WorldWideScience

Sample records for velox habitat characteristics

  1. Sound transmission at ground level in a short-grass prairie habitat and its implications for long-range communication in the swift fox Vulpes velox

    DEFF Research Database (Denmark)

    Darden, Safi K; Pedersen, Simon B; Larsen, Ole N

    2008-01-01

    The acoustic environment of swift foxes Vulpes velox vocalizing close to the ground and the effect of propagation on individual identity information in vocalizations were quantified in a transmission experiment in prairie habitat. Sounds were propagated (0.45 m above the ground) at distances up t...

  2. Space use and territoriality in swift foxes (Vulpes velox) in northeastern Colorado

    DEFF Research Database (Denmark)

    Lebsock, Amariah A.; Burdett, Christopher L.; Darden, Safi K.

    2012-01-01

    Space use is a fundamental characteristic that informs our knowledge of social relationships and the degree to which individuals are territorial. Until recently, relatively little was known about the spatial ecology and social organization of swift foxes (Vulpes velox (Say, 1823)). We investigated...

  3. Diets of swift foxes (Vulpes velox) in continuous and fragmented prairie in Northwestern Texas

    Science.gov (United States)

    Kamler, J.F.; Ballard, W.B.; Wallace, M.C.; Gipson, P.S.

    2007-01-01

    Distribution of the swift fox (Vulpes velox) has declined dramatically since the 1800s, and suggested causes of this decline are habitat fragmentation and transformation due to agricultural expansion. However, impacts of fragmentation and human-altered habitats on swift foxes still are not well understood. To better understand what effects these factors have on diets of swift foxes, scats were collected in northwestern Texas at two study sites, one of continuous native prairie and one representing fragmented native prairie interspersed with agricultural and fields in the Conservation Reserve Program. Leporids, a potential food source, were surveyed seasonally on both sites. Diets of swift foxes differed between sites; insects were consumed more on continuous prairie, whereas mammals, birds, and crops were consumed more on fragmented prairie. Size of populations of leporids were 2-3 times higher on fragmented prairie, and swift foxes responded by consuming more leporids on fragmented (11.1% frequency occurrence) than continuous (3.8%) prairie. Dietary diversity was greater on fragmented prairie during both years of the study. Differences in diets between sites suggested that the swift fox is an adaptable and opportunistic feeder, able to exploit a variety of food resources, probably in relation to availability of food. We suggest that compared to continuous native prairie, fragmented prairie can offer swift foxes a more diverse prey base, at least within the mosaic of native prairie, agricultural, and fields that are in the Conservation Reserve Program.

  4. Effects of military-authorized activities on the San Joaquin kit fox (Vulpes velox macrotis) at Camp Roberts Army National Guard Training Site, California

    Energy Technology Data Exchange (ETDEWEB)

    Berry, W.H.; Standley, W.G.; O`Farrell, T.P.; Kato, T.T.

    1992-10-01

    The effects of military-authorized activities on San Joaquin kit fox (Vulpes velox macrotis) were investigated at Camp Roberts Army National Guard Training Site from 1988 to 1991. Military-authorized activities included military training exercises, facilities maintenance, new construction, controlled burning, livestock grazing, and public-access hunting. Positive effects of the military included habitat preservation, preactivity surveys, and natural resources management practices designed to conserve kit foxes and their habitat. Perceived negative effects such as entrapment in dens, shootings during military exercises, and accidental poisoning were not observed. Foxes were observed in areas being used simultaneously by military units. Authorized activities were known to have caused the deaths of three of 52 radiocollared foxes recovered dead: one became entangled in concertina wire, one was believed shot by a hunter, and one was struck by a vehicle. Entanglement in communication wire may have contributed to the death of another radiocollared fox that was killed by a predator. Approximately 10% of kit fox dens encountered showed evidence of vehicle traffic, but denning sites did not appear to be a limiting factor for kit foxes.

  5. Blood characteristics of San Joaquin kit fox (Vulpes velox macrotis) at Camp Roberts Army National Guard Training Site, California

    Energy Technology Data Exchange (ETDEWEB)

    Standley, W.G.; McCue, P.M.

    1992-09-01

    Hematology, serum chemistry, and prevalence of antibodies against selected, pathogens in a San Joaquin kit fox population (Vulpes velox macrotis) were investigated at Camp Roberts Army National Guard Training Site, California, in 1989 and 1990. Samples from 18 (10 female, 8 male) adult kit foxes were used to establish normal hematology and serum chemistry values for this population. Average values were all within the normal ranges reported for kit foxes in other locations. Three hematology parameters had significant differences between male and female values; males had higher total white blood cell and neutrophil counts, and lower lymphocyte counts. There were no significant differences between serum chemistry values from male and female foxes. Prevalence of antibodies was determined from serum samples from 47 (26 female, 21 male) adult kit foxes and eight (4 female, 4 male) juveniles. Antibodies were detected against five of the eight pathogens tested: canine parvovirus, Toxoplasma gondii Leptospira interrogans, canine distemper virus, and canine hepatitis virus. Antibodies were not detected against Brucella, canis, Coccidioides immitis, or Yersinia pestis.

  6. A Potential Tool for Swift Fox (Vulpes velox) Conservation: Individuality of Long-Range Barking Sequences

    DEFF Research Database (Denmark)

    Darden, Safi-Kirstine Klem; Dabelsteen, Torben; Pedersen, Simon Boel

    2003-01-01

    Vocal individuality has been found in a number canid species. This natural variation can have applications in several aspects of species conservation, from behavioral studies to estimating population density or abundance. The swift fox (Vulpes velox) is a North American canid listed as endangered...... in Canada and extirpated, endangered, or threatened in parts of the United States. The barking sequence is a long-range vocalization in the species' vocal repertoire. It consists of a series of barks and is most common during the mating season. We analyzed barking sequences recorded in a standardized...

  7. Genome sequence of the moderately thermophilic sulfur-reducing bacterium Thermanaerovibrio velox type strain (Z-9701(T)) and emended description of the genus Thermanaerovibrio.

    Science.gov (United States)

    Palaniappan, Krishna; Meier-Kolthoff, Jan P; Teshima, Hazuki; Nolan, Matt; Lapidus, Alla; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Rohde, Manfred; Mayilraj, Shanmugam; Spring, Stefan; Detter, John C; Göker, Markus; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Woyke, Tanja

    2013-10-16

    Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of its morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883(T), the type strain of T. acidaminovorans, stain Z-9701(T) is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the G enomic E ncyclopedia of Bacteria and Archaea project.

  8. Identification of Neosho Smallmouth Bass (Micropterus dolomieu velox) stocks for possible introduction into Grand Lake, Oklahoma

    Science.gov (United States)

    Taylor, Andrew T.; Long, James M.; Schwemm, Michael R.; Tringali, Michael D.; Brewer, Shannon K.

    2016-01-01

    Stocking black basses (Micropterus spp.) is a common practice used to increase angling opportunities in impoundments; however, when non-native black basses are introduced they often invade riverine habitats where they threaten the persistence of other fishes, including native black basses. Neosho Smallmouth Bass (M. dolomieu velox) is endemic to portions of the Ozark Highlands and Boston Mountains ecoregions and is threatened by introductions of non-native Smallmouth Bass (“SMB”) forms. Because of recent interest in stocking SMB into Grand Lake o’ the Cherokees, we assessed the suitability of local Neosho SMB populations as potential broodstock sources by assessing introgression with non-native SMB forms, as well as characterizing population structure and genetic diversity. The majority of Neosho SMB populations contained low, but non-negligible, genomic proportions of two genetically distinct non-native SMB forms. Introgression was highest in the Illinois River upstream of Lake Tenkiller, where Tennessee ‘lake strain’ SMB were stocked in the early 1990’s. We recovered three genetically distinct clusters of Neosho SMB at the uppermost hierarchical level of population structure: a distinct Illinois River cluster and two Grand River clusters that appear to naturally mix at some sites. Genetic diversity measures generally increased with stream size, and smaller populations with low diversity measures may benefit from immigration of novel genetic material. Overall, introgression with non-native SMB forms appears to pose a prominent threat to Neosho SMB; however, relatively intact populations of Neosho SMB exist in some Grand Lake o’ the Cherokees tributaries. Results could be used in developing a stocking program that promotes and sustains existing genetic diversity within and among Neosho SMB populations.

  9. Genome sequence of the moderately thermophilic sulfur-reducing bacterium Thermanaerovibrio velox type strain (Z-9701T) and emended description of the genus Thermanaerovibrio

    OpenAIRE

    Palaniappan, Krishna; Meier-Kolthoff, Jan P.; Teshima, Hazuki; Nolan, Matt; Lapidus, Alla; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna

    2013-01-01

    Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae , a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also ...

  10. Habitat characteristics provide insights of carbon storage in seagrass meadows

    KAUST Repository

    Mazarrasa, Inés

    2018-02-17

    Seagrass meadows provide multiple ecosystem services, yet they are among the most threatened ecosystems on earth. Because of their role as carbon sinks, protection and restoration of seagrass meadows contribute to climate change mitigation. Blue Carbon strategies aim to enhance CO2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding of the habitat characteristics that influence Corg sequestration. Here, we review the existing knowledge on Blue Carbon research in seagrass meadows to identify the key habitat characteristics that influence Corg sequestration in seagrass meadows, those factors that threaten this function and those with unclear effects. We demonstrate that not all seagrass habitats have the same potential, identify research priorities and describe the implications of the results found for the implementation and development of efficient Blue Carbon strategies based on seagrass meadows.

  11. Habitat characteristics provide insights of carbon storage in seagrass meadows.

    Science.gov (United States)

    Mazarrasa, Inés; Samper-Villarreal, Jimena; Serrano, Oscar; Lavery, Paul S; Lovelock, Catherine E; Marbà, Núria; Duarte, Carlos M; Cortés, Jorge

    2018-02-16

    Seagrass meadows provide multiple ecosystem services, yet they are among the most threatened ecosystems on earth. Because of their role as carbon sinks, protection and restoration of seagrass meadows contribute to climate change mitigation. Blue Carbon strategies aim to enhance CO 2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding of the habitat characteristics that influence C org sequestration. Here, we review the existing knowledge on Blue Carbon research in seagrass meadows to identify the key habitat characteristics that influence C org sequestration in seagrass meadows, those factors that threaten this function and those with unclear effects. We demonstrate that not all seagrass habitats have the same potential, identify research priorities and describe the implications of the results found for the implementation and development of efficient Blue Carbon strategies based on seagrass meadows. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Flock size, diet composition, and habitat characteristics of the ...

    African Journals Online (AJOL)

    gla- cial history (Magin 2001). Some of the plant species endemic to SMNP are stonecrop. Rosularia simiensis and tussock grass Festuca gilbertiana. SMNP is home to 22 species. Flock size, diet composition, and habitat characteristics of ...

  13. Genome sequence of the moderately thermophilic sulfur-reducing bacterium Thermanaerovibrio velox type strain (Z-9701T) and emended description of the genus Thermanaerovibrio

    OpenAIRE

    Palaniappan, K; Meier-Kolthoff, JP; Teshima, H; Nolan, M; Lapidus, A; Tice, H; Del Rio, TG; Cheng, JF; Han, C; Tapia, R; Goodwin, LA; Pitluck, S; Liolios, K; Mavromatis, K; Pagani, I

    2013-01-01

    Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of an-aerobic environments including soil, oil wells, wastewater treatment plants and animal gas-trointestinal tracts. They are also...

  14. The relative influence of road characteristics and habitat on adjacent lizard populations in arid shrublands

    Science.gov (United States)

    Hubbard, Kaylan A.; Chalfoun, Anna D.; Gerow, Kenneth G.

    2016-01-01

    As road networks continue to expand globally, indirect impacts to adjacent wildlife populations remain largely unknown. Simultaneously, reptile populations are declining worldwide and anthropogenic habitat loss and fragmentation are frequently cited causes. We evaluated the relative influence of three different road characteristics (surface treatment, width, and traffic volume) and habitat features on adjacent populations of Northern Sagebrush Lizards (Sceloporus graciosus graciosus), Plateau Fence Lizards (S. tristichus), and Greater Short-Horned Lizards (Phrynosoma hernandesi) in mixed arid shrubland habitats in southwest Wyoming. Neither odds of lizard presence nor relative abundance was significantly related to any of the assessed road characteristics, although there was a trend for higher Sceloporus spp. abundance adjacent to paved roads. Sceloporus spp. relative abundance did not vary systematically with distance to the nearest road. Rather, both Sceloporus spp. and Greater Short-Horned Lizards were associated strongly with particular habitat characteristics adjacent to roads. Sceloporus spp. presence and relative abundance increased with rock cover, relative abundance was associated positively with shrub cover, and presence was associated negatively with grass cover. Greater Short-Horned Lizard presence increased with bare ground and decreased marginally with shrub cover. Our results suggest that habitat attributes are stronger correlates of lizard presence and relative abundance than individual characteristics of adjacent roads, at least in our system. Therefore, an effective conservation approach for these species may be to consider the landscape through which new roads and their associated development would occur, and the impact that placement could have on fragment size and key habitat elements.

  15. Habitat characteristic of two selected locations for sea cucumber ranching purposes

    Science.gov (United States)

    Hartati, Retno; Trianto, Agus; Widianingsih

    2017-02-01

    Sea cucumbers face heavily overfished because of their high prices and very strong market demand. One effort suggested to overcome this problem is sea ranching. The objectives of present works were to determine biological, physical, and chemical characteristics of prospective location for sea ranching of sea cucumber Holothuria atra. Two location at Jepara Waters (Teluk Awur and Bandengan WateRs of Jepara Regency) were selected. The determination of chemical (salinity, temperature, dissolved oxygen of water, phosphate, nitrate, nitrite and ammonium of water and sediment, organic matters of sediment), physical (transparancy, sedimen grains size, water current direction and its velocity), biologycal characteristic (coverage of seagrass and its macroalgae associated, phytoplankton as well as chlorophyl-a and phaeopytin of water and sediment) ware determined. The result of present work showed that some characteristic were matched with requirement as sea ranching location of sea cucumber because the density of sea cucumber in the sea is a function of habitat features. For sediment feeding holothurians of the family Aspidochirotida, the biologycal characteristic act as very important considerations by providing sea cucumber food. High cholophyl-a and phaeopytin in sediment also represent a prosperous habitat for sea cucumber ranching.

  16. Analysis of habitat characteristics of small pelagic fish based on generalized additive models in Kepulauan Seribu Waters

    Science.gov (United States)

    Rivai, A. A.; Siregar, V. P.; Agus, S. B.; Yasuma, H.

    2018-03-01

    One of the required information for sustainable fisheries management is about the habitat characteristics of a fish species. This information can be used to map the distribution of fish and map the potential fishing ground. This study aimed to analyze the habitat characteristics of small pelagic fishes (anchovy, squid, sardine and scads) which were mainly caught by lift net in Kepulauan Seribu waters. Research on habitat characteristics had been widely done, but the use of total suspended solid (TSS) parameters in this analysis is still lacking. TSS parameter which was extracted from Landsat 8 along with five other oceanographic parameters, CPUE data and location of fishing ground data from lift net fisheries in Kepulauan Seribu were included in this analysis. This analysis used Generalized Additive Models (GAMs) to evaluate the relationship between CPUE and oceanographic parameters. The results of the analysis showed that each fish species had different habitat characteristics. TSS and sea surface height had a great influence on the value of CPUE from each species. All the oceanographic parameters affected the CPUE of each species. This study demonstrated the effective use of GAMs to identify the essential habitat of a fish species.

  17. Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L

    International Nuclear Information System (INIS)

    Kardel, F.; Wuyts, K.; Babanezhad, M.; Vitharana, U.W.A.; Wuytack, T.; Potters, G.; Samson, R.

    2010-01-01

    This study has evaluated urban habitat quality by studying specific leaf area (SLA) and stomatal characteristics of the common herb Plantago lanceolata L. SLA and stomatal density, pore surface and resistance were measured at 169 locations in the city of Gent (Belgium), distributed over four land use classes, i.e., sub-urban green, urban green, urban and industry. SLA and stomatal density significantly increased from sub-urban green towards more urbanised land use classes, while the reverse was observed for stomatal pore surface. Stomatal resistance increased in the urban and industrial land use class in comparison with the (sub-) urban green, but differences between land use classes were less pronounced. Spatial distribution maps for these leaf characteristics showed a high spatial variation, related to differences in habitat quality within the city. Hence, stomatal density and stomatal pore surface are assumed to be potentially good bio-indicators for urban habitat quality. - Stomatal characteristics of Plantago lanceolata can be used for biomonitoring of urban habitat quality.

  18. [Study on morphology, quality and germination characteristics of Acanthopanax trifoliatus seeds under different habitats].

    Science.gov (United States)

    Xiao, Juan

    2014-05-01

    To preliminary explore the difference of the morphological, quality and germinal characteristics of Acanthopanax trifoliatus seeds under different habitats. Collect the wild seeds from different habitats in West Mountain, and then observe their external appearances and internal structure, and test the thousand seeds weight,water content and seed vigor. What's more, the influence to germination rates of the seeds from different temperatures and light intensities in artificial bioclimatic chamber was studied. Orthogonal test in experimental plots was carried out to screen the different sowing dates, matrix types and soil depths which may influence germination rate. The external appearances and quality characteristics of wild seeds from three habitats were different. Seeds could germinate in the both light and dark, the germination rate of the habitat II was as high as 70.5% at the optimum temperature 20 degrees C in artificial bioclimatic chamber. The optimal combination A1, B1, C1 was screened out through orthogonal test, namely, the germination rate would be the highest when the seeds sowed in autumn covering with 2 cm depth of matrix type which component of the ratio of soil, sand and organic fertilizer was 6: 3: 1. There was significant difference in the morphology and germination rate of the three habitats seeds. The habitat II seeds were the optimal choice when culture seedling. The influences of different temperatures on germination rate were different, and the dried seeds should sow in current autumn, better than the next spring.

  19. Variation in habitat soundscape characteristics influences settlement of a reef-building coral.

    Science.gov (United States)

    Lillis, Ashlee; Bohnenstiehl, DelWayne; Peters, Jason W; Eggleston, David

    2016-01-01

    Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata , was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  20. Caribou nursery site habitat characteristics in two northern Ontario parks

    Directory of Open Access Journals (Sweden)

    Natasha L. Carr

    2007-04-01

    Full Text Available To prevent further range recession, habitat features essential to the life-history requisites of woodland caribou (Rangifer tarandus caribou such as calving and nursery sites need to be protected for the persistence of the species. Woodland caribou may minimize predation risk during calving by either spacing out or spacing away from predators in the forest to calve on islands, wetlands, or shorelines. Our objective was to determine the characteristics of shoreline habitats used as calving and nursery sites by female woodland caribou in northern Ontario. Detailed vegetation and other site characteristics were measured at nursery sites used by cow-calf pairs in Wabakimi and Woodland Caribou Provincial Parks for comparison with shoreline sites that were not used by caribou within each park. Differences in habitat variables selected by female caribou in the two study areas reflect broad ecoregional differences in vegetation and topography. In Wabakimi Provincial Park, understorey tree density and ground detection distance played key roles in distinguishing nursery sites from sites that were not used. In Woodland Caribou Provincial Park, groundcover vegetation and shrub density were important in the selection of nursery sites by female caribou. Generally, female caribou in both parks selected nursery sites with greater slope, lower shrub density but thicker groundcover vegetation, including greater lichen abundance, and higher densities of mature trees than shoreline sites that were not used. The identification of these important features for caribou nursery sites provides a basis for improving their protection in future management policies and legislation.

  1. Den site activity patterns of adult male and female swift foxes, Vulpes velox, in Northwestern Texas

    Science.gov (United States)

    Lemons, P.R.; Ballard, W.B.; Sullivan, R.M.; Sovada, M.A.

    2003-01-01

    Activity of Swift Foxes (Vulpes velox) at den sites was studied in northwestern Texas during pup rearing seasons in 2000 and 2001 to determine role of males in parental care. Twenty-four percent of radio-collared females with a potential to breed successfully raised pups to eight weeks of age. We intensively monitored presence and absence of male and female Swift Foxes at two den sites each year. Females were present >2.6 times more at den sites than males during the pup rearing season. Female and male Swift Foxes largely stayed at dens during diurnal hours and were active away from dens during nocturnal and crepuscular hours. Females and males spent 12.4% and 3.0% more time at dens before pups emerged, than after pups emerged, respectively. Following depredation of one male parent, the female spent 29% less time at the den site. Decrease in time spent at the den by the female following loss of her mate suggested that loss of one parent might severely impact recruitment of Swift Foxes. Our observations indicated that intense Coyote (Canis latrans) depredation may severely impact pup-rearing success as well as the parental care within Swift Fox family groups.

  2. Seasonal food habits of swift fox (Vulpes velox) in cropland and rangeland landscapes in western Kansas

    Science.gov (United States)

    Sovada, M.A.; Roy, C.C.; Telesco, D.J.

    2001-01-01

    Food habits of swift foxes (Vulpes velox) occupying two distinct landscapes (dominated by cropland versus rangeland) in western Kansas were determined by analysis of scats collected in 1993 and 1996. Frequencies of occurrence of prey items in scats were compared between cropland and rangeland areas by season. Overall, the most frequently occurring foods of swift foxes were mammals (92% of all scats) and arthropods (87%), followed by birds (24%), carrion (23%), plants (15%) and reptiles (4%). No differences were detected between landscapes for occurrence of mammals, arthropods or carrion in any season (P ≥ 0.100). Plants, specifically commercial sunflower seeds, were consumed more frequently in cropland than in rangeland in spring (P = 0.004) and fall (P = 0.001). Birds were more common in the swift fox diet in cropland than in rangeland during the fall (P = 0.008), whereas reptiles occurred more frequently in the diet in rangeland than in cropland during spring (P = 0.042). Variation in the diet of the swift fox between areas was most likely due to its opportunistic foraging behavior, resulting in a diet that closely links prey use with availability.

  3. Variation in habitat soundscape characteristics influences settlement of a reef-building coral

    Directory of Open Access Journals (Sweden)

    Ashlee Lillis

    2016-10-01

    Full Text Available Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata, was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase. These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  4. Biological and environmental characteristics of mangrove habitats from Manori creek, West Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Kulkarni, V.A.; Jagtap, T.G.; Mhalsekar, N.M.; Naik, A.N.

    better mangrove formations. A creek habitat had been evaluated for its biological and environmental characteristics, and is compared with similar but relatively lesser stressed Mandovi estuary (approx. 475 km south of Mumbai). Several evidences...

  5. Relation of urbanization to stream habitat and geomorphic characteristics in nine metropolitan areas of the United States

    Science.gov (United States)

    Fitzpatrick, Faith A.; Peppler, Marie C.

    2010-01-01

    The relation of urbanization to stream habitat and geomorphic characteristics was examined collectively and individually for nine metropolitan areas of the United States?Portland, Oregon; Salt Lake City, Utah; Denver, Colorado; Dallas?Forth Worth, Texas; Milwaukee?Green Bay, Wisconsin; Birmingham, Alabama; Atlanta, Georgia; Raleigh, North Carolina; and Boston, Massachusetts. The study was part of a larger study conducted by the U.S. Geological Survey from 1999 to 2004 to examine the effects of urbanization on the physical, chemical, and biological components of stream ecosystems. The objectives of the current study were to determine how stream habitat and geomorphic characteristics relate to different aspects of urbanization across a variety of diverse environmental settings and spatial scales. A space-for-time rural-to-urban land-cover gradient approach was used. Reach-scale habitat data and geomorphic characteristic data were collected once during low flow and included indicators of potential habitat degradation such as measures of channel geometry and hydraulics, streambed substrate, low-flow reach volume (an estimate of base-flow conditions), habitat complexity, and riparian/bank conditions. Hydrologic metrics included in the analyses were those expected to be altered by increases in impervious surfaces, such as high-flow frequency and duration, flashiness, and low-flow duration. Other natural and human features, such as reach-scale channel engineering, geologic setting, and slope, were quantified to identify their possible confounding influences on habitat relations with watershed-scale urbanization indicators. Habitat and geomorphic characteristics were compared to several watershed-scale indicators of urbanization, natural landscape characteristics, and hydrologic metrics by use of correlation analyses and stepwise linear regression. Habitat and geomorphic characteristics were related to percentages of impervious surfaces only in some metropolitan areas and

  6. Different in the dark: The effect of habitat characteristics on community composition and beta diversity in bromeliad microfauna.

    Directory of Open Access Journals (Sweden)

    Annika Busse

    Full Text Available The mechanisms which structure communities have been the focus of a large body of research. Here, we address the question if habitat characteristics describing habitat quality may drive changes in community composition and beta diversity of bromeliad-inhabiting microfauna. In our system, changes in canopy cover along an environmental gradient may affect resource availability, disturbance in form of daily water temperature fluctuations and predation, and thus may lead to changes in community structure of bromeliad microfauna through differences in habitat quality along this gradient. Indeed, we observed distinct changes in microfauna community composition along the environmental gradient explained by changes in the extent of daily water temperature fluctuations. We found beta diversity to be higher under low habitat quality (low canopy cover than under high habitat quality (high canopy cover, which could potentially be explained by a higher relative importance of stochastic processes under low habitat quality. We also partitioned beta diversity into turnover and nestedness components and we found a nested pattern of beta diversity along the environmental gradient, with communities from the lower-quality habitat being nested subsets of communities from the higher-quality habitat. However, this pattern resulted from an increase in microfauna alpha diversity with an increase in habitat quality. By providing insights into microfauna-environment relationships our results contribute to the mechanistic understanding of community dynamics in small freshwater bodies. Here, we highlight the importance of habitat characteristics representing habitat quality in structuring communities, and suggest that this information may help to improve conservation practices of small freshwater ecosystems.

  7. Different in the dark: The effect of habitat characteristics on community composition and beta diversity in bromeliad microfauna

    Science.gov (United States)

    Antiqueira, Pablo A. P.; Neutzling, Alexandre S.; Wolf, Anna M.; Romero, Gustavo Q.; Petermann, Jana S.

    2018-01-01

    The mechanisms which structure communities have been the focus of a large body of research. Here, we address the question if habitat characteristics describing habitat quality may drive changes in community composition and beta diversity of bromeliad-inhabiting microfauna. In our system, changes in canopy cover along an environmental gradient may affect resource availability, disturbance in form of daily water temperature fluctuations and predation, and thus may lead to changes in community structure of bromeliad microfauna through differences in habitat quality along this gradient. Indeed, we observed distinct changes in microfauna community composition along the environmental gradient explained by changes in the extent of daily water temperature fluctuations. We found beta diversity to be higher under low habitat quality (low canopy cover) than under high habitat quality (high canopy cover), which could potentially be explained by a higher relative importance of stochastic processes under low habitat quality. We also partitioned beta diversity into turnover and nestedness components and we found a nested pattern of beta diversity along the environmental gradient, with communities from the lower-quality habitat being nested subsets of communities from the higher-quality habitat. However, this pattern resulted from an increase in microfauna alpha diversity with an increase in habitat quality. By providing insights into microfauna-environment relationships our results contribute to the mechanistic understanding of community dynamics in small freshwater bodies. Here, we highlight the importance of habitat characteristics representing habitat quality in structuring communities, and suggest that this information may help to improve conservation practices of small freshwater ecosystems. PMID:29401522

  8. Habitat Characteristics of Bracken-Covered Areas Intended for Afforestation in Ličko Sredogorje

    Directory of Open Access Journals (Sweden)

    Zvonko Seletković

    2013-12-01

    Full Text Available Background and Purpose: Forest cultures in continental part of Croatia are mainly based on bracken-covered areas and moors on deserted agriculture soils and pastures. Successful afforestation i.e. establishment of forest cultures depends among other things on the understanding of habitats and ecology of forest trees. The choice of best species of forest trees for afforestation needs to be based on the research in soil and climate characteristics of target habitats. The aims of this research were to show mesoclimatic characteristics of Ličko sredogorje and microclimatic and pedological characteristics of Ličko polje. Also, based on habitat characteristics and ecology of forest trees, the aim was to determine species of forest trees suitable for afforestation of bracken-covered areas. Materials and Methods: Climate, microclimate, pedological and plant nutrition researches were done at the area of Lika highlands. Climate analysis was done according to air temperatures, amount of precipitation, relative air humidity and other climate elements and appearances. Composite soil samples were taken from the depth of 0-30 cm in order to determine plant nutrition potential. Samples were prepared for further analysis in the laboratory. Results: The highest average annual air temperature of 9.6 °C was found at weather station Gračac and the lowest at Korenica station (8.1 °C. Average amount of precipitation for this region was around 1500 mm. Monthly rain factors were ranging from arid to perhumid. Considering thermal character of the climate, the area has moderately warm climate. Average volumetric soil humidity is 14.2 %. Soil has strong acid reaction, is very humus, good to richly supplied with total nitrogen, content of physiologically active phosphorus and potassium is low, and C/N ration normal. Conclusions: According to habitat characteristics in the area of Ličko sredogorje and ecological demands of forest tree species, forest cultures of Common

  9. Effect of habitat characteristics on mesocarnivore occurrence in urban environment in the Central Europe

    Czech Academy of Sciences Publication Activity Database

    Červinka, J.; Drahníková, L.; Kreisinger, J.; Šálek, Martin

    2014-01-01

    Roč. 17, č. 4 (2014), s. 893-909 ISSN 1083-8155 Institutional support: RVO:68081766 Keywords : Carnivores * occurrence * Habitat characteristics * GIS * Urban environment * Central Europe Subject RIV: EH - Ecology, Behaviour Impact factor: 2.685, year: 2014

  10. Microbial community diversity and composition varies with habitat characteristics and biofilm function in macrophyte-rich streams

    DEFF Research Database (Denmark)

    Levi, Peter S.; Starnawski, Piotr; Poulsen, Britta

    2017-01-01

    Biofilms in streams play an integral role in ecosystem processes and function yet few studies have investigated the broad diversity of these complex prokaryotic and eukaryotic microbial communities. Physical habitat characteristics can affect the composition and abundance of microorganisms...... in these biofilms by creating microhabitats. Here we describe the prokaryotic and eukaryotic microbial diversity of biofilms in sand and macrophyte habitats (i.e. epipsammon and epiphyton, respectively) in five macrophyte-rich streams in Jutland, Denmark. The macrophyte species varied in growth morphology, C......:N stoichiometry, and preferred stream habitat, providing a range in environmental conditions for the epiphyton. Among all habitats and streams, the prokaryotic communities were dominated by common phyla, including Alphaproteobacteria, Bacteriodetes, and Gammaproteobacteria, while the eukaryotic communities were...

  11. Characteristics of Soil Fauna Communities and Habitat in Small- Holder Cocoa Plantation in South Konawe

    OpenAIRE

    Laode Muhammad Harjoni Kilowasid; Tati Suryati Syamsudin; Franciscus Xaverius Susilo; Endah Sulistyawati; Hasbullah Syaf

    2013-01-01

    The composition of the soil fauna community have played an important role in regulating decomposition and nutrient cycling in agro-ecosystems (include cocoa plantation). Changes in food availability and conditions in the soil habitat can affected the abundance and diversity of soil fauna. This study aimed: (i) to analyze the pattern of changes in soil fauna community composition and characteristic of soil habitat based on the age increasing of cocoa plantation, and (ii) to identify taxa of so...

  12. Habitat and landscape characteristics underlying anuran community structure along an urban-rural gradient.

    Science.gov (United States)

    Pillsbury, Finn C; Miller, James R

    2008-07-01

    Urbanization has been cited as an important factor in worldwide amphibian declines, and although recent work has illustrated the important influence of broad-scale ecological patterns and processes on amphibian populations, little is known about the factors structuring amphibian communities in urban landscapes. We therefore examined amphibian community responses to wetland habitat availability and landscape characteristics along an urban-rural gradient in central Iowa, USA, a region experiencing rapid suburban growth. We conducted call surveys at 61 wetlands to estimate anuran calling activity, and quantified wetland habitat structure and landscape context. We used canonical correspondence analysis (CCA) to examine patterns in anuran community structure and identify the most important variables associated with those patterns. Urban density at the landscape scale had a significant negative influence on overall anuran abundance and diversity. While every species exhibited a decrease in abundance with increasing urban density, this pattern was especially pronounced for species requiring post-breeding upland habitats. Anurans most affected by urbanization were those associated with short hydroperiods, early breeding activity, and substantial upland habitat use. We suggest that broad-scale landscape fragmentation is an important factor underlying anuran community structure in this region, possibly due to limitations on the accessibility of otherwise suitable habitat in fragmented urban landscapes. This study underscores the importance of a regional approach to amphibian conservation in urban and urbanizing areas; in fragmented landscapes, a network of interconnected wetland and upland habitats may be more likely to support a successful, diverse anuran community than will isolated sites.

  13. Home Range Characteristics and Habitat Selection by Daurian Hedgehogs ( Mesechinus dauuricus in Ikh Nart Nature Reserve, Mongolia

    Directory of Open Access Journals (Sweden)

    Mirka Zapletal

    2012-12-01

    Full Text Available We examined home range characteristics and habitat selection of Daurian hedgehogs in Ikh Nart Nature Reserve, Mongolia. Home ranges of hedgehogs varied from 113.15 ha to 2,171.97 ha, and were larger in early summer than late summer. Hedgehogs showed relative preference for rocky outcrops and low-density shrub habitats, and relative avoidance of high- density shrub areas. Habitat selection also changed between early and late summer, shifting to greater use of low-density shrub areas and decreased use of forb-dominated short grass. Our baseline data on home ranges and habitat selection expand understanding of hedgehog ecology and provide guidance for future management decisions in Ikh Nart Nature Reserve and elsewhere in Mongolia.

  14. Population Genetic Structure of Glycyrrhiza inflata B. (Fabaceae) Is Shaped by Habitat Fragmentation, Water Resources and Biological Characteristics.

    Science.gov (United States)

    Yang, Lulu; Chen, Jianjun; Hu, Weiming; Yang, Tianshun; Zhang, Yanjun; Yukiyoshi, Tamura; Zhou, Yanyang; Wang, Ying

    2016-01-01

    Habitat fragmentation, water resources and biological characteristics are important factors that shape the genetic structure and geographical distribution of desert plants. Analysis of the relationships between these factors and population genetic variation should help to determine the evolutionary potential and conservation strategies for genetic resources for desert plant populations. As a traditional Chinese herb, Glycyrrhiza inflata B. (Fabaceae) is restricted to the fragmented desert habitat in China and has undergone a dramatic decline due to long-term over-excavation. Determining the genetic structure of the G. inflata population and identifying a core collection could help with the development of strategies to conserve this species. We investigated the genetic variation of 25 G. inflata populations based on microsatellite markers. A high level of population genetic divergence (FST = 0.257), population bottlenecks, reduced gene flow and moderate genetic variation (HE = 0.383) were detected. The genetic distances between the populations significantly correlated with the geographical distances, and this suggests that habitat fragmentation has driven a special genetic structure of G. inflata in China through isolation by distance. STRUCTURE analysis showed that G. inflata populations were structured into three clusters and that the populations belonged to multiple water systems, which suggests that water resources were related to the genetic structure of G. inflata. In addition, the biological characteristics of the perennial species G. inflata, such as its long-lived seeds, asexual reproduction, and oasis ecology, may be related to its resistance to habitat fragmentation. A core collection of G. inflata, that included 57 accessions was further identified, which captured the main allelic diversity of G. inflata. Recent habitat fragmentation has accelerated genetic divergence. The population genetic structure of G. inflata has been shaped by habitat

  15. Habitat characteristic of macrozoobenthos in Naborsahan River of Toba Lake, North Sumatra, Indonesia

    Science.gov (United States)

    Basyuni, M.; Lubis, M. S.; Suryanti, A.

    2018-02-01

    This research described the relative abundance, dominance index, and index of macrozoobenthos equitability in Naborsahan River of Toba Lake, North Sumatra, Indonesia. The purposive random sampling at three stations was used to characterize the biological, chemical, and physical parameters of macrozoobenthos. The highest relative abundance of macrozoobenthos found at station 2 (99.96%). By contrast, the highest dominance index was at station 3 (0.31), and the maximum equitability index found at station 1 (0.94). The present results showed diversity parameters among the stations. A principal component analysis (PCA) was used to determine the habitat characteristics of macrozoobenthos. PCA analysis depicted that six parameters studied, brightness, turbidity, depth, temperature, dissolved oxygen (DO) and biochemical oxygen demand (BOD5) play a significant role on the relative abundance, dominance index, and equitability index. PCA analysis suggested that station 3 was suitable habitat characteristic for the life of macro-zoobenthos indicating of the negative axis. The present study demonstrated the six parameters should be conserved to support the survival of macrozoobenthos.

  16. Reproduction of the San Joaquin kit fox (Vulpes velox macrotis) on Camp Roberts Army National Guard Training Site, California

    International Nuclear Information System (INIS)

    Spencer, K.A.; Berry, W.H.; Standley, W.G.; O'Farrell, T.P.

    1992-09-01

    The reproduction of a San Joaquin kit fox population (Vulpes velox macrotis) was investigated at Camp Roberts Army National Guard Training Site, California, from November 1988 through September 1991. Of 38 vixens radiocollared prior to parturition, 12 (32%) were successful in raising pups from conception to the point where pups were observed above ground. No yearling vixens were known tb be reproductively active. The mean litter size during 1989 - 1991 was 3.0 (n = 21, SE = 0.28) and ranged from one to six pups. Both the proportion of vixens successfully raising pups and the mean litter size observed at Camp Roberts during this study were lower than those reported at other locations. Sex ratios of kit fox pups were male biased two of the three years, but did not differ statistically from 1:1 throughout the study. Whelping was estimated to occur between February 15 and March 5. Results of this study support previous reports that kit foxes are primarily monogamous, although one case of polygamy may have occurred. Both the proportion of dispersing radiocollared juveniles (26%) and the mean dispersal distance (5.9 km) of juveniles at Camp Roberts appeared low compared to other locations

  17. Moving Targets and Biodiversity Offsets for Endangered Species Habitat: Is Lesser Prairie Chicken Habitat a Stock or Flow?

    Directory of Open Access Journals (Sweden)

    Todd K. BenDor

    2014-03-01

    Full Text Available The US Fish and Wildlife Service will make an Endangered Species Act listing decision for the lesser prairie chicken (Tympanuchus pallidicinctus; “LPC” in March 2014. Based on the findings of a single, Uzbek antelope study, conservation plans put forth for the LPC propose to modify and re-position habitat in the landscape through a series of temporary preservation/restoration efforts. We argue that for certain species, including the LPC, dynamic habitat offsets represent a dangerous re-interpretation of habitat provision and recovery programs, which have nearly-universally viewed ecosystem offsets (habitat, wetlands, streams, etc. as “stocks” that accumulate characteristics over time. Any effort to create a program of temporary, moving habitat offsets must consider species’ (1 life history characteristics, (2 behavioral tendencies (e.g., avoidance of impacted areas, nesting/breeding site fidelity, and (3 habitat restoration characteristics, including long temporal lags in reoccupation. If misapplied, species recovery programs using temporary, moving habitat risk further population declines.

  18. Biomass and Habitat Characteristics of Epiphytic Macroalgae in the Sibuti Mangroves, Sarawak, Malaysia.

    Science.gov (United States)

    Isa, Hasmidah Md; Kamal, Abu Hena Mustafa; Idris, Mohd Hanafi; Rosli, Zamri; Ismail, Johan

    2017-01-01

    Mangroves support diverse macroalgal assemblages as epibionts on their roots and tree trunks. These algae provide nutrients to the primary consumers in the aquatic food web and have been reported to be substantial contributors to marine ecosystems. The species diversity, biomass, and habitat characteristics of mangrove macroalgae were investigated at three stations in the Sibuti mangrove estuary, Sarawak, Malaysia, from November 2012 to October 2013. Three groups of macroalgae were recorded and were found to be growing on mangrove prop roots, namely Rhodophyta ( Caloglossa ogasawaraensis , Caloglossa adhaerens , Caloglossa stipitata , Bostrychia anomala, and Hypnea sp.), Chlorophyta ( Chaetomorpha minima and Chaetomorpha sp.), and Phaeophyta ( Dictyota sp.). The biomass of macroalgae was not influenced ( p >0.05) by the season in this mangrove forest habitat. The macroalgal species Hypnea sp. contributed the highest biomass at both Station 1 (210.56 mg/cm 2 ) and Station 2 (141.72 mg/cm 2 ), while the highest biomass was contributed by B. anomala (185.89 mg/cm 2 ) at Station 3. This study shows that the species distribution and assemblages of mangrove macroalgae were influenced by environmental parameters such as water nutrients, dissolved solids, and salinity in the estuarine mangrove habitats of Sibuti, Sarawak.

