freezing and thawing, it did not cause any remarkable change in the beef quality. Taken together, these results demonstrate that CF and NCT form the best combination for beef processing; however, IQF and NCT may have practical applications in the frozen food industry. PMID:26761674

  6. Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves

    Directory of Open Access Journals (Sweden)

    Hincha Dirk K

    2008-05-01

    Full Text Available Abstract Background Freezing tolerance is an important factor in the geographical distribution of plants and strongly influences crop yield. Many plants increase their freezing tolerance during exposure to low, nonfreezing temperatures in a process termed cold acclimation. There is considerable natural variation in the cold acclimation capacity of Arabidopsis that has been used to study the molecular basis of this trait. Accurate methods for the quantitation of freezing damage in leaves that include spatial information about the distribution of damage and the possibility to screen large populations of plants are necessary, but currently not available. In addition, currently used standard methods such as electrolyte leakage assays are very laborious and therefore not easily applicable for large-scale screening purposes. Results We have performed freezing experiments with the Arabidopsis accessions C24 and Tenela, which differ strongly in their freezing tolerance, both before and after cold acclimation. Freezing tolerance of detached leaves was investigated using the well established electrolyte leakage assay as a reference. Chlorophyll fluorescence imaging was used as an alternative method that provides spatial resolution of freezing damage over the leaf area. With both methods, LT50 values (i.e. temperature where 50% damage occurred could be derived as quantitative measures of leaf freezing tolerance. Both methods revealed the expected differences between acclimated and nonacclimated plants and between the two accessions and LT50 values were tightly correlated. However, electrolyte leakage assays consistently yielded higher LT50 values than chlorophyll fluorescence imaging. This was to a large part due to the incubation of leaves for electrolyte leakage measurements in distilled water, which apparently led to secondary damage, while this pre-incubation was not necessary for the chlorophyll fluorescence measurements. Conclusion Chlorophyll

  7. Validity of a portable urine refractometer: the effects of sample freezing.

    Science.gov (United States)

    Sparks, S Andy; Close, Graeme L

    2013-01-01

    The use of portable urine osmometers is widespread, but no studies have assessed the validity of this measurement technique. Furthermore, it is unclear what effect freezing has on osmolality. One-hundred participants of mean (±SD) age 25.1 ± 7.6 years, height 1.77 ± 0.1 m and weight 77.1 ± 10.8 kg provided single urine samples that were analysed using freeze point depression (FPD) and refractometry (RI). Samples were then frozen at -80°C (n = 81) and thawed prior to re-analysis. Differences between methods and freezing were determined using Wilcoxon's signed rank test. Relationships between measurements were assessed using intraclass correlation coefficients (ICC) and typical error of estimate (TE). Osmolality was lower (P = 0.001) using RI (634.2 ± 339.8 mOsm · kgH2O(-1)) compared with FPD (656.7 ± 334.1 mOsm · kgH2O(-1)) but the TE was trivial (0.17). Freezing significantly reduced mean osmolality using FPD (656.7 ± 341.1 to 606.5 ± 333.4 mOsm · kgH2O(-1); P < 0.001), but samples were still highly related following freezing (ICC, r = 0.979, P < 0.001, CI = 0.993-0.997; TE = 0.15; and r=0.995, P < 0.001, CI = 0.967-0.986; TE = 0.07 for RI and FPD respectively). Despite mean differences between methods and as a result of freezing, such differences are physiologically trivial. Therefore, the use of RI appears to be a valid measurement tool to determine urine osmolality.

  8. Properties of subvisible cirrus clouds formed by homogeneous freezing

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2002-01-01

    Full Text Available Number concentrations and mean sizes of ice crystals and derived microphysical and optical properties of subvisible cirrus clouds (SVCs formed by homogeneous freezing of supercooled aerosols are investigated as a function of temperature and updraft speed of adiabatically ascending air parcels. The properties of such clouds are insensitive to variations of the aerosol number and size distribution. Based on criteria constraining the optical extinction, sedimentation time, and existence time of SVCs, longer-lived (>10min clouds, capable of exerting a measurable radiative or chemical impact, are generated within a narrow range of updraft speeds below 1-2cm s-1 at temperatures below about 215K, with concentrations of ice crystals not exceeding 0.1cm-3. The clouds do not reach an equilibrium state because the ice crystals sediment out of the formation layer typically before the supersaturation is removed. Two important conclusions emerge from this work. First, the above characteristics of SVCs may provide an explanation for why SVCs are more common in the cold tropical than in the warmer midlatitude tropopause region. Second, it seems likely that a limited number (-3 of effective heterogeneous freezing nuclei that nucleate ice below the homogeneous freezing threshold can control the formation and properties of SVCs, although homogeneous freezing nuclei are far more abundant.

  9. Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Nair Prasanth

    2012-11-01

    Full Text Available Abstract Background We have previously shown that lipophilic components (LPC of the brown seaweed Ascophyllum nodosum (ANE improved freezing tolerance in Arabidopsis thaliana. However, the mechanism(s of this induced freezing stress tolerance is largely unknown. Here, we investigated LPC induced changes in the transcriptome and metabolome of A. thaliana undergoing freezing stress. Results Gene expression studies revealed that the accumulation of proline was mediated by an increase in the expression of the proline synthesis genes P5CS1 and P5CS2 and a marginal reduction in the expression of the proline dehydrogenase (ProDH gene. Moreover, LPC application significantly increased the concentration of total soluble sugars in the cytosol in response to freezing stress. Arabidopsis sfr4 mutant plants, defective in the accumulation of free sugars, treated with LPC, exhibited freezing sensitivity similar to that of untreated controls. The 1H NMR metabolite profile of LPC-treated Arabidopsis plants exposed to freezing stress revealed a spectrum dominated by chemical shifts (δ representing soluble sugars, sugar alcohols, organic acids and lipophilic components like fatty acids, as compared to control plants. Additionally, 2D NMR spectra suggested an increase in the degree of unsaturation of fatty acids in LPC treated plants under freezing stress. These results were supported by global transcriptome analysis. Transcriptome analysis revealed that LPC treatment altered the expression of 1113 genes (5% in comparison with untreated plants. A total of 463 genes (2% were up regulated while 650 genes (3% were down regulated. Conclusion Taken together, the results of the experiments presented in this paper provide evidence to support LPC mediated freezing tolerance enhancement through a combination of the priming of plants for the increased accumulation of osmoprotectants and alteration of cellular fatty acid composition.

