WorldWideScience

Sample records for versatile electrical penetration

  1. A versatile electrical penetration design qualified to IEEE Std. 317-1983

    International Nuclear Information System (INIS)

    Lankenau, W.; Wetherill, T.M.

    1994-01-01

    Although worldwide demand for new construction of nuclear power stations has been on a decline, the available opportunities for the design and construction of qualified electrical penetrations continues to offer challenges, requiring a highly versatile design. Versatility is necessary in order to meet unique customer requirements within the constraints of a design basis qualified to IEEE Std. 317-1983. This paper summarizes such a versatile electrical penetration designed, built and tested to IEEE Std. 317-1983. The principal features are described including major materials of construction. Some of the design constraints such as sealing requirements, and conductor density (including numerical example) are discussed. The requirements for qualification testing of the penetration assembly to IEEE Std. 317-1983 are delineated in a general sense, and some typical test ranges for preconditioning, radiation exposure, and LOCA are provided. The paper concludes by describing ways in which this versatile design has been adapted to meet unique customer requirements in a variety of nuclear power plants

  2. NRC Information Notice No. 93-25: Electrical penetration assembly degradation

    International Nuclear Information System (INIS)

    Grimes, B.K.

    1993-01-01

    In July 1987 and in October 1989, the licensee for the Trojan Nuclear Plant, the Portland and General Electric Company, reported problems with containment air leakage through its Bunker-Ramo electrical penetration assembly seals. In July and August 1991, the NRC inspected the use of containment electrical penetration assembly seals at Trojan and concluded that the licensee had not established an effective program for trending and evaluating electrical penetration assembly seal leakage. On October 28, 1991, while the plant was in a refueling outage, the licensee reported to the NRC that in the originally installed electrical penetration assemblies, the seal (polyurethane) and lubricant (Celvacen or Glycerin) materials were inappropriate for the application. The licensee concluded that these materials may cause seal degradation and that the seals may become degraded if subjected to design basis accident conditions for moisture or temperature. The licensee replaced the electrical penetration assembly seal with an environmentally qualified ethylene propylene rubber seal and added a silicone rubber backup O-ring to the outer face of each electrical penetration assembly module. The licensee subsequently replaced all the Bunker-Ramo electrical penetration assemblies with Conax assemblies

  3. Integration of electric drive vehicles in the Danish electricity network with high wind power penetration

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob; Larsen, Esben

    2010-01-01

    /conventional) which are likely to fuel these cars. The study was carried out considering the Danish electricity network state around 2025, when the EDV penetration levels would be significant enough to have an impact on the power system. Some of the interesting findings of this study are - EDV have the potential......This paper presents the results of a study carried out to examine the feasibility of integrating electric drive vehicles (EDV) in the Danish electricity network which is characterised by high wind power penetration. One of the main aims of this study was to examine the effect of electric drive...... vehicles on the Danish electricity network, wind power penetration and electricity market. In particular the study examined the effect of electric drive vehicles on the generation capacity constraints, load curve, cross border transmission capacity and the type of generating sources (renewable...

  4. Prediction of electric vehicle penetration.

    Science.gov (United States)

    2017-05-01

    The object of this report is to present the current market status of plug-in-electric : vehicles (PEVs) and to predict their future penetration within the world and U.S. : markets. The sales values for 2016 show a strong year of PEV sales both in the...

  5. Multi-Period Optimization Model for Electricity Generation Planning Considering Plug-in Hybrid Electric Vehicle Penetration

    Directory of Open Access Journals (Sweden)

    Lena Ahmadi

    2015-05-01

    Full Text Available One of the main challenges for widespread penetration of plug-in hybrid electric vehicles (PHEVs is their impact on the electricity grid. The energy sector must anticipate and prepare for this extra demand and implement long-term planning for electricity production. In this paper, the additional electricity demand on the Ontario electricity grid from charging PHEVs is incorporated into an electricity production planning model. A case study pertaining to Ontario energy planning is considered to optimize the value of the cost of the electricity over sixteen years (2014–2030. The objective function consists of the fuel costs, fixed and variable operating and maintenance costs, capital costs for new power plants, and the retrofit costs of existing power plants. Five different case studies are performed with different PHEVs penetration rates, types of new power plants, and CO2 emission constraints. Among all the cases studied, the one requiring the most new capacity, (~8748 MW, is assuming the base case with 6% reduction in CO2 in year 2018 and high PHEV penetration. The next highest one is the base case, plus considering doubled NG prices, PHEV medium penetration rate and no CO2 emissions reduction target with an increase of 34.78% in the total installed capacity in 2030. Furthermore, optimization results indicate that by not utilizing coal power stations the CO2 emissions are the lowest: ~500 tonnes compared to ~900 tonnes when coal is permitted.

  6. Environmental qualification test of electrical penetration for nuclear power stations

    International Nuclear Information System (INIS)

    Kooziro, Tetsuya; Nakagawa, Akitoshi; Toyoda, Shigeru; Uno, Shunpei

    1979-01-01

    Environmental qualification test was conducted according to IEEE Std. 323-1974 in order to evaluate the safety and reliability of electrical penetration of PWR type nuclear power station. Electrical penetration is the assemblies of electric cables attached to the containment vessel and penetrate through the vessel. Since it is a part of the vessel, it is deemed to be one of the primary safety equipments that are important for the safety and reliability of nuclear power stations. Environmental tests were conducted continuously as to heat cycle, vibration and LOCA with the full size specimens of bushing type, pigtail type and triaxial cable type and at the same time thermal life and irradiation tests were conducted on the insulation materials used, in order to obtain the comprehensive evaluation of their electrical and mechanical characteristics. As the result, they all satisfied the requirements for the circuits for actual use during and after various environmental qualification tests according to IEEE Std. 323. (author)

  7. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    Energy Technology Data Exchange (ETDEWEB)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  8. Prospective Life Cycle Assessment of the Increased Electricity Demand Associated with the Penetration of Electric Vehicles in Spain

    Directory of Open Access Journals (Sweden)

    Zaira Navas-Anguita

    2018-05-01

    Full Text Available The penetration of electric vehicles (EV seems to be a forthcoming reality in the transport sector worldwide, involving significant increases in electricity demand. However, many countries such as Spain have not yet set binding policy targets in this regard. When compared to a business-as-usual situation, this work evaluates the life-cycle consequences of the increased electricity demand of the Spanish road transport technology mix until 2050. This is done by combining Life Cycle Assessment and Energy Systems Modelling under three alternative scenarios based on the low, medium, or high penetration rate of EV. In all cases, EV deployment is found to involve a relatively small percentage (<4% of the final electricity demand. Wind power and waste-to-energy plants arise as the main technologies responsible for meeting the increased electricity demand associated with EV penetration. When considering a high market penetration (20 million EV by 2050, the highest annual impacts potentially caused by the additional electricity demand are 0.93 Mt CO2 eq, 0.25 kDALY, and 30.34 PJ in terms of climate change, human health, and resources, respectively. Overall, EV penetration is concluded to slightly affect the national power generation sector, whereas it could dramatically reduce the life-cycle impacts associated with conventional transport.

  9. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    Energy Technology Data Exchange (ETDEWEB)

    Hand, M. M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baldwin, S. [U.S. Dept. of Energy, Washington, DC (United States); DeMeo, E. [Renewable Energy Consulting, Chicago, IL (United States); Reilly, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, D. [Joint Inst. for Strategic Energy Analysis, Boulder, CO (United States); Porro, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Meshek, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  10. High Penetrated Wind Farm Impacts on the Electricity Price

    DEFF Research Database (Denmark)

    Haji Bashi, Mazaher; Yousefi, G. R.; Bak, Claus Leth

    2016-01-01

    of the high penetrated wind farm integration into electricity markets. Then, stochastic programming approach is employed to compare the volume of trades for a typical wind farm in a high and low wind penetrated market. Although increasing price spikes and volatility was reported in the literature......Energy trading policies, intermittency of wind farm output power, low marginal cost of the production, are the key factors that cause the wind farms to be effective on the electricity price. In this paper, the Danish electricity market is studied as a part of Nord Pool. Considering the completely...... fossil fuel free overview in Danish energy policies, and the currently great share of wind power (more than 100% for some hours) in supplying the load, it is an interesting benchmark for the future electricity markets. Negative prices, price spikes, and price volatility are considered as the main effects...

  11. Numerical analysis on effective electric field penetration depth for interdigital impedance sensor

    International Nuclear Information System (INIS)

    Kim, Chon-ung; Jong, Hakchol; Ro, Cholwu; Pak, Gilhung; Im, Songil; Li, Guofeng; Li, Jie; Song, Yunho

    2013-01-01

    Interdigital (finger-like) electrodes are widely used for electrical impedance and capacitance tomography of composite dielectric materials and complex insulating structures. Because of their advantages, they are now effectively introduced as capacitance sensors into a variety of industrial branches, agriculture, medical science, biological engineering, military branches, etc. In order to effectively apply the so-called interdigital impedance sensors in practice, of great importance is to optimize the sensor design parameters such as the electric field penetration depth, signal strength and so on. The general design principles of the interdigital capacitance sensor have been discussed for a long time by many researchers. However, there is no consensus on the definition of the effective electric field penetration depth of interdigital electrode. This paper discusses how to determine the effective electric field penetration depth of interdigital sensor on the basis of the refractive principle of electric field intensity and the FEM analyses of electric field distribution and capacitance for the sensor model.

  12. Impact of PHEVs Penetration on Ontario’s Electricity Grid and Environmental Considerations

    Directory of Open Access Journals (Sweden)

    Lena Ahmadi

    2012-11-01

    Full Text Available Plug-in hybrid electric vehicles (PHEVs have a large potential to reduce greenhouse gases emissions and increase fuel economy and fuel flexibility. PHEVs are propelled by the energy from both gasoline and electric power sources. Penetration of PHEVs into the automobile market affects the electrical grid through an increase in electricity demand. This paper studies effects of the wide spread adoption of PHEVs on peak and base load demands in Ontario, Canada. Long-term forecasting models of peak and base load demands and the number of light-duty vehicles sold were developed. To create proper forecasting models, both linear regression (LR and non-linear regression (NLR techniques were employed, considering different ranges in the demographic, climate and economic variables. The results from the LR and NLR models were compared and the most accurate one was selected. Furthermore, forecasting the effects of PHEVs penetration is done through consideration of various scenarios of penetration levels, such as mild, normal and aggressive ones. Finally, the additional electricity demand on the Ontario electricity grid from charging PHEVs is incorporated for electricity production planning purposes.

  13. Electrical detection of cellular penetration during microinjection with carbon nanopipettes

    Science.gov (United States)

    Anderson, Sean E.; Bau, Haim H.

    2014-06-01

    The carbon nanopipette (CNP) is comprised of a pulled-glass pipette terminating with a nanoscale (tens to hundreds of nm) diameter carbon pipe. The entire inner glass surface of the CNP is coated with a carbon film, providing an electrically conductive path from the carbon tip to the distal, macroscopic end of the pipette. The CNP can double as a nanoelectrode, enabling electrical measurements through its carbon lining, and as a nanoinjector, facilitating reagent injection through its hollow bore. With the aid of a lock-in amplifier, we measured, in real time and with millisecond resolution, variations in impedance and interfacial capacitance as the CNP penetrated into the cytoplasm and nucleus of adherent human osteosarcoma (U20S) cells during microinjection. The capacitance change associated with nucleus penetration was, on average, 1.5 times greater than the one associated with cell membrane penetration. The experimental data was compared and favorably agreed with theoretical predictions based on a simple electrical network model. As a proof of concept, the cytoplasm and nucleus were transfected with fluorescent tRNA, enabling real-time monitoring of tRNA trafficking across the nuclear membrane. The CNP provides a robust and reliable means to detect cell and nucleus penetration, and trigger injection, thereby enabling the automation of cell injection.

  14. Electrical detection of cellular penetration during microinjection with carbon nanopipettes

    International Nuclear Information System (INIS)

    Anderson, Sean E; Bau, Haim H

    2014-01-01

    The carbon nanopipette (CNP) is comprised of a pulled-glass pipette terminating with a nanoscale (tens to hundreds of nm) diameter carbon pipe. The entire inner glass surface of the CNP is coated with a carbon film, providing an electrically conductive path from the carbon tip to the distal, macroscopic end of the pipette. The CNP can double as a nanoelectrode, enabling electrical measurements through its carbon lining, and as a nanoinjector, facilitating reagent injection through its hollow bore. With the aid of a lock-in amplifier, we measured, in real time and with millisecond resolution, variations in impedance and interfacial capacitance as the CNP penetrated into the cytoplasm and nucleus of adherent human osteosarcoma (U20S) cells during microinjection. The capacitance change associated with nucleus penetration was, on average, 1.5 times greater than the one associated with cell membrane penetration. The experimental data was compared and favorably agreed with theoretical predictions based on a simple electrical network model. As a proof of concept, the cytoplasm and nucleus were transfected with fluorescent tRNA, enabling real-time monitoring of tRNA trafficking across the nuclear membrane. The CNP provides a robust and reliable means to detect cell and nucleus penetration, and trigger injection, thereby enabling the automation of cell injection. (papers)

  15. The effect of longitudinal conductance variations on the ionospheric prompt penetration electric fields

    Science.gov (United States)

    Sazykin, S.; Wolf, R.; Spiro, R.; Fejer, B.

    Ionospheric prompt penetration electric fields of magnetospheric origin, together with the atmospheric disturbance dynamo, represent the most important parameters controlling the storm-time dynamics of the low and mid-latitude ionosphere. These prompt penetration fields result from the disruption of region-2 field-aligned shielding currents during geomagnetically disturbed conditions. Penetration electric fields con- trol, to a large extent, the generation and development of equatorial spread-F plasma instabilities as well as other dynamic space weather phenomena in the ionosphere equatorward of the auroral zone. While modeling studies typically agree with average patterns of prompt penetration fields, experimental results suggest that longitudinal variations of the ionospheric con- ductivities play a non-negligible role in controlling spread-F phenomena, an effect that has not previously been modeled. We present first results of modeling prompt pene- tration electric fields using a version of the Rice Convection Model (RCM) that allows for longitudinal variations in the ionospheric conductance tensor. The RCM is a first- principles numerical ionosphere-magnetosphere coupling model that solves for the electric fields, field-aligned currents, and particle distributions in the ionosphere and inner/middle magnetosphere. We compare these new theoretical results with electric field observations.

  16. Electricity demand profile with high penetration of heat pumps in Nordic area

    DEFF Research Database (Denmark)

    Liu, Zhaoxi; Wu, Qiuwei; Nielsen, Arne Hejde

    2013-01-01

    This paper presents the heat pump (HP) demand profile with high HP penetration in the Nordic area in order to achieve the carbon neutrality power system. The calculation method in the European Standard EN14825 was used to estimate the HP electricity demand profile. The study results show...... there will be high power demand from HPs and the selection of supplemental heating for heat pumps has a big impact on the peak electrical power load of heating. The study in this paper gives an estimate of the scale of the electricity demand with high penetration of heat pumps in the Nordic area....

  17. Development of conductor feedthrough module of LV electrical penetration assembly for research reactors

    International Nuclear Information System (INIS)

    Luo Zhiyuan; Wang Guangjin; Zhou Bin

    2007-01-01

    A LV electrical penetration assembly with perfusion sealing conductor feedthrough module was developed, which can be used for the connection of internal and external cables through the wall of the research reactor workshop. The LV electrical penetration assembly was combined with several independent modules. The maintenance and replacement of the assembly can be easily done in service. The sealing of conductor feedthrough module was achieved with the perfusion of self-extinguishing epoxy. The leakage between the conductor feedthrough module and the end plate module was blocked with rubber rings. The result of the leakage test and the electrical performance test for the samples of conductor feedthrough module satisfied the requirement of research reactor. The structure of the new electrical penetration assembly is simple and compact. It can be manufactured with mature technology and cost low price. The performance of the assembly is steady. It can be used widely in research reactors. (authors)

  18. Effects of renewables penetration on the security of Portuguese electricity supply

    International Nuclear Information System (INIS)

    Gouveia, João Pedro; Dias, Luís; Martins, Inês; Seixas, Júlia

    2014-01-01

    Highlights: • We assess the importance of the electricity sector in energy security in Portugal. • We compare energy security indicators for 2004 and 2011. • Strong wind penetration has an important role on the country energy security. • Infrastructure is the weaker component in electricity sector supply chain. - Abstract: The increase of renewables in power sector, together with the increase of their electricity share in final energy consumption, is changing our perception about energy security with diverse and contradictory statements. The Portuguese security of electricity supply is analyzed in this study by comparing selected indicators for 2 years before and after the high increase of onshore wind since 2005. Our goal is to find how the security of electricity supply was impacted by the penetration of renewables, taking a supply chain approach. Our analysis highlights that the penetration of renewables has decreased the energy dependence of the power sector by more than 20% between 2004 and 2011, while risks related to the concentration of natural gas suppliers and to the still-high share of fossil fuels suffering from price volatility are discussed. We observed a significant improvement in power interconnections with Spain, as well as an increase of the de-rated generation capacity margin, allowing proper management of renewable power intermittency if necessary, thereby improving power security. Although the share of intermittent renewables almost quadrupled in total installed capacity between those years, the indicators reveal an improvement in the quality of transport and distribution when delivering electricity to end-users. Although electricity prices increased, mainly due to taxes, the lack of energy efficiency is an aspect deserving improvement to alleviate the pressure on electricity security, mainly at high peak demands

  19. Hydrogeological characterisation using cross-borehole ground penetration radar and electrical resistivity tomography

    DEFF Research Database (Denmark)

    Zibar, Majken Caroline Looms

    2007-01-01

    was characterized by ~30 m thick unsaturated zone consisting mainly of sands of varying coarseness. Following an instrumentation of 16 boreholes two geophysical methods (cross-borehole ground penetrating radar and electrical resistivity tomography) were applied during natural precipitation and forced infiltration...... properties of the subsurface. On the other hand, volumetric moisture content variations of up to 5% were observed during a 20-day long forced infiltration experiment. The cross-borehole electrical resistance tomography and ground penetrating radar data collected during this experiment were subsequently....... The methods provided estimates of soil moisture content and electrical resistivity variations among 12 m deep boreholes located 5 – 7 m apart. The moisture content change following natural precipitation was observed to be practically negligible, providing minimal information to constrain the dynamic...

  20. Optimal Operation of Plug-In Electric Vehicles in Power Systems with High Wind Power Penetrations

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2013-01-01

    in the power systems with high wind power penetrations. In this paper, the integration of plug-in electric vehicles in the power systems with high wind power penetrations is proposed and discussed. Optimal operation strategies of PEV in the spot market are proposed in order to decrease the energy cost for PEV......The Danish power system has a large penetration of wind power. The wind fluctuation causes a high variation in the power generation, which must be balanced by other sources. The battery storage based Plug-In Electric Vehicles (PEV) may be a possible solution to balance the wind power variations...... owners. Furthermore, the application of battery storage based aggregated PEV is analyzed as a regulation services provider in the power system with high wind power penetrations. The western Danish power system where the total share of annual wind power production is more than 27% of the electrical energy...

  1. A Quantitative Analysis of the Impact of Wind Energy Penetration on Electricity Prices in Ireland

    OpenAIRE

    O'Flaherty, Micheál; Riordan, Niall; O'Neill, Noel; Ahern, Ciara

    2014-01-01

    The maturity of wind technology combined with availability of suitable sites means Ireland is on course to generate 40% of its electricity from the wind by 2020.This work sets out to quantify, to what degree, if any, increased wind penetration translates into reduced wholesale and retail prices for electricity. The consensus from the literature is that increasing wind penetration reduces wholesale electricity prices, but views vary as to what degree this translates into reduced retail prices ...

  2. Wind power bidding in electricity markets with high wind penetration

    International Nuclear Information System (INIS)

    Vilim, Michael; Botterud, Audun

    2014-01-01

    Highlights: • We analyze the pricing systems and wind power trading in electricity markets. • We propose a model that captures the relation between market prices and wind power. • A probabilistic bidding model can increase profits for wind power producers. • Profit maximizing bidding strategies carry risks for power system operators. • We conclude that modifications of current market designs may be needed. - Abstract: Objective: The optimal day-ahead bidding strategy is studied for a wind power producer operating in an electricity market with high wind penetration. Methods: A generalized electricity market is studied with minimal assumptions about the structure of the production, bidding, or consumption of electricity. Two electricity imbalance pricing schemes are investigated, the one price and the two price scheme. A stochastic market model is created to capture the price effects of wind power production and consumption. A bidding algorithm called SCOPES (Supply Curve One Price Estimation Strategy) is developed for the one price system. A bidding algorithm called MIMICS (Multivariate Interdependence Minimizing Imbalance Cost Strategy) is developed for the two price system. Results: Both bidding strategies are shown to have advantages over the assumed “default” bidding strategy, the point forecast. Conclusion: The success of these strategies even in the case of high deviation penalties in a one price system and the implicit deviation penalties of the two price system has substantial implications for power producers and system operators in electricity markets with a high level of wind penetration. Practice implications: From an electricity market design perspective, the results indicate that further penalties or regulations may be needed to reduce system imbalance

  3. Potential for containment leak paths through electrical penetration assemblies under severe accident conditions

    International Nuclear Information System (INIS)

    Sebrell, W.

    1983-07-01

    The leakage behavior of containments beyond design conditions and knowledge of failure modes is required for evaluation of mitigation strategies for severe accidents, risk studies, emergency preparedness planning, and siting. These studies are directed towards assessing the risk and consequences of severe accidents. An accident sequence analysis conducted on a Boiling Water Reactor (BWR), Mark I (MK I), indicated very high temperatures in the dry-well region, which is the location of the majority of electrical penetration assemblies. Because of the high temperatures, it was postulated in the ORNL study that the sealants would fail and all the electrical penetration assemblies would leak before structural failure would occur. Since other containments had similar electrical penetration assemblies, it was concluded that all containments would experience the same type of failure. The results of this study, however, show that this conclusion does not hold for PWRs because in the worst accident sequence, the long time containment gases stabilize to 350 0 F. BWRs, on the other hand, do experience high dry-well temperatures and have a higher potential for leakage

  4. Modelling chloride penetration in concrete using electrical voltage and current approaches

    Directory of Open Access Journals (Sweden)

    Juan Lizarazo-Marriaga

    2011-03-01

    Full Text Available This paper reports a research programme aimed at giving a better understanding of the phenomena involved in the chloride penetration in cement-based materials. The general approach used was to solve the Nernst-Planck equation numerically for two physical ideal states that define the possible conditions under which chlorides will move through concrete. These conditions are named in this paper as voltage control and current control. For each condition, experiments and simulations were carried out in order to establish the importance of electrical variables such as voltage and current in modelling chloride transport in concrete. The results of experiments and simulations showed that if those electrical variables are included as key parameters in the modelling of chloride penetration through concrete, a better understanding of this complex phenomenon can be obtained.

  5. Microscopic Driving Parameters-Based Energy-Saving Effect Analysis under Different Electric Vehicle Penetration

    Directory of Open Access Journals (Sweden)

    Enjian Yao

    2013-01-01

    Full Text Available Due to the rapid motorization over the recent years, China's transportation sector has been facing an increasing environmental pressure. Compared with gasoline vehicle (GV, electric vehicle (EV is expected to play an important role in the mitigation of CO2 and other pollution emissions, and urban air quality improvement, for its zero emission during use and higher energy efficiency. This paper aims to estimate the energy saving efficiency of EV, especially under different EV penetration and road traffic conditions. First, based on the emission and electricity consumption data collected by a light-duty EV and a light duty GV, a set of electricity consumption rate models and gasoline consumption rate models are established. Then, according to the conversion formula of coal equivalent, these models are transformed into coal equivalent consumption models, which make gasoline consumption and electricity consumption comparable. Finally, the relationship between the EV penetration and the reduction of energy consumption is explored based on the simulation undertaken on the North Second Ring Road in Beijing. The results show that the coal equivalent consumption will decrease by about 5% with the increases of EV penetration by 10% and the maximum energy-saving effect can be achieved when the traffic volume is about 4000 pcu/h.

  6. Electric vehicles in Danish power system with large penetration of wind power

    DEFF Research Database (Denmark)

    Yang, Lihui; Xu, Zhao; Østergaard, Jacob

    2011-01-01

    Electric vehicles (EVs) provide a unique opportunity for reducing the CO2 emissions from the transport sector. At the same time, EVs have the potential to play an important role in the economical and reliable operation of an electricity system with high penetration of renewable energy. An analysi......). The managing structure of V2G adopting virtual power plant (VPP) technology is proposed. © 2011 State Grid Electric Power Research Institute Press....... is made of the potential for using EVs in Denmark, and the benefits of the electric power system with high wind power generation by intelligent charging and discharging of EVs are enumerated. Based on the analysis, important technological gaps are identified, and the corresponding research and development...... initiatives of the recently established EDISON program are described. Moreover, the latest development of the EDISON program is treated, that is, EDISON as a research consortium to design a new model for the Danish power system with high penetration of wind power and EVs with vehicle to grid (V2G...

  7. Day-Ahead Energy Planning with 100% Electric Vehicle Penetration in the Nordic Region by 2050

    DEFF Research Database (Denmark)

    Liu, Zhaoxi; Wu, Qiuwei; Nielsen, Arne Hejde

    2014-01-01

    This paper presents the day-ahead energy planning of passenger cars with 100% electric vehicle (EV) penetration in the Nordic region by 2050. EVs will play an important role in the future energy systems which can both reduce the greenhouse gas (GHG) emission from the transport sector and provide...... demand side flexibility required by the smart grids. On the other hand, the EVs will increase the electricity consumption. In order to quantify the electricity consumption increase due to the 100% EV penetration in the Nordic region to facilitate the power system planning studies, the day-ahead energy...

  8. High penetration wind generation impacts on spot prices in the Australian national electricity market

    International Nuclear Information System (INIS)

    Cutler, Nicholas J.; Boerema, Nicholas D.; MacGill, Iain F.; Outhred, Hugh R.

    2011-01-01

    This paper explores wind power integration issues for the South Australian (SA) region of the Australian National Electricity Market (NEM) by assessing the interaction of regional wind generation, electricity demand and spot prices over 2 recent years of market operation. SA's wind energy penetration has recently surpassed 20% and it has only a limited interconnection with other regions of the NEM. As such, it represents an interesting example of high wind penetration in a gross wholesale pool market electricity industry. Our findings suggest that while electricity demand continues to have the greatest influence on spot prices in SA, wind generation levels have become a significant secondary influence, and there is an inverse relationship between wind generation and price. No clear relationship between wind generation and demand has been identified although some periods of extremely high demand may coincide with lower wind generation. Periods of high wind output are associated with generally lower market prices, and also appear to contribute to extreme negative price events. The results highlight the importance of electricity market and renewable policy design in facilitating economically efficient high wind penetrations. - Highlights: → In South Australia (SA) wind generation is having an influence on market prices. → Little or no correlation is found between wind generation and demand. → Wind farms in SA are receiving a lower average price than in other States. → The results highlight the importance of appropriate electricity market design.

  9. Prospective Life Cycle Assessment of the Increased Electricity Demand Associated with the Penetration of Electric Vehicles in Spain

    OpenAIRE

    Zaira Navas-Anguita; Diego García-Gusano; Diego Iribarren

    2018-01-01

    The penetration of electric vehicles (EV) seems to be a forthcoming reality in the transport sector worldwide, involving significant increases in electricity demand. However, many countries such as Spain have not yet set binding policy targets in this regard. When compared to a business-as-usual situation, this work evaluates the life-cycle consequences of the increased electricity demand of the Spanish road transport technology mix until 2050. This is done by combining Life Cycle Assessment ...

  10. IEEE Std 317-1972: IEEE standard for electric penetration assemblies in containment structures for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This standard prescribes the mechanical, electrical, and test requirements for the design, construction, and installation of electric penetration assemblies in containment structures for stationary nuclear power generating stations. The electric conductor and insulation characteristics of external circuits which connect to penetration assemblies are beyond the scope of these criteria. If there should be any conflict between this standard and those documents referenced herein, this standard shall take precedence over the referenced documents

  11. Anomalous Capacitive Sheath with Deep Radio Frequency Electric Field Penetration

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.

    2002-01-01

    A novel nonlinear effect of anomalously deep penetration of an external radio-frequency electric field into a plasma is described. A self-consistent kinetic treatment reveals a transition region between the sheath and the plasma. Because of the electron velocity modulation in the sheath, bunches in the energetic electron density are formed in the transition region adjusted to the sheath. The width of the region is of order V(subscript T)/omega, where V(subscript T) is the electron thermal velocity, and w is frequency of the electric field. The presence of the electric field in the transition region results in a cooling of the energetic electrons and an additional heating of the cold electrons in comparison with the case when the transition region is neglected

  12. Potential for containment leak paths through electrical penetration assemblies under severe accident conditions. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Sebrell, W.

    1983-07-01

    The leakage behavior of containments beyond design conditions and knowledge of failure modes is required for evaluation of mitigation strategies for severe accidents, risk studies, emergency preparedness planning, and siting. These studies are directed towards assessing the risk and consequences of severe accidents. An accident sequence analysis conducted on a Boiling Water Reactor (BWR), Mark I (MK I), indicated very high temperatures in the dry-well region, which is the location of the majority of electrical penetration assemblies. Because of the high temperatures, it was postulated in the ORNL study that the sealants would fail and all the electrical penetration assemblies would leak before structural failure would occur. Since other containments had similar electrical penetration assemblies, it was concluded that all containments would experience the same type of failure. The results of this study, however, show that this conclusion does not hold for PWRs because in the worst accident sequence, the long time containment gases stabilize to 350/sup 0/F. BWRs, on the other hand, do experience high dry-well temperatures and have a higher potential for leakage.

  13. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    will be an important balancing measure to enable the Danish government’s energy strategy, which implies 50% wind power penetration in the electric power system. An EV will be a storage device for smoothing power fluctuations from renewable resources especially wind power and provide valuable system services...... for a reliable power system operation. Cost-benefit analysis shows that intelligent bidirectional charging – vehicle to grid (V2G) – provides a socio-economic profit of 150 million Euro/year in the Danish electric power system in 2025 assuming that 15% of the Danish road transport need is supplied by electricity....... This paper analyse the potential for using EVs in Denmark and identify the benefits of the electric power system with high wind power generation by intelligent charging of the EVs. Based on the analysis important technology gabs are identified, and the corresponding research and development initiatives...

  14. Increasing penetration of renewable and distributed electricity generation and the need for different network regulation

    International Nuclear Information System (INIS)

    Joode, J. de; Jansen, J.C.; Welle, A.J. van der; Scheepers, M.J.J.

    2009-01-01

    The amount of decentralised electricity generation (DG) connected to distribution networks increases across EU member states. This increasing penetration of DG units poses potential costs and benefits for distribution system operators (DSOs). These DSOs are regulated since the business of electricity distribution is considered to be a natural monopoly. This paper identifies the impact of increasing DG penetration on the DSO business under varying parameters (network characteristics, DG technologies, network management type) and argues that current distribution network regulation needs to be improved in order for DSOs to continue to facilitate the integration of DG in the network. Several possible adaptations are analysed.

  15. Electric vehicles to support large wind power penetration in future danish power systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte; Thøgersen, Paul

    2012-01-01

    Electric Vehicles (EVs) could play major role in the future intelligent grids to support a large penetration of renewable energy in Denmark, especially electricity production from wind turbines. The future power systems aims to phase-out big conventional fossil-fueled generators with large number...... on low voltage residential networks. Significant amount of EVs could be integrated in local distribution grids with the support of intelligent grid and smart charging strategies....

  16. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  17. Evaluation of environmental qualification period for Conax electrical penetration assemblies. Final report

    International Nuclear Information System (INIS)

    Doroshuk, B.; Hager, M.; Brown, R.

    1995-05-01

    This report evaluates the environmental qualification period of Conax electrical penetration assemblies (EPAs) for extension from forty (40) years to sixty (60) years. The evaluation was performed based on a review of Conax EPAs supplied to Baltimore Gas ampersand Electric's (BGE) Calvert Cliffs Nuclear Power Plant Units 1 and 2. The report has been prepared so that it may be of use to any utility involved in the extension of the environmental qualification period for Conax EPAs installed in their plant(s). The report includes a section on the strategy which was developed for the effort to extend the qualified lives of the Conax EPAs. A review of documentation and plant conditions specific to BGE is included in the report to demonstrate the methodology. The documentation included qualification testing performed by Conax of the materials of construction of the EPA models. The plant conditions reviewed included both normal and accident environments, both of which are specific to Calvert Cliffs Nuclear Power Plant Units 1 and 2. This report can be used as a guide in the evaluation of similar installations of Conax electrical penetration assemblies in other nuclear power plants by applying the methodologies used herein in conjunction with the plant specific test reports, materials, and conditions

  18. Analysis of electrical penetration graph data: what to do with artificially terminated events?

    Science.gov (United States)

    Observing the durations of hemipteran feeding behaviors via Electrical Penetration Graph (EPG) results in situations where the duration of the last behavior is not ended by the insect under observation, but by the experimenter. These are artificially terminated events. In data analysis, one must ch...

  19. Managing high penetration of renewable energy in MV grid by electric vehicle storage

    DEFF Research Database (Denmark)

    Kordheili, Reza Ahmadi; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2015-01-01

    This paper proposes an intelligent algorithm for dealing with high penetration of renewable energy sources (RESs) in the medium voltage by intelligently managing electric vehicles (EVs), as one of the grid flexible loads. The MV grid used in this work is a CIGRE benchmark grid. Different...... residential and industrial loads are considered in this grid. The connection of medium voltage wind turbines to the grid is investigated. The solar panels in this study are residential panels. Also, EVs are located among the buses with residential demand. The study is done for different winter and summer...... scenarios, considering typical load profiles in Denmark. Different scenarios have been studied with different penetration level of RESs in the grid. The results show the capability of the proposed algorithm to reduce voltage deviations among the grid buses, as well as to increase the RES penetration...

  20. Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe

    NARCIS (Netherlands)

    Blok, K.; van Velzen, Leonore

    2018-01-01

    Cost-optimal electricity system configurations with increasing renewable energy penetration were determined in this article for six islands of different geographies, sizes and contexts, utilizing photovoltaic energy, wind energy, pumped hydro storage and battery storage. The results of the

  1. Penetration of Photovoltaics in Greece

    Directory of Open Access Journals (Sweden)

    Eugenia Giannini

    2015-06-01

    Full Text Available Recently, an interesting experiment was completed in Greece concerning photovoltaic penetration into the electricity production sector. Based on the relevant laws and in accordance to the related European directives, an explosive penetration process was completed in less than three years, resulting in a 7% share of photovoltaics in electricity production instead of the previous negligible share. The legislation was based on licensing simplification and generous feed-in-tariffs. This approach transformed photovoltaic technology from a prohibitively expensive to a competitive one. This work aims to summarize the relevant legislation and illustrate its effect on the resulting penetration. A sigmoid-shape penetration was observed which was explained by a pulse-type driving force. The return on investment indicator was proposed as an appropriate driving force, which incorporates feed-in-tariffs and turnkey-cost. Furthermore, the resulting surcharge on the electricity price due to photovoltaic penetration was also analyzed.

  2. Price Forecasting of Electricity Markets in the Presence of a High Penetration of Wind Power Generators

    OpenAIRE

    Saber Talari; Miadreza Shafie-khah; Gerardo J. Osório; Fei Wang; Alireza Heidari; João P. S. Catalão

    2017-01-01

    Price forecasting plays a vital role in the day-ahead markets. Once sellers and buyers access an accurate price forecasting, managing the economic risk can be conducted appropriately through offering or bidding suitable prices. In networks with high wind power penetration, the electricity price is influenced by wind energy; therefore, price forecasting can be more complicated. This paper proposes a novel hybrid approach for price forecasting of day-ahead markets, with high penetration of wind...

  3. The role of hydrogen in high wind energy penetration electricity systems: the Irish case

    International Nuclear Information System (INIS)

    Gonzalez, A.; McKeogh, E.; Gallachoir, B.O.

    2004-01-01

    The deployment of wind energy is constrained by wind uncontrollability, which poses operational problems on the electricity supply system at high penetration levels, lessening the value of wind-generated electricity to a significant extent. This paper studies the viability of hydrogen production via electrolysis using wind power that cannot be easily accommodated on the system. The potential benefits of hydrogen and its role in enabling a large penetration of wind energy are assessed, within the context of the enormous wind energy resource in Ireland. The exploitation of this wind resource may in the future give rise to significant amounts of surplus wind electricity, which could be used to produce hydrogen, the zero-emissions fuel that many experts believe will eventually replace fossil fuels in the transport sector. In this paper the operation of a wind powered hydrogen production system is simulated and optimised. The results reveal that, even allowing for significant cost-reductions in electrolyser and associated balance-of-plant equipment, low average surplus wind electricity cost and a high hydrogen market price are also necessary to achieve the economic viability of the technology. These conditions would facilitate the installation of electrolysis units of sufficient capacity to allow an appreciable increase in installed wind power in Ireland. The simulation model was also used to determine the CO 2 abatement potential associated with the wind energy/hydrogen production. (author)

  4. Factors Affecting the Rate of Penetration of Large-Scale Electricity Technologies: The Case of Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    James R. McFarland; Howard J. Herzog

    2007-05-14

    This project falls under the Technology Innovation and Diffusion topic of the Integrated Assessment of Climate Change Research Program. The objective was to better understand the critical variables that affect the rate of penetration of large-scale electricity technologies in order to improve their representation in integrated assessment models. We conducted this research in six integrated tasks. In our first two tasks, we identified potential factors that affect penetration rates through discussions with modeling groups and through case studies of historical precedent. In the next three tasks, we investigated in detail three potential sets of critical factors: industrial conditions, resource conditions, and regulatory/environmental considerations. Research to assess the significance and relative importance of these factors involved the development of a microeconomic, system dynamics model of the US electric power sector. Finally, we implemented the penetration rate models in an integrated assessment model. While the focus of this effort is on carbon capture and sequestration technologies, much of the work will be applicable to other large-scale energy conversion technologies.

  5. Optimal planning of the Nordic transmission system with 100% electric vehicle penetration of passenger cars by 2050

    International Nuclear Information System (INIS)

    Graabak, Ingeborg; Wu, Qiuwei; Warland, Leif; Liu, Zhaoxi

    2016-01-01

    This paper presents the optimal planning of the Nordic backbone transmission system with 100% electric vehicle penetration of passenger cars by 2050. Electric vehicles will play an important role in the future energy systems and can reduce the greenhouse gas emission from the transport sector. However, the electric vehicles will increase the electricity consumption and might induce congestions in the transmission systems. In order to deal with the electricity consumption increase from the electric vehicle integration into the power system and maximize the social welfare, the optimal investments of the Nordic transmission system are studied. Case studies were conducted using the market simulation model EMPS (Efi's multi-area power market simulator) and two electric vehicle charging scenarios: a spot price based scenario and a dumb charging scenario. The electric vehicle charging power is assumed to be 3.68 kW with 1 phase 16 A. The complete electrification of the private passenger fleet increases the yearly power demand in the Nordic region with ca 7.5%. The profitable increases in transmission capacities are highest for dumb charging, but are very low for both dumb and spot price based charging compared to a Reference case. - Highlights: • The electric vehicle distribution is done using population and car statistics. • The 100% penetration electric vehicle demand is obtained for Nordic countries. • The optimal investments in the Nordic transmission system with electric vehicles are studied.

  6. Severe accident testing of electrical penetration assemblies

    International Nuclear Information System (INIS)

    Clauss, D.B.

    1989-11-01

    This report describes the results of tests conducted on three different designs of full-size electrical penetration assemblies (EPAs) that are used in the containment buildings of nuclear power plants. The objective of the tests was to evaluate the behavior of the EPAs under simulated severe accident conditions using steam at elevated temperature and pressure. Leakage, temperature, and cable insulation resistance were monitored throughout the tests. Nuclear-qualified EPAs were produced from D. G. O'Brien, Westinghouse, and Conax. Severe-accident-sequence analysis was used to generate the severe accident conditions (SAC) for a large dry pressurized-water reactor (PWR), a boiling-water reactor (BWR) Mark I drywell, and a BWR Mark III wetwell. Based on a survey conducted by Sandia, each EPA was matched with the severe accident conditions for a specific reactor type. This included the type of containment that a particular EPA design was used in most frequently. Thus, the D. G. O'Brien EPA was chosen for the PWR SAC test, the Westinghouse was chosen for the Mark III test, and the Conax was chosen for the Mark I test. The EPAs were radiation and thermal aged to simulate the effects of a 40-year service life and loss-of-coolant accident (LOCA) before the SAC tests were conducted. The design, test preparations, conduct of the severe accident test, experimental results, posttest observations, and conclusions about the integrity and electrical performance of each EPA tested in this program are described in this report. In general, the leak integrity of the EPAs tested in this program was not compromised by severe accident loads. However, there was significant degradation in the insulation resistance of the cables, which could affect the electrical performance of equipment and devices inside containment at some point during the progression of a severe accident. 10 refs., 165 figs., 16 tabs

  7. Impacts of fleet types and charging modes for electric vehicles on emissions under different penetrations of wind power

    Science.gov (United States)

    Chen, Xinyu; Zhang, Hongcai; Xu, Zhiwei; Nielsen, Chris P.; McElroy, Michael B.; Lv, Jiajun

    2018-05-01

    Current Chinese policy promotes the development of both electricity-propelled vehicles and carbon-free sources of power. Concern has been expressed that electric vehicles on average may emit more CO2 and conventional pollutants in China. Here, we explore the environmental implications of investments in different types of electric vehicle (public buses, taxis and private light-duty vehicles) and different modes (fast or slow) for charging under a range of different wind penetration levels. To do this, we take Beijing in 2020 as a case study and employ hourly simulation of vehicle charging behaviour and power system operation. Assuming the slow-charging option, we find that investments in electric private light-duty vehicles can result in an effective reduction in the emission of CO2 at several levels of wind penetration. The fast-charging option, however, is counter-productive. Electrifying buses and taxis offers the most effective option to reduce emissions of NOx, a major precursor for air pollution.

  8. Day-Ahead Energy Planning with 100% Electric Vehicle Penetration in the Nordic Region by 2050

    Directory of Open Access Journals (Sweden)

    Zhaoxi Liu

    2014-03-01

    Full Text Available This paper presents the day-ahead energy planning of passenger cars with 100% electric vehicle (EV penetration in the Nordic region by 2050. EVs will play an important role in the future energy systems which can both reduce the greenhouse gas (GHG emissions from the transport sector and provide the demand side flexibility required by smart grids. On the other hand, the EVs will increase the electricity consumption. In order to quantify the electricity consumption increase due to the 100% EV penetration in the Nordic region to facilitate the power system planning studies, the day-ahead energy planning of EVs has been investigated with different EV charging scenarios. Five EV charging scenarios have been considered in the energy planning analysis which are: uncontrolled charging all day, uncontrolled charging at home, timed charging, spot price based charging all day and spot price based charging at home. The demand profiles of the five charging analysis show that timed charging is the least favorable charging option and the spot priced based EV charging might induce high peak demands. The EV charging demand will have a considerable share of the energy consumption in the future Nordic power system.

  9. Evaluation of the penetration depth of the shell welds by electrical methods

    International Nuclear Information System (INIS)

    Laille, Alain.

    1979-07-01

    The aim of the present work is the development of two electrical non-destructive methods (eddy currents and potentiometry) to estimate the penetration depth of electron bombardment welds. To illustrate the study and show its potential applications these methods are used on various materials (1 to 3 mm thick) and the results compared with the real welded depth evaluated after sectioning. Finally the potentiometric set-up is coupled to a data acquisition and processing system [fr

  10. Climate and Water Vulnerability of the US Electricity Grid Under High Penetrations of Renewable Energy

    Science.gov (United States)

    Macknick, J.; Miara, A.; O'Connell, M.; Vorosmarty, C. J.; Newmark, R. L.

    2017-12-01

    The US power sector is highly dependent upon water resources for reliable operations, primarily for thermoelectric cooling and hydropower technologies. Changes in the availability and temperature of water resources can limit electricity generation and cause outages at power plants, which substantially affect grid-level operational decisions. While the effects of water variability and climate changes on individual power plants are well documented, prior studies have not identified the significance of these impacts at the regional systems-level at which the grid operates, including whether there are risks for large-scale blackouts, brownouts, or increases in production costs. Adequately assessing electric grid system-level impacts requires detailed power sector modeling tools that can incorporate electric transmission infrastructure, capacity reserves, and other grid characteristics. Here, we present for the first time, a study of how climate and water variability affect operations of the power sector, considering different electricity sector configurations (low vs. high renewable) and environmental regulations. We use a case study of the US Eastern Interconnection, building off the Eastern Renewable Generation Integration Study (ERGIS) that explored operational challenges of high penetrations of renewable energy on the grid. We evaluate climate-water constraints on individual power plants, using the Thermoelectric Power and Thermal Pollution (TP2M) model coupled with the PLEXOS electricity production cost model, in the context of broader electricity grid operations. Using a five minute time step for future years, we analyze scenarios of 10% to 30% renewable energy penetration along with considerations of river temperature regulations to compare the cost, performance, and reliability tradeoffs of water-dependent thermoelectric generation and variable renewable energy technologies under climate stresses. This work provides novel insights into the resilience and

  11. Tissue location of resistance in apple to the rosy apple aphid established by electrical penetration graphs

    NARCIS (Netherlands)

    Marchetti, E.; Civolani, S.; Leis, M.; Chicca, M.; Tjallingii, W.F.; Pasqualini, E.; Baroni, P.

    2009-01-01

    A study of the constitutive resistance of the apple cultivar Florina, Malus domestica Borkh. (Rosaceae), to the rosy apple aphid, Dysaphis plantaginea (Passerini) (Homoptera Aphididae), was performed for the first time by the electrical penetration graph (DC-EPG) system, using the susceptible apple

  12. Penetration of Photovoltaics in Greece

    OpenAIRE

    Eugenia Giannini; Antonia Moropoulou; Zacharias Maroulis; Glykeria Siouti

    2015-01-01

    Recently, an interesting experiment was completed in Greece concerning photovoltaic penetration into the electricity production sector. Based on the relevant laws and in accordance to the related European directives, an explosive penetration process was completed in less than three years, resulting in a 7% share of photovoltaics in electricity production instead of the previous negligible share. The legislation was based on licensing simplification and generous feed-in-tariffs. This approach ...

  13. Analysis of Carbon Policies for Electricity Networks with High Penetration of Green Generation

    Science.gov (United States)

    Feijoo, Felipe A.

    In recent decades, climate change has become one of the most crucial challenges for humanity. Climate change has a direct correlation with global warming, caused mainly by the green house gas emissions (GHG). The Environmental Protection Agency in the U.S. (EPA) attributes carbon dioxide to account for approximately 82% of the GHG emissions. Unfortunately, the energy sector is the main producer of carbon dioxide, with China and the U.S. as the highest emitters. Therefore, there is a strong (positive) correlation between energy production, global warming, and climate change. Stringent carbon emissions reduction targets have been established in order to reduce the impacts of GHG. Achieving these emissions reduction goals will require implementation of policies like as cap-and-trade and carbon taxes, together with transformation of the electricity grid into a smarter system with high green energy penetration. However, the consideration of policies solely in view of carbon emissions reduction may adversely impact other market outcomes such as electricity prices and consumption. In this dissertation, a two-layer mathematical-statistical framework is presented, that serves to develop carbon policies to reduce emissions level while minimizing the negative impacts on other market outcomes. The bottom layer of the two layer model comprises a bi-level optimization problem. The top layer comprises a statistical model and a Pareto analysis. Two related but different problems are studied under this methodology. The first problem looks into the design of cap-and-trade policies for deregulated electricity markets that satisfy the interest of different market constituents. Via the second problem, it is demonstrated how the framework can be used to obtain levels of carbon emissions reduction while minimizing the negative impact on electricity demand and maximizing green penetration from microgrids. In the aforementioned studies, forecasts for electricity prices and production cost

  14. Optimal Planning of the Nordic Transmission System with 100% Electric Vehicle Penetration of passenger cars by 2050

    DEFF Research Database (Denmark)

    Graabak, Ingeborg; Wu, Qiuwei; Warland, Leif

    2016-01-01

    This paper presents the optimal planning of the Nordic backbone transmission system with 100% electric vehicle penetration of passenger cars by 2050. Electric vehicles will play an important role in the future energy systems and can reduce the greenhouse gas emission from the transport sector....... However, the electric vehicles will increase the electricity consumption and might induce congestions in the transmission systems. In order to deal with the electricity consumption increase from the electric vehicle integration into the power system and maximize the social welfare, the optimal investments...... of the Nordic transmission system are studied. Case studies were conducted using the market simulation model EMPS and two electric vehicle charging scenarios: a spot price based scenario and a dumb charging scenario. The electric vehicle charging power is assumed to be 3.68 kW with 1 phase 16A. The complete...

  15. A Versatile and Reproducible Multi-Frequency Electrical Impedance Tomography System

    Directory of Open Access Journals (Sweden)

    James Avery

    2017-01-01

    Full Text Available A highly versatile Electrical Impedance Tomography (EIT system, nicknamed the ScouseTom, has been developed. The system allows control over current amplitude, frequency, number of electrodes, injection protocol and data processing. Current is injected using a Keithley 6221 current source, and voltages are recorded with a 24-bit EEG system with minimum bandwidth of 3.2 kHz. Custom PCBs interface with a PC to control the measurement process, electrode addressing and triggering of external stimuli. The performance of the system was characterised using resistor phantoms to represent human scalp recordings, with an SNR of 77.5 dB, stable across a four hour recording and 20 Hz to 20 kHz. In studies of both haeomorrhage using scalp electrodes, and evoked activity using epicortical electrode mats in rats, it was possible to reconstruct images matching established literature at known areas of onset. Data collected using scalp electrode in humans matched known tissue impedance spectra and was stable over frequency. The experimental procedure is software controlled and is readily adaptable to new paradigms. Where possible, commercial or open-source components were used, to minimise the complexity in reproduction. The hardware designs and software for the system have been released under an open source licence, encouraging contributions and allowing for rapid replication.

  16. Electric Vehicles for Improved Operation of Power Systems with High Wind Power Penetration

    OpenAIRE

    Larsen, Esben; Chandrashekhara, Divya K; Østergaard, Jacob

    2008-01-01

    In a power system with a high share of wind energy the wind fluctuation causes a variation in the power generation, which must be compensated from other sources. The situation in Denmark with a penetration of more than 20% wind in yearly average is presented. The introduction of electric drive vehicles (EDV) as flexible loads can improve the system operation. Bidirectional power exchange through batteries (vehicle to grid) can be seen as a storage system in the grid. An analysis of possible e...

  17. Potential Effect and Analysis of High Residential Solar Photovoltaic (PV Systems Penetration to an Electric Distribution Utility (DU

    Directory of Open Access Journals (Sweden)

    Jeffrey Tamba Dellosa

    2016-11-01

    Full Text Available The Renewable Energy Act of 2008 in the Philippines provided an impetus for residential owners to explore solar PV installations at their own rooftops through the Net-Metering policy. The Net-Metering implementation through the law however presented some concerns with inexperienced electric DU on the potential effect of high residential solar PV system installations. It was not known how a high degree of solar integration to the grid can possibly affect the operations of the electric DU in terms of energy load management. The primary objective of this study was to help the local electric DU in the analysis of the potential effect of high residential solar PV system penetration to the supply and demand load profile in an electric distribution utility (DU grid in the province of Agusan del Norte, Philippines. The energy consumption profiles in the year 2015 were obtained from the electric DU operating in the area. An average daily energy demand load profile was obtained from 0-hr to the 24th hour of the day based from the figures provided by the electric DU. The assessment part of the potential effect of high solar PV system integration assumed four potential total capacities from 10 Mega Watts (MW to 40 MW generated by all subscribers in the area under study at a 10 MW interval. The effect of these capacities were measured and analyzed with respect to the average daily load profile of the DU. Results of this study showed that a combined installations beyond 20 MWp coming from all subscribers is not viable for the local electric DU based on their current energy demand or load profile. Based from the results obtained, the electric DU can make better decisions in the management of high capacity penetration of solar PV systems in the future, including investment in storage systems when extra capacities are generated. Article History: Received July 15th 2016; Received in revised form Sept 23rd 2016; Accepted Oct 1st 2016; Available online How to Cite

  18. Storm time electric field penetration observed at mid-latitude

    International Nuclear Information System (INIS)

    Yeh, H.C.; Foster, J.C.; Rich, F.J.; Swider, W.

    1991-01-01

    During the height of the February 8-9, 1986, magnetic storm the Millstone Hill radar was in the evening local time sector (1600-2200 MLT). Radar observations indicate that high speed (>1,000 m s -1 ) westward ion flow penetrated deeply below 50 degree invariant latitude (Λ) and persisted for 6 hours between 2100 UT on February 8 and 0300 UT on February 9. The double-peaked ion convection feature was pronounced throughout the period, and the separation in the dual maxima ranged from 4 degree to 10 degree. The latitude positions of the high-latitude ion drift peak and the convection reversal varied in unison. The low-latitude ion drift peak (∼49 degree Λ or L =2.3) did not show significant universal time/magnetic local time (UT/MLT) variation in its latitude location but showed a decrease in magnitude during the initial recovery phase of the storm. Using simultaneous particle (30 eV-30 keV) precipitation data from the DMSP F6 and F7 satellites, the authors find the high-latitude ion drift peak to coincide with the boundary plasma sheet/central plasma sheet transition in the high ionospheric conductivity (>15 mho) region. The low-latitude ion drift peak lay between the equatorward edges of the electron and soft ( + dominated ring current energy density in magnetic latitude. The low-latitude ion drift peak is the low-altitude signature of the electric field shielding effect associated with ring current penetration into the outer layer of the storm time plasmasphere

  19. High Penetration of Electrical Vehicles in Microgrids: Threats and Opportunities

    Science.gov (United States)

    Khederzadeh, Mojtaba; Khalili, Mohammad

    2014-10-01

    Given that the microgrid concept is the building block of future electric distribution systems and electrical vehicles (EVs) are the future of transportation market, in this paper, the impact of EVs on the performance of microgrids is investigated. Demand-side participation is used to cope with increasing demand for EV charging. The problem of coordination of EV charging and discharging (with vehicle-to-grid (V2G) functionality) and demand response is formulated as a market-clearing mechanism that accepts bids from the demand and supply sides and takes into account the constraints put forward by different parts. Therefore, a day-ahead market with detailed bids and offers within the microgrid is designed whose objective is to maximize the social welfare which is the difference between the value that consumers attach to the electrical energy they buy plus the benefit of the EV owners participating in the V2G functionality and the cost of producing/purchasing this energy. As the optimization problem is a mixed integer nonlinear programming one, it is decomposed into one master problem for energy scheduling and one subproblem for power flow computation. The two problems are solved iteratively by interfacing MATLAB with GAMS. Simulation results on a sample microgrid with different residential, commercial and industrial consumers with associated demand-side biddings and different penetration level of EVs support the proposed formulation of the problem and the applied methods.

  20. Can a nightside geomagnetic Delta H observed at the equator manifest a penetration electric field?

    Science.gov (United States)

    Wei, Y.; Fraenz, M.; Dubinin, E.; He, M.; Ren, Z.; Zhao, B.; Liu, J.; Wan, W.; Yumoto, K.; Watari, S.; Alex, S.

    2013-06-01

    A prompt penetration electric field (PPEF) usually manifests itself in the form of an equatorial ionospheric electric field being in correlation with a solar wind electric field. Due to the strong Cowling conductivity, a PPEF on the dayside can be inferred from Delta H (ΔH), which is the difference in the magnitudes of the horizontal (H) component between a magnetometer at the magnetic equator and one off the equator. This paper aims to investigate the performance of ΔH in response to a PPEF on the nightside, where the Cowling conductivity is not significant. We first examine the strongest geomagnetically active time during the 20 November 2003 superstorm when the Dst drops to -473 nT and show that the nightside ΔH can indeed manifest a PPEF but with local time dependence and longitude dependence. We then examine a moderately active time by taking advantage of the multiple-penetration event during 11-16 November 2003 when the Dst remains greater than -60 nT. During this event, a series of PPEF pulses recorded in Peru, Japan, and India form a database, allowing us to examine PPEF effects at different local times and longitudes. The results show that (1) the nightside ΔH was caused by attenuation of the effects of the polar electric field with decreasing latitude; (2) the nightside ΔH can manifest a PPEF at least in the midnight-dawn sector (0000-0500 LT), but not always; and (3) the magnitude of the nightside ΔH in the midnight-dawn sector in Peru is on average only 1/18 of that of the dayside ΔH in response to a given PPEF.

  1. Optimizing the U.S. Electric System with a High Penetration of Renewables

    Science.gov (United States)

    Corcoran, B. A.; Jacobson, M. Z.

    2013-12-01

    As renewable energy generators are increasingly being installed throughout the U.S., there is growing interest in interconnecting diverse renewable generators (primarily wind and solar) across large geographic areas through an enhanced transmission system. This reduces variability in the aggregate power output, increases system reliability, and allows for the development of the best overall group of renewable technologies and sites to meet the load. Studies are therefore needed to determine the most efficient and economical plan to achieve large area interconnections in a future electric system with a high penetration of renewables. This research quantifies the effects of aggregating electric load together with diverse renewable generation throughout the ten Federal Energy Regulatory Commission (FERC) regions in the contiguous U.S. A deterministic linear program has been built in AMPL (A Mathematical Programming Language) to solve for the least-cost organizational structure and system (generators, transmission, and storage) for a highly renewable electric grid. The analysis will 1) examine a highly renewable 2006 electric system, including various sensitivity cases and additional system components such as additional load from electric vehicles, and 2) create a 'roadmap' from the existing 2006 system to a highly renewable system in 2030, accounting for projected price and demand changes and generator retirements based on age and environmental regulations. Ideally, results from this study will offer insight for a federal renewable energy policy (such as a renewable portfolio standard) and how to best organize U.S. regions for transmission planning.

  2. A forward model for ground penetrating radar imaging of buried perfect electric conductors within the physical optics approximation

    DEFF Research Database (Denmark)

    Polat, Burak; Meincke, Peter

    2004-01-01

    A forward model for ground penetrating radar imaging of buried 3-D perfect electric conductors is addressed within the framework of diffraction tomography. The similarity of the present forward model derived within the physical optics approximation with that derived within the first Born...