  19. The impact of engineered log jams on bed morphology, flow characteristics and habitat diversity under low flow

    Science.gov (United States)

    Ockelford, A.; Crabbe, E.; Crowe Curran, J.; Parsons, D. R.; Shugar, D. H.; Burr, A.; Kennedy, K.; Coe, T.

    2017-12-01

    Wood jams are an important and ubiquitous feature of many river channels with their number, placement and spatial configuration determining their influence on channel morphology and flow characteristics. Further, engineered log jams are increasingly being constructed to develop, restore or maintain habitat diversity for key indicator specie such as salmon. However, questions remain as to the inter relationships between the logjams, the channel morphology, the flow characteristics and the habitat diversity under low flow conditions. Four engineered and one natural logjam were analyzed over a 3km reach of the South Fork Nooksack River, North Cascades National Park, USA during the summer low flow period. Non-intrusive three-dimensional topographic surveys of the river bed morphology surrounding the logjams was collected using a shallow water multibeam system. This was combined with terrestrial laser scans of the structure of the log jams above the waterline. Co-located high resolution flow velocity data was collected using an Acoustic Doppler Current Profiler. Discussion concentrates on providing a quantitative understanding of the effect of logjams on reach scale morphodynamics under low flow conditions. Multivariate statistical analysis of flow and topographic data in combination with log jam morphology allow the influences of the logjam on habitat suitability for key indicator species to be quantified. Results will be framed in terms of the effectiveness of the different logjam configurations on generating and promoting habitat diversity such as to aid future design and implementation.

  20. An evaluation of rapid methods for monitoring vegetation characteristics of wetland bird habitat

    Science.gov (United States)

    Tavernia, Brian G.; Lyons, James E.; Loges, Brian W.; Wilson, Andrew; Collazo, Jaime A.; Runge, Michael C.

    2016-01-01

    Wetland managers benefit from monitoring data of sufficient precision and accuracy to assess wildlife habitat conditions and to evaluate and learn from past management decisions. For large-scale monitoring programs focused on waterbirds (waterfowl, wading birds, secretive marsh birds, and shorebirds), precision and accuracy of habitat measurements must be balanced with fiscal and logistic constraints. We evaluated a set of protocols for rapid, visual estimates of key waterbird habitat characteristics made from the wetland perimeter against estimates from (1) plots sampled within wetlands, and (2) cover maps made from aerial photographs. Estimated percent cover of annuals and perennials using a perimeter-based protocol fell within 10 percent of plot-based estimates, and percent cover estimates for seven vegetation height classes were within 20 % of plot-based estimates. Perimeter-based estimates of total emergent vegetation cover did not differ significantly from cover map estimates. Post-hoc analyses revealed evidence for observer effects in estimates of annual and perennial covers and vegetation height. Median time required to complete perimeter-based methods was less than 7 percent of the time needed for intensive plot-based methods. Our results show that rapid, perimeter-based assessments, which increase sample size and efficiency, provide vegetation estimates comparable to more intensive methods.

  1. Geomorphic, flood, and groundwater-flow characteristics of Bayfield Peninsula streams, Wisconsin, and implications for brook-trout habitat

    Science.gov (United States)

    Fitzpatrick, Faith A.; Peppler, Marie C.; Saad, David A.; Pratt, Dennis M.; Lenz, Bernard N.

    2015-01-01

    In 2002–03, the U.S. Geological Survey conducted a study of the geomorphic, flood, and groundwater-flow characteristics of five Bayfield Peninsula streams, Wisconsin (Cranberry River, Bark River, Raspberry River, Sioux River, and Whittlesey Creek) to determine the physical limitations for brook-trout habitat. The goals of the study were threefold: (1) to describe geomorphic characteristics and processes, (2) to determine how land-cover characteristics affect flood peaks, and (3) to determine how regional groundwater flow patterns affect base flow.

  2. Daily survival rate and habitat characteristics of nests of Wilson's Plover

    Science.gov (United States)

    Zinsser, Elizabeth; Sanders, Felicia J.; Gerard, Patrick D.; Jodice, Patrick G.R.

    2017-01-01

    We assessed habitat characteristics and measured daily survival rate of 72 nests of Charadrius wilsonia (Wilson's Plover) during 2012 and 2013 on South Island and Sand Island on the central coast of South Carolina. At both study areas, nest sites were located at slightly higher elevations (i.e., small platforms of sand) relative to randomly selected nearby unused sites, and nests at each study area also appeared to be situated to enhance crypsis and/or vigilance. Daily survival rate (DSR) of nests ranged from 0.969 to 0.988 among study sites and years, and the probability of nest survival ranged from 0.405 to 0.764. Flooding and predation were the most common causes of nest failure at both sites. At South Island, DSR was most strongly related to maximum tide height, which suggests that flooding and overwash may be common causes of nest loss for Wilson's Plovers at these study sites. The difference in model results between the 2 nearby study sites may be partially due to more-frequent flooding at Sand Island because of some underlying yet unmeasured physiographic feature. Remaining data gaps for the species include regional assessments of nest and chick survival and habitat requirements during chick rearing.

  3. A maze-lover's dream: Burrow architecture, natural history and habitat characteristics of Ansell's mole-rat (Fukomys anselli)

    Czech Academy of Sciences Publication Activity Database

    Šklíba, J.; Mazoch, V.; Patzenhauerová, Hana; Hrouzková, E.; Lövy, M.; Kott, O.; Šumbera, R.

    2012-01-01

    Roč. 77, č. 6 (2012), s. 420-427 ISSN 1616-5047 R&D Projects: GA AV ČR IAA601410802 Institutional support: RVO:68081766 Keywords : Bathyergidae * Burrow system * Sociality * Habitat characteristics * Subterranean mammal * Fukomys anselli Subject RIV: EG - Zoology Impact factor: 1.246, year: 2012

  4. HABITAT PREFERENSIAL TARSIUS BELITUNG (Cephalopachus bancanus saltator Elliot, 1910

    Directory of Open Access Journals (Sweden)

    Fifin Fitriana

    2017-04-01

    Full Text Available Belitung tarsier (Cephalopachus bancanus saltator is an endemic species in Belitung Island from Cephalopachus genus. Existence of belitung tarsier in its habitat is now under threatened by deforestatition. Due to lack information about its habitat and as conservation effort, this research was tackled to reveal the characteristic of habitat preference of belitung tarsier. The aim of this study are to identify characteristic of habitat preference of belitung tarsier. This research was conducted in March until May 2016 at around Mount Tajam Protected Forest and plantation area. Presence of tarsiers were identified by direct observation, urine odor detection, identifying based tarsier habitat suitability and the local information. Chi-square and Neu methode was used to analyze the variable of habitat preference of belitung tarsiers. This research found that characteristics of habitat preference of belitung tarsier consisted of its homerange was prefer to dry land agricultural and shurb land cover type, not too tight canopy cover (Leaf Area Index /LAI value of 0,83-2,46, close to the edge of forest (0 -874 m, roads (0 – 3.698 m and settlements (0-403 m, elevation range was between 1 -142 m asl, slope slightly (0-15%, temperature 24-25 0C and high rainfall (3.222 – 3.229 mm/year. Characteristic of habitat preference information could be considered to develop conservation action of belitung tarsier. Keywords: belitung tarsiers, habitat, habitat preference, tarsier  

  5. Habitat shift in invading species: Zebra and quagga mussel population characteristics on shallow soft substrates

    Science.gov (United States)

    Berkman, P.A.; Garton, D.W.; Haltuch, M.A.; Kennedy, G.W.; Febo, L.R.

    2000-01-01

    Unexpected habitat innovations among invading species are illustrated by the expansion of dreissenid mussels across sedimentary environments in shallow water unlike the hard substrates where they are conventionally known. In this note, records of population characteristics of invading zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels from 1994 through 1998 are reported from shallow (less than 20 m) sedimentary habitats in western Lake Erie. Haphazard SCUBA collections of these invading species indicated that combined densities of zebra and quagga mussels ranged from 0 to 32,500 individuals per square meter between 1994 and 1998, with D. polymorpha comprising 75-100% of the assemblages. These mixed mussel populations, which were attached by byssal threads to each other and underlying sand-grain sediments, had size-frequency distributions that were typical of colonizing populations on hard substrates. Moreover, the presence of two mussel cohorts within the 1994 samples indicated that these species began expanding onto soft substrates not later than 1992, within 4 years of their initial invasion in western Lake Erie. Such historical data provide baselines for interpreting adaptive innovations, ecological interactions and habitat shifts among the two invading dreissenid mussel species in North America.

  6. Evaluation of nekton use and habitat characteristics of restored Louisiana marsh

    Science.gov (United States)

    Thom, C.S.B.; Peyre, M.K.G.L.; Nyman, J.A.

    2004-01-01

    Marsh terracing and coconut fiber mats are two wetland restoration techniques implemented at Sabine National Wildlife Refuge, Louisiana, USA. Using nekton as an indicator of habitat quality, nekton community assemblages were compared between terraced, coconut-matted, unmanaged marsh (restoration goal), and open water (pre-restoration) habitats. Using a throw trap and a 3 m ?? 2 m straight seine, 192 nekton samples were collected over four dates in 2001 and 2002 at all habitats. Nekton abundance was similar at unmanaged marsh (restoration goal), coconut mat, and terrace edge, and significantly higher than at open water (pre-restoration) sites (P Coconut-matted habitat and unmanaged marsh edges had significantly higher numbers of benthic dependent species than terrace edges (P coconut-matted sites. Future restoration projects may evaluate the combined use of coconut mats with terracing projects in order to enhance habitat for benthic dependent nekton.

  7. KARAKTERISTIK HABITAT DAN MORFOLOGI SIPUT ONGCOMELANIA HUPENSIS LINDOENSIS SEBAGAI HEWAN RESERVOIR DALAM PENULARAN SHISTOSOMIASIS PADA MANUSIA DAN TERNAK DI TAMAN NASIONAL LORE LINDU (Habitat Characteristics and Morphology of Oncomelania hupensis

    Directory of Open Access Journals (Sweden)

    Hafsah Hafsah

    2013-07-01

    Full Text Available ABSTRAK Penelitian ini bertujuan untuk mengkaji habitat dan morfologi siput Oncomelania hupensis lindoensis sebagai hewan reservoir dalam penularan shistosomiasis pada manusia dan ternak. Penelitian dilakukan dalam kawasan Taman Nasional Lore Lindu. Metode yang digunakan adalah metode survei dengan mengukur dan mengambil beberapa sampel tanah pada beberapa jenis habitat. Siput dikoleksi dengan menggunakan metode gelang besi yang disebut ring method. Siput yang dikumpulkan kemudian dibawa ke laboratorium untuk pengamatan bentuk morfologi dan mirasidia baik secara langsung maupun dengan penggunaan mikroskop. Penentuan tingkat prevalensi digunakan metode “ Kato-Kars” yang dimodifikasi. Data dianalisis secara deskriptif berdasarkan data hasil survei di lapangan dan hasil analisis dari laboratorium. Hasil penelitian menunjukkan bahwa habitat siput O.hupensis Lindoensis yang terdapat dalam kawasan Taman Nasional Lore Lindu sebanyak 144 habitat (fokus dan terdistribusi pada empat desa yaitu Tomado (64 fokus, Anca (63 fokus, Puroo (11 fokus dan Langko (6 fokus dengan persebaran 44,44 % ( sawah, 29,86 % ( kebun, 18,06 % ( padang rumput, dan 11 % ( hutan. Karakteristik habitat yaitu tekstur tanah lempung berpasir dengan bahan organik tanah yang relatif rendah (2%. Pada ternak didapatkan tingkat prevalensi yaitu kerbau (39,36%, sapi (39,32%, dan babi (22,5%. Kesimpulan dari hasil penelitian ini bahwa habitat siput O. Hupensis lindoensis mempunyai karakteristik dan bentuk yang spesifik. Tingkat prevalensi schistosomiasis pada manusia dan ternak dalam kawasan Taman Nasional Lore Lindu masih cukup tinggi. ABSTRACT The objective of the study was evaluated the habitat characteristics and  morphology of  Oncomelania hupensis lindoensis  as  a  reservoir in transmission of Schistosomiasis on  human and animal in Lore Lindu National Park. The study was conducted in four villages as known as the habitat of the endemic snails. Collections of the snails

  8. The effect of local and landscape-level characteristics on the abundance of forest birds in early-successional habitats during the post-fledging season in western Massachusetts.

    Directory of Open Access Journals (Sweden)

    Michelle A Labbe

    Full Text Available Many species of mature forest-nesting birds ("forest birds" undergo a pronounced shift in habitat use during the post-fledging period and move from their forest nesting sites into areas of early-successional vegetation. Mortality is high during this period, thus understanding the resource requirements of post-fledging birds has implications for conservation. Efforts to identify predictors of abundance of forest birds in patches of early-successional habitats have so far been equivocal, yet these previous studies have primarily focused on contiguously forested landscapes and the potential for landscape-scale influences in more fragmented and modified landscapes is largely unknown. Landscape composition can have a strong influence on the abundance and productivity of forest birds during the nesting period, and could therefore affect the number of forest birds in the landscape available to colonize early-successional habitats during the post-fledging period. Therefore, the inclusion of landscape characteristics should increase the explanatory power of models of forest bird abundance in early-successional habitat patches during the post-fledging period. We examined forest bird abundance and body condition in relation to landscape and habitat characteristics of 15 early-successional sites during the post-fledging season in Massachusetts. The abundance of forest birds was influenced by within-patch habitat characteristics, however the explanatory power of these models was significantly increased by the inclusion of landscape fragmentation and the abundance of forest birds in adjacent forest during the nesting period for some species and age groups. Our findings show that including factors beyond the patch scale can explain additional variation in the abundance of forest birds in early-successional habitats during the post-fledging period. We conclude that landscape composition should be considered when siting early-successional habitat to maximize its

  9. The Effect of Local and Landscape-Level Characteristics on the Abundance of Forest Birds in Early-Successional Habitats during the Post-Fledging Season in Western Massachusetts

    Science.gov (United States)

    Labbe, Michelle A.; King, David I.

    2014-01-01

    Many species of mature forest-nesting birds (“forest birds”) undergo a pronounced shift in habitat use during the post-fledging period and move from their forest nesting sites into areas of early-successional vegetation. Mortality is high during this period, thus understanding the resource requirements of post-fledging birds has implications for conservation. Efforts to identify predictors of abundance of forest birds in patches of early-successional habitats have so far been equivocal, yet these previous studies have primarily focused on contiguously forested landscapes and the potential for landscape-scale influences in more fragmented and modified landscapes is largely unknown. Landscape composition can have a strong influence on the abundance and productivity of forest birds during the nesting period, and could therefore affect the number of forest birds in the landscape available to colonize early-successional habitats during the post-fledging period. Therefore, the inclusion of landscape characteristics should increase the explanatory power of models of forest bird abundance in early-successional habitat patches during the post-fledging period. We examined forest bird abundance and body condition in relation to landscape and habitat characteristics of 15 early-successional sites during the post-fledging season in Massachusetts. The abundance of forest birds was influenced by within-patch habitat characteristics, however the explanatory power of these models was significantly increased by the inclusion of landscape fragmentation and the abundance of forest birds in adjacent forest during the nesting period for some species and age groups. Our findings show that including factors beyond the patch scale can explain additional variation in the abundance of forest birds in early-successional habitats during the post-fledging period. We conclude that landscape composition should be considered when siting early-successional habitat to maximize its benefit to

  10. Nesting tree characteristics of heronry birds of urban ecosystems in peninsular India: implications for habitat management.

    Science.gov (United States)

    Roshnath, Ramesh; Sinu, Palatty Allesh

    2017-12-01

    Wetland ecosystems, particularly the mangrove forest, are the primary wild habitat of heronry birds. However, urban ecosystems have become a favorite breeding habitat of these birds. To provide inputs into the habitat management for conservation of these birds, we investigated the quantitative and qualitative characteristics of nesting trees of heronry birds in the urban environment of the North Kerala region of peninsular India. Census on nesting trees was done in 3 major microhabitats of the urban ecosystem: avenues of national highways and towns, nonresidential plots, and residential areas apart from the mangrove islets in the peri-urban locality. The study found that 174 trees of 22 species hosted 1,928 heronry bird nests in the urban habitats; mangrove forests, although plentiful in the study area, hosted only about 20% of the total nests encountered in the study. Rain trees Samanea saman (43.7%) were the most available nesting tree. The greatest number of nests and nesting trees were encountered on the roads of urban areas, followed by nonresidential areas and residential areas. The differences in the observed frequencies of nesting trees in 3 microhabitats and in 3 types of roads (national highways > state highways > small pocket road) were significant. Canopy spread, girth size, and quality of the trees predicted the tree selection of the heronry birds in urban environments. Therefore, we recommend proper management and notification of the identified nesting trees as protected sites for the conservation of herorny birds.

  11. Habitat selection of Tragulus napu and Tragulus javanicus using MaxEnt analysis

    Science.gov (United States)

    Taher, Taherah Mohd; Lihan, Tukimat; Mustapha, Muzzneena Ahmad; Nor, Shukor Mohd

    2018-04-01

    Large areas are converted into commercial land use such as agriculture and urban as a result from the increasing economic and population demand. This situation is largely affecting wildlife and its habitat. Malaysia as one of the largest oil palm-producing countries, should take precaution into conserving its forest and wildlife diversity. Although big mammal such as elephant and tiger are significant for wildlife diversity, medium and small mammals also contribute to the biological richness in Malaysia. This study aims to predict suitable habitat of medium mammal, Tragulus napu and Tragulus javanicus in the study area and identify its habitat characteristics. The method applied in this study uses maximum entropy (MaxEnt) modeling which utilized species distribution data and selected environmental variables to alienate potential habitat in the study area. The characteristic of the habitat was identified from the result of MaxEnt analysis. This method of habitat modeling shows different extent of predicted suitable habitat in the study area of both species in which Tragulus napu has a limited distribution compared to Tragulus javanicus. However, some characteristics are similar in both habitats. The knowledge on species habitat characteristics is important to predict wildlife habitat in order to make best decision on land use management and conservation.

  12. A meta-analysis of lesser prairie-chicken nesting and brood-rearing habitats: implications for habitat management

    Science.gov (United States)

    Hagen, Christian A.; Grisham, Blake A.; Boal, Clint W.; Haukos, David A.

    2013-01-01

    The distribution and range of lesser prairie-chicken (Tympanuchus pallidicinctus) has been reduced by >90% since European settlement of the Great Plains of North America. Currently, lesser prairie-chickens occupy 3 general vegetation communities: sand sagebrush (Artemisia filifolia), sand shinnery oak (Quercus havardii), and mixed-grass prairies juxtaposed with Conservation Reserve Program grasslands. As a candidate for protection under the Endangered Species Act, there is a need for a synthesis that characterizes habitat structure rangewide. Thus, we conducted a meta-analysis of vegetation characteristics at nest sites and brood habitats to determine whether there was an overall effect (Hedges' d) of habitat selection and to estimate average (95% CI) habitat characteristics at use sites. We estimated effect sizes (di) from the difference between use (nests and brood sites) and random sampling sites for each study (n = 14), and derived an overall effect size (d++). There was a general effect for habitat selection as evidenced by low levels of variation in effect sizes across studies and regions. There was a small to medium effect (d++) = 0.20-0.82) of selection for greater vertical structure (visual obstruction) by nesting females in both vegetation communities, and selection against bare ground (d++ = 0.20-0.58). Females with broods exhibited less selectivity for habitat components except for vertical structure. The variation of d++ was greater during nesting than brooding periods, signifying a seasonal shift in habitat use, and perhaps a greater range of tolerance for brood-rearing habitat. The overall estimates of vegetation cover were consistent with those provided in management guidelines for the species.

  13. Characteristic sediment and water column chlorophyll-a in the sea cucumber’s Paracaudina sp. habitat on the Kenjeran Water, Surabaya

    Science.gov (United States)

    Widianingsih, W.; Zaenuri, M.; Anggoro, S.; Kusumaningrum, H. P.; Hartati, R.

    2018-03-01

    The study of characteristic sediment and water column chlorophyll-a has an important role in the sea cucumber habitat. Sediment chlorophyll-a represents a productivity primer for the benthic community. This research has a purpose to investigate characteristic sediment and water column chlorophyll-a on the Kenjeran water, Surabaya. Sediment samples were collected by the ekman grab for analysis, grain size and nutrient. The sample for sediment chlorophyll-a was taken by core sampler. The water samples were taken with Nansen Bottles. According to the research result, the values of sediment chlorophyll-a at station 10, 11 and 12 were higher than the other stations. In contrast, the value of chlorophyll-a in the column water had almost the same value for each station. The sediment chlorophyll-a value on clay and silt sediment type was higher than the fine sand and coarse sediment type. The suitable habitat characteristic for Paracaudina sp. was clay and silt sediment with sediment chlorophyll concentration ranging from 347.82 mg·m-2 to 1135.52 mg·m-2.

  14. Influence of Habitat and Intrinsic Characteristics on Survival of Neonatal Pronghorn.

    Directory of Open Access Journals (Sweden)

    Christopher N Jacques

    Full Text Available Increased understanding of the influence of habitat (e.g., composition, patch size and intrinsic (e.g., age, birth mass factors on survival of neonatal pronghorn (Antilocapra americana is a prerequisite to successful management programs, particularly as they relate to population dynamics and the role of population models in adaptive species management. Nevertheless, few studies have presented empirical data quantifying the influence of habitat variables on survival of neonatal pronghorn. During 2002-2005, we captured and radiocollared 116 neonates across two sites in western South Dakota. We documented 31 deaths during our study, of which coyote (Canis latrans predation (n = 15 was the leading cause of mortality. We used known fate analysis in Program MARK to investigate the influence of intrinsic and habitat variables on neonatal survival. We generated a priori models that we grouped into habitat and intrinsic effects. The highest-ranking model indicated that neonate mortality was best explained by site, percent grassland, and open water habitat; 90-day survival (0.80; 90% CI = 0.71-0.88 declined 23% when grassland and water increased from 80.1 to 92.3% and 0.36 to 0.40%, respectively, across 50% natal home ranges. Further, our results indicated that grassland patch size and shrub density were important predictors of neonate survival; neonate survival declined 17% when shrub density declined from 5.0 to 2.5 patches per 100 ha. Excluding the site covariates, intrinsic factors (i.e., sex, age, birth mass, year, parturition date were not important predictors of survival of neonatal pronghorns. Further, neonatal survival may depend on available land cover and interspersion of habitats. We have demonstrated that maintaining minimum and maximum thresholds for habitat factors (e.g., percentages of grassland and open water patches, density of shrub patches throughout natal home ranges will in turn, ensure relatively high (>0.50 neonatal survival rates

  15. Influence of habitat and intrinsic characteristics on survival of neonatal pronghorn

    Science.gov (United States)

    Jacques, Christopher N.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.

    2015-01-01

    Increased understanding of the influence of habitat (e.g., composition, patch size) and intrinsic (e.g., age, birth mass) factors on survival of neonatal pronghorn (Antilocapra americana) is a prerequisite to successful management programs, particularly as they relate to population dynamics and the role of population models in adaptive species management. Nevertheless, few studies have presented empirical data quantifying the influence of habitat variables on survival of neonatal pronghorn. During 2002–2005, we captured and radiocollared 116 neonates across two sites in western South Dakota. We documented 31 deaths during our study, of which coyote (Canis latrans) predation (n = 15) was the leading cause of mortality. We used known fate analysis in Program MARK to investigate the influence of intrinsic and habitat variables on neonatal survival. We generated a priori models that we grouped into habitat and intrinsic effects. The highest-ranking model indicated that neonate mortality was best explained by site, percent grassland, and open water habitat; 90-day survival (0.80; 90% CI = 0.71–0.88) declined 23% when grassland and water increased from 80.1 to 92.3% and 0.36 to 0.40%, respectively, across 50% natal home ranges. Further, our results indicated that grassland patch size and shrub density were important predictors of neonate survival; neonate survival declined 17% when shrub density declined from 5.0 to 2.5 patches per 100 ha. Excluding the site covariates, intrinsic factors (i.e., sex, age, birth mass, year, parturition date) were not important predictors of survival of neonatal pronghorns. Further, neonatal survival may depend on available land cover and interspersion of habitats. We have demonstrated that maintaining minimum and maximum thresholds for habitat factors (e.g., percentages of grassland and open water patches, density of shrub patches) throughout natal home ranges will in turn, ensure relatively high (>0.50) neonatal survival rates

  16. Habitat Use and Selection by Giant Pandas

    Science.gov (United States)

    Hull, Vanessa; Zhang, Jindong; Huang, Jinyan; Zhou, Shiqiang; Viña, Andrés; Shortridge, Ashton; Li, Rengui; Liu, Dian; Xu, Weihua; Ouyang, Zhiyun; Zhang, Hemin; Liu, Jianguo

    2016-01-01

    Animals make choices about where to spend their time in complex and dynamic landscapes, choices that reveal information about their biology that in turn can be used to guide their conservation. Using GPS collars, we conducted a novel individual-based analysis of habitat use and selection by the elusive and endangered giant pandas (Ailuropoda melanoleuca). We constructed spatial autoregressive resource utilization functions (RUF) to model the relationship between the pandas' utilization distributions and various habitat characteristics over a continuous space across seasons. Results reveal several new insights, including use of a broader range of habitat characteristics than previously understood for the species, particularly steep slopes and non-forest areas. We also used compositional analysis to analyze habitat selection (use with respect to availability of habitat types) at two selection levels. Pandas selected against low terrain position and against the highest clumped forest at the at-home range level, but no significant factors were identified at the within-home range level. Our results have implications for modeling and managing the habitat of this endangered species by illustrating how individual pandas relate to habitat and make choices that differ from assumptions made in broad scale models. Our study also highlights the value of using a spatial autoregressive RUF approach on animal species for which a complete picture of individual-level habitat use and selection across space is otherwise lacking. PMID:27627805

  17. Habitat Use and Selection by Giant Pandas.

    Directory of Open Access Journals (Sweden)

    Vanessa Hull

    Full Text Available Animals make choices about where to spend their time in complex and dynamic landscapes, choices that reveal information about their biology that in turn can be used to guide their conservation. Using GPS collars, we conducted a novel individual-based analysis of habitat use and selection by the elusive and endangered giant pandas (Ailuropoda melanoleuca. We constructed spatial autoregressive resource utilization functions (RUF to model the relationship between the pandas' utilization distributions and various habitat characteristics over a continuous space across seasons. Results reveal several new insights, including use of a broader range of habitat characteristics than previously understood for the species, particularly steep slopes and non-forest areas. We also used compositional analysis to analyze habitat selection (use with respect to availability of habitat types at two selection levels. Pandas selected against low terrain position and against the highest clumped forest at the at-home range level, but no significant factors were identified at the within-home range level. Our results have implications for modeling and managing the habitat of this endangered species by illustrating how individual pandas relate to habitat and make choices that differ from assumptions made in broad scale models. Our study also highlights the value of using a spatial autoregressive RUF approach on animal species for which a complete picture of individual-level habitat use and selection across space is otherwise lacking.

  18. A NEW HABITAT CLASSIFICATION AND MANUAL FOR STANDARDIZED HABITAT MAPPING

    Directory of Open Access Journals (Sweden)

    A. KUN

    2007-01-01

    Full Text Available Today the documentation of natural heritage with scientific methods but for conservation practice – like mapping of actual vegetation – becomes more and more important. For this purpose mapping guides containing only the names and descriptions of vegetation types are not sufficient. Instead, new, mapping-oriented vegetation classification systems and handbooks are needed. There are different standardised systems fitted to the characteristics of a region already published and used successfully for surveying large territories. However, detailed documentation of the aims and steps of their elaboration is still missing. Here we present a habitat-classification method developed specifically for mapping and the steps of its development. Habitat categories and descriptions reflect site conditions, physiognomy and species composition as well. However, for species composition much lower role was given deliberately than in the phytosociological systems. Recognition and mapping of vegetation types in the field is highly supported by a definition, list of subtypes and list of ‘types not belonging to this habitat category’. Our system is two-dimensional: the first dimension is habitat type, the other is naturalness based habitat quality. The development of the system was conducted in two steps, over 200 mappers already tested it over 7000 field days in different projects.

  19. Habitat characteristics and environmental parameters influencing fish assemblages of karstic pools in southern Mexico

    Directory of Open Access Journals (Sweden)

    María Eugenia Vega-Cendejas

    Full Text Available Fish assemblage structure was evaluated and compared among 36 karstic pools located within protected areas of the Calakmul Biosphere Reserve (southern Mexico and unprotected adjacent areas beyond the Reserve. Nonmetric multidimensional scaling (MDS, indicator species analysis (ISA, and canonical correspondence analysis (CCA were used to identify which environmental factors reflected local influences and to evaluate the correlation of these variables with fish assemblages structure. Thirty-one species were encountered in these karstic pools, some for the first time within the Reserve. These aquatic environments were separated into three groups based on physico-chemical characteristics. Although CCA identified significant associations between several fish species (based on their relative abundance and environmental variables (K, NH4, NO3, and conductivity, the most abundant species (Astyanax aeneus, Poecilia mexicana, and Gambusia sexradiata occur in most pools and under several environmental conditions. Baseline data on fish diversity along with a continued monitoring program are essential in order to evaluate the conservation status of fish assemblages and their habitats, as well as to measure the influence of anthropogenic impacts on pristine habitats such as the karstic pools of the Calakmul Biosphere Reserve.

  20. Coyote abundance in relation to habitat characteristics in Sierra San Luis, Sonora, Mexico

    Science.gov (United States)

    Eduardo Ponce Guevara; Karla Pelz Serrano; Carlos A. Lopez Gonzalez

    2005-01-01

    Coyotes have expanded their historical distribution range because of anthropogenic activities and habitat transformation, where forests have been considered marginal habitat. We tested the relationship between vegetation structure and coyote abundance in different habitat types. We expected to find a higher abundance in open lands than in thicker areas. We used scent...

  1. Biodiversity and Habitat Characteristics of the Bycatch Assemblages in Fish Aggregating Devices (FADs and School Sets in the Eastern Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Nerea Lezama-Ochoa

    2017-08-01

    Full Text Available This study examined diversity and habitat characteristics for bycatch assemblages in two different types of fishing (drifting fish aggregating devices sets and sets made on school of tunas in the eastern Pacific Ocean (20°S–30°N and 70°–150°W between 2005 and 2011 using biodiversity metrics and Generalized Additive Models. Bycatch information was based on data collected by onboard observers covering more than 80% of the purse seine fishing trips. Our results suggest that diversity and habitat characteristics of the bycatch assemblages differ depending of the fishing mode. Thus, diversity was mostly explained by area and set type; being higher in fish aggregating devices (FAD sets than School sets. Concretely, diversity seems to be directly related with the equatorial upwelling and the front system in FAD sets and with the Costa Rica Dome and the coastal upwelling of Panama induced by wind jets in School sets. Among environmental variables, temperature and chlorophyll were the most important predictors to describe the diversity of the bycatch assemblages. This work has investigated multiple indicators related to the bycatch assemblages and their habitat, which could be helpful for the development of an Ecosystem Approach to Fishery Management (EAFM.

  2. Key tiger habitats in the Garo Hills of Meghalaya

    Science.gov (United States)

    Ashish Kumar; Bruce G. Marcot

    2010-01-01

    We describe assumed tiger habitat characteristics and attempt to identify potential tiger habitats in the Garo Hills region of Meghalaya, North East India. Conserving large forest tracts and protected wildlife habitats provides an opportunity for restoring populations of wide-ranging wildlife such as tigers and elephants. Based on limited field observations coupled...

  3. Evaluation of landscape level habitat characteristics of golden eagle habitat in Northwestern Mexico

    OpenAIRE

    Bravo Vinaja, Maria Guadalupe

    2012-01-01

    Golden eagles (Aquila chrysaetos canadensis Linnaeus 1758) are declining in some areas throughout their Nearctic range (Sauer et al. 2011). This reduction is linked to changes in their habitat caused by human activities. Golden eagles inhabit an extensive range of environments (Watson 1997, Kochert et al. 2002). In the American Continent, the golden eagleâ s range encompasses Alaska, Canada, the United States and the Northern and Central portions of Mexico. Northern golden eagle populations...

  4. Effects of habitat and landscape characteristics on medium and large mammal species richness and composition in northern Uruguay

    Directory of Open Access Journals (Sweden)

    María José Andrade-Núñez

    2010-01-01

    Full Text Available The increasing world population and demand for food and other products has accelerated the conversion of natural habitats into agricultural lands, plantations and urban areas. Changes in habitat and landscape characteristics due to land-use change can have a significant effect on species presence, abundance, and distribution. Multi-scale approaches have been used to determine the proper spatial scales at which species and communities are responding to habitat transformation. In this context, we evaluated medium and large mammal species richness and composition in gallery forest (n = 10, grassland (n = 10, and exotic tree plantation (n = 10 in a region where grasslands have been converted into exotic tree plantations. We quantified mammal species richness and composition with camera traps and track surveys. The composition of the mammal community was related with local habitat variables, and landscape variables measured at seven spatial scales. We found 14 mammal species in forest, 11 species in plantation, and 7 mammal species in grassland. Two species are exotics, the wild boar Sus scrofa Linnaeus, 1758 and the European hare Lepus europaeus Pallas, 1778. The most common species are the crab-eating fox Cerdocyon thous Linnaeus, 1766, the nine-banded armadillo Dasypus novemcinctus Linnaeus, 1758 and the gray brocket deer Mazama gouazoubira G. Fischer, 1814 which are generalist species. Our results showed significant differences in mammal species richness and composition among the three habitat types. Plantations can have positive and negative effects on the presence of species restricted to grasslands. Positive effects are reflected in a wider local distribution of some forest species that rarely use grassland. The most important habitat and landscape variables that influenced mammal species richness and composition were vertical structure index, canopy cover, tree species diversity, percentage of grass, and the percentage of forest and grassland

  5. Behavioural cues surpass habitat factors in explaining prebreeding resource selection by a migratory diving duck

    Science.gov (United States)

    O'Neil, Shawn T.; Warren, Jeffrey M.; Takekawa, John Y.; De La Cruz, Susan E. W.; Cutting, Kyle A.; Parker, Michael W.; Yee, Julie L.

    2014-01-01

    Prebreeding habitat selection in birds can often be explained in part by habitat characteristics. However, females may also select habitats on the basis of fidelity to areas of previous reproductive success or use by conspecifics. The relative influences of sociobehavioural attributes versus habitat characteristics in habitat selection has been primarily investigated in songbirds, while less is known about how these factors affect habitat selection processes in migratory waterfowl. Animal resource selection models often exhibit much unexplained variation; spatial patterns driven by social and behavioural characteristics may account for some of this. We radiomarked female lesser scaup, Aythya affinis, in the southwestern extent of their breeding range to explore hypotheses regarding relative roles of habitat quality, site fidelity and conspecific density in prebreeding habitat selection. We used linear mixed-effects models to relate intensity of use within female home ranges to habitat features, distance to areas of reproductive success during the previous breeding season and conspecific density. Home range habitats included shallow water (≤118 cm), moderate to high densities of flooded emergent vegetation/open water edge and open water areas with submerged aquatic vegetation. Compared with habitat features, conspecific female density and proximity to successful nesting habitats from the previous breeding season had greater influences on habitat use within home ranges. Fidelity and conspecific attraction are behavioural characteristics in some waterfowl species that may exert a greater influence than habitat features in influencing prebreeding space use and habitat selection within home ranges, particularly where quality habitat is abundant. These processes may be of critical importance to a better understanding of habitat selection in breeding birds.

  6. Preliminary assessment of habitat characteristics of woodland caribou calving areas in the Claybelt region of Québec and Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Émilie Lantin

    2003-04-01

    Full Text Available Woodland caribou (Rangifer tarandus caribou require a diversity of forested habitats over large areas and may thus be particularly affected by the large-scale changes in the composition and age-class distribution of forest landscapes induced by the northern expansion of forest management. In this study we examine habitat characteristics associated to the use of calving areas by woodland caribou females and calves at different spatial scales. Thirty females were captured and collared with Argos satellite transmitters that allowed to locate 14 calving areas. Field surveys were conducted at each of these areas to measure the landscape composition of forest cover types and local vegetation characteristics that are used for both forage conditions and protection cover. At the scale of the calving area, univariate comparisons of the amount of forest cover types between sites with and without calves showed that the presence of calves was associated to mature black spruce forest with a high percent cover of terrestrial lichens. Within calving grounds, univariate comparisons showed that vegetation features like ericaceans and terrestrial lichens, that are important food resources for lactating females, were more abundant in calving areas where females were seen with a calf in mid-July than in areas where females were seen alone. The protection of the vegetation cover against predators was however similar between calving areas with or with¬out a calf. Logistic regression results also indicated that vegetation characteristics associated to forage conditions were positively associated to calf presence on calving grounds. Our results suggest that foraging conditions should be given more attention in analyses on habitat requirements of woodland caribou.

  7. The effects of local and landscape-scale habitat characteristics and prey availability on corridor use by carnivores: A comparison of two contrasting farmlands

    Czech Academy of Sciences Publication Activity Database

    Červinka, J.; Šálek, Martin; Padyšáková, E.; Šmilauer, P.

    2013-01-01

    Roč. 21, č. 2 (2013), s. 105-113 ISSN 1617-1381 Institutional support: RVO:68081766 Keywords : Agricultural landscape * Carnivores * Corridors * Czech Republic * Habitat characteristics * Prey availability Subject RIV: EG - Zoology Impact factor: 1.833, year: 2013

  8. Hydrologic characteristics of freshwater mussel habitat: novel insights from modeled flows

    Science.gov (United States)

    Drew, C. Ashton; Eddy, Michele; Kwak, Thomas J.; Cope, W. Gregory; Augspurger, Tom

    2018-01-01

    The ability to model freshwater stream habitat and species distributions is limited by the spatially sparse flow data available from long-term gauging stations. Flow data beyond the immediate vicinity of gauging stations would enhance our ability to explore and characterize hydrologic habitat suitability. The southeastern USA supports high aquatic biodiversity, but threats, such as landuse alteration, climate change, conflicting water-resource demands, and pollution, have led to the imperilment and legal protection of many species. The ability to distinguish suitable from unsuitable habitat conditions, including hydrologic suitability, is a key criterion for successful conservation and restoration of aquatic species. We used the example of the critically endangered Tar River Spinymussel (Parvaspina steinstansana) and associated species to demonstrate the value of modeled flow data (WaterFALL™) to generate novel insights into population structure and testable hypotheses regarding hydrologic suitability. With ordination models, we: 1) identified all catchments with potentially suitable hydrology, 2) identified 2 distinct hydrologic environments occupied by the Tar River Spinymussel, and 3) estimated greater hydrological habitat niche breadth of assumed surrogate species associates at the catchment scale. Our findings provide the first demonstrated application of complete, continuous, regional modeled hydrologic data to freshwater mussel distribution and management. This research highlights the utility of modeling and data-mining methods to facilitate further exploration and application of such modeled environmental conditions to inform aquatic species management. We conclude that such an approach can support landscape-scale management decisions that require spatial information at fine resolution (e.g., enhanced National Hydrology Dataset catchments) and broad extent (e.g., multiple river basins).

  9. Habitat loss and gain: Influence on habitat attractiveness for estuarine fish communities

    Science.gov (United States)

    Amorim, Eva; Ramos, Sandra; Elliott, Michael; Franco, Anita; Bordalo, Adriano A.