  10. Effects of Artificial Supercooling Followed by Slow Freezing on the Microstructure and Qualities of Pork Loin

    Science.gov (United States)

    2016-01-01

    This study investigated the effects of artificial supercooling followed by still air freezing (SSF) on the qualities of pork loin. The qualities of pork frozen by SSF were compared with the fresh control (CT, stored at 4℃ for 24 h), slow freezing (SAF, still air freezing) and rapid freezing (EIF, ethanol immersion freezing) treatments. Compared with no supercooling phenomena of SAF and EIF, the extent of supercooling obtained by SSF treatment was 1.4℃. Despite that SSF was conducted with the same method with SAF, application of artificial supercooling accelerated the phase transition (traverse from -0.6℃ to -5℃) from 3.07 h (SAF) to 2.23 h (SSF). The observation of a microstructure indicated that the SSF prevented tissue damage caused by ice crystallization and maintained the structural integrity. The estimated quality parameters reflected that SSF exhibited superior meat quality compared with slow freezing (SAF). SSF showed better water-holding capacity (lower thawing loss, cooking loss and expressible moisture) and tenderness than SAF, and these quality parameters of SSF were not significantly different with ultra-fast freezing treatment (EIF). Consequently, the results demonstrated that the generation of supercooling followed by conventional freezing potentially had the advantage of minimizing the quality deterioration caused by the slow freezing of meat. PMID:27857541

  11. Effects of Artificial Supercooling Followed by Slow Freezing on the Microstructure and Qualities of Pork Loin.

    Science.gov (United States)

    Kim, Yiseul; Hong, Geun-Pyo

    2016-10-31

    This study investigated the effects of artificial supercooling followed by still air freezing (SSF) on the qualities of pork loin. The qualities of pork frozen by SSF were compared with the fresh control (CT, stored at 4℃ for 24 h), slow freezing (SAF, still air freezing) and rapid freezing (EIF, ethanol immersion freezing) treatments. Compared with no supercooling phenomena of SAF and EIF, the extent of supercooling obtained by SSF treatment was 1.4℃. Despite that SSF was conducted with the same method with SAF, application of artificial supercooling accelerated the phase transition (traverse from -0.6℃ to -5℃) from 3.07 h (SAF) to 2.23 h (SSF). The observation of a microstructure indicated that the SSF prevented tissue damage caused by ice crystallization and maintained the structural integrity. The estimated quality parameters reflected that SSF exhibited superior meat quality compared with slow freezing (SAF). SSF showed better water-holding capacity (lower thawing loss, cooking loss and expressible moisture) and tenderness than SAF, and these quality parameters of SSF were not significantly different with ultra-fast freezing treatment (EIF). Consequently, the results demonstrated that the generation of supercooling followed by conventional freezing potentially had the advantage of minimizing the quality deterioration caused by the slow freezing of meat.

  12. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson's disease.

    Science.gov (United States)

    Dagan, Moria; Herman, Talia; Harrison, Rachel; Zhou, Junhong; Giladi, Nir; Ruffini, Giulio; Manor, Brad; Hausdorff, Jeffrey M

    2018-04-01

    Recent findings suggest that transcranial direct current stimulation of the primary motor cortex may ameliorate freezing of gait. However, the effects of multitarget simultaneous stimulation of motor and cognitive networks are mostly unknown. The objective of this study was to evaluate the effects of multitarget transcranial direct current stimulation of the primary motor cortex and left dorsolateral prefrontal cortex on freezing of gait and related outcomes. Twenty patients with Parkinson's disease and freezing of gait received 20 minutes of transcranial direct current stimulation on 3 separate visits. Transcranial direct current stimulation targeted the primary motor cortex and left dorsolateral prefrontal cortex simultaneously, primary motor cortex only, or sham stimulation (order randomized and double-blinded assessments). Participants completed a freezing of gait-provoking test, the Timed Up and Go, and the Stroop test before and after each transcranial direct current stimulation session. Performance on the freezing of gait-provoking test (P = 0.010), Timed Up and Go (P = 0.006), and the Stroop test (P = 0.016) improved after simultaneous stimulation of the primary motor cortex and left dorsolateral prefrontal cortex, but not after primary motor cortex only or sham stimulation. Transcranial direct current stimulation designed to simultaneously target motor and cognitive regions apparently induces immediate aftereffects in the brain that translate into reduced freezing of gait and improvements in executive function and mobility. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  13. Development of a freeze-stable formulation for vaccines containing aluminum salt adjuvants.