  3. Penetration of sulfur hexafluoride into cellular polypropylene films and its effect on the electric charging and electromechanical response of ferroelectrets

    International Nuclear Information System (INIS)

    Qiu Xunlin; Wegener, Michael; Wirges, Werner; Zhang Xiaoqing; Hillenbrand, Joachim; Xia Zhongfu; Gerhard-Multhaupt, Reimund; Sessler, Gerhard M

    2005-01-01

    Cellular polypropylene (PP) films were treated with sulfur hexafluoride (SF 6 ) gas in order to study the SF 6 penetration behaviour and optimize the electric charging conditions. There were differences in the penetration of SF 6 for different cellular PP materials, depending on the microscopic properties, which manifest themselves in the voided structure as well as in the mechanical stiffnesses of the cellular films. The penetration of SF 6 after long-term pressure treatment is confirmed in strongly inflated cellular PP films with a low mechanical stiffness of about 1 MPa. No SF 6 penetration occurs for slightly inflated cellular PP films with smaller void sizes and higher mechanical stiffnesses of around 5.8 MPa. The observed thickness variations, the higher charging fields during corona charging because of SF 6 penetration and the SF 6 environment, as well as the resulting electromechanical properties are discussed

  4. Research and development of a versatile portable speech prosthesis

    Science.gov (United States)

    1981-01-01

    The Versatile Portable Speech Prosthesis (VPSP), a synthetic speech output communication aid for non-speaking people is described. It was intended initially for severely physically limited people with cerebral palsy who are in electric wheelchairs. Hence, it was designed to be placed on a wheelchair and powered from a wheelchair battery. It can easily be separated from the wheelchair. The VPSP is versatile because it is designed to accept any means of single switch, multiple switch, or keyboard control which physically limited people have the ability to use. It is portable because it is mounted on and can go with the electric wheelchair. It is a speech prosthesis, obviously, because it speaks with a synthetic voice for people unable to speak with their own voices. Both hardware and software are described.

  5. Stylet penetration of Cacopsylla pyri; an electrical penetration graph (EPG) study

    NARCIS (Netherlands)

    Civolani, S.; Leis, M.; Grandi, G.; Garzo, E.; Pasqualini, E.; Musacchi, S.; Chicca, M.; Castaldelli, G.; Rossie, M.; Tjallingii, W.F.

    2011-01-01

    Detailed information on plant penetration activities by pear psylla Cacopsylla pyri L. (Hemiptera Psyllidae) is essential to study phytoplasma transmission of “Candidatus Phytoplasma pyri” responsible of pear decline disease (PD) and to trace and evaluate resistant traits in new pear tree selections

  6. Improving Photovoltaic and Electric Vehicle Penetration in Distribution Grids with Smart Transformer

    DEFF Research Database (Denmark)

    Huang, Shaojun; Pillai, Jayakrishnan Radhakrishna; Liserre, Marco

    2013-01-01

    High penetration of electrical vehicles (EVs) and photovoltaics (PVs) can cause significant voltage issues in low voltage distribution grids. To certain extent, the transformer with on-load tap changers can regulate its output voltage, thus relieving the voltage issues and improve the hosting...... capacity of the grid. Smart transformer (ST) is a more powerful component providing faster and superior voltage regulation, as it can regulate the voltage, the frequency and the harmonic behavior of each feeder. This paper will discuss the benefit of this new feature offered by ST through simulation......, analysis and comparison with traditional transformer, where load flow analysis, optimization and multiple line drop compensation (MLDC) methods are involved....

  7. Storm-time total electron content and its response to penetration electric fields over South America

    Directory of Open Access Journals (Sweden)

    P. M. de Siqueira

    2011-10-01

    Full Text Available In this work the response of the ionosphere due to the severe magnetic storm of 7–10 November 2004 is investigated by analyzing GPS Total Electron Content (TEC maps constructed for the South America sector. In order to verify the disturbed zonal electric fields in South America during the superstorm, ionospheric vertical drift data obtained from modeling results are used in the analysis. The vertical drifts were inferred from ΔH magnetometer data (Jicamarca-Piura following the methodology presented by Anderson et al. (2004. Also used were vertical drifts measured by the Jicamarca ISR. Data from a digisonde located at São Luís, Brazil (2.33° S, 44.2° W, dip latitude 0.25° are presented to complement the Jicamarca equatorial data. Penetration electric fields were observed by the comparison between the equatorial vertical drifts and the Interplanetary Electric Field (IEF. The TEC maps obtained from GPS data reflect the ionospheric response over the South America low-latitude and equatorial region. They reveal unexpected plasma distributions and TEC levels during the main phase of the superstorm on 7 November, which is coincident with the local post-sunset hours. At this time an increase in the pre-reversal enhancement was expected to develop the Equatorial Ionization Anomaly (EIA but we observed the absence of EIA. The results also reveal well known characteristics of the plasma distributions on 8, 9, and 10 November. The emphasized features are the expansion and intensification of EIA due to prompt penetration electric fields on 9 November and the inhibition of EIA during post-sunset hours on 7, 8, and 10 November. One important result is that the TEC maps provided a bi-dimensional view of the ionospheric changes offering a spatial description of the electrodynamics involved, which is an advantage over TEC measured by isolated GPS receivers.

  8. Price Forecasting of Electricity Markets in the Presence of a High Penetration of Wind Power Generators

    Directory of Open Access Journals (Sweden)

    Saber Talari

    2017-11-01

    Full Text Available Price forecasting plays a vital role in the day-ahead markets. Once sellers and buyers access an accurate price forecasting, managing the economic risk can be conducted appropriately through offering or bidding suitable prices. In networks with high wind power penetration, the electricity price is influenced by wind energy; therefore, price forecasting can be more complicated. This paper proposes a novel hybrid approach for price forecasting of day-ahead markets, with high penetration of wind generators based on Wavelet transform, bivariate Auto-Regressive Integrated Moving Average (ARIMA method and Radial Basis Function Neural Network (RBFN. To this end, a weighted time series for wind dominated power systems is calculated and added to a bivariate ARIMA model along with the price time series. Moreover, RBFN is applied as a tool to correct the estimation error, and particle swarm optimization (PSO is used to optimize the structure and adapt the RBFN to the particular training set. This method is evaluated on the Spanish electricity market, which shows the efficiency of this approach. This method has less error compared with other methods especially when it considers the effects of large-scale wind generators.

  9. Analysis of the market penetration of clean coal technologies and its impacts in China's electricity sector

    International Nuclear Information System (INIS)

    Wang, Hao; Nakata, Toshihiko

    2009-01-01

    This paper discusses policy instruments for promoting the market penetration of clean coal technologies (CCTs) into China's electricity sector and the evaluation of corresponding effects. Based on the reality that coal will remain the predominant fuel to generate electricity and conventional pulverized coal boiler power plants have serious impacts on environment degradation, development of clean coal technologies could be one alternative to meet China's fast growing demand of electricity as well as protect the already fragile environment. A multi-period market equilibrium model is applied and an electricity model of China is established to forecast changes in the electricity system up to 2030s. Three policy instruments: SO 2 emission charge, CO 2 emission charge and implementing subsidies are considered in this research. The results show that all instruments cause a significant shift in China's electricity structure, promote CCTs' competitiveness and lead China to gain great benefit in both resource saving and environment improvement. Since resource security and environment degradation are becoming primary concerns in China, policies that could help to gain generations' market share of advanced coal-based technologies such as CCTs' is suitable for the current situation of China's electricity sector. (author)

  10. New technologies in electrical penetration graph (EPG) monitors of insect feeding and their applications for 21st century entomology

    Science.gov (United States)

    Electrical penetration graph (EPG) monitoring of insect feeding is a rigorous means of observing and quantifying feeding behaviors of piercing-sucking arthropods, as well as fine details of chewing and oviposition behaviors not observable visually. While EPG was originally invented nearly 50 years ...

  11. EFFECTS OF THE PENETRATION OF WIND POWER IN THE BRAZILIAN ELECTRICITY MARKET

    Directory of Open Access Journals (Sweden)

    Milton M. Herrera

    2016-12-01

    Full Text Available Climate variability has been the main driver for renewables in the Brazilian electricity market. This article analyzes the vulnerabilities of the dependence on hydropower in renewable energy production due to climate variation, as well as wind power penetration in Brazil, given a set of wind industry policies. Despite Brazilian renewable energy increase, the study shows the impact in energy supply in north region, due to the lack of transmission infrastructure. In Brazil, the potential trade-offs between renewables growth, and transmission infrastructure inconsistencies in terms of policy implementation are not yet well analyzed. Simulation results show the potential conflicts between energy policies aimed at increasing the wind power supply and boundaries in transmission infrastructure.

  12. Effects of the penetration of wind power in the brazilian electricity market

    Directory of Open Access Journals (Sweden)

    Milton M. Herrera

    2016-12-01

    Full Text Available Climate variability has been the main driver for renewables in the Brazilian electricity market. This article analyzes the vulnerabilities of the dependence on hydropower in renewable energy production due to climate variation, as well as wind power penetration in Brazil, given a set of wind industry policies. Despite Brazilian renewable energy increase, the study shows the impact in energy supply in north region, due to the lack of transmission infrastructure. In Brazil, the potential trade-offs between renewables growth, and transmission infrastructure inconsistencies in terms of policy implementation are not yet well analyzed. Simulation results show the potential conflicts between energy policies aimed at increasing the wind power supply and boundaries in transmission infrastructure.

  13. Assessment of high penetration of solar photovoltaics in Wisconsin

    International Nuclear Information System (INIS)

    Myers, Kevin S.; Klein, Sanford A.; Reindl, Douglas T.

    2010-01-01

    This paper provides an assessment of the large-scale implementation of distributed solar photovoltaics in Wisconsin with regard to its interaction with the utility grid, economics of varying levels of high penetration, and displaced emissions. These assessment factors are quantified using simulations with measured hourly solar radiation and weather data from the National Solar Radiation Database as primary inputs. Hourly utility load data for each electric utility in Wisconsin for a complete year were used in combination with the simulated PV output to quantify the impacts of high penetration of distributed PV on the aggregate Wisconsin electric utility load. As the penetration rate of distributed PV systems increases, both economic and environmental benefits experience diminishing returns. At penetration rates exceeding 15-20% of the aggregate utility load peak, less of the PV-energy is utilized and the contribution of the aggregate electricity generated from PV approaches a practical limit. The limit is not affected by costs, but rather by the time-distribution of available solar radiation and mismatch with the coincidence of aggregate utility electrical loads. The unsubsidized levelized cost of electricity from PV is more than four times greater than the current market price for electricity, based on time-of-use rates, in Wisconsin. At the present time, the investment in solar PV as a cost-effective means to reduce emissions from traditional electricity generation sources is not justified. (author)

  14. Risk assessment of electric generation systems with high wind penetration

    International Nuclear Information System (INIS)

    Salgado Duarte, Yorlandys; Castillo Serpa, Alfredo M. del

    2017-01-01

    The research evaluates the risk function of an Electric Generation System (SGE) with high wind power penetration using the Sequential Monte Carlo Simulation (SMCS) method, which allows calculating indicators that characterize the performance of the SGE with expected average values. The research uses a Markov model of two states or four states according to the characteristics of the generator to simulate the instantaneous capacity. The primary sources of each conventional generator are assumed to be always available; however, wind power depends on the wind behavior in each analyzed region. In this research, the Chronological Series and Weibull models are used to model the wind behavior, and the analyzes are performed in the IEEE-RTS system. The work shows that the behavior of the probabilistic indicators used to analyze the static capacity of the SGE is determined by the model used to simulate the stochastic of the generators and by the primary energy source. (author)

  15. Sensitivity of portuguese electricity market prices to solar PV penetration : an analysis of 2016 prices

    OpenAIRE

    Cordeiro De Sousa, João

    2017-01-01

    The reduction in price of solar PV technology led, in the recent years, multiple investors to apply for installing new solar PV power plants in Portugal which would operate without subsidies or feed-in-tari s. In 2016 it was reported the approval of construction of such power plants and given the low variable cost of this technology it is expected that their penetration would reduce the electricity market prices. Hence, before doing the economic assessment of potential new sola...

  16. Market penetration speed and effects on CO2 reduction of electric vehicles and plug-in hybrid electric vehicles in Japan

    International Nuclear Information System (INIS)

    Yabe, Kuniaki; Shinoda, Yukio; Seki, Tomomichi; Tanaka, Hideo; Akisawa, Atsushi

    2012-01-01

    Abstarct: In order to reduce CO 2 emissions in the passenger vehicle sector, mass introduction of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) is required despite their high battery costs. This paper forecasts the rate at which EV/PHEV will penetrate into the market in the future and the effects of that spread on CO 2 reduction by using a learning curve for lithium-ion batteries, distribution of daily travel distance for each vehicle, and an optimal power generation planning model for charging vehicles. Taking into consideration each driver's economical viewpoint, the speed at which the EV/PHEV share of the new passenger vehicle market grows is fairly slow. The optimum calculation in our base case shows that the share of EV/PHEV is only a quarter even in 2050. However, the initial price and progress rate of batteries have a great effect on this share. Therefore, long-term economic support from the government and significant R and D innovation are required to reduce CO 2 drastically through cutting down battery price. The results also show how much the CO 2 emission intensity of power generation affects the CO 2 reduction rate by introducing EV/PHEV. - Highlights: ► Authors minimized the total cost of vehicle and power supply sectors until 2050. ► Simulation results show the penetration speed of PHEVs/EVs is not so fast. ► To accelerate it and reduce CO 2 , subsidies and innovations are required. ► The introduction of PHEVs/EVs is still reasonable even after the nuclear accident.

  17. Incorporating Charging/Discharging Strategy of Electric Vehicles into Security-Constrained Optimal Power Flow to Support High Renewable Penetration

    Directory of Open Access Journals (Sweden)

    Kyungsung An

    2017-05-01

    Full Text Available This research aims to improve the operational efficiency and security of electric power systems at high renewable penetration by exploiting the envisioned controllability or flexibility of electric vehicles (EVs; EVs interact with the grid through grid-to-vehicle (G2V and vehicle-to-grid (V2G services to ensure reliable and cost-effective grid operation. This research provides a computational framework for this decision-making process. Charging and discharging strategies of EV aggregators are incorporated into a security-constrained optimal power flow (SCOPF problem such that overall energy cost is minimized and operation within acceptable reliability criteria is ensured. Particularly, this SCOPF problem has been formulated for Jeju Island in South Korea, in order to lower carbon emissions toward a zero-carbon island by, for example, integrating large-scale renewable energy and EVs. On top of conventional constraints on the generators and line flows, a unique constraint on the system inertia constant, interpreted as the minimum synchronous generation, is considered to ensure grid security at high renewable penetration. The available energy constraint of the participating EV associated with the state-of-charge (SOC of the battery and market price-responsive behavior of the EV aggregators are also explored. Case studies for the Jeju electric power system in 2030 under various operational scenarios demonstrate the effectiveness of the proposed method and improved operational flexibility via controllable EVs.

  18. Versatile Electric Propulsion Aircraft Testbed, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An all-electric aircraft testbed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  19. Detectability of underground electrical cables junction with a ground penetrating radar: electromagnetic simulation and experimental measurements

    Science.gov (United States)

    Liu, Xiang; serhir, mohammed; kameni, abelin; lambert, marc; pichon, lionel

    2016-04-01

    For a company like Electricity De France (EDF), being able to detect accurately using non-destructive methods the position of the buried junction between two underground cables is a crucial issue. The junction is the linking part where most maintenance operations are carried out. The challenge of this work is to conduct a feasibility study to confirm or deny the relevance of Ground Penetrating Radar (GPR) to detect these buried junctions in their actual environment against clutter. Indeed, the cables are buried in inhomogeneous medium at around 80cm deep. To do this, the study is conducted in a numerical environment. We use the 3D simulation software CST MWS to model a GPR scenario. In this simulation, we place the already optimized bowtie antennas operating in the frequency band [0.5 GHz - 3 GHz] in front of wet soil (dispersive) and dry soil where the underground cable is placed at 80cm deep. We collect the amplitude and phase of the reflected waves in order to detect the contrast provoked by the geometric dimensions variation of the cable [1] (diameter of the cable is 48mm and the diameter of the junction 74mm). The use of an ultra-wideband antenna is necessary to reconcile resolution and penetration of electromagnetic waves in the medium to be characterized. We focus on the performance of the GPR method according to the characteristics of the surrounding medium in which the electric cables are buried, the polarization of the Tx and Rx antennas. The experimental measurement collected in the EDF site will be presented. The measured data are processed using the clutter reduction method based on digital filtering [2]. We aim at showing that using the developed bowtie antennas that the GPR technique is well adapted for the cable junction localization even in cluttered environment. References [1] D. J. Daniels, "Surface-Penetrating Radar", London, IEE 1996. [2] Potin, D.; Duflos, E.; Vanheeghe, P., "Landmines Ground-Penetrating Radar Signal Enhancement by Digital

  20. Characterization of nuclear reactor containment penetrations. Preliminary report

    International Nuclear Information System (INIS)

    Bump, T.R.; Seidensticker, R.W.; Shackelford, M.A.; Gambhir, V.K.; McLennan, G.L.

    1984-06-01

    This report summarizes the survey work conducted by Argonne National Laboratory on the design and details of major penetrations in 22 nuclear power plants. The survey includes all containment types and materials in current use. It also includes details of all types of penetrations (except for electrical penetration assemblies and valves) and the seals and gaskets used in them. The report provides a test matrix for testing major penetrations and for testing seals and gaskets in order to evaluate their leakage potential under severe accident conditions

  1. Furnace testing of electrical and pipe-penetration seals based on foamed silicone elastomer: 60, 90, and 120-minute fire ratings

    International Nuclear Information System (INIS)

    Brown, A.

    1979-03-01

    Fire tests of foamed silicone seals for electrical and pipe penetrations have been performed using a furnace with temperature control as heat source. The tests were performed in principle in accordance with the requirements of NORDTEST 5A (ISO 834). The purpose of the tests was to obtain appropriate fire ratings for different seal thicknesses. The report covers. - Description of material used to prepare the seals and method of application - Description of furnace test assembly and method of performing test - Listing of penetrating elements and of the thermocouple array used to measure temperature - Curves of thermocouple readouts and photographs of seals during and after completion of the test. (author)

  2. Towards Stochastic Optimization-Based Electric Vehicle Penetration in a Novel Archipelago Microgrid.

    Science.gov (United States)

    Yang, Qingyu; An, Dou; Yu, Wei; Tan, Zhengan; Yang, Xinyu

    2016-06-17

    Due to the advantage of avoiding upstream disturbance and voltage fluctuation from a power transmission system, Islanded Micro-Grids (IMG) have attracted much attention. In this paper, we first propose a novel self-sufficient Cyber-Physical System (CPS) supported by Internet of Things (IoT) techniques, namely "archipelago micro-grid (MG)", which integrates the power grid and sensor networks to make the grid operation effective and is comprised of multiple MGs while disconnected with the utility grid. The Electric Vehicles (EVs) are used to replace a portion of Conventional Vehicles (CVs) to reduce CO 2 emission and operation cost. Nonetheless, the intermittent nature and uncertainty of Renewable Energy Sources (RESs) remain a challenging issue in managing energy resources in the system. To address these issues, we formalize the optimal EV penetration problem as a two-stage Stochastic Optimal Penetration (SOP) model, which aims to minimize the emission and operation cost in the system. Uncertainties coming from RESs (e.g., wind, solar, and load demand) are considered in the stochastic model and random parameters to represent those uncertainties are captured by the Monte Carlo-based method. To enable the reasonable deployment of EVs in each MGs, we develop two scheduling schemes, namely Unlimited Coordinated Scheme (UCS) and Limited Coordinated Scheme (LCS), respectively. An extensive simulation study based on a modified 9 bus system with three MGs has been carried out to show the effectiveness of our proposed schemes. The evaluation data indicates that our proposed strategy can reduce both the environmental pollution created by CO 2 emissions and operation costs in UCS and LCS.

  3. Device for providing a leak-tight penetration for electric cables through a reactor vault roof

    International Nuclear Information System (INIS)

    Eyral, M.; Mahe, A.

    1979-01-01

    The device for providing a cable penetration through the vault roof of a liquid sodium cooled fast reactor comprises a vertical tube closed at the top end by a flange-plate. Electric cables connected to measuring and detecting instruments are passed through the flange-plate which is joined to the reactor vault roof in leak-tight manner and enclosed within a removable hood. At least one horizontal plate is mounted within the vertical tube and provided with orifices for the leak-tight passage of the cables. Cable storage reels are placed within the tube and can be locked in position or released by controlled mechanical means

  4. Electric Vehicles for Improved Operation of Power Systems with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Larsen, Esben; Chandrashekhara, Divya K; Østergaard, Jacob

    2008-01-01

    In a power system with a high share of wind energy the wind fluctuation causes a variation in the power generation, which must be compensated from other sources. The situation in Denmark with a penetration of more than 20% wind in yearly average is presented. The introduction of electric drive...... vehicles (EDV) as flexible loads can improve the system operation. Bidirectional power exchange through batteries (vehicle to grid) can be seen as a storage system in the grid. An analysis of possible economical incentives for the vehicle owners will be shown. By control of EDV charging through a price...... signal from the day ahead market the economical incentives for an EDV-owner will be small. If the EDV's can participate in the regulation of the grid through ancillary services the incentives will be increased to an attractive level....

  5. Temporary fire sealing of penetrations on TFTR

    International Nuclear Information System (INIS)

    Hondorp, H.L.

    1981-02-01

    The radiation shielding provided for TFTR for D-D and D-T operation will be penetrated by numerous electrical and mechanical services. Eventually, these penetrations will have to be sealed to provide the required fire resistance, tritium sealability, pressure integrity and radiation attenuation. For the initial hydrogen operation, however, fire sealing of the penetrations in the walls and floor is the primary concern. This report provides a discussion of the required and desirable properties of a temporary seal which can be used to seal these penetrations for the hydrogen operation and then subsequently be removed and replaced as required for the D-D and D-T operations. Several candidate designs are discussed and evaluated and recommendations are made for specific applications

  6. Towards Stochastic Optimization-Based Electric Vehicle Penetration in a Novel Archipelago Microgrid

    Directory of Open Access Journals (Sweden)

    Qingyu Yang

    2016-06-01

    Full Text Available Due to the advantage of avoiding upstream disturbance and voltage fluctuation from a power transmission system, Islanded Micro-Grids (IMG have attracted much attention. In this paper, we first propose a novel self-sufficient Cyber-Physical System (CPS supported by Internet of Things (IoT techniques, namely “archipelago micro-grid (MG”, which integrates the power grid and sensor networks to make the grid operation effective and is comprised of multiple MGs while disconnected with the utility grid. The Electric Vehicles (EVs are used to replace a portion of Conventional Vehicles (CVs to reduce CO 2 emission and operation cost. Nonetheless, the intermittent nature and uncertainty of Renewable Energy Sources (RESs remain a challenging issue in managing energy resources in the system. To address these issues, we formalize the optimal EV penetration problem as a two-stage Stochastic Optimal Penetration (SOP model, which aims to minimize the emission and operation cost in the system. Uncertainties coming from RESs (e.g., wind, solar, and load demand are considered in the stochastic model and random parameters to represent those uncertainties are captured by the Monte Carlo-based method. To enable the reasonable deployment of EVs in each MGs, we develop two scheduling schemes, namely Unlimited Coordinated Scheme (UCS and Limited Coordinated Scheme (LCS, respectively. An extensive simulation study based on a modified 9 bus system with three MGs has been carried out to show the effectiveness of our proposed schemes. The evaluation data indicates that our proposed strategy can reduce both the environmental pollution created by CO 2 emissions and operation costs in UCS and LCS.

  7. Electricity markets evolution with the changing generation mix: An empirical analysis based on China 2050 High Renewable Energy Penetration Roadmap

    International Nuclear Information System (INIS)

    Zou, Peng; Chen, Qixin; Yu, Yang; Xia, Qing; Kang, Chongqing

    2017-01-01

    Highlights: • How electricity markets are evolving with the changing generation mix is studied. • China 2050 High Renewable Energy Penetration Roadmap are empirically analysed. • A multi-period Nash-Cournot model is established to study the market equilibrium. • Energy storages are analysed and compared to reveal their impacts on the equilibrium. - Abstract: The power generation mix are significantly changing due to the growth of stricter energy policies. The renewables are increasingly penetrating the power systems and leading to more clean energy and lower energy prices. However, they also require much more flexibilities and ancillary services to handle their uncertainties and variabilities. Thus, the requirements for regulation and reserve services may dramatically increase while the supplies of these services, which are mainly from the traditional thermal plants, remain almost invariant. This changing situation will cause higher regulation and reserve prices and impact the profit models and revenue structures of the traditional plants. How electricity markets are actually evolving with the changing generation mix? Can enough backup power plants be given adequate economic incentives and thus remained with the increasing renewables and the decreasing energy prices and productions? Can de-carbonization be fully performed in power systems? To explicitly answer the question, this paper uses a multi-period Nash-Cournot equilibrium model to formulate the evolution of power markets incorporating different types of generators, including thermal units, hydro units, wind farms, solar stations and energy storage systems. The price changes in the co-optimized energy, regulation and reserve markets, and the profit changes of various generators are studied. And the variabilities and uncertainties of renewable generation sources are considered in dynamically determining the requirements of regulation and reserve services. Based on the China 2050 High Renewable Energy

  8. Assessing high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers...... expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project...... with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h....

  9. Customer-economics of residential photovoltaic systems (Part 1): The impact of high renewable energy penetrations on electricity bill savings with net metering

    International Nuclear Information System (INIS)

    Darghouth, Naïm R.; Barbose, Galen; Wiser, Ryan H.

    2014-01-01

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. Given the uncertainty in future retail rates and the inherent links between rates and the customer–economics of behind-the-meter PV, there is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. In this article, we first use a production cost and capacity expansion model to project California hourly wholesale electricity market prices under two potential electricity market scenarios, including a reference and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, we develop retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV is estimated for 226 California residential customers under two types of net metering, for each scenario. We find that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV. - Highlights: • We investigate the impact of high renewables on customer economics of solar. • We model three types of residential retail electricity rates. • Based on the rates, we calculate the bill savings from photovoltaic (PV) generation. • High renewables penetration can lead to lower bill savings with time-varying rates. • There is substantial uncertainty in the future bill savings from residential PV

  10. Review of methods for forecasting the market penetration of new technologies

    International Nuclear Information System (INIS)

    Gilshannon, S.T.; Brown, D.R.

    1996-12-01

    In 1993 the DOE Office of Energy Efficiency and Renewable Energy (EE) initiated a program called Quality Metrics. Quality Metrics was developed to measure the costs and benefits of technologies being developed by EE R ampersand D programs. The impact of any new technology is directly related to its adoption by the market. The techniques employed to project market adoption are critical to measuring a new technology's impact. Our purpose was to review current market penetration theories and models and develop a recommended approach for evaluating the market penetration of DOE technologies. The following commonly cited innovation diffusion theories were reviewed to identify analytical approaches relevant to new energy technologies: (1) the normal noncumulative adopter distribution method, (2) the Bass Model, (3) the Mansfield-Blackman Model, (4) the Fisher-Pry Model, (5) a meta-analysis of innovation diffusion studies. Of the theories reviewed, the Bass and Mansfield-Blackman models were found most applicable to forecasting the market penetration of electricity supply technologies. Their algorithms require input estimates which characterize the technology adoption behavior of the electricity supply industry. But, inadequate work has been done to quantify the technology adoption characteristics of this industry. The following energy technology market penetration models were also reviewed: (1) DOE's Renewable Energy Penetration (REP) Model, (2) DOE's Electricity Capacity Planning Submodule of the National Energy Modeling System (NEMS), (3) the Assessment of Energy Technologies (ASSET) model by Regional Economic Research, Inc., (4) the Market TREK model by the Electric Power Research Institute (EPRI). The two DOE models were developed for electricity generation technologies whereas the Regional Economic Research and EPRI models were designed for demand- side energy technology markets. Therefore, the review and evaluation focused on the DOE models

  11. The Relationship Between Electricity Price and Wind Power Generation in Danish Electricity Markets

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    of competitive electricity markets in some ways, is chosen as the studied power system. The relationship between the electricity price (both the spot price and the regulation price) and the wind power generation in an electricity market is investigated in this paper. The spot price, the down regulation price...... and the up regulation price generally decreases when the wind power penetration in the power system increases. The statistical characteristics of the spot price for different wind power penetration are analyzed. The findings of this paper may be useful for wind power generation companies to make the optimal...... bidding strategy and may be also useful for the optimal operation of modern power systems with high wind power penetrations....

  12. Revisiting the Anomalous rf Field Penetration into a Warm Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Polomarov, Oleg V.; Theodosiou, Constantine E.

    2005-01-01

    Radio-frequency [rf] waves do not penetrate into a plasma and are damped within it. The electric field of the wave and plasma current are concentrated near the plasma boundary in a skin layer. Electrons can transport the plasma current away from the skin layer due to their thermal motion. As a result, the width of the skin layer increases when electron temperature effects are taken into account. This phenomenon is called anomalous skin effect. The anomalous penetration of the rf electric field occurs not only for transversely propagating to the plasma boundary wave (inductively coupled plasmas) but also for the wave propagating along the plasma boundary (capacitively coupled plasmas). Such anomalous penetration of the rf field modifies the structure of the capacitive sheath. Recent advances in the nonlinear, non-local theory of the capacitive sheath are reported. It is shown that separating the electric field profile into exponential and non-exponential parts yields an efficient qualitative and quantitative description of the anomalous skin effect in both inductively and capacitively coupled plasma

  13. Opportunities for high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.; Hansen, J.C.

    1997-01-01

    Wind power is today a mature technology, which at windy locations, is economically competitive to conventional power generation technologies. This and growing global environmental concerns have led governments to encourage and plan for wind energy development, a typical aim being 10% of electricity...... consumption. The successful operation of the three major power systems of Cape Verde, with a total wind energy penetration of about 15% since December 1994, demonstrates that power systems can be operated with high penetration of wind energy by adding simple control and monitoring systems only. Thorough...... analyses conclude that expanding to even above 15% wind energy penetration in the Cape Verde power systems is economical. Worldwide, numerous locations with favorable wind conditions and power systems similar to the Capeverdean provide good opportunities for installing wind farms and achieving high wind...

  14. Identifying structural damage with ground penetrating radar

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2008-07-01

    Full Text Available Ground penetrating radar (GPR) and electrical resistance tomography (ERT) surveys were conducted in an urban environment in an attempt to identify the cause of severe structural damage to a historically significant residential property...

  15. Integration of electrical resistivity imaging and ground penetrating radar to investigate solution features in the Biscayne Aquifer

    Science.gov (United States)

    Yeboah-Forson, Albert; Comas, Xavier; Whitman, Dean

    2014-07-01

    The limestone composing the Biscayne Aquifer in southeast Florida is characterized by cavities and solution features that are difficult to detect and quantify accurately because of their heterogeneous spatial distribution. Such heterogeneities have been shown by previous studies to exert a strong influence in the direction of groundwater flow. In this study we use an integrated array of geophysical methods to detect the lateral extent and distribution of solution features as indicative of anisotropy in the Biscayne Aquifer. Geophysical methods included azimuthal resistivity measurements, electrical resistivity imaging (ERI) and ground penetrating radar (GPR) and were constrained with direct borehole information from nearby wells. The geophysical measurements suggest the presence of a zone of low electrical resistivity (from ERI) and low electromagnetic wave velocity (from GPR) below the water table at depths of 4-9 m that corresponds to the depth of solution conduits seen in digital borehole images. Azimuthal electrical measurements at the site reported coefficients of electrical anisotropy as high as 1.36 suggesting the presence of an area of high porosity (most likely comprising different types of porosity) oriented in the E-W direction. This study shows how integrated geophysical methods can help detect the presence of areas of enhanced porosity which may influence the direction of groundwater flow in a complex anisotropic and heterogeneous karst system like the Biscayne Aquifer.

  16. Analysis of electricity price in Danish competitive electricity market

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2012-01-01

    electricity markets in some ways, is chosen as the studied power system. 10 year actual data from the Danish competitive electricity market are collected and analyzed. The relationship among the electricity price (both the spot price and the regulation price), the consumption and the wind power generation...... in an electricity market is investigated in this paper. The spot price and the regulation price generally decrease when the wind power penetration in the power system increases or the consumption of the power system decreases. The statistical characteristics of the spot price and the regulation price for different...... consumption periods and wind power penetration are analyzed. Simulation results show that the findings of this paper are useful for wind power generation companies to make the optimal bidding strategy so that the imbalance cost of trading wind power on the electricity market could be reduced....

  17. Economic viability of transmission capacity expansion at high wind penetrations

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2005-01-01

    investments and analyses of the Nord Pool price variations. The analyses are done for varying degrees of wind power penetrations ranging from 20% of the West Danish electricity demand up to 100% of the demand. The analyses demonstrate, that while there is an economic potential for some expansion in some years......With growing wind power penetrations in many countries, grid and system integration becomes more and more important issues. This is particularly the case in countries or regions with good wind resources as well as substantial installed wind power capacity as found in e.g. Northern Europe. At 20......% penetration in Western Denmark, the issue is pertinent here in relation to future plans of further expansion which is planned in accordance with the Danish Government’s climate change mitigation initiatives. This paper analyses the potential economic benefit of selling excess electricity production...

  18. Storage Application in Smart Grid with High PV and EV Penetration

    DEFF Research Database (Denmark)

    Hashemi Toghroljerdi, Seyedmostafa; Yang, Guangya; Østergaard, Jacob

    2013-01-01

    grids with residential PVs and Electric Vehicles (EVs). The effect of EV home charging on EESS capacity in high PV penetration is also addressed. The results indicate that increasing the EV penetration in the network can decrease the EESS capacity need. This decrease is highest in situations with low PV...

  19. Concentrated solar power plants impact on PV penetration level and grid flexibility under Egyptian climate

    Science.gov (United States)

    Moukhtar, Ibrahim; Elbaset, Adel A.; El Dein, Adel Z.; Qudaih, Yaser; Mitani, Yasunori

    2018-05-01

    Photovoltaic (PV) system integration in the electric grid has been increasing over the past decades. However, the impact of PV penetration on the electric grid, especially during the periods of higher and lower generation for the solar system at the middle of the day and during cloudy weather or at night respectively, limit the high penetration of solar PV system. In this research, a Concentrated Solar Power (CSP) with Thermal Energy Storage (TES) has been aggregated with PV system in order to accommodate the required electrical power during the higher and lower solar energy at all timescales. This paper analyzes the impacts of CSP on the grid-connected PV considering high penetration of PV system, particularly when no energy storages in the form of batteries are used. Two cases have been studied, the first when only PV system is integrated into the electric grid and the second when two types of solar energy (PV and CSP) are integrated. The System Advisor Model (SAM) software is used to simulate the output power of renewable energy. Simulation results show that the performance of CSP has a great impact on the penetration level of PV system and on the flexibility of the electric grid. The overall grid flexibility increases due to the ability of CSP to store and dispatch the generated power. In addition, CSP/TES itself has inherent flexibility. Therefore, CSP reduces the minimum generation constraint of the conventional generators that allows more penetration of the PV system.

  20. Parallel- and serial-contact electrochemical metallization of monolayer nanopatterns: A versatile synthetic tool en route to bottom-up assembly of electric nanocircuits

    Directory of Open Access Journals (Sweden)

    Jonathan Berson

    2012-02-01

    Full Text Available Contact electrochemical transfer of silver from a metal-film stamp (parallel process or a metal-coated scanning probe (serial process is demonstrated to allow site-selective metallization of monolayer template patterns of any desired shape and size created by constructive nanolithography. The precise nanoscale control of metal delivery to predefined surface sites, achieved as a result of the selective affinity of the monolayer template for electrochemically generated metal ions, provides a versatile synthetic tool en route to the bottom-up assembly of electric nanocircuits. These findings offer direct experimental support to the view that, in electrochemical metal deposition, charge is carried across the electrode–solution interface by ion migration to the electrode rather than by electron transfer to hydrated ions in solution.

  1. On the synergy between large electric vehicle fleet and high wind penetration – An analysis of the Danish case

    DEFF Research Database (Denmark)

    Krog Ekman, Claus

    2011-01-01

    Increasing the level of wind power penetration beyond the present level in the Danish power system implies large challenges when it comes to energy management and system stability. Plug-in electric vehicles promise to contribute to the flexibility of the energy system by creating a link between...... the power system and the transportation sector and provide the possibility to make use of the inherent energy storage of a large electric vehicle (EV) fleet. The present work investigates the effects of different EV charging strategies on the balance between wind power production and consumption in a future...... batteries are used as backup at times with little wind power production) will have very limited effects on the overall energy management and is more likely to be used only for regulation and reserve services, also in the longer perspective....

  2. STYLET PENETRATION BEHAVIOURS OF FOUR Cicadulina ...

    African Journals Online (AJOL)

    ACSS

    Feeding from phloem cells, overall probing and probe mean (the average time per probe) were higher ... Key Words: Cicadulina spp., electrical penetration graph, MSV, Zea mays .... wire and alligator clip clamped to the stem of the .... á All measures are in minutes except for frequency of probing; - Main effect not significant.

  3. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    DEFF Research Database (Denmark)

    Yang, Bo; Makarov, Yuri; Desteese, John

    2008-01-01

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results...... and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries...... of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service...

  4. Electrical power system integrated thermal/electrical system simulation

    International Nuclear Information System (INIS)

    Freeman, W.E.

    1992-01-01

    This paper adds thermal properties to previously developed electrical Saber templates and incorporates these templates into a functional Electrical Power Subsystem (EPS) simulation. These combined electrical and thermal templates enable the complete and realistic simulation of a vehicle EPS on-orbit. Applications include on-orbit energy balance determinations for system load changes, initial array and battery EPS sizing for new EPS development, and array and battery technology trade studies. This effort proves the versatility of the Saber simulation program in handling varied and complex simulations accurately and in a reasonable amount of computer time. 9 refs

  5. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    Energy Technology Data Exchange (ETDEWEB)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  6. Study on Penetration Characteristics of Tungsten Cylindrical Penetrator

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Hyun; Lee, Young Shin; Kim, Jae Hoon [Chungnam Nat' l Univ., Daejeon (Korea, Republic of); Bae, Yong Woon [Agency for Defense Development, Daejeon (Korea, Republic of)

    2013-09-15

    The design of missile require extremely small warheads that must be highly efficient and lethal. The penetration characteristics of each penetrator and the total number of penetrators on the warhead are obvious key factors that influence warhead lethality. The design of the penetrator shape and size are directly related to the space and weight of the warhead. The design of the penetrator L/D was directly related to the space and weight of the warhead. L and D are the length and the diameter of the projectile, respectively. The AUTODYN-3a code was used to study the effect of penetrator penetration. The objective of numerical analysis was to determine the penetration characteristics of penetrator produced by hypervelocity impacts under different initial conditions such as initial velocity, obliquity angle and L/D of penetrator. The residual velocity and residual mass were decreased with increasing initial impact velocity under L/D{<=}4.

  7. Fokker-Planck modeling of current penetration during electron cyclotron current drive

    International Nuclear Information System (INIS)

    Merkulov, A.; Westerhof, E.; Schueller, F. C.

    2007-01-01

    The current penetration during electron cyclotron current drive (ECCD) on the resistive time scale is studied with a Fokker-Planck simulation, which includes a model for the magnetic diffusion that determines the parallel electric field evolution. The existence of the synergy between the inductive electric field and EC driven current complicates the process of the current penetration and invalidates the standard method of calculation in which Ohm's law is simply approximated by j-j cd =σE. Here it is proposed to obtain at every time step a self-consistent approximation to the plasma resistivity from the Fokker-Planck code, which is then used in a concurrent calculation of the magnetic diffusion equation in order to obtain the inductive electric field at the next time step. A series of Fokker-Planck calculations including a self-consistent evolution of the inductive electric field has been performed. Both the ECCD power and the electron density have been varied, thus varying the well known nonlinearity parameter for ECCD P rf [MW/m -3 ]/n e 2 [10 19 m -3 ] [R. W. Harvey et al., Phys. Rev. Lett 62, 426 (1989)]. This parameter turns out also to be a good predictor of the synergetic effects. The results are then compared with the standard method of calculations of the current penetration using a transport code. At low values of the Harvey parameter, the standard method is in quantitative agreement with Fokker-Planck calculations. However, at high values of the Harvey parameter, synergy between ECCD and E parallel is found. In the case of cocurrent drive, this synergy leads to the generation of large amounts of nonthermal electrons and a concomitant increase of the electrical conductivity and current penetration time. In the case of countercurrent drive, the ECCD efficiency is suppressed by the synergy with E parallel while only a small amount of nonthermal electrons is produced

  8. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    Energy Technology Data Exchange (ETDEWEB)

    Hostick, Donna [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Belzer, David B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Markel, Tony [National Renewable Energy Lab. (NREL), Golden, CO (United States); Marnay, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kintner-Meyer, Michael [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  9. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  10. High-Penetration Photovoltaics Standards and Codes Workshop, Denver, Colorado, May 20, 2010: Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, M.; Kroposki, B.; Basso, T.; Lynn, K.; Herig, C.; Bower, W.

    2010-09-01

    Effectively interconnecting high-level penetration of photovoltaic (PV) systems requires careful technical attention to ensuring compatibility with electric power systems. Standards, codes, and implementation have been cited as major impediments to widespread use of PV within electric power systems. On May 20, 2010, in Denver, Colorado, the National Renewable Energy Laboratory, in conjunction with the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), held a workshop to examine the key technical issues and barriers associated with high PV penetration levels with an emphasis on codes and standards. This workshop included building upon results of the High Penetration of Photovoltaic (PV) Systems into the Distribution Grid workshop held in Ontario California on February 24-25, 2009, and upon the stimulating presentations of the diverse stakeholder presentations.

  11. A Case Study on the Perceptions of Educators on the Penetration of Personal Learning Environments in Typical Education

    OpenAIRE

    Armakolas, Stefanos; Mikroyannidis, Alexander; Panagiotakopoulos, Christos; Panousopoulou, Theofania

    2016-01-01

    Personal Learning Environments (PLEs) help students manage and take control of their own learning. As such, the PLE promotes self-regulation in learning and allows learners to aggregate, manipulate and share digital artefacts within a flexible and versatile online space. This paper presents a case study in Greece, concerning an investigation about the penetration of PLEs in typical education. In particular, this case study aims at investigating the perceptions of educators about PLEs and thei...

  12. The Use of Ground Penetrating Radar and Electrical Resistivity Imaging for the Characterisation of Slope Movements in Expansive Marls

    Science.gov (United States)

    Rey, Isabel; Martínez, Julián; Cortada, Unai; Hildago, Mª Carmen

    2017-04-01

    Slope movements are one of the natural hazards that most affect linear projects, becoming an important waste of money and time for building companies. Thus, studies to identify the processes that provoke these movements, as well as to characterise the landslides are necessary. For this purpose, geophysical prospecting techniques as Ground Penetrating Radar (GPR) and Electrical Resistivity Imaging (ERI) could become useful. However, the effectiveness of these techniques in slope movement characterisation is affected by many factors, like soil humidity, grain size or failure plane depth. Therefore, studies that determine the usefulness of these techniques in different kind of soils and slope movements are required. In this study, GPR and ERI techniques efficiency for the analysis of slope movements in Upper Miocene expansive marls was evaluated. In particular, two landslides in an old regional road in the province of Jaen (Spain) were studied. A total of 53 GPR profiles were made, 31 with a 250 MHz frequency antenna and 22 with an 800 MHz frequency antenna. Marl facies rapidly attenuated the signal of the electromagnetic waves, which means that this technique only provided information of the first two meters of the subsoil. In spite of this low depth of penetration, it is necessary to point out the precision and detail undertaken. Thus, both GPR antennas gave information of the thicknesses and quality-continuity of the different soil layers. In addition, several restoration phases of the linear work were detected. Therefore, this technique was useful to detect the current state and history of the structure, even though it could not detect the shear surface of the slope movement. On the other hand, two profiles of electrical tomography were made, one in each studied sector. The profiles were configured with a total length of 189 m, with 64 electrodes and a spacing of 3 m. This allowed investigating up to 35 m depth. This penetration capability enabled to detect the

  13. Development Of The Nuclear Optical Penetration

    Science.gov (United States)

    Inoue, K.; Koike, K.; Imada, Y.

    1984-10-01

    We have developed the nuclear optical penetration to be incorporated in the wall penetration of the shell to introduce a data transmission system using optical fibers into a nuclear power plant with a pressurized water reactor. Radiation-induced coloration in optical glass seriously affects transmission characteristics of optical fibers, whereas it has been revealed that the pure-silica core optical fiber without any dopant in the core has wide applicability in radiation fields thanks to its very low radiation-induced attenuation. The wall penetration of the shell should have airtightness and resistivity to heat, vibration, and pressure, let alone radiation, excellent enough to be invariable in data transmission efficiency even when subjected to severe environmental tests. The sealing modules of this newly developed nuclear optical penetration are hermetically sealed. The gap between the optical fiber rod (100 pm in core diameter and 5 mm in rod diameter) and stainless steel tube is sealed with lamingted glass layer. As the result of He gas leakage test, high airtightness of less than 10 cc/sec was achieved. No thermal deformation of the core was caused by sealing with laminated glass layer, nor was observed transmission loss. Then the sealiing modules were subjected to the irradiation test using 60 Co gamma ray exposure of 2 x 10 rads. Though silica glass layer supporting the fiber rod and sealing glass portion turned blackish purple, transparency of the fiber was not affected. Only less than 0.5 dB of connecting loss was observed at the connecting point with the optical fiber cable. The sealing modules were also found to have resistivity to vibration and pressure as excellent as that of existing nuclear electric penetrations. We expect the nuclear optical fiber penetration will be much effective in improving reliability of data transmission systems using optical fibers in radiation fields.

  14. A Versatile and Simple Approach to Generate Light Emission in Semiconductors Mediated by Electric Double Layers

    KAUST Repository

    Pu, Jiang

    2017-04-18

    The light-emitting device is the primary device for current light sources. In principle, conventional light-emitting devices need heterostructures and/or intentional carrier doping to form a p-n junction. This junction formation is, however, very difficult to achieve for most emerging semiconductors, and the fabrication of light-emitting devices is invariably a significant challenge. This study proposes a versatile and simple approach to realize light-emitting devices. This proposed device requires only a semiconducting film with two electrodes that are covered with an electrolyte. This unique structure achieves light emission at a voltage slightly larger than the bandgap energy of materials. This study applies this concept to emerging direct bandgap semiconductors, such as transition metal dichalcogenide monolayers and zinc oxide single crystals. These devices generate obvious light emission and provide sufficient evidence of the formation of a dynamic p-i-n junction or tunneling junction, presenting a versatile technique to develop optoelectronic devices.

  15. Developing High PV Penetration Cases for Frequency Response Study of U.S. Western Interconnection: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jin; Zhang, Yingchen; Veda, Santosh; Elgindy, Tarek; Liu, Yilu

    2017-04-11

    Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interest to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.

  16. Electric Vehicle Market Penetration and Impacts on Energy Consumption and CO2 Emission in the Future: Beijing Case

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2017-02-01

    Full Text Available This study focuses on the development of electric vehicles (EV in the private passenger vehicle fleet in Beijing (China, analyzes how EVs will penetrate in the market, and estimates the resulting impacts on energy consumption and CO2 emissions up to 2030. A discrete choice model is adopted with consideration of variables including vehicle technical characteristics, fuel prices, charging conditions and support policies. Results show that by 2030, without technological breakthrough and support policies, the market share of EV will be less than 7%, with gasoline dominating the energy structure. With fast technological progress, charging facility establishment, subsidies and tax breaks, EVs will account for 70% of annual new vehicle sales and nearly half of the vehicle stock by 2030, resulting in the substitution of nearly 1 million tons of gasoline with 3.2 billion kWh electricity in 2030 and the reduction of 0.6 million tons of CO2 emission in 2030. Technological progress, charging conditions and fuel prices are the top three drivers. Subsidies play an important role in the early stage, while tax and supply-side policies can be good options as long-term incentives.

  17. Study of the disorder by means of the superconducting penetration depth

    International Nuclear Information System (INIS)

    Arce, R.D.

    1982-11-01

    Measurements of the weak magnetic field penetration depth in the amorphous superconducting systems Lasub(1-x) Msub(x), being M = Cu, Al, Ga and Au, and in the Zr 70 Cu 30 system are presented. Measurements of the sample geometrical factors and the flux expulsion between the lowest temperature reached and the critical temperature, allows the determination of zero temperature penetration depth. The measurement of the flux expulsion as a function of temperature is used to determine the temperature dependence of penetration depth, used to evaluate the temperature dependence superconducting gap. The magnetization measurements have been made using an rf-SQUID. The evolution of the penetration depth with annealing is studied in the La 70 Cu 30 and Zr 70 Cu 30 systems. Measurements of the electrical resistivity and the critical temperature are used to verify the Gorkov equations in these materials. The variation of the penetration depth with annealing suggests that a metallurgical phase separation occurs within the submicrometer range. Penetration depth measurement is a tool to detect this type of phase separation in high kappa materials. (M.E.L.) [es

  18. Enhancing the versatility of wireless biopotential acquisition for myoelectric prosthetic control.

    Science.gov (United States)

    Bercich, Rebecca A; Wang, Zhi; Mei, Henry; Hammer, Lauren H; Seburn, Kevin L; Hargrove, Levi J; Irazoqui, Pedro P

    2016-08-01

    A significant challenge in rehabilitating upper-limb amputees with sophisticated, electric-powered prostheses is sourcing reliable and independent channels of motor control information sufficient to precisely direct multiple degrees of freedom simultaneously. In response to the expressed needs of clinicians, we have developed a miniature, batteryless recording device that utilizes emerging integrated circuit technology and optimal impedance matching for magnetic resonantly coupled (MRC) wireless power transfer to improve the performance and versatility of wireless electrode interfaces with muscle. In this work we describe the fabrication and performance of a fully wireless and batteryless EMG recording system and use of this system to direct virtual and electric-powered limbs in real-time. The advantage of using MRC to optimize power transfer to a network of wireless devices is exhibited by EMG collected from an array of eight devices placed circumferentially around a human subject's forearm. This is a comprehensive, low-cost, and non-proprietary solution that provides unprecedented versatility of configuration to direct myoelectric prostheses without wired connections to the body. The amenability of MRC to varied coil geometries and arrangements has the potential to improve the efficiency and robustness of wireless power transfer links at all levels of upper-limb amputation. Additionally, the wireless recording device's programmable flash memory and selectable features will grant clinicians the unique ability to adapt and personalize the recording system's functional protocol for patient- or algorithm-specific needs.

  19. Enhancing the versatility of wireless biopotential acquisition for myoelectric prosthetic control

    Science.gov (United States)

    Bercich, Rebecca A.; Wang, Zhi; Mei, Henry; Hammer, Lauren H.; Seburn, Kevin L.; Hargrove, Levi J.; Irazoqui, Pedro P.

    2016-08-01

    Objective. A significant challenge in rehabilitating upper-limb amputees with sophisticated, electric-powered prostheses is sourcing reliable and independent channels of motor control information sufficient to precisely direct multiple degrees of freedom simultaneously. Approach. In response to the expressed needs of clinicians, we have developed a miniature, batteryless recording device that utilizes emerging integrated circuit technology and optimal impedance matching for magnetic resonantly coupled (MRC) wireless power transfer to improve the performance and versatility of wireless electrode interfaces with muscle. Main results. In this work we describe the fabrication and performance of a fully wireless and batteryless EMG recording system and use of this system to direct virtual and electric-powered limbs in real-time. The advantage of using MRC to optimize power transfer to a network of wireless devices is exhibited by EMG collected from an array of eight devices placed circumferentially around a human subject’s forearm. Significance. This is a comprehensive, low-cost, and non-proprietary solution that provides unprecedented versatility of configuration to direct myoelectric prostheses without wired connections to the body. The amenability of MRC to varied coil geometries and arrangements has the potential to improve the efficiency and robustness of wireless power transfer links at all levels of upper-limb amputation. Additionally, the wireless recording device’s programmable flash memory and selectable features will grant clinicians the unique ability to adapt and personalize the recording system’s functional protocol for patient- or algorithm-specific needs.

  20. An agent-based model to study market penetration of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Eppstein, Margaret J.; Grover, David K.; Marshall, Jeffrey S.; Rizzo, Donna M.

    2011-01-01

    A spatially explicit agent-based vehicle consumer choice model is developed to explore sensitivities and nonlinear interactions between various potential influences on plug-in hybrid vehicle (PHEV) market penetration. The model accounts for spatial and social effects (including threshold effects, homophily, and conformity) and media influences. Preliminary simulations demonstrate how such a model could be used to identify nonlinear interactions among potential leverage points, inform policies affecting PHEV market penetration, and help identify future data collection necessary to more accurately model the system. We examine sensitivity of the model to gasoline prices, to accuracy in estimation of fuel costs, to agent willingness to adopt the PHEV technology, to PHEV purchase price and rebates, to PHEV battery range, and to heuristic values related to gasoline usage. Our simulations indicate that PHEV market penetration could be enhanced significantly by providing consumers with ready estimates of expected lifetime fuel costs associated with different vehicles (e.g., on vehicle stickers), and that increases in gasoline prices could nonlinearly magnify the impact on fleet efficiency. We also infer that a potential synergy from a gasoline tax with proceeds is used to fund research into longer-range lower-cost PHEV batteries. - Highlights: → We model consumer agents to study potential market penetration of PHEVs. → The model accounts for spatial, social, and media effects. → We identify interactions among potential leverage points that could inform policy. → Consumer access to expected lifetime fuel costs may enhance PHEV market penetration. → Increasing PHEV battery range has synergistic effects on fleet efficiency.

  1. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chapman, Jamie [Texas Tech Univ., Lubbock, TX (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Drury, Easan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bishop, Norman A. [Knight Piesold, Denver, CO (United States); Brown, Stephen R. [HDR/DTA, Portland, ME (Untied States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Felker, Fort [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fernandez, Steven J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goodrich, Alan C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hagerman, George [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Neil, Sean [Ocean Renewable Energy Coalition, Portland, OR (United States); Paquette, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Young, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  2. Backup of renewable energy for an electrical island: case study of Israeli electricity system--current status.

    Science.gov (United States)

    Fakhouri, A; Kuperman, A

    2014-01-01

    The paper focuses on the quantitative analysis of Israeli Government's targets of 10% renewable energy penetration by 2020 and determining the desired methodology (models) for assessing the effects on the electricity market, addressing the fact that Israel is an electricity island. The main objective is to determine the influence of achieving the Government's goals for renewable energy penetration on the need for backup in the Israeli electricity system. This work presents the current situation of the Israeli electricity market and the study to be taken in order to assess the undesirable effects resulting from the intermittency of electricity generated by wind and solar power stations as well as presents some solutions to mitigating these phenomena. Future work will focus on a quantitative analysis of model runs and determine the amounts of backup required relative to the amount of installed capacity from renewable resources.

  3. Technical impacts of high penetration levels of wind power on power system stability

    OpenAIRE

    Flynn, Damian; Rather, Z.; Ardal, Atle; Darco, Salvatore; Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Sørensen, Poul Ejnar; Estanqueiro, Ana; Gomez, Emilio; Menemenlis, Nickie; Smith, Charlie; Wang, Ye

    2017-01-01

    With increasing penetrations of wind generation, based on power-electronic converters, power systems are transitioning away from well-understood synchronous generator-based systems, with growing implications for their stability. Issues of concern will vary with system size, wind penetration level, geographical distribution and turbine type, network topology, electricity market structure, unit commitment procedures, and other factors. However, variable-speed wind turbines, both onshore and con...

  4. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  5. Van Allen Probes Measurements of Energetic Particle Deep Penetration Into the Low L Region (L Storm on 8 April 2016

    Science.gov (United States)

    Zhao, H.; Baker, D. N.; Califf, S.; Li, X.; Jaynes, A. N.; Leonard, T.; Kanekal, S. G.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Turner, D. L.; Reeves, G. D.; Spence, H. E.

    2017-12-01

    Using measurements from the Van Allen Probes, a penetration event of tens to hundreds of keV electrons and tens of keV protons into the low L shells (L electric field represented by the Volland-Stern model or a uniform dawn-dusk electric field model based on the electric field measurements. It suggests that the underlying physical mechanism responsible for energetic electron deep penetration, which is very important for fully understanding energetic electron dynamics in the low L shells, should be MLT localized.

  6. Large scale wind power penetration in Denmark

    DEFF Research Database (Denmark)

    Karnøe, Peter

    2013-01-01

    he Danish electricity generating system prepared to adopt nuclear power in the 1970s, yet has become the world's front runner in wind power with a national plan for 50% wind power penetration by 2020. This paper deploys a sociotechnical perspective to explain the historical transformation...... of "networks of power" via the interactions of politics, the techno-physics of electrons, and the market setting. The Danish case is about how an assemblage of new agencies has reorganized and reshaped society by building a new sociotechnical network. This has rendered developments highly unpredictable...... and highly experimental. The transformation process can be followed through the way successive technical engineering reports have represented the challenges associated with the penetration of wind power. The iteration shows how novel technical phenomena emerge and are assimilated, and how new engineering...

  7. Backup of Renewable Energy for an Electrical Island: Case Study of Israeli Electricity System—Current Status

    Science.gov (United States)

    Fakhouri, A.; Kuperman, A.

    2014-01-01

    The paper focuses on the quantitative analysis of Israeli Government's targets of 10% renewable energy penetration by 2020 and determining the desired methodology (models) for assessing the effects on the electricity market, addressing the fact that Israel is an electricity island. The main objective is to determine the influence of achieving the Government's goals for renewable energy penetration on the need for backup in the Israeli electricity system. This work presents the current situation of the Israeli electricity market and the study to be taken in order to assess the undesirable effects resulting from the intermittency of electricity generated by wind and solar power stations as well as presents some solutions to mitigating these phenomena. Future work will focus on a quantitative analysis of model runs and determine the amounts of backup required relative to the amount of installed capacity from renewable resources. PMID:24624044

  8. Top, Bottom, and Versatile Anal Sex Roles in Same-Sex Male Relationships: Implications for Relationship and Sexual Satisfaction.