    2017-10-01

    Habitat structure and complexity influence the structuring and functioning of fish communities. Habitat changes are one of the main pressures affecting estuarine systems worldwide, yet the degree and rate of change and its impact on fish communities is still poorly understood. In order to quantify historical modifications in habitat structure, an ecohydrological classification system using physiotopes, i.e. units with homogenous abiotic characteristics, was developed for the lower Lima estuary (NW Portugal). Field data, aerial imagery, historical maps and interpolation methods were used to map input variables, including bathymetry, substratum (hard/soft), sediment composition, hydrodynamics (current velocity) and vegetation coverage. Physiotopes were then mapped for the years of 1933 and 2013 and the areas lost and gained over the 80 years were quantified. The implications of changes for the benthic and demersal fish communities using the lower estuary were estimated using the attractiveness to those communities of each physiotope, while considering the main estuarine habitat functions for fish, namely spawning, nursery, feeding and refuge areas and migratory routes. The lower estuary was highly affected due to urbanisation and development and, following a port/harbour expansion, its boundary moved seaward causing an increase in total area. Modifications led to the loss of most of its sandy and saltmarsh intertidal physiotopes, which were replaced by deeper subtidal physiotopes. The most attractive physiotopes for fish (defined as the way in which they supported the fish ecological features) decreased in area while less attractive ones increased, producing an overall lower attractiveness of the studied area in 2013 compared to 1933. The implications of habitat alterations for the fish using the estuary include potential changes in the nursery carrying capacity and the functioning of the fish community. The study also highlighted the poor knowledge of the impacts of

  10. Influence of Fire Mosaics, Habitat Characteristics and Cattle Disturbance on Mammals in Fire-Prone Savanna Landscapes of the Northern Kimberley.

    Science.gov (United States)

    Radford, Ian J; Gibson, Lesley A; Corey, Ben; Carnes, Karin; Fairman, Richard

    2015-01-01

    Patch mosaic burning, in which fire is used to produce a mosaic of habitat patches representative of a range of fire histories ('pyrodiversity'), has been widely advocated to promote greater biodiversity. However, the details of desired fire mosaics for prescribed burning programs are often unspecified. Threatened small to medium-sized mammals (35 g to 5.5 kg) in the fire-prone tropical savannas of Australia appear to be particularly fire-sensitive. Consequently, a clear understanding of which properties of fire mosaics are most instrumental in influencing savanna mammal populations is critical. Here we use mammal capture data, remotely sensed fire information (i.e. time since last fire, fire frequency, frequency of late dry season fires, diversity of post-fire ages in 3 km radius, and spatial extent of recently burnt, intermediate and long unburnt habitat) and structural habitat attributes (including an index of cattle disturbance) to examine which characteristics of fire mosaics most influence mammals in the north-west Kimberley. We used general linear models to examine the relationship between fire mosaic and habitat attributes on total mammal abundance and richness, and the abundance of the most commonly detected species. Strong negative associations of mammal abundance and richness with frequency of late dry season fires, the spatial extent of recently burnt habitat (post-fire age fire age classes in the models. Our results indicate that both a high frequency of intense late dry season fires and extensive, recently burnt vegetation are likely to be detrimental to mammals in the north Kimberley. A managed fire mosaic that reduces large scale and intense fires, including the retention of ≥4 years unburnt patches, will clearly benefit savanna mammals. We also highlighted the importance of fire mosaics that retain sufficient shelter for mammals. Along with fire, it is clear that grazing by introduced herbivores also needs to be reduced so that habitat quality is

  11. Functional composition of epifauna in the south-eastern North Sea in relation to habitat characteristics and fishing effort

    Science.gov (United States)

    Neumann, Hermann; Diekmann, Rabea; Kröncke, Ingrid

    2016-02-01

    Analysis of ecosystem functioning is essential to describe the ecological status of ecosystems and is therefore directly requested in international directives. There is a lack of knowledge regarding functional aspects of benthic communities and their environmental and anthropogenic driving forces in the southern North Sea. This study linked functional composition of epibenthic communities to environmental conditions and fishing effort and investigated spatial correlations between habitat characteristics to gain insight into potential synergistic and/or cumulative effects. Functional composition of epifauna was assessed by using biological trait analysis (BTA), which considered 15 ecological traits of 54 species. Functional composition was related to ten predictor variables derived from sediment composition, bottom temperature and salinity, hydrodynamics, annual primary production and fishing effort. Our results revealed significantly different functional composition between the Dogger Bank, the Oyster Ground, the West and North Frisian coast. Mobility, feeding type, size and adult longevity were the most important traits differentiating the communities. A high proportion of trait modalities related to an opportunistic life mode were obvious in coastal areas especially at the West Frisian coast and in the area of the Frisian Front indicating disturbed communities. In contrast, functional composition in the Dogger Bank area indicated undisturbed communities with prevalence of large, long-lived and permanently attached species being sensitive towards disturbance such as fishing. Tidal stress, mud content of sediments, salinity, stratification and fishing effort were found to be the most important habitat characteristics shaping functional composition. Strong correlations were found between variables, especially between those which changed gradually from the coast to offshore areas including fishing effort. Unfavourable extremes of these factors in coastal areas

  12. Riparian Habitat Management for Reptiles and Amphibians on Corps of Engineers Projects

    National Research Council Canada - National Science Library

    Dickerson, Dena

    2001-01-01

    ... important taxonomic groups such as reptiles and amphibians. This note provides an overview of the importance of riparian habitat at Corps projects for reptiles and amphibians, identifies riparian zone functions and habitat characteristics, provides examples of representative taxa and regional comparisons, and describes impacts of riparian habitat modification.

  13. Oyster larvae settle in response to habitat-associated underwater sounds.

    Science.gov (United States)

    Lillis, Ashlee; Eggleston, David B; Bohnenstiehl, DelWayne R

    2013-01-01

    Following a planktonic dispersal period of days to months, the larvae of benthic marine organisms must locate suitable seafloor habitat in which to settle and metamorphose. For animals that are sessile or sedentary as adults, settlement onto substrates that are adequate for survival and reproduction is particularly critical, yet represents a challenge since patchily distributed settlement sites may be difficult to find along a coast or within an estuary. Recent studies have demonstrated that the underwater soundscape, the distinct sounds that emanate from habitats and contain information about their biological and physical characteristics, may serve as broad-scale environmental cue for marine larvae to find satisfactory settlement sites. Here, we contrast the acoustic characteristics of oyster reef and off-reef soft bottoms, and investigate the effect of habitat-associated estuarine sound on the settlement patterns of an economically and ecologically important reef-building bivalve, the Eastern oyster (Crassostrea virginica). Subtidal oyster reefs in coastal North Carolina, USA show distinct acoustic signatures compared to adjacent off-reef soft bottom habitats, characterized by consistently higher levels of sound in the 1.5-20 kHz range. Manipulative laboratory playback experiments found increased settlement in larval oyster cultures exposed to oyster reef sound compared to unstructured soft bottom sound or no sound treatments. In field experiments, ambient reef sound produced higher levels of oyster settlement in larval cultures than did off-reef sound treatments. The results suggest that oyster larvae have the ability to respond to sounds indicative of optimal settlement sites, and this is the first evidence that habitat-related differences in estuarine sounds influence the settlement of a mollusk. Habitat-specific sound characteristics may represent an important settlement and habitat selection cue for estuarine invertebrates and could play a role in driving

  14. Oyster larvae settle in response to habitat-associated underwater sounds.

    Directory of Open Access Journals (Sweden)

    Ashlee Lillis

    Full Text Available Following a planktonic dispersal period of days to months, the larvae of benthic marine organisms must locate suitable seafloor habitat in which to settle and metamorphose. For animals that are sessile or sedentary as adults, settlement onto substrates that are adequate for survival and reproduction is particularly critical, yet represents a challenge since patchily distributed settlement sites may be difficult to find along a coast or within an estuary. Recent studies have demonstrated that the underwater soundscape, the distinct sounds that emanate from habitats and contain information about their biological and physical characteristics, may serve as broad-scale environmental cue for marine larvae to find satisfactory settlement sites. Here, we contrast the acoustic characteristics of oyster reef and off-reef soft bottoms, and investigate the effect of habitat-associated estuarine sound on the settlement patterns of an economically and ecologically important reef-building bivalve, the Eastern oyster (Crassostrea virginica. Subtidal oyster reefs in coastal North Carolina, USA show distinct acoustic signatures compared to adjacent off-reef soft bottom habitats, characterized by consistently higher levels of sound in the 1.5-20 kHz range. Manipulative laboratory playback experiments found increased settlement in larval oyster cultures exposed to oyster reef sound compared to unstructured soft bottom sound or no sound treatments. In field experiments, ambient reef sound produced higher levels of oyster settlement in larval cultures than did off-reef sound treatments. The results suggest that oyster larvae have the ability to respond to sounds indicative of optimal settlement sites, and this is the first evidence that habitat-related differences in estuarine sounds influence the settlement of a mollusk. Habitat-specific sound characteristics may represent an important settlement and habitat selection cue for estuarine invertebrates and could play a

  15. Habitat fragmentation and connectivity : Spatial and temporal characteristics of the colonization process in plants

    NARCIS (Netherlands)

    Soons, Merel Barbara

    2003-01-01

    The connectivity between habitat patches or between populations indicates the potential for transfer of genetic material between habitat patches or populations. In plants, genetic material is usually transferred by dispersal of seeds or pollen. A sufficient level of connectivity is essential for

  16. Distribution, habitat and adaptability of the genus Tapirus.

    Science.gov (United States)

    García, Manolo J; Medici, Emília Patrícia; Naranjo, Eduardo J; Novarino, Wilson; Leonardo, Raquel S

    2012-12-01

    In this manuscript, as a starting point, the ancient and current distribution of the genus Tapirus are summarized, from its origins, apparently in Europe, to current ranges. Subsequently, original and current tapir habitats are described, as well as changes in ancient habitats. As the manuscript goes on, we examine the ways in which tapir species interact with their habitats and the main aspects of habitat use, spatial ecology and adaptability. Having reviewed the historic and current distribution of tapirs, as well as their use and selection of habitats, we introduce the concept of adaptability, considering that some of the tapir physiological characteristics and behavioral strategies can reduce the negative impact of habitat alteration and climate change. Finally, we provide recommendations for future research priorities. The conservation community is still missing important pieces of information for the effective conservation of tapirs and their remaining habitats in Central and South America and Southeast Asia. Reconstructing how tapir species reached their current distribution ranges, interpreting how they interact with their habitats and gathering information regarding the strategies they use to cope with habitat changes will increase our understanding about these animals and contribute to the development of conservation strategies. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  17. Shallow rocky nursery habitat for fish: Spatial variability of juvenile fishes among this poorly protected essential habitat.

    Science.gov (United States)

    Cheminée, Adrien; Rider, Mary; Lenfant, Philippe; Zawadzki, Audrey; Mercière, Alexandre; Crec'hriou, Romain; Mercader, Manon; Saragoni, Gilles; Neveu, Reda; Ternon, Quentin; Pastor, Jérémy

    2017-06-15

    Coastal nursery habitats are essential for the renewal of adult fish populations. We quantified the availability of a coastal nursery habitat (shallow heterogeneous rocky bottoms) and the spatial variability of its juvenile fish populations along 250km of the Catalan coastline (France and Spain). Nurseries were present in 27% of the coastline, but only 2% of them benefited from strict protection status. For nine taxa characteristic of this habitat, total juvenile densities varied significantly between nursery sites along the coastline, with the highest densities being found on the northern sites. Recruitment level (i.e. a proxy of nursery value) was not explained by protection level, but it was moderately and positively correlated with an anthropization index. Patterns of spatial variations were taxa-specific. Exceptional observations of four juveniles of the protected grouper Epinephelus marginatus were recorded. Our data on habitat availability and recruitment levels provides important informations which help to focus MPA management efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Defining geo-habitats for groundwater ecosystem assessments: an example from England and Wales (UK)

    Science.gov (United States)

    Weitowitz, Damiano C.; Maurice, Louise; Lewis, Melinda; Bloomfield, John P.; Reiss, Julia; Robertson, Anne L.

    2017-12-01

    Groundwater ecosystems comprising micro-organisms and metazoans provide an important contribution to global biodiversity. Their complexity depends on geology, which determines the physical habitat available, and the chemical conditions within it. Despite this, methods of classifying groundwater habitats using geological data are not well established and researchers have called for higher resolution habitat frameworks. A novel habitat typology for England and Wales (UK) is proposed, which distinguishes 11 geological habitats (geo-habitats) on hydrogeological principles and maps their distribution. Hydrogeological and hydrochemical data are used to determine the characteristics of each geo-habitat, and demonstrate their differences. Using these abiotic parameters, a new method to determine abiotic habitat quality is then developed. The geo-habitats had significantly different characteristics, validating the classification system. All geo-habitats were highly heterogeneous, containing both high quality habitat patches that are likely to be suitable for fauna, and areas of low quality that may limit faunal distributions. Karstic and porous habitats generally were higher quality than fractured habitats. Overall, 70% of England and Wales are covered by lower quality fractured habitats, with only 13% covered by higher quality habitats. The main areas of high quality habitats occur in central England as north-south trending belts, possibly facilitating dispersal along this axis. They are separated by low quality geo-habitats that may prevent east-west dispersal of fauna. In south-west England and Wales suitable geo-habitats occur as small isolated patches. Overall, this paper provides a new national-scale typology that is adaptable for studies in other geographic areas.

  19. Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type.

    Science.gov (United States)

    Marshall, Leon; Carvalheiro, Luísa G; Aguirre-Gutiérrez, Jesús; Bos, Merijn; de Groot, G Arjen; Kleijn, David; Potts, Simon G; Reemer, Menno; Roberts, Stuart; Scheper, Jeroen; Biesmeijer, Jacobus C

    2015-10-01

    Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs' usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and

  20. Influence of Fire Mosaics, Habitat Characteristics and Cattle Disturbance on Mammals in Fire-Prone Savanna Landscapes of the Northern Kimberley.

    Directory of Open Access Journals (Sweden)

    Ian J Radford

    Full Text Available Patch mosaic burning, in which fire is used to produce a mosaic of habitat patches representative of a range of fire histories ('pyrodiversity', has been widely advocated to promote greater biodiversity. However, the details of desired fire mosaics for prescribed burning programs are often unspecified. Threatened small to medium-sized mammals (35 g to 5.5 kg in the fire-prone tropical savannas of Australia appear to be particularly fire-sensitive. Consequently, a clear understanding of which properties of fire mosaics are most instrumental in influencing savanna mammal populations is critical. Here we use mammal capture data, remotely sensed fire information (i.e. time since last fire, fire frequency, frequency of late dry season fires, diversity of post-fire ages in 3 km radius, and spatial extent of recently burnt, intermediate and long unburnt habitat and structural habitat attributes (including an index of cattle disturbance to examine which characteristics of fire mosaics most influence mammals in the north-west Kimberley. We used general linear models to examine the relationship between fire mosaic and habitat attributes on total mammal abundance and richness, and the abundance of the most commonly detected species. Strong negative associations of mammal abundance and richness with frequency of late dry season fires, the spatial extent of recently burnt habitat (post-fire age <1 year within 3 km radius and level of cattle disturbance were observed. Shrub cover was positively related to both mammal abundance and richness, and availability of rock crevices, ground vegetation cover and spatial extent of ≥4 years unburnt habitat were all positively associated with at least some of the mammal species modelled. We found little support for diversity of post-fire age classes in the models. Our results indicate that both a high frequency of intense late dry season fires and extensive, recently burnt vegetation are likely to be detrimental to

  1. Use of functional traits to assess changes in stream fish assemblages across a habitat gradient

    Directory of Open Access Journals (Sweden)

    Mariela Domiciano Ribeiro

    Full Text Available Abstract Functional traits are important for understanding the links between species occurrence and environmental conditions. Identifying these links makes it possible to predict changes in species composition within communities under specific environmental conditions. We used functional traits related to habitat use and trophic ecology in order to assess the changes in fish community composition between streams with varying habitat structure. The relationship between the species traits and habitat characteristics was analyzed using an RLQ ordination analysis. Although species were widely distributed in habitats with different structures, physical conditions did favor some species based on their functional characteristics. Eight functional traits were found to be associated with stream habitat structure, allowing us to identify traits that may predict the susceptibility of fish species to physical habitat degradation.

  2. Mosquito (Diptera: Culicidae) grouping based on larval habitat characteristics in high mountain ecosystems of Antioquia, Colombia.

    Science.gov (United States)

    Rosero-García, Doris; Rúa-Uribe, Guillermo; Correa, Margarita M; Conn, Jan E; Uribe-Soto, Sandra

    2018-06-01

    Information about mosquito ecology in the high mountain ecosystems of the Neotropical region is sparse. In general, few genera and species have been reported in these ecosystems and there is no information available on habitats and the mosquitoes occupying them. In the present study, specimens collected from NW Colombia in HME were grouped using larval habitat data via an Operational Taxonomic Unit (OTU) determination. A total of 719 mosquitoes was analyzed belonging to 44 OTUs. The analysis considered habitat features and clustered the specimens into six groups from A-F. Five of these included species from different genera, suggesting common habitat requirements. Group E with four genera, seven subgenera, and six species occupied the highest areas (above 3,000 m), whereas three groups (B, D, F) were detected at lower altitudes (1,960-2,002 m). Bromeliads were the most common larval habitat, with 47% (335/719) of the specimens; five genera, six subgenera, and eight species were identified and classified into 66% (29/44) of the OTUs. This work showed some similarities to the habitat requirements and provides a grouping system that constitutes an important baseline for the classification of mosquito fauna from high mountain ecosystems according to altitude and larval habitat. © 2018 The Society for Vector Ecology.

  3. Sage-grouse habitat selection during winter in Alberta

    Science.gov (United States)

    Carpenter, Jennifer L.; Aldridge, Cameron L.; Boyce, Mark S.

    2010-01-01

    Greater sage-grouse (Centrocercus urophasianus) are dependent on sagebrush (Artemisia spp.) for food and shelter during winter, yet few studies have assessed winter habitat selection, particularly at scales applicable to conservation planning. Small changes to availability of winter habitats have caused drastic reductions in some sage-grouse populations. We modeled winter habitat selection by sage-grouse in Alberta, Canada, by using a resource selection function. Our purpose was to 1) generate a robust winter habitat-selection model for Alberta sage-grouse; 2) spatially depict habitat suitability in a Geographic Information System to identify areas with a high probability of selection and thus, conservation importance; and 3) assess the relative influence of human development, including oil and gas wells, in landscape models of winter habitat selection. Terrain and vegetation characteristics, sagebrush cover, anthropogenic landscape features, and energy development were important in top Akaike's Information Criterionselected models. During winter, sage-grouse selected dense sagebrush cover and homogenous less rugged areas, and avoided energy development and 2-track truck trails. Sage-grouse avoidance of energy development highlights the need for comprehensive management strategies that maintain suitable habitats across all seasons. ?? 2010 The Wildlife Society.

  4. Habitat hydraulic models - a tool for Danish stream quality assessment?

    DEFF Research Database (Denmark)

    Olsen, Martin

    and hydromorphological and chemical characteristics has to be enlightened (EUROPA, 2005). This study links catchment hydrology, stream discharge and physical habitat in a small Danish stream, the stream Ledreborg, and discusses the utility of habitat hydraulic models in relation to the present criteria and methods used......).  Hydromorphological conditions in the stream are measured through field study, using a habitat mapping approach and modelled using a habitat hydraulic model (RHYHABSIM). Using RHYHABSIM and both "site-specific" and general HSI's, Weighted Usable Area (WUA) for the trout population at different discharges is assessed...... and differences between simulated WUA using "site-specific" and general habitat preferences are discussed. In RHYHABSIM it is possible to use two different approaches to investigate the hydromorphological conditions in a river, the habitat mapping approach used in this project and the representative reach...

  5. Burrow characteristics and habitat associations of armadillos in Brazil and the United States of America

    Directory of Open Access Journals (Sweden)

    Colleen M. McDonough

    2000-03-01

    Full Text Available We censused and measured armadillo burrows in ten 10 m x 40 m plots in each of four habitat types at a study site in northern Florida and one in the Atlantic coastal rainforest of Brazil. The nine-banded armadillo (Dasypus novemcinctus was the only species of armadillo found in Florida, but several additional species were present in Brazil. Burrows were more numerous but smaller in Brazil than in the U. S., probably due to the inclusion of burrows dug by the smaller congener D. septemcinctus. In Brazil, burrows were larger and more numerous in swamp and forest habitats than in grassland or disturbed areas, suggesting that D. novemcinctus is found primarily in forests and swamps while D. septemcinctus is located in the other areas. This was supported by data from sightings of live animals. In Florida, burrows were more numerous in hardwood hammocks than in wetlands, fields or upland pine areas, but burrow dimensions did not vary across habitat types. In Florida, armadillos were seen more frequently than expected in hammocks and wetlands and less frequently than expected in fields and upland pine areas. There were also age (juvenile versus adult, sex, and yearly differences in habitat use in Florida. Biomass, abundance, and species diversity of terrestrial invertebrates did not vary significantly between habitat types in Florida, suggesting that habitat associations of armadillos were not influenced by prey availability.

  6. Using an index of habitat patch proximity for landscape design

    Science.gov (United States)

    Eric J. Gustafson; George R. Parker

    1994-01-01

    A proximity index (PX) inspired by island biogeography theory is described which quantifies the spatial context of a habitat patch in relation to its neighbors. The index distinguishes sparse distributions of small habitat patches from clusters of large patches. An evaluation of the relationship between PX and variation in the spatial characteristics of clusters of...

  7. An index of reservoir habitat impairment

    Science.gov (United States)

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  8. Variation in habitat connectivity generates positive correlations between species and genetic diversity in a metacommunity.

    Science.gov (United States)

    Lamy, T; Jarne, P; Laroche, F; Pointier, J-P; Huth, G; Segard, A; David, P

    2013-09-01

    An increasing number of studies are simultaneously investigating species diversity (SD) and genetic diversity (GD) in the same systems, looking for 'species- genetic diversity correlations' (SGDCs). From negative to positive SGDCs have been reported, but studies have generally not quantified the processes underlying these correlations. They were also mostly conducted at large biogeographical scales or in recently degraded habitats. Such correlations have not been looked for in natural networks of connected habitat fragments (metacommunities), and the underlying processes remain elusive in most systems. We investigated these issues by studying freshwater snails in a pond network in Guadeloupe (Lesser Antilles). We recorded SD and habitat characteristics in 232 ponds and assessed GD in 75 populations of two species. Strongly significant and positive SGDCs were detected in both species. Based on a decomposition of SGDC as a function of variance-covariance of habitat characteristics, we showed that connectivity (opportunity of water flow between a site and the nearest watershed during the rainy season) has the strongest contribution on SGDCs. More connective sites received both more alleles and more species through immigration resulting in both higher GD and higher SD. Other habitat characteristics did not contribute, or contributed negatively, to SGDCs. This is true of the desiccation frequency of ponds during the dry season, presumably because species markedly differ in their ability to tolerate desiccation. Our study shows that variation in environmental characteristics of habitat patches can promote SGDCs at metacommunity scale when the studied species respond homogeneously to these environmental characteristics. © 2013 John Wiley & Sons Ltd.

  9. Transient habitats limit development time for periodical cicadas.

    Science.gov (United States)

    Karban, Richard

    2014-01-01

    Periodical cicadas (Magicicada spp.) mature in 13 or 17 years, the longest development times for any non-diapausing insects. Selection may favor prolonged development since nymphs experience little mortality and individuals taking 17 years have been shown to have greater fecundity than those taking 13 years. Why don't periodical cicadas take even longer to develop? Nymphs feed on root xylem fluid and move little. Ovipositing females prefer fast-growing trees at forest edges. I hypothesized that (1) adults emerging at edges would be heavier than those from forest interiors and (2) habitat changes could limit development time. I collected newly eclosed females that had neither fed as adults nor moved from their site of development. For M. septendecim, females from edges were 4.9% heavier than those from the interior. I assumed that emergence density indicated habitat quality and measured density at eight sites in 1979, 1996, and 2013. Over three generations, variation in densities was great; densities at two sites crashed, and at one site they exploded to 579/m2 Habitat transience may limit development time because only adults can reassess habitats and reposition offspring. In conclusion, cicadas are affected by habitat characteristics, habitats change over 17 years, and cicadas may emerge, mate, and redistribute their offspring to track habitat dynamics.

  10. Red-shouldered hawk nesting habitat preference in south Texas

    Science.gov (United States)

    Strobel, Bradley N.; Boal, Clint W.

    2010-01-01

    We examined nesting habitat preference by red-shouldered hawks Buteo lineatus using conditional logistic regression on characteristics measured at 27 occupied nest sites and 68 unused sites in 2005–2009 in south Texas. We measured vegetation characteristics of individual trees (nest trees and unused trees) and corresponding 0.04-ha plots. We evaluated the importance of tree and plot characteristics to nesting habitat selection by comparing a priori tree-specific and plot-specific models using Akaike's information criterion. Models with only plot variables carried 14% more weight than models with only center tree variables. The model-averaged odds ratios indicated red-shouldered hawks selected to nest in taller trees and in areas with higher average diameter at breast height than randomly available within the forest stand. Relative to randomly selected areas, each 1-m increase in nest tree height and 1-cm increase in the plot average diameter at breast height increased the probability of selection by 85% and 10%, respectively. Our results indicate that red-shouldered hawks select nesting habitat based on vegetation characteristics of individual trees as well as the 0.04-ha area surrounding the tree. Our results indicate forest management practices resulting in tall forest stands with large average diameter at breast height would benefit red-shouldered hawks in south Texas.

  11. PEMODELAN DISTRIBUSI KESESUAIAN HABITAT SINGGAH SIKEP MADU ASIA (Pernis ptilorhynchus DI PULAU RUPAT BERDASARKAN DATA SATELLITE- TRACKING

    Directory of Open Access Journals (Sweden)

    Hendry Pramono

    2016-01-01

    Full Text Available Birds of prey are one of environmental changes indicators because of their position as top predator. Many of them are migratory species that migrate from northern hemisphere to southern hemisphere, and use Rupat Island (in Riau Province as stopover habitat. One of them is Oriental Honey Buzzard (Pernis ptilorhynchus whose satellite tracking information (from 2006-2009 are available. This study aimed at identifying distribution characteristics of stopover habitats of Oriental Honey-buzzard in Rupat Island based on satellite tracking data using geographic information system (GIS. Several environmental variables (i.e. slope, elevation, land cover were processed into distance to the nearest map and analyzed using logistic regression analysis. The result showed that distribution of stopover habitats covered 1 276.67 km2 (87% of totally Rupat Island (1 461.95 km2. This distribution was mostly influenced by food availability and thermal wind. Identification of these habitat characteristics provides a baseline data for managing their stopover habitats and ecologically-based development of Rupat Island. Keywords: Logistic Regretion, Pernis ptilorhynchus, Rupat Island, Sattelite-tracking, Stopover habitat characteristic

  12. Habitat specialization in tropical continental shelf demersal fish assemblages.

    Directory of Open Access Journals (Sweden)

    Ben M Fitzpatrick

    Full Text Available The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304 collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1-10 m depth, down the fore reef slope to the reef base (10-30 m depth then across the adjacent continental shelf (30-110 m depth. Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of

  13. Thermal characteristics of wild and captive Micronesian Kingfisher nesting habitats

    Science.gov (United States)

    Kesler, Dylan C.; Haig, Susan M.

    2004-01-01

    To provide information for managing the captive population of endangered Guam Micronesian kingfishers (Halcyon cinnamomina cinnamomina), four biologically relevant thermal metrics were compared among captive facilities on the United States mainland and habitats used by wild Micronesian kingfishers on the island of Pohnpei (H. c. reichenbachii), Federated States of Micronesia. Additionally, aviaries where kingfishers laid eggs were compared to those in which birds did not attempt to breed. Compared to aviaries, habitats used by wild Pohnpei kingfishers had 3.2A?C higher daily maximum and minimum temperatures and the proportion of time when temperatures were in the birds' thermoneutral zone was 45% greater. No differences were found in the magnitude of temperature fluctuation in captive and wild environments. In captive environments in which birds bred, daily maximum temperatures were 2.1A?C higher and temperatures were within the thermoneutral zone 25% more often than in the aviaries where the kingfishers did not breed. No differences were found in the magnitude of temperature fluctuation or the daily minimum temperature. Results suggest that the thermal environment has the potential to influence reproduction, and that consideration should be given to increasing temperatures in captive breeding facilities to improve propagation of the endangered Micronesian kingfisher.

  14. Understanding Existing Salmonid Habitat Availability and Connectivity to Improve River Management

    Science.gov (United States)

    Duffin, J.; Yager, E.; Tonina, D.; Benjankar, R. M.

    2017-12-01

    In the Pacific Northwest river restoration is common for salmon conservation. Mangers need methods to help target restoration to problem areas in rivers to create habitat that meets a species' needs. Hydraulic models and habitat suitability curves provide basic information on habitat availability and overall quality, but these analyses need to be expanded to address habitat quality based on the accessibility of habitats required for multiple life stages. Scientists are starting to use connectivity measurements to understand the longitudinal proximity of habitat patches, which can be used to address the habitat variability of a reach. By evaluating the availability and quality of habitat and calculating the connectivity between complementary habitats, such as spawning and rearing habitats, we aim to identify areas that should be targeted for restoration. To meet these goals, we assessed Chinook salmon habitat on the Lemhi River in Idaho. The depth and velocity outputs from a 2D hydraulic model are used in conjunction with locally created habitat suitability curves to evaluate the availability and quality of habitat for multiple Chinook salmon life stages. To assess the variability of the habitat, connectivity between habitat patches necessary for different life stages is calculated with a proximity index. A spatial representation of existing habitat quality and connectivity between complimentary habitats can be linked to river morphology by the evaluation of local geomorphic characteristics, including sinuosity and channel units. The understanding of the current habitat availability for multiple life stage needs, the connectivity between these habitat patches, and their relationship with channel morphology can help managers better identify restoration needs and direct their limited resources.

  15. Climatic Characteristics of the Natural Habitats of Astragalus gossypinus Fisher in Isfahan Province

    Directory of Open Access Journals (Sweden)

    R. Saboohi

    2016-09-01

    Full Text Available The relationship between plant species and climatic factors has always been an important subject in plant ecology and the use of multivariate statistical methods might be effective in detecting the relationship between climatic factors and the distribution of plant species. In the present study, climatic characteristics of Astragalus gossypinus Fisher producing tragacanth stretched in a relatively vast area in Isfahan province (approximatley seven percent of natural habitat of Isfahan province to shed lights on determinant climatic factors on distribution of this species were investigated. In this study, 56 climatic variables were evaluated in the months of January, March, and July in the annual interval and to reduce the number of variables and determine the most important factors. Factor analysis was applied using principal components analysis. The results showed that four factors, namely cooling temperature-humidity, precipitation-storm, cloudiness, and windiness account for 39.05%, 32.77%, 11.44%, and 8.63%, and totally 91.88% of the variance of the data, respectively. Also, the cooling temperature-humidity factor has the greatest impact on presence of this species, therefor, in areas where this species can be seen, the cooling temperature-humidity factor is positive and vice versa.

  16. Physical characteristics of the lower San Joaquin River, California, in relation to white sturgeon spawning habitat, 2011–14

    Science.gov (United States)

    Marineau, Mathieu D.; Wright, Scott A.; Whealdon-Haught, Daniel R.; Kinzel, Paul J.

    2017-07-19

    The U.S. Fish and Wildlife Service confirmed that white sturgeon (Acipenser transmontanus) recently spawned in the lower San Joaquin River, California. Decreases in the San Francisco Bay estuary white sturgeon population have led to an increased effort to understand their migration behavior and habitat preferences. The preferred spawning habitat of other white sturgeon (for example, those in the Columbia and Klamath Rivers) is thought to be areas that have high water velocity, deep pools, and coarse bed material. Coarse bed material (pebbles and cobbles), in particular, is important for the survival of white sturgeon eggs and larvae. Knowledge of the physical characteristics of the lower San Joaquin River can be used to preserve sturgeon spawning habitat and lead to management decisions that could help increase the San Francisco Bay estuary white sturgeon population.Between 2011 and 2014, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, assessed selected reaches and tributaries of the lower river in relation to sturgeon spawning habitat by (1) describing selected spawning reaches in terms of habitat-related physical characteristics (such as water depth and velocity, channel slope, and bed material) of the lower San Joaquin River between its confluences with the Stanislaus and Merced Rivers, (2) describing variations in these physical characteristics during wet and dry years, and (3) identifying potential reasons for these variations.The lower San Joaquin River was divided into five study reaches. Although data were collected from all study reaches, three subreaches where the USFWS collected viable eggs at multiple sites in 2011–12 from Orestimba Creek to Sturgeon Bend were of special interest. Water depth and velocity were measured using two different approaches—channel cross sections and longitudinal profiles—and data were collected using an acoustic Doppler current profiler.During the first year of data collection (water

  17. Human Activity and Habitat Characteristics Influence Shorebird Habitat Use and Behavior at a Vancouver Island Migratory Stopover Site.

    Science.gov (United States)

    Murchison, Colleen R; Zharikov, Yuri; Nol, Erica

    2016-09-01

    Pacific Rim National Park Reserve on Vancouver Island, British Columbia, Canada, has 16 km of coastal beaches that attract many thousands of people and shorebirds (S.O. Charadrii) every year. To identify locations where shorebirds concentrate and to determine the impact of human activity and habitat characteristics on shorebirds, we conducted shorebird and visitor surveys at 20 beach sectors (across 20 total km of beach) during fall migration in 2011-2014 and spring migration in 2012 and 2013. Using zero-inflated negative binomial regression and a model selection approach, we found that beach width and number of people influenced shorebird use of beach sectors (Bayesian information criterion weight of top model = 0.69). Shorebird absence from beaches was associated with increasing number of people (parameter estimate from top model: 0.38; 95 % CI 0.19, 0.57) and decreasing beach width (parameter estimate: -0.32; 95 % CI -0.47, -0.17). Shorebirds spent more time at wider beaches (parameter estimate: 0.68; 95 % CI 0.49, 0.87). Close proximity to people increased the proportion of time shorebirds spent moving, while shorebirds spent more time moving and less time foraging on wider beaches than on narrower ones. Shorebird disturbance increased with proximity of people, activity speed, and presence of dogs. Based on our findings, management options, for reducing shorebird disturbance at Pacific Rim National Park Reserve and similar shorebird stopover areas, include mandatory buffer distances between people and shorebirds, restrictions on fast-moving activities (e.g., running, biking), prohibiting dogs, and seasonal closures of wide beach sections.

  18. Stratification of habitats for identifying habitat selection by Merriam's turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1992-01-01

    Habitat selection patterns of Merriam’s Turkeys were compared in hierarchical analyses of three levels of habitat stratification. Habitat descriptions in first-level analyses were based on dominant species of vegetation. Habitat descriptions in second-level analyses were based on dominant species of vegetation and overstory canopy cover. Habitat descriptions in third-...

  19. Fish assemblage structure and habitat associations in a large western river system

    Science.gov (United States)

    Smith, C.D.; Quist, Michael C.; Hardy, R. S.

    2016-01-01

    Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500-m river reaches was sampled repeatedly with several techniques (boat-mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non-native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non-native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species-specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems.

  20. Variability of haloxylon ammodendron (C. A. Mey) bunge populations from different habitats

    International Nuclear Information System (INIS)

    Lv, C.

    2015-01-01

    Haloxylon ammodendron (C.A. Mey) Bunge occupies a wide range of different habitats in north-west China. The aim of this study was to quantify variation in population growth characteristics of H. ammodendron from different sites and to relate this variation to different environmental conditions. To this end, 6 populations with visible differences were chosen and a range of morphological as well as seed-related characteristics like density, height, crown, basal diameter, seed mass, 1000 seed weight, seed number, seed diameter and germination rate were measured. The variations in the averages of overall traits were explained. The differences between-populations were 33 percentage, whereas those within population were 67 percentage. The largest variation was detected in morphological-related traits between-populations (38 percentage). In particular, the density, height, 1000 seed weight and germination rate differed strongly between populations. The population growth characteristics were closely related to the soil property at the sites of origin. The soil property can explain most of the variations in the morphological-related traits. They were concluded that the diversity of population growth characteristics in different habitats provides the potential of population reproduction and the protection of original habitats is extremely important. (author)

  1. Comparing the plant diversity between artificial forest and nature growth forest in a giant panda habitat.

    Science.gov (United States)

    Kang, Dongwei; Wang, Xiaorong; Li, Shuang; Li, Junqing

    2017-06-15

    Artificial restoration is an important way to restore forests, but little is known about its effect on the habitat restoration of the giant panda. In the present study, we investigated the characteristics of artificial forest in the Wanglang Nature Reserve to determine whether through succession it has formed a suitable habitat for the giant panda. We compared artificial forest characteristics with those of natural habitat used by the giant panda. We found that the dominant tree species in artificial forest differed from those in the natural habitat. The artificial forest had lower plant species richness and diversity in the tree and shrub layers than did the latter, and its community structure was characterized by smaller tree and bamboo sizes, and fewer and lower bamboo clumps, but more trees and larger shrub sizes. The typical community collocation of artificial forest was a "Picea asperata + no-bamboo" model, which differs starkly from the giant panda's natural habitat. After several years of restoration, the artificial forest has failed to become a suitable habitat for the giant panda. Therefore, a simple way of planting individual trees cannot restore giant panda habitat; instead, habitat restoration should be based on the habitat requirements of the giant panda.

  2. Using urban forest assessment tools to model bird habitat potential

    Science.gov (United States)

    Lerman, Susannah B.; Nislow, Keith H.; Nowak, David J.; DeStefano, Stephen; King, David I.; Jones-Farrand, D. Todd

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat to sustain bird and other wildlife populations. The primary goal of this study was to integrate wildlife suitability indices to an existing national urban forest assessment tool, i-Tree. We quantified available habitat characteristics of urban forests for ten northeastern U.S. cities, and summarized bird habitat relationships from the literature in terms of variables that were represented in the i-Tree datasets. With these data, we generated habitat suitability equations for nine bird species representing a range of life history traits and conservation status that predicts the habitat suitability based on i-Tree data. We applied these equations to the urban forest datasets to calculate the overall habitat suitability for each city and the habitat suitability for different types of land-use (e.g., residential, commercial, parkland) for each bird species. The proposed habitat models will help guide wildlife managers, urban planners, and landscape designers who require specific information such as desirable habitat conditions within an urban management project to help improve the suitability of urban forests for birds.

  3. An artificial water body provides habitat for an endangered estuarine seahorse species

    Science.gov (United States)

    Claassens, Louw

    2016-10-01

    Anthropogenic development, especially the transformation of natural habitats to artificial, is a growing concern within estuaries and coastal areas worldwide. Thesen Islands marina, an artificial water body, added 25 ha of new estuarine habitat to the Knysna Estuary in South Africa, home to the Knysna seahorse. This study aimed to answer: (I) Can an artificial water body provide suitable habitat for an endangered seahorse species? And if so (II) what characteristics of this new habitat are important in terms of seahorse utilization? Four major habitat types were identified within the marina canals: (I) artificial reno mattress (wire baskets filled with rocks); (II) Codium tenue beds; (III) mixed vegetation on sediment; and (IV) barren canal floor. Seahorses were found throughout the marina system with significantly higher densities within the reno mattress habitat. The artificial water body, therefore, has provided suitable habitat for Hippocampus capensis, a noteworthy finding in the current environment of coastal development and the increasing shift from natural to artificial.

  4. Bird-community responses to habitat creation in a long-term, large-scale natural experiment.

    Science.gov (United States)

    Whytock, Robin C; Fuentes-Montemayor, Elisa; Watts, Kevin; Barbosa De Andrade, Patanjaly; Whytock, Rory T; French, Paul; Macgregor, Nicholas A; Park, Kirsty J

    2018-04-01

    Ecosystem function and resilience are compromised when habitats become fragmented due to land-use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape-scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post-agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10-160 years with ≥80% canopy cover and in landscapes with 0-17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local- and landscape-scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape

  5. Ichthyoplankton assemblages of coastal west-central Lake Erie and associated habitat characteristics

    Science.gov (United States)

    McKenna, J.E.; Hunter, R. Douglas; Fabrizio, M.C.; Savino, J.F.; Todd, T.N.; Bur, M.