    Science.gov (United States)

    Braun, LaToya Jones; Tyagi, Anil; Perkins, Shalimar; Carpenter, John; Sylvester, David; Guy, Mark; Kristensen, Debra; Chen, Dexiang

    2009-01-01

    Vaccines containing aluminum salt adjuvants are prone to inactivation following exposure to freeze-thaw stress. Many are also prone to inactivation by heat. Thus, for maximum potency, these vaccines must be maintained at temperatures between 2 degrees C and 8 degrees C which requires the use of the cold chain. Nevertheless, the cold chain is not infallible. Vaccines are subject to freezing during both transport and storage, and frozen vaccines are discarded (under the best circumstances) or inadvertently administered despite potentially reduced potency. Here we describe an approach to minimize our reliance on the proper implementation of the cold chain to protect vaccines from freeze-thaw inactivation. By including PEG 300, propylene glycol, or glycerol in a hepatitis B vaccine, particle agglomeration, changes in the fluorescence emission spectrum--indicative of antigen tertiary structural changes--and losses of in vitro and in vivo indicators of potency were prevented following multiple exposures to -20 degrees C. The effect of propylene glycol was examined in more detail and revealed that even at concentrations too low to prevent freezing at -10 degrees C, -20 degrees C, and -80 degrees C, damage to the vaccine could be prevented. A pilot study using two commercially available diphtheria, tetanus toxoid, and acellular pertussis (DTaP) vaccines suggested that the same stabilizers might protect these vaccines from freeze-thaw agglomeration as well. It remains to be determined if preventing agglomeration of DTaP vaccines preserves their antigenic activity following freeze-thaw events.

  14. Combining Step Gradients and Linear Gradients in Density.

    Science.gov (United States)

    Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M

    2015-06-16

    Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.

  15. How do two Lupinus species respond to temperature along an altitudinal gradient in the Venezuelan Andes? ¿Cómo responden dos especies de Lupinus a la temperatura en un gradiente altitudinal en los Andes venezolanos?

    Directory of Open Access Journals (Sweden)

    FERMÍN RADA

    2008-09-01

    Full Text Available Temperature determines plant formations and species distribution along altitudinal gradients. Plants in the tropical high Andes, through different physiological and morphological characteristics, respond to freezing night temperatures and high daytime energy inputs which occur anytime of the year. The main objective of this study was to characterize day and night temperature related responses of two Lupinus species with different altitudinal ranges (L. meridanus, 1,800-3,600 and L. eromonomos, 3,700-4,300 m of altitude. Are there differences in night low temperature resistance mechanisms between the species along the gradient? How do these species respond, in terms of optimum temperature for photosynthesis, to increasing altitude? Lupinus meridanus shows frost avoidance, in contrast to L. eromonomos, which tolerates freezing at higher altitudes. Optimum temperature for photosynthesis decreases along the gradient for both species. Maximum C0(2 assimilation rates were higher in L. meridanus, while L. eromonomos showed decreasing C0(2 assimilation rates at the higher altitude. In most cases, measured daily leaf temperature is always within the 80 % of optimum for photosynthesis. L. meridanus7 upper distribution limit seems to be restricted by cold resistance mechanisms, while L. eromonomos7 to a combination of both cold resistance and to C0(2 assimilation responses at higher altitudes.La temperatura determina las formaciones vegetales y la distribución de especies a lo largo de gradientes altitudinales. Las plantas en los altos Andes tropicales, a través de diferentes características morfológicas y fisiológicas, responden a temperaturas congelantes nocturnas y altas entradas energéticas durante el día en cualquier momento del año. El objetivo principal de este estudio fue caracterizar las respuestas relacionadas con temperaturas diurnas y nocturnas en dos especies de Lupinus con diferente distribución altitudinal (L. meridanus, 1

  16. Egg freezing and egg banking: empowerment and alienation in assisted reproduction.

    Science.gov (United States)

    Robertson, John A

    2014-06-01

    With the development of rapid freezing of human oocytes, many programs have reported IVF success rates comparable to those achieved with fresh eggs and thawed frozen embryos. Egg freezing is now gaining professional and regulatory acceptance as a safe and effective technique for women who wish to avoid discarding excess embryos, who face fertility-threatening medical treatments, or who want to preserve their eggs for use when they are better situated to have a family. This article focuses on the uses of and justification for egg freezing, the path to professional acceptance, the variability in success rates, and the controversy over freezing eggs for social rather than medical reasons. It also addresses the emergence of egg banking as a separate sector in the infertility industry, the regulatory issues that it poses, and its effect on egg donation. Key here is the legal control of stored eggs by banking women and their options when they wish to dispose of those eggs. The analysis is framed around empowerment and alienation. Egg freezing is generally empowering for women, but the donation or sale of unused eggs to infertile women, egg bankers, and researchers also raises issues of alienation.

  17. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster.

    Science.gov (United States)

    Koštál, Vladimír; Korbelová, Jaroslava; Poupardin, Rodolphe; Moos, Martin; Šimek, Petr

    2016-08-01

    The fruit fly Drosophila melanogaster is an insect of tropical origin. Its larval stage is evolutionarily adapted for rapid growth and development under warm conditions and shows high sensitivity to cold. In this study, we further developed an optimal acclimation and freezing protocol that significantly improves larval freeze tolerance (an ability to survive at -5°C when most of the freezable fraction of water is converted to ice). Using the optimal protocol, freeze survival to adult stage increased from 0.7% to 12.6% in the larvae fed standard diet (agar, sugar, yeast, cornmeal). Next, we fed the larvae diets augmented with 31 different amino compounds, administered in different concentrations, and observed their effects on larval metabolomic composition, viability, rate of development and freeze tolerance. While some diet additives were toxic, others showed positive effects on freeze tolerance. Statistical correlation revealed tight association between high freeze tolerance and high levels of amino compounds involved in arginine and proline metabolism. Proline- and arginine-augmented diets showed the highest potential, improving freeze survival to 42.1% and 50.6%, respectively. Two plausible mechanisms by which high concentrations of proline and arginine might stimulate high freeze tolerance are discussed: (i) proline, probably in combination with trehalose, could reduce partial unfolding of proteins and prevent membrane fusions in the larvae exposed to thermal stress (prior to freezing) or during freeze dehydration; (ii) both arginine and proline are exceptional among amino compounds in their ability to form supramolecular aggregates which probably bind partially unfolded proteins and inhibit their aggregation under increasing freeze dehydration. © 2016. Published by The Company of Biologists Ltd.