    Science.gov (United States)

    Moskowitz, David A; Garcia, Christopher P

    2018-06-01

    Across much of the gay and bisexual male research on sexual position self-label (i.e., calling oneself a top, bottom, or versatile), there exist two commonalities: (1) studies tend to focus almost entirely on individual, relationally single androphilic men; (2) studies rarely account for relationships and relationship dynamics. In response, we explored the role of self-label over sexual and relationship satisfaction among gay and bisexual partnered men. Specifically, we looked at whether adopted sexual position identities were consonant or dissonant (i.e., matching or mismatching) with enacted behavior in relationships and how that impacted men's attitudes toward different relational attributes. Through an online survey, we sampled 169 men in same-sex relationships, asking them questions about their ideal penetrative role identities and their reality penetrative roles with their partner. We then asked them to rate their relationship on 10 sexual and interpersonal attributes. Multiple regression modeling suggested ideal-reality penetrative role dissonance was predictive of sexual dissatisfaction among tops who bottomed in their relationships and, to a lesser extent, bottoms who topped. In contrast, penetrative role dissonance was predictive of relationship satisfaction among tops who bottomed in their relationship, but not bottoms who topped. We conclude that a potential reason for this paradox among tops who bottom may be sexual altruism. That is, men may be satisfied with other aspects within their relationships, understand their partner's anal sex preferences, and accommodate that position in response to their initial relationship satisfaction.

  9. Behaviour at thermal ageing of power cable components through penetrations

    International Nuclear Information System (INIS)

    Puiu, D.; Gyongyosi, T.; Dinu, E.

    2009-01-01

    The materials for electric insulation and exterior jackets of the power cables are formulated organic compounds. The environmental service conditions will induce chemical and/or physical processes at molecular level of the material; these processes are the ageing mechanisms. The power cables passing through penetrations lead to an increase of the rate of thermal ageing mechanisms, resulting in irreversible degradation of mechanical and electric properties of the organic compounds and of the functional properties of the cable. The paper presents the results of the laboratory tests when the real environmental service conditions for penetration are simulated, the comparison with the results of the thermal computation of the power cables heating and the evaluation of the influence of temperature increase of the power cable components on the cable lifetime. For the particular case of a power cable with PVC insulation, we estimated a lifetime decrease about seven years as referred to lifetime of about 30 years for operation in air. (authors)

  10. Regional PV power estimation and forecast to mitigate the impact of high photovoltaic penetration on electric grid.

    Science.gov (United States)

    Pierro, Marco; De Felice, Matteo; Maggioni, Enrico; Moser, David; Perotto, Alessandro; Spada, Francesco; Cornaro, Cristina

    2017-04-01

    The growing photovoltaic generation results in a stochastic variability of the electric demand that could compromise the stability of the grid and increase the amount of energy reserve and the energy imbalance cost. On regional scale, solar power estimation and forecast is becoming essential for Distribution System Operators, Transmission System Operator, energy traders, and aggregators of generation. Indeed the estimation of regional PV power can be used for PV power supervision and real time control of residual load. Mid-term PV power forecast can be employed for transmission scheduling to reduce energy imbalance and related cost of penalties, residual load tracking, trading optimization, secondary energy reserve assessment. In this context, a new upscaling method was developed and used for estimation and mid-term forecast of the photovoltaic distributed generation in a small area in the north of Italy under the control of a local DSO. The method was based on spatial clustering of the PV fleet and neural networks models that input satellite or numerical weather prediction data (centered on cluster centroids) to estimate or predict the regional solar generation. It requires a low computational effort and very few input information should be provided by users. The power estimation model achieved a RMSE of 3% of installed capacity. Intra-day forecast (from 1 to 4 hours) obtained a RMSE of 5% - 7% while the one and two days forecast achieve to a RMSE of 7% and 7.5%. A model to estimate the forecast error and the prediction intervals was also developed. The photovoltaic production in the considered region provided the 6.9% of the electric consumption in 2015. Since the PV penetration is very similar to the one observed at national level (7.9%), this is a good case study to analyse the impact of PV generation on the electric grid and the effects of PV power forecast on transmission scheduling and on secondary reserve estimation. It appears that, already with 7% of PV

  11. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ela, Erik [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hein, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schneider, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  12. System-wide emissions implications of increased wind power penetration.

    Science.gov (United States)

    Valentino, Lauren; Valenzuela, Viviana; Botterud, Audun; Zhou, Zhi; Conzelmann, Guenter

    2012-04-03

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  13. Characterization of Direct Current-Electrical Penetration Graph Waveforms and Correlation With the Probing Behavior of Matsumuratettix hiroglyphicus (Hemiptera: Cicadellidae), the Insect Vector of Sugarcane White Leaf Phytoplasma.

    Science.gov (United States)

    Roddee, J; Kobori, Y; Yorozuya, H; Hanboonsong, Y

    2017-06-01

    The leafhopper Matsumuratettix hiroglyphicus (Matsumura) (Hemiptera: Cicadellidae) is an important vector of phytoplasma causing white leaf disease in sugarcane. Thus, the aim of our study was to understand and describe the stylet-probing activities of this vector while feeding on sugarcane plants, by using direct current (DC) electrical penetration graph (EPG) monitoring. The EPG signals were classified into six distinct waveforms, according to amplitude, frequency, voltage level, and electrical origin of the observed traces during stylet penetration into the host plant tissues (probing). These six EPG waveforms of probing behavior comprise no stylet penetration (NP); stylet pathway through epidermis, mesophyll, and parenchymal cells (waveform A); contact at the bundle sheath layer (waveform B); salivation into phloem sieve elements (waveform C); phloem sap ingestion (waveform D); and short ingestion time of xylem sap (waveform E). The above waveform patterns were correlated with histological data of salivary sheath termini in plant tissue generated from insect stylet tips. The key findings of this study were that M. hiroglyphicus ingests the phloem sap at a relatively higher rate and for longer duration from any other cell type, suggesting that M. hiroglyphicus is mainly a phloem-feeder. Quantitative comparison of probing behavior revealed that females typically probe more frequently and longer in the phloem than males. Thus, females may acquire and inoculate greater amounts of phytoplasma than males, enhancing the efficiency of phytoplasma transmission and potentially exacerbating disease spreading. Overall, our study provides basic information on the probing behavior and transmission mechanism of M. hiroglyphicus. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Time-domain single-source integral equations for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric

    2013-01-01

    Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis

  15. Monopole conversion hidden by penetration effect in magnetic dipole transitions

    International Nuclear Information System (INIS)

    Bikit, I.; Anichin, I.; Marinkov, L.

    1977-01-01

    The 191 keV 197 Au nad 340 keV 233 U transitions are investigated and the effect of penetration into the M1-component is accounted for. Theoretical internal conversion coefficients (ICC) and electron parameters to account for the penetration effect have been obtained by interpolating the data of the Hager and Zeltzer tables. The ICC values and ratios are analyzed under the assumption that the 191 keV 197 Au transition has multipolarities M1 + E2 and E 0 +M1. A common overlapping occurs when the nuclear penetration parameter lambda for magnetic dipole transition is lambda = 34.2+-2.2. For the 340 keV 233 U transition the ICC has been found to equal αk=0.69+-0.07, and the relative conversion-line intensities have been determined. It is concluded that the 191 keV 197 Au nad 340 keV 233 U transitions involve an electric monopole component concealed by the penetration effect in the M1-conversion. The matrix elements of the E0-transition have been evaluated

  16. The effectiveness of plug-in hybrid electric vehicles and renewable power in support of holistic environmental goals: Part 2 - Design and operation implications for load-balancing resources on the electric grid

    Science.gov (United States)

    Tarroja, Brian; Eichman, Joshua D.; Zhang, Li; Brown, Tim M.; Samuelsen, Scott

    2015-03-01

    A study has been performed that analyzes the effectiveness of utilizing plug-in vehicles to meet holistic environmental goals across the combined electricity and transportation sectors. In this study, plug-in hybrid electric vehicle (PHEV) penetration levels are varied from 0 to 60% and base renewable penetration levels are varied from 10 to 63%. The first part focused on the effect of installing plug-in hybrid electric vehicles on the environmental performance of the combined electricity and transportation sectors. The second part addresses impacts on the design and operation of load-balancing resources on the electric grid associated with fleet capacity factor, peaking and load-following generator capacity, efficiency, ramp rates, start-up events and the levelized cost of electricity. PHEVs using smart charging are found to counteract many of the disruptive impacts of intermittent renewable power on balancing generators for a wide range of renewable penetration levels, only becoming limited at high renewable penetration levels due to lack of flexibility and finite load size. This study highlights synergy between sustainability measures in the electric and transportation sectors and the importance of communicative dispatch of these vehicles.

  17. Assessing high wind energy penetration

    International Nuclear Information System (INIS)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project settings are close to ideal, including a very capable national utility company, Electra, a conventional power supply system based on imported heavy fuel and gas oil, and favourable wind conditions with an estimated annual average of 9.3 m/s at the hub height of the wind turbines. With the applied case study assumptions, simulations with WINSYS over the lifetime of the assessed wind power investment show that investments up to 4.2 MW are economically viable. The economic optimum is found at 2.4 MW reaching an internal rate of return of almost 8% p.a. This 2.4 MW of wind power would, together with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h. (Author)

  18. LCA of electricity systems with high wind power penetration

    DEFF Research Database (Denmark)

    Turconi, Roberto; O' Dwyer, C. O.; Flynn, D.

    Electricity systems are shifting from being based on fossil fuels towards renewable sources to enhance energy security and mitigate climate change. However, by introducing high shares of variable renewables - such as wind and solar - dispatchable power plants are required to vary their output...... to fulfill the remaining electrical demand, potentially increasing their environmental impacts [1,2]. In this study the environmental impacts of potential short-term future electricity systems in Ireland with high shares of wind power (35-50% of total installed capacity) were evaluated using life cycle...... considered: while not outweighing the benefits from increasing wind energy, cycling emissions are not negligible and should thus be systematically included (i.e. by using emission factors per unit of fuel input rather than per unit of power generated). Cycling emissions increased with the installed wind...

  19. Revisiting long-run relations in power markets with high RES penetration

    International Nuclear Information System (INIS)

    Gianfreda, Angelica; Parisio, Lucia; Pelagatti, Matteo

    2016-01-01

    Electricity generation from renewable energy resources (RES) has become increasingly significant to reach EU and emissions reduction targets. At the same time, one of the main EU policy goals has been the creation of a common internal energy market for Europe. In this paper, we focus on these two issues previously studied separately, considering their possible interactions. We first analyze the long-run relationship between day-ahead electricity prices and fuel prices (natural gas and coal) looking at two samples of years characterized by low and high RES penetration, then we explore the integration of EU markets. We show that the electricity–fuel nexus found over 2006–2008 changed dramatically over 2010–2014 for the majority of countries considered. In particular, the long-run dependence of electricity from gas and coal prices is much lower in recent years. Furthermore, our results confirm that the considered EU countries are becoming less integrated as RES-E increases. Our findings suggest that nationally implemented policies to support renewables are successful in increasing RES penetration, but they have lessened the linkage among EU markets, then making integration more difficult to obtain. - Highlights: •RES lower the intra-daily electricity dependence from coal and natural gas. •RES affect the EU wholesale electricity market integration, studied at hourly level. •Overlapping national and supranational policies tackle the achievement of EU targets. •Strong policy coordination is required to avoid that the “greens” promote the “dirtiest”.

  20. Adoption barriers for electric vehicles: Experiences from early adopters in Sweden

    International Nuclear Information System (INIS)

    Vassileva, Iana; Campillo, Javier

    2017-01-01

    Electric vehicles are considered as one of the most effective technologies for reducing current greenhouse gas emissions from the transport sector. Although in many countries, local and national governments have introduced incentives and subsidies to facilitate the electric vehicle market penetration, in Sweden, such benefits have been limited. Results from a survey carried out among private owners of electric vehicles are presented in this paper, including the analysis of the respondents socio-demographic characteristics, reasons for choosing an electric vehicle, charging locations and driving preferences, among others. The main results characterize current electric vehicle drivers as male, well-educated, with medium-high income; electric vehicles are used mainly for private purposes and charged at home during night time. Furthermore, the paper presents an analysis of the impact of large-scale penetration of electric vehicles on existing power distribution systems. The findings presented in this paper provide important insights for assuring a sustainable large-scale penetration of electric vehicles by learning from the experiences of early adopters of the technology and by analyzing the impact of different EV penetration scenarios on the power distribution grid. - Highlights: • A survey was conducted on EV owners' experience and characteristics. • Impact on the power system of large-scale EV adoption was analyzed. • Feedback from EV owners should be used to engage potential users. • Coordinated smart charging is needed to reduce power grid impact. • Coordinated smart charging is required to minimize disturbances on the power grid.

  1. Renewable Electricity Futures Study. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

    2012-12-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  2. Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul; Margolis, Robert

    2016-08-01

    We estimate the storage required to enable PV penetration up to 50% in California (with renewable penetration over 66%), and we quantify the complex relationships among storage, PV penetration, grid flexibility, and PV costs due to increased curtailment. We find that the storage needed depends strongly on the amount of other flexibility resources deployed. With very low-cost PV (three cents per kilowatt-hour) and a highly flexible electric power system, about 19 gigawatts of energy storage could enable 50% PV penetration with a marginal net PV levelized cost of energy (LCOE) comparable to the variable costs of future combined-cycle gas generators under carbon constraints. This system requires extensive use of flexible generation, transmission, demand response, and electrifying one quarter of the vehicle fleet in California with largely optimized charging. A less flexible system, or more expensive PV would require significantly greater amounts of storage. The amount of storage needed to support very large amounts of PV might fit within a least-cost framework driven by declining storage costs and reduced storage-duration needs due to high PV penetration.

  3. Impacts of Large Scale Wind Penetration on Energy Supply Industry

    Directory of Open Access Journals (Sweden)

    John Kabouris

    2009-11-01

    Full Text Available Large penetration of Renewable Energy Sources (RES impacts Energy Supply Industry (ESI in many aspects leading to a fundamental change in electric power systems. It raises a number of technical challenges to the Transmission System Operators (TSOs, Distribution System Operators (DSOs and Wind Turbine Generators (WTG constructors. This paper aims to present in a thorough and coherent way the redrawn picture for Energy Systems under these conditions. Topics related to emergent technical challenges, technical solutions required and finally the impact on ESI due to large wind power penetration, are analyzed. Finally, general conclusions are extracted about the ESI current and future state and general directions are recommended.

  4. Exploring past energy changes and their implications for the pace of penetration of new energy technologies

    International Nuclear Information System (INIS)

    Lund, P.D.

    2010-01-01

    Possible growth paths for new electricity generation technologies are investigated on the basis of an empirical analysis of past penetration rates. Finding and understanding high market penetration scenarios is relevant to formulating climate change mitigation strategies. The analysis shows that under favorable growth conditions, photovoltaics and wind could produce 15% and 25%, respectively, of world electricity by 2050. Under the same assumptions nuclear power could increase to 41% of world electricity. But it is unlikely that all three technology paths could be realized up to these values simultaneously and therefore the penetration rates presented here should be considered as indicative only. The results show that under positive conditions, an embryonic technology could move as a preferred option into a mainstream energy source within half a century. The introduction of growth constraints reflecting, e.g., severe economic, technical, or political limitations could reduce the above numbers by a factor of up to 2-3. The results indicate a decline in the relative year-to-year growth of new technologies when they have higher market shares. A comparison of the results with other short-term and long-term technology scenarios shows satisfactory agreement.

  5. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  6. Examination of leakage aspects through concrete - steel interfaces at and around containment penetration assemblies

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.; Sai, A.S.R.; Basu, P.C.

    1994-01-01

    Penetration assemblies are parts required to be provided in the containment wall/dome to permit piping, mechanical devices, equipments, electrical cables, personnel movements etc. Integrity of arrangements with respect to leak tightness at or around these penetration assemblies, is of utmost importance for achieving safe functioning of containment. Considering the feasibilities in controlling leakages along different possible paths, it has been found necessary to examine in detail the leakage possibilities at concrete - steel interfaces at and around penetration assemblies. The present paper addresses this issue with respect to the important related aspects like constructional details, testing conditions, normal operating conditions, and the accidental situation associated with containment structures. (author)

  7. A simple and versatile mini-arc plasma source for nanocrystal synthesis

    International Nuclear Information System (INIS)

    Chen Junhong; Lu Ganhua; Zhu Liying; Flagan, Richard C.

    2007-01-01

    Nanocrystals in the lower-nanometer-size range are attracting growing interest due to their unique properties. A simple and versatile atmospheric direct current mini-arc plasma source has been developed to produce nanoparticles as small as a few nanometers. The nanoparticles are formed by direct vaporization of solid precursors followed by a rapid quenching. Both semiconductor tin oxide and metallic silver nanoparticles have been produced at rates of 1-10 mg/h using the mini-arc source. Transmission electron microscopy and X-ray diffraction analyses indicate that most nanoparticles as produced are nonagglomerated and crystalline. Size distributions of nanoparticles measured with an online scanning electrical mobility spectrometer are broader than the self-preserving distribution, suggesting that the nanoparticle growth is coagulation-dominated, and that the particles experience a range of residence times. The electrical charges carried by as-produced aerosol nanoparticles facilitate the manipulation of nanoparticles. The new mini-arc plasma source hence shows promise to accelerate the exploration of nanostructured materials

  8. Synthesis and processing of composites by reactive metal penetration

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E.; Ewsuk, K.G. [Sandia National Laboratories, Albuquerque, NM (United States); Tomsia, A.P. [Pask Research and Engineering, Berkeley, CA (United States)] [and others

    1995-05-01

    Ceramic-metal composites are being developed because their high stiffness-to weight ratios, good fracture toughness, and variable electrical and thermal properties give them advantages over more conventional materials. However, because ceramic-metal composite components presently are more expensive than monolithic materials, improvements in processing are required to reduce manufacturing costs. Reactive metal penetration is a promising new method for making ceramic- and metal-matrix composites that has the advantage of being inherently a net-shape process. This technique, once fully developed, will provide another capability for manufacturing the advanced ceramic composites that are needed for many light-weight structural and wear applications. The lower densities of these composites lead directly to energy savings in use. Near-net-shape fabrication of composite parts should lead to additional savings because costly and energy intensive grinding and machining operations are significantly reduced, and the waste generated from such finishing operations is minimized. The goals of this research program are: (1) to identify feasible compositional systems for making composites by reactive metal penetration; (2) to understand the mechanism(s) of composite formation by reactive metal penetration; and (3) to learn how to control and optimize reactive metal penetration for economical production of composites and composite coatings.

  9. A highly versatile and easily configurable system for plant electrophysiology.

    Science.gov (United States)

    Gunsé, Benet; Poschenrieder, Charlotte; Rankl, Simone; Schröeder, Peter; Rodrigo-Moreno, Ana; Barceló, Juan

    2016-01-01

    In this study we present a highly versatile and easily configurable system for measuring plant electrophysiological parameters and ionic flow rates, connected to a computer-controlled highly accurate positioning device. The modular software used allows easy customizable configurations for the measurement of electrophysiological parameters. Both the operational tests and the experiments already performed have been fully successful and rendered a low noise and highly stable signal. Assembly, programming and configuration examples are discussed. The system is a powerful technique that not only gives precise measuring of plant electrophysiological status, but also allows easy development of ad hoc configurations that are not constrained to plant studies. •We developed a highly modular system for electrophysiology measurements that can be used either in organs or cells and performs either steady or dynamic intra- and extracellular measurements that takes advantage of the easiness of visual object-oriented programming.•High precision accuracy in data acquisition under electrical noisy environments that allows it to run even in a laboratory close to electrical equipment that produce electrical noise.•The system makes an improvement of the currently used systems for monitoring and controlling high precision measurements and micromanipulation systems providing an open and customizable environment for multiple experimental needs.

  10. Correlation Between Cone Penetration Rate And Measured Cone Penetration Parameters In Silty Soils

    DEFF Research Database (Denmark)

    Poulsen, Rikke; Nielsen, Benjaminn Nordahl; Ibsen, Lars Bo

    2013-01-01

    This paper shows, how a change in cone penetration rate affects the cone penetration measurements, hence the cone resistance, pore pressure, and sleeve friction in silty soil. The standard rate of penetration is 20 mm/s, and it is generally accepted that undrained penetration occurs in clay while...... drained penetration occurs in sand. When lowering the penetration rate, the soil pore water starts to dissipate and a change in the drainage condition is seen. In intermediate soils such as silty soils, the standard cone penetration rate may result in a drainage condition that could be undrained......, partially or fully drained. However, lowering the penetration rate in silty soils has a great significance because of the soil permeability, and only a small change in penetration rate will result in changed cone penetration measurements. In this paper, analyses will be done on data from 15 field cone...

  11. Penetration of Milk-Derived Antimicrobial Peptides into Phospholipid Monolayers as Model Biomembranes

    Directory of Open Access Journals (Sweden)

    Wanda Barzyk

    2013-01-01

    Full Text Available Three antimicrobial peptides derived from bovine milk proteins were examined with regard to penetration into insoluble monolayers formed with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC or 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol sodium salt (DPPG. Effects on surface pressure (Π and electric surface potential (ΔV were measured, Π with a platinum Wilhelmy plate and ΔV with a vibrating plate. The penetration measurements were performed under stationary diffusion conditions and upon the compression of the monolayers. The two type measurements showed greatly different effects of the peptide-lipid interactions. Results of the stationary penetration show that the peptide interactions with DPPC monolayer are weak, repulsive, and nonspecific while the interactions with DPPG monolayer are significant, attractive, and specific. These results are in accord with the fact that antimicrobial peptides disrupt bacteria membranes (negative while no significant effect on the host membranes (neutral is observed. No such discrimination was revealed from the compression isotherms. The latter indicate that squeezing the penetrant out of the monolayer upon compression does not allow for establishing the penetration equilibrium, so the monolayer remains supersaturated with the penetrant and shows an under-equilibrium orientation within the entire compression range, practically.

  12. Versatile radiation gaging system

    International Nuclear Information System (INIS)

    Long, P.J.

    1978-01-01

    The attributes of computerized versatile radiation gaging systems are described. The gages are used to measure plating thicknesses and material characteristics that can be determined from radiation attenuation and/or x-ray fluorescence measurements

  13. Fast magnetic field penetration into an intense neutralized ion beam

    International Nuclear Information System (INIS)

    Armale, R.

    1992-06-01

    Experiments involving propagation of neutralized ion beams across a magnetic field indicate a magnetic field penetration time determined by the Hall resistivity rather than the Spitzer or Pedersen resistivity. In magnetohydrodynamics the Hall current is negligible because electrons and ions drift together in response to an electric field perpendicular to the magnetic field. For a propagating neutralized ion beam, the ion orbits are completely different from the electron orbits and the Hall current must be considered. There would be no effect unless there is a component of magnetic field normal to the surface which would usually be absent for a good conductor. It is necessary to consider electron inertia and the consequent penetration of the normal component to a depth c/ω p . In addition it is essential to consider a component of magnetic field parallel to the velocity of the beam which may be initially absent, but is generated by the Hall effect. The penetration time is determined by whistler waves rather than diffusion

  14. Market penetration of ethanol

    International Nuclear Information System (INIS)

    Szulczyk, Kenneth R.; McCarl, Bruce A.; Cornforth, Gerald

    2010-01-01

    This research examines in detail the technology and economics of substituting ethanol for gasoline. This endeavor examines three issues. First, the benefits of ethanol/gasoline blends are examined, and then the technical problems of large-scale implementation of ethanol. Second, ethanol production possibilities are examined in detail from a variety of feedstocks and technologies. The feedstocks are the starch/sugar crops and crop residues, while the technologies are corn wet mill, dry grind, and lignocellulosic fermentation. Examining in detail the production possibilities allows the researchers to identity the extent of technological change, production costs, byproducts, and GHG emissions. Finally, a U.S. agricultural model, FASOMGHG, is updated which predicts the market penetration of ethanol given technological progress, variety of technologies and feedstocks, market interactions, energy prices, and GHG prices. FASOMGHG has several interesting results. First, gasoline prices have a small expansionary impact on the U.S. ethanol industry. Both agricultural producers' income and cost both increase with higher energy prices. If wholesale gasoline is $4 per gallon, the predicted ethanol market penetration attains 53% of U.S. gasoline consumption in 2030. Second, the corn wet mill remains an important industry for ethanol production, because this industry also produces corn oil, which could be converted to biodiesel. Third, GHG prices expand the ethanol industry. However, the GHG price expands the corn wet mill, but has an ambiguous impact on lignocellulosic ethanol. Feedstocks for lignocellulosic fermentation can also be burned with coal to generate electricity. Both industries are quite GHG efficient. Finally, U.S. government subsidies on biofuels have an expansionary impact on ethanol production, but may only increase market penetration by an additional 1% in 2030, which is approximately 6 billion gallons. (author)

  15. Price volatility in wind dominant electricity markets

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa; Chen, Zhe

    2013-01-01

    High penetration of intermittent renewable energy sources causes price volatility in future electricity markets. This is specially the case in European countries that plan high penetration levels. This highlights the necessity for revising market regulations and mechanisms in accordance...... to generation combination portfolio. Proposed solutions should be able to tackle with emerging challenges which are mainly due to high variability and unpredictability of intermittent renewable resources. In this paper high price volatility will be introduced as an emerging challenge in wind dominant...... electricity markets. High price volatility is unappreciated because it imposes high financial risk levels to both electricity consumers and producers. Additionally high price variations impede tracking price signals by consumers in future smart grid and jeopardize implementation of demand response concepts...

  16. Electric vehicle market penetration in Switzerland by 2020 - We cannot forecast the future but we can prepare for it

    International Nuclear Information System (INIS)

    2009-07-01

    electric demand by 1.2 to 1.7 TWh a year, i.e. only 1.8 to 2.6 % of the Swiss power generation (66 TWh a year). Simultaneously charging 50% of these electric vehicles would also demand an output power of about 1.3 GW. In a Vision 2020 study entitled 'Electric vehicle market penetration in Switzerland by 2020 (Lausanne and Olten, July 2009)' the Swiss electric utility Alpiq evaluated the impact of such a measure on production and distribution of electric power. Following assumptions were made: 4/5 of the electrical cars would be Plug-in Hybrid Vehicles and 1/5 Battery Electric Vehicles; each car would run 37 km a day on average, or 13,500 km a year; and the mean electric consumption would be 20 kWh for a guaranteed range of 120 km, with one charging at least each third day, mainly slowly in the night ('Sleep and Charge' with a domestic low input power of 3.5 kW for 8 hours), but also quickly ('Coffee and Charge' with a particularly high input power of 55 kW), and with possible intermediate accelerated charging modes ('Work/Shop and Charge' with a mean input power of 7 to 12 kW). Eventually, the number, type and location of the charging facilities needed were estimated on the basis of a characterization of electrical vehicles owners. On the basis of an electric fleet of 720,000 cars, it is concluded that about 650,000 domestic slow charging points, 80,000 private accelerated charging points at working places, 23,000 public accelerated charging points in cities, and 150 quick charging points with each 6 sockets located in ordinary petrol (gas) service stations would be needed

  17. Obstacles to the penetration of electric generation markets by natural gas

    International Nuclear Information System (INIS)

    Schleede, G.R.

    1992-01-01

    This paper reviews and compares the advantages and disadvantages that electric power generators have in generating electricity from a variety of fuel sources. It then goes on to emphasize the use of natural gas and how it can become more competitive in the electric generation field. The paper is based primarily on experiences by the author during his employment with the New England Electric System (NEES). The author reviews the source of electricity for this utility and describes the percentages of each fuel source. It then goes on to specifically discuss the planned natural gas-fired projects in the utility system. The paper outlines the NEES strategy of diversification with respect to gas suppliers and describes the important considerations it used when planning for electric generation with gas. These include determining pressure requirements needed by the gas distribution system when the gas-generators come on-line; determining the placement of the generators within the overall system (i.e. peak load facilities, base load facilities, etc.); contracting flexibility because of the need to vary the amount of gas taken; and the ability to manage pipeline capacity and gas supplies when they are not needed

  18. Simulating demand for electric vehicles using revealed preference data

    International Nuclear Information System (INIS)

    Driscoll, Áine; Lyons, Seán; Mariuzzo, Franco; Tol, Richard S.J.

    2013-01-01

    We have modelled the market for new cars in Ireland with the aim of quantifying the values placed on a range of observable car characteristics. Mid-sized petrol cars with a manual transmission sell best. Price and perhaps fuel cost are negatively associated with sales, and acceleration and perhaps range are positively associated. Hybrid cars are popular. The values of car characteristics are then used to simulate the likely market shares of three new electric vehicles. Electric vehicles tend to be more expensive even after tax breaks and subsidies are applied, but we assume their market shares would benefit from an “environmental” premium similar to those of hybrid cars. The “environmental” premium and the level of subsidies would need to be raised to incredible levels to reach the government target of 10% market penetration of all-electric vehicles. -- Highlights: •Market values placed on a range of observable car characteristics are quantified. •We simulate market shares of electrical vehicles from values of car characteristics. •We assume electric vehicles will benefit from an “environmental” premium. •Large premium not enough to reach government targets for market penetration. •Very high subsidies required to reach government targets for market penetration

  19. Slowing and cooling of heavy or light (even with a tiny electric dipole moment) polar molecules using a novel, versatile electrostatic Stark decelerator.

    Science.gov (United States)

    Wang, Qin; Hou, Shunyong; Xu, Liang; Yin, Jianping

    2016-02-21

    To meet some demands for realizing precise measurements of an electric dipole moment of electron (eEDM) and examining cold collisions or cold chemical physics, we have proposed a novel, versatile electrostatic Stark decelerator with an array of true 3D electric potential wells, which are created by a series of horizontally-oriented, U-shaped electrodes with time-sequence controlling high voltages (± HV) and two guiding electrodes with a constant voltage. We have calculated the 2D electric field distribution, the Stark shifts of the four lowest rotational sub-levels of PbF molecules in the X1(2)Π1/2(v = 0) electronic and vibrational ground states as well as the population in the different rotational levels. We have discussed the 2D longitudinal and transverse phase-space acceptances of PbF molecules in our decelerator. Subsequently, we have simulated the dynamic processes of the decelerated PbF molecules using the 3D Monte-Carlo method, and have found that a supersonic PbF beam with a velocity of 300 m s(-1) can be efficiently slowed to about 5 m s(-1), which will greatly enhance the sensitivities to research a parity violation and measure an eEDM. In addition, we have investigated the dependences of the longitudinal velocity spread, longitudinal temperature and bunching efficiency on both the number of guiding stages and high voltages, and found that after bunching, a cold packet of PbF molecules in the J = 7/2, MΩ = -7/4 state with a longitudinal velocity spread of 0.69 m s(-1) (corresponding to a longitudinal temperature of 2.35 mK) will be produced by our high-efficient decelerator, which will generate a high energy-resolution molecular beam for studying cold collision physics. Finally, our novel decelerator can also be used to efficiently slow NO molecules with a tiny electric dipole moment (EDM) of 0.16 D from 315 m s(-1) to 28 m s(-1). It is clear that our proposed new decelerator has a good slowing performance and experimental feasibility as well as wide

  20. A review of penetration mechanisms and dynamic properties of tungsten and depleted uranium penetrators

    International Nuclear Information System (INIS)

    Andrew, S.P.; Caligiuri, R.D.; Eiselstein, L.E.

    1991-01-01

    Kinetic energy penetrators must posses the best possible combination of hardness, stiffness, strength, and fracture toughness characteristics to be effective against modern armor systems. Over the last decade, depleted uranium (DU) and tungsten alloys have been the materials of choice for kinetic energy penetrators. Du and tungsten perform abut the same against semi-infinite targets, and DU outperforms tungsten penetrators in oblique, spaced array targets, but because of environmental and subsequent cost concerns, effort has focused on improving the performance of tungsten penetrators over the last few years. However, despite recent improvements in material properties, the penetration performance of tungsten still lags behind that of DU. One possible reason is the difference in deformation mechanisms at the leading edge of the penetrator during the penetration process-DU alloys tend to shear band and sharpen as they penetrate the target material, whereas tungsten penetrators tend to mushroom and blunt. As a first step to determine whether shear banding is truly the reason for superior DU performance, a review of the fabrication, high strain-rate properties, and penetration phenomena of penetrators manufactured from both tungsten and DU alloys. Specifically, the effects of composition, processing, and heat treatment on material properties and penetration mechanisms of these alloys are discussed

  1. Market Penetration Simulation of Hydrogen Powered Vehicles in Korea

    International Nuclear Information System (INIS)

    Eunju Jun; Yong Hoon, Jeong; Soon Heung, Chang

    2006-01-01

    As oil price being boosted, hydrogen has been considered to be a strong candidate for the future energy carrier along with electricity. Although hydrogen can be produced by many energy sources, carbon-free sources such as nuclear and renewable energy may be ideal ones due to their environmental friendliness. For the analysis of hydrogen economy, the cost and market penetration of various end-use technologies are the most important factors in production and consumer side, respectively. Particularly, hydrogen powered vehicle is getting more interests as fuel cell technologies are developed. In this paper, the hydrogen powered vehicle penetration into the transportation market is simulated. A system dynamic code, Vensim, was utilized to simulate the dynamics in the transportation, assuming various types of vehicle such as gasoline, hybrid electricity and hydrogen powered. Market shares of each vehicle are predicted by using currently available data. The result showed that hydrogen era will not be bright as we think. To reach the era of hydrogen fuel cell cost should be reduced dramatically. And if the hydrogen cost which includes both operating and capital cost reaches to a $0.16 per kilometer, hydrogen portion can be a 50 percent in the transportation sector. However, if strong policy or subsidy can be given, the result will be changed. [1] (authors)

  2. Scenario analysis on future electricity supply and demand in Japan

    International Nuclear Information System (INIS)

    Zhang, Qi; Ishihara, Keiichi N.; Mclellan, Benjamin C.; Tezuka, Tetsuo

    2012-01-01

    Under continuing policies of CO 2 emissions reduction, it is crucial to consider scenarios for Japan to realize a safe and clean future electricity system. The development plans for nuclear power and renewable energy - particularly solar and wind power - are being reconsidered in light of the Fukushima nuclear accident. To contribute to this, in the present study, three electricity supply scenarios for 2030 are proposed according to different future nuclear power development policies, and the maximum penetration of renewable energy generation is pursued. On the other side of the equation, three electricity demand scenarios are also proposed considering potential energy saving measures. The purpose of the study is to demonstrate quantitatively the technological, economic and environmental impacts of different supply policy selections and demand assumptions on future electricity systems. The scenario analysis is conducted using an input–output hour-by-hour simulation model subject to constraints from technological, economic and environmental perspectives. The obtained installed capacity mix, power generation mix, CO 2 emissions, and generation cost of the scenarios were inter-compared and analyzed. The penetration of renewable energy generation in a future electricity system in Japan, as well as its relationship with nuclear power share was uncovered. -- Highlights: ► Scenario analysis is conducted on future electricity systems under different supply policies and demand assumptions. ► Scenario analysis is conducted using a input–output hour-by-hour simulation model for real-time demand-supply balance. ► The technological, economic and environmental impacts of supply policies and demand assumptions on future electricity systems are studied. ► The maximum penetration of renewable energy generation is pursued in the scenario analysis using the hour-by-hour simulation. ► The relationship between the penetration levels of renewable energy and nuclear power

  3. Predicting the market penetration of the next generation of coal-fired technologies

    International Nuclear Information System (INIS)

    Guha, M.K.; McCall, G.W.

    1990-01-01

    This paper discusses what role clean coal-fired technology will have in future generating capacity based on availability and prices of coal and natural gas, the nuclear option, environmental regulations, limitations of current air pollution control technologies, and economics. The topics of the paper include the need for new electric generating capacity, why coal must remain a source of energy for generating electricity, technology effectiveness and market penetration analysis methodologies, coal-fired technology economic and technical assumptions, cost estimates, and high and low growth scenarios

  4. Numerical Study of Electric Field Enhanced Combustion

    KAUST Repository

    Han, Jie

    2016-12-26

    Electric fields can be used to change and control flame properties, for example changing flame speed, enhancing flame stability, or reducing pollutant emission. The ions generated in flames are believed to play the primary role. Although experiments have been carried out to study electric field enhanced combustion, they are not sufficient to explain how the ions in a flame are affected by an electric field. It is therefore necessary to investigate the problem through numerical simulations. In the present work, the electric structure of stabilized CH4/air premixed flames at atmospheric pressure within a direct current field is studied using numerical simulations. This study consists of three parts. First, the transport equations are derived from the Boltzmann kinetic equation for each individual species. Second, a general method for computing the diffusivity and mobility of ions in a gas mixture is introduced. Third, the mechanisms for neutral and charged species are improved to give better predictions of the concentrations of charged species, based on experimental data. Following from this, comprehensive numerical results are presented, including the concentrations and fluxes of charged species, the distributions of the electric field and electric potential, and the electric current-voltage relation. Two new concepts introduced with the numerical results are the plasma sheath and dead zone in the premixed flame. A reactive plasma sheath and a Boltzmann relation sheath are discovered in the region near the electrodes. The plasma sheath penetrates into the flame gas when a voltage is applied, and penetrating further if the voltage is higher. The zone outside the region of sheath penetration is defined as the dead zone. With the two concepts, analytical solutions for the electric field, electric potential and current-voltage curve are derived. The solutions directly describe the electric structure of a premixed flame subject to a DC field. These analytical solutions

  5. Impacts of High Variable Renewable Energy Futures on Wholesale Electricity Prices, and on Electric-Sector Decision Making

    OpenAIRE

    Seel, J; Mills, AD; Wiser, RH

    2018-01-01

    Increasing penetrations of variable renewable energy (VRE) can affect wholesale electricity price patterns and make them meaningfully different from past, traditional price patterns. Many long-lasting decisions for supply- and demand-side electricity infrastructure and programs are based on historical observations or assume a business-as-usual future with low shares of VRE. Our motivating question is whether certain electric-sector decisions that are made based on assumptions reflecting low V...

  6. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  7. Reactors for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades

  8. Cross-Country Electricity Trade, Renewable Energy and European Transmission Infrastructure Policy

    OpenAIRE

    Abrell, Jan; Rausch, Sebastian

    2016-01-01

    This paper develops a multi-country multi-sector general equilibrium model, integrating high-frequency electricity dispatch and trade decisions, to study the e ects of electricity transmission infrastructure (TI) expansion and re- newable energy (RE) penetration in Europe for gains from trade and carbon dioxide emissions in the power sector. TI can bene t or degrade environ- mental outcomes, depending on RE penetration: it complements emissions abatement by mitigating dispatch problems associ...

  9. The mechanism of plasma-assisted penetration of NO2- in model tissues

    Science.gov (United States)

    He, Tongtong; Liu, Dingxin; Liu, Zhijie; Liu, Zhichao; Li, Qiaosong; Rong, Mingzhe; Kong, Michael G.

    2017-11-01

    Cold atmospheric plasmas are reportedly capable of enhancing the percutaneous absorption of drugs, which is a development direction of plasma medicine. This motivated us to study how the enhancement effect was realized. In this letter, gelatin gel films were used as surrogates of human tissues, NaNO2 was used as a representative of small-molecule drugs, and cross-field and linear-field plasma jets were used for the purpose of enhancing the penetration of NaNO2 through the gelatin gel films. The permeability of gelatin gel films was quantified by measuring the NO2- concentration in water which was covered by those films. It was found that the gas flow and electric field of cold plasmas played a crucial role in the permeability enhancement of the model tissues, but the effect of gas flow was mainly confined in the surface layer, while the effect of the electric field was holistic. Those effects might be attributed to the localized squeezing of particles by gas flow and the weakening of the ion-dipole interaction by the AC electric field. The enhancement effect decreases with the increasing mass fraction of gelatin because the macromolecules of gelatin could significantly hinder the penetration of small molecules in the model tissues.

  10. The Impact of Microwave Penetration Depth on the Process of Heating the Moulding Sand with Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Nowak D.

    2017-12-01

    Full Text Available This paper presents the impact of microwave penetration depth on the process of heating the moulding sand with sodium silicate. For each material it is affected by: the wavelength in vacuum and the real and imaginary components of the relative complex electrical permittivity εr for a selected measurement frequency. Since the components are not constant values and they change depending on the electrical parameters of materials and the frequency of the electromagnetic wave, it is indispensable to carry out laboratory measurements to determine them. Moreover, the electrical parameters of materials are also affected by: temperature, packing degree, humidity and conductivity. The measurements of the dielectric properties of moulding sand with sodium silicate was carried out using the perturbation method on a stand of waveguide resonance cavity. The real and imaginary components of the relative complex electrical permittivity was determined for moulding sand at various contents of sodium silicate and at various packing degrees of the samples. On the basis of the results the microwave penetration depth of moulding sand with sodium silicate was established. Relative literature contains no such data that would be essential to predicting an effective process of microwave heating of moulding sand with sodium silicate. Both the packing degree and the amount of sodium silicate in moulding sand turned out to affect the penetration depth, which directly translates into microwave power density distribution in the process of microwave heating of moulding sand with sodium silicate.

  11. Electric distribution systems and embedded generation capacity

    International Nuclear Information System (INIS)

    Calderaro, V.; Galdi, V.; Piccolo, A.; Siano, P.

    2006-01-01

    The main policy issues of European States are sustainable energy supply promotion and liberalization of energy markets, which introduced market competition in electricity production and created support mechanisms to encourage renewable electricity production and consumption. As a result of liberalization, any generator, including small-scale and renewable energy based units, can sell electricity on the free market. In order to meet future sustainability targets, connection of a higher number of Distributed Generation (DG) units to the electrical power system is expected, requiring changes in the design and operation of distribution electricity systems, as well as changes in electricity network regulation. In order to assist distribution system operators in planning and managing DG connections and in maximizing DG penetration and renewable sources exploitation, this paper proposed a reconfiguration methodology based on a Genetic Algorithm (GA), that was tested on a 70-bus system with DG units. The simulation results confirmed that the methodology represents a suitable tool for distribution system operators when dealing with DG capacity expansion and power loss issues, providing information regarding the potential penetration network-wide and allowing maximum exploitation of renewable generation. 35 refs., 4 tabs., 6 figs

  12. Electrical Detection of Cellular Penetration during Microinjection with Carbon Nanopipettes

    OpenAIRE

    Anderson, Sean E.; Bau, Haim H.

    2014-01-01

    The carbon nanopipette (CNP) is comprised of a pulled-glass pipette terminating with a nanoscale (tens to hundreds of nm) diameter carbon pipe. The entire inner glass surface of the CNP is coated with a carbon film, providing an electrically conductive path from the carbon tip to the distal, macroscopic end of the pipette. The CNP can double as a nanoelectrode, enabling electrical measurements through its carbon lining, and as a nanoinjector, facilitating reagent injection through its hollow ...

  13. Electric vehicle market penetration in Switzerland by 2020 - We cannot forecast the future but we can prepare for it

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-15

    } equivalent a year. These 720,000 electrical vehicles would increase the electric demand by 1.2 to 1.7 TWh a year, i.e. only 1.8 to 2.6 % of the Swiss power generation (66 TWh a year). Simultaneously charging 50% of these electric vehicles would also demand an output power of about 1.3 GW. In a Vision 2020 study entitled 'Electric vehicle market penetration in Switzerland by 2020 (Lausanne and Olten, July 2009)' the Swiss electric utility Alpiq evaluated the impact of such a measure on production and distribution of electric power. Following assumptions were made: 4/5 of the electrical cars would be Plug-in Hybrid Vehicles and 1/5 Battery Electric Vehicles; each car would run 37 km a day on average, or 13,500 km a year; and the mean electric consumption would be 20 kWh for a guaranteed range of 120 km, with one charging at least each third day, mainly slowly in the night ('Sleep and Charge' with a domestic low input power of 3.5 kW for 8 hours), but also quickly ('Coffee and Charge' with a particularly high input power of 55 kW), and with possible intermediate accelerated charging modes ('Work/Shop and Charge' with a mean input power of 7 to 12 kW). Eventually, the number, type and location of the charging facilities needed were estimated on the basis of a characterization of electrical vehicles owners. On the basis of an electric fleet of 720,000 cars, it is concluded that about 650,000 domestic slow charging points, 80,000 private accelerated charging points at working places, 23,000 public accelerated charging points in cities, and 150 quick charging points with each 6 sockets located in ordinary petrol (gas) service stations would be needed

  14. Influence of jet thrust on penetrator penetration when studying the structure of space object blanket

    Directory of Open Access Journals (Sweden)

    N. A. Fedorova

    2014-01-01

    Full Text Available The article presents the calculation-and-theory-based research results to examine the possibility for using the jet thrust impulse to increase a penetration depth of high-velocity penetrator modules. Such devices can be used for studies of Earth surface layer composition, and in the nearest future for other Solar system bodies too. Research equipment (sensors and different instruments is housed inside a metal body of the penetrator with a sharpened nose that decreases drag force in soil. It was assumed, that this penetrator is additionally equipped with the pulse jet engine, which is fired at a certain stage of penetrator motion into target.The penetrator is considered as a rigid body of variable mass, which is subjected to drag force and reactive force applied at the moment the engine fires. A drag force was represented with a binomial empirical law, and penetrator nose part was considered to be conical. The jet thrust force was supposed to be constant during its application time. It was in accordance with assumption that mass flow and flow rate of solid propellant combustion products were constant. The amount of propellant in the penetrator was characterized by Tsiolkovsky number Z, which specifies the ratio between the fuel mass and the penetrator structure mass with no fuel.The system of equations to describe the penetrator dynamics was given in dimensionless form using the values aligned with penetration of an equivalent inert penetrator as the time and penetration depth scales. Penetration dynamics of penetrator represented in this form allowed to eliminate the influence of penetrator initial mass and its cross-section diameter on the solution results. The lack of such dependency is convenient for comparing the calculation results since they hold for penetrators of various initial masses and cross-sections.To calculate the penetration a lunar regolith was taken as a soil material. Calculations were carried out for initial velocities of

  15. The potential of electric vehicles

    International Nuclear Information System (INIS)

    2016-04-01

    Electric vehicles can help reduce the dependence of road transport on imported oil, cut the country's energy bill, reduce greenhouse gas emissions, improve air quality in cities through zero exhaust emissions and reduce noise pollution. The economic costs and environmental impacts of electric vehicles are mostly concentrated at the manufacturing stage, whereas the costs and impacts of internal combustion vehicles are predominantly felt during usage. So we cannot simply compare vehicles as objects, we must see how they are used, which means taking a fresh look at the full potential of electric vehicles which must be used intensely to be economically and environmentally viable. The main advantage of internal combustion vehicles is their ability to carry a very large amount of energy giving them a very large range and significant versatility. However, the consequences of the use of fossil fuels on the climate and the environment today require us to look for other solutions for vehicles and mobility systems. Electric vehicles are among these: its lack of versatility, due to its still limited range, is offset by being more adaptable and optimised for the usage sought. Electric vehicles are particularly suitable for new mobility services offerings and allow the transition to new ways of travelling to be speeded up optimising the use of the vehicle and no longer requiring ownership of it. The use of digital, facilitated by the electrical engine, opens up numerous opportunities for innovations and new services (such as the autonomous vehicle for example). In addition, electric vehicles can do more than just transport. Their batteries provide useful energy storage capabilities that can help regulate the power grid and the development of renewable energy. The marketing of electric vehicles may be accompanied by energy services that can be economically viable and used to structure the electro-mobility offer in return. To minimise the impact on the electrical grid, it is

  16. Wind power feed-in impact on electricity prices in Germany 2009-2013

    Directory of Open Access Journals (Sweden)

    François Benhmad

    2016-07-01

    Full Text Available Until quite recently no electricity system had faced the challenges associated with high penetrations of renewable energy sources (RES. In this paper, we carry out an empirical analysis for Germany, as a country with high penetration of wind energy, to investigate the well-known merit-order effect. Our main empirical findings suggest that the increasing share of wind power in-feed induces a decrease of electricity spot price level but an increase of spot prices volatility. Furthermore, the relationship between wind power and spot electricity prices can be strongly impacted by European electricity grids interconnection which behaves like a safety valve lowering volatility and limiting the price decrease. Therefore, the impacts of wind generated electricity on electricity spot markets are less clearly pronounced in interconnected systems.

  17. A review of penetration mechanisms and dynamic properties of tungsten and depleted uranium penetrators

    International Nuclear Information System (INIS)

    Andrew, S.P.; Caligiuri, R.D.; Eiselstein, L.E.

    1991-01-01

    Over the last decade, depleted uranium (DU) and tungsten alloys have been the materials of choice for kinetic energy penetrators. However, despite improvements in mechanical properties in recent years, the penetration performance of tungsten still lags behind that of DU. One possible reason is the difference in deformation mechanisms- DU alloys tend to shear band as they penetrate the target material, whereas tungsten penetrators tend to mushroom. As a first step to determining whether shear banding is truly the reason for superior DU performance, a review and summary of the available information was performed. This paper presents a state-of-the-art review of the formulation, high strain- rate properties, and penetration phenomena of penetrators manufactured from both tungsten and DU alloys. Specifically, the effects of composition, processing, and heat treatment on mechanical properties and penetration mechanisms of these alloys are discussed. Penetration data and models for penetration mechanisms (in particular shear banding) are also presented, as well as the applicability of these models and their salient features

  18. Penetrating the markets: biomass and commercial distribution

    International Nuclear Information System (INIS)

    Schmidl, J.

    1999-01-01

    Although biomass accounts for a significant proportion of renewable energy in Europe, its market penetration could be increased if certain barriers can be surmounted. Some of those barriers are identified and suggestions made as to how they may be overcome through improved 'distribution' in various sectors. To integrate biomass into the electricity distribution system, the commercial distribution of liquid biofuels, and in the commercial distribution of biomass in the heat sector, certain rewards and penalties could be introduced and these are discussed. The low temperature heat market is seen as very important for the further development of bioenergy in Europe. (UK)

  19. The Impact of Dynamic Electricity Tariff on Long-run Incremental Cost

    DEFF Research Database (Denmark)

    Ding, Yi; Li, Yang; Pineda, Salvador

    2012-01-01

    Electricity plays an important role in the future energy framework around the world. The foreseen high penetration of renewable energy resources and electric vehicles (EV) will change the way of understanding and operating power systems. Consequently, significant investment in network infrastruct......Electricity plays an important role in the future energy framework around the world. The foreseen high penetration of renewable energy resources and electric vehicles (EV) will change the way of understanding and operating power systems. Consequently, significant investment in network...... infrastructure needs to be made in order to cope with this tremendous change in an efficient and effective manner. Long-run incremental cost (LRIC) pricing method is recognized as an economically efficient approach for pricing network charges, which provides forward-looking information for future investment cost...

  20. BECCS Market Launch Strategy Aiming to Help Ensure Reliable Grid Power at High Penetrations of IRE (Intermittent Renewable Electricity)

    Science.gov (United States)

    WIlliams, R. H.

    2017-12-01

    Despite its recognized importance for carbon (C)-mitigation, progress in advancing biomass energy with CO2 capture and sequestration (BECCS) has been slow. A BECCS market launch strategy based on technologies ready for commercial-scale demonstration is discussed—based on co-gasification of coal and biomass to make H2 with CCS. H2 so produced would be a key element of a H2 balancing capacity (H2-BC) strategy for ensuring reliable grid power at high IRE penetrations. High grid penetrations of IRE must be complemented by fast-ramping balancing (backup and/or storage) capacity (BC) to ensure reliable grid power. BC provided now by natural gas-fired gas turbine combined cycle and combustion turbine units would eventually have to be decarbonized to realize C-mitigation goals, via CCS or other means. Capital-intensive CCS energy systems require baseload operation to realize favourable economics, but at high IRE penetrations, BC plants must be operated at low capacity factors. A H2-BC strategy is a promising way to address this challenge. The elements of a H2-BC system are: (a) H2 production from carbonaceous feedstocks in baseload plants with CCS; (b) H2 consumption in fast-ramping BC units that operate at low capacity factors; (c) Buffer underground H2 storage to enable decoupling baseload H2 production from highly variable H2 consumption by BC units. The concept is likely to "work" because underground H2 storage is expected to be inexpensive. A H2 production analysis is presented for a negative GHG-emitting H2-BC system based on cogasification of corn stover and coal, with captured CO2 used for enhanced oil recovery. The technical readiness of each system component is discussed, and preliminary insights are offered as to the conditions under which the corresponding H2-BC system might compete with natural gas in providing backup for IRE on US electric grids. Public policy to help advance this strategy might be forthcoming, because 2 US Senate bills with broad

  1. A theoretical basis of the approach for the magnetic field penetration measurement

    International Nuclear Information System (INIS)

    Bezotosnyi, P I; Gavrilkin, S Yu; Ivanenko, O M; Mitsen, K V; Tsvetkov, A Yu

    2016-01-01

    An approach for the assessment of London penetration depth of superconducting films is proposed. This approach is based on the analysis of linear response of the sample to a local low-frequency alternating magnetic field generated by the measuring coil disposed near the film surface. A visual “electrical engineering” model of induced currents distribution in the superconductor taking into account the kinetic inductance was developed for a description of this response. The possibility of determining of the penetration depth from changing the inductance of the system “coil-sample” is shown in the framework of this model. The sensitivity of the proposed method for the films with different thicknesses is considered. (paper)

  2. Natural gas poised to penetrate deeper into electric generation

    International Nuclear Information System (INIS)

    Swanekamp, R.

    1995-01-01

    This article describes how advancements in gas supply, distribution and storage, coupled with new options in combustion equipment, continue to expand the use of natural gas for electric generation. The challenge is to meet the increasing demand while keeping prices competitive with other fuels--and keep a small band of skeptics at bay. To prepare for the projected growth in gas consumption, the natural-gas industry has invented in new infrastructure and technologies. Pipelines have been built; storage facilities have been expanded; and highly precise flow measurement stations have been installed. To mitigate supply and price risk, suppliers are offering short-, mid-, or long-term contracts which include service options and guarantees. In spite of these preparations, not all power producers are comfortable with the potential tidal wave of gas-fired capacity. Reason: It limits the electric-generation resource base to one fuel for future capacity

  3. Increasing RES Penetration and Security of Energy Supply by Use of Energy Storages and Heat Pumps in Croatian Energy System

    DEFF Research Database (Denmark)

    Krajačić, Goran; Mathiesen, Brian Vad; Duić, Neven

    2010-01-01

    electricity, heat and transport demands, and including renewable energy, power plants, and combined heat and power production (CHP) for district heating. Using the 2007 energy system the wind power share is increased by two energy storage options: Pumped hydro and heat pumps in combination with heat storages....... The results show that such options can enable an increased penetration of wind power. Using pumped hydro storage (PHS) may increase wind power penetration from 0.5 TWh, for existing PHS installations and up to 6 TWh for very large installations. Using large heat pumps and heat storages in combination...... with specific regulation of power system could additionally increase wind penetration for 0.37 TWh. Hence, with the current technologies installed in the Croatian energy system the installed pumped hydro-plant may facilitate more than 10% wind power in the electricity system. Large-scale integration of wind...

  4. Electricity planning in Japan by 2030 through scenario analysis

    International Nuclear Information System (INIS)

    Ishihara, Keiichi N.; Qi, Zhang; Mclellan, Benjamin C.; Tezuka, Tetsuo

    2013-01-01

    Under continuing policies of the mitigation of GHG (Green House Gases) emission, it is crucial to consider scenarios for Japan to realize a safe and clean future electricity system after the Fukushima nuclear accident. The development plans of nuclear power and renewable energy - mainly PV and wind power - need to be reconsidered. Therefore, in the present study, three electricity supply scenarios in 2030 are proposed according to different future nuclear power development strategies: (1) negative nuclear power; (2) conservative nuclear power; and (3) active pursuit of nuclear power. On the other side, three electricity demand scenarios are also proposed considering energy saving. The purpose of the study is to propose electricity supply systems with maximum renewable energy penetration under different nuclear power development strategies and demand situations through scenario analysis. The scenario analysis is conducted using an input-output hour-by-hour simulation model subject to constraints from technological, economic and environmental perspectives. The obtained installed capacity mix, power generation mix and CO 2 emissions of the scenarios were compared and analyzed with each other and with historical data. The results show that (1) penetration level of renewable energy is subject to the share of nuclear power as base load; (2) it is very difficult to remove nuclear power absolutely from the electricity system even when a high level of penetration of renewable energy is realized; (3) high level penetration of renewable energy can reduce the dependence on nuclear and thermal power, but there is a need for more flexible power sources to absorb fluctuations; (4) CO 2 emissions reduction compared to 1990 levels can be readily achieved with the help of renewable energy, nuclear power and energy saving in 2030. This is a revised version of the paper that was published in [1]. (author)

  5. Physical Penetration Testing: A Whole New Story in Penetration Testing

    NARCIS (Netherlands)

    Dimkov, T.; Pieters, Wolter

    2011-01-01

    Physical penetration testing plays an important role in assuring a company that the security policies are properly enforced and that the security awareness of the employees is on the appropriate level. In physical penetration tests the tester physically enters restricted locations and directly

  6. Winds of change: How high wind penetrations will affect investment incentives in the GB electricity sector

    International Nuclear Information System (INIS)

    Steggals, Will; Gross, Robert; Heptonstall, Philip

    2011-01-01

    Wind power is widely expected to expand rapidly in Britain over the next decade. Large amounts of variable wind power on the system will increase market risks, with prices more volatile and load factors for conventional thermal plant lower and more uncertain. This extra market risk may discourage investment in generation capacity. Financial viability for thermal plant will be increasingly dependent on price spikes during periods of low wind. Increased price risk will also make investment in other forms of low-carbon generation (e.g. nuclear power) more challenging. A number of policies can reduce the extent to which generators are exposed to market risks and encourage investment. However, market risks play a fundamental role in shaping efficient investment and dispatch patterns in a liberalised market. Therefore, measures to improve price signals and market functioning (such as a stronger carbon price and developing more responsive demand) are desirable. However, the scale of the investment challenge and increased risk mean targeted measures to reduce (although not eliminate) risk exposure, such as capacity mechanisms and fixed price schemes, may have increasing merit. The challenge for policy is to strike the right balance between market and planned approaches. - Research highlights: → Analyses how increases penetrations of wind power effect electricity market functioning. → Assesses the impacts of this on investment incentives for different technologies. → Discusses implications for policy and market design.