    2008-01-01

    Early life stage survival often determines fish cohort strength and that survival is affected by habitat conditions. The structure and dynamics of ichthyoplankton assemblages can tell us much about biodiversity and fish population dynamics, but are poorly understood in nearshore areas of the Great Lakes, where most spawning and nursery habitats exist. Ichthyoplankton samples were collected with a neuston net in waters 2-13 m deep weekly or biweekly from mid-April through August, during 3 years (2000-2002) as part of a study of fish assemblages in west-central Lake Erie. A suite of abiotic variables was simultaneously measured to characterize habitat. Cluster and ordination analyses revealed several distinct ichthyoplankton assemblages that changed seasonally. A lake whitefish (Coregonus clupeaformis) dominated assemblage appeared first in April. In May, assemblages were dominated by several percid species. Summer assemblages were overwhelmingly dominated by emerald shiner (Notropis atherinoides), with large gizzard shad (Dorosoma cepedianum) and alewife (Alosa pseudoharengus) components. This seasonal trend in species assemblages was also associated with increasing temperature and water clarity. Water depth and drift processes may also play a role in structuring these assemblages. The most common and widely distributed assemblages were not associated with substratum type, which we characterized as either hard or soft. The timing of hatch and larval growth separated the major groups in time and may have adaptive significance for the members of each major assemblage. The quality and locations (with reference to lake circulation) of spawning and nursery grounds may determine larval success and affect year class strength.

  6. Habitat Use Database - Groundfish Essential Fish Habitat (EFH) Habitat Use Database (HUD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Habitat Use Database (HUD) was specifically designed to address the need for habitat-use analyses in support of groundfish EFH, HAPCs, and fishing and nonfishing...

  7. Geomorphology and Sustainable Subsistence Habitats

    Science.gov (United States)

    Johnson, A. C.; Kruger, L. E.

    2016-02-01

    Climatic, tectonic, and human-related impacts are changing the distribution of shoreline habitats and associated species used as food resources. There is a need to summarize current and future shoreline geomorphic - biotic relationships and better understand potential impacts to native customary and traditional gathering patterns. By strategically integrating Native knowledge and observations, we create an inclusive vulnerability assessment strategy resulting in a win-win opportunity for resource users and research scientists alike. We merged the NOAA ShoreZone database with results from over sixty student intern discussions in six southeast Alaska Native communities. Changes in shore width and unit length were derived using near shore bathymetry depths and available isostatic rebound, tectonic movement, and rates of sea level rise. Physical attributes including slope, substrate, and exposure were associated with presence and abundance of specific species. Student interns, selected by Tribes and Tribal associations, conducted resource-based discussions with community members to summarize species use, characteristics of species habitat, transportation used to access collection areas, and potential threats to habitats. Geomorphic trends and community observations were summarized to assess potential threats within a spatial context. Given current measured rates of uplift and sea level rise, 2.4 to 0 m of uplift along with 0.20 m of sea level rise is expected in the next 100 years. Coastlines of southeast Alaska will be subject to both drowning (primarily to the south) and emergence (primarily to the north). We predict decreases in estuary and sediment-dominated shoreline length and an increase in rocky habitats. These geomorphic changes, combined with resident's concerns, highlight six major interrelated coastal vulnerabilities including: (1) reduction of clam and clam habitat quantity and quality, (2) reduction in chiton quality and quantity, (3) harmful expansion of

  8. Canopy cover negatively affects arboreal ant species richness in a tropical open habitat

    Directory of Open Access Journals (Sweden)

    A. C. M. Queiroz

    Full Text Available Abstract We tested the hypothesis of a negative relationship between vegetation characteristics and ant species richness in a Brazilian open vegetation habitat, called candeial. We set up arboreal pitfalls to sample arboreal ants and measured the following environmental variables, which were used as surrogate of environmental heterogeneity: tree richness, tree density, tree height, circumference at the base of the plants, and canopy cover. Only canopy cover had a negative effect on the arboreal ant species richness. Vegetation characteristics and plant species composition are probably homogeneous in candeial, which explains the lack of relationship between other environmental variables and ant richness. Open vegetation habitats harbor a large number of opportunistic and generalist species, besides specialist ants from habitats with high temperatures. An increase in canopy cover decreases sunlight incidence and may cause local microclimatic differences, which negatively affect the species richness of specialist ants from open areas. Canopy cover regulates the richness of arboreal ants in open areas, since only few ant species are able to colonize sites with dense vegetation; most species are present in sites with high temperature and luminosity. Within open vegetation habitats the relationship between vegetation characteristics and species richness seems to be the opposite from closed vegetation areas, like forests.

  9. Urbanization effects on stream habitat characteristics in Boston, Massachusetts; Birmingham, Alabama; and Salt Lake City, Utah

    Science.gov (United States)

    Short, T.M.; Giddings, E.M.P.; Zappia, H.; Coles, J.F.

    2005-01-01

    Relations between stream habitat and urban land-use intensity were examined in 90 stream reaches located in or near the metropolitan areas of Salt Lake City, Utah (SLC); Birmingham, Alabama (BIR); and Boston, Massachusetts (BOS). Urban intensity was based on a multi-metric index (urban intensity index or UII) that included measures of land cover, socioeconomic organization, and urban infrastructure. Twenty-eight physical variables describing channel morphology, hydraulic properties, and streambed conditions were examined. None of the habitat variables was significantly correlated with urbanization intensity in all three study areas. Urbanization effects on stream habitat were less apparent for streams in SLC and BIR, owing to the strong influence of basin slope (SLC) and drought conditions (BIR) on local flow regimes. Streamflow in the BOS study area was not unduly influenced by similar conditions of climate and physiography, and habitat conditions in these streams were more responsive to urbanization. Urbanization in BOS contributed to higher discharge, channel deepening, and increased loading of fine-grained particles to stream channels. The modifying influence of basin slope and climate on hydrology of streams in SLC and BIR limited our ability to effectively compare habitat responses among different urban settings and identify common responses that might be of interest to restoration or water management programs. Successful application of land-use models such as the UII to compare urbanization effects on stream habitat in different environmental settings must account for inherent differences in natural and anthropogenic factors affecting stream hydrology and geomorphology. The challenge to future management of urban development is to further quantify these differences by building upon existing models, and ultimately develop a broader understanding of urbanization effects on aquatic ecosystems. ?? 2005 by the American Fisheries Society.

  10. Juvenile flatfish in the northern Baltic Sea - long-term decline and potential links to habitat characteristics

    Science.gov (United States)

    Jokinen, Henri; Wennhage, Håkan; Ollus, Victoria; Aro, Eero; Norkko, Alf

    2016-01-01

    Flatfish in the northern Baltic Sea are facing multiple environmental pressures due to on-going large-scale ecosystem changes linked to eutrophication and climate change. Shallow juvenile habitats of flatfishes are expected to be especially susceptible to these environmental pressures. Using previously unpublished historical and present-state data on juvenile flatfish in nursery areas along the Finnish coast we demonstrate a drastic (up to 40 ×) decline in 1-Y-O flounder densities since the 1980s and a particularly low current occurrence of both flounders and turbots in several known juvenile habitats. As a consequence of ongoing coastal eutrophication vegetation coverage and filamentous algae have generally increased in shallow areas. We examined the predicted negative effect of vegetation/algae by exploring quantitative relationships between juvenile flatfish (flounder and turbot) occurrence and vegetation/algae among other environmental factors in shallow juvenile habitats. Despite sparse occurrence of juveniles we found a significant negative relationship between flatfish abundance and vegetation cover, implicating eutrophication as a potential major driver affecting the value of juvenile habitat. Shallow littoral habitats play a particularly central role for flatfish due to the spatial concentration of fish in these areas during the critical juvenile stage. Despite their importance, these areas have been relatively poorly studied in the northern Baltic Sea, which makes it difficult to quantify overall changes in environmental conditions and to relate these changes to flatfish recruitment. The low present-state flatfish densities recorded preclude strong inferences of the role of habitat quality to be drawn. Our study does, however, provide a baseline for future assessment. Based on existing evidence, we cannot thus establish any bottlenecks but hypothesize that the current low occurrence of juvenile flatfish, and the population decline of flounder on the

  11. Effects of breeding habitat (woodland versus urban) and metal pollution on the egg characteristics of great tits (Parus major).

    Science.gov (United States)

    Hargitai, Rita; Nagy, Gergely; Nyiri, Zoltán; Bervoets, Lieven; Eke, Zsuzsanna; Eens, Marcel; Török, János

    2016-02-15

    In an urban environment, birds are exposed to metals, which may accumulate in their tissues and cause oxidative stress. Female birds may eliminate these pollutants through depositing them into eggs, thus eggs become suitable bioindicators of pollution. In this study, we aimed to analyse whether eggshell spotting pattern, egg volume, eggshell thickness and egg yolk antioxidant (lutein, tocopherol, retinol and selenium) levels were related to the breeding area (woodland versus urban) and the metal levels in the eggshell of a small passerine species, the great tit (Parus major). In the urban habitat, soil and eggshells contained higher concentrations of metals, and soil calcium level was also higher than that in the woodland. Eggshell spotting intensity and egg volume did not differ between eggs laid in the woodland and the urban park, and these traits were not related to the metal levels of the eggshell, suggesting that these egg characteristics are not sensitive indicators of metal pollution. A more aggregated eggshell spotting distribution indicated a higher Cu concentration of the eggshell. We found that eggshells were thinner in the less polluted woodland habitat, which is likely due to the limited Ca availability of the woodland area. Great tit eggs laid in the urban environment had lower yolk lutein, retinol and selenium concentrations, however, as a possible compensation for these lower antioxidant levels, urban females deposited more tocopherol into the egg yolk. It appears that females from different breeding habitats may provide similar antioxidant protection for their offspring against oxidative damage by depositing different specific dietary antioxidants. Egg yolk lutein and retinol levels showed a negative relationship with lead concentration of the eggshell, which may suggest that lead had a negative impact on the amount of antioxidants available for embryos during development in great tits. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Coefficients of productivity for Yellowstone's grizzly bear habitat

    Science.gov (United States)

    Mattson, David John; Barber, Kim; Maw, Ralene; Renkin, Roy

    2004-01-01

    This report describes methods for calculating coefficients used to depict habitat productivity for grizzly bears in the Yellowstone ecosystem. Calculations based on these coefficients are used in the Yellowstone Grizzly Bear Cumulative Effects Model to map the distribution of habitat productivity and account for the impacts of human facilities. The coefficients of habitat productivity incorporate detailed information that was collected over a 20-year period (1977-96) on the foraging behavior of Yellowstone's bears and include records of what bears were feeding on, when and where they fed, the extent of that feeding activity, and relative measures of the quantity consumed. The coefficients also incorporate information, collected primarily from 1986 to 1992, on the nutrient content of foods that were consumed, their digestibility, characteristic bite sizes, and the energy required to extract and handle each food. Coefficients were calculated for different time periods and different habitat types, specific to different parts of the Yellowstone ecosystem. Stratifications included four seasons of bear activity (spring, estrus, early hyperphagia, late hyperphagia), years when ungulate carrion and whitebark pine seed crops were abundant versus not, areas adjacent to (bear activity in each region, habitat type, and time period were incorporated into calculations, controlling for the effects of proximity to human facilities. The coefficients described in this report and associated estimates of grizzly bear habitat productivity are unique among many efforts to model the conditions of bear habitat because calculations include information on energetics derived from the observed behavior of radio-marked bears.

  13. Surface Habitat Systems

    Science.gov (United States)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are

  14. Habitat use by forest bats in South Carolina in relation to local, stand, and landscape characteristics

    Science.gov (United States)

    Susan C. Loeb; Joy M. O' Keefe

    2006-01-01

    Knowledge and understanding of bat habitat associations and the responses of bats to forest management are critical for effective bat conservation and management. Few studies have been conducted on bat habitat use in the southeast, despite the high number of endangered and sensitive species in the region. Our objective was to identify important local, stand, and...

  15. Riverine habitat dynamics

    Science.gov (United States)

    Jacobson, R.B.

    2013-01-01

    The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration

  16. Loss and modification of habitat

    Science.gov (United States)

    Lemckert, Francis; Hecnar, Stephen; Pilliod, David S.; Wilkinson, John W.; Heatwole, Harold

    2012-01-01

    Amphibians live in a wide variety of habitats around the world, many of which have been modified or destroyed by human activities. Most species have unique life history characteristics adapted to specific climates, habitats (e.g., lentic, lotic, terrestrial, arboreal, fossorial, amphibious), and local conditions that provide suitable areas for reproduction, development and growth, shelter from environmental extremes, and predation, as well as connectivity to other populations or habitats. Although some species are entirely aquatic or terrestrial, most amphibians, as their name implies, lead a dual life and require a mosaic of habitats in both aquatic and terrestrial ecosystems. With over 6 billion people on Earth, most species are now persisting in habitats that have been directly or indirectly influenced by human activities. Some species have disappeared where their habitats have been completely destroyed, reduced, or rendered unsuitable. Habitat loss and degradation are widely considered by most researchers as the most important causes of amphibian population decline globally (Barinaga 1990; Wake and Morowitz 1991; Alford and Richards 1999). In this chapter, a background on the diverse habitat requirements of amphibians is provided, followed by a discussion of the effects of urbanization, agriculture, livestock grazing, timber production and harvesting, fire and hazardous fuel management, and roads on amphibians and their habitats. Also briefly discussed is the influence on amphibian habitats of natural disturbances, such as extreme weather events and climate change, given the potential for human activities to impact climate in the longer term. For amphibians in general, microhabitats are of greater importance than for other vertebrates. As ectotherms with a skin that is permeable to water and with naked gelatinous eggs, amphibians are physiologically constrained to be active during environmental conditions that provide appropriate body temperatures and adequate

  17. Microhabitat features influencing habitat use by Florida black bears

    Directory of Open Access Journals (Sweden)

    Dana L. Karelus

    2018-01-01

    Full Text Available Understanding fine-scale habitat needs of species and the factors influencing heterogeneous use of habitat within home range would help identify limiting resources and inform habitat management practices. This information is especially important for large mammals living in fragmented habitats where resources may be scarcer and more patchily distributed than in contiguous habitats. Using bihourly Global Position System (GPS location data collected from 10 individuals during 2011–2014, we investigated microhabitat features of areas within home ranges that received high vs. low intensity of use by Florida black bears (Ursus americanus floridanus in north-central, Florida. We identified areas receiving high and low levels of use by bears based on their utilization distributions estimated with the dynamic Brownian bridge movement model, and performed vegetation sampling at bear locations within high- and low-use areas. Using univariate analyses and generalized linear mixed models, we found that (1 canopy cover, visual obstruction, and hardwood density were important in defining high-use sites; (2 the probability of high use was positively associated with principal components that represented habitat closer to creeks and with high canopy and shrub cover and higher hardwood densities, likely characteristic of forested wetlands; and (3 the probability of high use was, to a lesser extent, associated with principal components that represented habitat with high canopy cover, high pine density, and low visual obstruction and hardwood density; likely representing sand pine and pine plantations. Our results indicate that the high bear-use sites were in forested wetlands, where cover and food resources for bears are likely to occur in higher abundance. Habitat management plans whereby bears are a focal species should aim to increase the availability and quality of forested wetlands. Keywords: Habitat selection, Heterogeneous habitat use, Forest management

  18. Habitat-related specialization of lateral-line system morphology in a habitat-generalist and a habitat-specialist New Zealand eleotrid.

    Science.gov (United States)

    Vanderpham, J P; Nakagawa, S; Senior, A M; Closs, G P

    2016-04-01

    An investigation of intraspecific habitat-related patterns of variation in oculoscapular lateral-line superficial neuromasts (SN) identified a decrease in the ratio of total SNs to pores, and a trend towards decreased asymmetry in SNs in the habitat-generalist common bully Gobiomorphus cotidianus from fluvial habitats compared to lacustrine habitats, suggesting habitat-related phenotypic variability. A greater ratio of pores to SNs, as well as less variation in the total number and asymmetry of SNs observed in the fluvial habitat-specialist redfin bully Gobiomorphus huttoni may provide further evidence of variations in the oculoscapular lateral-line morphology of fluvial habitat G. cotidianus individuals serving as adaptations to more turbulent environments. © 2016 The Fisheries Society of the British Isles.

  19. Revised Methods for Characterizing Stream Habitat in the National Water-Quality Assessment Program

    Science.gov (United States)

    Fitzpatrick, Faith A.; Waite, Ian R.; D'Arconte, Patricia J.; Meador, Michael R.; Maupin, Molly A.; Gurtz, Martin E.

    1998-01-01

    Stream habitat is characterized in the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. The goal of stream habitat characterization is to relate habitat to other physical, chemical, and biological factors that describe water-quality conditions. To accomplish this goal, environmental settings are described at sites selected for water-quality assessment. In addition, spatial and temporal patterns in habitat are examined at local, regional, and national scales. This habitat protocol contains updated methods for evaluating habitat in NAWQA Study Units. Revisions are based on lessons learned after 6 years of applying the original NAWQA habitat protocol to NAWQA Study Unit ecological surveys. Similar to the original protocol, these revised methods for evaluating stream habitat are based on a spatially hierarchical framework that incorporates habitat data at basin, segment, reach, and microhabitat scales. This framework provides a basis for national consistency in collection techniques while allowing flexibility in habitat assessment within individual Study Units. Procedures are described for collecting habitat data at basin and segment scales; these procedures include use of geographic information system data bases, topographic maps, and aerial photographs. Data collected at the reach scale include channel, bank, and riparian characteristics.

  20. An approach of habitat degradation assessment for characterization on coastal habitat conservation tendency.

    Science.gov (United States)

    Zhou, Xi-Yin; Lei, Kun; Meng, Wei

    2017-09-01

    Coastal zones are population and economy highly intensity regions all over the world, and coastal habitat supports the sustainable development of human society. The accurate assessment of coastal habitat degradation is the essential prerequisite for coastal zone protection. In this study, an integrated framework of coastal habitat degradation assessment including landuse classification, habitat classifying and zoning, evaluation criterion of coastal habitat degradation and coastal habitat degradation index has been established for better regional coastal habitat assessment. Through establishment of detailed three-class landuse classification, the fine landscape change is revealed, the evaluation criterion of coastal habitat degradation through internal comparison based on the results of habitat classifying and zoning could indicate the levels of habitat degradation and distinguish the intensity of human disturbances in different habitat subareas under the same habitat classification. Finally, the results of coastal habitat degradation assessment could be achieved through coastal habitat degradation index (CHI). A case study of the framework is carried out in the Circum-Bohai-Sea-Coast, China, and the main results show the following: (1) The accuracy of all land use classes are above 90%, which indicates a satisfactory accuracy for the classification map. (2) The Circum-Bohai-Sea-Coast is divided into 3 kinds of habitats and 5 subareas. (3) In the five subareas of the Circum-Bohai-Sea-Coast, the levels of coastal habitat degradation own significant difference. The whole Circum-Bohai-Sea-Coast generally is in a worse state according to area weighting of each habitat subarea. This assessment framework of coastal habitat degradation would characterize the landuse change trend, realize better coastal habitat degradation assessment, reveal the habitat conservation tendency and distinguish intensity of human disturbances. Furthermore, it would support for accurate coastal

  1. The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Habitat

    Science.gov (United States)

    Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.

    2018-01-01

    The combined effects of fire history, climate, and landscape features (e.g., edges) on habitat specialists need greater focus in fire ecology studies, which usually only emphasize characteristics of the most recent fire. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights, which are dynamic because of frequent fires. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells (that represented potential territories) because fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities vary between states as functions of environmental covariates. Covariates included vegetative type, edges (e.g., roads, forests), precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presence/absence of fire covariate, but also fire history covariates: time since the previous fire, the longest fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Edges reduced the effectiveness of fires in setting degraded scrub and flatwoods into earlier successional states making mechanical cutting an important tool to compliment frequent prescribed fires.

  2. [Water sources of Nitraria sibirica and response to precipitation in two desert habitats].

    Science.gov (United States)

    Zhou, Hai; Zhao, Wen Zhi; He, Zhi Bin

    2017-07-18

    Nitraria sibirica usually exists in a form of nebkhas, and has strong ecological adaptability. The plant species has distinctive function for wind prevention and sand fixation, and resistance drought and salt. However, the water condition is still a limiting factor for the plant survival and development. In order to understand the water use strategy of the plant in different desert habitats, we selected the N. sibirica growing in sandy desert habitat and gravel desert habitat to study the seaso-nal variation of plant water sources and response to precipitation at the edge of the oasis of Linze in the Hexi Corridor. We measured the oxygen stable isotope of the plant stem water and the different potential water sources (precipitation, soil water and ground water), and used the IsoSource model to calculate the proportion of water sources from the potential water. The results showed that there were significant seasonal variation characteristics of δ 18 O value and water source of stem water for the plant in the two habitats. In the sandy habitat, the plant used more ground water in the less precipitation seasons including spring and fall, and more than 50% of the water sources absorbed from ground water. However, under the condition of gravel habitat, the plant could not achieve the ground water level depth of 11.5 m, and its water source was controlled by precipitation, which had large seasonal variability. The water sources of N. sibirica had significant responses to the change of precipitation in the two desert habitats. Following the rapid decrease of soil water content after the precipitation events, the plant in the sandy habitat turned to use the abundant ground water as the main sources of water, while the plant in the gravel habitat only used the less water from precipita-tion infiltration to the deep soil. Therefore, different water use strategies of the plant in the two habitats were the main reason for the difference in growth characteristics, and it had a

  3. Marine habitat mapping of the Milford Haven Waterway, Wales, UK: Comparison of facies mapping and EUNIS classification for monitoring sediment habitats in an industrialized estuary

    Science.gov (United States)

    Carey, Drew A.; Hayn, Melanie; Germano, Joseph D.; Little, David I.; Bullimore, Blaise

    2015-06-01

    mapping. Cross-walk was conducted by assigning each facies (or group of facies) to a EUNIS habitat (Levels 3 or 5) and compiling maps comparing facies distribution with EUNIS habitat distribution. The facies approach provides critical information on landscape-scale habitats including relative location and inferred sediment transport processes. The SPI/PV approach cannot consistently identify key species contained within the EUNIS Level 5 Habitats. For regional planning and monitoring efforts, a combination of EUNIS classification and facies description provides the greatest flexibility for management of dynamic soft-bottom habitats in coastal estuaries. The combined approach can be used to generate and test hypotheses of linkages between biological characteristics (EUNIS) and physical characteristics (facies). This approach is practical if a robust cross-walk methodology is developed to utilize both classification approaches. SPI/PV technology can be an effective rapid ground truth method for refining marine habitat maps based on predictive models.

  4. Habitat associations of chorusing anurans in the Lower Mississippi River Alluvial valley

    Science.gov (United States)

    Lichtenberg, J.S.; King, S.L.; Grace, J.B.; Walls, S.C.

    2006-01-01

    Amphibian populations have declined worldwide. To pursue conservation efforts adequately, land managers need more information concerning amphibian habitat requirements. To address this need, we examined relationships between anurans and habitat characteristics of wetlands in the Lower Mississippi River Alluvial Valley (LMAV). We surveyed chorusing anurans in 31 wetlands in 2000 and 28 wetlands in 2001, and measured microhabitat variables along the shoreline within the week following each survey. We recorded 12 species of anurans during our study. Species richness was significantly lower in 2000 than 2001 (t-test, P < 0.001) and correlated with an ongoing drought. We found species richness to be significantly greater at lake sites compared to impoundment, swale, and riverine sites (ANOVA, P = 0.002). We used stepwise regression to investigate the wetland types and microhabitat characteristics associated with species richness of chorusing anurans. Microhabitat characteristics associated with species richness included dense herbaceous vegetation and accumulated litter along the shoreline. Individual species showed species-specific habitat associations. The bronze frog, American bullfrog, and northern cricket frog were positively associated with lake sites (Fisher's Exact Test, P < 0.05), however wetland type did not significantly influence any additional species. Using bivariate correlations, we found that six of the seven most common species had significant associations with microhabitat variables. Overall, our findings support the view that conservation and enhancement of amphibian communities in the LMAV and elsewhere requires a matrix of diverse wetland types and habitat conditions. ?? 2006, The Society of Wetland Scientists.

  5. Effects of habitat features on size-biased predation on salmon by bears.

    Science.gov (United States)

    Andersson, Luke C; Reynolds, John D

    2017-05-01

    Predators can drive trait divergence among populations of prey by imposing differential selection on prey traits. Habitat characteristics can mediate predator selectivity by providing refuge for prey. We quantified the effects of stream characteristics on biases in the sizes of spawning salmon caught by bears (Ursus arctos and U. americanus) on the central coast of British Columbia, Canada by measuring size-biased predation on spawning chum (Oncorhynchus keta) and pink (O. gorbuscha) salmon in 12 streams with varying habitat characteristics. We tested the hypotheses that bears would catch larger than average salmon (size-biased predation) and that this bias toward larger fish would be higher in streams that provide less protection to spawning salmon from predation (e.g., less pools, wood, undercut banks). We then we tested for how such size biases in turn translate into differences among populations in the sizes of the fish. Bears caught larger-than-average salmon as the spawning season progressed and as predicted, this was most pronounced in streams with fewer refugia for the fish (i.e., wood and undercut banks). Salmon were marginally smaller in streams with more pronounced size-biased predation but this predictor was less reliable than physical characteristics of streams, with larger fish in wider, deeper streams. These results support the hypothesis that selective forces imposed by predators can be mediated by habitat characteristics, with potential consequences for physical traits of prey.

  6. Characteristics of malaria vector breeding habitats in Sri Lanka: relevance for environmental management

    DEFF Research Database (Denmark)

    Hoek, Wim van der; Amerasinghe, F P; Konradsen, F

    1998-01-01

    , potential secondary vectors, were characterized by site, exposure to sunlight, substratum, turbidity of the water, presence of vegetation, and presence of fauna. Availability of pools of stagnant water in the stream near the village and along the edge of the village tank was highly predictive for presence......In and around a village in the Anuradhapura District of Sri Lanka anopheline larvae were sampled from July 1994 to April 1996 in all surface water bodies. Samples positive for Anopheles culicifacies, the established vector of malaria in Sri Lanka, and for An. barbirostris, An. vagus, and An. varuna...... clear water pools, was able to exploit habitats that were shaded and contained turbid water. Environmental management interventions to control An. culicifacies breeding have to take into account that the secondary vectors of malaria exploit other habitats and would not be affected by the interventions....

  7. The micro-habitat methodology. Application protocols

    Energy Technology Data Exchange (ETDEWEB)

    Sabaton, C; Valentin, S; Souchon, Y

    1995-06-01

    A strong need has been felt for guidelines to help various entities in applying the micro-habitat methodology, particularly in impact studies on hydroelectric installations. CEMAGREF and Electricite de France have developed separately two protocols with five major steps: reconnaissance of the river, selection of representative units to be studied in greater depth, morpho-dynamic measurements at one or more rates of discharge and hydraulic modeling, coupling of hydraulic and biological models, calculation of habitat-quality scores for fish, analysis of results. The two approaches give very comparable results and are essentially differentiated by the hydraulic model used. CEMAGREF uses a one-dimensional model requiring measurements at only one discharge rate. Electricite de France uses a simplified model based on measurements at several rates of discharge. This approach is possible when discharge can be controlled in the study area during data acquisition, as is generally the case downstream of hydroelectric installations. The micro-habitat methodology is now a fully operational tool with which to study changes in fish habitat quality in relation to varying discharge. It provides an element of assessment pertinent to the choice of instreaming flow to be maintained downstream of a hydroelectric installation; this information is essential when the flow characteristics (velocity, depth) and the nature of the river bed are the preponderant factors governing habitat suitability for trout or salmon. The ultimate decision must nonetheless take into account any other potentially limiting factors for the biocenoses on the one hand, and the target water use objectives on the other. In many cases, compromises must be found among different uses, different species and different stages in the fish development cycle. (Abstract Truncated)

  8. Landscape Characteristics of Oriental Honey Buzzards Wintering in Western Part of Flores Island Based on Satellite-Tracking Data

    Science.gov (United States)

    Syartinilia; Farisi, G. H. Al; Higuchi, H.

    2017-10-01

    Oriental Honey Buzzards (OHBs, Pernis ptilorhynchus) are migratory raptor that has been satellite-tracked since 2003. Some islands in Indonesia which are used for wintering habitat are Flores and Borneo. However, both islands have different characteristics of climate and land cover. The objectives of this research were to analyze the landscape characteristic of the OHBs wintering habitat in western Flores, and to subsequently compare landscape characteristic of the OHBs wintering habitat in Borneo. Landscape habitat characteristics were analyzed using Principal Component Analysis (PCA) combined with GIS and then compared to the previous study in Borneo Island. The result showed that the first of six principal components explained 79.14% and 77.59% of the observed variation in landscape characteristics of both core and edge habitats, subsequently. Habitat selection by OHBs at wintering site was influenced by the availability of thermal wind and food. Savannah was identified as the main landscape characteristic that was different between wintering habitat in Flores and Borneo. Savannah is well-known as a habitat for many species of amphibians, reptiles, and small mammals so that it can be a hunting area that provide alternative feed for OHBs.

  9. Enhancements of the "eHabitat

    Science.gov (United States)

    Santoro, M.; Dubois, G.; Schulz, M.; Skøien, J. O.; Nativi, S.; Peedell, S.; Boldrini, E.

    2012-04-01

    The number of interoperable research infrastructures has increased significantly with the growing awareness of the efforts made by the Global Earth Observation System of Systems (GEOSS). One of the Social Benefit Areas (SBA) that is benefiting most from GEOSS is biodiversity, given the costs of monitoring the environment and managing complex information, from space observations to species records including their genetic characteristics. But GEOSS goes beyond the simple sharing of the data as it encourages the connectivity of models (the GEOSS Model Web), an approach easing the handling of often complex multi-disciplinary questions such as understanding the impact of environmental and climatological factors on ecosystems and habitats. In the context of GEOSS Architecture Implementation Pilot - Phase 3 (AIP-3), the EC-funded EuroGEOSS and GENESIS projects have developed and successfully demonstrated the "eHabitat" use scenario dealing with Climate Change and Biodiversity domains. Based on the EuroGEOSS multidisciplinary brokering infrastructure and on the DOPA (Digital Observatory for Protected Areas, see http://dopa.jrc.ec.europa.eu/), this scenario demonstrated how a GEOSS-based interoperability infrastructure can aid decision makers to assess and possibly forecast the irreplaceability of a given protected area, an essential indicator for assessing the criticality of threats this protected area is exposed to. The "eHabitat" use scenario was advanced in the GEOSS Sprint to Plenary activity; the advanced scenario will include the "EuroGEOSS Data Access Broker" and a new version of the eHabitat model in order to support the use of uncertain data. The multidisciplinary interoperability infrastructure which is used to demonstrate the "eHabitat" use scenario is composed of the following main components: a) A Discovery Broker: this component is able to discover resources from a plethora of different and heterogeneous geospatial services, presenting them on a single and

  10. Leatherback turtle movements, dive behavior, and habitat characteristics in ecoregions of the Northwest Atlantic Ocean.

    Directory of Open Access Journals (Sweden)

    Kara L Dodge

    Full Text Available Leatherback sea turtles, Dermochelys coriacea, are highly migratory predators that feed exclusively on gelatinous zooplankton, thus playing a unique role in coastal and pelagic food webs. From 2007 to 2010, we used satellite telemetry to monitor the movements and dive behavior of nine adult and eleven subadult leatherbacks captured on the Northeast USA shelf and tracked throughout the Northwest Atlantic. Leatherback movements and environmental associations varied by oceanographic region, with slow, sinuous, area-restricted search behavior and shorter, shallower dives occurring in cool (median sea surface temperature: 18.4°C, productive (median chlorophyll a: 0.80 mg m(-3, shallow (median bathymetry: 57 m shelf habitat with strong sea surface temperature gradients (median SST gradient: 0.23°C km(-1 at temperate latitudes. Leatherbacks were highly aggregated in temperate shelf and slope waters during summer, early fall, and late spring and more widely dispersed in subtropical and tropical oceanic and neritic habitat during late fall, winter and early spring. We investigated the relationship of ecoregion, satellite-derived surface chlorophyll, satellite-derived sea surface temperature, SST gradient, chlorophyll gradient and bathymetry with leatherback search behavior using generalized linear mixed-effects models. The most well supported model showed that differences in leatherback search behavior were best explained by ecoregion and regional differences in bathymetry and SST. Within the Northwest Atlantic Shelves region, leatherbacks increased path sinuosity (i.e., looping movements with increasing SST, but this relationship reversed within the Gulf Stream region. Leatherbacks increased path sinuosity with decreasing water depth in temperate and tropical shelf habitats. This relationship is consistent with increasing epipelagic gelatinous zooplankton biomass with decreasing water depth, and bathymetry may be a key feature in identifying

  11. Life on the rocks: habitat use drives morphological and performance evolution in lizards.

    Science.gov (United States)

    Goodman, Brett A; Miles, Donald B; Schwarzkopf, Lin

    2008-12-01

    As a group, lizards occupy a vast array of habitats worldwide, yet there remain relatively few cases where habitat use (ecology), morphology, and thus, performance, are clearly related. The best known examples include: increased limb length in response to increased arboreal perch diameter in anoles and increased limb length in response to increased habitat openness for some skinks. Rocky habitats impose strong natural selection on specific morphological characteristics, which differs from that imposed on terrestrial species, because moving about on inclined substrates of irregular sizes and shapes constrains locomotor performance in predictable ways. We quantified habitat use, morphology, and performance of 19 species of lizards (family Scincidae, subfamily Lygosominae) from 23 populations in tropical Australia. These species use habitats with considerable variation in rock availability. Comparative phylogenetic analyses revealed that occupation of rock-dominated habitats correlated with the evolution of increased limb length, compared to species from forest habitats that predominantly occupied leaf litter. Moreover, increased limb length directly affected performance, with species from rocky habitats having greater sprinting, climbing, and clinging ability than their relatives from less rocky habitats. Thus, we found that the degree of rock use is correlated with both morphological and performance evolution in this group of tropical lizards.

  12. Human disturbances, habitat characteristics and social environment generate sex-specific responses in vigilance of Mediterranean mouflon.

    Directory of Open Access Journals (Sweden)

    Stéphanie Benoist

    Full Text Available In prey species, vigilance is an important part of the decision making process related to predation risk effects. Therefore, understanding the mechanisms shaping vigilance behavior provides relevant insights on factors influencing individual fitness. We investigated the role of extrinsic and intrinsic factors on vigilance behavior in Mediterranean mouflon (Ovis gmelini musimon×Ovis sp. in a study site spatially and temporally contrasted in human pressures. Both sexes were less vigilant in the wildlife reserve compared to surrounding unprotected areas, except for males during the hunting period. During this period, males tended to be less strictly restricted to the reserve than females what might lead to a pervasive effect of hunting within the protected area, resulting in an increase in male vigilance. It might also be a rutting effect that did not occur in unprotected areas because males vigilance was already maximal in response to human disturbances. In both sexes, yearlings were less vigilant than adults, probably because they traded off vigilance for learning and energy acquisition and/or because they relied on adult experience present in the group. Similarly, non-reproductive females benefited of the vigilance effort provided by reproductive females when belonging to the same group. However, in the absence of reproductive females, non-reproductive females were as vigilant as reproductive females. Increasing group size was only found to reduce vigilance in females (up to 17.5%, not in males. We also showed sex-specific responses to habitat characteristics. Females increased their vigilance when habitat visibility decreased (up to 13.8% whereas males increased their vigilance when feeding on low quality sites, i.e., when concomitant increase in chewing time can be devoted to vigilance with limited costs. Our global approach was able to disentangle the sex-specific sources of variation in mouflon vigilance and stressed the importance of

  13. A habitat assessment for Florida panther population expansion into central Florida

    Science.gov (United States)

    Thatcher, C.A.; Van Manen, F.T.; Clark, J.D.

    2009-01-01

    One of the goals of the Florida panther (Puma concolor coryi) recovery plan is to expand panther range north of the Caloosahatchee River in central Florida. Our objective was to evaluate the potential of that region to support panthers. We used a geographic information system and the Mahalanobis distance statistic to develop a habitat model based on landscape characteristics associated with panther home ranges. We used cross-validation and an independent telemetry data set to test the habitat model. We also conducted a least-cost path analysis to identify potential habitat linkages and to provide a relative measure of connectivity among habitat patches. Variables in our model were paved road density, major highways, human population density, percentage of the area permanently or semipermanently flooded, and percentage of the area in natural land cover. Our model clearly identified habitat typical of that found within panther home ranges based on model testing with recent telemetry data. We identified 4 potential translocation sites that may support a total of approximately 36 panthers. Although we identified potential habitat linkages, our least-cost path analyses highlighted the extreme isolation of panther habitat in portions of the study area. Human intervention will likely be required if the goal is to establish female panthers north of the Caloosahatchee in the near term.

  14. Definition of sampling units begets conclusions in ecology: the case of habitats for plant communities

    Directory of Open Access Journals (Sweden)

    Martin A. Mörsdorf

    2015-03-01

    Full Text Available In ecology, expert knowledge on habitat characteristics is often used to define sampling units such as study sites. Ecologists are especially prone to such approaches when prior sampling frames are not accessible. Here we ask to what extent can different approaches to the definition of sampling units influence the conclusions that are drawn from an ecological study? We do this by comparing a formal versus a subjective definition of sampling units within a study design which is based on well-articulated objectives and proper methodology. Both approaches are applied to tundra plant communities in mesic and snowbed habitats. For the formal approach, sampling units were first defined for each habitat in concave terrain of suitable slope using GIS. In the field, these units were only accepted as the targeted habitats if additional criteria for vegetation cover were fulfilled. For the subjective approach, sampling units were defined visually in the field, based on typical plant communities of mesic and snowbed habitats. For each approach, we collected information about plant community characteristics within a total of 11 mesic and seven snowbed units distributed between two herding districts of contrasting reindeer density. Results from the two approaches differed significantly in several plant community characteristics in both mesic and snowbed habitats. Furthermore, differences between the two approaches were not consistent because their magnitude and direction differed both between the two habitats and the two reindeer herding districts. Consequently, we could draw different conclusions on how plant diversity and relative abundance of functional groups are differentiated between the two habitats depending on the approach used. We therefore challenge ecologists to formalize the expert knowledge applied to define sampling units through a set of well-articulated rules, rather than applying it subjectively. We see this as instrumental for progress in

  15. Definition of sampling units begets conclusions in ecology: the case of habitats for plant communities.

    Science.gov (United States)

    Mörsdorf, Martin A; Ravolainen, Virve T; Støvern, Leif Einar; Yoccoz, Nigel G; Jónsdóttir, Ingibjörg Svala; Bråthen, Kari Anne

    2015-01-01

    In ecology, expert knowledge on habitat characteristics is often used to define sampling units such as study sites. Ecologists are especially prone to such approaches when prior sampling frames are not accessible. Here we ask to what extent can different approaches to the definition of sampling units influence the conclusions that are drawn from an ecological study? We do this by comparing a formal versus a subjective definition of sampling units within a study design which is based on well-articulated objectives and proper methodology. Both approaches are applied to tundra plant communities in mesic and snowbed habitats. For the formal approach, sampling units were first defined for each habitat in concave terrain of suitable slope using GIS. In the field, these units were only accepted as the targeted habitats if additional criteria for vegetation cover were fulfilled. For the subjective approach, sampling units were defined visually in the field, based on typical plant communities of mesic and snowbed habitats. For each approach, we collected information about plant community characteristics within a total of 11 mesic and seven snowbed units distributed between two herding districts of contrasting reindeer density. Results from the two approaches differed significantly in several plant community characteristics in both mesic and snowbed habitats. Furthermore, differences between the two approaches were not consistent because their magnitude and direction differed both between the two habitats and the two reindeer herding districts. Consequently, we could draw different conclusions on how plant diversity and relative abundance of functional groups are differentiated between the two habitats depending on the approach used. We therefore challenge ecologists to formalize the expert knowledge applied to define sampling units through a set of well-articulated rules, rather than applying it subjectively. We see this as instrumental for progress in ecology as only rules

  16. Smartphone technologies and Bayesian networks to assess shorebird habitat selection

    Science.gov (United States)

    Zeigler, Sara; Thieler, E. Robert; Gutierrez, Ben; Plant, Nathaniel G.; Hines, Megan K.; Fraser, James D.; Catlin, Daniel H.; Karpanty, Sarah M.