  18. Performance in the vertical test of the 832 nine-cell 1.3 GHz cavities for the European X-ray Free Electron Laser

    Science.gov (United States)

    Reschke, D.; Gubarev, V.; Schaffran, J.; Steder, L.; Walker, N.; Wenskat, M.; Monaco, L.

    2017-04-01

    The successful production and associated vertical testing of over 800 superconducting 1.3 GHz accelerating cavities for the European X-ray Free Electron Laser (XFEL) represents the culmination of over 20 years of superconducting radio-frequency R&D. The cavity production took place at two industrial vendors under the shared responsibility of INFN Milano-LASA and DESY. Average vertical testing rates at DESY exceeded 10 cavities per week, peaking at up to 15 cavities per week. The cavities sent for cryomodule assembly at Commissariat à l'énergie atomique (CEA) Saclay achieved an average maximum gradient of approximately 33 MV /m , reducing to ˜30 MV /m when the operational specifications on quality factor (Q) and field emission were included (the so-called usable gradient). Only 16% of the cavities required an additional surface retreatment to recover their low performance (usable gradient less than 20 MV /m ). These cavities were predominantly limited by excessive field emission for which a simple high pressure water rinse (HPR) was sufficient. Approximately 16% of the cavities also received an additional HPR, e.g. due to vacuum problems before or during the tests or other reasons, but these were not directly related to gradient performance. The in-depth statistical analyses presented in this report have revealed several features of the series produced cavities.

  19. Freezing issue on stability master production scheduling for supplier network: Decision making view

    Directory of Open Access Journals (Sweden)

    Aisyati Azizah

    2017-01-01

    Full Text Available In the daily operation, there are frequently changes in customer order requirement which will induce instability of the MPS. Moreover, the frequently adjustment of MPS can induce fluctuation of production and increasing of inventory cost as well as decreasing service level of customer. Most of studies about instability of MPS use freezing method and rolling procedure to adjust MPS periodically. Freezing is the proportion of planning horizon being frozen, whereas rolling procedure is a method replanning periodically of MPS using newly updated demand data. This study is focused on interval freezing length as an issue of decision making. In supply chain, a manufacturer is supported by suppliers to supply material requirement. Since a manufacturer plan production schedule on MPS the freezing interval is determined that will be informed to suppliers which supply the material requirement. In previous research, the freezing interval is decided by manufacturer as necessary decision maker. This decision must be followed by suppliers though it is not beneficial for them. It can be concluded that this condition is no win-win situation. Hence, this research proposes that suppliers will be involved as decision maker besides a manufacturer so the interval freezing is decided by two-side decision maker.

  20. Protection of fish oil from oxidation by microencapsulation using freeze-drying techniques

    DEFF Research Database (Denmark)

    Heinzelmann, K.; Franke, K.; Jensen, Benny

    2000-01-01

    (N-3)-Polyunsaturated fatty acids (PUFAs) reduce the risk of coronary heart disease. Cold sea water plankton and plankton- consuming fish are known sources of (n-3)-PUFAs. Enriching normal food components with fish oil is a tool for increasing the intake of (n-3)-PUFAs. Due to the high sensitivity...... different freezing techniques and subsequently freeze-dried. Several parameters regarding formulation and process (addition of antioxidants to the fish oil, use of carbohydrates, homogenisation and freezing conditions, initial freeze-drying temperature, grinding) were varied to evaluate their influence...... on the oxidative stability of dried microencapsulated fish oil. The shelf life of the produced samples was determined by measuring the development of volatile oxidation products vs. storage time. It could be shown that the addition of antioxidants to fish oil was necessary to produce dried microencapsulated fish...

  1. Effect of repeated freezing-thawing on the Achilles tendon of rabbits.

    Science.gov (United States)

    Chen, Lianxu; Wu, Yanping; Yu, Jiakuo; Jiao, Zhaode; Ao, Yingfang; Yu, Changlong; Wang, Jianquan; Cui, Guoqing

    2011-06-01

    The increased use of allograft tissue in the reconstruction of anterior cruciate ligament has brought more focus to the effect of storage and treatment on allograft. The purpose of this study was to observe the effect of histology and biomechanics on Achilles tendon in rabbits through repeated freezing-thawing before allograft tendon transplantation. Rabbit Achilles tendons were harvested and processed according to the manufacture's protocol of tissue bank, and freezing-thawing was repeated three times (group 1) and ten times (group 2). Those received only one cycle were used as controls. Then, tendons in each group were selected randomly to make for histological observations and biomechanics test. Histological observation showed that the following changes happened as the number of freezing-thawing increased: the arrangement of tendon bundles and collagen fibrils became disordered until ruptured, cells disrupted and apparent gaps appeared between tendon bundle because the formation of ice crystals. There were significant differences between the experimental and control groups in the values of maximum load, energy of maximum load and maximum stress, whereas no significant differences existed in other values such as stiffness, maximum strain, elastic modulus, and energy density. Therefore, repeated freezing-thawing had histological and biomechanical effect on Achilles tendon in rabbits before allograft tendon transplantation. This indicates that cautions should be taken in the repeated freezing-thawing preparation of allograft tendons in clinical application.