  7. Analyses on Cost Reduction and CO2 Mitigation by Penetration of Fuel Cells to Residential Houses

    Science.gov (United States)

    Aki, Hirohisa; Yamamoto, Shigeo; Kondoh, Junji; Murata, Akinobu; Ishii, Itaru; Maeda, Tetsuhiko

    This paper presents analyses on the penetration of polymer electrolyte fuel cells (PEFC) into a group of 10 residential houses and its effects of CO2 emission mitigation and consumers’ cost reduction in next 30 years. The price is considered to be reduced as the penetration progress which is expected to begin in near future. An experimental curve is assumed to express the decrease of the price. Installation of energy interchange systems which involve electricity, gas and hydrogen between a house which has a FC and contiguous houses is assumed to utilize both electricity and heat more efficiently, and to avoid start-stop operation of fuel processor (reformer) as much as possible. A multi-objective model which considers CO2 mitigation and consumers’ cost reduction is constructed and provided a Pareto optimum solution. A solution which simultaneously realizes both CO2 mitigation and consumers’ cost reduction appeared in the Pareto optimum solution. Strategies to reduce CO2 emission and consumers’ cost are suggested from the results of the analyses. The analyses also revealed that the energy interchange systems are effective especially in the early stage of the penetration.

  8. The impact of high PV penetration levels on electrical distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Collinson, A; Beddoes, A; Thornycroft, J [Halcrow (United Kingdom); Strbac, G; Jenkins, N [UMIST, Manchester (United Kingdom); Verhoeven, B [KEMA (Netherlands)

    2002-07-01

    This report describes the results of a collaborative study by EA Technology, UMIST and Halcrow into the effects of large-scale connection of dispersed photovoltaic (PV) power systems on the national electricity supply network. The report is intended to help manufacturers and installers of PV systems and electricity companies to understand the issues associated with grid connection of PV power systems. The increased use of PV systems is expected to have a significant impact on the design, operation and management of electricity supply networks. The study examined three main areas: probability and risk analysis of islanding; PV and network voltage control (including analysis of voltage control in a commercial, domestic retrofit and domestic new build scenarios); and future low voltage network design and operational policies.

  9. Design of Fire/Gas Penetration Seals and fire exposure tests for Tokamak Fusion Test Reactor experimental areas

    International Nuclear Information System (INIS)

    Cavalluzzo, S.

    1983-01-01

    A Fire/Gas Penetration Seal is required in every penetration through the walls and ceilings into the Test Cell housing the Tokamak Fusion Test Reactor (TFTR), as well as other adjacent areas to protect the TFTR from fire damage. The penetrations are used for field coil lead stems, diagnostics systems, utilities, cables, trays, mechanical devices, electrical conduits, vacuum liner, air conditioning ducts, water pipes, and gas pipes. The function of the Fire/Gas Penetration Seals is to prevent the passage of fire and products of combustion through penetrations for a period of time up to three hours and remain structurally intact during fire exposure. The Penetration Seal must withstand, without rupture, a fire hose water stream directed at the hot surface. There are over 3000 penetrations ranging in size from several square inches to 100 square feet, and classified into 90 different types. The material used to construct the Fire/Gas Penetration Seals consist of a single and a two-component room temperature vulcanizing (RTV) silicone rubber compound. Miscellaneous materials such as alumina silica refractory fibers in board, blanket and fiber forms are also used in the construction and assembly of the Seals. This paper describes some of the penetration seals and the test procedures used to perform the three-hour fire exposure tests to demonstrate the adequacy of the seals

  10. The Versatile Link Demo Board (VLDB)

    International Nuclear Information System (INIS)

    Lesma, R. Martín; Alessio, F.; Barbosa, J.; Baron, S.; Caplan, C.; Leitao, P.; Porret, D.; Wyllie, K.; Pecoraro, C.

    2017-01-01

    The Versatile Link Demonstrator Board (VLDB) is the evaluation kit for the radiation-hard Optical Link ecosystem, which provides a 4.8 Gbps data transfer link for communication between front-end (FE) and back-end (BE) of the High Energy Physics experiments. It gathers the Versatile link main radiation-hard custom Application-Specific Integrated Circuits (ASICs) and modules: GBTx, GBT-SCA and VTRx/VTTx plus the FeastMP, a radiation-hard in-house designed DC-DC converter. This board is the first design allowing system-level tests of the Link with a complete interconnection of the constitutive components, allowing data acquisition, control and monitoring of FE devices with the GBT-SCA pair.

  11. Rapid penetration into granular media visualizing the fundamental physics of rapid earth penetration

    CERN Document Server

    Iskander, Magued

    2015-01-01

    Rapid Penetration into Granular Media: Visualizing the Fundamental Physics of Rapid Earth Penetration introduces readers to the variety of methods and techniques used to visualize, observe, and model the rapid penetration of natural and man-made projectiles into earth materials. It provides seasoned practitioners with a standard reference that showcases the topic's most recent developments in research and application. The text compiles the findings of new research developments on the subject, outlines the fundamental physics of rapid penetration into granular media, and assembles a com

  12. Earth's electric field

    International Nuclear Information System (INIS)

    Kelley, M.C.

    1978-01-01

    The earth becomes charged during thunderstorm activity and discharges through the weak conducting atmosphere. Balloon and rocket studies infer that a high altitude electric field penetrates virtually unattenuated through the atmosphere, at least as far as balloon heights. The field has two primary sources. At low and mid latitudes, interaction between the earth's magnetic field and the neutral wind creates electric fields. At latitudes above 60 0 , the high altitude electrical structure is dominated by the interaction between the solar wind and the earth's magnetic field. The auroral light is emitted by atmospheric atoms and molecules excited by electrons with potentials of many thousands volts. The potentials are induced by the solar wind. Recent satellite data shows that the electrons get this energy by passing through a localized electric field about 6000 km above the auroral zone. Several rocket and satellite experiments used to study the earth's electric field are discussed

  13. Renewable Electricity Futures Study Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schneider, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-12-01

    The Renewable Electricity Futures Study (RE Futures) provides an analysis of the grid integration opportunities, challenges, and implications of high levels of renewable electricity generation for the U.S. electric system. The study is not a market or policy assessment. Rather, RE Futures examines renewable energy resources and many technical issues related to the operability of the U.S. electricity grid, and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. RE Futures results indicate that a future U.S. electricity system that is largely powered by renewable sources is possible and that further work is warranted to investigate this clean generation pathway.

  14. The value of electricity and reserve services in low carbon electricity systems

    International Nuclear Information System (INIS)

    Vijay, Avinash; Fouquet, Nicolas; Staffell, Iain; Hawkes, Adam

    2017-01-01

    Highlights: •A power dispatch model is used to simulate electricity and reserve prices. •Good agreement is observed between modelled and historic prices in 2015. •Higher renewables and CCS with lower fossil fuels leads to lower electricity prices. •Contrary to expectation, gone green scenario leads to lowest increase in reserve price. •Flexible aggregated demand response likely to offer significant economic benefits. -- Abstract: Decarbonising electricity systems is essential for mitigating climate change. Future systems will likely incorporate higher penetrations of intermittent renewable and inflexible nuclear power. This will significantly impact on system operations, particularly the requirements for flexibility in terms of reserves and the cost of such services. This paper estimates the interrelated changes in wholesale electricity and reserve prices using two novel methods. Firstly, it simulates the short run marginal cost of generation using a unit commitment model with post-processing to achieve realistic prices. It also introduces a new reserve price model, which mimics actual operation by first calculating the day ahead schedules and then letting deviations from schedule drive reserve prices. The UK is used as a case study to compare these models with traditional methods from the literature. The model gives good agreement with and historic prices in 2015. In a 2035 scenario, increased renewables penetration reduces mean electricity prices, and leads to price spikes due to expensive plants being brought online briefly to cope with net load variations. Contrary to views previously held in literature, a renewable intensive scenario does not lead to a higher reserve price than a fossil fuel intensive scenario. Demand response technology is shown to offer sizeable economic benefits when maintaining system balance. More broadly, this framework can be used to evaluate the economics of providing reserve services by aggregating decentralised energy

  15. Energy use, cost and CO2 emissions of electric cars

    NARCIS (Netherlands)

    van Vliet, O.; Brouwer, A.S.; Kuramochi, T.; van den Broek, M.A.; Faaij, A.P.C.

    2010-01-01

    We examine efficiency, costs and greenhouse gas emissions of current and future electric cars (EV), including the impact from charging EV on electricity demand and infrastructure for generation and distribution. Uncoordinated charging would increase national peak load by 7% at 30% penetration rate

  16. Technical impacts of high penetration levels of wind power on power system stability

    DEFF Research Database (Denmark)

    Flynn, Damian; Rather, Z.; Ardal, Atle

    2017-01-01

    With increasing penetrations of wind generation, based on power-electronic converters, power systems are transitioning away from well-understood synchronous generator-based systems, with growing implications for their stability. Issues of concern will vary with system size, wind penetration level......, geographical distribution and turbine type, network topology, electricity market structure, unit commitment procedures, and other factors. However, variable-speed wind turbines, both onshore and connected offshore through DC grids, offer many control opportunities to either replace or enhance existing...... capabilities. Achieving a complete understanding of future stability issues, and ensuring the effectiveness of new measures and policies, is an iterative procedure involving portfolio development and flexibility assessment, generation cost simulations, load flow, and security analysis, in addition...

  17. Challenges and prospects for wind energy to attain 20% grid penetration by 2020 in India

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Natarajan, Anand

    2011-01-01

    With wind energy being the most realistic large-scale renewable energy source in the near future, we examine the target for wind energy penetration in India for 2020. Achieving the target set by the Indian Wind Power Association of 20% wind power grid penetration by 2020 will act as a lighthouse......-scale integration of wind power. In the article, we discuss the trends in the development of wind energy and the factors which we consider decisive for the development of wind power in India. Experiences and policies from Europe and Denmark, where wind power already today contributes 20% to the total electricity...

  18. Electricity market design for the future

    OpenAIRE

    robinson, david; Keay, Malcolm

    2017-01-01

    This paper explains why current electricity markets are not fit for purpose and propose a new market design. Electricity markets operating today were designed for the technical and economic conditions of the 1990's. These conditions have changed substantially, especially with increased penetration of intermittent renewables and the growing potential for distributed energy resources and consumer involvement. Today's markets are incompatible with these trends. They do not provide h...

  19. European Short-term Electricity Market Designs under High Penetration of Wind Power

    NARCIS (Netherlands)

    Chaves Avila, J.P.

    2014-01-01

    The EU has ambitious policies for decarbonization of the electricity sector. Due to recent technological developments, wind power already represents a significant share of the generation mix in some European countries. As a result, short-term electricity markets and balancing arrangements must be

  20. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  1. Study for the water penetration chemistry of bentonite under temperature gradation environment

    International Nuclear Information System (INIS)

    Hara, Naohiro; Imakita, Tsuyoshi

    2003-02-01

    This work have been studied for the water fluctuation in time and space in case of the ground water penetration into the unsaturated bentonite with development of the necessary test equipment. The test equipment necessary for this test, was designed on consideration of the adiabatic condition, sensors for pH, salt and water measurement. The thickness of the bentonite specimen was set to 10 cm and the temperature slope was enable to set between 80degC and 100degC at the both end of the specimen. The water for penetration was pushed by gas constant pressure up to 1 MPa. The glass electrode for pH, electric conductivity for salinity and moisture sensor for lower water content and water sensor for higher were used as the sensors. The fluctuation of salt and water in the ground water penetration test to bentonite was estimated. The sensor data were treated as parametric data, because those data could not calibrated in those high temperature and under those high bentonite swollen pressure. For another development should be needed for water sensor. (author)

  2. Nightside Quiet-Time Mid-Latitude Ionospheric Convection and Its Connection to Penetration Electric Fields

    Science.gov (United States)

    Ruohoniemi, J. M.; Maimaiti, M.; Baker, J. B.; Ribeiro, A. J.

    2017-12-01

    Previous studies have shown that during quiet geomagnetic conditions F-region subauroral ionospheric plasma exhibits drifts of a few tens of m/s, predominantly in the westward direction. However, the exact driving mechanisms for this plasma motion are still not well understood. Recent expansion of SuperDARN radars into the mid-latitude region has provided new opportunities to study subauroral ionospheric convection over large areas and with greater spatial resolution and statistical significance than previously possible. Mid-latitude SuperDARN radars tend to observe subauroral ionospheric backscatter with low Doppler velocities on most geomagnetically quiet nights. In this study, we have used two years of data obtained from the six mid-latitude SuperDARN radars in the North American sector to derive a statistical model of quiet-time nightside mid-latitude plasma convection between 52°- 58° magnetic latitude. The model is organized in MLAT-MLT coordinates and has a spatial resolution of 1°x 7 min with each grid cell typically counting thousands of velocity measurements. Our results show that the flow is predominantly westward (20 - 60 m/s) and weakly northward (0 -20 m/s) near midnight but with a strong seasonal dependence such that the flows tend to be strongest and most spatially variable in winter. These statistical results are in good agreement with previously reported observations from ISR measurements but also show some interesting new features, one being a significant latitudinal variation of zonal flow velocity near midnight in winter. In this presentation, we describe the derivation of the nightside quite-time subauroral convection model, analyze its most prominent features, and discuss the results in terms of the Ionosphere-Thermosphere coupling and penetration electric fields.

  3. Deep ocean model penetrator experiments

    International Nuclear Information System (INIS)

    Freeman, T.J.; Burdett, J.R.F.

    1986-01-01

    Preliminary trials of experimental model penetrators in the deep ocean have been conducted as an international collaborative exercise by participating members (national bodies and the CEC) of the Engineering Studies Task Group of the Nuclear Energy Agency's Seabed Working Group. This report describes and gives the results of these experiments, which were conducted at two deep ocean study areas in the Atlantic: Great Meteor East and the Nares Abyssal Plain. Velocity profiles of penetrators of differing dimensions and weights have been determined as they free-fell through the water column and impacted the sediment. These velocity profiles are used to determine the final embedment depth of the penetrators and the resistance to penetration offered by the sediment. The results are compared with predictions of embedment depth derived from elementary models of a penetrator impacting with a sediment. It is tentatively concluded that once the resistance to penetration offered by a sediment at a particular site has been determined, this quantity can be used to sucessfully predict the embedment that penetrators of differing sizes and weights would achieve at the same site

  4. Properties and uses of storage for enhancing the grid penetration of very large photovoltaic systems

    International Nuclear Information System (INIS)

    Solomon, A.A.; Faiman, D.; Meron, G.

    2010-01-01

    In this third paper, which studies the hourly generation data for the year 2006 from the Israel Electric Corporation, with a view to incorporating very large photovoltaic (PV) power plants, we address the question: What properties should storage have in order to enhance the grid penetration of large PV systems in an efficient and substantial manner? We first impose the constraint that no PV energy losses are permitted other than those due to storage inefficiency. This constraint leads to powerful linkages between the energy capacity and power capacity of storage, and PV system size, and their combined effect on grid penetration. Various strategies are then examined for enhancing grid penetration, based upon this newfound knowledge. Specific strategies examined include PV energy dumping and baseload rescheduling both on a seasonal basis and shorter time periods. We found, inter alia, that at high grid flexibilities (in the range ff=0.8-1), PV grid penetration levels could be possible in the range 60-90% of annual requirements. Moreover, with appropriately designed storage and accurate forecasting, a future grid could be operated at ff=1.

  5. Implementation and evaluation of an electricity market operated at district level

    NARCIS (Netherlands)

    Ampatzis, M.; Nguyen, H.P.; Kling, W.L.

    2015-01-01

    The increasing penetration of distributed energy resources (DERs) in the distribution grid, in combination with the liberalization of the electricity markets, introduces small-scale electricity producers in a market architecture designed for large-scale power plants. This work examines a

  6. Optimal distribution feeder reconfiguration for increasing the penetration of plug-in electric vehicles and minimizing network costs

    International Nuclear Information System (INIS)

    Kavousi-Fard, Abdollah; Abbasi, Alireza; Rostami, Mohammad-Amin; Khosravi, Abbas

    2015-01-01

    Appearance of PEVs (Plug-in Electric Vehicles) in future transportation sector brings forward opportunities and challenges from grid perspective. Increased utilization of PEVs will result in problems such as greater total loss, unbalanced load factor, feeder congestion and voltage drop. PEVs are mobile energy storages dispersed all over the network with benefits to both owners and utilities in case of V2G (Vehicle-to-Grid) possibility. The intelligent bidirectional power flow between grid and large number of vehicles adds complexity to the system and requires operative tools to schedule V2G energy and subdue PEV impacts. In this paper, DFR (Distribution Feeder Reconfiguration) is utilized to optimally coordinate PEV operation in a stochastic framework. Uncertainty in PEVs characteristics can be due to several sources from location and time of grid connection to driving pattern and battery SoC (State-of-Charge). The proposed stochastic problem is solved with a self-adaptive evolutionary swarm algorithm based on SSO (Social Spider Optimization) algorithm. Numerical studies verify the efficacy of the proposed DFR to improve the system performance and optimal dispatch of V2G. - Highlights: • Consideration effect of PEVS on the distribution feeder reconfiguration. • Increasing the penetration of PEVS. • Introducing a new artificial optimization algorithm. • Modeling the uncertainty in network. • Investigating the degradation cost of batteries in V2G technology.

  7. Excessive price reduction and extreme volatility in wind dominant electricity markets; solutions and emerging challenges

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa; Chen, Zhe; Mousavi, Omid Alizadeh

    2013-01-01

    High intermittency in the nature of wind power emphasize conceptual revising in the mechanisms of electricity markets with high wind power penetration levels. This paper introduces overmuch price reduction and high price volatility as two adverse consequences in future wind dominant electricity...... is developed. The paper indicates discriminatory pricing approach can be beneficial in high penetration of wind power because it alleviates high price variations and spikiness in one hand and prevents overmuch price reduction in wind dominant electricity markets on the other hand....... markets. While high price volatility imposes elevated risk levels for both electricity suppliers and consumers, excessive price reduction of electricity is a disincentive for investment in new generation capacity and might jeopardizes system adequacy in long term. A comparative study between marginal...

  8. Realization of an automatic set up to measure electrical characteristic of solid state detectors

    International Nuclear Information System (INIS)

    Manfredotti, C.; Crosetto, D.; Gabutti, A.; Gervino, G.; Varesio, R.

    1986-01-01

    An automatic set-up is described to study electrical properties of silicon detectors for nuclear research. Particularly, I-V characteristics from silicon junction prototype detectors and amorphous samples to test the data acquisition system, are presented. This set-up joins a low cost to good versatility that makes it very useful in wide application ranges in silicon detector electrical characterization

  9. A calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric

    2011-01-01

    A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a

  10. Optimal LFC SMC for three – area power system with high penetration of PV

    Directory of Open Access Journals (Sweden)

    Maksymilian Klimontowicz

    2016-03-01

    Full Text Available Electrical power systems are subjected to new trends appearing in grid structuring, electrical power sources, new control strategies, etc. The introduction of inverterbased distributed energy resources to replace conventional synchronous machines depletes the mechanical inertia, and causing the system to become more sensitive to disturbances. This paper proposed a simple and reliable solution to assure sufficient frequency stability of electrical power systems when subjected to high penetration of decoupled distributed generation. To achieve this, a decentralized sliding mode control was designed to operate as a compensator for conventional load frequency controllers. Subsequently, PV farms and battery energy storage systems were interconnected. Simulated network under different configurations were conducted using MATLAB.

  11. Are government policies effective in promoting deployment of renewable electricity resources?

    International Nuclear Information System (INIS)

    Shrimali, Gireesh; Kniefel, Joshua

    2011-01-01

    Using a panel data over 50 US states and years 1991-2007, this paper uses a state fixed-effects model with state-specific time-trends to estimate the effects of state policies on the penetration of various emerging renewable electricity sources, including wind, biomass, geothermal, and solar photovoltaic. Renewable portfolio standards with either capacity or sales requirements have a significant impact on the penetration of all types of renewables-however, this impact is variable depending on the type of renewable source: it is negative for combined renewables, wind, and biomass; and positive for geothermal and solar. Further, clean energy funds and required green power options mostly result in increasing the penetration of all types of renewables. On the other hand, voluntary renewable portfolio standards as well as state green power purchasing programs are found to be ineffective in increasing the penetration of any type of renewable source. Finally, economic variables, such as electricity price, natural gas price, and per capita GDP as well as structural variables, such as league of conservation voters rating and the share of coal-generated electricity are found to be generally insignificant, suggesting the crucial role of policy in increasing the penetration of renewables. - Highlights: → Ascertains the impact of state policies on increasing the renewable capacity. → Renewable portfolio requirements have an (sometimes unexpected) impact. → Clean energy funds and required green power options have a positive impact. → Voluntary renewable standards as well as state green power purchasing requirements are ineffective. → Economics as well as political and structural variables are ineffective.

  12. The penetrating depth analysis of Lunar Penetrating Radar onboard Chang’e-3 rover

    Science.gov (United States)

    Xing, Shu-Guo; Su, Yan; Feng, Jian-Qing; Dai, Shun; Xiao, Yuan; Ding, Chun-Yu; Li, Chun-Lai

    2017-04-01

    Lunar Penetrating Radar (LPR) has successfully been used to acquire a large amount of scientific data during its in-situ detection. The analysis of penetrating depth can help to determine whether the target is within the effective detection range and contribute to distinguishing useful echoes from noise. First, this study introduces two traditional methods, both based on a radar transmission equation, to calculate the penetrating depth. The only difference between the two methods is that the first method adopts system calibration parameters given in the calibration report and the second one uses high-voltage-off radar data. However, some prior knowledge and assumptions are needed in the radar equation and the accuracy of assumptions will directly influence the final results. Therefore, a new method termed the Correlation Coefficient Method (CCM) is provided in this study, which is only based on radar data without any a priori assumptions. The CCM can obtain the penetrating depth according to the different correlation between reflected echoes and noise. To be exact, there is a strong correlation in the useful reflected echoes and a random correlation in the noise between adjacent data traces. In addition, this method can acquire a variable penetrating depth along the profile of the rover, but only one single depth value can be obtained from traditional methods. Through a simulation, the CCM has been verified as an effective method to obtain penetration depth. The comparisons and analysis of the calculation results of these three methods are also implemented in this study. Finally, results show that the ultimate penetrating depth of Channel 1 and the estimated penetrating depth of Channel 2 range from 136.9 m to 165.5 m ({\\varepsilon }r=6.6) and from 13.0 m to 17.5 m ({\\varepsilon }r=2.3), respectively.

  13. In-place HEPA filter penetration test

    International Nuclear Information System (INIS)

    Bergman, W.; Wilson, K.; Elliott, J.; Bettencourt, B.; Slawski, J.W.

    1997-01-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in- place penetration test is practical

  14. Pricing of Fluctuations in Electricity Markets

    OpenAIRE

    Tsitsiklis, John N.; Xu, Yunjian

    2012-01-01

    In an electric power system, demand fluctuations may result in significant ancillary cost to suppliers. Furthermore, in the near future, deep penetration of volatile renewable electricity generation is expected to exacerbate the variability of demand on conventional thermal generating units. We address this issue by explicitly modeling the ancillary cost associated with demand variability. We argue that a time-varying price equal to the suppliers' instantaneous marginal cost may not achieve s...

  15. Photochemical internalisation of a macromolecular protein toxin using a cell penetrating peptide-photosensitiser conjugate.

    Science.gov (United States)

    Wang, Julie T-W; Giuntini, Francesca; Eggleston, Ian M; Bown, Stephen G; MacRobert, Alexander J

    2012-01-30

    Photochemical internalisation (PCI) is a site-specific technique for improving cellular delivery of macromolecular drugs. In this study, a cell penetrating peptide, containing the core HIV-1 Tat 48-57 sequence, conjugated with a porphyrin photosensitiser has been shown to be effective for PCI. Herein we report an investigation of the photophysical and photobiological properties of a water soluble bioconjugate of the cationic Tat peptide with a hydrophobic tetraphenylporphyrin derivative. The cellular uptake and localisation of the amphiphilic bioconjugate was examined in the HN5 human head and neck squamous cell carcinoma cell line. Efficient cellular uptake and localisation in endo/lysosomal vesicles was found using fluorescence detection, and light-induced, rupture of the vesicles resulting in a more diffuse intracellular fluorescence distribution was observed. Conjugation of the Tat sequence with a hydrophobic porphyrin thus enables cellular delivery of an amphiphilic photosensitiser which can then localise in endo/lysosomal membranes, as required for effective PCI treatment. PCI efficacy was tested in combination with a protein toxin, saporin, and a significant reduction in cell viability was measured versus saporin or photosensitiser treatment alone. This study demonstrates that the cell penetrating peptide-photosensitiser bioconjugation strategy is a promising and versatile approach for enhancing the therapeutic potential of bioactive agents through photochemical internalisation. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. An investigation of penetrant techniques for detection of machining-induced surface-breaking cracks on monolithic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Forster, G.A.; Ellingson, W.A.

    1996-02-01

    The purpose of this effort was to evaluate penetrant methods for their ability to detect surface-breaking cracks in monolithic ceramic materials with an emphasis on detection of cracks generated by machining. There are two basic penetrant types, visible and fluorescent. The visible penetrant method is usually augmented by powder developers and cracks detected can be seen in visible light. Cracks detected by fluorescent penetrant are visible only under ultraviolet light used with or without a developer. The developer is basically a powder that wicks up penetrant from a crack to make it more observable. Although fluorescent penetrants were recommended in the literature survey conducted early in this effort, visible penetrants and two non-standard techniques, a capillary gaseous diffusion method under development at the institute of Chemical Physics in Moscow, and the {open_quotes}statiflux{close_quotes} method which involves use of electrically charged particles, were also investigated. SiAlON ring specimens (1 in. diameter, 3/4 in. wide) which had been subjected to different thermal-shock cycles were used for these tests. The capillary gaseous diffusion method is based on ammonia; the detector is a specially impregnated paper much like litmus paper. As expected, visible dye penetrants offered no detection sensitivity for tight, surface-breaking cracks in ceramics. Although the non-standard statiflux method showed promise on high-crack-density specimens, it was ineffective on limited-crack-density specimens. The fluorescent penetrant method was superior for surface-breaking crack detection, but successful application of this procedure depends greatly on the skill of the user. Two presently available high-sensitivity fluorescent penetrants were then evaluated for detection of microcracks on Si{sub 3}N{sub 4} and SiC from different suppliers. Although 50X optical magnification may be sufficient for many applications, 200X magnification provides excellent delectability.

  17. Penetration portion shielding structure

    International Nuclear Information System (INIS)

    Hayashi, Katsumi; Narita, Hitoshi; Handa, Hiroyuki; Takeuchi, Jun; Tozuka, Fumio.

    1994-01-01

    Openings of a plurality of shieldings for penetration members are aligned to each other, and penetration members are inserted from the openings. Then, the openings of the plurality of shielding members are slightly displaced with each other to make the penetration portions into a helical configuration, so that leakage of radiation is reduced. Upon removal of the members, reverse operation is conducted. When a flowable shielding material is used, the penetration portions are constituted with two plates having previously formed openings and pipes for connecting the openings with each other and a vessel covering the entire of them. After passing the penetration members such as a cable, the relative position of the two plates is changed by twisting, to form a helical configuration which reduces radiation leakage. Since they are bent into the helical configuration, shielding performance is extremely improved compared with a case that radiation leakage is caused from an opening of a straight pipe. In addition, since they can be returned to straight pipes, attachment, detachment and maintenance can be conducted easily. (N.H.)

  18. A comprehensive study on Li-ion battery nail penetrations and the possible solutions

    International Nuclear Information System (INIS)

    Zhao, Rui; Liu, Jie; Gu, Junjie

    2017-01-01

    Li-ion batteries are the state-of-the-art power sources for portable electronics, electric vehicles, and aerospace applications. The safety issues regarding Li-ion batteries arouse particular attentions after several accidents reported in recent years. Among various abuse conditions, nail penetration is one of the most dangerous for Li-ion batteries due to the accumulated heat generation, which could give rise to the thermal runaway and could damage entire energy storage system. In this paper, an electrochemical-thermal coupling model is developed to study the nail penetration process of Li-ion batteries. By introducing joule heating at the nail location, the model shows good agreement with the testing results. With this verified model, a comprehensive parametric study is carried out to investigate the effects of battery capacity, internal resistance, and nail diameter on the electrochemical and thermal behaviors of Li-ion batteries during the penetration processes. Furthermore, three possible solutions to prevent the thermal runaway, which includes decreasing the state of charge, improving heat dissipation, and increasing contact resistance, are compared and discussed in detail based on a series of simulations. - Highlights: • A coupling model is developed to simulate Li-ion battery nail penetrations. • A contact resistance – contact area curve is plotted based on experiments. • Simulation results show good agreements with nail tests. • The behaviors of Li-ion batteries in different penetration scenarios are studied. • Possible strategies to prevent thermal runaway are investigated and discussed.

  19. Assessment of electrical equipment aging for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The electrical and instrumentation equipments, especially whose parts are made of polymer material, are gradually degraded by thermal and radiation environment in the normal operation, and the degradation is thought to progress rapidly when they are exposed to the environment of the design basis event (DBE). The integrity of the equipments is evaluated by the environmental qualification (EQ) test simulating the environment of the normal operation and the DBE. The project of 'Assessment of Cable Aging for Nuclear Power Plants' (ACA, 2002-2008) indicated the importance of applying simultaneous thermal and radiation aging for simulating the aging in normal operation. The project of 'Assessment of Electrical Equipment Aging for Nuclear Power Plants' (AEA) was initiated in FY2008 to apply the outcome of ACA to the other electrical and instrumentation equipment and to establish an advanced EQ test method that can appropriately simulate the environment in actual plants. In FY2012, aging characteristics of thermal aging and simultaneous aging were obtained for the epoxy resin of electrical penetrations and the O-ring of connectors. Physical property measurement was carried out for epoxy resin of electrical penetration subject to the type testing in FY2010. (author)

  20. Assessment of electrical equipment aging for nuclear power plant

    International Nuclear Information System (INIS)

    2013-01-01

    The electrical and instrumentation equipments, especially whose parts are made of polymer material, are gradually degraded by thermal and radiation environment in the normal operation, and the degradation is thought to progress rapidly when they are exposed to the environment of the design basis event (DBE). The integrity of the equipments is evaluated by the environmental qualification (EQ) test simulating the environment of the normal operation and the DBE. The project of 'Assessment of Cable Aging for Nuclear Power Plants' (ACA, 2002-2008) indicated the importance of applying simultaneous thermal and radiation aging for simulating the aging in normal operation. The project of 'Assessment of Electrical Equipment Aging for Nuclear Power Plants' (AEA) was initiated in FY2008 to apply the outcome of ACA to the other electrical and instrumentation equipment and to establish an advanced EQ test method that can appropriately simulate the environment in actual plants. In FY2012, aging characteristics of thermal aging and simultaneous aging were obtained for the epoxy resin of electrical penetrations and the O-ring of connectors. Physical property measurement was carried out for epoxy resin of electrical penetration subject to the type testing in FY2010. (author)

  1. In-place HEPA filter penetration test

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Wilson, K.; Elliott, J. [Lawrence Livermore National Lab., CA (United States)] [and others

    1997-08-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in-place penetration test is practical. 14 refs., 14 figs., 3 tabs.

  2. [Professor WU Zhongchao's experience of penetration needling].

    Science.gov (United States)

    Zhang, Ning; Wang, Bing; Zhou, Yu

    2016-08-12

    Professor WU Zhongchao has unique application of penetration needling in clinical treatment. Professor WU applies penetration needling along meridians, and the methods of penetration needling include self-meridian penetration, exterior-interior meridian penetration, identical-name meridian penetration, different meridian penetration. The meridian differentiation is performed according to different TCM syndromes, locations and natures of diseases and acupoint nature, so as to make a comprehensive assessment. The qi movement during acupuncture is focused. In addition, attention is paid on anatomy and long-needle penetration; the sequence and direction of acupuncture is essential, and the reinforcing and reducing methods have great originality, presented with holding, waiting, pressing and vibrating. Based on classical acupoint, the acupoint of penetration needling is flexible, forming unique combination of acupoints.

  3. The impact of renewable energy on electricity prices in the Netherlands

    NARCIS (Netherlands)

    Mulder, Machiel; Scholtens, Bert

    Electricity markets may become more sensitive to weather conditions because of a higher penetration of renewable energy sources and climatic changes. We investigate whether weather conditions had a growing influence on the average daily day-ahead price in the Dutch electricity market in the period

  4. Impact of Variable Renewable Energy on European Cross-Border Electricity Transmission

    NARCIS (Netherlands)

    Brancucci Martinez-Anido, C.; De Vries, L.J.; Fulli, G.

    2012-01-01

    The estimated growth of Europe’s electricity demand and the policy goals of mitigating climate change result in an expected increase in variable renewable energy. A high penetration of wind and solar energy will bring several new challenges to the European electricity transmission network. The

  5. Envisioning a renewable electricity future for the United States

    International Nuclear Information System (INIS)

    Mai, Trieu; Mulcahy, David; Hand, M. Maureen; Baldwin, Samuel F.

    2014-01-01

    This paper presents high renewable electricity penetration scenarios in the United States using detailed capacity expansion modeling that is designed to properly account for the variability and uncertainty of wind and solar resources. The scenarios focus solely on the electricity system, an important sector within the larger energy sector, and demonstrate long-term visions of a U.S. power system where renewable technologies, including biomass, geothermal, hydropower, solar, and wind, contribute 80% of 2050 annual electricity, including 49–55% from wind and solar photovoltaic generation. We present the integration challenges of achieving this high penetration and characterize the options to increase grid flexibility to manage variability. Four high renewable pathways are modeled and demonstrate the robustness and diversity of renewable options. We estimate 69–82% annual greenhouse gas emission reductions and 3%–30% incremental electricity price increases associated with reaching 80%-by-2050 renewable electricity relative to reference scenarios. This paper affirms and strengthens similar analysis from the Renewable Electricity Futures study by using an improved model and updated data to better reflect investment and dispatch decisions under current outlooks for the U.S. electricity sector. - Highlights: • We model high renewable electricity scenarios for the U.S. electricity sector. • The mix of technologies will depend on future costs and system conditions. • Integration challenges and flexibility options are presented. • We estimate an incremental electricity price increase of 3–30% to achieve 80% RE (renewable electricity). • We estimate 69–82% reduction in annual carbon emissions with 80% RE

  6. Impacts of High Variable Renewable Energy Futures on Wholesale Electricity Prices, and on Electric-Sector Decision Making

    Energy Technology Data Exchange (ETDEWEB)

    Seel, Joachim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Deb, Sidart [LCG Consulting, Los Altos, CA (United States); Asokkumar, Aarthi [LCG Consulting, Los Altos, CA (United States); Hassanzadeh, Mohammad [LCG Consulting, Los Altos, CA (United States); Aarabali, Amirsaman [LCG Consulting, Los Altos, CA (United States)

    2018-05-11

    Increasing penetrations of variable renewable energy (VRE) can affect wholesale electricity price patterns and make them meaningfully different from past, traditional price patterns. Many long-lasting decisions for supply- and demand-side electricity infrastructure and programs are based on historical observations or assume a business-as-usual future with low shares of VRE. Our motivating question is whether certain electric-sector decisions that are made based on assumptions reflecting low VRE levels will still achieve their intended objective in a high VRE future. We qualitatively describe how various decisions may change with higher shares of VRE and outline an analytical framework for quantitatively evaluating the impacts of VRE on long-lasting decisions. We then present results from detailed electricity market simulations with capacity expansion and unit commitment models for multiple regions of the U.S. for low and high VRE futures. We find a general decrease in average annual hourly wholesale energy prices with more VRE penetration, increased price volatility and frequency of very low-priced hours, and changing diurnal price patterns. Ancillary service prices rise substantially and peak net-load hours with high capacity value are shifted increasingly into the evening, particularly for high solar futures. While in this report we only highlight qualitatively the possible impact of these altered price patterns on other demand- and supply-side electric sector decisions, the core set of electricity market prices derived here provides a foundation for later planned quantitative evaluations of these decisions in low and high VRE futures.

  7. Aggregation of Single-phase Electric Vehicles for Frequency Control Provision Based on Unidirectional Charging

    DEFF Research Database (Denmark)

    Sæmundsson, Valgeir Thor; Rezkalla, Michel M.N.; Zecchino, Antonio

    2017-01-01

    As the use of electric vehicles grows there is a greater possibility of using aggregated sets of electric vehicles as a large flexible unit to assist with the control of the power system. In this paper, the possibility of using electric vehicles as a flexible load for frequency control...... is investigated. The investigations are performed in a Pan-European interconnected grid with varying wind power penetration and different operational scenarios. Within this grid, the paper focuses on primary frequency control provision from electric vehicles and how the system behaves as the vehicles are being...... controlled within their respective areas. The investigations show that electric vehicles can be used for primary frequency control with different wind power penetration. By controlling the vehicles, the steady state frequency is improved and, since the vehicles react fast enough to the frequency changes...

  8. Contribution of storm time substorms to the prompt electric field disturbances in the equatorial ionosphere

    International Nuclear Information System (INIS)

    Hui, Debrup; Chakrabarty, D.; Sekar, R.; Reeves, G. D.

    2017-01-01

    This study tries to bring out the fact that storm time substorms can compete and at times significantly contribute to the geomagnetically disturbed time prompt penetration electric field effects on low and equatorial latitudes. Observations of unusual equatorial plasma drift data from Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere during two space weather events show that substorms can induce both eastward and westward penetration electric fields under steady southward interplanetary magnetic field (IMF B z ) conditions. During the first event on 2 January 2005, the enhancement of the daytime eastward electric field over Jicamarca due to substorm is found to be comparable with the Sq and interplanetary electric field (IEFy) generated electric fields combined. During the second event on 19 August 2006, the substorm is seen to weaken the daytime eastward field thereby inducing a westward field in spite of the absence of northward turning of IMF B z (overshielding). The westward electric field perturbation in the absence of any overshielding events is observationally sparse and contrary to the earlier results. Further, the substorm-induced field is found to be strong enough to compete or almost nullify the effects of storm time IEFy fields. This study also shows quantitatively that at times substorm contribution to the disturbed time prompt electric fields can be significant and thus should be taken into consideration in evaluating penetration events over low latitudes.

  9. Environmental versatility promotes modularity in genome-scale metabolic networks.

    Science.gov (United States)

    Samal, Areejit; Wagner, Andreas; Martin, Olivier C

    2011-08-24

    The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Our work shows that modularity in metabolic networks can be a by-product of functional constraints, e.g., the need to sustain life in multiple

  10. Environmental versatility promotes modularity in genome-scale metabolic networks

    Directory of Open Access Journals (Sweden)

    Wagner Andreas

    2011-08-01

    Full Text Available Abstract Background The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Results Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Conclusions Our work shows that modularity in metabolic networks can be a by-product of functional

  11. Quantum Dot Systems: a versatile platform for quantum simulations

    International Nuclear Information System (INIS)

    Barthelemy, Pierre; Vandersypen, Lieven M.K.

    2013-01-01

    Quantum mechanics often results in extremely complex phenomena, especially when the quantum system under consideration is composed of many interacting particles. The states of these many-body systems live in a space so large that classical numerical calculations cannot compute them. Quantum simulations can be used to overcome this problem: complex quantum problems can be solved by studying experimentally an artificial quantum system operated to simulate the desired hamiltonian. Quantum dot systems have shown to be widely tunable quantum systems, that can be efficiently controlled electrically. This tunability and the versatility of their design makes them very promising quantum simulators. This paper reviews the progress towards digital quantum simulations with individually controlled quantum dots, as well as the analog quantum simulations that have been performed with these systems. The possibility to use large arrays of quantum dots to simulate the low-temperature Hubbard model is also discussed. The main issues along that path are presented and new ideas to overcome them are proposed. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Metasploit penetration testing cookbook

    CERN Document Server

    Agarwal, Monika

    2013-01-01

    This book follows a Cookbook style with recipes explaining the steps for penetration testing with WLAN, VOIP, and even cloud computing. There is plenty of code and commands used to make your learning curve easy and quick.This book targets both professional penetration testers as well as new users of Metasploit, who wish to gain expertise over the framework and learn an additional skill of penetration testing, not limited to a particular OS. The book requires basic knowledge of scanning, exploitation, and the Ruby language.

  13. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-05-03

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure-reduction from a nearby target free surface. The free-surface influ- ence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure dur- ing the entire penetration event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was21 degrees and predominately resulted from the pressure reduction of the free surface. Good agree- ment was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  14. A Mass Loss Penetration Model to Investigate the Dynamic Response of a Projectile Penetrating Concrete considering Mass Abrasion

    Directory of Open Access Journals (Sweden)

    NianSong Zhang

    2015-01-01

    Full Text Available A study on the dynamic response of a projectile penetrating concrete is conducted. The evolutional process of projectile mass loss and the effect of mass loss on penetration resistance are investigated using theoretical methods. A projectile penetration model considering projectile mass loss is established in three stages, namely, cratering phase, mass loss penetration phase, and remainder rigid projectile penetration phase.

  15. The economics of electricity markets

    CERN Document Server

    Biggar, Darryl R

    2014-01-01

    With the transition to liberalized electricity markets in many countries, the shift to more environmentally sustainable forms of power generation and increasing penetration of electric vehicles and smart appliances, a fundamental understanding of the economic principles underpinning the electricity industry is vital. Using clarity and precision, the authors successfully explain economic theory of all liberalized electricity market types from a cross-disciplinary engineering and policy perspective. No prior engineering knowledge or economics expertise is assumed in introducing key ideas such as nodal pricing, optimal dispatch and efficient pricing or in extending those models to areas including investment, risk management and the handling of contingencies. Key features: Comprehensively covers the principles of all liberalized electricity market types, including the US, Europe, New Zealand and Australia. Provides up to date coverage of research and policy iss es, including design of financial transmission rig...

  16. Two Dimensional Heat Transfer around Penetrations in Multilayer Insulation

    Science.gov (United States)

    Johnson, Wesley L.; Kelly, Andrew O.; Jumper, Kevin M.

    2012-01-01

    The objective of this task was to quantify thermal losses involving integrating MLI into real life situations. Testing specifically focused on the effects of penetrations (including structural attachments, electrical conduit/feedthroughs, and fluid lines) through MLI. While there have been attempts at quantifying these losses both analytically and experimentally, none have included a thorough investigation of the methods and materials that could be used in such applications. To attempt to quantify the excess heat load coming into the system due to the integration losses, a calorimeter was designed to study two dimensional heat transfer through penetrated MLI. The test matrix was designed to take as many variables into account as was possible with the limited test duration and system size. The parameters varied were the attachment mechanism, the buffer material (for buffer attachment mechanisms only), the thickness of the buffer, and the penetration material. The work done under this task is an attempt to measure the parasitic heat loads and affected insulation areas produced by system integration, to model the parasitic loads, and from the model produce engineering equations to allow for the determination of parasitic heat loads in future applications. The methods of integration investigated were no integration, using a buffer to thermally isolate the strut from the MLI, and temperature matching the MLI on the strut. Several materials were investigated as a buffer material including aerogel blankets, aerogel bead packages, cryolite, and even an evacuated vacuum space (in essence a no buffer condition).

  17. Renewable Electricity Futures: Exploration of a U.S. Grid with 80% Renewable Electricity

    Science.gov (United States)

    Mai, Trieu

    2013-04-01

    Renewable Electricity Futures is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States over the next several decades. This study explores the implications and challenges of very high renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity generation from renewable technologies in 2050. At such high levels of renewable electricity penetration, the unique characteristics of some renewable resources, specifically geographical distribution and variability and un-certainty in output, pose challenges to the operability of the nation's electric system. The study focuses on key technical implications of this environment from a national perspective, exploring whether the U.S. power system can supply electricity to meet customer demand on an hourly basis with high levels of renewable electricity, including variable wind and solar generation. The study also identifies some of the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the U.S. The full report and associated supporting information is available at: http://www.nrel.gov/analysis/refutures/.

  18. FAA Fluorescent Penetrant Activities - An Update

    Energy Technology Data Exchange (ETDEWEB)

    Moore, D.G.

    1998-10-20

    The Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) is currently characterizing low cycle fatigue specimens that will support the needs of penetrant manufacturers, commercial airline industry and the Federal Aviation Administration. The main focus of this characterization is to maintain and enhance the evaluation of penetrant inspection materials and apply resources to support the aircraft community needs. This paper discusses efforts to-date to document the Wright Laboratory penetrant evaluation process and characterize penetrant brightness readings in the initial set of sample calibration panels using Type 1 penetrant.

  19. THERAPEUTIC EFFECTS OF ELECTROACUPUNCTURE PLUS POINT-PENETRATION FOR CHRONIC ANKLE JOINT SPRAIN

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yi-zao

    2005-01-01

    Objective: To observe clinical therapeutic effects of electroacupuncture plus point-penetration for chronic ankle joint sprain. Methods: 76 patients were randomly divided into treatment group (n=43) and control group (n=33).In teatment group, penetration needling from Qiuxu (丘墟 GB 40) to Zhaohai (照海 KI 6) was performed, combined with electrical stimulation for 30 min. Patients of control group were ordered to take Antinfan (50 mg,b.I.d.),supplemented with local external application of Votalin cream (b.I.d.).After 14 treatments (two courses), the therapeutic effect was assessed. Results: Following two courses of treatment, of the 43 cases and 33 cases in treatment and control groups,33 (76.7%) and 15 (45.5%) were cured, 4 (9.3%) and 7 (21.2%) had marked improvement in their symptoms, 3 (7.0%) and 2 (6.1%) had improvement, and 3 (7.0%) and 9(27.3%) failed, with the effective rates being 93.0% and 72.7% respectively. The therapeutic effect of treatment group was significantly superior to that of control group (P<0.05). Conclusion: Penetrative needling plus EA is significantly superior to medication in relieving chronic ankle spain patient's clinical symptoms and signs.

  20. A versatile scalable PET processing system

    International Nuclear Information System (INIS)

    Dong, H.; Weisenberger, A.; McKisson, J.; Wenze, Xi; Cuevas, C.; Wilson, J.; Zukerman, L.

    2011-01-01

    Positron Emission Tomography (PET) historically has major clinical and preclinical applications in cancerous oncology, neurology, and cardiovascular diseases. Recently, in a new direction, an application specific PET system is being developed at Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with Duke University, University of Maryland at Baltimore (UMAB), and West Virginia University (WVU) targeted for plant eco-physiology research. The new plant imaging PET system is versatile and scalable such that it could adapt to several plant imaging needs - imaging many important plant organs including leaves, roots, and stems. The mechanical arrangement of the detectors is designed to accommodate the unpredictable and random distribution in space of the plant organs without requiring the plant be disturbed. Prototyping such a system requires a new data acquisition system (DAQ) and data processing system which are adaptable to the requirements of these unique and versatile detectors.

  1. Assessing the Potential of Plug-in Electric Vehicles in Active Distribution Networks

    Directory of Open Access Journals (Sweden)

    Reza Ahmadi Kordkheili

    2016-01-01

    Full Text Available A multi-objective optimization algorithm is proposed in this paper to increase the penetration level of renewable energy sources (RESs in distribution networks by intelligent management of plug-in electric vehicle (PEV storage. The proposed algorithm is defined to manage the reverse power flow (PF from the distribution network to the upstream electrical system. Furthermore, a charging algorithm is proposed within the proposed optimization in order to assure PEV owner’s quality of service (QoS. The method uses genetic algorithm (GA to increase photovoltaic (PV penetration without jeopardizing PEV owners’ (QoS and grid operating limits, such as voltage level of the grid buses. The method is applied to a part of the Danish low voltage (LV grid to evaluate its effectiveness and capabilities. Different scenarios have been defined and tested using the proposed method. Simulation results demonstrate the capability of the algorithm in increasing solar power penetration in the grid up to 50%, depending on the PEV penetration level and the freedom of the system operator in managing the available PEV storage.

  2. Penetration Tester's Open Source Toolkit

    CERN Document Server

    Faircloth, Jeremy

    2011-01-01

    Great commercial penetration testing tools can be very expensive and sometimes hard to use or of questionable accuracy. This book helps solve both of these problems. The open source, no-cost penetration testing tools presented do a great job and can be modified by the user for each situation. Many tools, even ones that cost thousands of dollars, do not come with any type of instruction on how and in which situations the penetration tester can best use them. Penetration Tester's Open Source Toolkit, Third Edition, expands upon existing instructions so that a professional can get the most accura

  3. Assessing the Potential of Plug-in Electric Vehicles in Active Distribution Networks

    DEFF Research Database (Denmark)

    Kordheili, Reza Ahmadi; Pourmousavi, Seyyed Ali; Savaghebi, Mehdi

    2016-01-01

    A multi-objective optimization algorithm is proposed in this paper to increase the penetration level of renewable energy sources (RESs) in distribution networks by intelligent management of plug-in electric vehicle (PEV) storage. The proposed algorithm is defined to manage the reverse power flow ...... demonstrate the capability of the algorithm in increasing solar power penetration in the grid up to 50%, depending on the PEV penetration level and the freedom of the system operator in managing the available PEV storage....

  4. Optimal charging scheduler for electric vehicles on the Florida turnpike : final research project report.

    Science.gov (United States)

    2017-06-01

    This project developed a methodology to simulate and analyze roadway traffic patterns : and expected penetration and timing of electric vehicles (EVs) with application directed : toward the requirements for electric vehicle supply equipment (EVSE) si...

  5. Fuel cell electric vehicle as a power plant : Fully renewable integrated transport and energy system design and analysis for smart city areas

    NARCIS (Netherlands)

    Oldenbroek, V.D.W.M.; Verhoef, L.A.; van Wijk, A.J.M.

    2017-01-01

    Reliable and affordable future zero emission power, heat and transport systems require efficient and versatile energy storage and distribution systems. This paper answers the question whether for city areas, solar and wind electricity together with fuel cell electric vehicles as energy generators

  6. Exploring the nitrogen ingestion of aphids--a new method using electrical penetration graph and (15N labelling.

    Directory of Open Access Journals (Sweden)

    Franziska Kuhlmann

    Full Text Available Studying plant-aphid interactions is challenging as aphid feeding is a complex process hidden in the plant tissue. Here we propose a combination of two well established methods to study nutrient acquisition by aphids focusing on the uptake of isotopically labelled nitrogen ((15N. We combined the Electrical Penetration Graph (EPG technique that allows detailed recording of aphid feeding behaviour and stable isotope ratio mass spectrometry (IRMS to precisely measure the uptake of nitrogen. Bird cherry-oat aphids Rhopalosiphum padi L. (Hemiptera, Aphididae fed for 24 h on barley plants (Hordeum vulgare L., cultivar Lina, Poaceae that were cultivated with a (15N enriched nutrient solution. The time aphids fed in the phloem was strongly positive correlated with their (15N uptake. All other single behavioural phases were not correlated with (15N enrichment in the aphids, which corroborates their classification as non-feeding EPG phases. In addition, phloem-feeding and (15N enrichment of aphids was divided into two groups. One group spent only short time in the phloem phase and was unsuccessful in nitrogen acquisition, while the other group displayed longer phloem-feeding phases and was successful in nitrogen acquisition. This suggests that several factors such as the right feeding site, time span of feeding and individual conditions play a role for the aphids to acquire nutrients successfully. The power of this combination of methods for studying plant-aphid interactions is discussed.

  7. Comment on "Penetration of Action Potentials During Collision in the Median and Lateral Giant Axons of Invertebrates"

    Science.gov (United States)

    Berg, Rune W.; Stauning, Marius Tving; Sørensen, Jakob Balslev; Jahnsen, Henrik

    2017-04-01

    The action potential (AP) is an electrical impulse elicited by depolarization of the neuronal membrane from the resting membrane potential (around -70 mV ). It propagates along the axon, allowing for rapid and distant communication. Recently, it was claimed that two APs traveling in opposite direction will pass unhindered through each other (penetrate) upon collision [Gonzalez-Perez et al.Phys. Rev. X 4, 031047 (2014), 10.1103/PhysRevX.4.031047]. We tested this claim under carefully controlled conditions and found that we cannot reproduce penetration. Instead, APs consistently annihilated upon collision. This is consistent with a vast body of literature.

  8. Integrating Renewables in Electricity Markets

    DEFF Research Database (Denmark)

    Morales González, Juan Miguel; Conejo, Antonio J.; Madsen, Henrik

    in the electricity market. • The development of procedures to enable demand response and to facilitate the integration of stochastic renewable units. This book is written in a modular and tutorial manner and includes many illustrative examples to facilitate its comprehension. It is intended for advanced...... such as: • The modeling and forecasting of stochastic renewable power production. • The characterization of the impact of renewable production on market outcomes. • The clearing of electricity markets with high penetration of stochastic renewable units. • The development of mechanisms to counteract...

  9. Effect of compressibility on the hypervelocity penetration

    Science.gov (United States)

    Song, W. J.; Chen, X. W.; Chen, P.

    2018-02-01

    We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.

  10. Web penetration testing with Kali Linux

    CERN Document Server

    Muniz, Joseph

    2013-01-01

    Web Penetration Testing with Kali Linux contains various penetration testing methods using BackTrack that will be used by the reader. It contains clear step-by-step instructions with lot of screenshots. It is written in an easy to understand language which will further simplify the understanding for the user.""Web Penetration Testing with Kali Linux"" is ideal for anyone who is interested in learning how to become a penetration tester. It will also help the users who are new to Kali Linux and want to learn the features and differences in Kali versus Backtrack, and seasoned penetration testers

  11. Percutaneous penetration studies for risk assessment

    DEFF Research Database (Denmark)

    Sartorelli, Vittorio; Andersen, Helle Raun; Angerer, Jürgen

    2000-01-01

    . In order to predict the systemic risk of dermally absorbed chemicals and to enable agencies to set safety standards, data is needed on the rates of percutaneous penetration of important chemicals. Standardization of in vitro tests and comparison of their results with the in vivo data could produce...... internationally accepted penetration rates and/or absorption percentages very useful for regulatory toxicology. The work of the Percutaneous Penetration Subgroup of EC Dermal Exposure Network has been focussed on the standardization and validation of in vitro experiments, necessary to obtain internationally...... accepted penetration rates for regulatory purposes. The members of the Subgroup analyzed the guidelines on percutaneous penetration in vitro studies presented by various organizations and suggested a standardization of in vitro models for percutaneous penetration taking into account their individual...

  12. Evaluation of the electric vehicle impact in the power demand curve in a smart grid environment

    International Nuclear Information System (INIS)

    Morais, Hugo; Sousa, Tiago; Vale, Zita; Faria, Pedro

    2014-01-01

    Highlights: • Multi-objective optimization of operation costs and load factor. • Contribution of electric vehicles to load diagram leveling. • Use of epigraph variables to transform non-convex functions in convex ones. • Evaluation of the obtained results considering different EVs penetration. - Abstract: Smart grids with an intensive penetration of distributed energy resources will play an important role in future power system scenarios. The intermittent nature of renewable energy sources brings new challenges, requiring an efficient management of those sources. Additional storage resources can be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve for a distribution network with large penetration of Distributed Generation (DG) units. An efficient management methodology for EVs charging and discharging is proposed, considering a multi-objective optimization problem. The main goals of the proposed methodology are: to minimize the system operation costs and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32-bus distribution network in the case study section considering different scenarios of EVs penetration to analyze their impact in the network and in the other energy resources management

  13. Sensitivity of Solar Fossil Hybrid Electricity Technology Penetration to Price and Efficiency Projections

    Science.gov (United States)

    With many aging coal and nuclear plants nearing retirement age, new electricity production capacity will need to be built over the next several decades. There are many methods of generating electricity, each with different benefits and drawbacks. While solar and wind generation a...

  14. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-06-01

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure reduction from a nearby target free surface. The free-surface influence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure during the entire penetra- tion event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was 21 degrees and predom- inately resulted from the pressure reduction of the free surface. Good agreement was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  15. Demand side management of electric car charging

    DEFF Research Database (Denmark)

    Finn, P.; Fitzpatrick, C.; Connolly, David

    2012-01-01

    the purchase of alternative energy vehicles in an effort to achieve 10% EV (electric vehicle) penetration in the country's road fleet by 2020. The replacement of ICE (internal combustion engine) vehicles with EV equivalents poses challenges for grid operators while simultaneously offering opportunities...

  16. Guidelines for gloveboxes. Section 5.14: Electrical

    International Nuclear Information System (INIS)

    Tollner, R.L.

    1995-07-01

    This is the electric portion of the design guidelines for gloveboxes developed by the American Glovebox Society. The topics include applicable codes/industry standards, penetrations/feedthroughs, wireways, junction boxes, receptacles, derating factors, conductors, conductor insulation and grounding. References for the guidelines are provided

  17. Materials properties of hafnium and zirconium silicates: Metal interdiffusion and dopant penetration studies

    Science.gov (United States)

    Quevedo Lopez, Manuel Angel

    Hafnium and Zirconium based gate dielectrics are considered potential candidates to replace SiO2 or SiON as the gate dielectric in CMOS processing. Furthermore, the addition of nitrogen into this pseudo-binary alloy has been shown to improve their thermal stability, electrical properties, and reduce dopant penetration. Because CMOS processing requires high temperature anneals (up to 1050°C), it is important to understand the diffusion properties of any metal associated with the gate dielectric in silicon at these temperatures. In addition, dopant penetration from the doped polysilicon gate into the Si channel at these temperatures must also be studied. Impurity outdiffusion (Hf, Zr) from the dielectric, or dopant (B, As, P) penetration through the dielectric into the channel region would likely result in deleterious effects upon the carrier mobility. In this dissertation extensive thermal stability studies of alternate gate dielectric candidates ZrSixOy and HfSixO y are presented. Dopant penetration studies from doped-polysilicon through HfSixOy and HfSixOyNz are also presented. Rutherford Backscattering Spectroscopy (RBS), Heavy Ion RBS (HI-RBS), X-ray Photoelectron Spectroscopy (XPS), High Resolution Transmission Electron Microscopy (HR-TEM), and Time of Flight and Dynamic Secondary Ion Mass Spectroscopy (ToF-SIMS, D-SIMS) methods were used to characterize these materials. The dopant diffusivity is calculated by modeling of the dopant profiles in the Si substrate. In this disseration is reported that Hf silicate films are more stable than Zr silicate films, from the metal interdiffusion point of view. On the other hand, dopant (B, As, and P) penetration is observed for HfSixO y films. However, the addition of nitrogen to the Hf - Si - O systems improves the dopant penetration properties of the resulting HfSi xOyNz films.

  18. Barrier penetration database

    International Nuclear Information System (INIS)

    Fainberg, A.; Bieber, A.M. Jr.