    2017-01-01

    Understanding patterns of habitat selection across a species’ geographic distribution can be critical for adequately managing populations and planning for habitat loss and related threats. However, studies of habitat selection can be time consuming and expensive over broad spatial scales, and a lack of standardized monitoring targets or methods can impede the generalization of site-based studies. Our objective was to collaborate with natural resource managers to define available nesting habitat for piping plovers (Charadrius melodus) throughout their U.S. Atlantic coast distribution from Maine to North Carolina, with a goal of providing science that could inform habitat management in response to sea-level rise. We characterized a data collection and analysis approach as being effective if it provided low-cost collection of standardized habitat-selection data across the species’ breeding range within 1–2 nesting seasons and accurate nesting location predictions. In the method developed, >30 managers and conservation practitioners from government agencies and private organizations used a smartphone application, “iPlover,” to collect data on landcover characteristics at piping plover nest locations and random points on 83 beaches and barrier islands in 2014 and 2015. We analyzed these data with a Bayesian network that predicted the probability a specific combination of landcover variables would be associated with a nesting site. Although we focused on a shorebird, our approach can be modified for other taxa. Results showed that the Bayesian network performed well in predicting habitat availability and confirmed predicted habitat preferences across the Atlantic coast breeding range of the piping plover. We used the Bayesian network to map areas with a high probability of containing nesting habitat on the Rockaway Peninsula in New York, USA, as an example application. Our approach facilitated the collation of evidence-based information on habitat selection

  17. Ecomorphology and phylogenetic risk: Implications for habitat reconstruction using fossil bovids.

    Science.gov (United States)

    Scott, Robert S; Barr, W Andrew

    2014-08-01

    Reconstructions of paleohabitats are necessary aids in understanding hominin evolution. The morphology of species from relevant sites, understood in terms of functional relationships to habitat (termed ecomorphology), offers a direct link to habitat. Bovids are a speciose radiation that includes many habitat specialists and are abundant in the fossil record. Thus, bovids are extremely common in ecomorphological analyses. However, bovid phylogeny and habitat preference are related, which raises the possibility that analyses linking habitat with morphology are not 'taxon free' but 'taxon-dependent.' Here we analyze eight relative dimensions and one shape index of the metatarsal for a sample of 72 bovid species and one antilocaprid. The selected variables have been previously shown to have strong associations with habitat and to have functional explanations for these associations. Phylogenetic generalized least squares analyses of these variables, including habitat and size, resulted in estimates for the parameter lambda (used to model phylogenetic signal) varying from zero to one. Thus, while phylogeny, morphology, and habitat all march together among the bovids, the odds that phylogeny confounds ecomorphological analyses may vary depending on particular morphological characteristics. While large values of lambda do not necessarily indicate that habitat differences are unimportant drivers of morphology, we consider the low value of lambda for relative metatarsal width suggestive that conclusions about habitat built on observations of this particular morphology carry with them less 'phylogenetic risk.' We suggest that the way forward for ecomorphology is grounded in functionally relevant observations and careful consideration of phylogeny designed to bracket probable habitat preferences appropriately. Separate consideration of different morphological variables may help to determine the level of 'phylogenetic risk' attached to conclusions linking habitat and morphology

  18. Scrub-shrub bird habitat associations at multiple spatial scales in beaver meadows in Massachusetts

    Science.gov (United States)

    Chandler, R.B.; King, D.I.; DeStefano, S.

    2009-01-01

    Most scrub-shrub bird species are declining in the northeastern United States, and these declines are largely attributed to regional declines in habitat availability. American Beaver (Castor canadensis; hereafter “beaver”) populations have been increasing in the Northeast in recent decades, and beavers create scrub-shrub habitat through their dam-building and foraging activities. Few systematic studies have been conducted on the value of beaver-modified habitats for scrub-shrub birds, and these data are important for understanding habitat selection of scrub-shrub birds as well as for assessing regional habitat availability for these species. We conducted surveys in 37 beaver meadows in a 2,800-km2 study area in western Massachusetts during 2005 and 2006 to determine the extent to which these beaver-modified habitats are used by scrub-shrub birds, as well as the characteristics of beaver meadows most closely related to bird use. We modeled bird abundance in relation to microhabitat-, patch-, and landscape-context variables while adjusting for survey-specific covariates affecting detectability using N-mixture models. We found that scrub-shrub birds of regional conservation concern occupied these sites and that birds responded differently to microhabitat, patch, and landscape characteristics of beaver meadows. Generally, scrub-shrub birds increased in abundance along a gradient of increasing vegetation complexity, and three species were positively related to patch size. We conclude that these habitats can potentially play an important role in regional conservation of scrub-shrub birds and recommend that conservation priority be given to larger beaver meadows with diverse vegetation structure and composition.

  19. Redd site selection and spawning habitat use by fall chinook salmon: The importance of geomorphic features in large rivers

    International Nuclear Information System (INIS)

    Geist, D.R.; Oregon State Univ., Corvallis, OR; Dauble, D.D.

    1998-01-01

    Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. The authors present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of the conceptual model. The authors suggest that traditional habitat models and the conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost

  20. Influence of Mowing Artemisia tridentata ssp. wyomingensis on Winter Habitat for Wildlife

    Science.gov (United States)

    Davies, Kirk W.; Bates, Jonathan D.; Johnson, Dustin D.; Nafus, Aleta M.

    2009-07-01

    Mowing is commonly implemented to Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh (Wyoming big sagebrush) plant communities to improve wildlife habitat, increase forage production for livestock, and create fuel breaks for fire suppression. However, information detailing the influence of mowing on winter habitat for wildlife is lacking. This information is crucial because many wildlife species depended on A. tridentata spp. wyomingensis plant communities for winter habitat and consume significant quantities of Artemisia during this time . Furthermore, information is generally limited describing the recovery of A. tridentata spp. wyomingensis to mowing and the impacts of mowing on stand structure. Stand characteristics and Artemisia leaf tissue crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF) concentrations were measured in midwinter on 0-, 2-, 4-, and 6-year-old fall-applied mechanical (mowed at 20 cm height) treatments and compared to adjacent untreated (control) areas. Mowing compared to the control decreased Artemisia cover, density, canopy volume, canopy elliptical area, and height ( P < 0.05), but all characteristics were recovering ( P < 0.05). Mowing A. tridentata spp. wyomingensis plant communities slightly increases the nutritional quality of Artemisia leaves ( P < 0.05), but it simultaneously results in up to 20 years of decrease in Artemisia structural characteristics. Because of the large reduction in A. tridentata spp. wyomingensis for potentially 20 years following mowing, mowing should not be applied in Artemisia facultative and obligate wildlife winter habitat. Considering the decline in A. tridentata spp. wyomingensis-dominated landscapes, we caution against mowing these communities.

  1. The Habitat Connection.

    Science.gov (United States)

    Naturescope, 1987

    1987-01-01

    Consists of activities which address the causes of habitat destruction and the effects of habitat loss on animals and plants. Identifies habitat loss as the major reason for the endangerment and extinction of plant and animal species. (ML)

  2. Habitat and hydrology: assessing biological resources of the Suwannee River Estuarine System

    Science.gov (United States)

    Raabe, Ellen A.; Edwards, Randy E.; McIvor, Carole C.; Grubbs, Jack W.; Dennis, George D.

    2007-01-01

    The U.S. Geological Survey conducted a pilot integrated-science study during 2002 and 2003 to map, describe, and evaluate benthic and emergent habitats in the Suwannee River Estuary on the Gulf Coast of Florida. Categories of aquatic, emergent, and terrestrial habitats were determined from hyperspectral imagery and integrated with hydrologic data to identify estuarine fish habitats. Maps of intertidal and benthic habitat were derived from 12-band, 4-m resolution hyperspectral imagery acquired in September 2002. Hydrologic data were collected from tidal creeks during the winter of 2002-03 and the summer-fall of 2003. Fish were sampled from tidal creeks during March 2003 using rivulet nets, throw traps, and seine nets. Habitat characteristics, hydrologic data, and fish assemblages were compared for tidal creeks north and south of the Suwannee River. Tidal creeks north of the river had more shoreline edge and shallow habitat than creeks to the south. Tidal creeks south of the river were generally of lower salinity (fresher) and supported more freshwater marsh and submerged aquatic vegetation. The southern creeks tended to be deeper but less sinuous than the northern creeks. Water quality and inundation were evaluated with hydrologic monitoring in the creeks. In-situ gauges, recording pressure and temperature, documented a net discharge of brackish to saline groundwater into the tidal creeks with pronounced flow during low tide. Groundwater flow into the creeks was most prominent north of the river. Combined fish-sampling results showed an overall greater abundance of organisms and greater species richness in the southern creeks, nominally attributed a greater range in water quality. Fish samples were dominated by juvenile spot, grass shrimp, bay anchovy, and silverside. The short time frame for hydrologic monitoring and the one-time fish-sampling effort were insufficient for forming definitive conclusions. However, the combination of hyperspectral imagery and

  3. Assessing range-wide habitat suitability for the Lesser Prairie-Chicken

    Science.gov (United States)

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Grisham, Blake A.; Timmer, Jennifer M.; Boal, Clint W.; Butler, Matthew; Pitman, James C.; Kyle, Sean; Klute, David; Beauprez, Grant M.; Janus, Allan; Van Pelt, William E.

    2016-01-01

    Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.

  4. Habitat degradation may affect niche segregation patterns in lizards

    Science.gov (United States)

    Pelegrin, N.; Chani, J. M.; Echevarria, A. L.; Bucher, E. H.

    2013-08-01

    Lizards partition resources in three main niche dimensions: time, space and food. Activity time and microhabitat use are strongly influenced by thermal environment, and may differ between species according to thermal requirements and tolerance. As thermal characteristics are influenced by habitat structure, microhabitat use and activity of lizards can change in disturbed habitats. We compared activity and microhabitat use of two abundant lizard species of the Semi-arid Chaco of Argentina between a restored and a highly degraded Chaco forest, to determine how habitat degradation affects lizard segregation in time and space, hypothesizing that as activity and microhabitat use of lizards are related to habitat structure, activity and microhabitat use of individual species can be altered in degraded habitats, thus changing segregation patterns between them. Activity changed from an overlapped pattern in a restored forest to a segregated pattern in a degraded forest. A similar trend was observed for microhabitat use, although to a less extent. No correlation was found between air temperature and lizard activity, but lizard activity varied along the day and among sites. Contrary to what was believed, activity patterns of neotropical diurnal lizards are not fixed, but affected by multiple factors related to habitat structure and possibly to interspecific interactions. Changes in activity patterns and microhabitat use in degraded forests may have important implications when analyzing the effects of climate change on lizard species, due to synergistic effects.

  5. Nesting ecology of Townsend's warblers in relation to habitat characteristics in a mature boreal forest

    Science.gov (United States)

    Matsuoka, S.M.; Handel, Colleen M.; Roby, D.D.

    1997-01-01

    We investigated the nesting ecology of Townsend's Warblers (Dendroica townsendi) from 1993-1995 in an unfragmented boreal forest along the lower slopes of the Chugach Mountains in southcentral Alaska. We examined habitat characteristics of nest sites in relation to factors influencing reproductive success. Almost all territory-holding males (98%, n = 40) were successful in acquiring mates. Nest success was 54% (n = 24 nests), with nest survivorship greater during incubation (87%) than during the nestling period (62%). Most nesting failure (80%) was attributable to predation, which occurred primarily during the nestling period. Fifty-five percent of nests containing nestling were infested with the larvae of bird blow-flies (Protocalliphora braueri and P. spenceri), obligatory blood-feeding parasites. The combined effects of Protocalliphora infestation and inclement weather apparently resulted in nestling mortality in 4 of the 24 nests. Nests that escaped predation were placed in white spruce with larger diameter than those lost to predation: nests that escaped blow-fly parasitism were located higher in nest trees and in areas with lower densities of woody shrubs than those that were infested. The availability of potential nest sites with these key features may be important in determining reproductive success in Townsend's Warblers.

  6. Habitat selection and post-release movement of reintroduced brown treecreeper individuals in restored temperate woodland.

    Directory of Open Access Journals (Sweden)

    Victoria A Bennett

    Full Text Available It is essential to choose suitable habitat when reintroducing a species into its former range. Habitat quality may influence an individual's dispersal decisions and also ultimately where they choose to settle. We examined whether variation in habitat quality (quantified by the level of ground vegetation cover and the installation of nest boxes influenced the movement, habitat choice and survival of a reintroduced bird species. We experimentally reintroduced seven social groups (43 individuals of the brown treecreeper (Climacteris picumnus into two nature reserves in south-eastern Australia. We radio-tracked 18 brown treecreepers from release in November 2009 until February 2010. We observed extensive movements by individuals irrespective of the release environment or an individual's gender. This indicated that individuals were capable of dispersing and actively selecting optimum habitat. This may alleviate pressure on wildlife planners to accurately select the most optimum release sites, so long as the species' requirements are met. There was significant variation in movement between social groups, suggesting that social factors may be a more important influence on movement than habitat characteristics. We found a significant effect of ground vegetation cover on the likelihood of settlement by social groups, with high rates of settlement and survival in dry forests, rather than woodland (where the species typically resides, which has implications for the success of woodland restoration. However, overall the effects of variation in habitat quality were not as strong as we had expected, and resulted in some unpredicted effects such as low survival and settlement in woodland areas with medium levels of ground vegetation cover. The extensive movement by individuals and unforeseen effects of habitat characteristics make it difficult to predict the outcome of reintroductions, the movement behaviour and habitat selection of reintroduced individuals

  7. The variability of leaf anatomical characteristics of Solanum nigrum L. (Solana-les, Solanaceae from different habitats

    Directory of Open Access Journals (Sweden)

    Krstić Lana N.

    2002-01-01

    Full Text Available In Europe on the whole as well as in Yugoslavia, the most widespread weed species from the genus Solanum is Solanum nigrum L. Since this species inhabits different habitats, it developed several ways of adaptation to environmental conditions. The influence of ecological factors on plant organism and resulting plant adaptations are most evident in leaf morphology and anatomy. Therefore, the anatomical structure of leaves and leaf epidermal tissue of S. nigrum was analyzed and compared among plants that originated from different habitats, in order to determine leaf structural adaptations. S. nigrum lamina has the mesomorphic structure with some xero-heliomorphic adaptations. The differences in stomata number, number of hairs, thickness of lamina, palisade and spongy tissue, as well as the size of mesophyll cells have been noticed. The highest values for most of the parameters have been recorded for the plants from cultivated soil. Largest variations of the examined characters were found for the leaves from ruderal habitats, where environmental conditions are most variable.

  8. Eelgrass habitat near Liberty Bay: Chapter 5

    Science.gov (United States)

    Dinicola, Richard S.; Takesue, Renee K.

    2015-01-01

    Seagrasses are a widespread type of marine flowering plants that grow in nearshore intertidal and subtidal zones. Seagrass beds are ecologically important because they affect physical, biological, and chemical characteristics of nearshore habitat, and they are sensitive to changes in coastal water quality (Stevenson and others, 1993; Koch, 2001; Martinez-Crego and others, 2008). Zostera marina, commonly known as eelgrass, is protected by a no-net-loss policy in Washington State where it may be used as spawning habitat by herring, a key prey species for salmon, seabirds, and marine mammals (Bargmann, 1998). Eelgrass forms broad meadows in shallow embayments or narrow fringes on open shorelines (Berry and others, 2003). Anthropogenic activities that increase turbidity, nutrient loading, and physical disturbance at the coast can result in dramatic seagrass decline (Ralph and others, 2006).

  9. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T.P. [Pacific Northwest National Laboratory

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physical characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the

  10. Abundances and Habitat Sensitivities of Some River Fishes in ...

    African Journals Online (AJOL)

    Freshwater fishes from a diverse array of 11 families, some dominated by marine species and others containing only a few species, were collected by electrofishing from 84 locations on small rivers in central Thailand and their abundances related to habitat characteristics. Abundances were largest for Channa gachua, ...

  11. Fine-scale habitat preference of green sturgeon (Acipenser medirostris) within three spawning locations in the Sacramento River, California

    Science.gov (United States)

    Wyman, Megan T.; Thomas, Michael J.; McDonald, Richard R.; Hearn, Alexander R.; Battleson, Ryan D.; Chapman, Eric D.; Kinzel, Paul J.; Minear, J. Tobey; Mora, Ethan A.; Nelson, Jonathan M.; Pagel, Matthew D.; Klimley, A. Peter

    2018-01-01

    Vast sections of the Sacramento River have been listed as critical habitat by the National Marine Fisheries Service for green sturgeon spawning (Acipenser medirostris), yet spawning is known to occur at only a few specific locations. This study reveals the range of physical habitat variables selected by adult green sturgeon during their spawning period. We integrated fine-scale fish positions, physical habitat characteristics, discharge, bathymetry, and simulated velocity and depth using a 2-dimensional hydraulic model (FaSTMECH). The objective was to create habitat suitability curves for depth, velocity, and substrate type within three known spawning locations over two years. An overall cumulative habitat suitability score was calculated that averaged the depth, velocity, and substrate scores over all fish, sites, and years. A weighted usable area (WUA) index was calculated throughout the sampling periods for each of the three sites. Cumulative results indicate that the microhabitat characteristics most preferred by green sturgeon in these three spawning locations were velocities between 1.0-1.1 m/s, depths of 8-9 m, and gravel and sand substrate. This study provides guidance for those who may in the future want to increase spawning habitat for green sturgeon within the Sacramento River.

  12. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River.

    Directory of Open Access Journals (Sweden)

    Johannes Radinger

    Full Text Available Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049 and topological variables (e.g., stream order were included (AUC = +0.014. Both measured and assessed variables were similarly well suited to predict species' presence. Stream order variables and measured cross section features (e.g., width, depth, velocity were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types and assessed longitudinal channel features (e.g., naturalness of river planform were also good predictors. These findings demonstrate (i the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables to predict fish presence, (ii the

  13. Hunting, Exotic Carnivores, and Habitat Loss: Anthropogenic Effects on a Native Carnivore Community, Madagascar

    OpenAIRE

    Farris, Zach J.; Golden, Christopher D.; Karpanty, Sarah; Murphy, Asia; Stauffer, Dean; Ratelolahy, Felix; Andrianjakarivelo, Vonjy; Holmes, Christopher M.; Kelly, Marcella J.

    2015-01-01

    The wide-ranging, cumulative, negative effects of anthropogenic disturbance, including habitat degradation, exotic species, and hunting, on native wildlife has been well documented across a range of habitats worldwide with carnivores potentially being the most vulnerable due to their more extinction prone characteristics. Investigating the effects of anthropogenic pressures on sympatric carnivores is needed to improve our ability to develop targeted, effective management plans for carnivore c...

  14. Rainbow trout movement behavior and habitat occupancy are influenced by sex and Pacific salmon presence in an Alaska river system

    Science.gov (United States)

    Fraley, Kevin M.; Falke, Jeffrey A.; McPhee, Megan V.; Prakash, Anupma

    2018-01-01

    We used spatially continuous field-measured and remotely-sensed aquatic habitat characteristics paired with weekly ground-based telemetry tracking and snorkel surveys to describe movements and habitat occupancy of adult rainbow trout (N = 82) in a runoff-fed, salmon-influenced southcentral Alaska river system. We found that during the ice-free feeding season (June through September) rainbow trout occurrence was associated more with fine-scale (channel unit) characteristics relative to coarse-scale (stream reach) variables. The presence of Pacific salmon (which provide an important seasonal food subsidy), and habitat size were particularly useful predictors. Weekly movement distance differed between pre- and post- spawning salmon arrival, but did not vary by sex. Habitat quality, season, and the arrival of spawning salmon influenced the likelihood of rainbow trout movement, and fish moved farther to seek out higher quality habitats. Because rainbow trout respond to habitat factors at multiple scales and seek out salmon-derived subsidies, it will be important to take a multiscale approach in protecting trout and salmon populations and managing the associated fisheries.

  15. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    the most effective site-specific habitat restoration plan, taking into consideration the unique characteristics of each project site, and conducted in cooperation with landowners and project partners, was of paramount importance to ensure each project's success. An Aquatic Habitat Inventory was conducted from river mile 0-8 on Isquulktpe Creek and the data collected was compared with data collected in 1994. Monitoring plans will continue throughout the duration of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety of fisheries monitoring techniques and habitat assessments used to determine existing conditions and identify factors limiting anadromous salmonid abundance in accordance with the Umatilla River Subbasin Salmon and Steelhead Production Plan (NPPC 1990) and the Final Umatilla Willow Subbasin Plan (Umatilla/Willow Subbasin Planning Team 2005).

  16. Population characteristics, space use and habitat associations of the seahorse Hippocampus reidi (Teleostei: Syngnathidae

    Directory of Open Access Journals (Sweden)

    Ierecê Lucena Rosa

    Full Text Available This paper provides a case study of a threatened seahorse species, Hippocampus reidi, highlighting the importance of using ecological information to assist conservation and management initiatives. Underwater visual sighting data (50 x 2m transect gathered along the NE, SE and S portions of the Brazilian coast revealed an unequal distribution across localities, perhaps related to harvesting pressure, and a mean density of 0.026 ind.m-2. Our findings suggest some restricted spatial use by H. reidi, which was consistent with its estimated home range, and with re-sighting of specimens. Reproduction was recorded year-round, however productive peaks may exist. Components of habitat structure mostly used as anchoring points were mangrove plants, macroalgae, cnidarians, seagrass, sponges, and bryozoans. Conservation recommendations include: further characterization and mapping of habitats; assessment of availability and condition of microhabitats in selected areas, and studies on dispersal routes during initial life stages.

  17. Chinook salmon use of spawning patches: relative roles of habitat quality, size, and connectivity.

    Science.gov (United States)

    Isaak, Daniel J; Thurow, Russell F; Rieman, Bruce E; Dunham, Jason B

    2007-03-01

    Declines in many native fish populations have led to reassessments of management goals and shifted priorities from consumptive uses to species preservation. As management has shifted, relevant environmental characteristics have evolved from traditional metrics that described local habitat quality to characterizations of habitat size and connectivity. Despite the implications this shift has for how habitats may be prioritized for conservation, it has been rare to assess the relative importance of these habitat components. We used an information-theoretic approach to select the best models from sets of logistic regressions that linked habitat quality, size, and connectivity to the occurrence of chinook salmon (Oncorhynchus tshawytscha) nests. Spawning distributions were censused annually from 1995 to 2004, and data were complemented with field measurements that described habitat quality in 43 suitable spawning patches across a stream network that drained 1150 km2 in central Idaho. Results indicated that the most plausible models were dominated by measures of habitat size and connectivity, whereas habitat quality was of minor importance. Connectivity was the strongest predictor of nest occurrence, but connectivity interacted with habitat size, which became relatively more important when populations were reduced. Comparison of observed nest distributions to null model predictions confirmed that the habitat size association was driven by a biological mechanism when populations were small, but this association may have been an area-related sampling artifact at higher abundances. The implications for habitat management are that the size and connectivity of existing habitat networks should be maintained whenever possible. In situations where habitat restoration is occurring, expansion of existing areas or creation of new habitats in key areas that increase connectivity may be beneficial. Information about habitat size and connectivity also could be used to strategically

  18. Multiple-scale roost habitat comparisons of female Merriam's wild turkeys in the southern Black Hills, South Dakota

    Science.gov (United States)

    Daniel J. Thompson; Mark A. Rumble; Lester D. Flake; Chad P. Lehman

    2009-01-01

    Because quantity and quality of roosting habitat can affect Merriam's Wild Turkey (Meleagris gallopavo merriami) distribution, we described habitat characteristics of Merriam's turkey roost sites in the southern Black Hills of South Dakota. Varying proportions of Merriam's turkeys in the southern Black Hills depended on supplemental feed from livestock...

  19. Habitat assessment of non-wadeable rivers in Michigan.

    Science.gov (United States)

    Wilhelm, Jennifer G O; Allan, J David; Wessell, Kelly J; Merritt, Richard W; Cummins, Kenneth W

    2005-10-01

    excellent (1). Habitat variables retained in the NWHI differ from several used in wadeable streams, and place greater emphasis on known characteristic features of larger rivers.

  20. HABITAT DAN PERILAKU ELANG JAWA (Nisaetus bartelsi DI SPTN 1 TEGALDLIMO TAMAN NASIONAL ALAS PURWO, JAWA TIMUR

    Directory of Open Access Journals (Sweden)

    Desy Natalia Sitorus

    2017-05-01

    Full Text Available Javan Hawk-eagle (Nisaetus bartelsi considered as endangered species by IUCN redlist 2015 and protected species by Government Regulation No.7/1999. Alas Purwo National Park (APNP is a conservation area and its one of the natural habitat of Javan Hawk-eagle distribution (endemic species of java. The study was aimed to analysis its habitat and the behavior. Purposive sampling was used on focused observation area base on direct contex with the bird. The habitat analysis was approach with vagetation analysis dan habitat used method. Focal animal sampling used as approach describe to know the daily activities. The result showed that the bird used of natural lowland forest as main habitat and the bird distibute as equal (focused at natural lowland forest. Characteristic of sheltering site of the bird using tree in A strata and B strata, which have horizontal and strong enough branch. The javan hawk-eagle choising at emergent tree for the nesting site, with characteristic of emergent tree, with crown not so dense of the leaf and the position of the tree close to hunting area. Characteristic of hunting areas of the bird is natural lowland forest with diverse and abundant of preys. The bird like preys on mammals such as giant squirrel and bird such as red jungle fowl. The behavior was most often observed was resting in natural lowland forest with five times encounter (58,06%. But the bird also done activities of preening and observing surrounding to focus on seaching food. Hunting activity was observed used perch hunting in natural low land forest in APNP. Keywords: APNP, habitat, javan hawk-eagle

  1. KAJIAN KARAKTERISTIK HABITAT RAFFLESIA (Rafflesia patma BLUME. DI CAGAR ALAM BOJONGLARANG JAYANTI, CIANJUR, JAWA BARAT

    Directory of Open Access Journals (Sweden)

    Muhammad Adlan Ali

    2016-01-01

    Full Text Available Bojonglarang Jayanti Nature Reserve one of habitat Rafflesia patma. The purpose of this research  to identify biotic and abiotic habitat characteristic of R. patma in Bojonglarang Jayanti Nature Reserve. Research conducted in March until April, using single plot analysis habitat to take physical and biotic data as well as the study of literature for climate data retrieval. R. patma habitat have lowland and coastal forest vegetation types  with dominant species Cyathocalys biovulatus. Fauna that be a benefit to the life of Rafflesia are 19 species from 15 Family. There are 90 individual R.patma found at altitude 0-100 m above sea level, slope average 14.73%, the distance from the coast beach 758 m, a distance from the water 12 m, litter thickness 1.7 cm, and the type of soil is Podsolic with low nutrient content and acidic pH. R. patma habitat has C climate type.  Key word : Abiotic, Biotic, Habitat, Population, R. Patma

  2. Loss and modification of habitat: Chapter 1

    Science.gov (United States)

    Lemckert, Francis; Hecnar, Stephen; Pilliod, David S.

    2012-01-01

    Amphibians live in a wide variety of habitats around the world, many of which have been modified or destroyed by human activities. Most species have unique life history characteristics adapted to specific climates, habitats (e.g., lentic, lotic, terrestrial, arboreal, fossorial, amphibious), and local conditions that provide suitable areas for reproduction, development and growth, shelter from environmental extremes, and predation, as well as connectivity to other populations or habitats. Although some species are entirely aquatic or terrestrial, most amphibians, as their name implies, lead a dual life and require a mosaic of habitats in both aquatic and terrestrial ecosystems. With over 6 billion people on Earth, most species are now persisting in habitats that have been directly or indirectly influenced by human activities. Some species have disappeared where their habitats have been completely destroyed, reduced, or rendered unsuitable. Habitat loss and degradation are widely considered by most researchers as the most important causes of amphibian population decline globally (Barinaga 1990; Wake and Morowitz 1991; Alford and Richards 1999). In this chapter, a background on the diverse habitat requirements of amphibians is provided, followed by a discussion of the effects of urbanization, agriculture, livestock grazing, timber production and harvesting, fire and hazardous fuel management, and roads on amphibians and their habitats. Also briefly discussed is the influence on amphibian habitats of natural disturbances, such as extreme weather events and climate change, given the potential for human activities to impact climate in the longer term. For amphibians in general, microhabitats are of greater importance than for other vertebrates. As ectotherms with a skin that is permeable to water and with naked gelatinous eggs, amphibians are physiologically constrained to be active during environmental conditions that provide appropriate body temperatures and adequate

  3. Energy crop cultivations of reed canary grass - An inferior breeding habitat for the skylark, a characteristic farmland bird species

    Energy Technology Data Exchange (ETDEWEB)

    Vepsaelaeinen, Ville [Finnish Museum of Natural History, P.O. Box 17, University of Helsinki, FI-00014 Helsinki (Finland)

    2010-07-15

    Here, I present the first comparison of the abundance of farmland birds in energy grass fields and in cereal-dominated conventionally cultivated fields (CCFs). I demonstrate that in boreal farmland, skylark (Alauda arvensis) densities were significantly lower in reed canary grass (RCG) (Phalaris arundinacea) fields than in CCFs. I found that during the early breeding season RCG fields and CCFs are equally good habitats, but over the ensuing couple of weeks RCG rapidly grows too tall and dense for field-nesting species. Consequently, RCG is an inferior habitat for skylark for laying replacement clutches (after failure of first nesting) or for a second clutch after one successful nesting. The results imply that if RCG cultivation is to be expanded, the establishment of large monocultures should be avoided in farmland landscapes; otherwise the novel habitat may affect detrimentally the seriously depleted skylark population, and probably also other field-nesting bird species with similar breeding habitats. (author)

  4. The influence of housing characteristics on leisure-time sitting. A prospective cohort study in Danish adults

    DEFF Research Database (Denmark)

    Saidj, Madina; Jørgensen, Torben; Jacobsen, Rikke Kart

    2015-01-01

    housing characteristics. CONCLUSIONS: Habitat type, habitat surface area and household size were associated with leisure-time sitting in adults, while especially household size was a predictor of leisure-time sitting five years later. The findings highlight the importance of home-environmental attributes...... was to examine if housing characteristics were cross-sectionally and prospectively related to leisure-time sitting in adults. METHODS: In the Danish Health2006 cohort, 2308 adults were followed for 5 years. At baseline, subjects self-reported housing characteristics (habitat type, habitat surface area...... and household size), moderate-to-vigorous physical activity (MVPA) and socio-demographic factors. Leisure-time sitting was self-reported at baseline and 5-year follow-up. Multiple linear regression was used to assess cross-sectional and prospective associations. RESULTS: At baseline habitat surface area...

  5. N-mix for fish: estimating riverine salmonid habitat selection via N-mixture models

    Science.gov (United States)

    Som, Nicholas A.; Perry, Russell W.; Jones, Edward C.; De Juilio, Kyle; Petros, Paul; Pinnix, William D.; Rupert, Derek L.

    2018-01-01

    Models that formulate mathematical linkages between fish use and habitat characteristics are applied for many purposes. For riverine fish, these linkages are often cast as resource selection functions with variables including depth and velocity of water and distance to nearest cover. Ecologists are now recognizing the role that detection plays in observing organisms, and failure to account for imperfect detection can lead to spurious inference. Herein, we present a flexible N-mixture model to associate habitat characteristics with the abundance of riverine salmonids that simultaneously estimates detection probability. Our formulation has the added benefits of accounting for demographics variation and can generate probabilistic statements regarding intensity of habitat use. In addition to the conceptual benefits, model application to data from the Trinity River, California, yields interesting results. Detection was estimated to vary among surveyors, but there was little spatial or temporal variation. Additionally, a weaker effect of water depth on resource selection is estimated than that reported by previous studies not accounting for detection probability. N-mixture models show great promise for applications to riverine resource selection.

  6. Transferability of habitat suitability criteria for fishes in warmwater streams

    Science.gov (United States)

    Freeman, Mary C.; Bowen, Z.H.; Crance, J.H.

    1997-01-01

    We developed habitat suitability criteria and tested their transferability for nine fishes inhabiting unregulated Piedmont and Coastal Plain streams in Alabama. Cr iteria for optimal habitat were defined as ranges of depth, velocity, substrate type and cover type for which a species' suitability index (proportional abundance divided by proportional habitat availability, scaled from 0 to 1) equalled or exceeded 0.4. We evaluated the transferability of criteria between study sites by testing the null hypothesis that species occurrence in a sample was independent of whether or not the sample was taken in optimal habitat. We also tested criteria transference to a large, flow-regulated river sampled during low flow periods. Depth, velocity and most substrate criteria developed for the bronze darter Percina palmaris successfully transferred between unregulated streams and to the flow-regulated river samples. All criteria developed for a pair of closely related, allopatric darter species, Etheostoma chuckwachattee and E. jordani, transferred sucessfully when applied between species (in the unregulated sites) and to the regulated river samples. In contrast, criteria for the Alabama shiner Cyprinella callistia failed nearly all tests of transferability. Criteria for E. stigmaeum, P. nigrofasciata, an undescribed Percina species, and a pair of related, allopatric Cyprinella species transferred inconsistently. The species with good criteria transference had high suitability indices for shallow depths, fast current velocities and coarse substrates, characteristic of riffle species. We suggest that microhabitat criteria for riffle fishes are more likely to provide a transferable measure of habitat quality than criteria for fishes that, although restricted to fluvial habitats, commonly occupy a variety of pool and riffle habitats.

  7. From ground pools to treeholes: convergent evolution of habitat and phenotype in Aedes mosquitoes.

    Science.gov (United States)

    Soghigian, John; Andreadis, Theodore G; Livdahl, Todd P

    2017-12-19

    Invasive mosquito species are responsible for millions of vector-borne disease cases annually. The global invasive success of Aedes mosquitoes such as Aedes aegypti and Aedes albopictus has relied on the human transport of immature stages in container habitats. However, despite the importance of these mosquitoes and this ecological specialization to their widespread dispersal, evolution of habitat specialization in this group has remained largely unstudied. We use comparative methods to evaluate the evolution of habitat specialization and its potential influence on larval morphology, and evaluate whether container dwelling and invasiveness are monophyletic in Aedes. We show that habitat specialization has evolved repeatedly from ancestral ground pool usage to specialization in container habitats. Furthermore, we find that larval morphological scores are significantly associated with larval habitat when accounting for evolutionary relationships. We find that Ornstein-Uhleinbeck models with unique optima for each larval habitat type are preferred over several other models based predominantly on neutral processes, and that OU models can reliably simulate real morphological data. Our results demonstrate that multiple lineages of Aedes have convergently evolved a key trait associated with invasive success: the use of container habitats for immature stages. Moreover, our results demonstrate convergence in morphological characteristics as well, and suggest a role of adaptation to habitat specialization in driving phenotypic diversity in this mosquito lineage. Finally, our results highlight that the genus Aedes is not monophyletic.

  8. Reproductive success and habitat characteristics of Golden-winged Warblers in high-elevation pasturelands

    Science.gov (United States)

    Wood, Petra; Aldinger, Kyle R.

    2016-01-01

    The Golden-winged Warbler (Vermivora chrysoptera) is one of the most rapidly declining vertebrate species in the Appalachian Mountains. It is the subject of extensive range-wide research and conservation action. However, little is known about this species' breeding ecology in high-elevation pasturelands, a breeding habitat with conservation potential considering the U.S. Natural Resource Conservation Service's Working Lands for Wildlife program targeting private lands in the Appalachian Mountains. We located 100 nests of Golden-winged Warblers in pastures in and around the Monongahela National Forest in West Virginia during 2008–2012. Daily nest survival rate (mean ± SE  =  0.962 ± 0.006), clutch size (4.5 ± 0.1), and number of young fledged per nest attempt (2.0 ± 0.2) and successful nest (4.0 ± 0.1) fell within the range of values reported in other parts of the species' range and were not significantly affected by year or the presence/absence of cattle grazing. Classification tree analysis revealed that nests were in denser vegetation (≥52%) and closer to forest edges (the male's territory. Successful nests had significantly more woody cover (≥9%) within 1 m than failed nests. Our results suggest that cattle grazing at 1.2–2.4 ha of forage/animal unit with periodic mowing can create and maintain these characteristics without interfering with the nesting of Golden-winged Warblers. High-elevation pasturelands may provide a refuge for remaining populations of Golden-winged Warblers in this region.

  9. Habitat-specific morphological variation among threespine sticklebacks (Gasterosteus aculeatus within a drainage basin.

    Directory of Open Access Journals (Sweden)

    Mike M Webster

    Full Text Available Habitat-specific morphological variation, often corresponding to resource specialization, is well documented in freshwater fishes. In this study we used landmark based morphometric analyses to investigate morphological variation among threespine sticklebacks (Gasterosteus aculeatus L. from four interconnected habitat types within a single lowland drainage basin in eastern England. These included the upper and lower reaches of the river, the estuary, a connected ditch network and a coastal salt marsh. We found significant habitat-specific differences in morphology, with three axes of variation describing differences in orbit diameter, body depth, caudal peduncle shape and pectoral fin positioning as well as variation in relative dorsal and pelvic spine size. Interestingly, the ditch system, an artificial and heavily managed habitat, is populated by sticklebacks with a characteristic morphology, suggesting that human management of habitats can in some circumstances lead to morphological variation among the animals that inhabit them. We discuss the mechanisms that conceivably underlie the observed morphological variation and the further work necessary to identify them. Finally, we consider the implications of habitat-specific body shape variation for the behavioural ecology of this ecologically generalist species.

  10. Habitat-Specific Morphological Variation among Threespine Sticklebacks (Gasterosteus aculeatus) within a Drainage Basin

    Science.gov (United States)

    Webster, Mike M.; Atton, Nicola; Hart, Paul J. B.; Ward, Ashley J. W.

    2011-01-01

    Habitat-specific morphological variation, often corresponding to resource specialization, is well documented in freshwater fishes. In this study we used landmark based morphometric analyses to investigate morphological variation among threespine sticklebacks (Gasterosteus aculeatus L.) from four interconnected habitat types within a single lowland drainage basin in eastern England. These included the upper and lower reaches of the river, the estuary, a connected ditch network and a coastal salt marsh. We found significant habitat-specific differences in morphology, with three axes of variation describing differences in orbit diameter, body depth, caudal peduncle shape and pectoral fin positioning as well as variation in relative dorsal and pelvic spine size. Interestingly, the ditch system, an artificial and heavily managed habitat, is populated by sticklebacks with a characteristic morphology, suggesting that human management of habitats can in some circumstances lead to morphological variation among the animals that inhabit them. We discuss the mechanisms that conceivably underlie the observed morphological variation and the further work necessary to identify them. Finally, we consider the implications of habitat-specific body shape variation for the behavioural ecology of this ecologically generalist species. PMID:21698269

  11. Habitats and Species Covered by the EEC Habitats Directive

    DEFF Research Database (Denmark)

    Pihl, S.; Søgaard, B.; Ejrnæs, R.

    of Conservation (SAC's), Natura 2000. The designations are based upon the presence of 60 of the natural habitat types listed in Annex I of the Directive and approx. 44 of the species listed in Annex II which occur within the territory of Denmark and for the conservation of which the Community has a special...... and the Danish county authorities have initiated a co-operative programme to provide and compile the data necessary to assess the conservation status of the natural habitat types and species concerned. The purpose of this report is to present the conservation status of the habitats and species in Denmark...

  12. Geospatial characteristics of Florida's coastal and offshore environments: Distribution of important habitats for coastal and offshore biological resources and offshore sand resources

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Foster, Ann M.; Jones, Michal L.; Gualtieri, Daniel J.

    2011-01-01

    The Geospatial Characteristics GeoPDF of Florida's Coastal and Offshore Environments is a comprehensive collection of geospatial data describing the political boundaries and natural resources of Florida. This interactive map provides spatial information on bathymetry, sand resources, and locations of important habitats (for example, Essential Fish Habitats (EFH), nesting areas, strandings) for marine invertebrates, fish, reptiles, birds, and marine mammals. The map should be useful to coastal resource managers and others interested in marine habitats and submerged obstructions of Florida's coastal region. In particular, as oil and gas explorations continue to expand, the map can be used to explore information regarding sensitive areas and resources in the State of Florida. Users of this geospatial database will have access to synthesized information in a variety of scientific disciplines concerning Florida's coastal zone. This powerful tool provides a one-stop assembly of data that can be tailored to fit the needs of many natural resource managers. The map was originally developed to assist the Bureau of Ocean Energy Management, Regulation, and Enforcement (BOEMRE) and coastal resources managers with planning beach restoration projects. The BOEMRE uses a systematic approach in planning the development of submerged lands of the Continental Shelf seaward of Florida's territorial waters. Such development could affect the environment. BOEMRE is required to ascertain the existing physical, biological, and socioeconomic conditions of the submerged lands and estimate the impact of developing these lands. Data sources included the National Oceanic and Atmospheric Administration, BOEMRE, Florida Department of Environmental Protection, Florida Geographic Data Library, Florida Fish and Wildlife Conservation Commission, Florida Natural Areas Inventory, and the State of Florida, Bureau of Archeological Research. Federal Geographic Data Committee (FGDC) compliant metadata are

  13. Impacts of habitat loss and fragmentation on the activity budget, ranging ecology and habitat use of Bale monkeys (Chlorocebus djamdjamensis) in the southern Ethiopian Highlands.