  2. Effects of freezing, freeze drying and convective drying on in vitro gastric digestion of apples.

    Science.gov (United States)

    Dalmau, Maria Esperanza; Bornhorst, Gail M; Eim, Valeria; Rosselló, Carmen; Simal, Susana

    2017-01-15

    The influence of processing (freezing at -196°C in liquid N2, FN sample; freeze-drying at -50°C and 30Pa, FD sample; and convective drying at 60°C and 2m/s, CD sample) on apple (var. Granny Smith) behavior during in vitro gastric digestion was investigated. Dried apples (FD and CD samples) were rehydrated prior to digestion. Changes in carbohydrate composition, moisture, soluble solids, acidity, total polyphenol content (TPC), and antioxidant activity (AA) of apple samples were measured at different times during digestion. Processing resulted in disruption of the cellular structure during digestion, as observed by scanning electron microscopy, light microscopy, and changes in carbohydrate composition. Moisture content increased (6-11% dmo), while soluble solids (55-78% dmo), acidity (44-72% dmo), total polyphenol content (30-61% dmo), and antioxidant activity (41-87%) decreased in all samples after digestion. Mathematical models (Weibull and exponential models) were used to better evaluate the influence of processing on apple behavior during gastric digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Reduced early growing season freezing resistance in alpine treeline plants under elevated atmospheric CO2.

    NARCIS (Netherlands)

    Martin, M.; Gavazov, K.S.; Körner, S.; Rixen, C.

    2010-01-01

    The frequency of freezing events during the early growing season and the vulnerability to freezing of plants in European high-altitude environments could increase under future atmospheric and climate change. We tested early growing season freezing sensitivity in 10 species, from four plant

  4. Small-scale Forearc Structure from Residual Bathymetry and Vertical Gravity Gradients at the Cocos-North America Subduction Zone offshore Mexico

    Science.gov (United States)

    Garcia, E. S. M.; Ito, Y.

    2017-12-01

    The subduction of topographic relief on the incoming plate at subduction zones causes deformation of the plate interface as well as the overriding plate. Whether the resulting geometric irregularities play any role in inhibiting or inducing seismic rupture is a topic of relevance for megathrust earthquake source studies. A method to discern the small-scale structure at subduction zone forearcs was recently developed by Bassett and Watts (2015). Their technique constructs an ensemble average of the trench-perpendicular topography, and the removal of this regional tectonic signal reveals the short-wavelength residual bathymetric anomalies. Using examples from selected areas at the Tonga, Mariana, and Japan subduction zones, they were able to link residual bathymetric anomalies to the subduction of seamount chains, given the similarities in wavelength and amplitude to the morphology of seamounts that have yet to subduct. We focus here on an analysis of forearc structures found in the Mexico segment of the Middle America subduction zone, and their potential mechanical interaction with areas on the plate interface that have been previously identified as source regions for earthquake ruptures and aseismic events. We identified several prominent residual bathymetric anomalies off the Guerrero and Oaxaca coastlines, mainly in the shallow portion of the plate interface and between 15 and 50 kilometers away from the trench axis. The residual amplitude of these bathymetric anomalies is typically in the hundreds of meters. Some of the residual bathymetric anomalies offshore Oaxaca are found landward of seamount chains on the incoming Cocos Plate, suggesting that these anomalies are associated with the prior subduction of seamounts at the margin. We also separated the residual and regional components of satellite-based vertical gravity gradient data using a directional median filter to isolate the possible gravity signals from the seamount edifices.

  5. Mechanisms of deterioration of nutrients. [freeze drying methods for space flight food

    Science.gov (United States)

    Karel, M.; Flink, J. M.

    1974-01-01

    Methods are reported by which freeze dried foods of improved quality will be produced. The applicability of theories of flavor retention has been demonstrated for a number of food polymers, both proteins and polysacchardies. Studies on the formation of structures during freeze drying have been continued for emulsified systems. Deterioration of organoleptic quality of freeze dried foods due to high temperature heating has been evaluated and improved procedures developed. The influence of water activity and high temperature on retention of model flavor materials and browning deterioration has been evaluated for model systems and food materials.

  6. Effect of pasteurisation and freezing method on bioactive compounds and antioxidant activity of strawberry pulp.

    Science.gov (United States)

    Gonçalves, Gilma Auxiliadora Santos; Resende, Nathane Silva; Carvalho, Elisângela Elena Nunes; Resende, Jaime Vilela de; Vilas Boas, Eduardo Valério de Barros

    2017-09-01

    This study evaluated the stability of strawberry pulp subjected to three factors, pasteurisation (pasteurised and unpasteurised), freezing method (static air and forced air) and storage time (0, 2, 4 and 6 months). Pasteurisation favoured vitamin C retention during storage but enhanced the total loss of phenolics without affecting anthocyanin levels. Freezing by forced air was more effective in retaining phenolics during the first 4 months of storage, although the freezing method did not affect the anthocyanin levels. Processing and storage reduced the levels of individual phenolics. Freezing by forced air was more effective than static air in retaining antioxidant activity of the pulp. Polyphenol oxidase and peroxidase enzyme levels were relatively stable and independent of pasteurisation, freezing and storage time. Even after 6 months of frozen storage, strawberry pulp is a significant source of nutrients and bioactive compounds and retains high antioxidant capacity independent of pasteurisation and freezing method.

  7. Sperm freezing to address the risk of azoospermia on the day of ICSI.

    Science.gov (United States)

    Montagut, M; Gatimel, N; Bourdet-Loubère, S; Daudin, M; Bujan, L; Mieusset, R; Isus, F; Parinaud, J; Leandri, R