    1978-11-01

    This document is intended to supply the NRC and nuclear power plant licensees with basic data on the times required to penetrate forcibly the types of barriers commonly found in nuclear plants. These times are necessary for design and evaluation of the physical protection system required under 10CFR73.55. Each barrier listed is described in detail. Minor variations in basic barrier construction that result in the same penetration time, are also described

  19. Discrete complex images in modeling antennas over, below or penetrating the ground

    International Nuclear Information System (INIS)

    Arnautovski-Toseva, Vesna; Smokvarski, Aleksandar; Popovski, Borislav; Grcev, Leonid

    2002-01-01

    In this paper discrete complex images (DCI) are used to obtain approximate, efficient and fast solution of Sommerfeld integrals that appear in the analysis of vertical electric dipole (VED) in presence of air-ground half-space. The results are used to model vertical antenna above, below or penetrating the ground using the moment method technique with triangular expansion functions. Thus, the time consuming direct numerical evaluation of the Sommerfeld integrals is completely or partially avoided. (Author)

  20. Study liquid length penetration results obtained with a direct acting piezo electric injector

    International Nuclear Information System (INIS)

    Payri, Raul; Gimeno, Jaime; Bardi, Michele; Plazas, Alejandro H.

    2013-01-01

    Highlights: ► A direct acting injector capable of controlling needle lift has been used to determine liquid phase penetration. ► The influence of injection pressure, chamber density and chamber temperature have been measured. ► When needle lift is reduced the stabilized liquid length is shortened. ► The relationship between needle lift and liquid length makes needle lift as a new way to control the injection event. - Abstract: A state of the art prototype common rail injector featuring direct control of the needle by means of a piezo stack (direct acting) has been tested. Liquid phase penetration of the sprays in diesel engine-like conditions has been studied via imaging technique in a novel continuous flow test chamber that allows an accurate control on a wide range of thermodynamic conditions (up to 1000 K and 15 MPa). This state of the art injector fitted with a 7-hole nozzle, allows a fully flexible control on the nozzle needle movement, enabling various fuel injection rate typologies. The temporal evolution of the seven sprays has been studied recording movies of the injection event in evaporative conditions via Mie scattering imaging technique and using a high speed camera. The results showed a strong influence of needle position on the stabilized liquid length while the effect of the injection pressure is negligible: the decrease of the needle lift causes a pressure drop in the needle seat and thus a reduction in the effective pressure upstream of the orifices (in the nozzle sac). According to known literature the stabilized liquid-length depends mainly on effective diameter, spray cone-angle and fuel/air properties and does not depend on fuel velocity at the orifice outlet. Therefore, due to small change in the spray cone-angle, higher injection pressures give slightly lower liquid length. However, partial needle lifts has an opposite effect: when needle is partially lifted a dramatic increase of the spray cone-angle and a consequent reduction of

  1. Time dependent response of equatorial ionospheric electric fieldsto magnetospheric disturbances

    OpenAIRE

    Fejer, Bela G.; Scherliess, L.

    1995-01-01

    We use extensive radar measurements of F region vertical plasma drifts and auroral electrojet indices to determine the storm time dependence of equatorial zonal electric fields. These disturbance drifts result from the prompt penetration of high latitude electric fields and from the dynamo action of storm time winds which produce largest perturbations a few hours after the onset of magnetic activity. The signatures of the equatorial disturbance electric fields change significantly depending o...

  2. High-Penetration PV Integration Handbook for Distribution Engineers

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, Rich [Electrical Distribution Design, Blacksburg, VA (United States); Woyak, Jeremy [Electrical Distribution Design, Blacksburg, VA (United States); Costyk, David [Electrical Distribution Design, Blacksburg, VA (United States); Hambrick, Josh [Electrical Distribution Design, Blacksburg, VA (United States); Mather, Barry [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-01

    This handbook has been developed as part of a five-year research project which began in 2010. The National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed together to analyze the impacts of high-penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to leverage the experience that SCE and the project team would gain during the significant installation of 500 MW of commercial scale PV systems (1-5 MW typically) starting in 2010 and completing in 2015 within SCE’s service territory through a program approved by the California Public Utility Commission (CPUC).

  3. Assessing the value of wind generation in future carbon constrained electricity industries

    International Nuclear Information System (INIS)

    Vithayasrichareon, Peerapat; MacGill, Iain F.

    2013-01-01

    This paper employs a novel Monte-Carlo based generation portfolio assessment tool to explore the implications of increasing wind penetration and carbon prices within future electricity generation portfolios under considerable uncertainty. This tool combines optimal generation mix techniques with Monte Carlo simulation and portfolio analysis methods to determine expected overall generation costs, associated cost uncertainty and expected CO 2 emissions for different possible generation portfolios. A case study of an electricity industry with coal, Combined Cycle Gas Turbines (CCGT), Open Cycle Gas Turbines (OCGT) and wind generation options that faces uncertain future fossil-fuel prices, carbon pricing, electricity demand and plant construction costs is presented to illustrate some of the key issues associated with growing wind penetrations. The case study uses half-hourly demand and wind generation data from South Eastern Australia, and regional estimates of new-build plant costs and characteristics. Results suggest that although wind generation generally increases overall industry costs, it reduces associated cost uncertainties and CO 2 emissions. However, there are some cases in which wind generation can reduce the overall costs of generation portfolios. The extent to which wind penetration affects industry expected costs and uncertainties depends on the level of carbon price and the conventional technology mix in the portfolios. - Highlights: ► A probabilistic portfolio analysis tool to assess generation portfolios with wind power. ► Explore the impacts of wind penetrations and carbon prices under uncertainties. ► Wind generation increases overall portfolio costs but reduces cost risks and emissions. ► The value of wind power depends on the carbon price and the technology mix. ► Complex interactions between wind penetration level and carbon pricing.

  4. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we examine some of the limits to large-scale deployment of solar photovoltaics (PV) in traditional electric power systems. Specifically, we evaluate the ability of PV to provide a large fraction (up to 50%) of a utility system's energy by comparing hourly output of a simulated large PV system to the amount of electricity actually usable. The simulations use hourly recorded solar insolation and load data for Texas in the year 2000 and consider the constraints of traditional electricity generation plants to reduce output and accommodate intermittent PV generation. We find that under high penetration levels and existing grid-operation procedures and rules, the system will have excess PV generation during certain periods of the year. Several metrics are developed to examine this excess PV generation and resulting costs as a function of PV penetration at different levels of system flexibility. The limited flexibility of base load generators produces increasingly large amounts of unusable PV generation when PV provides perhaps 10-20% of a system's energy. Measures to increase PV penetration beyond this range will be discussed and quantified in a follow-up analysis

  5. Quasi-static time-series simulation using OpenDSS in IEEE distribution feeder model with high PV penetration and its impact on solar forecasting

    Science.gov (United States)

    Mohammed, Touseef Ahmed Faisal

    Since 2000, renewable electricity installations in the United States (excluding hydropower) have more than tripled. Renewable electricity has grown at a compounded annual average of nearly 14% per year from 2000-2010. Wind, Concentrated Solar Power (CSP) and solar Photo Voltaic (PV) are the fastest growing renewable energy sectors. In 2010 in the U.S., solar PV grew over 71% and CSP grew by 18% from the previous year. Globally renewable electricity installations have more than quadrupled from 2000-2010. Solar PV generation grew by a factor of more than 28 between 2000 and 2010. The amount of CSP and solar PV installations are increasing on the distribution grid. These PV installations transmit electrical current from the load centers to the generating stations. But the transmission and distribution grid have been designed for uni-directional flow of electrical energy from generating stations to load centers. This causes imbalances in voltage and switchgear of the electrical circuitry. With the continuous rise in PV installations, analysis of voltage profile and penetration levels remain an active area of research. Standard distributed photovoltaic (PV) generators represented in simulation studies do not reflect the exact location and variability properties such as distance between interconnection points to substations, voltage regulators, solar irradiance and other environmental factors. Quasi-Static simulations assist in peak load planning hour and day ahead as it gives a time sequence analysis to help in generation allocation. Simulation models can be daily, hourly or yearly depending on duty cycle and dynamics of the system. High penetration of PV into the power grid changes the voltage profile and power flow dynamically in the distribution circuits due to the inherent variability of PV. There are a number of modeling and simulations tools available for the study of such high penetration PV scenarios. This thesis will specifically utilize OpenDSS, a open source

  6. Evaluation of friction produced by self-ligating, conventional and Barbosa Versatile brackets

    Directory of Open Access Journals (Sweden)

    Jurandir Antonio BARBOSA

    Full Text Available Abstract Introduction The Barbosa Versatile bracket design may provide lower frictional force and greater sliding. However, no in vitro studies have shown its sliding mechanisms and frictional resistance, particularly in comparison with other self-ligating or conventional brackets. Objective To compare the frictional resistance among self-ligating brackets (EasyClip/ Aditek, Damon MX/ Ormco and In Ovation R/ GAC; conventional brackets (Balance Roth/ GAC, and Roth Monobloc/ Morelli; and Barbosa Versatile bracket (Barbosa Versatile/ GAC with different angles and arch wires. Material and method Brackets were tested with the 0.014", 0.018", 0.019"×0.025" and 0.021"×0.025" stainless steel wires, with 0, 5, 10, 15 and 20 degree angulations. Tying was performed with elastomeric ligature for conventional and Barbosa Versatile brackets, or with a built-in clip system of the self-ligating brackets. A universal testing machine was used to obtain sliding strength and friction value readouts between brackets and wires. Result Three-way factorial ANOVA 4×5×6 (brackets × angulation × wire and Tukey tests showed statistically significant differences for all factors and all interactions (p<0.0001. Static frictional resistance showed a lower rate for Barbosa Versatile bracket and higher rates for Roth Monobloc and Balance brackets. Conclusion The lowest frictional resistance was obtained with the Barbosa Versatile bracket and self-ligating brackets in comparison with the conventional type. Increasing the diameter of the wires increased the frictional resistance. Smaller angles produced less frictional resistance.

  7. Diffusion of radioactively tagged penetrants through rubbery polymers. II. Dependence on molecular length of penetrant

    International Nuclear Information System (INIS)

    Rhee, C.K.; Ferry, J.D.; Fetters, L.J.

    1977-01-01

    The diffusion of radioactively tagged n-hexadecane, n-dotriacontane, and a polybutadiene oligomer with molecular weight 1600 has been studied in 12 rubbery polymers. Diffusion coefficients were obtained from the theory for the thin smear method: for n-hexadecane and for n-dotriacontane (with one exception), in the form appropriate for a completely miscible polymer-penetrant pair, and for the oligomer in the form appropriate for slow entry of the pentrant across the penetrant-polymer interface. For the four flexible linear penetrants, n-dodecane, n-hexadecane, n-dotriacontane, and oligomer, the ratios of diffusion coefficients (or translational friction coefficients) are nearly the same in every polymer. It is concluded that these penetrants travel with similar segmentwise motions, although that is not the case with bulkier, more rigid penetrants. For the three normal paraffins, the friction coefficient is approximately proportional to molecular weight, but that for the oligomer is smaller than would be predicted on this basis

  8. Kali Linux wireless penetration testing essentials

    CERN Document Server

    Alamanni, Marco

    2015-01-01

    This book is targeted at information security professionals, penetration testers and network/system administrators who want to get started with wireless penetration testing. No prior experience with Kali Linux and wireless penetration testing is required, but familiarity with Linux and basic networking concepts is recommended.

  9. Market penetration rates of new energy technologies

    International Nuclear Information System (INIS)

    Lund, Peter

    2006-01-01

    The market penetration rates of 11 different new energy technologies were studied covering energy production and end-use technologies. The penetration rates were determined by fitting observed market data to an epidemical diffusion model. The analyses show that the exponential penetration rates of new energy technologies may vary from 4 up to over 40%/yr. The corresponding take-over times from a 1% to 50% share of the estimated market potential may vary from less than 10 to 70 years. The lower rate is often associated with larger energy impacts. Short take-over times less than 25 years seem to be mainly associated with end-use technologies. Public policies and subsides have an important effect on the penetration. Some technologies penetrate fast without major support explained by technology maturity and competitive prices, e.g. compact fluorescent lamps show a 24.2%/yr growth rate globally. The penetration rates determined exhibit some uncertainty as penetration has not always proceeded close to saturation. The study indicates a decreasing penetration rate with increasing time or market share. If the market history is short, a temporally decreasing functional form for the penetration rate coefficient could be used to anticipate the probable behavior

  10. Ethical hacking and penetration testing guide

    CERN Document Server

    Baloch, Rafay

    2014-01-01

    Requiring no prior hacking experience, Ethical Hacking and Penetration Testing Guide supplies a complete introduction to the steps required to complete a penetration test, or ethical hack, from beginning to end. You will learn how to properly utilize and interpret the results of modern-day hacking tools, which are required to complete a penetration test. The book covers a wide range of tools, including Backtrack Linux, Google reconnaissance, MetaGooFil, dig, Nmap, Nessus, Metasploit, Fast Track Autopwn, Netcat, and Hacker Defender rootkit. Supplying a simple and clean explanation of how to effectively utilize these tools, it details a four-step methodology for conducting an effective penetration test or hack.Providing an accessible introduction to penetration testing and hacking, the book supplies you with a fundamental understanding of offensive security. After completing the book you will be prepared to take on in-depth and advanced topics in hacking and penetration testing. The book walks you through each ...

  11. Towards versatile and sustainable hydrogen production via electrocatalytic water splitting: Electrolyte engineering

    KAUST Repository

    Shinagawa, Tatsuya

    2016-12-17

    Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. The electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances where water splitting reaction is conducted, required solution conditions such as the identity and molarity of ions may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate developing efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), electrode stability, and/or indirectly impacts the performance by influencing concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions.

  12. Towards versatile and sustainable hydrogen production via electrocatalytic water splitting: Electrolyte engineering

    KAUST Repository

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2016-01-01

    Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. The electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances where water splitting reaction is conducted, required solution conditions such as the identity and molarity of ions may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate developing efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), electrode stability, and/or indirectly impacts the performance by influencing concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions.

  13. Market penetration analysis of fuel cell vehicles in Japan by using the energy system model MARKAL

    International Nuclear Information System (INIS)

    Endo, Eiichi

    2007-01-01

    The objective of the present work is to validate the hydrogen energy roadmap of Japan by analyzing the market penetration of fuel cell vehicles (FCVs) and the effects of a carbon tax using an energy system model of Japan based on MARKAL. The results of the analysis show that a hydrogen FCV would not be cost competitive until 2050 without a more severe carbon tax than the government's planned 2400 JPY/t-C carbon tax. However, as the carbon tax rate increases, instead of conventional vehicles including the gasoline hybrid electric vehicle, hydrogen FCVs gain market penetration earlier and more. By assuming a more severe carbon tax rate, such as 10 000 JPY/t-C, the market share of hydrogen FCVs approaches the governmental goal. This suggests that cheaper vehicle cost and hydrogen cost than those targeted in the roadmap should be attained or subsidies to hydrogen FCV and hydrogen refueling station will be necessary for achieving the goal of earlier market penetration. (author)

  14. A high-power versatile wireless power transfer for biomedical implants.

    Science.gov (United States)

    Jiang, Hao; Zhang, Jun Min; Liou, Shy Shenq; Fechter, Richard; Hirose, Shinjiro; Harrison, Michael; Roy, Shuvo

    2010-01-01

    Implantable biomedical actuators are highly desired in modern medicine. However, how to power up these biomedical implants remains a challenge since most of them need more than several hundreds mW of power. The air-core based radio-frequency transformer (two face-to-face inductive coils) has been the only non-toxic and non-invasive power source for implants for the last three decades [1]. For various technical constraints, the maximum delivered power is limited by this approach. The highest delivered power reported is 275 mW over 1 cm distance [2]. Also, the delivered power is highly vulnerable to the coils' geometrical arrangement and the electrical property of the medium around them. In this paper, a novel rotating-magnets based wireless power transfer that can deliver ∼10 W over 1 cm is demonstrated. The delivered power is significantly higher than the existing start-of-art. Further, the new method is versatile since there is no need to have the impedance matching networks that are highly susceptible to the operating frequency, the coil arrangement and the environment.

  15. 90–100% renewable electricity for the South West Interconnected System of Western Australia

    International Nuclear Information System (INIS)

    Lu, Bin; Blakers, Andrew; Stocks, Matthew

    2017-01-01

    Rapidly increasing penetration of renewables, primarily wind and photovoltaics (PV), is causing a move away from fossil fuel in the Australian electric power industry. This study focuses on the South West Interconnected System in Western Australia. Several high (90% and 100%) renewables penetration scenarios have been modelled, comprising wind and PV supplemented with a small amount of biogas, and compared with a “like-for-like” fossil-fuel replacement scenario. Short-term off-river (closed cycle) pumped hydro energy storage (PHES) is utilised in some simulations as a large-scale conventional storage technology. The scenarios are examined by using a chronological dispatch model. An important feature of the modelling is that only technologies that have been already deployed on a large scale (>150 gigawatts) are utilised. This includes wind, PV and PHES. The modelling results demonstrate that 90–100% penetration by wind and PV electricity is compatible with a balanced grid. With the integration of off-river PHES, 90% renewables penetration is able to provide low-carbon electricity at competitive prices. Pumped hydro also facilitates a 100% renewables scenario which produces zero greenhouse gas emissions with attractive electricity prices. A sensitivity analysis shows the most important factors in the system cost are discount rate and wind turbine cost. - Highlights: • Short-term off-river pumped hydro energy storage (STORES). • 90–100% renewables for a large-scale self-contained power system. • PV and wind serves 80–90% of the total energy. • 90% renewables system costs $116 ($103)/MWh using 2016 (2030) prices.

  16. Projectile penetration into ballistic gelatin.

    Science.gov (United States)

    Swain, M V; Kieser, D C; Shah, S; Kieser, J A

    2014-01-01

    Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed. © 2013 Published by Elsevier Ltd.

  17. High Penetration Solar PV Deployment Sunshine State Solar Grid Initiative (SUNGRIN)

    Energy Technology Data Exchange (ETDEWEB)

    Meeker, Rick [Nhu Energy, Inc., Tallahassee, FL (United States); Florida State Univ., Tallahassee, FL (United States); Steurer, Mischa [Florida State Univ., Tallahassee, FL (United States); Faruque, MD Omar [Florida State Univ., Tallahassee, FL (United States); Langston, James [Florida State Univ., Tallahassee, FL (United States); Schoder, Karl [Florida State Univ., Tallahassee, FL (United States); Ravindra, Harsha [Florida State Univ., Tallahassee, FL (United States); Hariri, Ali [Florida State Univ., Tallahassee, FL (United States); Moaveni, Houtan [New York Power Authority (NYPA), New York (United States); University of Central Florida, Florida Solar Energy Center, Cocoa, FL (Unitied States); Click, Dave [ESA Renewables, LLC, Sanford, FL (United States); University of Central Florida, Florida Solar Energy Center, Cocoa, FL (United States); Reedy, Bob [University of Central Florida, Florida Solar Energy Center, Cocoa, FL (United States)

    2015-05-31

    The report provides results from the Sunshine State Solar Grid Initiative (SUNGRIN) high penetration solar PV deployment project led by Florida State University’s (FSU) Center for Advanced Power Systems (CAPS). FSU CAPS and industry and university partners have completed a five-year effort aimed at enabling effective integration of high penetration levels of grid-connected solar PV generation. SUNGRIN has made significant contributions in the development of simulation-assisted techniques, tools, insight and understanding associated with solar PV effects on electric power system (EPS) operation and the evaluation of mitigation options for maintaining reliable operation. An important element of the project was the partnership and participation of six major Florida utilities and the Florida Reliability Coordinating Council (FRCC). Utilities provided details and data associated with actual distribution circuits having high-penetration PV to use as case studies. The project also conducted foundational work supporting future investigations of effects at the transmission / bulk power system level. In the final phase of the project, four open-use models with built-in case studies were developed and released, along with synthetic solar PV data sets, and tools and techniques for model reduction and in-depth parametric studies of solar PV impact on distribution circuits. Along with models and data, at least 70 supporting MATLAB functions have been developed and made available, with complete documentation.

  18. An investigation of the maximum penetration level of a photovoltaic (PV) system into a traditional distribution grid

    Science.gov (United States)

    Chalise, Santosh

    Although solar photovoltaic (PV) systems have remained the fastest growing renewable power generating technology, variability as well as uncertainty in the output of PV plants is a significant issue. This rapid increase in PV grid-connected generation presents not only progress in clean energy but also challenges in integration with traditional electric power grids which were designed for transmission and distribution of power from central stations. Unlike conventional electric generators, PV panels do not have rotating parts and thus have no inertia. This potentially causes a problem when the solar irradiance incident upon a PV plant changes suddenly, for example, when scattered clouds pass quickly overhead. The output power of the PV plant may fluctuate nearly as rapidly as the incident irradiance. These rapid power output fluctuations may then cause voltage fluctuations, frequency fluctuations, and power quality issues. These power quality issues are more severe with increasing PV plant power output. This limits the maximum power output allowed from interconnected PV plants. Voltage regulation of a distribution system, a focus of this research, is a prime limiting factor in PV penetration levels. The IEEE 13-node test feeder, modeled and tested in the MATLAB/Simulink environment, was used as an example distribution feeder to analyze the maximum acceptable penetration of a PV plant. The effect of the PV plant's location was investigated, along with the addition of a VAR compensating device (a D-STATCOM in this case). The results were used to develop simple guidelines for determining an initial estimate of the maximum PV penetration level on a distribution feeder. For example, when no compensating devices are added to the system, a higher level of PV penetration is generally achieved by installing the PV plant close to the substation. The opposite is true when a VAR compensator is installed with the PV plant. In these cases, PV penetration levels over 50% may be

  19. Ultrastructure of compatible and incompatible interactions in phloem sieve elements during the stylet penetration by cotton aphids in melon

    NARCIS (Netherlands)

    Garzo, E.; Fernández-Pascual, Mercedes; Morcillo, Cesar; Fereres, Alberto; Gómez-Guillamón, M.L.; Tjallingii, W.F.

    2017-01-01

    Resistance of the melon line TGR-1551 to the aphid Aphis gossypii is based on preventing aphids from ingesting phloem sap. In electrical penetration graphs (EPGs), this resistance has been characterized with A. gossypii showing unusually long phloem salivation periods (waveform E1) mostly

  20. Variation in penetration of submicrometric particles through electrostatic filtering facepieces during exposure to paraffin oil aerosol.

    Science.gov (United States)

    Plebani, Carmela; Listrani, Stefano; Tranfo, Giovanna; Tombolini, Francesca

    2012-01-01

    Several studies show the increase of penetration through electrostatic filters during exposure to an aerosol flow, because of particle deposition on filter fibers. We studied the effect of increasing loads of paraffin oil aerosol on the penetration of selected particle sizes through an electrostatic filtering facepiece. FFP2 facepieces were exposed for 8 hr to a flow rate of 95.0 ± 0.5 L/min of polydisperse paraffin aerosol at 20.0 ± 0.5 mg/m(3). The penetration of bis(2-ethylhexyl)sebacate (DEHS) monodisperse neutralized aerosols, with selected particle size in the 0.03-0.40 μm range, was measured immediately prior to the start of the paraffin aerosol loading and at 1, 4, and 8 hr after the start of paraffin aerosol loading. Penetration through isopropanol-treated facepieces not oil paraffin loaded was also measured to evaluate facepiece behavior when electrostatic capture mechanisms are practically absent. During exposure to paraffin aerosol, DEHS penetration gradually increased for all aerosol sizes, and the most penetrating particle size (0.05 μm at the beginning of exposure) shifted slightly to larger diameters. After the isopropanol treatment, the higher penetration value was 0.30 μm. In addition to an increased penetration during paraffin loading at a given particle size, the relative degree of increase was greater as the particle size increased. Penetration value measured after 8 hr for 0.03-μm particles was on average 1.6 times the initial value, whereas it was about 8 times for 0.40-μm particles. This behavior, as well evidenced in the measurements of isopropanol-treated facepieces, can be attributed to the increasing action in particle capture of the electrostatic forces (Coulomb and polarization), which depend strictly on the diameter and electrical charge of neutralized aerosol particles. With reference to electrostatic filtering facepieces as personal protective equipment, results suggest the importance of complying with the manufacturer

  1. Consumer preferences for electric vehicles : a literature review

    NARCIS (Netherlands)

    Liao, F.; Molin, E.J.E.; van Wee, G.P.

    2017-01-01

    Widespread adoption of electric vehicles (EVs) may contribute to the alleviation of problems such as environmental pollution, global warming and oil dependency. However, the current market penetration of EV is relatively low in spite of many governments implementing strong promotion policies.

  2. Coordinated Operation of the Electricity and Natural Gas Systems with Bi-directional Energy Conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Zhang, Baohua; Fang, Jiakun

    2017-01-01

    A coordinated operation of the natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables. This work focuses on the unified optimal operation of the integrated natural gas and electricity system considering the network...

  3. Governmental policy and prospect in electricity production from renewables in Lithuania

    International Nuclear Information System (INIS)

    Katinas, Vladislovas; Markevicius, Antanas; Erlickyte, Regina; Marciukaitis, Mantas

    2008-01-01

    In Lithuania, the generation of electricity is based on the nuclear energy and on the fossil fuels. After the decommissioning of Ignalina nuclear power plant in 2009, the Lithuanian Power Plant and other thermal plants will become the major sources of electricity. Consequently, the Lithuanian power sector must focus on the implementation of renewable energy projects, penetration of new technologies and on consideration of the future opportunities for renewables, and Government policy for promoting this kind of energy. Production of electricity from renewable energy is based on hydro, biomass and wind energy resources in Lithuania. Due to the typical climatic condition in Lithuania the solar photovoltaics and geothermal energy are not used for power sector. Moreover, the further development of hydropower plants is limited by environmental restrictions, therefore priority is given to wind energy development and installation of new biomass power plants. According to the requirements set out in the Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market [Official Journal L283, 33-40, 27 October 2001], 7% of gross consumption of electricity will be generated from renewable energy by 2010 in Lithuania. The aim of this paper is to show the estimation of the maximum renewable power penetration in the Lithuanian electricity sector and possible environmental impact

  4. The Basics of Hacking and Penetration Testing Ethical Hacking and Penetration Testing Made Easy

    CERN Document Server

    Engebretson, Patrick

    2011-01-01

    The Basics of Hacking and Penetration Testing serves as an introduction to the steps required to complete a penetration test or perform an ethical hack. You learn how to properly utilize and interpret the results of modern day hacking tools; which are required to complete a penetration test. Tool coverage will include, Backtrack Linux, Google, Whois, Nmap, Nessus, Metasploit, Netcat, Netbus, and more. A simple and clean explanation of how to utilize these tools will allow you  to gain a solid understanding of each of the four phases and prepare them to take on more in-depth texts and topi

  5. SHUTTLE IMAGING RADAR: PHYSICAL CONTROLS ON SIGNAL PENETRATION AND SUBSURFACE SCATTERING IN THE EASTERN SAHARA.

    Science.gov (United States)

    Schaber, Gerald G.; McCauley, John F.; Breed, Carol S.; Olhoeft, Gary R.

    1986-01-01

    It is found that the Shuttle Imaging Radar A (SIR-A) signal penetration and subsurface backscatter within the upper meter or so of the sediment blanket in the Eastern Sahara of southern Egypt and northern Sudan are enhanced both by radar sensor parameters and by the physical and chemical characteristics of eolian and alluvial materials. The near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include 1) favorable distribution of particle sizes, 2) extremely low moisture content and 3) reduced geometric scattering at the SIR-A frequency (1. 3 GHz). The depth of signal penetration that results in a recorded backscatter, called radar imaging depth, was documented in the field to be a maximum of 1. 5 m, or 0. 25 times the calculated skin depth, for the sediment blanket. The radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials.

  6. Impacts of reserve methodology on production cost in high-penetration renewable scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, G.; Lew, D.; Hummon, M.; Ibanez, E.; Ela, E.; Hodge, B.M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-07-01

    Prior to wind and solar penetration, electric power systems were designed to handle variability in system load, uncertainty in load forecasts, and contingency events. Frequency regulations reserve typically handles high frequency (less than 5-minute time scale) variability. Contingency reserves supply energy in the case of the loss of a generator or transmission line. Wind and solar photovoltaic generation and variability to electric power system generation that must be balanced by the system operator. New ancillary service products may be necessary to minimize the cost of integrating these variable renewable generators. For example, California ISO is studying incorporating a flexible ramping product to ensure sufficient ramping capability. A flexibility reserve product could help ensure that sufficient capacity is online to handle unexpected variability in wind and solar generation. (orig.)

  7. Electrically driven hybrid photonic metamaterials for multifunctional control

    Science.gov (United States)

    Kang, Lei; Liu, Liu; Campbell, Sawyer D.; Yue, Taiwei; Ren, Qiang; Mayer, Theresa S.; Werner, Douglas H.

    2017-08-01

    The unique light-matter interaction in metamaterials, a type of artificial medium in which the geometrical features of subunits dominate their optical responses, have been utilized to achieve exotic material properties that are rare or nonexistent in natural materials. Furthermore, to extend their behaviors, active materials have been introduced into metamaterial systems to advance tunability, switchability and nonlinearity. Nevertheless, practical examples of versatile photonic metamaterials remain exceedingly rare for two main reasons. On the one hand, in sharp contrast to the broad material options available at lower frequencies, it is less common to find active media in the optical regime that can provide pronounced dielectric property changes under external stimuli, such as electric and magnetic fields. Vanadium dioxide (VO2), offering a large refractive index variation over a broad frequency range due to its near room temperature insulator-to-metal transition (IMT), has been favored in recent studies on tunable metamaterials. On the other hand, it turns out that regulating responses of hybrid metamaterials to external forces in an integrated manner is not a straightforward task. Recently, metamaterial-enabled devices (i.e., metadevices) with `self-sufficient' or `self-contained' electrical and optical properties have enabled complex functionalities. Here, we present a design methodology along with the associated experimental validation of a VO2 thin film integrated optical metamaterial absorber as a hybrid photonic platform for electrically driven multifunctional control, including reflectance switching, a rewritable memory process and manageable localized camouflage. The nanoengineered topologically continuous metal structure simultaneously supports the optical resonance and electrical functionality that actuates the phase transition in VO2 through the process of Joule heating. This work provides a universal approach to creating self-sufficient and highly-versatile

  8. Low Force Penetration of Icy Regolith

    Science.gov (United States)

    Mantovani, J. G.; Galloway, G. M.; Zacny, K.

    2016-01-01

    A percussive cone penetrometer measures the strength of granular material by using percussion to deliver mechanical energy into the material. A percussive cone penetrometer was used in this study to penetrate a regolith ice mixture by breaking up ice and decompacting the regolith. As compared to a static cone penetrometer, percussion allows low reaction forces to push a penetrometer probe tip more easily into dry regolith in a low gravity environment from a planetary surface rover or a landed spacecraft. A percussive cone penetrates icy regolith at ice concentrations that a static cone cannot penetrate. In this study, the percussive penetrator was able to penetrate material under 65 N of down-force which could not be penetrated using a static cone under full body weight. This paper discusses using a percussive cone penetrometer to discern changes in the concentration of water-ice in a mixture of lunar regolith simulant and ice to a depth of one meter. The rate of penetration was found to be a function of the ice content and was not significantly affected by the down-force. The test results demonstrate that this method may be ideal for a small platform in a reduced gravity environment. However, there are some cases where the system may not be able to penetrate the icy regolith, and there is some risk of the probe tip becoming stuck so that it cannot be retracted. It is also shown that a percussive cone penetrometer could be used to prospect for water ice in regolith at concentrations as high as 8 by weight.

  9. A Review of Electric Vehicle Lifecycle Emissions and Policy Recommendations to Increase EV Penetration in India

    Directory of Open Access Journals (Sweden)

    Rachana Vidhi

    2018-02-01

    Full Text Available Electric vehicles reduce pollution only if a high percentage of the electricity mix comes from renewable sources and if the battery manufacturing takes place at a site far from the vehicle use region. Industries developed due to increased electric vehicle adoption may also cause additional air pollution. The Indian government has committed to solving New Delhi’s air pollution issues through an ambitious policy of switching 100% of the light duty consumer vehicles to electric vehicles by 2030. This policy is based on vehicle grid interaction and relies on shared mobility through the electric vehicle fleet. There are several human behavioral changes necessary to achieve 100% adoption of electric vehicles. This paper reviews different steps in the lifecycle of an electric vehicle (EV, their impact on environmental emissions, and recommends policies suitable for different socio-economic group that are relevant to the Indian market. To reduce air pollution through adoption of electric vehicles, the Indian government needs to adopt policies that increase sale of electric vehicles, increase percentage of renewable energy in the electricity mix, and prevent air pollution caused from battery manufacturing. The recommended policies can be customized for any market globally for reducing air pollution through increased adoption of electric vehicles.

  10. Field penetration induced charge redistribution effects on the field emission properties of carbon nanotubes - a first-principle study

    International Nuclear Information System (INIS)

    Chen, C.-W.; Lee, M.-H.; Clark, S.J.

    2004-01-01

    The effect of field penetration induced charge redistribution on the field emission properties of carbon nanotubes (CNTs) have been studied by the first-principle calculations. It is found that the carbon nanotube becomes polarized under external electric field leading to a charge redistribution. The resulting band bending induced by field penetration into the nanotube tip surface can further reduce the effective workfunction of the carbon nanotubes. The magnitude of the redistributed charge ΔQ is found to be nearly linear to the applied external field strength. In addition, we found that the capped (9, 0) zigzag nanotube demonstrates better field emission properties than the capped (5, 5) armchair nanotube due to the fact that the charge redistribution of π electrons along the zigzag-like tube axis is easier than for the armchair-like tube. The density of states (DOS) of the capped region of the nanotube is found to be enhanced with a value 30% higher than that of the sidewall part for the capped (5, 5) nanotube and 40% for the capped (9, 0) nanotube under an electric field of 0.33 V/A. Such enhancements of the DOS at the carbon nanotube tip show that electrons near the Fermi level will emit more easily due to the change of the surface band structure resulting from the field penetration in a high field

  11. Imidazolide monolayers for versatile reactive microcontact printing

    NARCIS (Netherlands)

    Hsu, S.H.; Reinhoudt, David; Huskens, Jurriaan; Velders, Aldrik

    2008-01-01

    Imidazolide monolayers prepared from the reaction of amino SAMs with N,N-carbonyldiimidazole (CDI) are used as a versatile platform for surface patterning with amino-, carboxyl- and alcohol-containing compounds through reactive microcontact printing (µCP). To demonstrate the surface reactivity of

  12. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  13. Long-rod penetration: the transition zone between rigid and hydrodynamic penetration modes

    Directory of Open Access Journals (Sweden)

    Jian-feng Lou

    2014-06-01

    Full Text Available Long-rod penetration in a wide range of velocity means that the initial impact velocity varies in a range from tens of meters per second to several kilometers per second. The long rods maintain rigid state when the impact velocity is low, the nose of rod deforms and even is blunted when the velocity gets higher, and the nose erodes and fails to lead to the consumption of long projectile when the velocity is very high due to instantaneous high pressure. That is, from low velocity to high velocity, the projectile undergoes rigid rods, deforming non-erosive rods, and erosive rods. Because of the complicated changes of the projectile, no well-established theoretical model and numerical simulation have been used to study the transition zone. Based on the analysis of penetration behavior in the transition zone, a phenomenological model to describe target resistance and a formula to calculate penetration depth in transition zone are proposed, and a method to obtain the boundary velocity of transition zone is determined. A combined theoretical analysis model for three response regions is built by analyzing the characteristics in these regions. The penetration depth predicted by this combined model is in good agreement with experimental result.

  14. Plutonium in depleted uranium penetrators

    International Nuclear Information System (INIS)

    McLaughlin, J.P.; Leon-Vintro, L.; Smith, K.; Mitchell, P.I.; Zunic, Z.S.

    2002-01-01

    Depleted Uranium (DU) penetrators used in the recent Balkan conflicts have been found to be contaminated with trace amounts of transuranic materials such as plutonium. This contamination is usually a consequence of DU fabrication being carried out in facilities also using uranium recycled from spent military and civilian nuclear reactor fuel. Specific activities of 239+240 Plutonium generally in the range 1 to 12 Bq/kg have been found to be present in DU penetrators recovered from the attack sites of the 1999 NATO bombardment of Kosovo. A DU penetrator recovered from a May 1999 attack site at Bratoselce in southern Serbia and analysed by University College Dublin was found to contain 43.7 +/- 1.9 Bq/kg of 239+240 Plutonium. This analysis is described. An account is also given of the general population radiation dose implications arising from both the DU itself and from the presence of plutonium in the penetrators. According to current dosimetric models, in all scenarios considered likely ,the dose from the plutonium is estimated to be much smaller than that due to the uranium isotopes present in the penetrators. (author)

  15. Relative Economic Merits of Storage and Combustion Turbines for Meeting Peak Capacity Requirements under Increased Penetration of Solar Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Diakov, Victor [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Batteries with several hours of capacity provide an alternative to combustion turbines for meeting peak capacity requirements. Even when compared to state-of-the-art highly flexible combustion turbines, batteries can provide a greater operational value, which is reflected in a lower system-wide production cost. By shifting load and providing operating reserves, batteries can reduce the cost of operating the power system to a traditional electric utility. This added value means that, depending on battery life, batteries can have a higher cost than a combustion turbine of equal capacity and still produce a system with equal or lower overall life-cycle cost. For a utility considering investing in new capacity, the cost premium for batteries is highly sensitive to a variety of factors, including lifetime, natural gas costs, PV penetration, and grid generation mix. In addition, as PV penetration increases, the net electricity demand profile changes, which may reduce the amount of battery energy capacity needed to reliably meet peak demand.

  16. Perspective on electricity demand beyond 2010

    International Nuclear Information System (INIS)

    Appert, O.

    2000-01-01

    Electricity demand has been the fastest growing form of energy use in the OECD for several decades. Historically there have been strong links between national income (gross domestic product), prices and electricity use. If the trends of the past continue, the annual growth rate of electricity demand to 2020 could reach 2% in the OECD and over 4% in developing countries. Although electricity demand is expected to continue the trend of strong growth in the OECD and also in other regions of the world over the coming decades, there is some question in developed countries of the extent to which electricity demand will be moderated by '' saturation ''. That is, will demand growth level off as electricity completes its penetration into most potential applications and equipment becomes more energy efficient? Will commitments to reduce emissions of conventional airborne pollutants and carbon dioxide increase the cost of electricity generation and slow electricity's demand growth? Or, working in the opposite direction, will new end-uses continue to drive electricity's increasing share of final energy consumption? Will lower prices due to electricity market reform have an impact? This paper explores these issues and provides insights in the likely trends in these areas. (author)

  17. Requirement analysis for autonomous systems and intelligent agents in future Danish electric power systems

    DEFF Research Database (Denmark)

    Saleem, Arshad; Lind, Morten

    2010-01-01

    we review innovative control architectures in electric power systems such as Microgrids, Virtual power plants and Cell based systems. We evaluate application of autonomous systems and intelligent agents in each of these control architectures particularly in the context of Denmark's strategic energy...... plans. The second part formulates a flexible control architecture for electric power systems with very high penetration of distributed generation. This control architecture is based upon the requirements identified in the first part. We also present development of a software framework to test......Denmark has already achieved a record of 20% penetration of wind power and now moving towards even higher targets with an increasing part of the electricity produced by distributed generators (DGs). In this paper we report work from a sub activity "subgrid design" of the EcoGrid.dk project. First...

  18. Ethical Dilemmas and Dimensions in Penetration Testing

    OpenAIRE

    Faily, Shamal; McAlaney, John; Iacob, C.

    2015-01-01

    Penetration testers are required to attack systems to evaluate their security, but without engaging in unethical behaviour while doing so. Despite work on hacker values and studies into security practice, there is little literature devoted to the ethical pressures associated with penetration testing. This paper presents several ethical dilemmas and dimensions associated with penetration testing;\\ud these shed light on the ethical positions taken by Penetration testers, and help identify poten...

  19. Towards Versatile and Sustainable Hydrogen Production through Electrocatalytic Water Splitting: Electrolyte Engineering.

    Science.gov (United States)

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2017-04-10

    Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. Electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible, and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances under which the water splitting reaction is conducted, the required solution conditions, such as the identity and molarity of ions, may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate the development of efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), affect electrode stability, and/or indirectly impact the performance by influencing the concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Leak preventing method and device for penetration portion in reactor container

    International Nuclear Information System (INIS)

    Sato, Mitsuyoshi.

    1995-01-01

    A pressurized air is sent to a leak path caused in an electric wire penetration portion on the side of a reactor container to keep the pressure thereof higher than that at the inside of the reactor container, or aerosol is injected to close the leak path. Alternatively, a cooling tube is disposed for cooling a sleeve, or a resin charging device is disposed for injecting a thermosetting resin to close the leak path, and an external power operated compressor is disposed for sending a pressurized air to the resin charging device. Then, pressure is applied in the opposite direction from a pressurizing port so as to provide a higher pressure than the inside of the reactor container by the compressor upon occurrence of an accident. In addition, the sleeve is cooled so as to suppress the less leak path in the wire penetration portion. Further, the leak path is closed by the aerosol or the thermosetting resin, which is quite effective also in view of improvement of the reliability of the reactor container. (N.H.)

  1. MOSFET Electric-Charge Sensor

    Science.gov (United States)

    Robinson, Paul A., Jr.

    1988-01-01

    Charged-particle probe compact and consumes little power. Proposed modification enables metal oxide/semiconductor field-effect transistor (MOSFET) to act as detector of static electric charges or energetic charged particles. Thickened gate insulation acts as control structure. During measurements metal gate allowed to "float" to potential of charge accumulated in insulation. Stack of modified MOSFET'S constitutes detector of energetic charged particles. Each gate "floats" to potential induced by charged-particle beam penetrating its layer.

  2. True-slime-mould-inspired hydrostatically coupled oscillator system exhibiting versatile behaviours

    International Nuclear Information System (INIS)

    Umedachi, Takuya; Ito, Kentaro; Idei, Ryo; Ishiguro, Akio

    2013-01-01

    Behavioural diversity is an indispensable attribute of living systems, which makes them intrinsically adaptive and responsive to the demands of a dynamically changing environment. In contrast, conventional engineering approaches struggle to suppress behavioural diversity in artificial systems to reach optimal performance in given environments for desired tasks. The goals of this research include understanding the essential mechanism that endows living systems with behavioural diversity and implementing the mechanism in robots to exhibit adaptive behaviours. For this purpose, we have focused on an amoeba-like unicellular organism: the plasmodium of true slime mould. Despite the absence of a central nervous system, the plasmodium exhibits versatile spatiotemporal oscillatory patterns and switches spontaneously among these patterns. By exploiting this behavioural diversity, it is able to exhibit adaptive behaviour according to the situation encountered. Inspired by this organism, we built a real physical robot using hydrostatically coupled oscillators that produce versatile oscillatory patterns and spontaneous transitions among the patterns. The experimental results show that exploiting physical hydrostatic interplay—the physical dynamics of the robot—allows simple phase oscillators to promote versatile behaviours. The results can contribute to an understanding of how a living system generates versatile and adaptive behaviours with physical interplays among body parts. (paper)

  3. Retaining the Value of PV at High Penetration Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah; Bolen, Michael

    2017-01-19

    PV prices have dropped and are now attractive without incentives for peaking applications in some locations. Modeling suggests and, empirically, some regions demonstrate that as PV penetration increases its value decreases, predominantly due to a decrease in energy and capacity value. It is not apparent what technologies and price may be needed for PV to supply tens of percent of electricity in the most economically efficient manner. A 1-day workshop was co-sponsored by EPRI and NREL with support from ASU. A dozen presentations and discussions introduced how the interplay of various technologies impact the value of PV, identified technical challenges and gaps impeding implementation, and discussed future R&D needs and opportunities.

  4. Assessment and Methods for Supply-Following Loads in Modern Electricity Grids with Deep Renewables Penetration

    Science.gov (United States)

    2013-12-18

    today. Following the course of this trend, grids with deep renewables penetration present a CHAPTER 1. INTRODUCTION 2 family of new challenges and...maps the demand curve. Coal is operated as an intermediate resource, turned on for the course of the day, but turned off at night; this represents a...Internet access and a data storage entity, recording data samples into a MySQL database. Having all of the sensors on a network was important for

  5. System Architecture Design for Electric Vehicle (EV) Systems

    DEFF Research Database (Denmark)

    Xu, Zhao; Wu, Qiuwei; Nielsen, Arne Hejde

    2010-01-01

    The electric vehicle (EV) system should fulfill the energy needs of EVs to meet the EV users’ driving requirements and enable the system service from EVs to support the power system operation with high penetration of renewable energy resources (RES) by providing necessary infrastructures. In orde...

  6. Voltage Support from Electric Vehicles in Distribution Grid

    DEFF Research Database (Denmark)

    Huang, Shaojun; Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2013-01-01

    The paper evaluates the voltage support functions from electric vehicles (EVs) on a typical Danish distribution grid with high EV penetration. In addition to the popular voltage control modes, such as voltage droop charging (low voltage level leads to low charging power) and reactive power support...

  7. Guinea Pigs: Versatile Animals for the Classroom

    Science.gov (United States)

    Barman, Charles R.

    1977-01-01

    Guinea pigs are presented as versatile classroom animals. Suggestions for animal behavior and genetics studies are given. Also included is information concerning sex determination and the breeding of guinea pigs, and hints on keeping these animals in the classroom. References and illustrations complete the article. (MA)

  8. Impacts of plug-in electric vehicles in a balancing area

    International Nuclear Information System (INIS)

    Razeghi, Ghazal; Samuelsen, Scott

    2016-01-01

    Highlights: • Unit commitment methodology is used to determine BEV impact on electricity market. • Roles of charging profile, dispatch strategy and interconnecting area are assessed. • Results show that impact of BEV on cost of electricity generation is small. • Controlled BEV charging can lower emissions intensity of the grid and MCP. • BEV deployment helps reduce overall criteria pollutant emissions. - Abstract: High contributions of the electricity generation and transportation sectors to criteria pollutant and greenhouse gas emissions have resulted in an increased interest and shift towards low to non-carbon generation options such as renewable wind and solar, and alternative transportation options including plug-in electric vehicles. Since plug-in electric vehicles transfer the tailpipe emissions to the electric grid, it is important to study the interaction between the two sectors. In this paper, a previously developed spatially and temporally resolved unit commitment model is used to determine the dispatch schedule of resources with and without battery electric vehicles for 2050 in a fictitious balancing area located within the South Coast Air Basin of California. Cases studied include various charging profiles, penetration in light-duty fleet, imports mix, and grid dispatch strategies. Results of the analysis include average cost of electricity production, market clearing price, temporal production of individual generators, and emissions from electricity generation and the transportation sectors. The results show that deploying battery electric vehicles (1) has little impact on the average cost of electricity generation-maximum of $2.5 per MW h for the cases studied with 40% penetration in the light-duty fleet, (2) reduces the overall criteria pollutant emissions except for one case, and (3) results in a smoother load profile, reduces the use of peaking units, and reduces the average emission intensity of the grid through controlled off

  9. Skull penetrating wound

    International Nuclear Information System (INIS)

    Gonzalez Orlandi, Yvei; Junco Martin, Reinel; Rojas Manresa, Jorge; Duboy Limonta, Victor; Matos Herrera, Omar; Saez Corvo, Yunet

    2011-01-01

    The cranioencephalic trauma is common in the emergence centers to care for patients with multiple traumata and it becames in a health problem in many countries. Skull penetrating trauma is located in a special place due to its low frequency. In present paper a case of male patient aged 52 severely skull-injured with penetrating wound caused by a cold steel that remained introduced into the left frontotemporal region. After an imaging study the emergence surgical treatment was applied and patient evolves adequately after 25 days of hospitalization. Nowadays, she is under rehabilitation treatment due to a residual right hemiparesis.(author)

  10. Off-stream Pumped Storage Hydropower plant to increase renewable energy penetration in Santiago Island, Cape Verde

    Science.gov (United States)

    Barreira, Inês; Gueifão, Carlos; Ferreira de Jesus, J.

    2017-04-01

    In order to reduce the high dependence on imported fuels and to meet the ongoing growth of electricity demand, Cape Verde government set the goal to increase renewable energy penetration in Santiago Island until 2020. To help maximize renewable energy penetration, an off-stream Pumped Storage Hydropower (PSH) plant will be installed in Santiago, in one of the following locations: Chã Gonçalves, Mato Sancho and Ribeira dos Picos. This paper summarizes the studies carried out to find the optimal location and connection point of the PSH plant in Santiago’s electricity network. This goal was achieved by assessing the impact of the PSH plant, in each location, on power system stability. The simulation tool PSS/E of Siemens was used to study the steady-state and dynamic behavior of the future (2020) Santiago MV grid. Different scenarios of demand and renewable resources were created. Each hydro unit of the PSH plant was modeled as an adjustable speed reversible turbine employing a DFIM. The results show that Santiago’s grid with the PSH plant in Chã Gonçalves is the one that has the best performance.

  11. Potential impacts of electric vehicles on air quality in Taiwan.

    Science.gov (United States)

    Li, Nan; Chen, Jen-Ping; Tsai, I-Chun; He, Qingyang; Chi, Szu-Yu; Lin, Yi-Chiu; Fu, Tzung-May

    2016-10-01

    The prospective impacts of electric vehicle (EV) penetration on the air quality in Taiwan were evaluated using an air quality model with the assumption of an ambitious replacement of current light-duty vehicles under different power generation scenarios. With full EV penetration (i.e., the replacement of all light-duty vehicles), CO, VOCs, NOx and PM2.5 emissions in Taiwan from a fleet of 20.6 million vehicles would be reduced by 1500, 165, 33.9 and 7.2Ggyr(-1), respectively, while electric sector NOx and SO2 emissions would be increased by up to 20.3 and 12.9Ggyr(-1), respectively, if the electricity to power EVs were provided by thermal power plants. The net impacts of these emission changes would be to reduce the annual mean surface concentrations of CO, VOCs, NOx and PM2.5 by about 260, 11.3, 3.3ppb and 2.1μgm(-3), respectively, but to increase SO2 by 0.1ppb. Larger reductions tend to occur at time and place of higher ambient concentrations and during high pollution events. Greater benefits would clearly be attained if clean energy sources were fully encouraged. EV penetration would also reduce the mean peak-time surface O3 concentrations by up to 7ppb across Taiwan with the exception of the center of metropolitan Taipei where the concentration increased by <2ppb. Furthermore, full EV penetration would reduce annual days of O3 pollution episodes by ~40% and PM2.5 pollution episodes by 6-10%. Our findings offer important insights into the air quality impacts of EV and can provide useful information for potential mitigation actions. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The impact of demand side management strategies in the penetration of renewable electricity

    International Nuclear Information System (INIS)

    Pina, André; Silva, Carlos; Ferrão, Paulo

    2012-01-01

    High fuel costs, increasing energy security and concerns with reducing emissions have pushed governments to invest in the use of renewable energies for electricity generation. However, the intermittence of most renewable resources when renewable energy provides a significant share of the energy mix can create problems to electricity grids, which can be minimized by energy storage systems that are usually not available or expensive. An alternative solution consists on the use of demand side management strategies, which can have the double effect of reducing electricity consumption and allowing greater efficiency and flexibility in the grid management, namely by enabling a better match between supply and demand. This work analyzes the impact of demand side management strategies in the evolution of the electricity mix of Flores Island in the Azores archipelago which is characterized by high shares of renewable energy and therefore the introduction of more renewable energy sources makes it an interesting case study for testing innovative solutions. The electricity generation system is modeled in TIMES, a software which optimizes the investment and operation of wind and hydro plants until 2020 based on scenarios for demand growth, deployment of demand response technologies in the domestic sector and promotion of behavioral changes to eliminate standby power. The results show that demand side management strategies can lead to a significant delay in the investment on new generation capacity from renewable resources and improve the operation of the existing installed capacity. -- Highlights: ► Energy efficiency can help reduce the need for investment in more renewable energy. ► Dynamic demand helps increase the use of renewable energy in low demand periods. ► Around 40% of total consumption by domestic appliances is used as dynamic demand. ► The load of domestic appliances is mainly shifted to the 5:00 to 9:00 period.

  13. Penetration length-dependent hot electrons in the field emission from ZnO nanowires

    Science.gov (United States)

    Chen, Yicong; Song, Xiaomeng; Li, Zhibing; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-01-01

    In the framework of field emission, whether or not hot electrons can form in the semiconductor emitters under a surface penetration field is of great concern, which will provide not only a comprehensive physical picture of field emission from semiconductor but also guidance on how to improve device performance. However, apart from some theoretical work, its experimental evidence has not been reported yet. In this article, the field penetration length-dependent hot electrons were observed in the field emission of ZnO nanowires through the in-situ study of its electrical and field emission characteristic before and after NH3 plasma treatment in an ultrahigh vacuum system. After the treatment, most of the nanowires have an increased carrier density but reduced field emission current. The raised carrier density was caused by the increased content of oxygen vacancies, while the degraded field emission current was attributed to the lower kinetic energy of hot electrons caused by the shorter penetration length. All of these results suggest that the field emission properties of ZnO nanowires can be optimized by modifying their carrier density to balance both the kinetic energy of field induced hot electrons and the limitation of saturated current under a given field.

  14. EHV systems technology - A look at the principles and current status. [Electric and Hybrid Vehicle

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1983-01-01

    An examination of the basic principles and practices of systems engineering is undertaken in the context of their application to the component and subsystem technologies involved in electric and hybrid vehicle (EHV) development. The limitations of purely electric vehicles are contrasted with hybrid, heat engine-incorporating vehicle technology, which is inherently more versatile. A hybrid vehicle concept assessment methodology is presented which employs current technology and yet fully satisfies U.S. Department of Energy petroleum displacement goals.

  15. Life Cycle Assessment of Electricity Systems

    DEFF Research Database (Denmark)

    Turconi, Roberto

    and discussed. For example, electricity used during the manufacturing of the power plant, reference year and data collection approach (process-chain or input-output analysis) strongly affected the impacts of hydro, wind and solar power. This information needs to be documented, to ensure comparability between......), as the efficiency may vary depending on the operation of the plant within the power system. The choice of LCA approach used to solve multi-functionality for combined heat and power plants strongly influenced how the environmental impact of electricity produced at such plants was estimated. When it is not possible...... on aggregated modelling. The results showed that an increase in wind power causes greater emissions from other power plants in the electricity system (which need to ‘cycle’ – adjust their production – more frequently); however, considering the entire electricity system, increasing wind power penetration reduces...

  16. The significance of interconnector counter-trading in a security constrained electricity market

    International Nuclear Information System (INIS)

    Higgins, P.; Li, K.; Devlin, J.; Foley, A.M.

    2015-01-01

    Throughout the European Union there is an increasing amount of wind generation being dispatched-down due to the binding of power system operating constraints from high levels of wind generation. This paper examines the impact a system non-synchronous penetration limit has on the dispatch-down of wind and quantifies the significance of interconnector counter-trading to the priority dispatching of wind power. A fully coupled economic dispatch and security constrained unit commitment model of the Single Electricity Market of the Republic of Ireland and Northern Ireland and the British Electricity Trading and Transmission Arrangement was used in this study. The key finding was interconnector counter-trading reduces the impact the system non-synchronous penetration limit has on the dispatch-down of wind. The capability to counter-trade on the interconnectors and an increase in system non-synchronous penetration limit from 50% to 55% reduces the dispatch-down of wind by 311 GW h and decreases total electricity payments to the consumer by €1.72/MW h. In terms of the European Union electricity market integration, the results show the importance of developing individual electricity markets that allow system operators to counter-trade on interconnectors to ensure the priority dispatch of the increasing levels of wind generation. - Highlights: • Interconnector counter-trading reduces the system marginal price in the SEM. • Dispatch-down of wind power is reduced due to interconnector counter-trading. • A 5% increase in the SNSP limit can reduce wind power dispatched-down by 50%. • An increase in the SNSP limit and installed wind capacity reduces the SMP.

  17. MDCT diagnosis of penetrating diaphragm injury

    Energy Technology Data Exchange (ETDEWEB)

    Bodanapally, Uttam K.; Shanmuganathan, Kathirkamanathan; Mirvis, Stuart E.; Sliker, Clint W.; Fleiter, Thorsten R.; Sarada, Kamal; Miller, Lisa A. [University of Maryland School of Medicine, Department of Diagnostic Radiology, Baltimore, MD (United States); Stein, Deborah M. [University of Maryland, Department of Surgery, Shock Trauma Center, Baltimore, MD (United States); Alexander, Melvin [National Study Center for Trauma and Emergency Medical Systems, Baltimore, MD (United States)

    2009-08-15

    The purpose of the study was to determine the diagnostic sensitivity and specificity of multidetector CT (MDCT) in detection of diaphragmatic injury following penetrating trauma. Chest and abdominal CT examinations performed preoperatively in 136 patients after penetrating trauma to the torso with injury trajectory in close proximity to the diaphragm were reviewed by radiologists unaware of surgical findings. Signs associated with diaphragmatic injuries in penetrating trauma were noted. These signs were correlated with surgical diagnoses, and their sensitivity and specificity in assisting the diagnosis were calculated. CT confirmed diaphragmatic injury in 41 of 47 injuries (sensitivity, 87.2%), and an intact diaphragm in 71 of 98 patients (specificity, 72.4%). The overall accuracy of MDCT was 77%. The most accurate sign helping the diagnosis was contiguous injury on either side of the diaphragm in single-entry penetrating trauma (sensitivity, 88%; specificity, 82%). Thus MDCT has high sensitivity and good specificity in detecting penetrating diaphragmatic injuries. (orig.)

  18. MDCT diagnosis of penetrating diaphragm injury

    International Nuclear Information System (INIS)

    Bodanapally, Uttam K.; Shanmuganathan, Kathirkamanathan; Mirvis, Stuart E.; Sliker, Clint W.; Fleiter, Thorsten R.; Sarada, Kamal; Miller, Lisa A.; Stein, Deborah M.; Alexander, Melvin

    2009-01-01

    The purpose of the study was to determine the diagnostic sensitivity and specificity of multidetector CT (MDCT) in detection of diaphragmatic injury following penetrating trauma. Chest and abdominal CT examinations performed preoperatively in 136 patients after penetrating trauma to the torso with injury trajectory in close proximity to the diaphragm were reviewed by radiologists unaware of surgical findings. Signs associated with diaphragmatic injuries in penetrating trauma were noted. These signs were correlated with surgical diagnoses, and their sensitivity and specificity in assisting the diagnosis were calculated. CT confirmed diaphragmatic injury in 41 of 47 injuries (sensitivity, 87.2%), and an intact diaphragm in 71 of 98 patients (specificity, 72.4%). The overall accuracy of MDCT was 77%. The most accurate sign helping the diagnosis was contiguous injury on either side of the diaphragm in single-entry penetrating trauma (sensitivity, 88%; specificity, 82%). Thus MDCT has high sensitivity and good specificity in detecting penetrating diaphragmatic injuries. (orig.)