    Science.gov (United States)

    Mekonnen, Addisu; Fashing, Peter J; Bekele, Afework; Hernandez-Aguilar, R Adriana; Rueness, Eli K; Nguyen, Nga; Stenseth, Nils Chr

    2017-07-01

    Understanding the extent to which primates in forest fragments can adjust behaviorally and ecologically to changes caused by deforestation is essential to designing conservation management plans. During a 12-month period, we studied the effects of habitat loss and degradation on the Ethiopian endemic, bamboo specialist, Bale monkey (Chlorocebus djamdjamensis) by comparing its habitat quality, activity budget, ranging ecology and habitat use in continuous forest and two fragments. We found that habitat loss and fragmentation resulted in major differences in vegetation composition and structure between forest types. We also found that Bale monkeys in continuous forest spent more time feeding and traveling and less time resting and socializing than monkeys in fragments. Bale monkeys in continuous forest also had higher movement rates (m/hr) than monkeys in fragments. Bale monkeys in continuous forest used exclusively bamboo and mixed bamboo forest habitats while conspecifics in fragments used a greater variety of habitats including human use areas (i.e., matrix). Our findings suggest that Bale monkeys in fragments use an energy minimization strategy to cope with the lower availability of the species' primary food species, bamboo (Arundinaria alpina). We contend that Bale monkeys may retain some of the ancestral ecological flexibility assumed to be characteristic of the genus Chlorocebus, within which all extant species except Bale monkeys are regarded as ecological generalists. Our results suggest that, like other bamboo eating primates (e.g., the bamboo lemurs of Madagascar), Bale monkeys can cope with a certain threshold of habitat destruction. However, the long-term conservation prospects for Bale monkeys in fragments remain unclear and will require further monitoring to be properly evaluated. © 2017 Wiley Periodicals, Inc.

  14. Sensitivity of heterogeneous marine benthic habitats to subtle stressors.

    Directory of Open Access Journals (Sweden)

    Iván F Rodil

    Full Text Available It is important to understand the consequences of low level disturbances on the functioning of ecological communities because of the pervasiveness and frequency of this type of environmental change. In this study we investigated the response of a heterogeneous, subtidal, soft-sediment habitat to small experimental additions of organic matter and calcium carbonate to examine the sensitivity of benthic ecosystem functioning to changes in sediment characteristics that relate to the environmental threats of coastal eutrophication and ocean acidification. Our results documented significant changes between key biogeochemical and sedimentary variables such as gross primary production, ammonium uptake and dissolved reactive phosphorus flux following treatment additions. Moreover, the application of treatments affected relationships between macrofauna communities, sediment characteristics (e.g., chlorophyll a content and biogeochemical processes (oxygen and nutrient fluxes. In this experiment organic matter and calcium carbonate showed persistent opposing effects on sedimentary processes, and we demonstrated that highly heterogeneous sediment habitats can be surprisingly sensitive to subtle perturbations. Our results have important biological implications in a world with relentless anthropogenic inputs of atmospheric CO2 and nutrients in coastal waters.

  15. Modelling Fish Habitat Suitability in the Eastern English Channel. Application to community habitat level

    OpenAIRE

    Vaz, Sandrine; Carpentier, Andre; Loots, Christophe; Koubbi, Philippe

    2004-01-01

    Valuable marine habitats and living resources can be found in the Eastern English Channel and in 2003, a Franco-British Interreg IIIA project, ‘Eastern Channel Habitat Atlas for Marine Resource Management’ (CHARM), was initiated to support decision-making for management of essential fish habitats. Fish habitat corresponds to geographic areas within which ranges of environmental factors define the presence of a particular species. Habitat Suitability index (HSI) modelling was used to relate fi...

  16. Two-dimensional physical habitat modeling of effects of habitat structures on urban stream restoration

    Directory of Open Access Journals (Sweden)

    Dongkyun Im

    2011-12-01

    Full Text Available River corridors, even if highly modified or degraded, still provide important habitats for numerous biological species, and carry high aesthetic and economic values. One of the keys to urban stream restoration is recovery and maintenance of ecological flows sufficient to sustain aquatic ecosystems. In this study, the Hongje Stream in the Seoul metropolitan area of Korea was selected for evaluating a physically-based habitat with and without habitat structures. The potential value of the aquatic habitat was evaluated by a weighted usable area (WUA using River2D, a two-dimensional hydraulic model. The habitat suitability for Zacco platypus in the Hongje Stream was simulated with and without habitat structures. The computed WUA values for the boulder, spur dike, and riffle increased by about 2%, 7%, and 131%, respectively, after their construction. Also, the three habitat structures, especially the riffle, can contribute to increasing hydraulic heterogeneity and enhancing habitat diversity.

  17. Evaluation of Macroinvertebrate Communities and Habitat for Selected Stream Reaches at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    L.J. Henne; K.J. Buckley

    2005-08-12

    This is the second aquatic biological monitoring report generated by Los Alamos National Laboratory's (LANL's) Water Quality and Hydrology Group. The study has been conducted to generate impact-based assessments of habitat and water quality for LANL waterways. The monitoring program was designed to allow for the detection of spatial and temporal trends in water and habitat quality through ongoing, biannual monitoring of habitat characteristics and benthic aquatic macroinvertebrate communities at six key sites in Los Alamos, Sandia, Water, Pajarito, and Starmer's Gulch Canyons. Data were collected on aquatic habitat characteristics, channel substrate, and macroinvertebrate communities during 2001 and 2002. Aquatic habitat scores were stable between 2001 and 2002 at all locations except Starmer's Gulch and Pajarito Canyon, which had lower scores in 2002 due to low flow conditions. Channel substrate changes were most evident at the upper Los Alamos and Pajarito study reaches. The macroinvertebrate Stream Condition Index (SCI) indicated moderate to severe impairment at upper Los Alamos Canyon, slight to moderate impairment at upper Sandia Canyon, and little or no impairment at lower Sandia Canyon, Starmer's Gulch, and Pajarito Canyon. Habitat, substrate, and macroinvertebrate data from the site in upper Los Alamos Canyon indicated severe impacts from the Cerro Grande Fire of 2000. Impairment in the macroinvertebrate community at upper Sandia Canyon was probably due to effluent-dominated flow at that site. The minimal impairment SCI scores for the lower Sandia site indicated that water quality improved with distance downstream from the outfall at upper Sandia Canyon.

  18. Rarity Status and Habitat of Shorea laevis and Shorea leprosula in Muara Teweh, Central Kalimantan

    Directory of Open Access Journals (Sweden)

    Sri Wilarso Budi

    2012-08-01

    Full Text Available Forest exploitation and conversion to other landuse may cause lost of biodiversity, including most important dipterocarp trees species, i.e. Shorea leprosula and Shorea laevis. The objective of this study was to determine the rarity status of the two important shorea species, i.e. S. laevis and S. leprosula, based on IUCN criteria, their habitat characteristics, and their association with other species, as one of the basis for determining their conservation strategy as a part of forest management. This study was conducted in three types of ecosystem (virgin forest, secondary forest, and fragmented forest in Muara Teweh, Central Kalimantan.  Methodology used in this research includes vegetation and tree diversity analysis. Study results showed that both S. laevis and S. leprosula were included within category of “low risk” in the 3 types of ecosystem in the forest area being studied.  Habitat characteristics which determined the absence of S. laevis in the virgin forest habitat was the soil permeability which was too low, whereas other soil chemical and physical properties in the three types of ecosystems were relatively similar.  Presence of S. laevis were positively associated with species of S. uliginosa, Dialium platysepalum, Dipterocarpus ibmalatus, Palaquium rostatum, Vatica rasak, Adinandra sp., and Memecyclon steenis.  On the other hand,  S. leprosula were positively correlated with S. kunstleri, Castanopsis sp., Shorea sp., Quercus bennettii, Castanopsis argentea, and D. hasseltii.Keywords: threatened species, Shorea spp., habitat characteristic, ecosystems type, associated species

  19. Subseafloor basalts as fungal habitats

    Directory of Open Access Journals (Sweden)

    M. Ivarsson

    2012-09-01

    Full Text Available The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50–200 µm in diameter body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  20. Wildlife habitat management on college and university campuses

    Science.gov (United States)

    Bosci, Tierney; Warren, Paige S.; Harper, Rick W.; DeStefano, Stephen

    2018-01-01

    With the increasing involvement of higher education institutions in sustainability movements, it remains unclear to what extent college and university campuses address wildlife habitat. Many campuses encompass significant areas of green space with potential to support diverse wildlife taxa. However, sustainability rating systems generally emphasize efforts like recycling and energy conservation over green landscaping and grounds maintenance. We sought to examine the types of wildlife habitat projects occurring at schools across the United States and whether or not factors like school type (public or private), size (number of students), urban vs. rural setting, and funding played roles in the implementation of such initiatives. Using case studies compiled by the National Wildlife Federation’s Campus Ecology program, we documented wildlife habitat-related projects at 60 campuses. Ten management actions derived from nationwide guidelines were used to describe the projects carried out by these institutions, and we recorded data about cost, funding, and outreach and education methods. We explored potential relationships among management actions and with school characteristics. We extracted themes in project types, along with challenges and responses to those challenges. Native plant species selection and sustainable lawn maintenance and landscaping were the most common management actions among the 60 campuses. According to the case studies we examined, we found that factors like school type, size, and location did not affect the engagement of a campus in wildlife habitat initiatives, nor did they influence the project expenditures or funding received by a campus. Our results suggest that many wildlife habitat initiatives are feasible for higher education institutions and may be successfully implemented at relatively low costs through simple, but deliberate management actions.

  1. European red list of habitats. Part 1: Marine habitats

    NARCIS (Netherlands)

    Gubbay, S.; Sanders, N.; Haynes, T.; Janssen, J.A.M.; Rodwell, J.R.; Nieto, A.; Garcia Criado, M.; Beal, S.; Borg, J.

    2016-01-01

    The European Red List of Habitats provides an overview of the risk
    of collapse (degree of endangerment) of marine, terrestrial and
    freshwater habitats in the European Union (EU28) and adjacent
    regions (EU28+), based on a consistent set of categories and
    criteria, and detailed data

  2. Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation.

    Science.gov (United States)

    Vranckx, Guy; Jacquemyn, Hans; Muys, Bart; Honnay, Olivier

    2012-04-01

    Shrubs and trees are assumed less likely to lose genetic variation in response to habitat fragmentation because they have certain life-history characteristics such as long lifespans and extensive pollen flow. To test this assumption, we conducted a meta-analysis with data on 97 woody plant species derived from 98 studies of habitat fragmentation. We measured the weighted response of four different measures of population-level genetic diversity to habitat fragmentation with Hedge's d and Spearman rank correlation. We tested whether the genetic response to habitat fragmentation was mediated by life-history traits (longevity, pollination mode, and seed dispersal vector) and study characteristics (genetic marker and plant material used). For both tests of effect size habitat fragmentation was associated with a substantial decrease in expected heterozygosity, number of alleles, and percentage of polymorphic loci, whereas the population inbreeding coefficient was not associated with these measures. The largest proportion of variation among effect sizes was explained by pollination mechanism and by the age of the tissue (progeny or adult) that was genotyped. Our primary finding was that wind-pollinated trees and shrubs appeared to be as likely to lose genetic variation as insect-pollinated species, indicating that severe habitat fragmentation may lead to pollen limitation and limited gene flow. In comparison with results of previous meta-analyses on mainly herbaceous species, we found trees and shrubs were as likely to have negative genetic responses to habitat fragmentation as herbaceous species. We also found that the genetic variation in offspring was generally less than that of adult trees, which is evidence of a genetic extinction debt and probably reflects the genetic diversity of the historical, less-fragmented landscape. ©2011 Society for Conservation Biology.

  3. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: manmade habitats.

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ira David Luman; Ralph. Anderson

    1979-01-01

    Manmade structures on rangelands provide specialized habitats for some species. These habitats and how they function as specialized habitat features are examined in this publication. The relationships of the wildlife of the Great Basin to such structures are detailed.

  4. Characteristics of a previously undescribed fishery and habitat for Manta alfredi in the Philippines

    Directory of Open Access Journals (Sweden)

    Jo Marie V. Acebes

    2016-11-01

    Full Text Available Abstract Seven species of mobulid rays occur in the Philippines, six of which, including the Giant Manta Ray (Manta birostris are caught directly or indirectly. In the Bohol Sea, mobulids have been fished since at least the nineteenth century yet the extent is not well-understood. A second species of manta, Manta alfredi was taxonomically resurrected in 2009 and also only recently been confirmed to occur in the Philippines. This study aimed to identify and describe the presence of and fishery for M. alfredi in a previously unknown area of occurrence in the Philippines. Key informant interviews, observation of catch landings, and tissue sample collection were conducted in a fishing village off Dinagat Island. Based on morphological examination and through DNA barcoding using the mitochondrial DNA CO1 gene of tissue samples it was verified that the species targeted in this area is the reef manta ray, Manta alfredi. Local ecological knowledge of the fishers provided important information on the extent and characteristics of the fishery. This relatively recent ray fishery in the Surigao Strait is the source of mobulids during the off-fishing season in Bohol with fishers from this area transporting and selling their processed catches to Bohol. The description of this fishery and habitat for the reef manta ray in the Surigao Strait is important in the understanding of the status of the species in the Philippines and in designing a management framework.

  5. Chinook salmon use of spawning patches: Relative roles of habitat quality, size, and connectivity

    Science.gov (United States)

    Isaak, D.J.; Thurow, R.F.; Rieman, B.E.; Dunham, J.B.

    2007-01-01

    Declines in many native fish populations have led to reassessments of management goals and shifted priorities from consumptive uses to species preservation. As management has shifted, relevant environmental characteristics have evolved from traditional metrics that described local habitat quality to characterizations of habitat size and connectivity. Despite the implications this shift has for how habitats may be prioritized for conservation, it has been rare to assess the relative importance of these habitat components. We used an information-theoretic approach to select the best models from sets of logistic regressions that linked habitat quality, size, and connectivity to the occurrence of chinook salmon (Oncorhynchus tshawytscha) nests. Spawning distributions were censused annually from 1995 to 2004, and data were complemented with field measurements that described habitat quality in 43 suitable spawning patches across a stream network that drained 1150 km 2 in central Idaho. Results indicated that the most plausible models were dominated by measures of habitat size and connectivity, whereas habitat quality was of minor importance. Connectivity was the strongest predictor of nest occurrence, but connectivity interacted with habitat size, which became relatively more important when populations were reduced. Comparison of observed nest distributions to null model predictions confirmed that the habitat size association was driven by a biological mechanism when populations were small, but this association may have been an area-related sampling artifact at higher abundances. The implications for habitat management are that the size and connectivity of existing habitat networks should be maintained whenever possible. In situations where habitat restoration is occurring, expansion of existing areas or creation of new habitats in key areas that increase connectivity may be beneficial. Information about habitat size and connectivity also could be used to strategically

  6. Habitat characteristics at den sites of the Point Arena mountain beaver (Aplodontia rufa nigra)

    Science.gov (United States)

    William J. Zielinski; John E. Hunter; Robin Hamlin; Keith M. Slauson; M. J. Mazurek

    2010-01-01

    The Point Arena mountain beaver (Aplodontia rufa nigra) is a federally listed endangered species, but has been the subject of few studies. Mountain beavers use burrows that include a single subterranean den. Foremost among the information needs for this subspecies is a description of the above-ground habitat features associated with dens. Using...

  7. Habitat use in south-west European skinks (genus Chalcides

    Directory of Open Access Journals (Sweden)

    Daniel Escoriza

    2018-01-01

    Full Text Available Background Congeneric species of reptiles frequently exhibit partitioning in terms of their use of habitats or trophic resources in order to reduce competition. In this study, we investigated habitat use by two species of European skinks: Chalcides bedriagai and Chalcides striatus, based on 49 records from southern France, Spain, and Portugal. Methods We measured three levels of niche descriptors: macroscale (climate, topography, and substrate, mesoscale (plant associations, and microscale (vegetation cover and shelters. We assessed the associations between these environmental descriptors and the occurrence of the skinks. Results Our results showed that the two species occupied opposite extremes of the ecological gradient i.e., C. bedriagai in semi-arid environments and C. striatus in temperate-oceanic environments, but there was broad ecological overlap in transitional climates at all of the habitat scales examined. This overlap was demonstrated by the presence of syntopy in geographically distant sites with different environmental characteristics. Discussion The morphological differences between the two species, and possibly their different use of microhabitats, might favor this mesoscale overlap between congeneric species, which is relatively unusual in Mediterranean lizards.

  8. Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape.

    Science.gov (United States)

    Williams, Neal M; Kremen, Claire

    2007-04-01

    Within mosaic landscapes, many organisms depend on attributes of the environment that operate over scales ranging from a single habitat patch to the entire landscape. One such attribute is resource distribution. Organisms' reliance on resources from within a local patch vs. those found among habitats throughout the landscape will depend on local habitat quality, patch quality, and landscape composition. The ability of individuals to move among complementary habitat types to obtain various resources may be a critical mechanism underlying the dynamics of animal populations and ultimately the level of biodiversity at different spatial scales. We examined the effects that local habitat type and landscape composition had on offspring production and survival of the solitary bee Osmia lignaria in an agri-natural landscape in California (U.S.A.). Female bees were placed on farms that did not use pesticides (organic farms), on farms that did use pesticides (conventional farms), or in seminatural riparian habitats. We identified pollens collected by bees nesting in different habitat types and matched these to pollens of flowering plants from throughout the landscape. These data enabled us to determine the importance of different plant species and habitat types in providing food for offspring, and how this importance changed with landscape and local nesting-site characteristics. We found that increasing isolation from natural habitat significantly decreased offspring production and survival for bees nesting at conventional farms, had weaker effects on bees in patches of seminatural habitat, and had little impact on those at organic farm sites. Pollen sampled from nests showed that females nesting in both farm and seminatural habitats relied on pollen from principally native plant species growing in seminatural habitat. Thus connectivity among habitats was critical for offspring production. Females nesting on organic farms were buffered to isolation effects by switching to

  9. Remote-Sensing Hydraulic Characterization of Channel Habitat Units in a Tropical Montane River: Bladen River, Belize

    Directory of Open Access Journals (Sweden)

    Sarah Praskievicz

    2017-12-01

    Full Text Available The physical characteristics of river systems exert significant control on the habitat for aquatic species, including the distribution of in-stream channel habitat units. Most previous studies on channel habitat units have focused on midlatitude rivers, which differ in several substantive ways from tropical rivers. Field delineation of channel habitat units is especially challenging in tropical rivers, many of which are remote and difficult to access. Here, we developed an approach for delineating channel habitat units based on a combination of field measurements, remote sensing, and hydraulic modeling, and applied it to a 4.1-km segment of the Bladen River in southern Belize. We found that the most prevalent channel habitat unit on the study segment was runs, followed by pools and riffles. Average spacing of channel habitat units was up to twice as high on the study segment than the typical values reported for midlatitude rivers, possibly because of high erosion rates in the tropical environment. The approach developed here can be applied to other rivers to build understanding of the controls on and spatial distribution of channel habitat units on tropical rivers and to support river management and conservation goals.

  10. [Effects of salt stress on physiological characters and salt-tolerance of Ulmus pumila in different habitats].

    Science.gov (United States)

    Liu, Bing-Xiang; Wang, Zhi-Gang; Liang, Hai-Yong; Yang, Min-Sheng

    2012-06-01

    Taking the Ulmus pumila seedlings from three different habitats (medium-, mild-, and non-saline soils) as test materials, an experiment was conducted to study their salt-tolerance thresholds and physiological characteristic under different levels (0, 2, 4, 6, 8, and 10 g X kg(-1)) of salt stress. With increasing level of the salt stress, the seedlings taken from medium- and mild- saline habitats had a lower increment of leaf membrane permeability, Na+ content, and Na+/K+ but a higher increment of leaf proline, soluble sugar, and K+ contents, and a lower decrement of leaf starch content, net photosynthetic rate, transpiration rate, intercellular CO2 concentration, and stomatic conductance, as compared with the seedlings taken from non-saline habitat. The salt-tolerance thresholds of the seedlings taken from different habitats were in the order of medium- saline habitat (7.76 g X kg(-1)) > mild- saline habitat (7.37 g X kg(-1)) > non-saline habitat (6.95 g X kg(-1)). It was suggested that the U. pumila seedlings in medium- and mild-saline habitats had a stronger adaptability to saline soil environment than the U. pumila seedlings in non-saline soil environment.

  11. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River : Final Report 1995 - 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R.

    1999-05-01

    This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from

  12. Desert bighorn sheep lambing habitat: Parturition, nursery, and predation sites

    Science.gov (United States)

    Karsch, Rebekah C.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.

    2016-01-01

    Fitness of female ungulates is determined by neonate survival and lifetime reproductive success. Therefore, adult female ungulates should adopt behaviors and habitat selection patterns that enhance survival of neonates during parturition and lactation. Parturition site location may play an important role in neonatal mortality of desert bighorn sheep (Ovis canadensis mexicana) when lambs are especially vulnerable to predation, but parturition sites are rarely documented for this species. Our objectives were to assess environmental characteristics at desert bighorn parturition, lamb nursery, and predation sites and to assess differences in habitat characteristics between parturition sites and nursery group sites, and predation sites and nursery group sites. We used vaginal implant transmitters (VITs) to identify parturition sites and capture neonates. We then compared elevation, slope, terrain ruggedness, and visibility at parturition, nursery, and lamb predation sites with paired random sites and compared characteristics of parturition sites and lamb predation sites to those of nursery sites. When compared to random sites, odds of a site being a parturition site were highest at intermediate slopes and decreased with increasing female visibility. Odds of a site being a predation site increased with decreasing visibility. When compared to nursery group sites, odds of a site being a parturition site had a quadratic relationship with elevation and slope, with odds being highest at intermediate elevations and intermediate slopes. When we compared predation sites to nursery sites, odds of a site being a predation were highest at low elevation areas with high visibility and high elevation areas with low visibility likely because of differences in hunting strategies of coyote (Canis latrans) and puma (Puma concolor). Parturition sites were lower in elevation and slope than nursery sites. Understanding selection of parturition sites by adult females and how habitat

  13. A Synopsis of Global Mapping of Freshwater Habitats and Biodiversity: Implications for Conservation

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A. [ORNL; Griffiths, Natalie A. [ORNL; DeRolph, Christopher R. [ORNL; Pracheil, Brenda M. [ORNL

    2018-01-01

    Accurately mapping freshwater habitats and biodiversity at high-resolutions across the globe is essential for assessing the vulnerability and threats to freshwater organisms and prioritizing conservation efforts. Since the 2000s, extensive efforts have been devoted to mapping global freshwater habitats (rivers, lakes, and wetlands), the spatial representation of which has changed dramatically over time with new geospatial data products and improved remote sensing technologies. Some of these mapping efforts, however, are still coarse representations of actual conditions. Likewise, the resolution and scope of global freshwater biodiversity compilation efforts have also increased, but are yet to mirror the spatial resolution and fidelity of mapped freshwater environments. In our synopsis, we find that efforts to map freshwater habitats have been conducted independently of those for freshwater biodiversity; subsequently, there is little congruence in the spatial representation and resolution of the two efforts. We suggest that global species distribution models are needed to fill this information gap; however, limiting data on habitat characteristics at scales that complement freshwater habitats has prohibited global high-resolution biogeography efforts. Emerging research trends, such as mapping habitat alteration in freshwater ecosystems and trait biogeography, show great promise in mechanistically linking global anthropogenic stressors to freshwater biodiversity decline and extinction risk.

  14. Invasion by nonnative brook trout in Panther Creek, Idaho: Roles of local habitat quality, biotic resistance, and connectivity to source habitats

    Science.gov (United States)

    Benjamin, Joseph R.; Dunham, Jason B.; Dare, M.R.

    2007-01-01

    Theoretical models and empirical evidence suggest that the invasion of nonnative species in freshwaters is facilitated through the interaction of three factors: habitat quality, biotic resistance, and connectivity. We measured variables that represented each factor to determine which were associated with the occurrence of nonnative brook trout Salvelinus fontinalis in Panther Creek, a tributary to the Salmon River, Idaho. Habitat variables included measures of summer and winter temperature, instream cover, and channel size. The abundance of native rainbow trout Oncorhynchus mykiss within sampled sites was used as a measure of biotic resistance. We also considered the connectivity of sample sites to unconfined valley bottoms, which were considered habitats that may serve as sources for the spread of established populations of brook trout. We analyzed the occurrence of small (<150‐mm [fork length]) and large (≥150‐mm) brook trout separately, assuming that the former represents an established invasion while accounting for the higher potential mobility of the latter. The occurrence of small brook trout was strongly associated with the proximity of sites to large, unconstrained valley bottoms, providing evidence that such habitats may serve as sources for the spread of brook trout invasion. Within sites, winter degree‐days and maximum summer temperature were positively associated with the occurrence of small brook trout. The occurrence of large brook trout was not related to any of the variables considered, perhaps due to the difficulty of linking site‐specific habitat factors to larger and more mobile individuals. The abundance of rainbow trout was not conclusively associated with the occurrence of either small or large brook trout, providing little support for the role of biotic resistance. Overall, our results suggest that source connectivity and local habitat characteristics, but not biotic resistance, influence the establishment and spread of

  15. Aquatic habitats of Canaan Valley, West Virginia: Diversity and environmental threats

    Science.gov (United States)

    Snyder, C.D.; Young, J.A.; Stout, B. M.

    2006-01-01

    We conducted surveys of aquatic habitats during the spring and summer of 1995 in Canaan Valley, WV, to describe the diversity of aquatic habitats in the valley and identify issues that may threaten the viability of aquatic species. We assessed physical habitat and water chemistry of 126 ponds and 82 stream sites, and related habitat characteristics to landscape variables such as geology and terrain. Based on our analyses, we found two issues likely to affect the viability of aquatic populations in the valley. The first issue was acid rain and the extent to which it potentially limits the distribution of aquatic and semi-aquatic species, particularly in headwater portions of the watershed. We estimate that nearly 46%, or 56 kilometers of stream, had pH levels that would not support survival and reproduction of Salvelinuw fontinalis (brook trout), one of the most acid-tolerant fishes in the eastern US. The second issue was the influence of Castor canadensis (beaver) activity. In the Canaan Valley State Park portion of the valley, beaver have transformed 4.7 kilometers of stream (approximately 17% of the total) to pond habitat through their dam building. This has resulted in an increase in pond habitat, a decrease in stream habitat, and a fragmented stream network (i.e., beaver ponds dispersed among stream reaches). In addition, beaver have eliminated an undetermined amount of forested riparian area through their foraging activities. Depending on the perspective, beaver-mediated changes can be viewed as positive or negative. Increases in pond habitat may increase habitat heterogeneity with consequent increases in biological diversity. In contrast, flooding associated with beaver activity may eliminate lowland wetlands and associated species, create barriers to fish dispersal, and possibly contribute to low dissolved oxygen levels in the Blackwater River. We recommend that future management strategies for the wildlife refuge be viewed in the context of these two issues

  16. Habitat Ecology Visual Surveys of Demersal Fishes and Habitats off California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Since 1992, the Habitat Ecology team has been conducting fishery independent, visual surveys of demersal fishes and associated habitats in deep water (20 to 900...

  17. Relationship between habitat, densities and metabolic profile in brown hares (Lepus europaeus Pallas

    Directory of Open Access Journals (Sweden)

    Marco Bagliacca

    2010-01-01

    Full Text Available Some habitat traits and haematic parameters were studied to understand the relationships between the hare densities, habitat characteristics and physiological and nutritional condition of the animals. A total of 33 protected areas, reserved for wild game reproduction, located in the Province of Florence (Central Italy, were monitored during a 2-year period. In each protected area the hares were submitted to census. The habitat features of the protected areas were studied and the following parameters were categorised: altitude; cleared-land/total-land ratio; main exposure; main ground composition; water availability; main slope; anthropogenic presence; predator presence; wooded borders; presence of trees and shrubs; surveillance against hunting; demographic predator control; kind of cultivation; unharvested crops for game. After the census the hares were captured for translocation outside in “free” hunting areas. During capture the hares were put in darkened, wooden capture-boxes and remained inside for a variable period of time (10min to 3h. A sample of 3 to 7 hares, captured per year and per each protected area, were removed from the boxes (physically restrained, with covered eyes for blood sample collection, sex, age and live weight determination. The following analyses were performed on frozen plasma samples: ALanine aminoTransferase (ALT, ASpartate aminoTransferase (AST, glucose, cholesterol, Blood Urea Nitrogen (BUN, Ca, P, Mg, Na, K, and Cl concentrations. The relationship between hare density and habitat characteristics was analysed by single regressions analysis. Then the habitat characteristics were subjected to multivariate analysis in relationship to hare body condition. The haematic parameters were analysed by least square means considering habitat traits, animal density, age and sex, as main categorical factors, interaction sex*age, and “pregnant and non-reproducing” nested within sex. Results showed that the highest density

  18. Exploring trophic strategies of exotic caprellids (Crustacea: Amphipoda): Comparison between habitat types and native vs introduced distribution ranges

    Science.gov (United States)

    Ros, Macarena; Tierno de Figueroa, José Manuel; Guerra-García, José Manuel; Navarro-Barranco, Carlos; Lacerda, Mariana Baptista; Vázquez-Luis, Maite; Masunari, Setuko

    2014-02-01

    The trophic ecology of non-native species is a key aspect to understand their invasion success and the community effects. Despite the important role of caprellid amphipods as trophic intermediates between primary producers and higher levels of marine food webs, there is very little information on their feeding habits. This is the first comprehensive study on the trophic strategies of two co-occurring introduced caprellids in the Spanish coasts: Caprella scaura and Paracaprella pusilla. The diet of 446 specimens of C. scaura and 230 of P. pusilla was analyzed to investigate whether there were differences in the feeding habits in relation to habitat characteristics (natural vs artificial hard substrata), type of host substrata (bryozoans and hydroids) and native vs introduced distribution ranges (Brazil vs Spain). Results revealed differences in diet preferences of the two species that have important implications for their trophic behaviour and showed a limited food overlap, which may favour their coexistence in introduced areas. In general terms, P. pusilla is a predator species, showing preference by crustacean prey in all of its life stages, while C. scaura feeds mainly on detritus. Although no sex-related diet shifts were observed in either of the species, evidence of ontogenetic variation in diet of C. scaura was found, with juveniles feeding on more amount of prey than adults. No diet differences were found between native and introduced populations within the same habitat type. However, P. pusilla exhibited a shift in its diet when different habitats were compared in the same distribution area, and C. scaura showed a flexible feeding behaviour between different host substrata in the same habitat type. This study shows that habitat characteristics at different scales can have greater influence on the feeding ecology of exotic species than different distribution ranges, and support the hypothesis that a switch between feeding strategies depending on habitat

  19. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    Directory of Open Access Journals (Sweden)

    Chantel E Markle

    Full Text Available Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015 and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  20. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    Science.gov (United States)

    Markle, Chantel E; Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  1. Status and habitat requirements of the white sturgeon populations in the Columbia River downstream from McNary Dam

    International Nuclear Information System (INIS)

    Nigro, A.A.

    1991-09-01

    We report on our progress from April 1990 through March 1991 on determining the status and habitat requirements of white sturgeon populations in the Columbia River downstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW), Washington Department of Fisheries (WDF), US Fish and Wildlife Service (FWS) and National Marine Fisheries Service (NMFS). Study objectives addressed by each agency are to describe the life history and population dynamics of subadults and adults between Bonneville and McNary dams and evaluate the need and identify potential methods for protecting, mitigating and enhancing populations downstream from NcNary Dam; to describe the white sturgeon recreational fishery between Bonneville and McNary dams, describe reproductive and early life history characteristics downstream from Bonneville Dam and describe life history and population dynamics of subadults and adults downstream from Bonneville Dam; to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available between Bonneville and McNary dams; and to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available downstream from Bonneville Dam. Our approach is to work concurrently downstream and upstream from Bonneville Dam. Upstream from Bonneville Dam we began work in the Dalles Reservoir in 1987 and expanded efforts to Bonneville Reservoir in 1988 and John Day Reservoir in 1989. Highlights of results of this work in the Dalles, Bonneville and John Day reservoirs are included in the four pages included in this report

  2. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss.

    Science.gov (United States)

    Bommarco, Riccardo; Biesmeijer, Jacobus C; Meyer, Birgit; Potts, Simon G; Pöyry, Juha; Roberts, Stuart P M; Steffan-Dewenter, Ingolf; Ockinger, Erik

    2010-07-07

    Habitat loss poses a major threat to biodiversity, and species-specific extinction risks are inextricably linked to life-history characteristics. This relationship is still poorly documented for many functionally important taxa, and at larger continental scales. With data from five replicated field studies from three countries, we examined how species richness of wild bees varies with habitat patch size. We hypothesized that the form of this relationship is affected by body size, degree of host plant specialization and sociality. Across all species, we found a positive species-area slope (z = 0.19), and species traits modified this relationship. Large-bodied generalists had a lower z value than small generalists. Contrary to predictions, small specialists had similar or slightly lower z value compared with large specialists, and small generalists also tended to be more strongly affected by habitat loss as compared with small specialists. Social bees were negatively affected by habitat loss (z = 0.11) irrespective of body size. We conclude that habitat loss leads to clear shifts in the species composition of wild bee communities.

  3. An analysis of mussel bed habitats in the Dutch Wadden Sea

    NARCIS (Netherlands)

    Brinkman, A.G.; Dankers, N.M.J.A.; Stralen, van M.

    2002-01-01

    A habitat suitability analysis for littoral mussel beds in the Dutch Wadden Sea was carried out. The analysis was based on the presence of mussel beds in the years 1960-1970, and a number of environmental characteristics: wave action, flow velocity, median grain size, emersion times and distance to

  4. Naragh Suburb, Center of Iran; A Natural Habitat of Hirudo medicinalis

    Directory of Open Access Journals (Sweden)

    Dehghani R.1 PhD,

    2014-08-01

    Full Text Available Aims A very common species of leeches has been named as Hirudo medicinalis. Regarding to the application of leeches in medicine and their fast extinction, this study was performed in aquatic habitats of Kashan aimed to determine the distribution of leeches and to provide information about their regional and habitat characteristics. Materials & Methods This descriptive study was conducted during 2008 to 2010 in three periods and 90 samples from 30 sites were collected, totally. 30 lentic and lotic aquatic habitats located in different regions of Naragh were recognized and selected. Leeches were collected initially in 10% ethanol followed by washing and removing mucus and then maintained in 70% ethanol. The identification keys were used for recognizing the species of leeches. Findings According to the identification key of the leech species, 15 samples from the total samples of 30 locations were Hirudo medicinalis. Total Hirudo medicinalis samples were collected just from Naragh River. These species of leeches were relatively large with 7-10cm and their colors were olive green, brown and greenish brown with a red stripe on the sides. Conclusion Naragh River is one of the habitats of Hirudo medicinalis.

  5. Coastal habitat and biological community response to dam removal on the Elwha River

    Science.gov (United States)

    Foley, Melissa M.; Warrick, Jonathan A.; Ritchie, Andrew C.; Stevens, Andrew; Shafroth, Patrick B.; Duda, Jeff; Beirne, Matthew M.; Paradis, Rebecca; Gelfenbaum, Guy R.; McCoy, Randall; Cubley, Erin S.

    2017-01-01

    Habitat diversity and heterogeneity play a fundamental role in structuring ecological communities. Dam emplacement and removal can fundamentally alter habitat characteristics, which in turn can affect associated biological communities. Beginning in the early 1900s, the Elwha and Glines Canyon dams in Washington, USA, withheld an estimated 30 million tonnes of sediment from river, coastal, and nearshore habitats. During the staged removal of these dams—the largest dam removal project in history—over 14 million tonnes of sediment were released from the former reservoirs. Our interdisciplinary study in coastal habitats—the first of its kind—shows how the physical changes to the river delta and estuary habitats during dam removal were linked to responses in biological communities. Sediment released during dam removal resulted in over a meter of sedimentation in the estuary and over 400 m of expansion of the river mouth delta landform. These changes increased the amount of supratidal and intertidal habitat, but also reduced the influx of seawater into the pre-removal estuary complex. The effects of these geomorphic and hydrologic changes cascaded to biological systems, reducing the abundance of macroinvertebrates and fish in the estuary and shifting community composition from brackish to freshwater-dominated species. Vegetation did not significantly change on the delta, but pioneer vegetation increased during dam removal, coinciding with the addition of newly available habitat. Understanding how coastal habitats respond to large-scale human stressors—and in some cases the removal of those stressors—is increasingly important as human uses and restoration activities increase in these habitats.

  6. Habitat Blocks and Wildlife Corridors

    Data.gov (United States)

    Vermont Center for Geographic Information — Habitat blocks are areas of contiguous forest and other natural habitats that are unfragmented by roads, development, or agriculture. Vermonts habitat blocks are...

  7. Comparative nest-site habitat of painted redstarts and red-faced warblers in the Madrean Sky Islands of southeastern Arizona

    Science.gov (United States)

    Joseph L. Ganey; William M. Block; Jamie S. Sanderlin; Jose M. Iniguez

    2015-01-01

    Conservation of avian species requires understanding their nesting habitat requirements. We compared 3 aspects of habitat at nest sites (topographic characteristics of nest sites, nest placement within nest sites, and canopy stratification within nest sites) of 2 related species of ground-nesting warblers (Red-faced Warblers, Cardellina rubrifrons, n = 17...

  8. 75 FR 34975 - Notice of Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration...

    Science.gov (United States)

    2010-06-21

    ... Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration Strategy; Request... interagency Estuary Habitat Restoration Council, is providing notice of the Council's intent to revise the ''Estuary Habitat Restoration Strategy'' and requesting public comments to guide its revision. DATES...

  9. Vacant habitats in the Universe.

    Science.gov (United States)

    Cockell, Charles S

    2011-02-01

    The search for life on other planets usually makes the assumption that where there is a habitat, it will contain life. On the present-day Earth, uninhabited habitats (or vacant habitats) are rare, but might occur, for example, in subsurface oils or impact craters that have been thermally sterilized in the past. Beyond Earth, vacant habitats might similarly exist on inhabited planets or on uninhabited planets, for example on a habitable planet where life never originated. The hypothesis that vacant habitats are abundant in the Universe is testable by studying other planets. In this review, I discuss how the study of vacant habitats might ultimately inform an understanding of how life has influenced geochemical conditions on Earth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Resource use of Japanese macaques in heavy snowfall areas: implications for habitat management.

    Science.gov (United States)

    Enari, Hiroto; Sakamaki-Enari, Haruka

    2013-07-01

    Populations of Japanese macaque (Macaca fuscata) that inhabit the northernmost distribution of any nonhuman primates have been listed as endangered in Japan; however, macaques are widely known for being pests that cause agricultural damage. This study identified priority areas for the conservation and management of macaque habitats, by comparing the resource use of troops occupying remote mountains (montane troops) against troops inhabiting disturbed forests adjacent to settlements (rural troops). We collected species presence data across 2 years by radio-tracking two montane troops and two rural troops in the Shirakami Mountains. We developed seasonal utilization distributions by using the kernel method, and identified habitat characteristics by using ecological-niche factor analysis (ENFA). Our results indicate that environmental factors influencing the potential habitat varied widely with season in montane troops as compared with that in rural troops. ENFA results demonstrated that rural troops exhibited more biased resource use and narrower niche breadths than montane troops. Based on our findings, we propose that (1) primary broadleaf forests are the spring habitat conservation priority of montane troops; (2) the habitat unit--the product of habitat suitability index and its surface area--for montane troops is enhanced by removing old conifer plantations from the forest edge at low elevations; (3) such removal around settlements may also contribute toward removing a frontline refuge for rural troops intruding farmlands; and (4) intensive prevention measures against macaque intrusions into settlements during the bottleneck snowy season contribute toward reducing the habitat unit of rural troops.

  11. When small changes matter: the role of cross-scale interactions between habitat and ecological connectivity in recovery.