    2015-11-01

    In which cases is freezing of ejaculated sperm indicated before ICSI? Sperm freezing should be performed only when out of two analyses at least one total sperm count in the ejaculate is lower than 10(6). Due to variations in individual sperm parameters, in cases of severe oligozoospermia there is a risk of absence of spermatozoa on the day of ICSI, leading to cancellation of the attempt. Sperm freezing can avoid this problem but little is known of the parameters governing the decision to freeze sperm or not. This retrospective study included 247 men who underwent sperm cryopreservation to prevent the risk of azoospermia on the day of ICSI, from 2000 to 2012. Receiver operating characteristic curve analysis was used to define the threshold value. The lowest total sperm count per ejaculate was studied as a predictive factor for the use of frozen sperm in a total of 593 ICSI attempts. Moreover, 2003 patients who had at least 4 semen analyses for andrological diagnosis have been studied to evaluate the reproducibility of sperm count. To evaluate the psychological impact of sperm freezing, a questionnaire was administered to 84 men who attended for sperm cryopreservation between June and December 2014. The cost of sperm freezing was analysed according to the French prices. When at least one total sperm count was counts were ≥10(5) (P sperm freezing is recommended when one analysis from at least two, showed a sperm count sperm freezings. The psychological impact of sperm freezing was good since >70% of men had positive feelings about this technique. This was a fairly short-term study and preservation of future fertility was not assessed. It appeared impossible to find a threshold that would predict the risk of azoospermia with 100% accuracy. Therefore there is still a risk of absence of spermatozoa on the day of ICSI despite a good negative predictive value when no total sperm count was lower than 10(5). These data suggest that sperm freezing should be proposed when

  8. Anhydrobiosis and freezing-tolerance: adaptations that facilitate the establishment of Panagrolaimus nematodes in polar habitats.

    Science.gov (United States)

    McGill, Lorraine M; Shannon, Adam J; Pisani, Davide; Félix, Marie-Anne; Ramløv, Hans; Dix, Ilona; Wharton, David A; Burnell, Ann M

    2015-01-01

    Anhydrobiotic animals can survive the loss of both free and bound water from their cells. While in this state they are also resistant to freezing. This physiology adapts anhydrobiotes to harsh environments and it aids their dispersal. Panagrolaimus davidi, a bacterial feeding anhydrobiotic nematode isolated from Ross Island Antarctica, can survive intracellular ice formation when fully hydrated. A capacity to survive freezing while fully hydrated has also been observed in some other Antarctic nematodes. We experimentally determined the anhydrobiotic and freezing-tolerance phenotypes of 24 Panagrolaimus strains from tropical, temperate, continental and polar habitats and we analysed their phylogenetic relationships. We found that several other Panagrolaimus isolates can also survive freezing when fully hydrated and that tissue extracts from these freezing-tolerant nematodes can inhibit the growth of ice crystals. We show that P. davidi belongs to a clade of anhydrobiotic and freezing-tolerant panagrolaimids containing strains from temperate and continental regions and that P. superbus, an early colonizer at Surtsey island, Iceland after its volcanic formation, is closely related to a species from Pennsylvania, USA. Ancestral state reconstructions show that anhydrobiosis evolved deep in the phylogeny of Panagrolaimus. The early-diverging Panagrolaimus lineages are strongly anhydrobiotic but weakly freezing-tolerant, suggesting that freezing tolerance is most likely a derived trait. The common ancestors of the davidi and the superbus clades were anhydrobiotic and also possessed robust freezing tolerance, along with a capacity to inhibit the growth and recrystallization of ice crystals. Unlike other endemic Antarctic nematodes, the life history traits of P. davidi do not show evidence of an evolved response to polar conditions. Thus we suggest that the colonization of Antarctica by P. davidi and of Surtsey by P. superbus may be examples of recent "ecological fitting

  9. Anhydrobiosis and freezing-tolerance: adaptations that facilitate the establishment of Panagrolaimus nematodes in polar habitats.

    Directory of Open Access Journals (Sweden)

    Lorraine M McGill

    Full Text Available Anhydrobiotic animals can survive the loss of both free and bound water from their cells. While in this state they are also resistant to freezing. This physiology adapts anhydrobiotes to harsh environments and it aids their dispersal. Panagrolaimus davidi, a bacterial feeding anhydrobiotic nematode isolated from Ross Island Antarctica, can survive intracellular ice formation when fully hydrated. A capacity to survive freezing while fully hydrated has also been observed in some other Antarctic nematodes. We experimentally determined the anhydrobiotic and freezing-tolerance phenotypes of 24 Panagrolaimus strains from tropical, temperate, continental and polar habitats and we analysed their phylogenetic relationships. We found that several other Panagrolaimus isolates can also survive freezing when fully hydrated and that tissue extracts from these freezing-tolerant nematodes can inhibit the growth of ice crystals. We show that P. davidi belongs to a clade of anhydrobiotic and freezing-tolerant panagrolaimids containing strains from temperate and continental regions and that P. superbus, an early colonizer at Surtsey island, Iceland after its volcanic formation, is closely related to a species from Pennsylvania, USA. Ancestral state reconstructions show that anhydrobiosis evolved deep in the phylogeny of Panagrolaimus. The early-diverging Panagrolaimus lineages are strongly anhydrobiotic but weakly freezing-tolerant, suggesting that freezing tolerance is most likely a derived trait. The common ancestors of the davidi and the superbus clades were anhydrobiotic and also possessed robust freezing tolerance, along with a capacity to inhibit the growth and recrystallization of ice crystals. Unlike other endemic Antarctic nematodes, the life history traits of P. davidi do not show evidence of an evolved response to polar conditions. Thus we suggest that the colonization of Antarctica by P. davidi and of Surtsey by P. superbus may be examples of recent

  10. A case history of a tunnel constructed by ground freezing

    Science.gov (United States)

    Lacy, H. S.; Jones, J. S., Jr.; Gidlow, B.

    Artificial ground freezing was used for structural support and groundwater control for a 37 m long, 3.2 m diameter tunnel located about 2 m beneath high speed railroad lines in Syracuse, New York. A double row of freeze pipes spaced approximately 0.9 m on-center was used around the periphery of the tunnel above the spring line, while only a single row of freeze pipes was required below the spring line. Excavation of the frozen soil within the tunnel was accomplished with a small road header tunnel boring machine. The results of in situ testing of frozen soil, laboratory testing of frozen soils, computer analysis to predict stress deformation-time characteristics under static and cyclic loading, the instrumentation program including a comparison of estimated and measured performance are discussed.