  19. Particle-in-cell simulations of fast magnetic field penetration into plasmas due to the Hall electric field

    International Nuclear Information System (INIS)

    Swanekamp, S.B.; Grossmann, J.M.; Fruchtman, A.; Oliver, B.V.; Ottinger, P.F.

    1996-01-01

    Particle-in-cell (PIC) simulations are used to study the penetration of magnetic field into plasmas in the electron-magnetohydrodynamic (EMHD) regime. These simulations represent the first definitive verification of EMHD with a PIC code. When ions are immobile, the PIC results reproduce many aspects of fluid treatments of the problem. However, the PIC results show a speed of penetration that is between 10% and 50% slower than predicted by one-dimensional fluid treatments. In addition, the PIC simulations show the formation of vortices in the electron flow behind the EMHD shock front. The size of these vortices is on the order of the collisionless electron skin depth and is closely coupled to the effects of electron inertia. An energy analysis shows that one-half the energy entering the plasma is stored as magnetic field energy while the other half is shared between internal plasma energy (thermal motion and electron vortices) and electron kinetic energy loss from the volume to the boundaries. The amount of internal plasma energy saturates after an initial transient phase so that late in time the rate that magnetic energy increases in the plasma is the same as the rate at which kinetic energy flows out through the boundaries. When ions are mobile it is observed that axial magnetic field penetration is followed by localized thinning in the ion density. The density thinning is produced by the large electrostatic fields that exist inside the electron vortices which act to reduce the space-charge imbalance necessary to support the vortices. This mechanism may play a role during the opening process of a plasma opening switch. copyright 1996 American Institute of Physics

  20. FAA Fluorescent Penetrant Laboratory Inspections

    Energy Technology Data Exchange (ETDEWEB)

    WINDES,CONNOR L.; MOORE,DAVID G.

    2000-08-02

    The Federal Aviation Administration Airworthiness Assurance NDI Validation Center currently assesses the capability of various non-destructive inspection (NDI) methods used for analyzing aircraft components. The focus of one such exercise is to evaluate the sensitivity of fluorescent liquid penetrant inspection. A baseline procedure using the water-washable fluorescent penetrant method defines a foundation for comparing the brightness of low cycle fatigue cracks in titanium test panels. The analysis of deviations in the baseline procedure will determine an acceptable range of operation for the steps in the inspection process. The data also gives insight into the depth of each crack and which step(s) of the inspection process most affect penetrant sensitivities. A set of six low cycle fatigue cracks produced in 6.35-mm thick Ti-6Al-4V specimens was used to conduct the experiments to produce sensitivity data. The results will document the consistency of the crack readings and compare previous experiments to find the best parameters for water-washable penetrant.

  1. Multilayer network decoding versatility and trust

    Science.gov (United States)

    Sarkar, Camellia; Yadav, Alok; Jalan, Sarika

    2016-01-01

    In the recent years, the multilayer networks have increasingly been realized as a more realistic framework to understand emergent physical phenomena in complex real-world systems. We analyze massive time-varying social data drawn from the largest film industry of the world under a multilayer network framework. The framework enables us to evaluate the versatility of actors, which turns out to be an intrinsic property of lead actors. Versatility in dimers suggests that working with different types of nodes are more beneficial than with similar ones. However, the triangles yield a different relation between type of co-actor and the success of lead nodes indicating the importance of higher-order motifs in understanding the properties of the underlying system. Furthermore, despite the degree-degree correlations of entire networks being neutral, multilayering picks up different values of correlation indicating positive connotations like trust, in the recent years. The analysis of weak ties of the industry uncovers nodes from a lower-degree regime being important in linking Bollywood clusters. The framework and the tools used herein may be used for unraveling the complexity of other real-world systems.

  2. Penetrating performance and “self-sharpening” behavior of fine-grained tungsten heavy alloy rod penetrators

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Rongmei, E-mail: luorm_1999@126.com [School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); College of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning (China); Huang, Dewu; Yang, Mingchuan; Tang, Enling; Wang, Meng; He, Liping [College of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning (China)

    2016-10-15

    Rod penetrators with 95W–3.75Ni–1.25Fe fine-grained tungsten heavy alloy (fine-grained 95W) and conventional tungsten heavy alloy rod penetrators with the same chemical composition (conventional 95W) were subjected to ballistic impact to compare their penetration performance. “Self-sharpening” behavior and an average 10.5% increase in penetration depth compared to conventional 95W penetrators. An acute head remained on the fine-grained 95W rod with SEM results revealing many micro-cracks and small debris on surface layer of the rod head. The stress-strain curves collected in the Split Hopkinson Pressure Bar (SHPB) experiment showed that critical failure strain values of the fine-grained 95W were 0.12 and 0.39 at strain rate of 2×10{sup 3} s{sup −1} and 3.9×10{sup 3} s{sup −1}, respectively, approximately 40% and 10% lower than those of the conventional 95W. The dynamic strength values of fine-grained 95W were 2100 MPa and 2520 MPa, respectively, which were 500 MPa and 520 MPa higher than those of the conventional 95W. The relationship among microstructure, mechanical property and “self-sharpening” behavior of fine-grained 95W is discussed in this work.

  3. Electricity generation: a case study in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, K.

    1999-01-01

    Large-scale electricity generation provides versatile energy of the highest quality. Today, fossil fuels such as coal, oil, and natural gas are the primary sources of this energy. However, these fossil energy sources are limited and using fossil energy sources has the undesirable effect of releasing emissions that burden the environment and alter the climate. Therefore, governments and companies all over the world should find new and renewable energy sources. On the other hand, over the past two decades, power station construction programs in the developing countries accounted for nearly 30% of total public investment. In a large number of these countries, shortages of electricity have become a critical constraint to economic growth. In Turkey, from 1980 to 1995, the amount for electricity generated increased about fourfold from 23,275 Gwh to 86,247 Gwh, and annual growth rates were in the double digits. This is a good development, but not enough for Turkey. (author)

  4. Operating methods to remove the excess of penetrant in surface. Preponderant and characteristic part of water for water washable penetrants

    International Nuclear Information System (INIS)

    Dubosc, P.

    1985-01-01

    Penetrant use for quality control, although very well known (nuclear, space industries, offshore platforms) is often poorly practiced. This is largely due to a lack of understanding by the users the way that the different components of the system (penetrants, solvents, emulsifiers, and developers) function. In this talk, we shall explain a particular characteristic that the manufacturers of reputable penetrant seek to build into their water washable penetrants. It is a viscosity curve which has the function of keeping water in a well defined form. We show why the form of the curve is crucial, which reaction between water and penetrant it corresponds to, and we deduce the practical consequences of bringing into play procedures for removing excess penetrant with or without water [fr

  5. Connecting Leadership and Learning: Do Versatile Learners make Connective Leaders?

    Directory of Open Access Journals (Sweden)

    Jill L. Robinson

    2016-03-01

    Full Text Available Abstract Recent failures in leadership, suggest that creating better-quality leadership development programs is critical. In moving from theory to practice, this paper examined the relationship between learning style and leadership style which may enable us to move away from one-size-fits-all leadership development programs. Utilizing Kolb’s Experiential Learning Model and Connective Leadership theory, approximately 3600 college students were analyzed to discover whether versatility in learning styles translates into versatility in leadership styles. One group of versatile learners reported using a wider range of leadership styles suggesting that learning flexibility may transfer to leadership flexibility. Surprisingly, learners of all types reported utilizing Power and Intrinsic styles of leadership above all others. Implications for leadership development include considering individual differences when crafting leadership programs, matching learning styles to leader training, and the need to move beyond one set of leadership behaviors to increase flexibility in dealing with complex situations. Using a large sample rarely seen in management studies, this paper makes key contributions to the literature. 

  6. Equatorial ionospheric electric fields during the November 2004 magnetic storm

    OpenAIRE

    Fejer, Bela G.; Jensen, J. W.; Kikuchi, T.; Abdu, M. A.; Chau, J. L.

    2007-01-01

    [1] We use radar measurements from the Jicamarca Radio Observatory, magnetometer observations from the Pacific sector and ionosonde data from Brazil to study equatorial ionospheric electric fields during the November 2004 geomagnetic storm. Our data show very large eastward and westward daytime electrojet current perturbations with lifetimes of about an hour (indicative of undershielding and overshielding prompt penetration electric fields) in the Pacific equatorial region during the November...

  7. Optimal Operation of Electric Vehicles in Competitive Electricity Markets and Its Impact on Distribution Power Systems

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2011-01-01

    represent the future of electricity markets in some ways, is chosen as the studied power system in this paper. The impact of the optimal operation strategy for electric vehicles together with the optimal load response to spot market price on the distribution power system with high wind power penetrations...... are also discussed in the paper. Simulation results show that the proposed optimal operation strategy is an effective measure to achieve minimum energy costs of the PEV. The optimal operation strategy of the PEV and the optimal load response may have significant effects on the distribution power system......Since the hourly spot market price is available one day ahead in Denmark, the electricity price could be transferred to the consumers and they may make some optimal charge and discharge schedules for their electric vehicles in order to minimize their energy costs. This paper presents an optimal...

  8. Varieties of cognitive penetration in visual perception.

    Science.gov (United States)

    Vetter, Petra; Newen, Albert

    2014-07-01

    Is our perceptual experience a veridical representation of the world or is it a product of our beliefs and past experiences? Cognitive penetration describes the influence of higher level cognitive factors on perceptual experience and has been a debated topic in philosophy of mind and cognitive science. Here, we focus on visual perception, particularly early vision, and how it is affected by contextual expectations and memorized cognitive contents. We argue for cognitive penetration based on recent empirical evidence demonstrating contextual and top-down influences on early visual processes. On the basis of a perceptual model, we propose different types of cognitive penetration depending on the processing level on which the penetration happens and depending on where the penetrating influence comes from. Our proposal has two consequences: (1) the traditional controversy on whether cognitive penetration occurs or not is ill posed, and (2) a clear-cut perception-cognition boundary cannot be maintained. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Frequency-Control Reserves and Voltage Support from Electric Vehicles

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2013-01-01

    The increasing penetration of variable wind power generation units and electricity consumption in power systems demands additional ancillary services for its reliable operation. The battery storages of electric vehicles are one of the substitute solutions for replacing conventional fossil......-fuelled generators to supply future grid support functions. The quick start and fast response characteristics of battery storages enable the electric vehicles to provide most of the power system auxiliary tasks. This chapter discusses key ancillary services that could be supplied by electric vehicles to maintain...... the system balance in power systems with high volumes of wind power generation. To analyse the applications and performance of electric vehicles in supplying active power balancing services, the case studies simulated in wind-power-dominated Danish power systems are also presented....

  10. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  11. A Study to Increase Weld Penetration in P91 Steel During TIG Welding by using Activating Fluxes

    Science.gov (United States)

    Singh, Akhilesh Kumar; Kumar, Mayank; Dey, Vidyut; Naresh Rai, Ram

    2017-08-01

    Activated Flux TIG (ATIG) welding is a unique joining process, invented at Paton Institute of electric welding in 1960. ATIG welding process is also known as flux zoned TIG (FZTIG). In this process, a thin layer of activating flux is applied along the line on the surface of the material where the welding is to be carries out. The ATIG process aids to increase the weld penetration in thick materials. Activating fluxes used in the literature show the use of oxides like TiO2, SiO2, Cr2O3, ZnO, CaO, Fe2O3, and MnO2 during welding of steels. In the present study, ATIG was carried out on P-91 steel. Though, Tungsten Inert Gas welding gives excellent quality welds, but the penetration obtained in such welding is still demanding. P91 steel which is ferritic steel is used in high temperature applications. As this steel is, generally, used in thick sections, fabrication of such structures with TIG welding is limited, due to its low depth of penetration. To increase the depth of penetration in P91while welding with ATIG, the role of various oxides were investigated. Apart from the oxides mentioned above, in the present study the role of B2O3, V2O5 and MgO, during ATIG welding of P91 was investigated. It was seen that, compared to TIG welding, there was phenomenal increase in weld penetration during ATIG welding. Amongst all the oxides used in this study, maximum penetration was achieved in case of B2O3. The measurements of weld penetration, bead width and heat affected zone of the weldings were carried out using an image analysis technique.

  12. Moessbauer Spectroscopy: Elegance and versatility in chemical diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Guetlich, Philipp; Garcia, Yann, E-mail: guetlich@uni-mainz.d [Unite de Chimie des Materiaux Inorganiques et Organiques, Departement de Chimie, Universite Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain la Neuve (Belgium)

    2010-03-01

    Dedicated to Professor Rudolf Ludwig Moessbauer on the occasion of his 80th birthday. Soon after the discovery of the recoilless nuclear resonance fluorescence by Rudolf L. Moessbauer some fifty years ago a new spectroscopic technique developed quickly on the basis of this resonance phenomenon as an excellent tool for the investigation of materials through electric and magnetic hyperfine interactions between electrons and suitable Moessbauer nu-clides. Many disciplines of solid state research have benefited from applications of the new tool for non-destructive phase analysis. Chemists in particular have recognized the information that can be derived from Moessbauer spectra regarding oxidation and spin state, molecular symmetry, bonding properties, magnetism, dynamic phenomena such as spin state switching, electronic transfer processes and other phase fluctuations to name a few. This Keynote Lecture presents highlights of chemical applications of Moessbauer spectroscopy selected from work during the past five decades which will demonstrate the elegance and versatility of the technique in the hands of (not only) chemists, but materials scientists in the broadest sense. The retrospect begins with studies in the early sixties on simple oxides and coordination compounds, where Moessbauer spectroscopy played a decisive role in solving unanswered questions, and concludes with fascinating current discoveries on the Planet Mars and most recent developments in the use of synchrotron radiation for nuclear resonance scattering (NFS, NIS).

  13. A Comparative Study on the Bidding Behavior of Pay as Bid and Uniform Price Electricity Market Players

    DEFF Research Database (Denmark)

    Haji Bashi, Mazaher; Khazraj, Hesam; Bak, Claus Leth

    2018-01-01

    High prices are expected for high demand times in the electricity markets and vice versa. The System Capacity Margin (SCM) demonstrates the abundance of electricity in the market. Naturally, higher SCM causes to lower price but, the players' behavior distortions have been frequently addressed...... in the literature. The overall producers’ bidding behaviors participating in Iran Electricity Market (IEM) as the low wind penetrated case and the Danish Electricity Market (DEM) as a high wind penetrated case are studied in this paper. An index is introduced to describe the overall market players’ behaviors....... Considering the players' behavior and using adaptive Neuro-fuzzy inference system, a model is derived. Although the total trend of prices is descending while the SCM increases, the results show some unexpected behaviors in IEM. Finally, players' biding behavior are compared in DEM and IEM. Markov transition...

  14. China’s electric vehicle subsidy scheme: Rationale and impacts

    International Nuclear Information System (INIS)

    Hao, Han; Ou, Xunmin; Du, Jiuyu; Wang, Hewu; Ouyang, Minggao

    2014-01-01

    To promote the market penetration of electric vehicles (EV), China launched the Electric Vehicle Subsidy Scheme (EVSS) in Jan 2009, followed by an update in Sep 2013, which we named phase I and phase II EVSS, respectively. In this paper, we presented the rationale of China’s two-phase EVSS and estimated their impacts on EV market penetration, with a focus on the ownership cost analysis of battery electric passenger vehicles (BEPV). Based on the ownership cost comparison of five defining BEPV models and their counterpart conventional passenger vehicle (CPV) models, we concluded that in the short term, especially before 2015, China’s EVSS is very necessary for BEPVs to be cost competitive compared with CPVs. The transition from phase I to phase II EVSS will generally reduce subsidy intensity, thus resulting in temporary rise of BEPV ownership cost. However, with the decrease of BEPV manufacturing cost, the ownership cost of BEPV is projected to decrease despite of the phase-out mechanism under phase II EVSS. In the mid term of around 2015–2020, BEPV could become less or not reliant on subsidy to maintain cost competitiveness. However, given the performance disadvantages of BEPV, especially the limited electric range, China’s current EVSS is not sufficient for the BEPV market to take off. Technology improvement associated with battery cost reduction has to play an essential role in starting up China’s BEPV market. - Highlights: • China’s phase I and phase II electric vehicle subsidy schemes were reviewed. • Major electric vehicle models in China’s vehicle market were reviewed. • The ownership costs of five defining electric passenger vehicle models were compared. • Policies to promote electric vehicle deployment in China were discussed

  15. Market Potential for Non-electric Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    Konishi, T.; Kononov, S.; Kupitz, J.; McDonald, A.; Rogner, H.H.; Nisan, S.

    2002-01-01

    The paper presents results of a recent IAEA study to assess the market potential for non-electric applications of nuclear energy in the near (before 2020) and long term (2020-2050). The applications covered are district heating, desalination, industrial heat supply, ship propulsion, energy supply for spacecraft, and, to a lesser extent, 'innovative' applications such as hydrogen production, coal gasification, etc. While technical details are covered only briefly, emphasis is placed on economics and other factors that may promote or hinder the penetration of nuclear options in the markets for non-electric energy services. The study makes a distinction between the market size (demand for a given service) and the market potential for nuclear penetration (which may be smaller because of technical or non-technical constraints). Near-term nuclear prospects are assessed on the basis of on-going projects in the final stages of design or under construction. For the long term, use has been made of a qualitative scale ranging from 0 to 2 for five critical areas: market structure, demand pressure, technical basis, economic competitiveness, and public acceptance. The paper presents the resulting evaluation of long-term prospects for nuclear energy entering into non-electric markets. (authors)

  16. Electrostatic characteristics of nanostructures investigated using electric force microscopy

    International Nuclear Information System (INIS)

    Qiu, X.H.; Qi, G.C.; Yang, Y.L.; Wang, C.

    2008-01-01

    Nanosized materials possess many interesting physical and chemical properties that differ significantly from their macroscopic counterparts. Understanding the size- and shape-dependent properties of nanostructures are of great value to rational design of nanomaterials with desired functionality. Electric force microscopy (EFM) and its variations offer unique opportunities to deepen our insights into the electrical characteristics of nanostructures. In this paper, we review recent progress of this versatile technique and its applications in studying the electrical properties of nanosized materials. A variety of important issues in EFM experimentation and theoretical modeling are discussed, with an emphasis on the ongoing efforts to improve the precision in quantitative measurements of charge density and dielectric properties of nanostructures. - Graphical abstract: We review recent progress of electric force microscopy (EFM) and its applications in studying the electrical properties of nanostructures. A variety of important issues in EFM experimentation and theoretical modeling are discussed, with an emphasis on the ongoing efforts to improve the precision in quantitative measurements of charge density and dielectric properties of nanostructures

  17. Analysis of electric vehicle impacts in New Mexico urban utility distribution infrastructure.

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, B. [Public Utility Service Company of New Mexico, Albuquerque, NM (United States); Sena, Santiago [Univ. of New Mexico, Albuquerque, NM (United States); Lavrova, Olga [Univ. of New Mexico, Albuquerque, NM (United States); Stratton, S. [Public Utility Service Company of New Mexico, Albuquerque, NM (United States); Abdollahy, S. [Univ. of New Mexico, Albuquerque, NM (United States); Hawkins, J. [Public Utility Service Company of New Mexico, Albuquerque, NM (United States)

    2013-06-16

    Modeling is going to play a crucial role for utilities as Electric Vehicle (EV) ownership percentage increases. Utilities anticipate new demand peaks due to EV charging loads, particularly at high penetration levels.

  18. Integrating High Levels of Variable Renewable Energy into Electric Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin D. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    As more variable renewable energy is integrated into electric power systems, there are a range of challenges and solutions to accommodating very high penetration levels. This presentation highlights some of the recent research in this area.

  19. Synthesis and processing of composites by reactive metal penetration

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E.; Ewsuk, K.G. [Sandia National Labs., Albuquerque, NM (United States); Tomsia, A.P. [Pask Research and Engineering, Berkeley, CA (United States)] [and others

    1997-04-01

    Achieving better performance in commercial products and processes often is dependent on availability of new and improved materials. Ceramic-metal composites have advantages over more conventional materials because of their high stiffness-to-weight ratios, good fracture toughness, and because their electrical and thermal properties can be varied through control of their compositions and microstructures. However, ceramic composites will be more widely used only when their costs are competitive with other materials and when designers have more confidence in their reliability. Over the past four years reactive metal penetration has been shown to be a promising technique for making ceramic and metal-matrix composites to near-net-shape with control of both composition and microstructure. It appears that, with sufficient development, reactive metal penetration could be an economical process for manufacturing many of the advanced ceramic composites that are needed for light-weight structural and wear applications for transportation and energy conversion devices. Near-net-shape fabrication of parts is a significant advantage because costly and energy intensive grinding and machining operations are substantially reduced, and the waste generated from such finishing operations is minimized. The most promising compositions to date consist of Al and Al{sub 2}O{sub 3}; thus, these composites should be of particular interest to the aluminum industry. The goals of this ceramic-metal composite research and development program are: (1) to identify compositions favorable for making composites by reactive metal penetration; (2) to understand the mechanism(s) by which these composites are formed; (3) to control and optimize the process so that composites and composite coatings can be made economically; and (4) to apply R&D results to problems of interest to the aluminum industry.

  20. Initial response of a rock penetrator

    International Nuclear Information System (INIS)

    Longcope, D.B.; Grady, D.E.

    1977-12-01

    An analysis based on elastic rod theory is given for the early-time axisymmetric response of pointed penetrators. Results of measurements by laser interferometry of the back surface particle velocity of laboratory scale penetrators impacted by sandstone targets are presented. Values of the initial pressure on the penetrator tip are determined which give good agreement between the analytical and experimental results. These initial tip pressures are found to be approximated by the stress-particle velocity Hugoniot for the target material

  1. A Review of Electric Vehicle Lifecycle Emissions and Policy Recommendations to Increase EV Penetration in India

    OpenAIRE

    Rachana Vidhi; Prasanna Shrivastava

    2018-01-01

    Electric vehicles reduce pollution only if a high percentage of the electricity mix comes from renewable sources and if the battery manufacturing takes place at a site far from the vehicle use region. Industries developed due to increased electric vehicle adoption may also cause additional air pollution. The Indian government has committed to solving New Delhi’s air pollution issues through an ambitious policy of switching 100% of the light duty consumer vehicles to electric vehicles by 2030....

  2. The Cost of Distribution System Upgrades to Accommodate Increasing Penetrations of Distributed Photovoltaic Systems on Real Feeders in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ding, Fei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mather, Barry A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Palmintier, Bryan S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-05

    The increasing deployment of distributed photovoltaic systems (DPV) can impact operations at the distribution level and the transmission level of the electric grid. It is important to develop and implement forward-looking approaches for calculating distribution upgrade costs that can be used to inform system planning, market and tariff design, cost allocation, and other policymaking as penetration levels of DPV increase. Using a bottom-up approach that involves iterative hosting capacity analysis, this report calculates distribution upgrade costs as a function of DPV penetration on three real feeders - two in California and one in the Northeastern United States.

  3. Electric vehicle charging algorithms for coordination of the grid and distribution transformer levels

    International Nuclear Information System (INIS)

    Ramos Muñoz, Edgar; Razeghi, Ghazal; Zhang, Li; Jabbari, Faryar

    2016-01-01

    The need to reduce greenhouse gas emissions and fossil fuel consumption has increased the popularity of plug-in electric vehicles. However, a large penetration of plug-in electric vehicles can pose challenges at the grid and local distribution levels. Various charging strategies have been proposed to address such challenges, often separately. In this paper, it is shown that, with uncoordinated charging, distribution transformers and the grid can operate under highly undesirable conditions. Next, several strategies that require modest communication efforts are proposed to mitigate the burden created by high concentrations of plug-in electric vehicles, at the grid and local levels. Existing transformer and battery electric vehicle characteristics are used along with the National Household Travel Survey to simulate various charging strategies. It is shown through the analysis of hot spot temperature and equivalent aging factor that the coordinated strategies proposed here reduce the chances of transformer failure with the addition of plug-in electric vehicle loads, even for an under-designed transformer while uncontrolled and uncoordinated plug-in electric vehicle charging results in increased risk of transformer failure. - Highlights: • Charging algorithm for battery electric vehicles, for high penetration levels. • Algorithm reduces transformer overloading, for grid level valley filling. • Computation and communication requirements are minimal. • The distributed algorithm is implemented without large scale iterations. • Hot spot temperature and loss of life for transformers are evaluated.

  4. Evaporation Limited Radial Capillary Penetration in Porous Media.

    Science.gov (United States)

    Liu, Mingchao; Wu, Jian; Gan, Yixiang; Hanaor, Dorian A H; Chen, C Q

    2016-09-27

    The capillary penetration of fluids in thin porous layers is of fundamental interest in nature and various industrial applications. When capillary flows occur in porous media, the extent of penetration is known to increase with the square root of time following the Lucas-Washburn law. In practice, volatile liquid evaporates at the surface of porous media, which restricts penetration to a limited region. In this work, on the basis of Darcy's law and mass conservation, a general theoretical model is developed for the evaporation-limited radial capillary penetration in porous media. The presented model predicts that evaporation decreases the rate of fluid penetration and limits it to a critical radius. Furthermore, we construct a unified phase diagram that describes the limited penetration in an annular porous medium, in which the boundaries of outward and inward liquid are predicted quantitatively. It is expected that the proposed theoretical model will advance the understanding of penetration dynamics in porous media and facilitate the design of engineered porous architectures.

  5. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes.

    Science.gov (United States)

    Wong, Wai-Yeung; Ho, Cheuk-Lam

    2010-09-21

    Energy remains one of the world's great challenges. Growing concerns about limited fossil fuel resources and the accumulation of CO(2) in the atmosphere from burning those fuels have stimulated tremendous academic and industrial interest. Researchers are focusing both on developing inexpensive renewable energy resources and on improving the technologies for energy conversion. Solar energy has the capacity to meet increasing global energy needs. Harvesting energy directly from sunlight using photovoltaic technology significantly reduces atmospheric emissions, avoiding the detrimental effects of these gases on the environment. Currently inorganic semiconductors dominate the solar cell production market, but these materials require high technology production and expensive materials, making electricity produced in this manner too costly to compete with conventional sources of electricity. Researchers have successfully fabricated efficient organic-based polymer solar cells (PSCs) as a lower cost alternative. Recently, metalated conjugated polymers have shown exceptional promise as donor materials in bulk-heterojunction solar cells and are emerging as viable alternatives to the all-organic congeners currently in use. Among these metalated conjugated polymers, soluble platinum(II)-containing poly(arylene ethynylene)s of variable bandgaps (∼1.4-3.0 eV) represent attractive candidates for a cost-effective, lightweight solar-energy conversion platform. This Account highlights and discusses the recent advances of this research frontier in organometallic photovoltaics. The emerging use of low-bandgap soluble platinum-acetylide polymers in PSCs offers a new and versatile strategy to capture sunlight for efficient solar power generation. Properties of these polyplatinynes--including their chemical structures, absorption coefficients, bandgaps, charge mobilities, accessibility of triplet excitons, molecular weights, and blend film morphologies--critically influence the device

  6. Geothermal direct heat use: Market potential/penetration analysis for Federal Region 9

    Science.gov (United States)

    Powell, W. (Editor); Tang, K. (Editor)

    1980-01-01

    A preliminary study was made of the potential for geothermal direct heat use in Arizona, California, Hawaii, and Nevada (Federal Region 9). An analysis was made of each state to: (1) define the resource, based on the latest available data; (2) assess the potential market growth for geothermal energy; and (3) estimate the market penetration, projected to 2020. Findings of the study include the following: (1) Potentially economical hydrothermal resources exist in all four states of the Region: however, the resource data base is largely incomplete, particularly for low to moderate temperature resources. (2) In terms of beneficial heat, the total hydrothermal resource identified so far for the four states is on the order of 43 Quads, including an estimated 34 Quads of high temperature resources which are suitable for direct as well as electrical applications. (3) In California, Hawaii, and Nevada, the industrial market sector has somewhat greater potential for penetration than the residential/commercial sector. In Arizona, however, the situation is reversed, due to the collocation of two major metropolitan areas (Phoenix and Tucson) with potential geothermal resources.

  7. Modular high-throughput test stand for versatile screening of thin-film materials libraries

    International Nuclear Information System (INIS)

    Thienhaus, Sigurd; Hamann, Sven; Ludwig, Alfred

    2011-01-01

    Versatile high-throughput characterization tools are required for the development of new materials using combinatorial techniques. Here, we describe a modular, high-throughput test stand for the screening of thin-film materials libraries, which can carry out automated electrical, magnetic and magnetoresistance measurements in the temperature range of −40 to 300 °C. As a proof of concept, we measured the temperature-dependent resistance of Fe–Pd–Mn ferromagnetic shape-memory alloy materials libraries, revealing reversible martensitic transformations and the associated transformation temperatures. Magneto-optical screening measurements of a materials library identify ferromagnetic samples, whereas resistivity maps support the discovery of new phases. A distance sensor in the same setup allows stress measurements in materials libraries deposited on cantilever arrays. A combination of these methods offers a fast and reliable high-throughput characterization technology for searching for new materials. Using this approach, a composition region has been identified in the Fe–Pd–Mn system that combines ferromagnetism and martensitic transformation.

  8. The market penetration of energy-efficiency programs

    Energy Technology Data Exchange (ETDEWEB)

    Berry, L.

    1990-04-01

    The focus of this report is on one source of resource planning uncertainty: the expected market penetration of DSM (Demand Site Management) programs. Its purpose is to help refine planning assumptions and reduce uncertainty about the market penetration of utility DSM programs by: (1) investigating concepts and definitions of market penetration, (2) reviewing data that characterize patterns of variation (including ranges, averages and maximum levels) in program participation rates, (3) identifying the factors that affect participation, and (4) reviewing the structure and data requirements of models that forecast market penetration. 84 refs., 14 figs., 16 tabs.

  9. Influences on dispatch of power generation when introducing electric drive vehicles in an Irish power system year 2020

    DEFF Research Database (Denmark)

    Juul, Nina; Mullane, Alan; Meibom, Peter

    plants. For the future transport system, electric drive vehicles are expected to be one of the solutions. Introducing different electric drive vehicle penetrations in a power system with a large amount of wind power, changes the usage of the predefined power system. This work presents investigations......Increased focus on global warming and CO2 emissions imply increased focus on the energy system, consisting of the heat, power, and transport systems. Solutions for the heat and power system are increasing penetrations of renewable heat and power generation plants such as wind power and biomass heat...... of different charging regimes’ influence of the power dispatch in the Irish power system. Analyses show an overall cost decrease and CO2 emission increase in the heat and power system with the introduction of electric drive vehicles. Furthermore, increased intelligence in the electric drive vehicle charging...

  10. Real-Time Penetrating Particle Analyzer (PAN)

    Science.gov (United States)

    Wu, X.; Ambrosi, G.; Bertucci, B.

    2018-02-01

    The PAN can measure penetrating particles with great precision to study energetic particles, solar activities, and the origin and propagation of cosmic rays. The real-time monitoring of penetrating particles is crucial for deep space human travel.

  11. On the penetration of solar wind inhomogeneities into the magnetosphere

    International Nuclear Information System (INIS)

    Maksimov, V.P.; Senatorov, V.N.

    1980-01-01

    Laboratory experiments were used as a basis to study the process of interaction between solar wind inhomogeneities and the Earth's magnetosphere. The given inhomogeneity represents a lump of plasma characterized by an increased concentration of particles (nsub(e) approximately 20-30 cm -3 ), a discrete form (characteristic dimensions of the lump are inferior to the magnetosphere diameter) and the velocity v approximately 350 km/s. It is shown that there is the possibility of penetration of solar wind inhomogeneities inside the Earth's magnetosphere because of the appearance in the inhomogeneity of an electric field of transverse polarization. The said process is a possible mechanism of the formation of the magnetopshere entrance layer

  12. Forming Completely Penetrated Welded T-joints when Pulsed Arc Welding

    Science.gov (United States)

    Krampit, N. Yu; Krampit, M. A.; Sapozhkov, A. S.

    2016-04-01

    The paper is focused on revealing the influence of welding parameters on weld formation when pulsed arc welding. As an experimental sample a T-joint over 10 mm was selected. Welding was carried out in flat position, which required no edge preparation but provided mono-directional guaranteed root penetration. The following parameters of welding were subjected to investigation: gap in the joint, wire feed rate and incline angles of the torch along and across the weld axis. Technological recommendations have been made with respect to pulsed arc welding; the cost price of product manufacturing can be reduced on their basis due to reduction of labor input required by machining, lowering consumption of welding materials and electric power.

  13. Control of penetration zone GMAW

    Directory of Open Access Journals (Sweden)

    Віталій Петрович Iванов

    2016-11-01

    Full Text Available Thermal properties of the base metal, shielding medium and the nature of the electrode metal transfer to a great extent determine the penetration area formation in gas-arc welding. It is not always possible to take into account the influence of these factors on penetration front forming within the existing models. The aim of the work was to research the penetration area forming in gas-arc welding. The research of the penetration area forming in gas-arc welding of CrNi austenitic steels was made. The parameters of the regime as well as the kind of the gaseous medium influence on the formation of the penetration zone were studied. The article shows a linear proportional relationship between the electrode feed rate and the size of the base metal plate. The penetration area formation mode for welding in argon and carbon dioxide have been worked out. Diameter, feed rate and the speed of the electrode movement have been chosen as the main input parameters. Multiple regression analysis method was used to make up the modes. The relations of the third order that make it possible to take into account the electrode metal transfer and thermal properties change of the materials to be welded were used. These relationships show quite good agreement with the experimental measurements in the calculation of the fusion zone shape with consumable electrode in argon and carbon dioxide. It was determined that the shape of the melting front curve can be shown as a generalized function in which the front motion parameters depend on feed rate and the diameter of the electrode. Penetration zone growth time is determined by the welding speed and is calculated as a discrete function of the distance from the electrode with the spacing along the movement coordinate. The influence of the mode parameters on the formation of the fusion zone has been investigated and the ways to manage and stabilize the weld pool formation have been identified. The modes can be used to develop

  14. Accelerating the market penetration of renewable energy technologies in South Africa

    International Nuclear Information System (INIS)

    Martens, J.W.; De Lange, T.J.; Cloin, J.; Szewczuk, S.; Morris, R.; Zak, J.

    2001-03-01

    There exists a large potential for renewable energy technologies in South Africa and despite the fact that rapid growth of the application of renewable energy takes place in many parts of the world, the current installed renewable capacity in South Africa is negligible. The objective of this study is to address this gap by analysing ways to accelerate the market penetration of renewable energy technologies in South Africa. The activities undertaken in this study comprise two major components: a thorough analysis of South Africa's specific constraints and barriers to renewable energy implementation, and a review of the lessons learnt from Member States of the European Union (EU) on the promotion of renewable energy development. The focus of the study was restricted to the analysis of electricity generating technologies, in particular solar energy, biomass, wind power and mini-hydro renewable energy technologies. Recommendations to stimulate the market penetration of renewable energy technologies in South Africa are formulated. They are structured in: actions to enhance the policy framework for renewable power generation, actions to enhance the policy framework for off-grid renewable energy, and recommendations to stimulate renewable energy project development. 44 refs

  15. Versatile secondary beam for the meson area

    International Nuclear Information System (INIS)

    Kirk, T.

    1982-03-01

    A new secondary beam design is outlined for the Meson M6 Beamline that combines versatility with economy. The beamline described will transport charged particles of either sign to 800 GeV/c and bring the beam to a focus in one of three potential experimental areas. The plan makes maximal use of existing civil construction

  16. Thermodynamic investigation of a shared cogeneration system with electrical cars for northern Europe climate

    DEFF Research Database (Denmark)

    Vialetto, Giulio; Noro, Marco; Rokni, Masoud

    2017-01-01

    cells, heat pump and Stirling engine are utilised as a system to achieve high energy conversion efficiency. A transition from traditional petrol cars to electric mobility is also considered and simulated here. Different types of fuel are considered to demonstrate the high versatility of the simulated....... These goals can be achieved increasing renewable energy sources and/or efficiency on energy production processes. In this paper an innovative micro-cogeneration system for household application is presented: it covers heating, domestic hot water and electricity demands for a residential user. Solid oxide fuel...

  17. Development of penetrant materials from used oil

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Azhar Azmi

    2014-01-01

    This paper described the results of experiment to produce penetrant for nondestructive testing using used engine oil. The used engine oil was obtained from motor vehicle. It was mixed with kerosene at several mix proportion. The penetrability of these mixing were measured and compared with the penetrant available on the market. The results of measurement were explained and discussed. (author)

  18. Versatile Chemical Derivatizations to Design Glycol Chitosan-Based Drug Carriers

    Directory of Open Access Journals (Sweden)

    Sung Eun Kim

    2017-10-01

    Full Text Available Glycol chitosan (GC and its derivatives have been extensively investigated as safe and effective drug delivery carriers because of their unique physiochemical and biological properties. The reactive functional groups such as the amine and hydroxyl groups on the GC backbone allow for easy chemical modification with various chemical compounds (e.g., hydrophobic molecules, crosslinkers, and acid-sensitive and labile molecules, and the versatility in chemical modifications enables production of a wide range of GC-based drug carriers. This review summarizes the versatile chemical modification methods that can be used to design GC-based drug carriers and describes their recent applications in disease therapy.

  19. Development of coring, consolidating, subterrene penetrators

    International Nuclear Information System (INIS)

    Murphy, H.D.; Neudecker, J.W.; Cort, G.E.; Turner, W.C.; McFarland, R.D.; Griggs, J.E.

    1976-02-01

    Coring penetrators offer two advantages over full face-melting penetrators, i.e., formation of larger boreholes with no increase in power and the production of glass-lined, structurally undisturbed cores which can be recovered with conventional core-retrieval systems. These cores are of significant value in geological exploratory drilling programs. The initial design details and fabrication features of a 114-mm-diam coring penetrator are discussed; significant factors for design optimization are also presented. Results of laboratory testing are reported and compared with performance predictions, and an initial field trial is described

  20. Two methodologies for physical penetration testing using social engineering

    NARCIS (Netherlands)

    Dimkov, T.; van Cleeff, A.; Pieters, Wolter; Hartel, Pieter H.

    2010-01-01

    Penetration tests on IT systems are sometimes coupled with physical penetration tests and social engineering. In physical penetration tests where social engineering is allowed, the penetration tester directly interacts with the employees. These interactions are usually based on deception and if not

  1. Cost allocation model for distribution networks considering high penetration of distributed energy resources

    DEFF Research Database (Denmark)

    Soares, Tiago; Pereira, Fábio; Morais, Hugo

    2015-01-01

    The high penetration of distributed energy resources (DER) in distribution networks and the competitive environment of electricity markets impose the use of new approaches in several domains. The network cost allocation, traditionally used in transmission networks, should be adapted and used...... in the distribution networks considering the specifications of the connected resources. The main goal is to develop a fairer methodology trying to distribute the distribution network use costs to all players which are using the network in each period. In this paper, a model considering different type of costs (fixed......, losses, and congestion costs) is proposed comprising the use of a large set of DER, namely distributed generation (DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehicles with capability of discharging energy to the network, which is known as vehicle...

  2. Electrical demand forecast in two different scenarios of socio-economic development

    International Nuclear Information System (INIS)

    Goni, M.R.

    1996-01-01

    A projection of electrical demand for two different scenarios is presented in the study. The study period is 1993-2010 and 1993 has been taken as base year. In this planning study MAED program was used as well as all available information from INDEC (National Statistical Body), CAMMESA (Electrical Market Company) and Ministery of Economy. The results in the base year achieved an accuracy higher than 98%. The scenarios described two different rates of growth and electrical penetration in energy uses. (author). 3 refs., 9 figs., 2 tabs

  3. Assessing the credibility of diverting through containment penetrations

    International Nuclear Information System (INIS)

    Cooley, J.N.; Swindle, D.W. Jr.

    1980-01-01

    A viable approach has been developed for identifying those containment penetrations in a nuclear fuel reprocessing plant which are credible diversion routes. The approach is based upon systematic engineering and design analyses and is applied to each type of penetration to determine which penetrations could be utilized to divert nuclear material from a reprocessing facility. The approach is described and the results of an application are discussed. In addition, the concept of credibility is developed and discussed. For a typical reprocessing plant design, the number of penetrations determined to be credible without process or piping modifications was approx. 16% of the penetrations originally identified

  4. Wind energy research activities of the Dutch Electricity Generating Board

    International Nuclear Information System (INIS)

    Halberg, N.

    1990-01-01

    The varying degrees of penetration of wind energy conversion systems (WECs) into the Dutch electricity generating system has been examined. A simulation has been carried out using wind data recorded at 6 sites spread across the area of interest in the Netherlands. The recorded wind data has been used in conjunction with a production costing model normally used by Sep (the Dutch Electricity Generating Board) for planning purposes. This model was modified to give a correct assessment of the quantity and value of fuel savings made by WECs. System studies were carried out for the year 2000 for zero wind penetration and for three distinctive penetration degrees of WECs, namely 5%, 10% and 15%. After incorporation of the WECS capacity, adjustments were made to the basic plant mix to allow the capacity credit WECs. Separate production cost simulations were executed for each distinct WECS capacity factor. Economic assessments were carried out using standard procedures. Except for the unpredictable development of fuel prices, the capital costs of the WECs proved to be the determinant for the economic viability of wind power. Significant improvements in costs and performance, as may be achieved through additional technological advances, are needed to made wind power competitive in widespread utility applications. (Author)

  5. Double-section curvature tunable functional actuator with micromachined buckle and grid wire for electricity delivery

    Science.gov (United States)

    Feng, Guo-Hua; Hou, Sheng-You

    2015-09-01

    This paper presents an ionic polymer metal composite (IPMC)-driven tentacle-like biocompatible flexible actuator with double-section curvature tunability. This actuator, possessing an embedded electrical transmission ability that mimics skeletal muscle nerves in the human body, affords versatile device functions. Novel micromachined copper buckles and grid wires are fabricated and their superiority in electricity delivery and driving the IPMC component with less flexural rigidity is demonstrated. In addition, soft conductive wires realized on a polydimethylsiloxane structure function as electrical signal transmitters. A light-emitting diode integrated with the developed actuator offers directional guiding light ability while the actuator performs a snake-like motion. The electrical conductivity and Young’s modulus of the key actuator components are investigated, and flexural rigidity and dynamic behavior analyses of the actuator under electrical manipulation are elaborated.

  6. Double-section curvature tunable functional actuator with micromachined buckle and grid wire for electricity delivery

    International Nuclear Information System (INIS)

    Feng, Guo-Hua; Hou, Sheng-You

    2015-01-01

    This paper presents an ionic polymer metal composite (IPMC)-driven tentacle-like biocompatible flexible actuator with double-section curvature tunability. This actuator, possessing an embedded electrical transmission ability that mimics skeletal muscle nerves in the human body, affords versatile device functions. Novel micromachined copper buckles and grid wires are fabricated and their superiority in electricity delivery and driving the IPMC component with less flexural rigidity is demonstrated. In addition, soft conductive wires realized on a polydimethylsiloxane structure function as electrical signal transmitters. A light-emitting diode integrated with the developed actuator offers directional guiding light ability while the actuator performs a snake-like motion. The electrical conductivity and Young’s modulus of the key actuator components are investigated, and flexural rigidity and dynamic behavior analyses of the actuator under electrical manipulation are elaborated. (paper)

  7. Quasi-relativistic effects in barrier-penetration processes

    International Nuclear Information System (INIS)

    Anchishkin, D.V.

    1991-01-01

    The problem of a particle tunneling through the potential barrier is solved within quasi-relativistic Schroedinger equation. It is shown that the subbarrier relativistic effects give a significant addition to penetration coefficient when some relations between parameters of the barrier and mass of a tunneling particle are satisfied. For instance an account of these effects for penetration of low energy π + -mesons through Coulomb barrier of the 298 U nuclei would give the increasing of penetration coefficient to 30 percent as compared to the nonrelativistic one. Also we give the criteria under which the contribution of the ''under barrier relativism'' to penetration coefficient becomes essential. 3 refs.; 6 figs. (author)

  8. Biofunctionalized nanoparticles with pH-responsive and cell penetrating blocks for gene delivery

    International Nuclear Information System (INIS)

    Gaspar, V M; Marques, J G; Sousa, F; Queiroz, J A; Correia, I J; Louro, R O

    2013-01-01

    Bridging the gap between nanoparticulate delivery systems and translational gene therapy is a long sought after requirement in nanomedicine-based applications. However, recent developments regarding nanoparticle functionalization have brought forward the ability to synthesize materials with biofunctional moieties that mimic the evolved features of viral particles. Herein we report the versatile conjugation of both cell penetrating arginine and pH-responsive histidine moieties into the chitosan polymeric backbone, to improve the physicochemical characteristics of the native material. Amino acid coupling was confirmed by 2D TOCSY NMR and Fourier transform infrared spectroscopy. The synthesized chitosan–histidine–arginine (CH–H–R) polymer complexed plasmid DNA biopharmaceuticals, and spontaneously assembled into stable 105 nm nanoparticles with spherical morphology and positive surface charge. The functionalized delivery systems were efficiently internalized into the intracellular compartment, and exhibited remarkably higher transfection efficiency than unmodified chitosan without causing any cytotoxic effect. Additional findings regarding intracellular trafficking events reveal their preferential escape from degradative lysosomal pathways and nuclear localization. Overall, this assembly of nanocarriers with bioinspired moieties provides the foundations for the design of efficient and customizable materials for cancer gene therapy. (paper)

  9. Thyroid Emphysema Following Penetrating Neck Trauma

    Directory of Open Access Journals (Sweden)

    Demet Karadağ

    2011-03-01

    Full Text Available Although traumatic thyroid gland rupture or hemorrhage is usually seen in goitrous glands, injuries of the normal thyroid gland after neck trauma have rarely been described in the literature. We describe a 44-year-old man who presented with thyroid emphysema and subcutaneous emphysema (SCE that occurred after penetrating neck trauma. CT images showed complete resolution of thyroid emphysema and subcutaneous emphysema at follow-up examination. Neck injuries can be life threatening. After penetrating neck traumas, physicians should consider subtle esophageal or tracheal laceration. Thyroid emphysema can occur as the result of penetrating neck trauma. The mechanism of emphysema of the thyroid parenchyma can be explained by the thyroid gland’s presence in a single visceral compartment that encompasses the larynx, trachea and thyroid gland. We describe an unusual case of thyroid emphysema of a normal thyroid gland following a penetrating neck injury.

  10. Use of Electrical Penetration Graph Technology to Examine Transmission of 'Candidatus Liberibacter solanacearum' to Potato by Three Haplotypes of Potato Psyllid (Bactericera cockerelli; Hemiptera: Triozidae.

    Directory of Open Access Journals (Sweden)

    Tariq Mustafa

    Full Text Available The potato psyllid, Bactericera cockerelli (Šulc (Hemiptera: Triozidae, is a vector of the phloem-limited bacterium 'Candidatus Liberibacter solanacearum' (Lso, the putative causal agent of zebra chip disease of potato. Little is known about how potato psyllid transmits Lso to potato. We used electrical penetration graph (EPG technology to compare stylet probing behaviors and efficiency of Lso transmission of three haplotypes of potato psyllid (Central, Western, Northwestern. All haplotypes exhibited the full suite of stylet behaviors identified in previous studies with this psyllid, including intercellular penetration and secretion of the stylet pathway, xylem ingestion, and phloem activities, the latter comprising salivation and ingestion. The three haplotypes exhibited similar frequency and duration of probing behaviors, with the exception of salivation into phloem, which was of higher duration by psyllids of the Western haplotype. We manipulated how long psyllids were allowed access to potato ("inoculation access period", or IAP to examine the relationship between phloem activities and Lso transmission. Between 25 and 30% of psyllids reached and salivated into phloem at an IAP of 1 hr, increasing to almost 80% of psyllids as IAP was increased to 24 h. Probability of Lso-transmission was lower across all IAP levels than probability of phloem salivation, indicating that a percentage of infected psyllids which salivated into the phloem failed to transmit Lso. Logistic regression showed that probability of transmission increased as a function of time spent salivating into the phloem; transmission occurred as quickly as 5 min following onset of salivation. A small percentage of infected psyllids showed extremely long salivation events but nonetheless failed to transmit Lso, for unknown reasons. Information from these studies increases our understanding of Lso transmission by potato psyllid, and demonstrates the value of EPG technology in

  11. Crack growth rates in vessel head penetration materials

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Lapena, J.; Blazquez, F.

    1994-01-01

    The cracks detected in reactor vessel head penetrations in certain European plants have been attributed to Primary Water Stress Corrosion Cracking (PWSCC). The penetrations in question are made from Inconel 600. The susceptibility of this alloy to PWSCC has been widely studied in relation to use of this material for steam generator tubes. When the first reactor vessel head penetration cracks were detected, most of the available data on crack propagation rates were from test specimens made from steam generator tubes and tested under conditions that questioned the validity of these data for assessment of the evolution of cracks in penetrations. For this reason, the scope of the Spanish Research Project on the Inspection and Repair of PWR reactor vessel head penetrations included the acquisition of data on crack propagation rates in Inconel 600, representative of the materials used for vessel head penetrations. (authors). 1 fig., 2 tabs., 6 refs

  12. An assessment of household electricity load curves and corresponding CO2 marginal abatement cost curves for Gujarat state, India

    International Nuclear Information System (INIS)

    Garg, Amit; Shukla, P.R.; Maheshwari, Jyoti; Upadhyay, Jigeesha

    2014-01-01

    Gujarat, a large industrialized state in India, consumed 67 TWh of electricity in 2009–10, besides experiencing a 4.5% demand–supply short-fall. Residential sector accounted for 15% of the total electricity consumption. We conducted load research survey across 21 cities and towns of the state to estimate residential electricity load curves, share of appliances by type and usage patterns for all types of household appliances at utility, geographic, appliance, income and end-use levels. The results indicate that a large scope exists for penetration of energy efficient devices in residential sector. Marginal Abatement Cost (MAC) curves for electricity and CO 2 were generated to analyze relative attractiveness of energy efficient appliance options. Results indicate that up to 7.9 TWh of electricity can be saved per year with 6.7 Mt-CO 2 emissions mitigation at negative or very low CO 2 prices of US$ 10/t-CO 2 . Despite such options existing, their penetration is not realized due to myriad barriers such as financial, institutional or awareness and therefore cannot be taken as baseline options for CO 2 emission mitigation regimes. - Highlights: • Residential sector provides focused mitigation opportunities. • Energy efficient space cooling is the main technology transition required. • Almost 26% residential load could be reduced by DSM measures. • Myriad barriers limit penetration of negative marginal cost efficient options

  13. Computational analysis of electrical conduction in hybrid nanomaterials with embedded non-penetrating conductive particles

    Science.gov (United States)

    Cai, Jizhe; Naraghi, Mohammad

    2016-08-01

    In this work, a comprehensive multi-resolution two-dimensional (2D) resistor network model is proposed to analyze the electrical conductivity of hybrid nanomaterials made of insulating matrix with conductive particles such as CNT reinforced nanocomposites and thick film resistors. Unlike existing approaches, our model takes into account the impenetrability of the particles and their random placement within the matrix. Moreover, our model presents a detailed description of intra-particle conductivity via finite element analysis, which to the authors’ best knowledge has not been addressed before. The inter-particle conductivity is assumed to be primarily due to electron tunneling. The model is then used to predict the electrical conductivity of electrospun carbon nanofibers as a function of microstructural parameters such as turbostratic domain alignment and aspect ratio. To simulate the microstructure of single CNF, randomly positioned nucleation sites were seeded and grown as turbostratic particles with anisotropic growth rates. Particle growth was in steps and growth of each particle in each direction was stopped upon contact with other particles. The study points to the significant contribution of both intra-particle and inter-particle conductivity to the overall conductivity of hybrid composites. Influence of particle alignment and anisotropic growth rate ratio on electrical conductivity is also discussed. The results show that partial alignment in contrast to complete alignment can result in maximum electrical conductivity of whole CNF. High degrees of alignment can adversely affect conductivity by lowering the probability of the formation of a conductive path. The results demonstrate approaches to enhance electrical conductivity of hybrid materials through controlling their microstructure which is applicable not only to carbon nanofibers, but also many other types of hybrid composites such as thick film resistors.

  14. Evaluation of the Electric Vehicle Impact in the Power Demand Curve in a Smart Grid Environment

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago; Vale, Zita

    2014-01-01

    be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve...... for a distribution network with large penetration of Distributed Generation (DG) units. An efficient management methodology for EVs charging and discharging is proposed, considering a multi-objective optimization problem. The main goals of the proposed methodology are: to minimize the system operation costs...... and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32...

  15. Overview of Wholesale Electricity Markets

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bloom, Aaron P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cochran, Jaquelin M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Townsend, Aaron [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ela, Erik [Electric Power Research Institute; Botterud, Audun [Argonne National Laboratory; Levin, Todd [Argonne National Laboratory

    2018-02-15

    This chapter provides a comprehensive review of four key electricity markets: energy markets (day-ahead and real-time markets); ancillary service markets; financial transmission rights markets; capacity markets. It also discusses how the outcomes of each of these markets may be impacted by the introduction of high penetrations of variable generation. Furthermore, the chapter examines considerations needed to ensure that wholesale market designs are inclusive of emerging technologies, such as demand response, distributed generation, and distributed storage.

  16. Propeller Flap for Complex Distal Leg Reconstruction: A Versatile ...

    African Journals Online (AJOL)

    equipment, cost, steep learning curve, and prolonged operating ... A Versatile Alternative when Reverse Sural Artery Flap is .... He had wound debridement, fracture reduction, and .... flaps that were raised in the patient and the logistics of limb.

  17. International energy technology collaboration: wind power integration into electricity systems

    International Nuclear Information System (INIS)

    Justus, D.

    2006-01-01

    A rapid growth of wind power since the 1990s has led to notable market shares in some electricity markets. This growth is concentrated in a few countries with effective Research, Development and Demonstration (RD and D) programmes and with policies that support its diffusion into the market place. The speed and depth of its penetration in these electricity markets have amplified the need to address grid integration concerns, so as not to impede the further penetration of wind power. Research on technologies, tools and practices for integrating large amounts of wind power into electricity supply systems is attempting to respond to this need. In recent years, existing international collaborative research efforts have expanded their focus to include grid integration of wind power and new consortia have been formed to pool knowledge and resources. Effective results benefit a few countries that already have a significant amount of wind in their electricity supply fuel mix, as well as to the potential large markets worldwide. This paper focuses on the challenge of bringing significant amounts of intermittent generating sources into grids dominated by large central generating units. It provides a brief overview of the growth of wind power, mainly since 1990, the technical and operational issues related to integration and selected collaborative programmes underway to address grid integration concerns. (author)

  18. Small Signal Stability Improvement of Power Systems Using Optimal Load Responses in Competitive Electricity Markets

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2011-01-01

    Since the hourly spot market price is available one day ahead in Denmark, the price could be transferred to the consumers and they may shift some of their loads from high price periods to the low price periods in order to save their energy costs. The optimal load response to an electricity price...... price is proposed. A 17-bus power system with high wind power penetrations, which resembles the Eastern Danish power system, is chosen as the study case. Simulation results show that the optimal load response to electricity prices is an effective measure to improve the small signal stability of power...... for demand side management generates different load profiles and may provide an opportunity to improve the small signal stability of power systems with high wind power penetrations. In this paper, the idea of power system small signal stability improvement by using optimal load response to the electricity...

  19. Recursive Monte Carlo method for deep-penetration problems

    International Nuclear Information System (INIS)

    Goldstein, M.; Greenspan, E.

    1980-01-01

    The Recursive Monte Carlo (RMC) method developed for estimating importance function distributions in deep-penetration problems is described. Unique features of the method, including the ability to infer the importance function distribution pertaining to many detectors from, essentially, a single M.C. run and the ability to use the history tape created for a representative region to calculate the importance function in identical regions, are illustrated. The RMC method is applied to the solution of two realistic deep-penetration problems - a concrete shield problem and a Tokamak major penetration problem. It is found that the RMC method can provide the importance function distributions, required for importance sampling, with accuracy that is suitable for an efficient solution of the deep-penetration problems considered. The use of the RMC method improved, by one to three orders of magnitude, the solution efficiency of the two deep-penetration problems considered: a concrete shield problem and a Tokamak major penetration problem. 8 figures, 4 tables

  20. penetrating abdominal trauma

    African Journals Online (AJOL)

    gender, mechanism of injury, injury severity scores (ISS), penetrating ... ileus, reduced pulmonary function and loss of muscle mass and function, all of .... pathophysiology and rehabilitation. ... quality of life after surgery for colorectal cancer.

  1. Versatile Link PLUS transceiver development

    International Nuclear Information System (INIS)

    Soós, C.; Détraz, S.; Olanterä, L.; Sigaud, C.; Troska, J.; Vasey, F.; Zeiler, M.

    2017-01-01

    The Versatile Link PLUS project targets the phase II upgrades of the ATLAS and CMS experiments. It will develop a radiation resistant optical link, operating at up to 10 Gb/s in the upstream and up to 5 Gb/s in the downstream directions with a smaller footprint and higher channel count than its predecessor. A low-profile package is being developed that allows volume production at reduced costs, but which nevertheless can be configured to suit the individual channel count needs of different detectors. This paper describes the development strategies and summarizes the status of the feasibility demonstration phase of the project.