    Science.gov (United States)

    Thrush, Simon F; Hewitt, Judi E; Lohrer, Andrew M; Chiaroni, Luca D

    2013-01-01

    Interaction between the diversity of local communities and the degree of connectivity between them has the potential to influence local recovery rates and thus profoundly affect community dynamics in the face of the cumulative impacts that occur across regions. Although such complex interactions have been modeled, field experiments in natural ecosystems to investigate the importance of interactions between local and regional processes are rare, especially so in coastal marine seafloor habitats subjected to many types of disturbance. We conducted a defaunation experiment at eight subtidal sites, incorporating manipulation of habitat structure, to test the relative importance of local habitat features and colonist supply in influencing macrobenthic community recovery rate. Our sites varied in community composition, habitat characteristics, and hydrodynamic conditions, and we conducted the experiment in two phases, exposing defaunated plots to colonists during periods of either high or low larval colonist supply. In both phases of the experiment, five months after disturbance, we were able to develop models that explained a large proportion of variation in community recovery rate between sites. Our results emphasize that the connectivity to the regional species pool influences recovery rate, and although local habitat effects were important, the strength of these effects was affected by broader-scale site characteristics and connectivity. Empirical evidence that cross-scale interactions are important in disturbance-recovery dynamics emphasizes the complex dynamics underlying seafloor community responses to cumulative disturbance.

  12. Hudson Canyon benthic habitats characterization and mapping by integrated analysis of multidisciplinary data

    Science.gov (United States)

    Pierdomenico, Martina; Guida, Vincent G.; Rona, Peter A.; Macelloni, Leonardo; Scranton, Mary I.; Asper, Vernon; Diercks, Arne

    2013-04-01

    . Previously described hummocky terrain associated with extensive, long-term burrowing activity by golden tilefish (Lopholatilus chamaeleonticeps) was clearly delineated along the canyon rims. Bedform fields and potential current deposits observed along the upper portion of canyon walls suggest the presence of intense bottom currents flowing parallel to canyon axis. A benthic habitat map of Hudson Canyon head was produced by integration of the different datasets. The distribution of habitats was primarily inferred from geophysical data characteristics. Furthermore habitat characteristics can be related to sedimentary and oceanographic processes acting on the seafloor. Comparison and refinement of bathymetric and backscatter imagery with ground truth data enabled validation of acoustic classification of the seafloor, allowing the definition of morpho-acoustic classes corresponding to as many habitats, and to extend the predictive results over larger areas.

  13. Quantile regression of microgeographic variation in population characteristics of an invasive vertebrate predator

    Science.gov (United States)

    Siers, Shane R.; Savidge, Julie A.; Reed, Robert

    2017-01-01

    Localized ecological conditions have the potential to induce variation in population characteristics such as size distributions and body conditions. The ability to generalize the influence of ecological characteristics on such population traits may be particularly meaningful when those traits influence prospects for successful management interventions. To characterize variability in invasive Brown Treesnake population attributes within and among habitat types, we conducted systematic and seasonally-balanced surveys, collecting 100 snakes from each of 18 sites: three replicates within each of six major habitat types comprising 95% of Guam’s geographic expanse. Our study constitutes one of the most comprehensive and controlled samplings of any published snake study. Quantile regression on snake size and body condition indicated significant ecological heterogeneity, with a general trend of relative consistency of size classes and body conditions within and among scrub and Leucaena forest habitat types and more heterogeneity among ravine forest, savanna, and urban residential sites. Larger and more robust snakes were found within some savanna and urban habitat replicates, likely due to relative availability of larger prey. Compared to more homogeneous samples in the wet season, variability in size distributions and body conditions was greater during the dry season. Although there is evidence of habitat influencing Brown Treesnake populations at localized scales (e.g., the higher prevalence of larger snakes—particularly males—in savanna and urban sites), the level of variability among sites within habitat types indicates little ability to make meaningful predictions about these traits at unsampled locations. Seasonal variability within sites and habitats indicates that localized population characterization should include sampling in both wet and dry seasons. Extreme values at single replicates occasionally influenced overall habitat patterns, while pooling

  14. Snowshoe hare multi-level habitat use in a fire-adapted ecosystem

    Science.gov (United States)

    Gigliotti, Laura C.; Jones, Benjamin C.; Lovallo, Matthew J.; Diefenbach, Duane R.

    2018-01-01

    Prescribed burning has the potential to improve habitat for species that depend on pyric ecosystems or other early successional vegetation types. For species that occupy diverse plant communities over the extent of their range, response to disturbances such as fire might vary based on post-disturbance vegetation dynamics among plant communities. Although responses of snowshoe hares (Lepus americanus) to fire have been studied in conifer-dominated forests in northern parts of the species’ range, there is a lack of information on snowshoe hare habitat use in fire-dependent communities in southern parts of their range. We used global positioning system (GPS) and very high frequency (VHF) radio-collars to monitor the habitat use of 32 snowshoe hares in a scrub-oak (Quercus ilicifolia)-pitch pine (Pinus rigida) barrens complex in northeastern Pennsylvania where prescribed fire has been used for habitat restoration. The area contained stands that underwent prescribed burning 1–6 years prior to our study. Also, we investigated fine-scale determinants of habitat use within stands. We found that regardless of season, hares did not select for areas that had been burned within 6 years prior. Hares primarily used stands of older scrub oak, conifer, or hardwoods, which contained dense understory vegetation and canopy cover. Hare habitat use also was positively associated with stand edges. Our results suggest that hares do not respond to prescribed burning of scrub oak in the short-term. In addition, by focusing on structural determinants of habitat use, rather than broad-scale characteristics such as stand type, management strategies for snowshoe hares can be adapted over the extent of their range despite the multitude of different land cover types across which the species occurs. 

  15. A habitat overlap analysis derived from maxent for tamarisk and the south-western willow flycatcher

    Science.gov (United States)

    York, Patricia; Evangelista, Paul; Kumar, Sunil; Graham, James; Flather, Curtis; Stohlgren, Thomas

    2011-06-01

    Biologic control of the introduced and invasive, woody plant tamarisk ( Tamarix spp, saltcedar) in south-western states is controversial because it affects habitat of the federally endangered South-western Willow Flycatcher ( Empidonax traillii extimus). These songbirds sometimes nest in tamarisk where floodplain-level invasion replaces native habitats. Biologic control, with the saltcedar leaf beetle ( Diorhabda elongate), began along the Virgin River, Utah, in 2006, enhancing the need for comprehensive understanding of the tamarisk-flycatcher relationship. We used maximum entropy (Maxent) modeling to separately quantify the current extent of dense tamarisk habitat (>50% cover) and the potential extent of habitat available for E. traillii extimus within the studied watersheds. We used transformations of 2008 Landsat Thematic Mapper images and a digital elevation model as environmental input variables. Maxent models performed well for the flycatcher and tamarisk with Area Under the ROC Curve (AUC) values of 0.960 and 0.982, respectively. Classification of thresholds and comparison of the two Maxent outputs indicated moderate spatial overlap between predicted suitable habitat for E. traillii extimus and predicted locations with dense tamarisk stands, where flycatcher habitat will potentially change flycatcher habitats. Dense tamarisk habitat comprised 500 km2 within the study area, of which 11.4% was also modeled as potential habitat for E. traillii extimus. Potential habitat modeled for the flycatcher constituted 190 km2, of which 30.7% also contained dense tamarisk habitat. Results showed that both native vegetation and dense tamarisk habitats exist in the study area and that most tamarisk infestations do not contain characteristics that satisfy the habitat requirements of E. traillii extimus. Based on this study, effective biologic control of Tamarix spp. may, in the short term, reduce suitable habitat available to E. traillii extimus, but also has the potential

  16. Habitat quality influences population distribution, individual space use and functional responses in habitat selection by a large herbivore.

    Science.gov (United States)

    Bjørneraas, Kari; Herfindal, Ivar; Solberg, Erling Johan; Sæther, Bernt-Erik; van Moorter, Bram; Rolandsen, Christer Moe

    2012-01-01

    Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.

  17. Conservation Strategy for Brown Bear and Its Habitat in Nepal

    Directory of Open Access Journals (Sweden)

    Achyut Aryal

    2012-08-01

    Full Text Available The Himalaya region of Nepal encompasses significant habitats for several endangered species, among them the brown bear (Ursus arctos pruinosus. However, owing to the remoteness of the region and a dearth of research, knowledge on the conservation status, habitat and population size of this species is lacking. Our aim in this paper is to report a habitat survey designed to assess the distribution and habitat characteristics of the brown bear in the Nepalese Himalaya, and to summarize a conservation action plan for the species devised at a pair of recent workshops held in Nepal. Results of our survey showed that brown bear were potentially distributed between 3800 m and 5500 m in the high mountainous region of Nepal, across an area of 4037 km2 between the eastern border of Shey Phoksundo National Park (SPNP and the Manasalu Conservation Area (MCA. Of that area, 2066 km2 lie inside the protected area (350 km2 in the MCA; 1716 km2 in the Annapurna Conservation Area and 48% (1917 km2 lies outside the protected area in the Dolpa district. Furthermore, 37% of brown bear habitat also forms a potential habitat for blue sheep (or bharal, Pseudois nayaur, and 17% of these habitats is used by livestock, suggesting a significant potential for resource competition. Several plant species continue to be uprooted by local people for fuel wood. Based on the results of our field survey combined with consultations with local communities and scientists, we propose that government and non-government organizations should implement a three-stage program of conservation activities for the brown bear. This program should: (a Detail research activities in and outside the protected area of Nepal; (b support livelihood and conservation awareness at local and national levels; and (c strengthen local capacity and reduce human-wildlife conflict in the region.

  18. Landscape Analysis of Adult Florida Panther Habitat.

    Directory of Open Access Journals (Sweden)

    Robert A Frakes

    Full Text Available Historically occurring throughout the southeastern United States, the Florida panther is now restricted to less than 5% of its historic range in one breeding population located in southern Florida. Using radio-telemetry data from 87 prime-aged (≥3 years old adult panthers (35 males and 52 females during the period 2004 through 2013 (28,720 radio-locations, we analyzed the characteristics of the occupied area and used those attributes in a random forest model to develop a predictive distribution map for resident breeding panthers in southern Florida. Using 10-fold cross validation, the model was 87.5 % accurate in predicting presence or absence of panthers in the 16,678 km2 study area. Analysis of variable importance indicated that the amount of forests and forest edge, hydrology, and human population density were the most important factors determining presence or absence of panthers. Sensitivity analysis showed that the presence of human populations, roads, and agriculture (other than pasture had strong negative effects on the probability of panther presence. Forest cover and forest edge had strong positive effects. The median model-predicted probability of presence for panther home ranges was 0.81 (0.82 for females and 0.74 for males. The model identified 5579 km2 of suitable breeding habitat remaining in southern Florida; 1399 km2 (25% of this habitat is in non-protected private ownership. Because there is less panther habitat remaining than previously thought, we recommend that all remaining breeding habitat in south Florida should be maintained, and the current panther range should be expanded into south-central Florida. This model should be useful for evaluating the impacts of future development projects, in prioritizing areas for panther conservation, and in evaluating the potential impacts of sea-level rise and changes in hydrology.

  19. Landscape Analysis of Adult Florida Panther Habitat.

    Science.gov (United States)

    Frakes, Robert A; Belden, Robert C; Wood, Barry E; James, Frederick E

    2015-01-01

    Historically occurring throughout the southeastern United States, the Florida panther is now restricted to less than 5% of its historic range in one breeding population located in southern Florida. Using radio-telemetry data from 87 prime-aged (≥3 years old) adult panthers (35 males and 52 females) during the period 2004 through 2013 (28,720 radio-locations), we analyzed the characteristics of the occupied area and used those attributes in a random forest model to develop a predictive distribution map for resident breeding panthers in southern Florida. Using 10-fold cross validation, the model was 87.5 % accurate in predicting presence or absence of panthers in the 16,678 km2 study area. Analysis of variable importance indicated that the amount of forests and forest edge, hydrology, and human population density were the most important factors determining presence or absence of panthers. Sensitivity analysis showed that the presence of human populations, roads, and agriculture (other than pasture) had strong negative effects on the probability of panther presence. Forest cover and forest edge had strong positive effects. The median model-predicted probability of presence for panther home ranges was 0.81 (0.82 for females and 0.74 for males). The model identified 5579 km2 of suitable breeding habitat remaining in southern Florida; 1399 km2 (25%) of this habitat is in non-protected private ownership. Because there is less panther habitat remaining than previously thought, we recommend that all remaining breeding habitat in south Florida should be maintained, and the current panther range should be expanded into south-central Florida. This model should be useful for evaluating the impacts of future development projects, in prioritizing areas for panther conservation, and in evaluating the potential impacts of sea-level rise and changes in hydrology.

  20. Invasion of a mined landscape: what habitat characteristics are influencing the occurrence of invasive plants?

    Science.gov (United States)

    D. Lemke; I.A. Tazisong; Y. Wang; J.A. Brown

    2012-01-01

    Throughout the world, the invasion of alien plants is an increasing threat to native biodiversity. Invasion is especially prevalent in areas affected by land transformation and anthropogenic disturbance. Surface mines are a major disturbance, and thus may promote the establishment and expansion of invasive plant communities. Environmental and habitat factors that may...

  1. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.

    Directory of Open Access Journals (Sweden)

    Eliningaya J Kweka

    Full Text Available Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya.A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60% and An.arabiensis (18.34%, the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024 and An. arabiensis (P = 0.002 larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001, grass cover (P≤0.001, while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001. The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001 when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002. When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines.These findings suggest that implementation of effective larval control programme should be targeted with larval

  2. Aquatic habitat modifications in La Plata River basin, Patagonia and associated marine areas.

    Science.gov (United States)

    Mugetti, Ana Cristina; Calcagno, Alberto Tomás; Brieva, Carlos Alberto; Giangiobbe, María Silvia; Pagani, Andrea; Gonzalez, Silvia

    2004-02-01

    This paper describes the environmental characteristics and situation of aquatic habitats and communities in southern continental and maritime areas of southeastern South America (Patagonian Shelf GIWA Subregion), resulting from an overall assessment carried out within the framework of a GIWA project, mostly on the basis of publicly available data. The main focus of the analysis was on the current situation of transboundary water resources and anthropogenic impacts. In the inland waters, habitat and community modifications result, principally, from dams and reservoirs built in the main watercourses for hydroelectric power generation and other uses. The transformation of lotic environments into lentic ones have affected habitats and altered biotic communities. In the La Plata River basin, invasive exotic species have displaced native ones. Habitats in the ocean have been degraded, as their biodiversity becomes affected by overfishing and pollution. This article includes a discussion on the causal chain and the policy options elaborated for the Coastal Ecosystem of Buenos Aires province and the Argentinean-Uruguayan Common Fishing Zone, where fishing resources are shared by both countries.

  3. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    of fisheries monitoring techniques and habitat assessments used to determine existing conditions and identify factors limiting anadromous salmonid abundance. Proper selection and implementation of the most effective site-specific habitat restoration plan, taking into consideration the unique characteristics of each project site, and conducted in cooperation with landowners and project partners, was of paramount importance to ensure each project's success.

  4. How Do Landscape Structure, Management and Habitat Quality Drive the Colonization of Habitat Patches by the Dryad Butterfly (Lepidoptera: Satyrinae) in Fragmented Grassland?

    Science.gov (United States)

    Kalarus, Konrad; Nowicki, Piotr

    2015-01-01

    Most studies dealing with species distribution patterns on fragmented landscapes focus on the characteristics of habitat patches that influence local occurrence and abundance, but they tend to neglect the question of what drives colonization of previously unoccupied patches. In a study of the dryad butterfly, we combined classical approaches derived from metapopulation theory and landscape ecology to investigate the factors driving colonization from a recent refugium. In three consecutive transect surveys, we recorded the presence and numbers of imagos in 27 patches of xerothermic grassland and 26 patches of wet meadow. Among the predictors affecting the occurrence and abundance of the dryad, we considered environmental variables reflecting (i) habitat patch quality (e.g., goldenrod cover, shrub density, vegetation height); (ii) factors associated with habitat spatial structure (patch size, patch isolation and fragmentation); and (iii) features of patch surroundings (100-m buffers around patches) that potentially pose barriers or provide corridors. Patch colonization by the dryad was strongly limited by the distance from the species refugium in the region; there was a slight positive effect of shrub density in this respect. Butterfly abundance increased in smaller and more fragmented habitat patches; it was negatively impacted by invasive goldenrod cover, and positively influenced by the density of watercourses in patch surroundings. Nectar plant availability was positively related to species abundance in xerothermic grassland, while in wet meadow the effect was the reverse. We conclude that dryad colonization of our study area is very recent, since the most important factor limiting colonization was distance from the refugium, while the habitat quality of target patches had less relevance. In order to preserve the species, conservation managers should focus on enhancing the quality of large patches and should also direct their efforts on smaller and more

  5. How Do Landscape Structure, Management and Habitat Quality Drive the Colonization of Habitat Patches by the Dryad Butterfly (Lepidoptera: Satyrinae in Fragmented Grassland?

    Directory of Open Access Journals (Sweden)

    Konrad Kalarus

    Full Text Available Most studies dealing with species distribution patterns on fragmented landscapes focus on the characteristics of habitat patches that influence local occurrence and abundance, but they tend to neglect the question of what drives colonization of previously unoccupied patches. In a study of the dryad butterfly, we combined classical approaches derived from metapopulation theory and landscape ecology to investigate the factors driving colonization from a recent refugium. In three consecutive transect surveys, we recorded the presence and numbers of imagos in 27 patches of xerothermic grassland and 26 patches of wet meadow. Among the predictors affecting the occurrence and abundance of the dryad, we considered environmental variables reflecting (i habitat patch quality (e.g., goldenrod cover, shrub density, vegetation height; (ii factors associated with habitat spatial structure (patch size, patch isolation and fragmentation; and (iii features of patch surroundings (100-m buffers around patches that potentially pose barriers or provide corridors. Patch colonization by the dryad was strongly limited by the distance from the species refugium in the region; there was a slight positive effect of shrub density in this respect. Butterfly abundance increased in smaller and more fragmented habitat patches; it was negatively impacted by invasive goldenrod cover, and positively influenced by the density of watercourses in patch surroundings. Nectar plant availability was positively related to species abundance in xerothermic grassland, while in wet meadow the effect was the reverse. We conclude that dryad colonization of our study area is very recent, since the most important factor limiting colonization was distance from the refugium, while the habitat quality of target patches had less relevance. In order to preserve the species, conservation managers should focus on enhancing the quality of large patches and should also direct their efforts on smaller and

  6. Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.

    Science.gov (United States)

    Freeman, Lauren A

    2015-01-01

    Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.

  7. Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.

    Directory of Open Access Journals (Sweden)

    Lauren A Freeman

    Full Text Available Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.

  8. Evaluation of habitat quality for selected wildlife species associated with back channels.

    Science.gov (United States)

    Anderson, James T.; Zadnik, Andrew K.; Wood, Petra Bohall; Bledsoe, Kerry

    2013-01-01

    The islands and associated back channels on the Ohio River, USA, are believed to provide critical habitat features for several wildlife species. However, few studies have quantitatively evaluated habitat quality in these areas. Our main objective was to evaluate the habitat quality of back and main channel areas for several species using habitat suitability index (HSI) models. To test the effectiveness of these models, we attempted to relate HSI scores and the variables measured for each model with measures of relative abundance for the model species. The mean belted kingfisher (Ceryle alcyon) HSI was greater on the main than back channel. However, the model failed to predict kingfisher abundance. The mean reproduction component of the great blue heron (Ardea herodias) HSI, total common muskrat (Ondatra zibethicus) HSI, winter cover component of the snapping turtle (Chelydra serpentina) HSI, and brood-rearing component of the wood duck (Aix sponsa) HSI were all greater on the back than main channel, and were positively related with the relative abundance of each species. We found that island back channels provide characteristics not found elsewhere on the Ohio River and warrant conservation as important riparian wildlife habitat. The effectiveness of using HSI models to predict species abundance on the river was mixed. Modifications to several of the models are needed to improve their use on the Ohio River and, likely, other large rivers.

  9. Habitat specialization through germination cueing: a comparative study of herbs from forests and open habitats.

    Science.gov (United States)

    Ten Brink, Dirk-Jan; Hendriksma, Harmen Pieter; Bruun, Hans Henrik

    2013-02-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently accompanied by specialization in their regeneration niche; and (2) species are thereby adapted to utilize different windows of opportunity in time (season) and space (habitat). Seed germination response to temperature, light and stratification was tested for 17 congeneric pairs, each consisting of one forest species and one open-habitat species. A factorial design was used with temperature levels and diurnal temperature variation (10 °C constant, 15-5 °C fluctuating, 20 °C constant, 25-15 °C fluctuating), and two light levels (light and darkness) and a cold stratification treatment. The congeneric species pair design took phylogenetic dependence into account. Species from open habitats germinated better at high temperatures, whereas forest species performed equally well at low and high temperatures. Forest species tended to germinate only after a period of cold stratification that could break dormancy, while species from open habitats generally germinated without cold stratification. The empirically derived germination strategies correspond quite well with establishment opportunities for forest and open-habitat plant species in nature. Annual changes in temperature and light regime in temperate forest delimit windows of opportunity for germination and establishment. Germination strategies of forest plants are adaptations to utilize such narrow windows in time. Conversely, lack of fit between germination ecology and environment may explain why species of open habitats generally fail to establish in forests. Germination strategy should be considered an important mechanism for habitat specialization in temperate herbs to forest habitats. The findings strongly suggest that

  10. California Condor Critical Habitat

    Data.gov (United States)

    California Natural Resource Agency — These Data identify (in general) the areas where critical habitat for the California Condor occur. Critical habitat for the species consists of the following 10...

  11. Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice

    International Nuclear Information System (INIS)

    Vermeulen, Frouke; Van den Brink, Nico W.; D'Have, Helga; Mubiana, Valentine K.; Blust, Ronny; Bervoets, Lieven; De Coen, Wim

    2009-01-01

    The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way. - Our study provided essential insights into habitat-specific accumulation patterns with respect to factors influencing metal bioaccumulation, BAFs, and site-specific risk assessment.

  12. Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, Frouke, E-mail: frouke.vermeulen@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van den Brink, Nico W., E-mail: nico.vandenbrink@wur.n [Alterra, Wageningen UR, Box 47, NL6700AA Wageningen (Netherlands); D' Have, Helga [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Mubiana, Valentine K., E-mail: kayawe.mubiana@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Blust, Ronny, E-mail: ronny.blust@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Bervoets, Lieven, E-mail: lieven.bervoets@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); De Coen, Wim, E-mail: wim.decoen@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2009-11-15

    The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way. - Our study provided essential insights into habitat-specific accumulation patterns with respect to factors influencing metal bioaccumulation, BAFs, and site-specific risk assessment.

  13. Headwater Stream Management Dichotomies: Local Amphibian Habitat vs. Downstream Fish Habitat

    Science.gov (United States)

    Jackson, C. R.

    2002-12-01

    Small headwater streams in mountainous areas of the Pacific Northwest often do not harbor fish populations because of low water depth and high gradients. Rather, these streams provide habitat for dense assemblages of stream-dwelling amphibians. A variety of management goals have been suggested for such streams such as encouraging large woody debris recruitment to assist in sediment trapping and valley floor formation, encouraging large woody debris recruitment to provide downstream wood when debris flows occur, providing continuous linear stream buffers within forest harvest areas to provide shade and bank stability, etc. A basic problem with analying the geomorphic or biotic benefits of any of these strategies is the lack of explicit management goals for such streams. Should managers strive to optimize downstream fish habitat, local amphibian habitat, or both? Through observational data and theoretical considerations, it will be shown that these biotic goals will lead to very different geomorphic management recommendations. For instance, woody debris greater than 60 cm diameter may assist in valley floor development, but it is likely to create subsurface channel flow of unknown value to amphibians. Trapping and retention of fine sediments within headwater streams may improve downstream spawning gravels, but degrades stream-dwelling amphibian habitat. In response to the need for descriptive information on habitat and channel morphology specific to small, non-fish-bearing streams in the Pacific Northwest, morphologies and wood frequencies in forty-two first- and second-order forested streams less than four meters wide were surveyed. Frequencies and size distributions of woody debris were compared between small streams and larger fish-bearing streams as well as between second-growth and virgin timber streams. Statistical models were developed to explore dominant factors affecting channel morphology and habitat. Findings suggest geomorphological relationships

  14. L-Reactor Habitat Mitigation Study

    International Nuclear Information System (INIS)

    1988-02-01

    The L-Reactor Fish and Wildlife Resource Mitigation Study was conducted to quantify the effects on habitat of the L-Reactor restart and to identify the appropriate mitigation for these impacts. The completed project evaluated in this study includes construction of a 1000 acre reactor cooling reservoir formed by damming Steel Creek. Habitat impacts identified include a loss of approximately 3,700 average annual habitat units. This report presents a mitigation plan, Plan A, to offset these habitat losses. Plan A will offset losses for all species studied, except whitetailed deer. The South Carolina Wildlife and Marine Resources Department strongly recommends creation of a game management area to provide realistic mitigation for loss of deer habitats. 10 refs., 5 figs., 3 tabs

  15. Coastal Critical Habitat Designations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Endangered Species Act (ESA) requires the Federal government to designate critical habitat, areas of habitat essential to the species' conservation, for ESA...

  16. New England wildlife: management forested habitats

    Science.gov (United States)

    Richard M. DeGraaf; Mariko Yamasaki; William B. Leak; John W. Lanier

    1992-01-01

    Presents silvicultural treatments for six major cover-type groups in New England to produce stand conditions that provide habitat opportunities for a wide range of wildlife species. Includes matrices for species occurrence and utilization by forested and nonforested habitats, habitat breadth and size class, and structural habitat features for the 338 wildlife species...

  17. KEANEKARAGAMAN JENIS BURUNG PADA BERBAGAI TIPE HABITAT BESERTA GANGGUANNYA DI HUTAN PENELITIAN DRAMAGA, BOGOR, JAWA BARAT

    Directory of Open Access Journals (Sweden)

    Asep Saefullah

    2016-01-01

    Full Text Available Dramaga Research Forest, located in the outskirt of Bogor, provides a good habitat for birds. This research was aimed to study bird diversity, identifying habitat characteristics (around the forest path, along house edge, riparian habitat and the interior area and recorded the activities of the local people around the forest. Point count, MacKinnon list, habitat profiling and interviews were conducted. The highest index of species diversity (Shannon-Wiener index was at interior area (2.34, followed by around the forest path (2.21, along house edge (1.97 and riparian habitat (1.86. The highest species richness was at riparian habitat (27 species, the forest path had 21 species, along house edge had 26 species, while the interior area was a home for 21 bird species. The highest similarity (0.81 was between forest path and interior area. On the activities of the local people, the most often was firewood harvesting. Other activities were hunting for cage birds, harvesting ferns, harvesting wild fruit and harvesting ant larvae. Activity that might disrupt the bird population was hunting. Keywords: Diversity,Dramaga Research Forest, human activities.

  18. Trunk structural traits explain habitat use of a tree-dwelling spider (Selenopidae) in a tropical forest

    Science.gov (United States)

    Villanueva-Bonilla, German Antonio; Salomão, Adriana Trevizoli; Vasconcellos-Neto, João

    2017-11-01

    Habitat selection by spiders may be strongly influenced by biotic, climatic, and physical factors. However, it has been shown that the selection of habitats by generalist predators (like spiders) is regulated more by the physical structure of the habitat than by prey availability. Yet, the preferences of spiders in relation to plants or plant traits remain poorly explored. In a remnant of the Atlantic forest in Brazil, the spider Selenops cocheleti is frequently detected on the trunks of plants from the Myrtaceae family. Here, we investigated quantitatively and experimentally whether the colonization of trees by S. cocheleti is related to plant species or the presence of specific structures on trunks. We found that S. cocheleti preferentially occurred on plants of the family Myrtaceae. This spider was also strongly associated with trees that have smooth trunks and/or exfoliating bark. Non-Myrtaceae plants that were occupied by this species have exfoliating bark (e.g., Piptadenia gonoacantha) or deep fissures on the trunk (e.g., the exotic species Pinus elliottii). Our results indicate that the selection of host plants by S. cocheleti is not species-specific, but based on the structural characteristics of plants. Trunks with exfoliating bark may benefit spiders by providing shelter against predators and harsh climatic conditions. Smooth surfaces might allow rapid movements, facilitating both attacks on preys and escape from predators. Our study emphasizes the importance of the physical structure of the habitat on spider's distribution. Future studies investigating how specific plant characteristics influence prey acquisition and predator avoidance would improve our understanding of habitat selection by these animals.

  19. Seasonal changes in habitat availability and the distribution and abundance of salmonids along a stream gradient from headwaters to mouth in coastal Oregon

    Science.gov (United States)

    Gordon H. Reeves; Jack D. Sleeper; Dirk W. Lang

    2011-01-01

    Visual estimation techniques were used to quantify seasonal habitat characteristics, habitat use, and longitudinal distribution of juvenile steelhead Oncorhynchus mykiss, coastal cutthroat trout O. clarkii clarkii and coho salmon O. kisutch in a coastal Oregon basin. At the channel unit scale, fish...

  20. Wildlife habitat considerations

    Science.gov (United States)

    Helen Y. Smith

    2000-01-01

    Fire, insects, disease, harvesting, and precommercial thinning all create mosaics on Northern Rocky Mountain landscapes. These mosaics are important for faunal habitat. Consequently, changes such as created openings or an increase in heavily stocked areas affect the water, cover, and food of forest habitats. The “no action” alternative in ecosystem management of low...

  1. Mechanisms Affecting Population Density in Fragmented Habitat

    Directory of Open Access Journals (Sweden)

    Lutz Tischendorf

    2005-06-01

    Full Text Available We conducted a factorial simulation experiment to analyze the relative importance of movement pattern, boundary-crossing probability, and mortality in habitat and matrix on population density, and its dependency on habitat fragmentation, as well as inter-patch distance. We also examined how the initial response of a species to a fragmentation event may affect our observations of population density in post-fragmentation experiments. We found that the boundary-crossing probability from habitat to matrix, which partly determines the emigration rate, is the most important determinant for population density within habitat patches. The probability of crossing a boundary from matrix to habitat had a weaker, but positive, effect on population density. Movement behavior in habitat had a stronger effect on population density than movement behavior in matrix. Habitat fragmentation and inter-patch distance may have a positive or negative effect on population density. The direction of both effects depends on two factors. First, when the boundary-crossing probability from habitat to matrix is high, population density may decline with increasing habitat fragmentation. Conversely, for species with a high matrix-to-habitat boundary-crossing probability, population density may increase with increasing habitat fragmentation. Second, the initial distribution of individuals across the landscape: we found that habitat fragmentation and inter-patch distance were positively correlated with population density when individuals were distributed across matrix and habitat at the beginning of our simulation experiments. The direction of these relationships changed to negative when individuals were initially distributed across habitat only. Our findings imply that the speed of the initial response of organisms to habitat fragmentation events may determine the direction of observed relationships between habitat fragmentation and population density. The time scale of post

  2. Variability of Secondary Metabolites of the Species Cichorium intybus L. from Different Habitats

    Directory of Open Access Journals (Sweden)

    Nenad M. Zlatić

    2017-09-01

    Full Text Available The principal aim of this paper is to show the influence of soil characteristics on the quantitative variability of secondary metabolites. Analysis of phenolic content, flavonoid concentrations, and the antioxidant activity was performed using the ethanol and ethyl acetate plant extracts of the species Cichorium intybus L. (Asteraceae. The samples were collected from one saline habitat and two non-saline habitats. The values of phenolic content from the samples taken from the saline habitat ranged from 119.83 to 120.83 mg GA/g and from non-saline habitats from 92.44 to 115.10 mg GA/g. The amount of flavonoids in the samples from the saline locality varied between 144.36 and 317.62 mg Ru/g and from non-saline localities between 86.03 and 273.07 mg Ru/g. The IC50 values of antioxidant activity in the samples from the saline habitat ranged from 87.64 to 117.73 μg/mL and from 101.44 to 125.76 μg/mL in the samples from non-saline habitats. The results confirmed that soil types represent a significant influence on the quantitative content of secondary metabolites. The greatest concentrations of phenols and flavonoids and the highest level of antioxidant activity were found in the samples from saline soil. This further corroborates the importance of saline soil as an ecological factor, as it is proven to give rise to increased biosynthesis of secondary metabolites and related antioxidant activity.

  3. Sound solutions for habitat monitoring

    Science.gov (United States)

    Mary M. Rowland; Lowell H. Suring; Christina D. Vojta

    2015-01-01

    For agencies and organizations to effectively manage wildlife, knowledge about the status and trend of wildlife habitat is critical. Traditional wildlife monitoring, however, has focused on populations rather than habitat, because ultimately population status drives long-term species viability. Still, habitat loss has contributed to the decline of nearly all at-risk...

  4. Spatiotemporal patterns and habitat associations of smallmouth bass (Micropterus dolomieu) invading salmon-rearing habitat

    Science.gov (United States)

    Lawrence, David J.; Olden, Julian D.; Torgersen, Christian E.

    2012-01-01

    1. Smallmouth bass (Micropterus dolomieu) have been widely introduced to fresh waters throughout the world to promote recreational fishing opportunities. In the Pacific Northwest (U.S.A.), upstream range expansions of predatory bass, especially into subyearling salmon-rearing grounds, are of increasing conservation concern, yet have received little scientific inquiry. Understanding the habitat characteristics that influence bass distribution and the timing and extent of bass and salmon overlap will facilitate the development of management strategies that mitigate potential ecological impacts of bass.2. We employed a spatially continuous sampling design to determine the extent of bass and subyearling Chinook salmon (Oncorhynchus tshawytscha) sympatry in the North Fork John Day River (NFJDR), a free-flowing river system in the Columbia River Basin that contains an upstream expanding population of non-native bass. Extensive (i.e. 53 km) surveys were conducted over 2 years and during an early and late summer period of each year, because these seasons provide a strong contrast in the river’s water temperature and flow condition. Classification and regression trees were applied to determine the primary habitat correlates of bass abundance at reach and channel-unit scales.3. Our study revealed that bass seasonally occupy up to 22% of the length of the mainstem NFJDR where subyearling Chinook salmon occur, and the primary period of sympatry between these species was in the early summer and not during peak water temperatures in late summer. Where these species co-occurred, bass occupied 60–76% of channel units used by subyearling Chinook salmon in the early summer and 28–46% of the channel units they occupied in the late summer. Because these rearing salmon were well below the gape limitation of bass, this overlap could result in either direct predation or sublethal effects of bass on subyearling Chinook salmon. The upstream extent of bass increased 10–23

  5. Floral and nesting resources, habitat structure, and fire influence bee distribution across an open-forest gradient

    Science.gov (United States)

    Grundel, R.; Jean, R.P.; Frohnapple, K.J.; Glowacki, G.A.; Scott, P.E.; Pavlovic, N.B.

    2010-01-01

    Given bees' central effect on vegetation communities, it is important to understand how and why bee distributions vary across ecological gradients. We examined how plant community composition, plant diversity, nesting suitability, canopy cover, land use, and fire history affected bee distribution across an open-forest gradient in northwest Indiana, USA, a gradient similar to the historic Midwest United States landscape mosaic. When considered with the other predictors, plant community composition was not a significant predictor of bee community composition. Bee abundance was negatively related to canopy cover and positively to recent fire frequency, bee richness was positively related to plant richness and abundance of potential nesting resources, and bee community composition was significantly related to plant richness, soil characteristics potentially related to nesting suitability, and canopy cover. Thus, bee abundance was predicted by a different set of environmental characteristics than was bee species richness, and bee community composition was predicted, in large part, by a combination of the significant predictors of bee abundance and richness. Differences in bee community composition along the woody vegetation gradient were correlated with relative abundance of oligolectic, or diet specialist, bees. Because oligoleges were rarer than diet generalists and were associated with open habitats, their populations may be especially affected by degradation of open habitats. More habitat-specialist bees were documented for open and forest/scrub habitats than for savanna/woodland habitats, consistent with bees responding to habitats of intermediate woody vegetation density, such as savannas, as ecotones rather than as distinct habitat types. Similarity of bee community composition, similarity of bee abundance, and similarity of bee richness between sites were not significantly related to proximity of sites to each other. Nestedness analysis indicated that species

  6. Indicators: Physical Habitat Complexity

    Science.gov (United States)

    Physical habitat complexity measures the amount and variety of all types of cove at the water’s edge in lakes. In general, dense and varied shoreline habitat is able to support more diverse communities of aquatic life.

  7. Selection indicates preference in diverse habitats: a ground-nesting bird (Charadrius melodus) using reservoir shoreline.

    Science.gov (United States)

    Anteau, Michael J; Sherfy, Mark H; Wiltermuth, Mark T

    2012-01-01

    Animals use proximate cues to select resources that maximize individual fitness. When animals have a diverse array of available habitats, those selected could give insights into true habitat preferences. Since the construction of the Garrison Dam on the Missouri River in North Dakota, Lake Sakakawea (SAK) has become an important breeding area for federally threatened piping plovers (Charadrius melodus; hereafter plovers). We used conditional logistic regression to examine nest-site selection at fine scales (1, 3, and 10 m) during summers 2006-2009 by comparing characteristics at 351 nests to those of 668 random sites within nesting territories. Plovers selected sites (1 m(2)) that were lower than unused random sites, increasing the risk of nest inundation. Plovers selected nest sites that were flat, had little silt, and at least 1 cobble; they also selected for 3-m radius nest areas that were relatively flat and devoid of vegetation and litter. Ninety percent of nests had nest sites (11% median), but against in the area 10-m from the nest, suggesting plovers select for patches or strips of gravel. Although elevation is rarely evaluated in studies of ground-nesting birds, our results underscore its importance in habitat-selection studies. Relative to where plovers historically nested, habitat at SAK has more diverse topography, substrate composition, vegetation communities, and greater water-level fluctuations. Accordingly, our results provide an example of how habitat-selection results can be interpreted as habitat preferences because they are not influenced by desired habitats being scarce or absent. Further, our results will be useful for directing habitat conservation for plovers and interpreting other habitat-selection studies.

  8. Habitat preference of Zoantharia genera depends on host sponge morphology

    Directory of Open Access Journals (Sweden)

    Alberto Acosta

    2010-08-01

    Full Text Available Studies about sponge-zoanthid symbioses have been focused on understanding the specificity of the association, rather thantesting what are the characteristics that make the host suitable to be colonized. For the first time it is investigated whether the ZoanthariaParazoanthus and Epizoanthus preference is related to the host sponge morphology (shape and mechanical resistance. Materials andmethods. Sponges were categorized according to their shape and mechanical resistance. The presence/absence of zoanthids was recordedin 1,068 sponges at San Andres Island, and their habitat preference was evaluated using indices and confidence intervals. Results. 85Parazoanthus colonies (78% of the total associations and 24 Epizoanthus colonies (22% were associated to sponges (10.2% in total.Parazoanthus uses branched and compressible sponges although prefers encrusting and fragile sponges, while Epizoanthus showes theopposite pattern, it can inhabit encrusting and fragile sponges but prefers branched and compressible sponges. Conclusion. These resultsindicated that sponge morphology is an important trait in zoanthid habitat selection. On the other hand, the similarity in the habitat used byzoanthids suggests the possibility of inter-generic competition if common resources are limited in time and space, while the differentialhabitat preference allows the competitive coexistence of both genera.

  9. Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Science.gov (United States)

    Flitcroft, Rebecca L; Falke, Jeffrey A.; Reeves, Gordon H.; Hessburg, Paul F.; McNyset, Kris M.; Benda, Lee E.

    2016-01-01

    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in

  10. Lakefront Property Owners' Willingness to Accept Easements for Conservation of Water Quality and Habitat

    Science.gov (United States)

    Nohner, Joel K.; Lupi, Frank; Taylor, William W.

    2018-03-01

    Lakes provide valuable ecosystem services such as food, drinking water, and recreation, but shoreline development can degrade riparian habitats and lake ecosystems. Easement contracts for specific property rights can encourage conservation practices for enhanced water quality, fish habitat, and wildlife habitat, yet little is known about the easement market. We surveyed inland lake shoreline property owners in Michigan to assess supply of two conservation easements (in riparian and in littoral zones) and identified property and property owner characteristics influencing potential enrollment. Respondents were significantly less likely to enroll in littoral easements if they indicated there was social pressure for manicured lawns and more likely to enroll if they had more formal education, shoreline frontage, naturally occurring riparian plants, ecological knowledge, or if the lake shoreline was more developed. Enrollment in easements in the riparian zone was significantly less likely if property owners indicated social pressure for manicured lawns, but more likely if they had more formal education, naturally occurring riparian plants, or shoreline frontage. When payments were low (conservation outcomes for water quality and habitat.