  11. Effects of gamma radiation on freeze-dried wheat seeds

    International Nuclear Information System (INIS)

    Ajayi, N.O.; Larsson, B.

    1975-07-01

    The effect of radiation on freeze-dried wheat seeds are reported. The response of the various parts of the seedling to radiation was found to differ from one another. There was no significant modification of the effect of radiation on the shoot and root growth, while the growth of the coleoptile was slightly reduced in the frezze-dried seeds. The change in the shoot growth-absorbed dose relationship reported by others to occur at high doses for oven-dried as compared to air-dried barley seeds was not seen for the control and freeze-dried wheat seeds. The freeze-dried seeds are believed to show only the effect of radiation without any modification due to drying as such. The dose-effect relationships may be splited into functions characterised by different radiosensitivity. The high sensitivty effect is mainly taking place within the first 40 krad of energy absorption, and the low sensitivity is dominating at higher doses. (author)

  12. The quest for high-gradient superconducting cavities

    International Nuclear Information System (INIS)

    Padamsee, H.

    1999-01-01

    Superconducting RF cavities excel in applications requiring continuous waves or long pulse voltages. Since power losses in the walls of the cavity increase as the square of the accelerating voltage, copper cavities become uneconomical as demand for high continuous wave voltage grows with particle energy. For these reasons, RF superconductivity has become an important technology for high energy and high luminosity accelerators. The state of art in performance of sheet metal niobium cavities is best represented by the statistics of more than 300 5-cell, 1.5-GHz cavities built for CEBAF. Key aspects responsible for the outstanding performance of the CEBAF cavities set are the anti-multipactor, elliptical cell shape, good fabrication and welding techniques, high thermal conductivity niobium, and clean surface preparation. On average, field emission starts at the electric field of 8.7 MV/m, but there is a large spread, even though the cavities received nominally the same surface treatment and assembly procedures. In some cavities, field emission was detected as low as 3 MV/m. In others, it was found to be as high as 19 MV/m. As we will discuss, the reason for the large spread in the gradients is the large spread in emitter characteristics and the random occurrence of emitters on the surface. One important phenomenon that limits the achievable RF magnetic field is thermal breakdown of superconductivity, originating at sub-millimeter-size regions of high RF loss, called defects. Simulation reveal that if the defect is a normal conducting region of 200 mm radius, it will break down at 5 MV/m. Producing high gradients and high Q in superconducting cavities demands excellent control of material properties and surface cleanliness. The spread in gradients that arises from the random occurrence of defects and emitters must be reduced. It will be important to improve installation procedures to preserve the excellent gradients now obtained in laboratory test in vertical cryostats

  13. Products and stability of phosphate reactions with lead under freeze-thaw cycling in simple systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafsteinsdottir, Erla G., E-mail: erla.hafsteinsdottir@gmail.com [Department of Environment and Geography, Macquarie University, NSW 2109 (Australia); White, Duanne A., E-mail: duanne.white@mq.edu.au [Department of Environment and Geography, Macquarie University, NSW 2109 (Australia); Gore, Damian B., E-mail: damian.gore@mq.edu.au [Department of Environment and Geography, Macquarie University, NSW 2109 (Australia); Stark, Scott C., E-mail: scott.stark@aad.gov.au [Environmental Protection and Change, Australian Antarctic Division, Department of Sustainability, Environment, Water, Population and Communities, Tasmania 7050 (Australia)

    2011-12-15

    Orthophosphate fixation of metal contaminated soils in environments that undergo freeze-thaw cycles is understudied. Freeze-thaw cycling potentially influences the reaction rate, mineral chemical stability and physical breakdown of particles during fixation. This study determines what products form when phosphate (triple superphosphate [Ca(H{sub 2}PO{sub 4}){sub 2}] or sodium phosphate [Na{sub 3}PO{sub 4}]) reacts with lead (PbSO{sub 4} or PbCl{sub 2}) in simple chemical systems in vitro, and assesses potential changes in formation during freeze-thaw cycles. Systems were subjected to multiple freeze-thaw cycles from +10 deg. C to -20 deg. C and then analysed by X-ray diffractometry. Pyromorphite formed in all systems and was stable over multiple freeze-thaw cycles. Low temperature lead orthophosphate reaction efficiency varied according to both phosphate and lead source; the most time-efficient pyromorphite formation was observed when PbSO{sub 4} and Na{sub 3}PO{sub 4} were present together. These findings have implications for the manner in which metal contaminated materials in freezing ground can be treated with phosphate. - Highlights: > Formation of lead phosphate products in cold environments is identified. > Potential change in formation during freeze-thaw cycling is assessed. > Lead phosphate reaction efficiency varies according to phosphate and lead source. > Pyromorphite formation is stable during 240 freeze-thaw cycles. - Pyromorphite, formed from Pb phosphate fixation, is stable during multiple freeze-thaw cycles but the efficiency of the fixation depends on the phosphate source and the type of Pb mineral.

  14. The Effect of Freezing Temperatures on Microdochium majus and M. nivale Seedling Blight of Winter Wheat

    Directory of Open Access Journals (Sweden)

    Ian M. Haigh

    2012-01-01

    Full Text Available Exposure to pre-emergent freezing temperatures significantly delayed the rate of seedling emergence (P<0.05 from an infected and a non-infected winter wheat cv. Equinox seed lot, but significant effects for timing of freezing and duration of freezing on final emergence were only seen for the Microdochium-infested seed lot. Freezing temperatures of −5∘C at post-emergence caused most disease on emerged seedlings. Duration of freezing (12 hours or 24 hours had little effect on disease index but exposure to pre-emergent freezing for 24 hours significantly delayed rate of seedling emergence and reduced final emergence from the infected seed lot. In plate experiments, the calculated base temperature for growth of M. nivale and M. majus was −6.3∘C and −2.2∘C, respectively. These are the first set of experiments to demonstrate the effects of pre-emergent and post-emergent freezing on the severity of Microdochium seedling blight.