  2. Implementation of complex nanosystems using a versatile ultrahigh vacuum nonlithographic technique

    International Nuclear Information System (INIS)

    Das, Biswajit; Banerjee, Arghya

    2007-01-01

    We have developed an ultrahigh vacuum technique for the implementation of complex nanosystems incorporating nonlithographic nanoparticles, ohmic contact metals and isolation dielectrics. The technique is compatible with the silicon integrated circuit manufacturing process and is versatile, allowing the deposition of nanoparticles of any metal, semiconductor or insulator with diameters as small as 2 nm with less than 5% size variation. In addition, the technique allows the creation of multi-layered structures of nanoparticles of different dimensions. The flexibility and the versatility of the technique have been demonstrated by depositing nanoparticles of various materials as well as fabricating multi-layered structures incorporating nanoparticles

  3. Robust Multi-Objective PQ Scheduling for Electric Vehicles in Flexible Unbalanced Distribution Grids

    DEFF Research Database (Denmark)

    Knezovic, Katarina; Soroudi, Alireza; Marinelli, Mattia

    2017-01-01

    With increased penetration of distributed energy resources and electric vehicles (EVs), different EV management strategies can be used for mitigating adverse effects and supporting the distribution grid. This paper proposes a robust multi-objective methodology for determining the optimal day...... demand response programs. The method is tested on a real Danish unbalanced distribution grid with 35% EV penetration to demonstrate the effectiveness of the proposed approach. It is shown that the proposed formulation guarantees an optimal EV cost as long as the price uncertainties are lower than....... The robust formulation effectively considers the errors in the electricity price forecast and its influence on the EV schedule. Moreover, the impact of EV reactive power support on objective values and technical parameters is analysed both when EVs are the only flexible resources and when linked with other...

  4. Leader-Follower Approach to Gas-Electricity Expansion Planning Problem

    DEFF Research Database (Denmark)

    Khaligh, Vahid; Oloomi Buygi, Majid; Anvari-Moghaddam, Amjad

    2018-01-01

    investment in capacity addition to the generation and transmission levels while considers the limitations on fuel consumption. On the other hand gas operator decides about investment in gas pipelines expansions considering the demanded gas by the electricity network. In this planning model for a joint gas......The main purpose of this paper is to develop a method for sequential gas and electricity networks expansion planning problem. A leader-follower approach performs the expansion planning of the joint gas and electricity networks. Electric system operator under adequacy incentive decides about......-electricity network, supply and demand are matched together while adequacy of fuel for gas consuming units is also guaranteed. To illustrate the effectiveness of the proposed method Khorasan province of Iran is considered as a case study which has a high penetration level of gas-fired power plants (GFPP). Also...

  5. Transmission topologies for the integration of renewable power into the electricity systems of North Africa

    International Nuclear Information System (INIS)

    Brand, Bernhard

    2013-01-01

    A cost-minimizing electricity market model was used to explore optimized infrastructures for the integration of renewable energies in interconnected North African power systems until 2030. The results show that the five countries Morocco, Algeria, Tunisia, Libya and Egypt could together achieve significant economic benefits, reaching up to €3.4 billion, if they increase power system integration, build interconnectors and cooperate on joint utilization of their generation assets. Net electricity exports out of North Africa to Europe or Eastern Mediterranean regions, however, were not observed in the regime of integrated electricity markets until 2030, and could only be realized by much higher levels of renewable energy penetration than currently foreseen by North African governments. - Highlights: • Market model to optimize North Africa's generation and transmission infrastructures until 2030. • Simulations consider existing interconnectors, power plant inventories, as well as national renewable goals. • Savings of up to €3.4 billion can be realized by more cooperation and integrated system planning. • No electricity exports to Europe in a competitive market framework, except for very high renewable penetrations

  6. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders.

    Science.gov (United States)

    Dominici, Nadia; Keller, Urs; Vallery, Heike; Friedli, Lucia; van den Brand, Rubia; Starkey, Michelle L; Musienko, Pavel; Riener, Robert; Courtine, Grégoire

    2012-07-01

    Central nervous system (CNS) disorders distinctly impair locomotor pattern generation and balance, but technical limitations prevent independent assessment and rehabilitation of these subfunctions. Here we introduce a versatile robotic interface to evaluate, enable and train pattern generation and balance independently during natural walking behaviors in rats. In evaluation mode, the robotic interface affords detailed assessments of pattern generation and dynamic equilibrium after spinal cord injury (SCI) and stroke. In enabling mode,the robot acts as a propulsive or postural neuroprosthesis that instantly promotes unexpected locomotor capacities including overground walking after complete SCI, stair climbing following partial SCI and precise paw placement shortly after stroke. In training mode, robot-enabled rehabilitation, epidural electrical stimulation and monoamine agonists reestablish weight-supported locomotion, coordinated steering and balance in rats with a paralyzing SCI. This new robotic technology and associated concepts have broad implications for both assessing and restoring motor functions after CNS disorders, both in animals and in humans.

  7. 40 CFR 1065.365 - Nonmethane cutter penetration fractions.

    Science.gov (United States)

    2010-07-01

    ... fractions. 1065.365 Section 1065.365 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Measurements § 1065.365 Nonmethane cutter penetration fractions. (a) Scope and frequency. If you use a FID... penetration fractions of methane, PFCH4, and ethane, PF C2H6. As detailed in this section, these penetration...

  8. The penetration of aerosols through fine orifices

    International Nuclear Information System (INIS)

    Marshall, I.A.; Latham, L.J.; Ball, M.H.E.; Mitchell, J.P.

    1991-07-01

    A novel experimental technique has been extended to study the migration of gas-borne glass microspheres in the size range from about 1 to 15 μm volume equivalent diameter through orifices with bores and thicknesses in the range from 2 to 100 μm and 12.7 to 509 μm respectively. The penetration of these particles was significant with all orifices greater than 10 μm bore at a constant driving pressure of 100 kPa. However, few particles penetrated the 5 μm bore orifice, while virtually no particles penetrated the 2 μm bore orifice. Particle size distributions determined after penetration through the orifices were very similar to that of the upstream aerosol except when significant attenuation occurred. (author)

  9. To an optimal electricity supply system. Possible bottlenecks in the development to an optimal electricity supply system in northwest Europe

    International Nuclear Information System (INIS)

    Van Werven, M.J.N.; De Joode, J.; Scheepers, M.J.J.

    2006-02-01

    It is uncertain how the electricity system in Europe, and in particular northwest Europe and the Netherlands, will develop in the next fifteen years. The main objective of this report is to identify possible bottlenecks that may hamper the northwest European electricity system to develop into an optimal system in the long term (until 2020). Subsequently, based on the identified bottlenecks, the report attempts to indicate relevant market response and policy options. To be able to identify possible bottlenecks in the development to an optimal electricity system, an analytical framework has been set up with the aim to identify possible (future) problems in a structured way. The segments generation, network, demand, balancing, and policy and regulation are analysed, as well as the interactions between these segments. Each identified bottleneck is assessed on the criteria reliability, sustainability and affordability. Three bottlenecks are analysed in more detail: (1) The increasing penetration of distributed generation (DG) and its interaction with the electricity network. Dutch policy could be aimed at: (a) Gaining more insight in the costs and benefits that result from the increasing penetration of DG; (b) Creating possibilities for DSOs to experiment with innovative (network management) concepts; (c) Introducing locational signals; and (d) Further analyse the possibility of ownership unbundling; (2) The problem of intermittency and its implications for balancing the electricity system. Dutch policy could be aimed at: (a) Creating the environment in which the market is able to respond in an efficient way; (b) Monitoring market responses; (c) Market coupling; and (d) Discussing the timing of the gate closure; and (3) Interconnection and congestion issues in combination with generation. Dutch policy could be aimed at: (a) Using the existing interconnection capacity as efficient as possible; (b) Identifying the causes behind price differences; and (c) Harmonise market

  10. Miniature Ground Penetrating Radar, CRUX GPR

    Science.gov (United States)

    Kim, Soon Sam; Carnes, Steven R.; Haldemann, Albert F.; Ulmer, Christopher T.; Ng, Eddie; Arcone, Steven A.

    2006-01-01

    Under NASA instrument development programs (PIDDP 2000-2002, MIPD 2003-2005, ESR and T, 2005) we have been developing miniature ground penetrating radars (GPR) for use in mapping subsurface stratigraphy from planetary rovers for Mars and lunar applications. The Mars GPR is for deeper penetration (up to 50 m depth) into the Martian subsurface at moderate resolution (0.5 m) for a geological characterization. As a part of the CRUX (Construction and Resource Utilization Explorer) instrument suite, the CRUX GPR is optimized for a lunar prospecting application. It will have shallower penetration (5 m depth) with higher resolution (10 cm) for construction operations including ISRU (in-situ resource utilization).

  11. Building virtual pentesting labs for advanced penetration testing

    CERN Document Server

    Cardwell, Kevin

    2014-01-01

    Written in an easy-to-follow approach using hands-on examples, this book helps you create virtual environments for advanced penetration testing, enabling you to build a multi-layered architecture to include firewalls, IDS/IPS, web application firewalls, and endpoint protection, which is essential in the penetration testing world. If you are a penetration tester, security consultant, security test engineer, or analyst who wants to practice and perfect penetration testing skills by building virtual pen testing labs in varying industry scenarios, this is the book for you. This book is ideal if yo

  12. Effect of Using Metakaolin on Chloride Ion Penetration in High Performance Steel Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Adnan Mohammed Shihab

    2016-03-01

    Full Text Available This paper attempts to reduce the penetrability of high performance steel fiber reinforced concrete to chloride ions originating from external sources, by using High Reactivity Metakaolin (HRM as a highly active pozzolanic material, in order to prolong the time to initiation of the steel fibers corrosion and to minimize concrete damage that may occur due to the exposure to chloride ion penetration. According to pozzolanic activity index (P.A.I., 8% content of HRM was used as a partial replacement by weight of cement with 2% steel fibers by volume of concrete. During the exposure period of 300 days in 4.5% of NaCl solution, the total and free chloride contents (Cltotal, Clfree with the chloride profiles at the ages of 28 and 300 days were investigated. Also the rapid chloride penetrability test (RCPT, compressive and flexural strengths tests were conducted at the ages of 28, 90, 180 and 300 days. Results showed that the incorporation of 8% HRM caused a reduction in the (Clfree/Cltota ratio, the chloride penetration depth and the electrical conductivity with percentages of 21%, 40% and 43% respectively after 300 days exposure to chloride solution in comparing with the mix of 0% HRM. Results also indicated that the losses in compressive and flexural strengths after exposure of 300 days to chloride solution for the mix incorporating 8% HRM were by 5% and 5.8% respectively while they reached 9.5% and 11% respectively for the mix without HRM in relation to the correspondent test specimens cured in tap water.

  13. Versatile by design

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    CHARM (CERN High energy AcceleRator Mixed field) is a new and unique testing facility that will complete CERN's radiation testing installations. Located in the East Area, CHARM will provide teams with a venue to test their equipment in radiation environments similar to those found in the accelerator chain.   Team at work in the irradiation zone of the CHARM facility. First envisaged in 2007, the CHARM facility fulfils a growing demand for a large-scale tailor-made radiation testing facility. Unlike commercial facilities, CHARM features a wide spectrum of radiation types and energies (called mixed-field radiation environments), the space to test large equipment and even the possibility to adjust the environment using mobile shielding. "CHARM is versatile by design, allowing us to recreate any of the radiation environments found in the accelerator chain," says Markus Brugger, head of the R2E (Radiation to Electronics) project team that developed the CHARM facility. &a...

  14. Kirchhoff and Ohm in action: solving electric currents in continuous extended media

    Science.gov (United States)

    Dolinko, A. E.

    2018-03-01

    In this paper we show a simple and versatile computational simulation method for determining electric currents and electric potential in 2D and 3D media with arbitrary distribution of resistivity. One of the highlights of the proposed method is that the simulation space containing the distribution of resistivity and the points of external applied voltage are introduced by means of digital images or bitmaps, which easily allows simulating any phenomena involving distributions of resistivity. The simulation is based on the Kirchhoff’s laws of electric currents and it is solved by means of an iterative procedure. The method is also generalised to account for media with distributions of reactive impedance. At the end of this work, we show an example of application of the simulation, consisting in reproducing the response obtained with the geophysical method of electric resistivity tomography in presence of soil cracks. This paper is aimed at undergraduate or graduated students interested in computational physics and electricity and also researchers involved in the area of continuous electric media, which could find a simple and powerful tool for investigation.

  15. Optimal Wind Energy Integration in Large-Scale Electric Grids

    Science.gov (United States)

    Albaijat, Mohammad H.

    profit for investors for renting their transmission capacity, and cheaper electricity for end users. We propose a hybrid method based on a heuristic and deterministic method to attain new transmission lines additions and increase transmission capacity. Renewable energy resources (RES) have zero operating cost, which makes them very attractive for generation companies and market participants. In addition, RES have zero carbon emission, which helps relieve the concerns of environmental impacts of electric generation resources' carbon emission. RES are wind, solar, hydro, biomass, and geothermal. By 2030, the expectation is that more than 30% of electricity in the U.S. will come from RES. One major contributor of RES generation will be from wind energy resources (WES). Furthermore, WES will be an important component of the future generation portfolio. However, the nature of WES is that it experiences a high intermittency and volatility. Because of the great expectation of high WES penetration and the nature of such resources, researchers focus on studying the effects of such resources on the electric grid operation and its adequacy from different aspects. Additionally, current market operations of electric grids add another complication to consider while integrating RES (e.g., specifically WES). Mandates by market rules and long-term analysis of renewable penetration in large-scale electric grid are also the focus of researchers in recent years. We advocate a method for high-wind resources penetration study on large-scale electric grid operations. PMU is a geographical positioning system (GPS) based device, which provides immediate and precise measurements of voltage angle in a high-voltage transmission system. PMUs can update the status of a transmission line and related measurements (e.g., voltage magnitude and voltage phase angle) more frequently. Every second, a PMU can provide 30 samples of measurements compared to traditional systems (e.g., supervisory control and

  16. The impact of a large penetration of intermittent sources on the power system operation and planning

    Science.gov (United States)

    Ausin, Juan Carlos

    This research investigated the impact on the power system of a large penetration of intermittent renewable sources, mainly wind and photovoltaic generation. Currently, electrical utilities deal with wind and PV plants as if they were sources of negative demand, that is to say, they have no control over the power output produced. In this way, the grid absorbs all the power fluctuation as if it were coming from a common load. With the level of wind penetration growing so quickly, there is growing concern amongst the utilities and the grid operators, as they will have to deal with a much higher level of fluctuation. In the same way, the potential cost reduction of PV technologies suggests that a similar development may be expected for solar production in the mid term. The first part of the research was focused on the issues that affect utility planning and reinforcement decision making. Although DG is located mainly on the distribution network, a large penetration may alter the flows, not only on the distribution lines, but also on the transmission system and through the transmission - distribution interfaces. The optimal capacity and production costs for the UK transmission network have been calculated for several combinations of load profiles and typical wind/PV output scenarios. A full economic analysis is developed, showing the benefits and disadvantages that a large penetration of these distributed generators may have on transmission system operator reinforcement strategies. Closely related to planning factors are institutional, revelatory, and economic considerations, such as transmission pricing, which may hamper the integration of renewable energy technologies into the electric utility industry. The second part of the research related to the impact of intermittent renewable energy technologies on the second by second, minute by minute, and half-hour by half-hour operations of power systems. If a large integration of these new generators partially replaces the

  17. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Mather, B. A.; Shah, S.; Norris, B. L.; Dise, J. H.; Yu, L.; Paradis, D.; Katiraei, F.; Seguin, R.; Costyk, D.; Woyak, J.; Jung, J.; Russell, K.; Broadwater, R.

    2014-06-01

    In 2010, the National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed to analyze the impacts of high penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to benefit from the experience that SCE and the project team would gain during the installation of 500 megawatts (MW) of utility-scale PV systems (with 1-5 MW typical ratings) starting in 2010 and completing in 2015 within SCE's service territory through a program approved by the California Public Utility Commission (CPUC). This report provides the findings of the research completed under the project to date.

  18. Effects of plug-in hybrid electric vehicles on ozone concentrations in Colorado.

    Science.gov (United States)

    Brinkman, Gregory L; Denholm, Paul; Hannigan, Michael P; Milford, Jana B

    2010-08-15

    This study explores how ozone concentrations in the Denver, CO area might have been different if plug-in hybrid electric vehicles (PHEVs) had replaced light duty gasoline vehicles in summer 2006. A unit commitment and dispatch model was used to estimate the charging patterns of PHEVs and dispatch power plants to meet electricity demand. Emission changes were estimated based on gasoline displacement and the emission characteristics of the power plants providing additional electricity. The Comprehensive Air Quality Model with extensions (CAMx) was used to simulate the effects of these emissions changes on ozone concentrations. Natural gas units provided most of the electricity used for charging PHEVs in the scenarios considered. With 100% PHEV penetration, nitrogen oxide (NO(x)) emissions were reduced by 27 tons per day (tpd) from a fleet of 1.7 million vehicles and were increased by 3 tpd from power plants; VOC emissions were reduced by 57 tpd. These emission changes reduced modeled peak 8-h average ozone concentrations by approximately 2-3 ppb on most days. Ozone concentration increases were modeled for small areas near central Denver. Future research is needed to forecast when significant PHEV penetration may occur and to anticipate characteristics of the corresponding power plant and vehicle fleets.

  19. Chronic Disease Prevalence and Medicare Advantage Market Penetration

    Science.gov (United States)

    Bernell, Stephanie Lazarus; Casim, Faizan M.; Wilmott, Jennifer; Pearson, Lindsey; Byler, Caitlin M.; Zhang, Zidong

    2015-01-01

    By March 2015, 30% of all Medicare beneficiaries were enrolled in Medicare Advantage (MA) plans. Research to date has not explored the impacts of MA market penetration on individual or population health outcomes. The primary objective of this study is to examine the relationships between MA market penetration and the beneficiary’s portfolio of cardiometabolic diagnoses. This study uses 2004 to 2008 Medical Expenditure Panel Survey (MEPS) Household Component data to construct an aggregate index that captures multiple diagnoses in one outcome measure (Chronic Disease Severity Index [CDSI]). The MEPS data for 8089 Medicare beneficiaries are merged with MA market penetration data from Centers for Medicare and Medicaid Services (CMS). Ordinary least squares regressions are run with SAS 9.3 to model the effects of MA market penetration on CDSI. The results suggest that each percentage increase in MA market penetration is associated with a greater than 2-point decline in CDSI (lower burden of cardiometabolic chronic disease). Spill-over effects may be driving improvements in the cardiometabolic health of beneficiary populations in counties with elevated levels of MA market penetration. PMID:28462266

  20. Versatile Desktop Experiment Module (DEMo) on Heat Transfer

    Science.gov (United States)

    Minerick, Adrienne R.

    2010-01-01

    This paper outlines a new Desktop Experiment Module (DEMo) engineered for a chemical engineering junior-level Heat Transfer course. This new DEMo learning tool is versatile, fairly inexpensive, and portable such that it can be positioned on student desks throughout a classroom. The DEMo system can illustrate conduction of various materials,…

  1. Thermo-chemical Ice Penetrator for Icy Moons

    Science.gov (United States)

    Arenberg, J. W.; Lee, G.; Harpole, G.; Zamel, J.; Sen, B.; Ross, F.; Retherford, K. D.

    2016-12-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be

  2. Penetration shielding applications of CYLSEC

    International Nuclear Information System (INIS)

    Dexheimer, D.T.; Hathaway, J.M.

    1985-01-01

    Evaluation of penetration and discontinuity shielding is necessary to meet 10CFR20 regulations for ensuring personnel exposures are as low as reasonably achievable (ALARA). Historically, those shielding evaluations have been done to some degree on all projects. However, many early plants used conservative methods due to lack of an economical computer code, resulting in costly penetration shielding programs. With the increased industry interest in cost effectively reducing personnel exposures to meet ALARA regulations and with the development of the CYLSEC gamma transport computer code at Bechtel, a comprehensive effort was initiated to reduce penetration and discontinuity shielding but still provide a prudent degree of protection for plant personnel from radiation streaming. This effort was more comprehensive than previous programs due to advances in shielding analysis technology and increased interest in controlling project costs while maintaining personnel exposures ALARA. Methodology and resulting cost savings are discussed

  3. How does market power affect the impact of large scale wind investment in 'energy only' wholesale electricity markets?

    International Nuclear Information System (INIS)

    Browne, Oliver; Poletti, Stephen; Young, David

    2015-01-01

    In the short run, it is well known that increasing wind penetration is likely to reduce spot market electricity prices due to the merit order effect. The long run effect is less clear because there will be a change in new capacity investment in response to the wind penetration. In this paper we examine the interaction between capacity investment, wind penetration and market power by first using a least-cost generation expansion model to simulate capacity investment with increasing amounts of wind generation, and then using a computer agent-based model to predict electricity prices in the presence of market power. We find the degree to which firms are able to exercise market power depends critically on the ratio of capacity to peak demand. For our preferred long run generation scenario we show market power increases for some periods as wind penetration increases however the merit order counteracts this with the results that prices overall remain flat. Returns to peakers increase significantly as wind penetration increases. The market power in turn leads to inefficient dispatch which is exacerbated with large amounts of wind generation. - Highlights: • Increasing investment in wind generation is analyzed using an agent based model. • In an energy only market, increased total capacity reduces market power. • Increasing wind penetration results in more market power in some periods. • Market power causes dispatch inefficiencies, which grow as wind capacity increases.

  4. Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions

    International Nuclear Information System (INIS)

    Zhang, Rui; Schweizer, Kenneth S.

    2015-01-01

    We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant

  5. Use of Electrical Penetration Graph Technology to Examine Transmission of ‘Candidatus Liberibacter solanacearum’ to Potato by Three Haplotypes of Potato Psyllid (Bactericera cockerelli; Hemiptera: Triozidae)

    Science.gov (United States)

    Mustafa, Tariq; Horton, David R.; Cooper, W. Rodney; Swisher, Kylie D.; Zack, Richard S.; Pappu, Hanu R.; Munyaneza, Joseph E.

    2015-01-01

    The potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), is a vector of the phloem-limited bacterium ‘Candidatus Liberibacter solanacearum’ (Lso), the putative causal agent of zebra chip disease of potato. Little is known about how potato psyllid transmits Lso to potato. We used electrical penetration graph (EPG) technology to compare stylet probing behaviors and efficiency of Lso transmission of three haplotypes of potato psyllid (Central, Western, Northwestern). All haplotypes exhibited the full suite of stylet behaviors identified in previous studies with this psyllid, including intercellular penetration and secretion of the stylet pathway, xylem ingestion, and phloem activities, the latter comprising salivation and ingestion. The three haplotypes exhibited similar frequency and duration of probing behaviors, with the exception of salivation into phloem, which was of higher duration by psyllids of the Western haplotype. We manipulated how long psyllids were allowed access to potato (“inoculation access period”, or IAP) to examine the relationship between phloem activities and Lso transmission. Between 25 and 30% of psyllids reached and salivated into phloem at an IAP of 1 hr, increasing to almost 80% of psyllids as IAP was increased to 24 h. Probability of Lso-transmission was lower across all IAP levels than probability of phloem salivation, indicating that a percentage of infected psyllids which salivated into the phloem failed to transmit Lso. Logistic regression showed that probability of transmission increased as a function of time spent salivating into the phloem; transmission occurred as quickly as 5 min following onset of salivation. A small percentage of infected psyllids showed extremely long salivation events but nonetheless failed to transmit Lso, for unknown reasons. Information from these studies increases our understanding of Lso transmission by potato psyllid, and demonstrates the value of EPG technology in exploring

  6. Electrical and Electrochemical Properties of Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Thanh-Hai Le

    2017-04-01

    Full Text Available Conducting polymers (CPs have received much attention in both fundamental and practical studies because they have electrical and electrochemical properties similar to those of both traditional semiconductors and metals. CPs possess excellent characteristics such as mild synthesis and processing conditions, chemical and structural diversity, tunable conductivity, and structural flexibility. Advances in nanotechnology have allowed the fabrication of versatile CP nanomaterials with improved performance for various applications including electronics, optoelectronics, sensors, and energy devices. The aim of this review is to explore the conductivity mechanisms and electrical and electrochemical properties of CPs and to discuss the factors that significantly affect these properties. The size and morphology of the materials are also discussed as key parameters that affect their major properties. Finally, the latest trends in research on electrochemical capacitors and sensors are introduced through an in-depth discussion of the most remarkable studies reported since 2003.

  7. Hacking and penetration testing with low power devices

    CERN Document Server

    Polstra, Philip

    2014-01-01

    Hacking and Penetration Testing with Low Power Devices shows you how to perform penetration tests using small, low-powered devices that are easily hidden and may be battery-powered. It shows how to use an army of devices, costing less than you might spend on a laptop, from distances of a mile or more. Hacking and Penetration Testing with Low Power Devices shows how to use devices running a version of The Deck, a full-featured penetration testing and forensics Linux distribution, and can run for days or weeks on batteries due to their low power consumption. Author Philip Polstra shows how to

  8. Net load forecasting for high renewable energy penetration grids

    International Nuclear Information System (INIS)

    Kaur, Amanpreet; Nonnenmacher, Lukas; Coimbra, Carlos F.M.

    2016-01-01

    We discuss methods for net load forecasting and their significance for operation and management of power grids with high renewable energy penetration. Net load forecasting is an enabling technology for the integration of microgrid fleets with the macrogrid. Net load represents the load that is traded between the grids (microgrid and utility grid). It is important for resource allocation and electricity market participation at the point of common coupling between the interconnected grids. We compare two inherently different approaches: additive and integrated net load forecast models. The proposed methodologies are validated on a microgrid with 33% annual renewable energy (solar) penetration. A heuristics based solar forecasting technique is proposed, achieving skill of 24.20%. The integrated solar and load forecasting model outperforms the additive model by 10.69% and the uncertainty range for the additive model is larger than the integrated model by 2.2%. Thus, for grid applications an integrated forecast model is recommended. We find that the net load forecast errors and the solar forecasting errors are cointegrated with a common stochastic drift. This is useful for future planning and modeling because the solar energy time-series allows to infer important features of the net load time-series, such as expected variability and uncertainty. - Highlights: • Net load forecasting methods for grids with renewable energy generation are discussed. • Integrated solar and load forecasting outperforms the additive model by 10.69%. • Net load forecasting reduces the uncertainty between the interconnected grids.

  9. An Analysis of Radiation Penetration through the U-Shaped Cast Concrete Joints of Concrete Shielding in the Multipurpose Gamma Irradiator of BATAN

    Science.gov (United States)

    Ardiyati, Tanti; Rozali, Bang; Kasmudin

    2018-02-01

    An analysis of radiation penetration through the U-shaped joints of cast concrete shielding in BATAN’s multipurpose gamma irradiator has been carried out. The analysis has been performed by calculating the radiation penetration through the U-shaped joints of the concrete shielding using MCNP computer code. The U-shaped joints were a new design in massive concrete construction in Indonesia and, in its actual application, it is joined by a bonding agent. In the MCNP simulation model, eight detectors were located close to the observed irradiation room walls of the concrete shielding. The simulation results indicated that the radiation levels outside the concrete shielding was less than the permissible limit of 2.5 μSv/h so that the workers could safely access electrical room, control room, water treatment facility and outside irradiation room. The radiation penetration decreased as the density of material increased.

  10. Electrically Injected Twin Photon Emitting Lasers at Room Temperature

    Directory of Open Access Journals (Sweden)

    Claire Autebert

    2016-08-01

    Full Text Available On-chip generation, manipulation and detection of nonclassical states of light are some of the major issues for quantum information technologies. In this context, the maturity and versatility of semiconductor platforms are important assets towards the realization of ultra-compact devices. In this paper we present our work on the design and study of an electrically injected AlGaAs photon pair source working at room temperature. The device is characterized through its performances as a function of temperature and injected current. Finally we discuss the impact of the device’s properties on the generated quantum state. These results are very promising for the demonstration of electrically injected entangled photon sources at room temperature and let us envision the use of III-V semiconductors for a widespread diffusion of quantum communication technologies.

  11. Synthesis of tetravalent actinide chlorides. Versatile compounds for actinide chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Maerz, Juliane [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Chemistry of the F-Elements

    2016-07-01

    Anhydrous actinide tetrachlorides (AnCl{sub 4}) were synthesized under mild conditions to provide versatile compounds for actinide chemistry. They enable a direct access to actinide complexes with organic and inorganic ligands.

  12. HMO penetration and the geographic mobility of practicing physicians.

    Science.gov (United States)

    Polsky, D; Kletke, P R; Wozniak, G D; Escarce, J J

    2000-09-01

    In this study, we assessed the influence of changes in health maintenance organization (HMO) penetration on the probability that established patient care physicians relocated their practices or left patient care altogether. For physicians who relocated their practices, we also assessed the impact of HMO penetration on their destination choices. We found that larger increases in HMO penetration decreased the probability that medical/surgical specialists in early career stayed in patient care in the same market, but had no impact on generalists, hospital-based specialists, or mid career medical/surgical specialists. We also found that physicians who relocated their practices were much more likely to choose destination markets with the same level of HMO penetration or lower HMO penetration compared with their origin markets than they were to choose destination markets with higher HMO penetration. The largely negligible impact of changes in HMO penetration on established physicians' decisions to relocate their practices or leave patient care is consistent with high relocation and switching costs. Relocating physicians' attraction to destination markets with the same level of HMO penetration as their origin markets suggests that, while physicians' styles of medical practice may adapt to changes in market conditions, learning new practice styles is costly.

  13. Skin Penetration Enhancement by Natural Oils for Dihydroquercetin Delivery.

    Science.gov (United States)

    Čižinauskas, Vytis; Elie, Nicolas; Brunelle, Alain; Briedis, Vitalis

    2017-09-12

    Natural oils are commonly used in topical pharmaceutical formulations as emulsifiers, stabilizers or solubility enhancers. They are presented as safe and inert components, mainly used for formulation purposes. It is confirmed that natural oils can affect the skin penetration of various substances. Fatty acids are mainly responsible for this effect. Current understanding lacks reliable scientific data on penetration of natural oils into the skin and their skin penetration enhancement potential. In the current study, fatty acid content analysis was used to determine the principal fatty acids in soybean, olive, avocado, sea-buckthorn pulp, raspberry seed and coconut oils. Time of flight secondary ion mass spectrometry bioimaging was used to determine the distribution of these fatty acids in human skin ex vivo after application of the oils. Skin penetration enhancement ratios were determined for a perspective antioxidant compound dihydroquercetin. The results demonstrated skin penetration of fatty acids from all oils tested. Only soybean and olive oils significantly increased the skin distribution of dihydroquercetin and can be used as skin penetration enhancers. However, no correlation can be determined between the fatty acids' composition and skin penetration enhancement using currently available methodological approaches. This indicates that potential chemical penetration enhancement should be evaluated during formulation of topically applied products containing natural oils.

  14. A Study on Factors Affecting Airborne LiDAR Penetration

    Directory of Open Access Journals (Sweden)

    Wei-Chen Hsu

    2015-01-01

    Full Text Available This study uses data from different periods, areas and parameters of airborne LiDAR (light detection and ranging surveys to understand the factors that influence airborne LiDAR penetration rate. A discussion is presented on the relationships between these factors and LiDAR penetration rate. The results show that the flight height above ground level (AGL does not have any relationship with the penetration rate. There are some factors that should have larger influence. For example, the laser is affected by a wet ground surface by reducing the number of return echoes. The field of view (FOV has a slightly negative correlation with the penetration rate, which indicates that the laser incidence angle close to zero should achieve the best penetration. The vegetation cover rate also shows a negative correlation with the penetration rate, thus bare ground and reduced vegetation in the aftermath of a typhoon also cause high penetration rate. More return echoes could be extracted from the full-waveform system, thereby effectively improving the penetration rate. This study shows that full-waveform LiDAR is an effective method for increasing the number of surface reflected echoes. This study suggests avoiding LiDAR survey employment directly following precipitation to prevent laser echo reduction.

  15. Accurate Antenna Models in Ground Penetrating Radar Diffraction Tomography

    DEFF Research Database (Denmark)

    Meincke, Peter; Kim, Oleksiy S.

    2002-01-01

    are modeled by their plane-wave receiving and transmitting spectra. We find these spectra numerically for a resistively loaded dipole using the method of moments. Also, we illustrate, through a numerical example, the importance of taking into account the correct antenna pattern in GPR diffraction tomography.......Linear inversion schemes based on the concept of diffraction tomography have proven successful for ground penetrating radar (GPR) imaging. In many GPR surveys, the antennas of the GPR are located close to the air-soil interface and, therefore, it is important to incorporate the presence...... of this interface in the inversion scheme (see Hansen, T.B. and Meincke Johansen, P., IEEE Trans. Geoscience and Remote Sensing, vol.38, p.496-506, 2000). Hansen and Meincke Johansen modeled the antennas as ideal (Hertzian) electric dipoles. Since practical GPR antennas are not ideal, it is of interest...

  16. NAPL detection with ground-penetrating radar (Invited)

    Science.gov (United States)

    Bradford, J. H.

    2013-12-01

    Non-polar organic compounds are common contaminants and are collectively referred to as nonaqueous-phase liquids (NAPLs). NAPL contamination problems occur in virtually every environment on or near the earth's surface and therefore a robust suite of geophysical tools is required to accurately characterize NAPL spills and monitor their remediation. NAPLs typically have low dielectric permittivity and low electric conductivity relative to water. Thus a zone of anomalous electrical properties often occurs when NAPL displaces water in the subsurface pore space. Such electric property anomalies make it possible to detect NAPL in the subsurface using electrical or electromagnetic geophysical methods including ground-penetrating radar (GPR). The GPR signature associated with the presence of NAPL is manifest in essentially three ways. First, the decrease in dielectric permittivity results in increased EM propagation velocity. Second, the decrease in permittivity can significantly change reflectivity. Finally, electric conductivity anomalies lead to anomalous GPR signal attenuation. The conductivity anomaly may be either high or low depending on the state of NAPL degradation, but with either high or low conductivity, GPR attenuation analysis can be a useful tool for identifying contaminated-zones. Over the past 15 years I have conducted numerous modeling, laboratory, and field tests to investigate the ability to use GPR to measure NAPL induced anomalies. The emphasis of this work has been on quantitative analysis to characterize critical source zone parameters such as NAPL concentration. Often, the contaminated zones are below the conventional resolution of the GPR signal and require thin layer analysis. Through a series of field examples, I demonstrate 5 key GPR analysis tools that can help identify and quantify NAPL contaminants. These tools include 1) GPR velocity inversion from multi-fold data, 2) amplitude vs offset analysis, 3) spectral decomposition, 4) frequency

  17. Penetration Testing Professional Ethics: a conceptual model and taxonomy

    Directory of Open Access Journals (Sweden)

    Justin Pierce

    2006-05-01

    Full Text Available In an environment where commercial software is continually patched to correct security flaws, penetration testing can provide organisations with a realistic assessment of their security posture. Penetration testing uses the same principles as criminal hackers to penetrate corporate networks and thereby verify the presence of software vulnerabilities. Network administrators can use the results of a penetration test to correct flaws and improve overall security. The use of hacking techniques, however, raises several ethical questions that centre on the integrity of the tester to maintain professional distance and uphold the profession. This paper discusses the ethics of penetration testing and presents our conceptual model and revised taxonomy.

  18. Vehicle attributes constraining present electric car applicability in the fleet market

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J R

    1979-12-01

    One strategy for reducing petroleum imports is to use electric cars in place of conventional vehicles. This paper examines obstacles which electric cars are likely to encounter in attempting to penetrate a key segment of the passenger car market, namely, the fleet market. A fleet is here defined as a group of cars operated by a corporation or a government agency. The primary data source is a questionnaire that was distributed to fleet operators by the Bobit Publishing Company in the summer of 1977. Six sectors of the fleet market were sampled: police, state and local government, utilities, taxi, rental, and business. The questionnaire was specifically designed to uncover factors limiting market penetration of unconventional vehicles, although no attempt was made to determine price elasticities. Emphasis is on vehicle attributes that are readily quantifiable and relatively projectable, including seating capacity, range, battery recharging characteristics, availability of power options, and ability to use interstate highways.

  19. Potential impacts assessment of plug-in electric vehicles on the Portuguese energy market

    International Nuclear Information System (INIS)

    Camus, C.; Farias, T.; Esteves, J.

    2011-01-01

    Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs), which obtain their fuel from the grid by charging a battery, are set to be introduced into the mass market and expected to contribute to oil consumption reduction. In this research, scenarios for 2020 EVs penetration and charging profiles are studied integrated with different hypotheses for electricity production mix. The impacts in load profiles, spot electricity prices and emissions are obtained for the Portuguese case study. Simulations for year 2020, in a scenario of low hydro production and high prices, resulted in energy costs for EVs recharge of 20 cents/kWh, with 2 million EVs charging mainly at evening peak hours. On the other hand, in an off-peak recharge, a high hydro production and low wholesale prices' scenario, recharge costs could be reduced to 5.6 cents/kWh. In these extreme cases, EV's energy prices were between 0.9 Euro to 3.2 Euro per 100 km. Reductions in primary energy consumption, fossil fuels use and CO 2 emissions of up to 3%, 14% and 10%, respectively, were verified (for a 2 million EVs' penetration and a dry year's off-peak recharge scenario) from the transportation and electricity sectors together when compared with a BAU scenario without EVs. - Highlights: → EVs and PHEVs impacts in energy, power profiles and spot electricity prices. → Reductions in primary energy consumption, fossil fuels use and CO 2 emissions. → Electricity production with more % of fossil fuels technologies and renewable ones. → Comparison between extreme charging profiles, peak and off-peak, in charging cost.

  20. Determination of the characteristics of an electric arc plasma contaminated by vapors from insulators

    International Nuclear Information System (INIS)

    Abbaoui, M.; Cheminat, B.

    1991-01-01

    An experimental study at atmospheric pressure carried out on plasma penetrated by vapors from different industrial insulators allowed the showing of the influence of the nature of the insulator upon the characteristics of the electric arc plasma; i.e., an increase of the temperature, electron density, electric field, and extinction velocity of the arc. Measurements have been made spectrometrically and by means of probes

  1. Chronic Disease Prevalence and Medicare Advantage Market Penetration

    Directory of Open Access Journals (Sweden)

    Steven W. Howard

    2015-10-01

    Full Text Available By March 2015, 30% of all Medicare beneficiaries were enrolled in Medicare Advantage (MA plans. Research to date has not explored the impacts of MA market penetration on individual or population health outcomes. The primary objective of this study is to examine the relationships between MA market penetration and the beneficiary’s portfolio of cardiometabolic diagnoses. This study uses 2004 to 2008 Medical Expenditure Panel Survey (MEPS Household Component data to construct an aggregate index that captures multiple diagnoses in one outcome measure (Chronic Disease Severity Index [CDSI]. The MEPS data for 8089 Medicare beneficiaries are merged with MA market penetration data from Centers for Medicare and Medicaid Services (CMS. Ordinary least squares regressions are run with SAS 9.3 to model the effects of MA market penetration on CDSI. The results suggest that each percentage increase in MA market penetration is associated with a greater than 2-point decline in CDSI (lower burden of cardiometabolic chronic disease. Spill-over effects may be driving improvements in the cardiometabolic health of beneficiary populations in counties with elevated levels of MA market penetration.

  2. Radon penetration of concrete slab cracks, joints, pipe penetrations, and sealants

    NARCIS (Netherlands)

    Nielson, KK; Rogers, VC; Holt, RB; Pugh, TD; Grondzik, WA; deMeijer, RJ

    1997-01-01

    Radon movement through 12 test slabs with different cracks, pipe penetrations, cold joints, masonry blocks, sealants, and tensile stresses characterized the importance of these anomalous structural domains, Diffusive and advective radon transport were measured with steady-state air pressure

  3. Sphere impact and penetration into wet sand

    KAUST Repository

    Marston, J. O.

    2012-08-07

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  4. Sphere impact and penetration into wet sand

    KAUST Repository

    Marston, J. O.; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2012-01-01

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  5. Penetrating eye injury in war.

    Science.gov (United States)

    Biehl, J W; Valdez, J; Hemady, R K; Steidl, S M; Bourke, D L

    1999-11-01

    The percentage of penetrating eye injuries in war has increased significantly in this century compared with the total number of combat injuries. With the increasing use of fragmentation weapons and possibly laser weapons on the battle-field in the future, the rate of eye injuries may exceed the 13% of the total military injuries found in Operations Desert Storm/Shield. During the Iran-Iraq War (1980-1988), eye injuries revealed that retained foreign bodies and posterior segment injuries have an improved prognosis in future military ophthalmic surgery as a result of modern diagnostic and treatment modalities. Compared with the increasing penetrating eye injuries on the battlefield, advances in ophthalmic surgery are insignificant. Eye armor, such as visors that flip up and down and protect the eyes from laser injury, needs to be developed. Similar eye protection is being developed in civilian sportswear. Penetrating eye injury in the civilian sector is becoming much closer to the military model and is now comparable for several reasons.

  6. A Scenario-Based Approach for Energy Storage Capacity Determination in LV Grids with High PV Penetration

    DEFF Research Database (Denmark)

    Hashemi Toghroljerdi, Seyedmostafa; Østergaard, Jacob; Yang, Guangya

    2014-01-01

    In this paper a new method is proposed to determine the minimum energy storage required to be installed at different locations of a low voltage (LV) grid in order to prevent the overvoltage due to high residential photovoltaic (PV) penetration. The method is based on the voltage sensitivity...... with different occurrence probabilities without involving the time-series studies problems. The proposed method is capable of modeling output power of PV panels with different orientations as well as different electric vehicle (EV) charging patterns....

  7. Promoting versatility in mentor teachers’ use of supervisory skills

    NARCIS (Netherlands)

    Crasborn, F.J.A.J.; Hennissen, P.P.M.; Korthagen, F.A.J.; Bergen, T.C.M.

    2008-01-01

    Mentor teachers need a versatile supervisory skills repertoire. Besides taking the prevalent role of daily advisor and instructor, mentor teachers should also be able to stimulate reflection in student teachers. Video recordings of 60 mentoring dialogues were analysed, both before and after a mentor

  8. WARRIOR II, a high performance modular electric robot system

    International Nuclear Information System (INIS)

    Downton, G.C.

    1996-01-01

    Initially designed for in-reactor welding by the Central Electricity Generating Board, WARRIOR has been developed using the concept of modular technology to become a light-weight, high performance robotic system. Research work on existing machines for in-reactor inspection and repair and heavy duty hydraulic manipulators was progressed in order to develop WARRIOR II, a versatile in-reactor welding system usable at any nuclear power station light enough to be deployed by existing remote handling equipment. WARRIOR II can be significantly reconfigured quickly to pursue different ends. (UK)

  9. Electrical resistivity testing for as-built concrete performance assessment of chloride penetration resistance

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.

    2014-01-01

    The electrical resistivity of concrete can provide information about its transport properties, which is relevant for durability performance. For example, resistivity is inversely proportional to chloride diffusion, at least within similar concrete compositions. A methodology is proposed for on-site

  10. On-Chip electric power generation system from sound of portable music plyers and smartphones towerd portable uTAS

    NARCIS (Netherlands)

    Naito, T.; Kaji, N.; le Gac, Severine; Tokeshi, M.; van den Berg, Albert; Baba, Y.; Fujii, T.; Hibara, A.; Takeuchi, S.; Fukuba, T.

    2012-01-01

    This paper demonstrates electric generation from sound to minimize and integrate microfluidic systems for point of care testing or in-situ analysis. In this work, 5.4 volts and 50 mW DC was generated from sound through an earphone cable, which is a versatile system and able to actuate small size and

  11. Cracks on instrumentation penetrations in reactor vessel: a new challenge; Fissuration des penetrations de cuve: un nouveau defi

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2004-02-01

    In august 2003 NRC (nuclear regulatory commission) issued a warning concerning the deposits of boron acid that might accumulate on instrumental penetrations in the bottom of PWR vessels. These deposits were first detected on the David-Besse power plant and more recently on the unit 1 of South Texas Project (STP) during a refueling shutdown. STP contracted with the Areva company in order to perform inspections on all the 58 vessel penetrations of the unit 1 and to propose solutions. For that purpose the Areva company had to design a specific visual inspection tool that combined both ultra-sound method and Foucault current probing. The results of the inspection campaign on the unit 1 showed that only 2 penetration tubes were concerned with axial defects in their walls, that no circumferential defects were detected and that butt welds presented no cracks. The 2 incriminated penetration tubes were repaired: a section of both was replaced by an alloy-690 tube. (A.C.)

  12. Optimal Operation and Management for Smart Grid Subsumed High Penetration of Renewable Energy, Electric Vehicle, and Battery Energy Storage System

    Science.gov (United States)

    Shigenobu, Ryuto; Noorzad, Ahmad Samim; Muarapaz, Cirio; Yona, Atsushi; Senjyu, Tomonobu

    2016-04-01

    Distributed generators (DG) and renewable energy sources have been attracting special attention in distribution systems in all over the world. Renewable energies, such as photovoltaic (PV) and wind turbine generators are considered as green energy. However, a large amount of DG penetration causes voltage deviation beyond the statutory range and reverse power flow at interconnection points in the distribution system. If excessive voltage deviation occurs, consumer's electric devices might break and reverse power flow will also has a negative impact on the transmission system. Thus, mass interconnections of DGs has an adverse effect on both of the utility and the customer. Therefore, reactive power control method is proposed previous research by using inverters attached DGs for prevent voltage deviations. Moreover, battery energy storage system (BESS) is also proposed for resolve reverse power flow. In addition, it is possible to supply high quality power for managing DGs and BESSs. Therefore, this paper proposes a method to maintain voltage, active power, and reactive power flow at interconnection points by using cooperative controlled of PVs, house BESSs, EVs, large BESSs, and existing voltage control devices. This paper not only protect distribution system, but also attain distribution loss reduction and effectivity management of control devices. Therefore mentioned control objectives are formulated as an optimization problem that is solved by using the Particle Swarm Optimization (PSO) algorithm. Modified scheduling method is proposed in order to improve convergence probability of scheduling scheme. The effectiveness of the proposed method is verified by case studies results and by using numerical simulations in MATLAB®.

  13. Penetration Testing dan Analisis Kemanan Web Paud Dikmas

    OpenAIRE

    Giffari, Abizar

    2018-01-01

    Sebuah instansi atau perusahaan tentunya mempunyai data penting yang tersimpan dalam sebuah sistem database yang kuat dan aman untuk menghindari ancaman pencurian data dari pihak luar. Untuk mengukur sejauh mana tingkat keamanan yang dibuat, diperlukan sebuah metode pengetesan yang disebut Penetration Testing. Penetration Testing memungkinkan kita untuk dapat menentukan sejauh mana tingkat keamanan sistem yang di test. Penetration Testing juga memungkinkan kita menyerang sistem layaknya attac...

  14. Quantitative penetration testing with item response theory

    NARCIS (Netherlands)

    Pieters, W.; Arnold, F.; Stoelinga, M.I.A.

    2013-01-01

    Existing penetration testing approaches assess the vulnerability of a system by determining whether certain attack paths are possible in practice. Therefore, penetration testing has thus far been used as a qualitative research method. To enable quantitative approaches to security risk management,

  15. Penetration of geomagnetic pulsations from one polar cao cap to the other one

    International Nuclear Information System (INIS)

    Mal'tsev, Yu.P.; Lyatskij, V.B.

    1982-01-01

    A theoretical study is made of penetration of geomagnetic pulsations, excited in one polar cap in the region of open field lines, into the other one. The geomagnetic pulsations excited in a polar cap in the region of open field lines are also observed in the opposite polar cap. This is connected with the flow of ionospheric perturbation currents from one hemisphere to another over the boundary of the region with closed magnetic lines. In case of long-period oscillations under symmetrical conditions, both in the north and south polar caps, the ionospheric effect of the opposite hemisphere results in the fact that the electrical currents flowing from a source to the polar cap boundary grow 1.5 times as high. In case of short-period oscillations a portion of longitudinal current flowing between the hemispheres is branched away for polarization currents. As a result, the electrical field and currents in the ionosphere of the opposite hemisphere can substantially decrease as compared to the long-period oscillations

  16. Penetrating ureteral trauma

    Directory of Open Access Journals (Sweden)

    Gustavo P. Fraga

    2007-04-01

    Full Text Available OBJECTIVE: The purpose of this series is to report our experience in managing ureteral trauma, focusing on the importance of early diagnosis, correct treatment, and the impact of associated injuries on the management and morbid-mortality. MATERIALS AND METHODS: From January 1994 to December 2002, 1487 laparotomies for abdominal trauma were performed and 20 patients with ureteral lesions were identified, all of them secondary to penetrating injury. Medical charts were analyzed as well as information about trauma mechanisms, diagnostic routine, treatment and outcome. RESULTS: All patients were men. Mean age was 27 years. The mechanisms of injury were gunshot wounds in 18 cases (90% and stab wounds in two (10%. All penetrating abdominal injuries had primary indication of laparotomy, and neither excretory urography nor computed tomography were used in any case before surgery. The diagnosis of ureteric injury was made intra-operatively in 17 cases (85%. Two ureteral injuries (10% were initially missed. All patients had associated injuries. The treatment was dictated by the location, extension and time necessary to identify the injury. The overall incidence of complications was 55%. The presence of shock on admission, delayed diagnosis, Abdominal Trauma Index > 25, Injury Severity Score > 25 and colon injuries were associated to a high complication rate, however, there was no statistically significant difference. There were no mortalities in this group. CONCLUSIONS: A high index of suspicion is required for diagnosis of ureteral injuries. A thorough exploration of all retroperitoneal hematoma after penetrating trauma should be an accurate method of diagnosis; even though it failed in 10% of our cases.

  17. Isatin, a versatile molecule: studies in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Barbara, E-mail: barbara.iq@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-05-15

    Isatin is a small, versatile and widely applicable pharmacological molecule. These characteristics make isatin and its derivatives attractive to many research groups as resources for chemical and pharmacological studies. Although it has a relatively simple structure, isatin is a useful chemical scaffold for a variety of chemical transformations. This article discusses several studies performed by Brazilian groups, including investigations of its structural changes, biological assay designs and new methods for the synthesis of isatin. (author)

  18. Microbial penetration and utilization of organic aircraft fuel-tank coatings.

    Science.gov (United States)

    Crum, M G; Reynolds, R J; Hedrick, H G

    1967-11-01

    Microorganisms have been found as contaminants in various types of aircraft fuel tanks. Their presence introduces problems in the operation of the aircraft, including destruction of components such as the organic coatings used as protective linings in the fuel tanks. Microbial penetration and utilization of the currently used organic coatings, EC 776, DV 1180, PR 1560, and DeSoto 1080, were determined by changes in electrical resistances of the coatings; mycelial weight changes; growth counts of the bacteria; and manometric determinations on Pseudomonas aeruginosa (GD-FW B-25) and Cladosporium resinae (QMC-7998). The results indicate EC 776 and DV 1180 to be less resistant to microbial degradation than the other coatings. Organic coatings, serving as a source of nutrition, would be conducive to population buildups in aircraft fuel tanks.

  19. Impact of Penetration Wind Turbines on Transient Stability in Sulbagsel Electrical Interconnection System

    Science.gov (United States)

    Nurtrimarini Karim, Andi; Mawar Said, Sri; Chaerah Gunadin, Indar; Darusman B, Mustadir

    2018-03-01

    This paper presents a rotor angle analysis when transient disturbance occurs when wind turbines enter the southern Sulawesi electrical interconnection system (Sulbagsel) both without and with the addition of a Power Stabilizer (PSS) control device. Time domain simulation (TDS) method is used to analyze the rotor angle deviation (δ) and rotor angle velocity (ω). A total of 44 buses, 47 lines, 6 transformers, 15 generators and 34 loads were modeled for analysis after the inclusion of large-scale wind turbines in the Sidrap and Jeneponto areas. The simulation and computation results show the addition of PSS devices to the system when transient disturbance occurs when the winds turbine entering the Sulbagsel electrical system is able to dampen and improve the rotor angle deviation (δ) and the rotor angle velocity (ω) towards better thus helping the system to continue operation at a new equilibrium point.

  20. Quantitative Penetration Testing with Item Response Theory

    NARCIS (Netherlands)

    Arnold, Florian; Pieters, Wolter; Stoelinga, Mariëlle Ida Antoinette

    2014-01-01

    Existing penetration testing approaches assess the vulnerability of a system by determining whether certain attack paths are possible in practice. Thus, penetration testing has so far been used as a qualitative research method. To enable quantitative approaches to security risk management, including

  1. Quantitative penetration testing with item response theory

    NARCIS (Netherlands)

    Arnold, Florian; Pieters, Wolter; Stoelinga, Mariëlle

    2013-01-01

    Existing penetration testing approaches assess the vulnerability of a system by determining whether certain attack paths are possible in practice. Thus, penetration testing has so far been used as a qualitative research method. To enable quantitative approaches to security risk management, including

  2. Chemical Penetration Enhancers for Transdermal Drug Delivery ...

    African Journals Online (AJOL)

    for transdermal administration. The permeation of drug through skin can be enhanced by both chemical penetration enhancement and physical methods. In this review, we have discussed the chemical penetration enhancement technology for transdermal drug delivery as well as the probable mechanisms of action.

  3. Planning Under Uncertainty for Aggregated Electric Vehicle Charging with Renewable Energy Supply

    NARCIS (Netherlands)

    Walraven, E.M.P.; Spaan, M.T.J.; Kaminka, Gal A.; Fox, Maria; Bouquet, Paolo; Hüllermeier, Eyke; Dignum, Virginia; Dignum, Frank; van Harmelen, Frank

    2016-01-01

    Renewable energy sources introduce uncertainty regarding generated power in smart grids. For instance, power that is generated by wind turbines is time-varying and dependent on the weather. Electric vehicles will become increasingly important in the development of smart grids with a high penetration

  4. Effect of Twisted Fiber Anisotropy in Cardiac Tissue on Ablation with Pulsed Electric Fields.

    Directory of Open Access Journals (Sweden)

    Fei Xie

    Full Text Available Ablation of cardiac tissue with pulsed electric fields is a promising alternative to current thermal ablation methods, and it critically depends on the electric field distribution in the heart.We developed a model that incorporates the twisted anisotropy of cardiac tissue and computed the electric field distribution in the tissue. We also performed experiments in rabbit ventricles to validate our model. We find that the model agrees well with the experimentally determined ablation volume if we assume that all tissue that is exposed to a field greater than 3 kV/cm is ablated. In our numerical analysis, we considered how tissue thickness, degree of anisotropy, and electrode configuration affect the geometry of the ablated volume. We considered two electrode configurations: two parallel needles inserted into the myocardium ("penetrating needles" configuration and one circular electrode each on epi- and endocardium, opposing each other ("epi-endo" configuration.For thick tissues (10 mm and moderate anisotropy ratio (a = 2, we find that the geometry of the ablated volume is almost unaffected by twisted anisotropy, i.e. it is approximately translationally symmetric from epi- to endocardium, for both electrode configurations. Higher anisotropy ratio (a = 10 leads to substantial variation in ablation width across the wall; these variations were more pronounced for the penetrating needle configuration than for the epi-endo configuration. For thinner tissues (4 mm, typical for human atria and higher anisotropy ratio (a = 10, the epi-endo configuration yielded approximately translationally symmetric ablation volumes, while the penetrating electrodes configuration was much more sensitive to fiber twist.These results suggest that the epi-endo configuration will be reliable for ablation of atrial fibrillation, independently of fiber orientation, while the penetrating electrode configuration may experience problems when the fiber orientation is not consistent

  5. Effect of Twisted Fiber Anisotropy in Cardiac Tissue on Ablation with Pulsed Electric Fields.

    Science.gov (United States)

    Xie, Fei; Zemlin, Christian W

    2016-01-01

    Ablation of cardiac tissue with pulsed electric fields is a promising alternative to current thermal ablation methods, and it critically depends on the electric field distribution in the heart. We developed a model that incorporates the twisted anisotropy of cardiac tissue and computed the electric field distribution in the tissue. We also performed experiments in rabbit ventricles to validate our model. We find that the model agrees well with the experimentally determined ablation volume if we assume that all tissue that is exposed to a field greater than 3 kV/cm is ablated. In our numerical analysis, we considered how tissue thickness, degree of anisotropy, and electrode configuration affect the geometry of the ablated volume. We considered two electrode configurations: two parallel needles inserted into the myocardium ("penetrating needles" configuration) and one circular electrode each on epi- and endocardium, opposing each other ("epi-endo" configuration). For thick tissues (10 mm) and moderate anisotropy ratio (a = 2), we find that the geometry of the ablated volume is almost unaffected by twisted anisotropy, i.e. it is approximately translationally symmetric from epi- to endocardium, for both electrode configurations. Higher anisotropy ratio (a = 10) leads to substantial variation in ablation width across the wall; these variations were more pronounced for the penetrating needle configuration than for the epi-endo configuration. For thinner tissues (4 mm, typical for human atria) and higher anisotropy ratio (a = 10), the epi-endo configuration yielded approximately translationally symmetric ablation volumes, while the penetrating electrodes configuration was much more sensitive to fiber twist. These results suggest that the epi-endo configuration will be reliable for ablation of atrial fibrillation, independently of fiber orientation, while the penetrating electrode configuration may experience problems when the fiber orientation is not consistent across the

  6. Fermentation Assisted by Pulsed Electric Field and Ultrasound: A Review

    Directory of Open Access Journals (Sweden)

    Leandro Galván-D’Alessandro

    2018-01-01

    Full Text Available Various novel techniques are proposed to improve process efficiency, quality, and safety of fermented food products. Ultrasound and pulsed electric field (PEF are versatile technologies that can be employed in conjunction with fermentation processes to enhance process efficiency and production rates by improving mass transfer and cell permeability. The aim of this review is to highlight current and potential applications of ultrasound and PEF techniques in food fermentation processes. Their effects on microbial enzymes, along with mechanisms of action, are also discussed.

  7. Containment penetration design and analysis by finite element methods

    International Nuclear Information System (INIS)

    Perry, R.F.; Rigamonti, G.; Dainora, J.

    1975-01-01

    Containment penetration designs which provide complete support to process piping containing high pressure and high temperature fluids and which do not employ cooling coils, require special provisions to sustain loadings associated with normal/abnormal conditions and to limit maximum temperature transmitted to the containment concrete wall. In order to accomodate piping loads and fluid temperatures within code and regulatory limitations, the containment penetration designs require careful analysis of two critical regions: 1) the portion of the penetration sleeve which is exposed to containment ambient conditions and 2) the portion of the penetration which connects the sleeve to process piping (flued head). Analytical models using finite element representation of process piping, penetration flued head, and exposed sleeve were employed to investigate the penetration assembly design. By application of flexible multi-step analyses, different penetration configurations were evaluated to determine the effects of key design parameters. Among the parameters studied were flued head angles with the process piping, sleeve length and wall thickness. Special designs employing fins welded to the sleeve to further lower the temperature at the concrete wall interface were also investigated and fin geometry effects reported. (Auth.)