  15. Impact of the industrial freezing process on selected vegetables -Part II. Colour and bioactive compounds

    NARCIS (Netherlands)

    Mazzeo, Teresa; Paciulli, Maria; Chiavaro, Emma; Visconti, Attilio; Fogliano, Vincenzo; Ganino, Tommaso; Pellegrini, Nicoletta

    2015-01-01

    In the present study, the impact of the different steps (i.e. blanching, freezing, storage following the industrial freezing process and the final cooking prior to consumption) of the industrial freezing process was evaluated on colour, chlorophylls, lutein, polyphenols and ascorbic acid content

  16. Optimization of the freezing process for hematopoietic progenitor cells: effect of precooling, initial dimethyl sulfoxide concentration, freezing program, and storage in vapor-phase or liquid nitrogen on in vitro white blood cell quality.

    Science.gov (United States)

    Dijkstra-Tiekstra, Margriet J; Setroikromo, Airies C; Kraan, Marcha; Gkoumassi, Effimia; de Wildt-Eggen, Janny

    2014-12-01

    Adding dimethyl sulfoxide (DMSO) to hematopoietic progenitor cells (HPCs) causes an exothermic reaction, potentially affecting their viability. The freezing method might also influence this. The aim was to investigate the effect of 1) precooling of DMSO and plasma (D/P) and white blood cell (WBC)-enriched product, 2) DMSO concentration of D/P, 3) freezing program, and 4) storage method on WBC quality. WBC-enriched product without CD34+ cells was used instead of HPCs. This was divided into six or eight portions. D/P (20 or 50%; precooled or room temperature [RT]) was added to the WBC-enriched product (precooled or RT), resulting in 10% DMSO, while monitoring temperature. The product was frozen using controlled-rate freezing ("fast-rate" or "slow-rate") and placed in vapor-phase or liquid nitrogen. After thawing, WBC recovery and viability were determined. Temperature increased most for precooled D/P to precooled WBC-enriched product, without influence of 20 or 50% D/P, but remained for all variations below 30°C. WBC recovery for both freezing programs was more than 95%. Recovery of WBC viability was higher for slow-rate freezing compared to fast-rate freezing (74% vs. 61%; p liquid nitrogen was marginal. Based on these results, precooling is not necessary. Fifty percent D/P is preferred over 20% D/P. Slow-rate freezing is preferred over fast-rate freezing. For safety reasons storage in vapor-phase nitrogen is preferred over storage in liquid nitrogen. Additional testing using real HPCs might be necessary. © 2014 AABB.

  17. Evaluation and Comparison of Freeze-Thaw Tests and Air Void Analysis of Pervious Concrete

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Kevern, John T.

    2016-01-01

    Pearl-Chain Bridge technology is an innovative precast arch bridge solution which uses pervious concrete as fill material. To ensure longevity of the bridge superstructure it is necessary that the per-vious concrete fill is designed to be freeze-thaw durable; however, no standards exist on how...... to eval-uate the freeze-thaw resistance of fresh or hardened pervious concrete and correspondingly what constitutes acceptable freeze-thaw durability. A greater understanding of the correlation between the freeze-thaw performance and the air void structure of pervious concrete is needed. In the present...... study six pervious concrete mixes were exposed to freeze-thaw testing, and their air void structure was analyzed using an automated linear-traverse method. It was found that there is a miscorrelation between these two test methods in their assumption of whether or not the large interconnected voids...

  18. Evaluation of freeze-thaw durability of pervious concrete by use of operational modal analysis

    DEFF Research Database (Denmark)

    Lund, M.S.M.; Hansen, K. K.; Brincker, R.

    2018-01-01

    It is well-known that laboratory testing of pervious concrete's freeze-thaw performance is too harsh and does not agree well with field observations. The most commonly used laboratory freeze-thaw test method for pervious concrete is similar to that used for conventional concrete even though...... the void structure of the two materials is completely different. In the present study, a new freeze-thaw test method for pervious concrete is suggested and tested on one baseline mix, with three different contents of entrained air. The evaluation of freeze-thaw damage on pervious concrete beams...... was evaluated from the decrease in mass and from operational modal analysis which provides an accurate determination of the change in natural frequencies with freeze-thaw exposure. Operational modal analysis was also used to determine the Young's modulus, shear modulus, and Poisson's ratio of the pervious...

  19. Direct numerical simulation of free convection in a vertical channel: a tool for second moment closure modeling

    International Nuclear Information System (INIS)

    Maupu, V.; Laurence, D.; Boudjemadi, R.; Le Quere, P.

    1996-03-01

    Natural turbulent convection in a differentially heated infinite vertical slot is computed with a mixed finite differences/Fourier code. At a Rayleigh number of 10 5 , periodic perturbations from the laminar solution develop and transition to a fully turbulent flow occurs. From then on, a database of high order correlations is constituted and used for testing a second moment closure based on the LRR model and elliptic relaxation near wall effects. Counter gradient turbulent transport, found in the central part of the channel, requires an algebraic model for the triple correlations instead of the standard DH or HL, gradient diffusion models. (authors). 18 refs., 14 figs., 1 tab

  20. Rehydration kinetics of freeze-dried carrots

    NARCIS (Netherlands)

    Vergeldt, F.J.; Dalen, van G.; Duijster, A.J.; Voda, A.; Khalloufi, S.; Vliet, van L.J.; As, van H.; Duynhoven, van J.P.M.; Sman, van der R.G.M.

    2014-01-01

    Rehydration kinetics by two modes of imbibition is studied in pieces of freeze-dried winter carrot, after different thermal pre-treatments. Water ingress at room temperature is measured in real time by in situ MRI and NMR relaxometry. Blanched samples rehydrate substantially faster compared to