  8. The facilitation of wind generation in Ireland's electricity market using demand response.

    OpenAIRE

    Finn, Patrick M.

    2011-01-01

    peer-reviewed As part of a European Union climate change and energy package that aims to reduce greenhouse gases by 20%, reach 20% penetration of renewable energy, and improve energy efficiency by 20% by 2020, Ireland has committed to generating 40% of its electricity using indigenous renewable sources, primarily wind, by 2020. As wind is an intermittent energy source, a key challenge will be to increase the flexibility of the electricity system in order to maximise yields from th...

  9. Akon - A Penetrator for Europa

    Science.gov (United States)

    Jones, Geraint

    2016-04-01

    Jupiter's moon Europa is one of the most intriguing objects in our Solar System. This 2000km-wide body has a geologically young solid water ice crust that is believed to cover a global ocean of liquid water. The presence of this ocean, together with a source of heating through tidal forces, make Europa a conceivable location for extraterrestrial life. The science case for exploring all aspects of this icy world is compelling. NASA has selected the Europa Mission (formerly Europa Clipper) to study Europa in detail in the 2020s through multiple flybys, and ESA's JUICE mission will perform two flybys of the body in the 2030s. The US agency has extended to the European Space Agency an invitation to provide a contribution to their mission. European scientists interested in Europa science and exploration are currently organizing themselves, in the framework of a coordinated Europa M5 Inititative to study concurrently the main options for this ESA contribution, from a simple addition of individual instruments to the NASA spacecraft, to a lander to investigate Europa's surface in situ. A high speed lander - a penetrator - is by far the most promising technology to achieve this latter option within the anticipated mass constraints, and studies of such a hard lander, many funded by ESA, are now at an advanced level. An international team to formally propose an Europa penetrator to ESA in response to the anticipated ESA M5 call is growing. The working title of this proposal is Akon (Άκων), named after the highly accurate javelin gifted to Europa by Zeus in ancient Greek mythology. We present plans for the Akon penetrator, which would impact Europa's surface at several hundred metres per second, and travel up to several metres into the moon's subsurface. To achieve this, the penetrator would be delivered to the surface by a dedicated descent module, to be destroyed on impact following release of the penetrator above the surface. It is planned that the instruments to be

  10. Using energy storage for strategic advantage in competitive electricity markets

    International Nuclear Information System (INIS)

    Hurwitch, J.W.; Symons, P.

    1998-01-01

    Energy storage products are emerging for use in power quality, electric transmission and distribution, and renewable energy applications. Despite this emergence into high-value markets, widespread market penetration will only occur when the value of the services that energy storage products can deliver are clearly delineated. The emergence of competitive electricity markets will more clearly define the flexible benefits of energy storage devices. This paper presents a summary of the ESA's position of the status of energy storage technologies, the market barriers, and steps the ESA is undertaking to reduce these barriers. (author)

  11. Vehicle effects on human stratum corneum absorption and skin penetration.

    Science.gov (United States)

    Zhang, Alissa; Jung, Eui-Chang; Zhu, Hanjiang; Zou, Ying; Hui, Xiaoying; Maibach, Howard

    2017-05-01

    This study evaluated the effects of three vehicles-ethanol (EtOH), isopropyl alcohol (IPA), and isopropyl myristate (IPM)-on stratum corneum (SC) absorption and diffusion of the [ 14 C]-model compounds benzoic acid and butenafine hydrochloride to better understand the transport pathways of chemicals passing through and resident in SC. Following application of topical formulations to human dermatomed skin for 30 min, penetration flux was observed for 24 h post dosing, using an in vitro flow-through skin diffusion system. Skin absorption and penetration was compared to the chemical-SC (intact, delipidized, or SC lipid film) binding levels. A significant vehicle effect was observed for chemical skin penetration and SC absorption. IPA resulted in the greatest levels of intact SC/SC lipid absorption, skin penetration, and total skin absorption/penetration of benzoic acid, followed by IPM and EtOH, respectively. For intact SC absorption and total skin absorption/penetration of butenafine, the vehicle that demonstrated the highest level of sorption/penetration was EtOH, followed by IPA and IPM, respectively. The percent doses of butenafine that were absorbed in SC lipid film and penetrated through skin in 24 h were greatest for IPA, followed by EtOH and IPM, respectively. The vehicle effect was consistent between intact SC absorption and total chemical skin absorption and penetration, as well as SC lipid absorption and chemical penetration through skin, suggesting intercellular transport as a main pathway of skin penetration for model chemicals. These results suggest the potential to predict vehicle effects on skin permeability with simple SC absorption assays. As decontamination was applied 30 min after chemical exposure, significant vehicle effects on chemical SC partitioning and percutaneous penetration also suggest that skin decontamination efficiency is vehicle dependent, and an effective decontamination method should act on chemical solutes in the lipid domain.

  12. Electric currents above Saint-Santin 3. A preliminary study of disturbances: June 6, 1978; March 22, 1979; March 23, 1979

    International Nuclear Information System (INIS)

    Mazaudier, C.

    1985-01-01

    This paper presents three case studies of ionospheric disturbances in electric fields, currents, and winds during periods of geomagnetic storms. These disturbances are detected by the Saint-Santin incoherent scatter radar. The disturbances are shown to originate from two distinct physical mechanism: (1) penetration of electric fields to lower latitudes during times of rapid change in magnetospheric convection; and (2) the action of the disturbed ionospheric dynamo driven by storm-induced wind disturbances. The storm of June 6, 1978, shows a simple illustration of penetrative convection electric fields. The storm of March 22, 1979, gives additional examples of this effect both when the B/sub Z/ component of the interplanetary fields turns southward and northward. The observed events on March 23 are clearly identifiable as the delayed response of the disturbance ionospheric dynamo

  13. Value of non-electric applications of nuclear energy beyond market potential

    International Nuclear Information System (INIS)

    Khamis, I.

    2014-01-01

    Providing process steam at different temperatures, Nuclear Power Plants (NPPs) could be coupled to various types of non-electric applications such as seawater desalination, hydrogen production, district heating or cooling, as well as any energy-demanding process heat industrial application. This will not only make nuclear power a more feasible option helping to accelerate its penetration into the the heat and transportation markets, but also helping to improve their overall thermal efficiencies. Typical thermal efficiencies of NPPs are about 33%. All existing reactor types can be coupled to non-electric application based on cogeneration i.e. the production of electricity and process heat. (authors)

  14. Prophylactic antibiotics for penetrating abdominal trauma.

    Science.gov (United States)

    Brand, Martin; Grieve, Andrew

    2013-11-18

    Penetrating abdominal trauma occurs when the peritoneal cavity is breached. Routine laparotomy for penetrating abdominal injuries began in the 1800s, with antibiotics first being used in World War II to combat septic complications associated with these injuries. This practice was marked with a reduction in sepsis-related mortality and morbidity. Whether prophylactic antibiotics are required in the prevention of infective complications following penetrating abdominal trauma is controversial, however, as no randomised placebo controlled trials have been published to date. There has also been debate about the timing of antibiotic prophylaxis. In 1972 Fullen noted a 7% to 11% post-surgical infection rate with pre-operative antibiotics, a 33% to 57% infection rate with intra-operative antibiotic administration and 30% to 70% infection rate with only post-operative antibiotic administration. Current guidelines state there is sufficient class I evidence to support the use of a single pre-operative broad spectrum antibiotic dose, with aerobic and anaerobic cover, and continuation (up to 24 hours) only in the event of a hollow viscus perforation found at exploratory laparotomy. To assess the benefits and harms of prophylactic antibiotics administered for penetrating abdominal injuries for the reduction of the incidence of septic complications, such as septicaemia, intra-abdominal abscesses and wound infections. Searches were not restricted by date, language or publication status. We searched the following electronic databases: the Cochrane Injuries Group Specialised Register, CENTRAL (The Cochrane Library 2013, issue 12 of 12), MEDLINE (OvidSP), Embase (OvidSP), ISI Web of Science: Science Citation Index Expanded (SCI-EXPANDED), ISI Web of Science: Conference Proceedings Citation Index- Science (CPCI-S) and PubMed. Searches were last conducted in January 2013. All randomised controlled trials of antibiotic prophylaxis in patients with penetrating abdominal trauma versus no

  15. Deformation analysis of shallow penetration in clay

    Science.gov (United States)

    Sagaseta, C.; Whittle, A. J.; Santagata, M.

    1997-10-01

    A new method of analysis is described for estimating the deformations and strains caused by shallow undrained penetration of piles and caissons in clay. The formulation combines previous analyses for steady, deep penetration, with methods used to compute soil deformations due to near-surface ground loss, and is referred to as the Shallow Strain Path Method (SSPM). Complete analytical solutions for the velocity and strain rates are given for a planar wall, an axisymmetric, closed-ended pile and unplugged, open-ended pile geometries. In these examples, the analyses consider a single source penetrating through the soil at a constant rate, generating a family of penetrometers with rounded tips, referred to as simple wall, pile and tube geometries. Soil deformations and strains are obtained by integrating the velocity and strain rates along the particle paths.The transition from shallow to deep penetration is analysed in detail. Shallow penetration causes heave at the ground surface, while settlements occur only in a thin veneer of material adjacent to the shaft and in a bulb-shaped region around the tip. The size of this region increases with the embedment depth. Deformations inside an open-ended pile/caisson are affected significantly by details of the simple tube wall geometry.

  16. Electric dipole moment of magnetoexciton in concentric quantum rings

    Science.gov (United States)

    García, L. F.; Mikhailov, I. D.; Revinova, S. Yu

    2017-12-01

    We study properties of exciton in a weakly coupled concentric quantum rings, penetrated by an axially directed magnetic flux and subjected to an electric field in the ring’s plane. To this end, we adopt a simple model of quasi-one-dimensional rotator, for which the wave functions and the corresponding energies we found by using the double Fourier series expansion method. Revealed multiple intersections of the energy levels provide conditions for abrupt changes of the radial and the angular quantum numbers, making possible the tunnelling of carriers between rings and allowing the formation of a permanent large dipole moment. We show that the electric and magnetic polarizability of concentric quantum rings with a trapped exciton are very sensible to external electric and magnetic fields.

  17. Air pollutant penetration through airflow leaks into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, De-Ling [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The penetration of ambient air pollutants into the indoor environment is of concern owing to several factors: (1) epidemiological studies have shown a strong association between ambient fine particulate pollution and elevated risk of human mortality; (2) people spend most of their time in indoor environments; and (3) most information about air pollutant concentration is only available from ambient routine monitoring networks. A good understanding of ambient air pollutant transport from source to receptor requires knowledge about pollutant penetration across building envelopes. Therefore, it is essential to gain insight into particle penetration in infiltrating air and the factors that affect it in order to assess human exposure more accurately, and to further prevent adverse human health effects from ambient particulate pollution. In this dissertation, the understanding of air pollutant infiltration across leaks in the building envelope was advanced by performing modeling predictions as well as experimental investigations. The modeling analyses quantified the extent of airborne particle and reactive gas (e.g., ozone) penetration through building cracks and wall cavities using engineering analysis that incorporates existing information on building leakage characteristics, knowledge of pollutant transport processes, as well as pollutant-surface interactions. Particle penetration is primarily governed by particle diameter and by the smallest dimension of the building cracks. Particles of 0.1-1 μm are predicted to have the highest penetration efficiency, nearly unity for crack heights of 0.25 mm or higher, assuming a pressure differential of 4 Pa or greater and a flow path length of 3 cm or less. Supermicron and ultrafine particles (less than 0.1 μm) are readily deposited on crack surfaces by means of gravitational settling and Brownian diffusion, respectively. The fraction of ozone penetration through building leaks could vary widely, depending significantly on its

  18. [Special penetration needling for refractory peripheral facial paralysis].

    Science.gov (United States)

    Cao, Rongjuan; Qiu, Xiaohu; Xie, Xiaokun

    2018-03-12

    To observe the clinical effect difference between special penetration needling and conventional penetration needling for the refractory peripheral facial paralysis. A total of 97 patients with intractable facial paralysis were randomized into an observation group (49 cases and 2 dropping) and a control group (48 cases and 4 dropping). In the observation group, special penetration needling at an angle about 45° between the penetration needle and paralysis muscle bundle was used, Yangbai (GB 14) through Touwei (ST 8), Yangbai (GB 14) through Shangxing (GV 23), Sizhukong (TE 23) through Yuyao (EX-HN 4), Qianzhen (Extra) through Yingxiang (LI 20), mutual penetration between Yingxiang (LI 20) and Jiache (ST 6). Conventional penetration needling was applied in the control group, Yangbai (GB 14) through Yuyao (EX-HN 4), Cuanzhu (BL 2) through Yuyao (EX-HN 4), mutual penetration between Dicang (ST 4) and Jiache (ST 6), Qianzheng (Extra) through Dicang (ST 4), Sibai (ST 2) through Yingxiang (LI 20). Three groups of electroacupuncture (discontinuous wave, 1 Hz) with tolerance were connected respectively in the two groups, Yangbai (GB 14) and Sizhukong (TE 23), Yangbai (GB 14) and Qianzheng (Extra), Yingxiang (LI 20) and Jiache (ST 6) in the observation group, Yangbai (GB 14) and Cuanzhu (BL 2), Dicang (ST 4) and Jiache (ST 6), Qianzheng (Extra) and Sibai (ST 2) in the control group. TDP was applied in the two groups at the affected Yifeng (TE 17), Jiache (ST 6) and Qianzheng (Extra), which were around the ear. Perpendicular insertion was used at Yifeng (TE 17) at the affected side and Hegu (LI 4) at the healthy side and bilateral Zusanli (ST 36). The needles were retained for 30 min. The treatment was given for 3 courses, once a day and 10 days as a course, 5 days at the interval. House-Brackmann (H-B) facial nerve grading score was recorded before and after treatment. The clinical effects were compared. The H-B scores after treatment in the two groups were higher than

  19. Current Understanding of Physicochemical Mechanisms for Cell Membrane Penetration of Arginine-rich Cell Penetrating Peptides: Role of Glycosaminoglycan Interactions.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Saito, Hiroyuki

    2018-01-01

    Arginine-rich cell penetrating peptides (CPPs) are very promising drug carriers to deliver membrane-impermeable pharmaceuticals, such as siRNA, bioactive peptides and proteins. CPPs directly penetrate into cells across cell membranes via a spontaneous energy-independent process, in which CPPs appear to interact with acidic lipids in the outer leaflet of the cell membrane. However, acidic lipids represent only 10 to 20% of the total membrane lipid content and in mammalian cell membranes they are predominantly located in the inner leaflet. Alternatively, CPPs favorably bind in a charge density- dependent manner to negatively charged, sulfated glycosaminoglycans (GAGs), such as heparan sulfate and chondroitin sulfate, which are abundant on the cell surface and are involved in many biological functions. We have recently demonstrated that the interaction of CPPs with sulfated GAGs plays a critical role in their direct cell membrane penetration: the favorable enthalpy contribution drives the high-affinity binding of arginine-rich CPPs to sulfated GAGs, initiating an efficient cell membrane penetration. The favorable enthalpy gain is presumably mainly derived from a unique property of the guanidino group of arginine residues forming multidentate hydrogen bonding with sulfate and carboxylate groups in GAGs. Such interactions can be accompanied with charge neutralization of arginine-rich CPPs, promoting their partition into cell membranes. This review summarizes the current understanding of the physicochemical mechanism for lipid membrane penetration of CPPs, and discusses the role of the GAG interactions on the cell membrane penetration of CPPs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Penetration of the brain by nonionic water soluble tri- and hexaiodinated contrast media

    International Nuclear Information System (INIS)

    Castel, J.C.; Corcier, F.; Caille, J.M.

    1987-01-01

    After suboccipital injection of Iotrol and Iopamidol labelled with iodine 125 in rabbits, we measured residual radioactivity in the whole brain and measured optical density on autoradiographs of brain sections obtained 2, 8 and 24 h after injection. Residual radioactivity is higher with Iotrol than with Iopamidol after 8 h and 24 h. At densitometry, while the penetration of the cortex is the same with both media at 2 h (although subcortical passage of Iotrol is greater) by 8 h the concentration of Iopamidol is twice that of Iotrol, and at 24 h it is three times as high. A similar pattern was seen in the subcortical region. These densitometric findings are in agreement with previous electrophysiological studies, in which changes were less severe and more transient with Iotrol than with Iohexol. There is nevertheless an apparent lack of agreement between the studies of radioactivity studies and the electrical findings. The lower neurotoxicity of Iotrol may be explained by: 1. a longer half-life in the subarachnoid space; 2. its larger molecules, which inhibit diffusion in the extracellular fluid, and 3. its more hydrophilic nature, which reduces intracellular penetration. (orig.)

  1. Regularities of magnetic field penetration into half-space in type-II superconductors

    International Nuclear Information System (INIS)

    Medvedev, Yu.V.; Krasnyuk, I.B.

    2003-01-01

    The equations, modeling the distributions of the magnetic field induction and current density in the half-space with an account of the exponential volt-ampere characteristics, are obtained. The velocity of the magnetization front propagation by the assigned average rate of the change by the time of the external magnetic field at the sample boundary is determined. The integral condition for the electric resistance, nonlinearly dependent on the magnetic field, by accomplishing whereof the magnetic flux penetrates into the sample with the finite velocity is indicated. The analytical representation of the equation with the exponential boundary mode, which models the change in the magnetic field at the area boundary, is pointed out [ru

  2. Modeling and application of plasma charge current in deep penetration laser welding

    International Nuclear Information System (INIS)

    Zhang, Xudong; Chen, Wuzhu; Jiang, Ping; Guo, Jing; Tian, Zhiling

    2003-01-01

    Plasma charge current distribution during deep penetration CO 2 laser welding was analyzed theoretically and experimentally. The laser-induced plasma above the workpiece surface expands up to the nozzle, driven by the particle concentration gradient, forming an electric potential between the workpiece and the nozzle due to the large difference between the diffusion velocities of the ions and the electrons. The plasma-induced current obtained by electrically connecting the nozzle and the workpiece can be increased by adding a negative external voltage. For a fixed set of welding conditions, the plasma charge current increases with the external voltage to a saturation value. The plasma charge current decreases as the nozzle-to-workpiece distance increases. Therefore, closed-loop control of the nozzle-to-workpiece distance for laser welding can be based on the linear relationship between the plasma charge current and the distance. In addition, the amount of plasma above the keyhole can be reduced by a transverse magnetic field, which reduces the attenuation of the incident laser power by the plasma so as to increase the laser welding thermal efficiency

  3. The penetration of aerosols through fine capillaries

    International Nuclear Information System (INIS)

    Mitchell, J.P.; Edwards, R.T.; Ball, M.H.E.

    1989-10-01

    A novel experimental technique has been developed to study the penetration of aerosol particles ranging from about 1 to 15 μm aerodynamic diameter through capillaries varying from 20 to 80 μm bore and from 10 to 50 mm in length. When the driving pressure was 100 kPa, the penetration of the airborne particles was considerably smaller than expected from a simple comparison of particle diameter with the bore of the capillary. Particle size distributions determined after penetration through the capillaries were in almost all cases similar to the particle size distribution of the aerosol at the capillary entrance. This lack of size-selectivity can be explained in terms of the capillary behaving as a conventional suction-based sampler from a near still (calm) air environment. The resulting particle penetration data are important in assessing the potential for the leakage of aerosols through seals in containers used to transport radioactive materials. (author)

  4. Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships

    Energy Technology Data Exchange (ETDEWEB)

    Gomez San Roman, Tomas [Instituto de Investigacion Tecnologica, Universidad Pontificia Comillas, Madrid (Spain); Momber, Ilan, E-mail: ilan.momber@iit.upcomillas.es [Instituto de Investigacion Tecnologica, Universidad Pontificia Comillas, Madrid (Spain); Rivier Abbad, Michel; Sanchez Miralles, Alvaro [Instituto de Investigacion Tecnologica, Universidad Pontificia Comillas, Madrid (Spain)

    2011-10-15

    Electric vehicles (EVs) present efficiency and environmental advantages over conventional transportation. It is expected that in the next decade this technology will progressively penetrate the market. The integration of plug-in electric vehicles in electric power systems poses new challenges in terms of regulation and business models. This paper proposes a conceptual regulatory framework for charging EVs. Two new electricity market agents, the EV charging manager and the EV aggregator, in charge of developing charging infrastructure and providing charging services are introduced. According to that, several charging modes such as EV home charging, public charging on streets, and dedicated charging stations are formulated. Involved market agents and their commercial relationships are analysed in detail. The paper elaborates the opportunities to formulate more sophisticated business models for vehicle-to-grid applications under which the storage capability of EV batteries is used for providing peak power or frequency regulation to support the power system operation. Finally penetration phase dependent policy and regulatory recommendations are given concerning time-of-use pricing, smart meter deployment, stable and simple regulation for reselling energy on private property, roll-out of public charging infrastructure as well as reviewing of grid codes and operational system procedures for interactions between network operators and vehicle aggregators. - Highlights: > A conceptual regulatory framework for charging EVs is proposed. > 2 new agents, EV charging point manager, EV aggregator and their functions are introduced. > Depending on private or public access of charging points, contractual relations change. > A classification of charging scenarios alludes implications on regulatory topics. > EV penetration phase dependent policy and regulatory recommendations are given.

  5. A versatile fast coincidence system with memory

    International Nuclear Information System (INIS)

    Pouthas, J.

    1976-01-01

    A versatile fast coincidence system has been studied for experiments using several detectors. In this system, all the coincidence events are produced with an associated code, and thus, different kinds of events can be processed with the same experimental set-up. Also, the classification of the logical pulses gives the possibility of using a large number of ways (30 in this system). The setting of the system is very simple: there are only two time windows to adjust. (Auth.)

  6. A methodology for understanding the impacts of large-scale penetration of micro-combined heat and power

    International Nuclear Information System (INIS)

    Tapia-Ahumada, K.; Pérez-Arriaga, I.J.; Moniz, E.J.

    2013-01-01

    Co-generation at small kW-e scale has been stimulated in recent years by governments and energy regulators as one way to increasing energy efficiency and reducing CO 2 emissions. If a widespread adoption should be realized, their effects from a system's point of view are crucial to understand the contributions of this technology. Based on a methodology that uses long-term capacity planning expansion, this paper explores some of the implications for an electric power system of having a large number of micro-CHPs. Results show that fuel cells-based micro-CHPs have the best and most consistent performance for different residential demands from the customer and system's perspectives. As the penetration increases at important levels, gas-based technologies—particularly combined cycle units—are displaced in capacity and production, which impacts the operation of the electric system during summer peak hours. Other results suggest that the tariff design impacts the economic efficiency of the system and the operation of micro-CHPs under a price-based strategy. Finally, policies aimed at micro-CHPs should consider the suitability of the technology (in size and heat-to-power ratio) to meet individual demands, the operational complexities of a large penetration, and the adequacy of the economic signals to incentivize an efficient and sustainable operation. - Highlights: • Capacity displacements and daily operation of an electric power system are explored. • Benefits depend on energy mix, prices, and micro-CHP technology and control scheme. • Benefits are observed mostly in winter when micro-CHP heat and power are fully used. • Micro-CHPs mostly displace installed capacity from natural gas combined cycle units. • Tariff design impacts economic efficiency of the system and operation of micro-CHPs

  7. Application of Uintah-MPM to shaped charge jet penetration of aluminum

    International Nuclear Information System (INIS)

    Burghardt, J; Leavy, B; Brannon, R; Guilkey, J; Xue, Z

    2010-01-01

    The capability of the generalized interpolation material point (GIMP) method in simulation of penetration events is investigated. A series of experiments was performed wherein a shaped charge jet penetrates into a stack of aluminum plates. Electronic switches were used to measure the penetration time history. Flash x-ray techniques were used to measure the density, length, radius and velocity of the shaped charge jet. Simulations of the penetration event were performed using the Uintah MPM/GIMP code with several different models of the shaped charge jet being used. The predicted penetration time history for each jet model is compared with the experimentally observed penetration history. It was found that the characteristics of the predicted penetration were dependent on the way that the jet data are translated to a discrete description. The discrete jet descriptions were modified such that the predicted penetration histories fell very close to the range of the experimental data. In comparing the various discrete jet descriptions it was found that the cumulative kinetic energy flux curve represents an important way of characterizing the penetration characteristics of the jet. The GIMP method was found to be well suited for simulation of high rate penetration events.

  8. Electric Vehicle Scenarios for India: Implications for mitigation and development

    DEFF Research Database (Denmark)

    Shukla, P.R.; Dhar, Subash; Bhaskar, Kalyan

    2014-01-01

    to infrastructure and policies. While the literature on EVs has focused more on the role of electric cars, it could be electric two-wheelers which could make early headway, as is the case in China where nearly 120 million such vehicles had been sold by the end of 2012. Three scenarios (Business as Usual (BAU......The transport sector globally is overly dependent on liquid fossil fuels. Electric vehicles (EVs) are touted as a way of diversifying the fuel mix and helping to reduce dependence on fossil fuels. There could also be other co-benefits of EVs, such as improved energy security, decarbonising...... of the electricity sector, CO2 mitigation and reduction in local air pollution. The Indian government has recently launched a national electricity mobility mission to promote EVs. There is, however, much uncertainty in terms of the penetration of EVs in the transport sector, particularly those related...

  9. Medicaid HMO penetration and its mix: did increased penetration affect physician participation in urban markets?

    Science.gov (United States)

    Adams, E Kathleen; Herring, Bradley

    2008-02-01

    To use changes in Medicaid health maintenance organization (HMO) penetration across markets over time to test for effects on the extent of Medicaid participation among physicians and to test for differences in the effects of increased use of commercial versus Medicaid-dominant plans within the market. The nationally representative Community Tracking Study's Physician Survey for three periods (1996-1997, 1998-1999, and 2000-2001) on 29,866 physicians combined with Centers for Medicare and Medicaid Services (CMS) and InterStudy data. Market-level estimates of Medicaid HMO penetration are used to test for (1) any participation in Medicaid and (2) the degree to which physicians have an "open" (i.e., nonlimited) practice accepting new Medicaid patients. Models account for physician, firm, and local characteristics, Medicaid relative payment levels adjusted for geographic variation in practice costs, and market-level fixed effects. There is a positive effect of increases in commercial Medicaid HMO penetration on the odds of accepting new Medicaid patients among all physicians, and in particular, among office-based physicians. In contrast, there is no effect, positive or negative, from expanding the penetration of Medicaid-dominant HMO plans within the market. Increases in cost-adjusted Medicaid fees, relative to Medicare levels, were associated with increases in the odds of participation and of physicians having an "open" Medicaid practice. Provider characteristics that consistently lower participation among all physicians include being older, board certified, a U.S. graduate and a solo practitioner. The effects of Medicaid HMO penetration on physician participation vary by the type of plan. If states are able to attract and retain commercial plans, participation by office-based physicians is likely to increase in a way that opens existing practices to more new Medicaid patients. Other policy variables that affect participation include the presence of a federally

  10. Versatile equipment for mechanical testing of active materials

    International Nuclear Information System (INIS)

    Bertsch, Johannes; Heimgartner, Peter

    2005-01-01

    At the Paul Scherrer Institute (PSI) 3 different project groups presently perform aging research on active materials. The research fields are fusion, high neutron flux targets and LWR relevant components. Up to now mechanical testing has been performed with small, low dose rate samples behind local shielding, not appropriate for highly activated material. To overcome this situation, a cell concept for active mechanical testing was elaborated and has been erected in PSI's Hotlab. It consists of 4 shielded cells. 3 connected cells are versatile and independently operable for highly beta/gamma active samples. One cell is an alpha/beta/gamma-box which will be realized in a second phase. This paper presents the versatility especially of the beta/gamma-cells: The different user groups perform experiments in these cells, whereas different machines can be placed into the cells. As consequence of the need of heavily shielded cell doors, a special strengthening and levelling of the floor has been required. In all cells the relevant media are installed. Besides the performance of the cells, the project progress as the difficulties and their solutions are described. (Author)

  11. Energy-efficient electric motors study

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-23

    The study identifies the industrial decision makers, investigated the information they needed to know, how they can best be reached, and the motivating factors for purchasing energy-efficient electric motors. A survey was conducted of purchasers of integral horsepower polyphase motors. The survey measured current knowledge of and awareness of energy-efficient motors, decision-making criteria, information sources, purchase and usage patterns, and related factors. The survey data were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. A description of study findings, conclusions, and recommendations is presented. Sample questionnaires and copies of letters to respondents are presented in 3 appendices. Appendices D and E contain descriptions of the methods used. (MCW)

  12. Measurement of the magnetic penetration depth in p-doped superconducting diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Lorenz; Brunner, Markus C.P.; Schneider, Ina; Kronfeldner, Klaus [University of Regensburg (Germany); Bousquet, Jessica; Bustarret, Etienne; Strunk, Christoph [Institut Neel, Grenoble (France)

    2016-07-01

    Boron-doped diamond becomes superconducting once a critical doping concentration of 4.5 x 10{sup 20} cm{sup -3} is reached. Mutual inductance measurements with a two-coil setup have been performed to determine the magnetic penetration depth λ(T), which is a measure for the superfluid stiffnes θ ∝ 1/λ{sup 2}(T). Two superconducting p-doped diamond films with thicknesses of 145 nm and 345 nm were investigated. At low temperatures these values agree reasonably with the values expected within BCS-theory using T{sub c}, carrier density and mean free path determined from electric transport measurements. Magnetic penetration depths of 3.7 μm for the thinner and 2.6 μm for the thicker film have been found. λ decreases and accordingly θ increases with increasing film thickness. On the other hand, the superfluid stiffness drops by a factor of 2 or even more at T{sub c}/2, i.e., much faster than expected from BCS-theory, but remains finite between T{sub c}/2 < T < T{sub c}. At present it is unclear, whether this behavior results from the proliferation of phase fluctuations already far below T{sub c} or from a spatial inhomogeneity of the films.

  13. Remote fluorescent penetrant system sheds new light on cracking

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    A remotely operated fluorescent penetrant inspection system developed in Sweden has successfully identified very small cracks -less than 2mm in length and less than 0.2mm in depth. The method, which is being patented, is applicable to all sizes of tubing, as well as other types of flat or curved surfaces. The system consists of a specially designed probe attached to a flexible hose. The probe is positioned by a remotely operated pusher-puller, which can be attached to any kind of robot. The pusher-puller is equipped with electrical motors and encoders for exact positioning at any given location. The hose is attached to a pump and valve unit remote from the item under test, located in the same area as the control equipment for the pusher-puller and the robot. Once the probe has been positioned in the area of interest, it is able to apply fluorescent penetrant test fluid remotely to the surface under test, using a system of inflatable seals. A fluorescent print is made on the probe head, which is then removed from the tube and another probe head fitted for testing of the next tube. Testing takes about 10 minutes per tube. To take measurements, a photograph of the probe head can be taken under ultraviolet light. Manual transfer of the fluorescent print under ultraviolet light to a transparent plastic sheet, temporarily wrapped around the probe head, is also done. The plastic sheet is then unfolded and copied in a normal photocopying machine, and a permanent record thus created. (author)

  14. Local electricity market design for the coordination of distributed energy resources at district level

    NARCIS (Netherlands)

    Ampatzis, M.; Nguyen, P.H.; Kling, W.L.

    2014-01-01

    The increasing penetration of distributed energy resources at the distribution grid level creates concerns about their successful integration in the existing electric grid, designed for centralized generation by large power plants. Failure to the proper integration of distributed energy resources

  15. Stand for testing the electrical race car engine

    Science.gov (United States)

    Baier, M.; Franiasz, J.; Mierzwa, P.; Wylenzek, D.

    2015-11-01

    An engine test stand created especially for research of electrical race car is described in the paper. The car is an aim of Silesian Greenpower project whose participants build and test electrical vehicles to take part in international races in Great Britain. The engine test stand is used to test and measure the characteristics of vehicles and their engines. It has been designed particularly to test the electric cars engineered by students of Silesian Greenpower project. The article contains a description how the test stand works and shows its versatility in many areas. The paper presents both construction of the test stand, control system and sample results of conducted research. The engine test stand was designed and modified using PLM Siemens NX 8.5. The construction of the test stand is highly modular, which means it can be used both for testing the vehicle itself or for tests without the vehicle. The test stand has its own wheel, motor, powertrain and braking system with second engine. Such solution enables verifying various concepts without changing the construction of the vehicle. The control system and measurement system are realized by enabling National Instruments product myRIO (RIO - Reconfigurable Input/Output). This controller in combination with powerful LabVIEW environment performs as an advanced tool to control torque and speed simultaneously. It is crucial as far as the test stand is equipped in two motors - the one being tested and the braking one. The feedback loop is realized by an optical encoder cooperating with the rotor mounted on the wheel. The results of tests are shown live on the screen both as a chart and as single values. After performing several tests there is a report generated. The engine test stand is widely used during process of the Silesian Greenpower vehicle design. Its versatility enables powertrain testing, wheels and tires tests, thermal analysis and more.

  16. Determining Thunderstorm Electric Fields using Radio Emission from Cosmic-Ray Air Showers

    NARCIS (Netherlands)

    Hare, B.; Scholten, O.; Trinh, G. T. N.; Ebert, U.; Rutjes, C.

    2017-01-01

    We report on a novel non-intrusive way to investigate electric fields in thunderclouds.Energetic cosmic rays penetrating the atmosphere create a particle avalanche called an extensive air shower. The front of the shower is a plasma cloud that contains 10^6 or more free electrons and positrons moving

  17. A Versatile Star PEG Grafting Method for the Generation of Nonfouling and Nonthrombogenic Surfaces

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar Thalla

    2013-01-01

    Full Text Available Polyethylene glycol (PEG grafting has a great potential to create nonfouling and nonthrombogenic surfaces, but present techniques lack versatility and stability. The present work aimed to develop a versatile PEG grafting method applicable to most biomaterial surfaces, by taking advantage of novel primary amine-rich plasma-polymerized coatings. Star-shaped PEG covalent binding was studied using static contact angle, X-ray photoelectron spectroscopy (XPS, and quartz crystal microbalance with dissipation monitoring (QCM-D. Fluorescence and QCM-D both confirmed strong reduction of protein adsorption when compared to plasma-polymerized coatings and pristine poly(ethyleneterephthalate (PET. Moreover, almost no platelet adhesion was observed after 15 min perfusion in whole blood. Altogether, our results suggest that primary amine-rich plasma-polymerized coatings offer a promising stable and versatile method for PEG grafting in order to create nonfouling and nonthrombogenic surfaces and micropatterns.

  18. A multi-criteria decision aid methodology to design electric vehicles public charging networks

    Directory of Open Access Journals (Sweden)

    João Raposo

    2015-05-01

    Full Text Available This article presents a new multi-criteria decision aid methodology, dynamic-PROMETHEE, here used to design electric vehicle charging networks. In applying this methodology to a Portuguese city, results suggest that it is effective in designing electric vehicle charging networks, generating time and policy based scenarios, considering offer and demand and the city’s urban structure. Dynamic-PROMETHE adds to the already known PROMETHEE’s characteristics other useful features, such as decision memory over time, versatility and adaptability. The case study, used here to present the dynamic-PROMETHEE, served as inspiration and base to create this new methodology. It can be used to model different problems and scenarios that may present similar requirement characteristics.

  19. A multi-criteria decision aid methodology to design electric vehicles public charging networks

    Science.gov (United States)

    Raposo, João; Rodrigues, Ana; Silva, Carlos; Dentinho, Tomaz

    2015-05-01

    This article presents a new multi-criteria decision aid methodology, dynamic-PROMETHEE, here used to design electric vehicle charging networks. In applying this methodology to a Portuguese city, results suggest that it is effective in designing electric vehicle charging networks, generating time and policy based scenarios, considering offer and demand and the city's urban structure. Dynamic-PROMETHE adds to the already known PROMETHEE's characteristics other useful features, such as decision memory over time, versatility and adaptability. The case study, used here to present the dynamic-PROMETHEE, served as inspiration and base to create this new methodology. It can be used to model different problems and scenarios that may present similar requirement characteristics.

  20. Prevention of serious impurity penetration into water-steam circuits

    International Nuclear Information System (INIS)

    Burgmann, F.; Bursik, A.; Flunkert, F.; Nieder, R.

    1977-01-01

    In consequence of reports from several power Plants concerning heavy damages due to penetrations of impurities into the water-steam circuit, the VGB Sub-Committee 'Water Chemistry in Thermal Power Plants' has established a working group to check-up how serious impurity penetration can be avoided. The lecture describes possible danger points. Suitable technical arrangements for the avoidance of penetrations, and possibilities for monitoring will be discussed. Penetration of impurities cannot be avoided with absolute reliability, even when the recommended arrangements and usual monitoring are realized. Additional measures for the protection of water steam circuits will be suggested. (orig.) [de

  1. Consistent constitutive modeling of metallic target penetration using empirical, analytical, and numerical penetration models

    Directory of Open Access Journals (Sweden)

    John (Jack P. Riegel III

    2016-04-01

    Full Text Available Historically, there has been little correlation between the material properties used in (1 empirical formulae, (2 analytical formulations, and (3 numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderson (2014 to show how the Effective Flow Stress (EFS strength model, based on empirical data, can be used as the average flow stress in the analytical Walker–Anderson Penetration model (WAPEN (Anderson and Walker, 1991 and how the same value may be utilized as an effective von Mises yield strength in numerical hydrocode simulations to predict the depth of penetration for eroding projectiles at impact velocities in the mechanical response regime of the materials. The method has the benefit of allowing the three techniques (empirical, analytical, and numerical to work in tandem. The empirical method can be used for many shot line calculations, but more advanced analytical or numerical models can be employed when necessary to address specific geometries such as edge effects or layering that are not treated by the simpler methods. Developing complete constitutive relationships for a material can be costly. If the only concern is depth of penetration, such a level of detail may not be required. The effective flow stress can be determined from a small set of depth of penetration experiments in many cases, especially for long penetrators such as the L/D = 10 ones considered here, making it a very practical approach. In the process of performing this effort, the authors considered numerical simulations by other researchers based on the same set of experimental data that the authors used for their empirical and analytical assessment. The goals were to establish a

  2. Penetration analysis of projectile with inclined concrete target

    Directory of Open Access Journals (Sweden)

    Kim S.B.

    2015-01-01

    Full Text Available This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction and CONCRETE_DAMAGE (K&C concrete models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  3. Penetration analysis of projectile with inclined concrete target

    Science.gov (United States)

    Kim, S. B.; Kim, H. W.; Yoo, Y. H.

    2015-09-01

    This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  4. Age-related percutaneous penetration part 1: skin factors.

    Science.gov (United States)

    Konda, S; Meier-Davis, S R; Cayme, B; Shudo, J; Maibach, H I

    2012-05-01

    Changes in the skin that occur in the elderly may put them at increased risk for altered percutaneous penetration from pharmacotherapy along with potential adverse effects. Skin factors that may have a role in age-related percutaneous penetration include blood flow, pH, skin thickness, hair and pore density, and the content and structure of proteins, glycosaminoglycans (GAGs), water, and lipids. Each factor is examined as a function of increasing age along with its potential impact on percutaneous penetration. Additionally, topical drugs that successfully overcome the barrier function of the skin can still fall victim to cutaneous metabolism, thereby producing metabolites that may have increased or decreased activity. This overview discusses the current data and highlights the importance of further studies to evaluate the impact of skin factors in age-related percutaneous penetration.

  5. Numerical analysis of impact-penetration problems for nuclear reactor safety

    International Nuclear Information System (INIS)

    Dubois, J.J.; Chedmail, J.F.; Bianchini, J.C.

    1977-01-01

    This paper discusses the finite element and finite difference analysis of two impact penetration problems, namely a fuel cask drop on a foundation slab and a missile penetration into a reinforced concrete structure. For a realistic detailed analysis, advanced techniques were required in the following areas: reinforced concrete simulation; remeshing algorithms for penetration induced distortions; boundary condition. The fuel cask drop on a concrete slab generates complex elasto plastic waves which propagate towards the pool where tensile cracks might appear. The problem is analysed in two steps: calculation of the energy absorbed locally around the impacted area; calculation of the three dimensional wave propagation towards the pool. For the analysis of missile penetration problems, two examples are shown: a 3000 kg missile with a velocity of 132 m/s penetrates a 1.2 m thick concrete wall (PAM-GDYNS) and a 3600 kg missile with a velocity of 90 m/s (F.D. Program HEMP-ESI) penetrates a wall at a floor level. For the second case, the computed impact-penetration mechanism is

  6. Water Penetration through a Superhydrophobic Mesh During a Drop Impact

    Science.gov (United States)

    Ryu, Seunggeol; Sen, Prosenjit; Nam, Youngsuk; Lee, Choongyeop

    2017-01-01

    When a water drop impacts a mesh having submillimeter pores, a part of the drop penetrates through the mesh if the impact velocity is sufficiently large. Here we show that different surface wettability, i.e., hydrophobicity and superhydrophobicity, leads to different water penetration dynamics on a mesh during drop impact. We show, despite the water repellence of a superhydrophobic surface, that water can penetrate a superhydrophobic mesh more easily (i.e., at a lower impact velocity) over a hydrophobic mesh via a penetration mechanism unique to a superhydrophobic mesh. On a superhydrophobic mesh, the water penetration can occur during the drop recoil stage, which appears at a lower impact velocity than the critical impact velocity for water penetration right upon impact. We propose that this unique water penetration on a superhydrophobic mesh can be attributed to the combination of the hydrodynamic focusing and the momentum transfer from the water drop when it is about to bounce off the surface, at which point the water drop retrieves most of its kinetic energy due to the negligible friction on superhydrophobic surfaces.

  7. Topological properties of the limited penetrable horizontal visibility graph family

    Science.gov (United States)

    Wang, Minggang; Vilela, André L. M.; Du, Ruijin; Zhao, Longfeng; Dong, Gaogao; Tian, Lixin; Stanley, H. Eugene

    2018-05-01

    The limited penetrable horizontal visibility graph algorithm was recently introduced to map time series in complex networks. In this work, we extend this algorithm to create a directed-limited penetrable horizontal visibility graph and an image-limited penetrable horizontal visibility graph. We define two algorithms and provide theoretical results on the topological properties of these graphs associated with different types of real-value series. We perform several numerical simulations to check the accuracy of our theoretical results. Finally, we present an application of the directed-limited penetrable horizontal visibility graph to measure real-value time series irreversibility and an application of the image-limited penetrable horizontal visibility graph that discriminates noise from chaos. We also propose a method to measure the systematic risk using the image-limited penetrable horizontal visibility graph, and the empirical results show the effectiveness of our proposed algorithms.

  8. Forecasting of Hourly Photovoltaic Energy in Canarian Electrical System

    Science.gov (United States)

    Henriquez, D.; Castaño, C.; Nebot, R.; Piernavieja, G.; Rodriguez, A.

    2010-09-01

    The Canarian Archipelago face similar problems as most insular region lacking of endogenous conventional energy resources and not connected to continental electrical grids. A consequence of the "insular fact" is the existence of isolated electrical systems that are very difficult to interconnect due to the considerable sea depths between the islands. Currently, the Canary Islands have six isolated electrical systems, only one utility generating most of the electricity (burning fuel), a recently arrived TSO (REE) and still a low implementation of Renewable Energy Resources (RES). The low level of RES deployment is a consequence of two main facts: the weakness of the stand-alone grids (from 12 MW in El Hierro up to only 1 GW in Gran Canaria) and the lack of space to install RES systems (more than 50% of the land protected due to environmental reasons). To increase the penetration of renewable energy generation, like solar or wind energy, is necessary to develop tools to manage them. The penetration of non manageable sources into weak grids like the Canarian ones causes a big problem to the grid operator. There are currently 104 MW of PV connected to the islands grids (Dec. 2009) and additional 150 MW under licensing. This power presents a serious challenge for the operation and stability of the electrical system. ITC, together with the local TSO (Red Eléctrica de España, REE) started in 2008 and R&D project to develop a PV energy prediction tool for the six Canarian Insular electrical systems. The objective is to supply reliable information for hourly forecast of the generation dispatch programme and to predict daily solar radiation patterns, in order to help program spinning reserves. ITC has approached the task of weather forecasting using different numerical model (MM5 and WRF) in combination with MSG (Meteosat Second Generation) images. From the online data recorded at several monitored PV plants and meteorological stations, PV nominal power and energy produced

  9. Optimal coupling of heat and electricity systems: A stochastic hierarchical approach

    DEFF Research Database (Denmark)

    Mitridati, Lesia Marie-Jeanne Mariane; Pinson, Pierre

    2016-01-01

    modelled using a finite set of scenarios. This model takes advantage of existing market structures and provides a decision-making tool for heat system operators. The proposed model is implemented in a case study and results are discussed to show the benefits and applicability of this approach....... penetration of CHPs and wind. The objective of this optimization problem is to minimize the heat production cost, subject to constraints describing day-ahead electricity market clearing scenarios. Uncertainties concerning wind power production, electricity demand and rival participants offers are efficiently...

  10. Energy use, cost and CO2 emissions of electric cars

    International Nuclear Information System (INIS)

    van Vliet, Oscar; Brouwer, Anne Sjoerd; Kuramochi, Takeshi; van den Broek, Machteld; Faaij, Andre

    2011-01-01

    We examine efficiency, costs and greenhouse gas emissions of current and future electric cars (EV), including the impact from charging EV on electricity demand and infrastructure for generation and distribution. Uncoordinated charging would increase national peak load by 7% at 30% penetration rate of EV and household peak load by 54%, which may exceed the capacity of existing electricity distribution infrastructure. At 30% penetration of EV, off-peak charging would result in a 20% higher, more stable base load and no additional peak load at the national level and up to 7% higher peak load at the household level. Therefore, if off-peak charging is successfully introduced, electric driving need not require additional generation capacity, even in case of 100% switch to electric vehicles. GHG emissions from electric driving depend most on the fuel type (coal or natural gas) used in the generation of electricity for charging, and range between 0 g km -1 (using renewables) and 155 g km -1 (using electricity from an old coal-based plant). Based on the generation capacity projected for the Netherlands in 2015, electricity for EV charging would largely be generated using natural gas, emitting 35-77 g CO 2 eq km -1 . We find that total cost of ownership (TCO) of current EV are uncompetitive with regular cars and series hybrid cars by more than 800 EUR year -1 . TCO of future wheel motor PHEV may become competitive when batteries cost 400 EUR kWh -1 , even without tax incentives, as long as one battery pack can last for the lifespan of the vehicle. However, TCO of future battery powered cars is at least 25% higher than of series hybrid or regular cars. This cost gap remains unless cost of batteries drops to 150 EUR kWh -1 in the future. Variations in driving cost from charging patterns have negligible influence on TCO. GHG abatement costs using plug-in hybrid cars are currently 400-1400 EUR tonne -1 CO 2eq and may come down to -100 to 300 EUR tonne -1 . Abatement cost using

  11. Regional analysis of the nuclear-electricity

    International Nuclear Information System (INIS)

    Parera, M. D.

    2011-11-01

    In this study was realized a regional analysis of the Argentinean electric market contemplating the effects of regional cooperation, the internal and international interconnections; and the possibilities of insert of new nuclear power stations were evaluated in different regions of the country, indicating the most appropriate areas to carry out these facilities to increase the penetration of the nuclear energy in the national energy matrix. Also was studied the interconnection of the electricity and natural gas markets, due to the existent linking among both energy forms. With this purpose the program Message (Model for energy supply strategy alternatives and their general environmental impacts) was used, promoted by the International Atomic Energy Agency. This model carries out an economic optimization level country, obtaining the minimum cost as a result for the modeling system. The division for regions realized by the Compania Administradora del Mercado Mayorista Electrico (CAMMESA) was used, which divides to the country in eight regions. They were considered the characteristics and necessities of each one of them, their respective demands and offers of electric power and natural gas, as well as their existent and projected interconnections, composed by the electric lines and gas pipes. According to the results obtained through the model, the nuclear-electricity is a competitive option. (Author)

  12. Endoscopic Submucosal Dissection Using a Novel Versatile Knife: An Animal Feasibility Study (with Video)

    Science.gov (United States)

    Kwon, Chang-Il; Kim, Gwangil; Kim, Won Hee; Ko, Kwang Hyun; Hong, Sung Pyo; Jeong, Seok; Lee, Don Haeng

    2014-01-01

    Background/Aims In order to reduce the procedure time and the number of accessory changes during endoscopic submucosal dissection (ESD), we developed a novel versatile knife, which has the combined advantages of several conventional knives. The aim of this study was to compare the efficacy, safety, and histological quality of ESD performed using this novel versatile knife and a combination of several conventional knives. Methods This was an in vivo animal study comparing two different modalities of ESD in mini-pigs. Completion time of each resection was documented, and the resected specimens were retrieved and evaluated for completeness. To assess the quality control of the procedures and adverse events, detailed histopathological examinations were performed. Results A total of 18 specimens were dissected by ESD safely and easily (nine specimens using the new versatile knife; nine specimens by mixing conventional knives). All resections were completed as en bloc resections. There was no significant difference in procedure time between the 2 modalities (456 seconds vs. 355 seconds, p=0.258) and cutting speed (1.983 mm2/sec vs. 1.57 mm2/sec, p=1.000). The rate of adverse events and histological quality did not statistically differ between the modalities. Conclusions ESD with a versatile knife appeared to be an easy, safe, and technically efficient method. PMID:25505721

  13. Chronic, percutaneous connector for electrical recording and stimulation with microelectrode arrays.

    Science.gov (United States)

    Shah, Kedar G; Lee, Kye Young; Tolosa, Vanessa; Tooker, Angela; Felix, Sarah; Benett, William; Pannu, Satinderpall

    2014-01-01

    The translation of advances in neural stimulation and recording research into clinical practice hinges on the ability to perform chronic experiments in awake and behaving animal models. Advances in microelectrode array technology, most notably flexible polymer arrays, have significantly improved reliability of the neural interface. However, electrical connector technology has lagged and is prone to failure from non-biocompatibility, large size, contamination, corrosion, and difficulty of use. We present a novel chronic, percutaneous electrical connector system that is suitable for neural stimulation and recording. This system features biocompatible materials, low connect and disconnect forces, passive alignment, and a protective cap during non-use. We have successfully designed, assembled, and tested in vitro both a 16-channel system and a high density 64-channel system. Custom, polyimide, 16-channel, microelectrode arrays were electrically assembled with the connector system and tested using cyclic voltammetry and electrochemical impedance spectroscopy. This connector system is versatile and can be used with a variety of microelectrode array technologies for chronic studies.

  14. Electric field in the magnetotail depending on the geomagnetic activity level and intensity Esub(y) in the solar wind

    International Nuclear Information System (INIS)

    Pudovkin, M.I.; Osipov, V.V.; Shukhtina, M.A.; Zajtseva, S.A.; AN SSSR, Vladivostok. Dal'nevostochnyh Nauchnyj Tsentr)

    1982-01-01

    The value of the large-scale electric field in the near magnetotail on AE-index variations delay in relation to interplanetary electric field variations is estimated. It is obtained that the electric field value in a tail increases with magnetic activity level. The solar wind electric field under strong magnetic disturbance penetrates into the magnetosphere practically without weakening and is essentially weakened in magneto-quit conditions. Calculated values of the electric field magnitude in the magnetotail (0.01-1mBm) are in agreement with those obtained earlier [ru

  15. Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems

    International Nuclear Information System (INIS)

    Pearce, J.M.

    2009-01-01

    The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five. (author)

  16. Containment penetration design and analysis by finite element methods

    International Nuclear Information System (INIS)

    Perry, R.F.; Rigamonti, G.; Dainora, J.

    1975-01-01

    Containment penetration designs which provide complete support to process piping containing high pressure and high temperature fluids and which do not employ cooling coils, require special provisions to sustain loadings associated with normal/abnormal conditions and to limit maximum temperature transmitted to the containment concrete wall. In order to accommodate piping imposed loads and fluid temperatures within code and regulatory limitations, the containment penetration designs require careful analysis of two critical regions: the portion of the penetration sleeve which is exposed to containment ambient conditions and the portion of the penetration which connects the sleeve to process piping (flued head). The length and thickness of the sleeve must be designed to provide maximum heat dissipation to the atmosphere and minimum heat conduction through the sleeve to meet concrete temperature limitations. The sleeve must have the capability to transmit the postulated piping loads to concrete embedments in the containment shell. The penetration flued head design must be strong enough to transfer high mechanical loads and be flexible enough to accommodate the thermal stresses generated by the high temperature fluid. Analytical models using finite element representations of process piping, penetration flued head, and exposed sleeve were employed to investigate the penetration assembly design. By application of flexible multi-step analyses, different penetration configurations were evaluated to determine the effects of key design parameters. Among the parameters studied were flued head profiles, flued head angles with the process piping, sleeve length and wall thickness. Special designs employing fins welded to the sleeve to lower the temperature at the concrete wall interface were investigated and fin geometry effects reported

  17. Socio-technical inertia: Understanding the barriers to electric vehicles

    International Nuclear Information System (INIS)

    Steinhilber, Simone; Wells, Peter; Thankappan, Samarthia

    2013-01-01

    It is widely accepted that electrification of the transport sector is one of several technological trajectories that could redress some of the environmental issues associated with the growth in travel demand including climate change and oil demand at a global scale, and air quality and noise pollution at the urban scale. Electric vehicles have been considered a promising technology at repeated intervals over the last century, but this promise has not been realised. This paper is a contribution to understanding the key tools and strategies that might enable the successful introduction of new technologies and innovations by exploring the key barriers to electric vehicles encountered in two countries (UK and Germany) where the automobile industry has been historically significant. The study evaluates stakeholders' opinions on relevant regulation, infrastructure investment, R and D incentives, and consumer incentives. The key findings of the research are that the introduction and penetration of EVs is confronted by several barriers that inhibit a larger market penetration under current conditions, which in turn casts doubt on the assumptions of strategic niche management and transitions theory. - Highlights: • Immature developing technology reason behind non-commercialisation of EVs. • EVs currently do not present a significant benefit to the electricity sector. • EVs rely on a mix of regulatory and government measures for their development. • EVs face lock-in problem of unsustainable technologies and related barriers. • Positive milieu for innovation in vehicle technology and business models are required

  18. Network Penetration Testing and Research

    Science.gov (United States)

    Murphy, Brandon F.

    2013-01-01

    This paper will focus the on research and testing done on penetrating a network for security purposes. This research will provide the IT security office new methods of attacks across and against a company's network as well as introduce them to new platforms and software that can be used to better assist with protecting against such attacks. Throughout this paper testing and research has been done on two different Linux based operating systems, for attacking and compromising a Windows based host computer. Backtrack 5 and BlackBuntu (Linux based penetration testing operating systems) are two different "attacker'' computers that will attempt to plant viruses and or NASA USRP - Internship Final Report exploits on a host Windows 7 operating system, as well as try to retrieve information from the host. On each Linux OS (Backtrack 5 and BlackBuntu) there is penetration testing software which provides the necessary tools to create exploits that can compromise a windows system as well as other operating systems. This paper will focus on two main methods of deploying exploits 1 onto a host computer in order to retrieve information from a compromised system. One method of deployment for an exploit that was tested is known as a "social engineering" exploit. This type of method requires interaction from unsuspecting user. With this user interaction, a deployed exploit may allow a malicious user to gain access to the unsuspecting user's computer as well as the network that such computer is connected to. Due to more advance security setting and antivirus protection and detection, this method is easily identified and defended against. The second method of exploit deployment is the method mainly focused upon within this paper. This method required extensive research on the best way to compromise a security enabled protected network. Once a network has been compromised, then any and all devices connected to such network has the potential to be compromised as well. With a compromised

  19. Penetrating Brain Injury after Suicide Attempt with Speargun

    Directory of Open Access Journals (Sweden)

    John Ross Williams

    2014-07-01

    Full Text Available Penetrating cranial injury by mechanisms other than are exceedingly rare, and so strategies and guidelines for the management of PBI are largely informed by data from higher-velocity penetrating injuries. Here we present a case of penetrating brain injury by the low velocity mechanism of a harpoon from an underwater fishing speargun in an attempted suicide by a 56-year-old Caucasian male. The case raised a number of interesting points in management of lower-velocity penetrating brain injury (LVPBI, including benefit in delaying foreign body removal to allow for tamponade; the importance of history taking in establishing the social/legal significance of the events surrounding the injury; the use of cerebral angiogram in all cases of PBI; advantages of using DECT to reduce artifact when available; and antibiotic prophylaxis in the context of idiosyncratic histories of usage of penetrating objects before coming in contact with the intracranial environment. We present here the management of the case in full along with an extended discussion and review of existing literature regarding key points in management of LVPBI vs. higher velocity forms of intracranial injury.

  20. Joint application of ground penetrating radar and electrical resistivity measurements for characterization of subsurface stratigraphy in Southwestern Nigeria

    International Nuclear Information System (INIS)

    Adepelumi, A A; Fayemi, O

    2012-01-01

    The frequent building collapses in Nigeria have been attributed to a lack of pre-construction investigations, which assist engineers in obtaining in situ geotechnical information. Further, the structural subsurface settings are often ignored or investigation is haphazardly carried out. To address this issue and demonstrate the importance of such a survey, a combination of ground penetrating radar (GPR) and vertical electrical sounding (VES) data were acquired in a part of Southwestern Nigeria. A 200 MHz antenna was used for the data acquisition along four traverses. The data were subjected to standard GPR processing techniques, and attribute analysis such as instantaneous frequency, amplitude and phase. Also, for comparative and engineering characterization purposes, longitudinal conductance and coefficient of anisotropy were computed from the VES results and used for determining the competency of the bedrocks. From the GPR results, it was observed that the mapped subsurface is characterized as erosional truncated at a low angle, which is southerly dipping and includes tangential reflections. Further, stratified rocks dipping at an angle of 32° occur between 1.0 and 4.5 m depth in all of the GPR sections; these strata were truncated by topsoil at shallow depths. Also, some of the sections depict ancient channel structures that have a dimension of 70 m × 40 m. The resistivity data suggest that the study area is characterized by four distinct geoelectric sequences. These comprise topsoil which is composed of clay-like sand to lateritic clay whose thickness ranges between 0.25 and 8.12 m, weathered bedrock with a thickness between 3.84 and 12.61 m, stratified bedrock with a thickness between 0.33 and 7.51 m, and fresh bedrock. These results reveal a complex subsurface geology and this characterizes the study area. The area has low to moderate longitudinal conductance and coefficient of anisotropy values, which suggest that incompetent to semi-competent bedrock