  11. [Community structure of soil meso- and micro-fauna in different habitats of urbanized region].

    Science.gov (United States)

    Qin, Zhong; Zhang, Jia-en; Li, Qing-fang

    2009-12-01

    Investigations were made in May, June, and November 2007 and January 2008 to study the structural characteristics and their seasonal variations of soil meso- and micro-fauna communities in six habitats of three land use types (forest land, constructed grassland and farmland) in Tianhe District of Guangzhou City. The horizontal spatial distribution of soil fauna differed with habitat. During the investigation periods, the Botanical Garden of South China Agricultural University had the highest individual number (1286) of soil mesa- and micro-fauna, while the farmland, especially in the Fenghuang Street area, had the lowest number of individuals and groups. The seasonal variation of the individual number was in order of autumn (1815) > spring (1623) > winter (1365) > summer (1276). Hierarchical clustering and detrended correspondence analysis also showed that the community composition of soil meso- and micro-fauna in different habitats exhibited distinct seasonal variation. In the same seasons, the community structure and composition of soil meso- and micro-fauna in different habitats were correlated to the degrees of human interferences and the properties of soil environment.

  12. What you find depends on where you look: responses to proximate habitat vary with landscape context

    Directory of Open Access Journals (Sweden)

    Mary Ann Cunningham

    2016-12-01

    Full Text Available There is persistent interest in understanding responses of passerine birds to habitat fragmentation, but research findings have been inconsistent and sometimes contradictory in conclusions about how birds respond to characteristics of sites they occupy, such as habitat patch size or edge density. We examined whether these inconsistencies could result from differences in the amount of habitat in the surrounding landscape, e.g., for woodland birds, the amount of tree cover in the surrounding landscape. We compared responses of 22 woodland bird species to proximate-scale tree cover in open landscapes versus wooded landscapes. Our main expectation was that woodland birds would tolerate less suitable sites (less tree cover at the site scale in open environments where they had little choice-where little tree cover was available in the surrounding area. We compared responses using logistic regression coefficients and loess plots in open and wooded landscapes in eastern North Dakota, USA. Responses to proximate-scale tree cover were stronger, not weaker, as expected, in open landscapes. In some cases the sign of the response changed from positive to negative in contrasting landscapes. We draw two conclusions: First, observed responses to proximate habitat measures such as habitat extent or edge density cannot be interpreted reliably unless landscape context is specified. Second, birds appear more selective, not less so, where habitat is sparse. Habitat loss and fragmentation at the landscape scale are likely to reduce the usefulness of local habitat conservation, and regional drivers in land-use change can have important effects for site-scale habitat use.

  13. Population trends, bend use relative to available habitat and within-river-bend habitat use of eight indicator species of Missouri and Lower Kansas River benthic fishes: 15 years after baseline assessment

    Science.gov (United States)

    Wildhaber, Mark L.; Yang, Wen-Hsi; Arab, Ali

    2016-01-01

    A baseline assessment of the Missouri River fish community and species-specific habitat use patterns conducted from 1996 to 1998 provided the first comprehensive analysis of Missouri River benthic fish population trends and habitat use in the Missouri and Lower Yellowstone rivers, exclusive of reservoirs, and provided the foundation for the present Pallid Sturgeon Population Assessment Program (PSPAP). Data used in such studies are frequently zero inflated. To address this issue, the zero-inflated Poisson (ZIP) model was applied. This follow-up study is based on PSPAP data collected up to 15 years later along with new understanding of how habitat characteristics among and within bends affect habitat use of fish species targeted by PSPAP, including pallid sturgeon. This work demonstrated that a large-scale, large-river, PSPAP-type monitoring program can be an effective tool for assessing population trends and habitat usage of large-river fish species. Using multiple gears, PSPAP was effective in monitoring shovelnose and pallid sturgeons, sicklefin, shoal and sturgeon chubs, sand shiner, blue sucker and sauger. For all species, the relationship between environmental variables and relative abundance differed, somewhat, among river segments suggesting the importance of the overall conditions of Upper and Middle Missouri River and Lower Missouri and Kansas rivers on the habitat usage patterns exhibited. Shoal and sicklefin chubs exhibited many similar habitat usage patterns; blue sucker and shovelnose sturgeon also shared similar responses. For pallid sturgeon, the primary focus of PSPAP, relative abundance tended to increase in Upper and Middle Missouri River paralleling stocking efforts, whereas no evidence of an increasing relative abundance was found in the Lower Missouri River despite stocking.

  14. 3.10. Habitat restoration and creation

    OpenAIRE

    2016-01-01

    1.12.1 Terrestrial habitat Based on the collated evidence, what is the current assessment of the effectiveness of interventions for terrestrial habitat restoration and creation? Beneficial ● Replant vegetation Likely to be beneficial ● Clear vegetation● Create artificial hibernacula or aestivation sites● Create refuges● Restore habitat connectivity Unknown effectiveness (limited evidence) ● Change mowing regime No evidence found (no assessment) ● Create habitat connectivity Beneficial Repla...

  15. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem.

    Directory of Open Access Journals (Sweden)

    Victor K Muposhi

    Full Text Available An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats.

  16. The hormetic zone: an ecological and evolutionary perspective based upon habitat characteristics and fitness selection.

    Science.gov (United States)

    Parsons, P A

    2001-12-01

    Fitness varies nonlinearly with environmental variables such as temperature, water availability, and nutrition, with maximum fitness at intermediate levels between more stressful extremes. For environmental agents that are highly toxic at exposures that substantially exceed background levels, fitness is maximized at concentrations near zero--a phenomenon often referred to as hormesis. Two main components are suggested: (1) background hormesis, which derives from the direct adaptation of organisms to their habitats; and (2) stress-derived hormonesis, which derives from metabolic reserves that are maintained as an adaptation to environmental stresses through evolutionary time. These reserves provide protection from lesser correlated stresses. This article discusses illustrative examples, including ethanol and ionizing radiation, aimed at placing hormesis into an ecological and evolutionary context. A unifying approach comes from fitness-stress continua that underlie responses to abiotic variables, whereby selection for maximum metabolic efficiency and hence fitness in adaptation to habitats in nature underlies hormetic zones. Within this reductionist model, more specific metabolic mechanisms to explain hormesis are beginning to emerge, depending upon the agent and the taxon in question. Some limited research possibilities based upon this evolutionary perspective are indicated.

  17. Movement is the glue connecting home ranges and habitat selection.

    Science.gov (United States)

    Van Moorter, Bram; Rolandsen, Christer M; Basille, Mathieu; Gaillard, Jean-Michel

    2016-01-01

    Animal space use has been studied by focusing either on geographic (e.g. home ranges, species' distribution) or on environmental (e.g. habitat use and selection) space. However, all patterns of space use emerge from individual movements, which are the primary means by which animals change their environment. Individuals increase their use of a given area by adjusting two key movement components: the duration of their visit and/or the frequency of revisits. Thus, in spatially heterogeneous environments, animals exploit known, high-quality resource areas by increasing their residence time (RT) in and/or decreasing their time to return (TtoR) to these areas. We expected that spatial variation in these two movement properties should lead to observed patterns of space use in both geographic and environmental spaces. We derived a set of nine predictions linking spatial distribution of movement properties to emerging space-use patterns. We predicted that, at a given scale, high variation in RT and TtoR among habitats leads to strong habitat selection and that long RT and short TtoR result in a small home range size. We tested these predictions using moose (Alces alces) GPS tracking data. We first modelled the relationship between landscape characteristics and movement properties. Then, we investigated how the spatial distribution of predicted movement properties (i.e. spatial autocorrelation, mean, and variance of RT and TtoR) influences home range size and hierarchical habitat selection. In landscapes with high spatial autocorrelation of RT and TtoR, a high variation in both RT and TtoR occurred in home ranges. As expected, home range location was highly selective in such landscapes (i.e. second-order habitat selection); RT was higher and TtoR lower within the selected home range than outside, and moose home ranges were small. Within home ranges, a higher variation in both RT and TtoR was associated with higher selectivity among habitat types (i.e. third-order habitat

  18. Life history comparison of two terrestrial isopods in relation to habitat specialization

    Science.gov (United States)

    Quadros, Aline Ferreira; Caubet, Yves; Araujo, Paula Beatriz

    2009-03-01

    For many animal species, there is a relationship between life history strategies, as predicted by the r- K-selection theory, degree of habitat specialization and response to habitat alteration and loss. Here we compare two sympatric woodlice species with contrasting patterns of habitat use and geographical distribution. We predict that Atlantoscia floridana (Philosciidae), considered a habitat generalist, would exhibit the r-selected traits, whereas Balloniscus glaber (Balloniscidae), considered a habitat specialist, should have the K-selected traits. We analyzed several life history traits as well as life and fecundity tables using 715 and 842 females of A. floridana and B. glaber, respectively, from populations living in syntopy in southern Brazil. As predicted, most evaluated traits allow A. floridana to be considered an r-strategist and B. glaber a K-strategist: A. floridana showed a shorter lifetime, faster development, earlier reproduction, a smaller parental investment, higher net reproductive rate ( R0), a higher growth rate ( r) and a shorter generation time ( T) in comparison to B. glaber. A. floridana seems to be a successful colonizer with a high reproductive output. These characteristics explain its local abundance, commonness and wide geographical distribution. On the contrary, B. glaber has a restricted geographical distribution that is mainly associated with Atlantic forest fragments, a biome threatened by deforestation and replacement by monocultures. Its narrow distribution combined with the K-selected traits may confer to this species an increased extinction risk.

  19. Status and Habitat Requirements of White Sturgeon Populations in the Columbia River Downstream from McNary Dam, 1989-1990 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nigro, Anthony A. (Oregon Department of Fish and Wildlife, Portland, OR)

    1990-09-01

    We report on our progress from April 1989 through March 1990 on determining the status and habitat requirements of white sturgeon populations in the Columbia River downstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW), Washington Department of Fisheries (WDF), US Fish and Wildlife Service (FWS) and National Marine Fisheries Service (NMFS). Study objectives addressed by each agency are to describe the life history and population dynamics of subadults and adults between Bonneville and McNary dams and evaluate the need and identify potential methods for protecting, mitigating and enhancing populations downstream from McNary Dam, to describe the white sturgeon recreational fishery between Bonneville and McNary dams, describe reproductive and early life history characteristics downstream from Bonneville Dam and describe life history and population dynamics of subadults and adults downstream from Bonneville Dam, to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available between Bonneville and McNary dams, and to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available downstream from Bonneville Dam. Our approach is to work concurrently downstream and upstream from Bonneville Dam. Upstream from Bonneville Dam we began work in the Dalles Reservoir in 1987 and expanded efforts to Bonneville Reservoir in 1988 and John Day Reservoir in 1989. Highlights from this work is also included. 47 refs., 33 figs., 66 tabs.

  20. Natural Propagation and Habitat Improvement, Volume I, Oregon, Supplement C, White River Habitat Inventory, 1983 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Heller, David

    1984-04-01

    More than 130 miles of stream fish habitat was inventoried and evaluated on the Mt. Hood National Forest during the first year of this multi-year project. First year tasks included field inventory and evaluation of habitat conditions on the White River and tributary streams thought to have the highest potential for supporting anadromous fish populations. All streams inventoried were located on the Mt. Hood National Forest. The surveyed area appears to contain most of the high quality anadromous fish habitat in the drainage. Habitat conditions appear suitable for steelhead, coho, and chinook salmon, and possibly sockeye. One hundred and twenty-four miles of potential anadromous fish habitat were identifed in the survey. Currently, 32 miles of this habitat would be readily accessible to anadromous fish. An additional 72 miles of habitat could be accessed with only minor passage improvement work. About 20 miles of habitat, however, will require major investment to provide fish passage. Three large lakes (Boulder, 14 acres; Badger, 45 acres; Clear, 550 acres) appear to be well-suited for rearing anadromous fish, although passage enhancement would be needed before self-sustaining runs could be established in any of the lakes.

  1. Habitat preferences of common native fishes in a tropical river in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Marcus Rodrigues da Costa

    Full Text Available We determined in this study the habitat preferences of seven native fish species in a regulated river in Southeastern Brazil. We tested the hypothesis that fishes differ in habitat preference and that they use stretches of the river differing in hydraulic characteristics and substrate type. We surveyed fishes in four 1-km long river stretches encompassing different habitat traits, where we also measured water depth, velocity, and substrate type. We investigated preference patterns of four Siluriformes (Loricariichthys castaneus, Hoplosternum littorale, Pimelodus maculatus, and Trachelyopterus striatulus and three Characiformes (Astyanax aff. bimaculatus, Oligosarcus hepsetus, and Hoplias malabaricus, representing approximately 70% of the total number of fishes and 64% of the total biomass. We classified fishes into four habitat guilds: (1 a slow-flowing water guild that occupied mud-sand substrate, composed of two Siluriformes in either shallow ( 8 m, L. castaneus waters; (2 a run-dwelling guild that occurs in deep backwaters with clay-mud substrate, composed of the Characiformes A. aff. bimaculatus and O. hepsetus; (3 a run-dwelling guild that occurs in sandy and shallow substrate, composed of T. striatulus; and (4 a fast-flowing guild that occurs primarily along shorelines with shallow mud bottoms, composed of H. malabaricus and P. maculatus. Our hypothesis was confirmed, as different habitat preferences by fishes appear to occur in this regulated river.

  2. Diversity Partitioning of Wild Bee Assemblages (Hymenoptera: Apoidea, Apiformes and Species Preferences for Three Types of Refuge Habitats in an Agricultural Landscape in Poland

    Directory of Open Access Journals (Sweden)

    Banaszak Józef

    2014-09-01

    Full Text Available Abstract Patterns in bee assemblages consisting of 52 core (most abundant species in farmland in the Wielkopolska region of W Poland were analysed. The entomological material was assessed during earlier research in 1978-1993 from 18 plots in three habitat types: shelterbelts, roadsides and forest patches. At the scale of the refuge habitat size analysed here, an increase in area only slightly enhanced bee species richness. The bee assemblage structures of roadsides and forest patches differ significantly, but their indicator species do not form any well-defined ecological groups. In non-linear forest patches, the bee community structure was more homogeneous than on roadsides. These two habitat types differed significantly in their species composition. Nine significant indicator species were found, but they did not share any ecological characteristics. Three factors were found to affect significantly the responses of individual bee species in the agricultural landscape: the degree of isolation of the refuge habitat, the edge ratio, and roadsides as a refuge habitat type. A large part of the regional diversity is due to the heterogeneity of habitats within the landscape. Habitat area has little influence on the diversity of wild bees, at least within the size range analysed here. We concluded from this study that, regardless of the habitat type, the density of bees from the summer phenological period is affected by the number of food plant species. Point forest patches are habitats where summer species from the genus Andrena and the cleptoparasitic genera Nomada and Sphecodes achieve their highest abundances. Roadsides negatively affected abundances of wild bees and there were no characteristic species for this type of habitat. We hypothesised that this might be related to the specific ecological part played by this type of habitat.

  3. BIOLOGI POPULASI RAJUNGAN (PORTUNUS PELAGICUS DAN KARAKTERISTIK LINGKUNGAN HABITAT ESENSIALNYA SEBAGAI UPAYA AWAL PERLINDUNGAN DI LAMPUNG TIMUR

    Directory of Open Access Journals (Sweden)

    Rahmat Kurnia

    2014-04-01

    Full Text Available There are several option management measures in preventing sustainability stock of the blue swimming crab (Portunus pelagicus, i.e., nursery ground conservation. Thus, the objective of this study was to analyses habitat characteristic and its population biology in the PGN marine embayment of Labuhan Maringgai, as one among crab habitat essential in East Lampung coastal water. The potential nursery ground conservation was assessed by habitat suitability index, carrying capacity, distribution and abundance as well as crabs size. The result shows that environmental condition was still suitable, even though the habitat carrying capacity tend to degraded by an increasing of turbidity and sedimentation at the embayment mouth. The crabs captured were also not representing of peak abundance season and recruitment during sampling period, while those crab size almost 100% under Lm50. The strategic management directive is required to control in utilization of crab’s essential habitat, including crab fishing by any fishing gear resulted undersize captured crabs. Meanwhile, to propose habitat essential conservation might need more consideration and comprehensive study, including social economic and cultural aspects and co-management approach may be required in management measure applied.

  4. Anthropogenic areas as incidental substitutes for original habitat.

    Science.gov (United States)

    Martínez-Abraín, Alejandro; Jiménez, Juan

    2016-06-01

    One speaks of ecological substitutes when an introduced species performs, to some extent, the ecosystem function of an extirpated native species. We suggest that a similar case exists for habitats. Species evolve within ecosystems, but habitats can be destroyed or modified by natural and human-made causes. Sometimes habitat alteration forces animals to move to or remain in a suboptimal habitat type. In that case, the habitat is considered a refuge, and the species is called a refugee. Typically refugee species have lower population growth rates than in their original habitats. Human action may lead to the unintended generation of artificial or semiartificial habitat types that functionally resemble the essential features of the original habitat and thus allow a population growth rate of the same magnitude or higher than in the original habitat. We call such areas substitution habitats and define them as human-made habitats within the focal species range that by chance are partial substitutes for the species' original habitat. We call species occupying a substitution habitat adopted species. These are 2 new terms in conservation biology. Examples of substitution habitats are dams for European otters, wheat and rice fields for many steppeland and aquatic birds, and urban areas for storks, falcons, and swifts. Although substitution habitats can bring about increased resilience against the agents of global change, the conservation of original habitat types remains a conservation priority. © 2016 Society for Conservation Biology.

  5. Selection indicates preference in diverse habitats: a ground-nesting bird (Charadrius melodus using reservoir shoreline.

    Directory of Open Access Journals (Sweden)

    Michael J Anteau

    Full Text Available Animals use proximate cues to select resources that maximize individual fitness. When animals have a diverse array of available habitats, those selected could give insights into true habitat preferences. Since the construction of the Garrison Dam on the Missouri River in North Dakota, Lake Sakakawea (SAK has become an important breeding area for federally threatened piping plovers (Charadrius melodus; hereafter plovers. We used conditional logistic regression to examine nest-site selection at fine scales (1, 3, and 10 m during summers 2006-2009 by comparing characteristics at 351 nests to those of 668 random sites within nesting territories. Plovers selected sites (1 m(2 that were lower than unused random sites, increasing the risk of nest inundation. Plovers selected nest sites that were flat, had little silt, and at least 1 cobble; they also selected for 3-m radius nest areas that were relatively flat and devoid of vegetation and litter. Ninety percent of nests had <38% coverage of silt and <10% slope at the site, and <15% coverage of vegetation or litter and <31% slope within the 3-m radius. Gravel was selected for at nest sites (11% median, but against in the area 10-m from the nest, suggesting plovers select for patches or strips of gravel. Although elevation is rarely evaluated in studies of ground-nesting birds, our results underscore its importance in habitat-selection studies. Relative to where plovers historically nested, habitat at SAK has more diverse topography, substrate composition, vegetation communities, and greater water-level fluctuations. Accordingly, our results provide an example of how habitat-selection results can be interpreted as habitat preferences because they are not influenced by desired habitats being scarce or absent. Further, our results will be useful for directing habitat conservation for plovers and interpreting other habitat-selection studies.

  6. Evaluating the Effect of Green Infrastructure Stormwater Best Management Practices on New England Stream Habitat

    Science.gov (United States)

    The U.S. EPA is evaluating the effectiveness of green infrastructure (GI) stormwater best management practices (BMPs) on stream habitat at the small watershed (< HUC12) scale in New England. Predictive models for thermal regime and substrate characteristics (substrate size, % em...

  7. Predictive habitat modelling as a tool to assess the change in distribution and extent of an OSPAR priority habitat under an increased ocean temperature scenario: consequences for marine protected area networks and management.

    Science.gov (United States)

    Gormley, Kate S G; Porter, Joanne S; Bell, Michael C; Hull, Angela D; Sanderson, William G

    2013-01-01

    The aims of this study were to determine the extent and distribution of an OSPAR priority habitat under current baseline ocean temperatures; to illustrate the prospect for habitat loss under a changing ocean temperature scenario; and to demonstrate the potential application of predictive habitat mapping in "future-proofing" conservation and biodiversity management. Maxent modelling and GIS environmental envelope analysis of the biogenic bed forming species, Modiolus modiolus was carried out. The Maxent model was tested and validated using 75%/25% training/test occurrence records and validated against two sampling biases (the whole study area and a 20km buffer). The model was compared to the envelope analysis and the area under the receiver operating characteristic curve (Area Under the curve; AUC) was evaluated. The performance of the Maxent model was rated as 'good' to 'excellent' on all replicated runs and low variation in the runs was recorded from the AUC values. The extent of "most suitable", "less suitable" and "unsuitable" habitat was calculated for the baseline year (2009) and the projected increased ocean temperature scenarios (2030, 2050, 2080 and 2100). A loss of 100% of "most suitable" habitat was reported by 2080. Maintaining a suitable level of protection of marine habitats/species of conservation importance may require management of the decline and migration rather than maintenance of present extent. Methods applied in this study provide the initial application of a plausible "conservation management tool".

  8. Predictive habitat modelling as a tool to assess the change in distribution and extent of an OSPAR priority habitat under an increased ocean temperature scenario: consequences for marine protected area networks and management.

    Directory of Open Access Journals (Sweden)

    Kate S G Gormley

    Full Text Available The aims of this study were to determine the extent and distribution of an OSPAR priority habitat under current baseline ocean temperatures; to illustrate the prospect for habitat loss under a changing ocean temperature scenario; and to demonstrate the potential application of predictive habitat mapping in "future-proofing" conservation and biodiversity management. Maxent modelling and GIS environmental envelope analysis of the biogenic bed forming species, Modiolus modiolus was carried out. The Maxent model was tested and validated using 75%/25% training/test occurrence records and validated against two sampling biases (the whole study area and a 20km buffer. The model was compared to the envelope analysis and the area under the receiver operating characteristic curve (Area Under the curve; AUC was evaluated. The performance of the Maxent model was rated as 'good' to 'excellent' on all replicated runs and low variation in the runs was recorded from the AUC values. The extent of "most suitable", "less suitable" and "unsuitable" habitat was calculated for the baseline year (2009 and the projected increased ocean temperature scenarios (2030, 2050, 2080 and 2100. A loss of 100% of "most suitable" habitat was reported by 2080. Maintaining a suitable level of protection of marine habitats/species of conservation importance may require management of the decline and migration rather than maintenance of present extent. Methods applied in this study provide the initial application of a plausible "conservation management tool".

  9. Habitat Suitability Index Models: Yellow-headed blackbird

    Science.gov (United States)

    Schroeder, Richard L.

    1982-01-01

    Habitat preferences of the yellow-headed blackbird (Xanthocephalus xanthocephalus) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available infomration on the species-habitat requirements of the species. Habitat use information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities.

  10. Temporal and Spatial Scales Matter: Circannual Habitat Selection by Bird Communities in Vineyards.

    Directory of Open Access Journals (Sweden)

    Claire Guyot

    Full Text Available Vineyards are likely to be regionally important for wildlife, but we lack biodiversity studies in this agroecosystem which is undergoing a rapid management revolution. As vine cultivation is restricted to arid and warm climatic regions, biodiversity-friendly management would promote species typical of southern biomes. Vineyards are often intensively cultivated, mostly surrounded by few natural features and offering a fairly mineral appearance with little ground vegetation cover. Ground vegetation cover and composition may further strongly vary with respect to season, influencing patterns of habitat selection by ecological communities. We investigated season-specific bird-habitat associations to highlight the importance of semi-natural habitat features and vineyard ground vegetation cover throughout the year. Given that avian habitat selection varies according to taxa, guilds and spatial scale, we modelled bird-habitat associations in all months at two spatial scales using mixed effects regression models. At the landscape scale, birds were recorded along 10 1-km long transects in Southwestern Switzerland (February 2014 -January 2015. At the field scale, we compared the characteristics of visited and unvisited vineyard fields (hereafter called parcels. Bird abundance in vineyards tripled in winter compared to summer. Vineyards surrounded by a greater amount of hedges and small woods harboured higher bird abundance, species richness and diversity, especially during the winter season. Regarding ground vegetation, birds showed a season-specific habitat selection pattern, notably a marked preference for ground-vegetated parcels in winter and for intermediate vegetation cover in spring and summer. These season-specific preferences might be related to species-specific life histories: more insectivorous, ground-foraging species occur during the breeding season whereas granivores predominate in winter. These results highlight the importance of

  11. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    Directory of Open Access Journals (Sweden)

    Gustaf Samelius

    Full Text Available Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1 before and after lynx re-established in the study area and (2 in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection. Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  12. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    Science.gov (United States)

    Samelius, Gustaf; Andrén, Henrik; Kjellander, Petter; Liberg, Olof

    2013-01-01

    Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1) before and after lynx re-established in the study area and (2) in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection). Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  13. Nekton density patterns and hurricane recovery in submerged aquatic vegetation, and along non-vegetated natural and created edge habitats

    Science.gov (United States)

    La Peyre, M.K.; Gordon, J.

    2012-01-01

    We compared nekton habitat value of submerged aquatic vegetation, flooded non-vegetated natural and man-made edge habitats in mesohaline interior marsh areas in southwest Louisiana using a 1-m 2 throw trap and 3-mm bag seine. When present, SAV habitats supported close to 4 times greater densities and higher species richness of nekton as compared to either natural or man-made edge habitats, which supported similar densities to one another. Three species of concern (bayou killifish, diamond killifish, chain pipefish) were targeted in the analysis, and two of the three were collected almost entirely in SAV habitat. During the course of the study, Hurricanes Ike and Gustav passed directly over the study sites in September 2008. Subsequent analyses indicated significant reductions in resident nekton density 1-mo post hurricanes, and only limited recovery 13-mo post-hurricane. Possible alteration of environmental characteristics such as scouring of SAV habitat, deposition of sediment over SAV, edge erosion and marsh loss, and extended high salinities may explain these lasting impacts. ?? 2011.

  14. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet

    Science.gov (United States)

    Michelot, Candice; Pinaud, David; Fortin, Matthieu; Maes, Philippe; Callard, Benjamin; Leicher, Marine; Barbraud, Christophe

    2017-07-01

    Studies of habitat selection by higher trophic level species are necessary for using top predator species as indicators of ecosystem functioning. However, contrary to terrestrial ecosystems, few habitat selection studies have been conducted at a fine scale for coastal marine top predator species, and fewer have coupled diet data with habitat selection modeling to highlight a link between prey selection and habitat use. The aim of this study was to characterize spatially and oceanographically, at a fine scale, the habitats used by the European Shag Phalacrocorax aristotelis in the Special Protection Area (SPA) of Houat-Hœdic in the Mor Braz Bay during its foraging activity. Habitat selection models were built using in situ observation data of foraging shags (transect sampling) and spatially explicit environmental data to characterize marine benthic habitats. Observations were first adjusted for detectability biases and shag abundance was subsequently spatialized. The influence of habitat variables on shag abundance was tested using Generalized Linear Models (GLMs). Diet data were finally confronted to habitat selection models. Results showed that European shags breeding in the Mor Braz Bay changed foraging habitats according to the season and to the different environmental and energetic constraints. The proportion of the main preys also varied seasonally. Rocky and coarse sand habitats were clearly preferred compared to fine or muddy sand habitats. Shags appeared to be more selective in their foraging habitats during the breeding period and the rearing of chicks, using essentially rocky areas close to the colony and consuming preferentially fish from the Labridae family and three other fish families in lower proportions. During the post-breeding period shags used a broader range of habitats and mainly consumed Gadidae. Thus, European shags seem to adjust their feeding strategy to minimize energetic costs, to avoid intra-specific competition and to maximize access

  15. Habitat Suitability Index Models: Red-winged blackbird

    Science.gov (United States)

    Short, Henry L.

    1985-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the red-winged blackbird (Agelaius phoeniceus L.). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  16. Asotin Creek instream habitat alteration projects : habitat evaluation, adult and juvenile habitat utilization and water temperature monitoring : 2001 progress report

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.

    2002-01-01

    Asotin Creek originates from a network of deeply incised streams on the slopes of the Blue Mountains of southeastern Washington. The watershed drains an area of 322 square miles that provides a mean annual flow of 74 cfs. The geomorphology of the watershed exerts a strong influence on biologic conditions for fish within the stream. Historic and contemporary land-use practices have had a profound impact on the kind, abundance, and distribution of anadromous salmonids in the watershed. Fish habitat in Asotin Creek and other local streams has been affected by agricultural development, grazing, tilling practices, logging, recreational activities and implementation of flood control structures (Neilson 1950). The Asotin Creek Model Watershed Master Plan was completed in 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories: (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were: (1) create more pools, (2) increase the amount of large organic debris (LOD), (3) increase the riparian buffer zone through tree planting, and (4) increase fencing to limit livestock access. All of these actions, in combination with other activities identified in the Plan, are intended to stabilize the river channel, reduce sediment input, increase the amount of available fish habitat (adult and juvenile) and protect private property. Evaluation work described within this report was to document the success or failure of the program regarding the first two items listed (increasing pools and LOD). Beginning in 1996, the ACCD, with cooperation from local landowners and funding from Bonneville Power Administration began constructing instream

  17. Wildlife Habitat Evaluation Handbook.

    Science.gov (United States)

    Neilson, Edward L., Jr.; Benson, Delwin E.

    The National 4-H Wildlife Invitational is a competitive event to teach youth about the fundamentals of wildlife management. Youth learn that management for wildlife means management of wildlife habitat and providing for the needs of wildlife. This handbook provides information about wildlife habitat management concepts in both urban and rural…

  18. Selecting habitat to survive: the impact of road density on survival in a large carnivore.

    Directory of Open Access Journals (Sweden)

    Mathieu Basille

    Full Text Available Habitat selection studies generally assume that animals select habitat and food resources at multiple scales to maximise their fitness. However, animals sometimes prefer habitats of apparently low quality, especially when considering the costs associated with spatially heterogeneous human disturbance. We used spatial variation in human disturbance, and its consequences on lynx survival, a direct fitness component, to test the Hierarchical Habitat Selection hypothesis from a population of Eurasian lynx Lynx lynx in southern Norway. Data from 46 lynx monitored with telemetry indicated that a high proportion of forest strongly reduced the risk of mortality from legal hunting at the home range scale, while increasing road density strongly increased such risk at the finer scale within the home range. We found hierarchical effects of the impact of human disturbance, with a higher road density at a large scale reinforcing its negative impact at a fine scale. Conversely, we demonstrated that lynx shifted their habitat selection to avoid areas with the highest road densities within their home ranges, thus supporting a compensatory mechanism at fine scale enabling lynx to mitigate the impact of large-scale disturbance. Human impact, positively associated with high road accessibility, was thus a stronger driver of lynx space use at a finer scale, with home range characteristics nevertheless constraining habitat selection. Our study demonstrates the truly hierarchical nature of habitat selection, which aims at maximising fitness by selecting against limiting factors at multiple spatial scales, and indicates that scale-specific heterogeneity of the environment is driving individual spatial behaviour, by means of trade-offs across spatial scales.

  19. Effects of Changes in Lugu Lake Water Quality on Schizothorax Yunnansis Ecological Habitat Based on HABITAT Model

    Science.gov (United States)

    Huang, Wei; Mynnet, Arthur

    Schizothorax Yunnansis is an unique fish species only existing in Lugu Lake, which is located in the southwestern China. The simulation and research on Schizothorax Yunnansis habitat environment have a vital significance to protect this rare fish. With the development of the tourism industry, there bring more pressure on the environmental protection. The living environment of Schizothorax Yunnansis is destroyed seriously because the water quality is suffering the sustaining pollution of domestic sewage from the peripheral villages. This paper analyzes the relationship between water quality change and Schizothorax Yunnansis ecological habitat and evalutes Schizothorax Yunnansis's ecological habitat impact based on HABITAT model. The results show that when the TP concentration in Lugu Lake does not exceed Schizothorax Yunnansis's survival threshold, Schizothorax Yunnansis can get more nutrients and the suitable habitat area for itself is increased. Conversely, it can lead to TP toxicity in the Schizothorax Yunnansis and even death. Therefore, unsuitable habitat area for Schizothorax Yunnansis is increased. It can be seen from the results that HABITAT model can assist in ecological impact assessment studies by translating results of hydrological, water quality models into effects on the natural environment and human society.

  20. Habitat predictors of genetic diversity for two sympatric wetland-breeding amphibian species.

    Science.gov (United States)

    McKee, Anna M; Maerz, John C; Smith, Lora L; Glenn, Travis C

    2017-08-01

    Population genetic diversity is widely accepted as important to the conservation and management of wildlife. However, habitat features may differentially affect evolutionary processes that facilitate population genetic diversity among sympatric species. We measured genetic diversity for two pond-breeding amphibian species (Dwarf salamanders, Eurycea quadridigitata ; and Southern Leopard frogs, Lithobates sphenocephalus ) to understand how habitat characteristics and spatial scale affect genetic diversity across a landscape. Samples were collected from wetlands on a longleaf pine reserve in Georgia. We genotyped microsatellite loci for both species to assess population structures and determine which habitat features were most closely associated with observed heterozygosity and rarefied allelic richness. Both species exhibited significant population genetic structure; however, structure in Southern Leopard frogs was driven primarily by one outlier site. Dwarf salamander allelic richness was greater at sites with less surrounding road area within 0.5 km and more wetland area within 1.0 and 2.5 km, and heterozygosity was greater at sites with more wetland area within 0.5 km. In contrast, neither measure of Southern Leopard frog genetic diversity was associated with any habitat features at any scale we evaluated. Genetic diversity in the Dwarf salamander was strongly associated with land cover variables up to 2.5 km away from breeding wetlands, and/or results suggest that minimizing roads in wetland buffers may be beneficial to the maintenance of population genetic diversity. This study suggests that patterns of genetic differentiation and genetic diversity have associations with different habitat features across different spatial scales for two syntopic pond-breeding amphibian species.

  1. Habitat Modeling of Alien Plant Species at Varying Levels of Occupancy

    Directory of Open Access Journals (Sweden)

    Jennifer A. Brown

    2012-09-01

    Full Text Available Distribution models of invasive plants are very useful tools for conservation management. There are challenges in modeling expanding populations, especially in a dynamic environment, and when data are limited. In this paper, predictive habitat models were assessed for three invasive plant species, at differing levels of occurrence, using two different habitat modeling techniques: logistic regression and maximum entropy. The influence of disturbance, spatial and temporal heterogeneity, and other landscape characteristics is assessed by creating regional level models based on occurrence records from the USDA Forest Service’s Forest Inventory and Analysis database. Logistic regression and maximum entropy models were assessed independently. Ensemble models were developed to combine the predictions of the two analysis approaches to obtain a more robust prediction estimate. All species had strong models with Area Under the receiver operator Curve (AUC of >0.75. The species with the highest occurrence, Ligustrum spp., had the greatest agreement between the models (93%. Lolium arundinaceum had the most disagreement between models at 33% and the lowest AUC values. Overall, the strength of integrative modeling in assessing and understanding habitat modeling was demonstrated.

  2. Habitat segregation in fish assemblages

    OpenAIRE

    Ibbotson, A.T.

    1990-01-01

    The segregation of habitats of fish assemblages found in the chalk streams and rivers within the Wessex, South West and Southern Water Authority boundaries in southern England have been examined. Habitat segregation is the most frequent type of resource partitioning in natural communities. The habitat of individual fish species will be defined in order to determine the following: (1) the requirements of each species in terms of depth, current velocity, substrate, cover etc.; (2) identify the ...

  3. Critical Habitat :: NOAA Fisheries

    Science.gov (United States)

    occupied by the species at the time of listing, if they contain physical or biological features essential essential for conservation. Critical Habitat Maps NOTE: The critical habitat maps provided here are for Data Leatherback Turtle (U.S. West Coast) » Biological Report » Economic Report 2012 77 FR 4170 Go to

  4. Deep-sea seabed habitats: Do they support distinct mega-epifaunal communities that have different vulnerabilities to anthropogenic disturbance?

    Science.gov (United States)

    Bowden, David A.; Rowden, Ashley A.; Leduc, Daniel; Beaumont, Jennifer; Clark, Malcolm R.

    2016-01-01

    Growing economic interest in seabed resources in the deep-sea highlights the need for information about the spatial distribution and vulnerability to disturbance of benthic habitats and fauna. Categorisation of seabed habitats for management is often based on topographic features such as canyons and seamounts that can be distinguished using regional bathymetry ('mega-habitats'). This is practical but because such habitats are contiguous with others, there is potential for overlap in the communities associated with them. Because concepts of habitat and community vulnerability are based on the traits of individual taxa, the nature and extent of differences between communities have implications for strategies to manage the environmental effects of resource use. Using towed video camera transects, we surveyed mega-epifaunal communities of three topographically-defined habitats (canyon, seamount or knoll, and continental slope) and two physico-chemically defined meso-scale habitats (cold seep and hydrothermal vent) in two regions off New Zealand to assess whether each supports a distinct type of community. Cold seep and hydrothermal vent communities were strongly distinct from those in other habitats. Across the other habitats, however, distinctions between communities were often weak and were not consistent between regions. Dissimilarities among communities across all habitats were stronger and the density of filter-feeding taxa was higher in the Bay of Plenty than on the Hikurangi Margin, whereas densities of predatory and scavenging taxa were higher on the Hikurangi Margin. Substratum diversity at small spatial scales (the general utility of topographically-defined mega-habitats in environmental management, (2) fine-scale survey of individual features is necessary to identify the locations, characteristics, and extents of ecologically important or vulnerable seabed communities, and (3) evaluation of habitat vulnerability to future events should be in the context of

  5. Riparian Habitat - Product of 2 riparian habitat workshops

    Data.gov (United States)

    California Natural Resource Agency — In two riparian habitat workshops held between 2001 and 2002, scientists and managers identified the need for determining the scope of a consistent and acceptable...

  6. Habitat stability, predation risk and 'memory syndromes'.

    Science.gov (United States)

    Dalesman, S; Rendle, A; Dall, S R X

    2015-05-27

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits ('memory syndrome') related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population.

  7. Habitat Requirements of Breeding Black-Backed Woodpeckers (Picoides arcticus in Managed, Unburned Boreal Forest

    Directory of Open Access Journals (Sweden)

    Junior A. Tremblay

    2009-06-01

    Full Text Available We investigated home-range characteristics and habitat selection by Black-backed Woodpeckers (Picoides arcticus in an unburned, boreal forest landscape managed by mosaic harvesting in Quebec, Canada. Habitat selection by this species was specifically examined to determine home-range establishment and foraging activities. We hypothesized that Black-backed Woodpeckers would respond to harvesting by adjusting their home-range size as a function of the amount of dead wood available. Twenty-two birds were tracked using radiotelemetry, and reliable estimates of home-range size were obtained for seven breeding individuals (six males and one female. The average home-range size was 151.5 ± 18.8 ha (range: 100.4-256.4 ha. Our results indicate that this species establishes home ranges in areas where both open and forested habitats are available. However, during foraging activities, individuals preferentially selected areas dominated by old coniferous stands. The study also showed that the spatial distribution of preferred foraging habitat patches influenced space use, with home-range area increasing with the median distance between old coniferous habitat patches available within the landscape. Finally, these data show that Black-backed Woodpeckers may successfully breed in an unburned forest with at least 35 m3 • ha-1 of dead wood, of which 42% (15 m3 • ha-1 is represented by dead wood at the early decay stage.

  8. NEPR Benthic Habitat Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This benthic habitat map was created from a semi-automated habitat mapping process, using a combination of bathymetry, satellite imagery, aerial imagery and...

  9. Tree Characteristics - Spears and Didion Ranches [ds320

    Data.gov (United States)

    California Natural Resource Agency — These data are the characteristics of the individual live trees found in 0.05-ha circular plot habitat samples taken in 2005 at sample points at Spears and Didion...

  10. Habitat or matrix: which is more relevant to predict road-kill of vertebrates?

    Science.gov (United States)

    Bueno, C; Sousa, C O M; Freitas, S R

    2015-11-01

    We believe that in tropics we need a community approach to evaluate road impacts on wildlife, and thus, suggest mitigation measures for groups of species instead a focal-species approach. Understanding which landscape characteristics indicate road-kill events may also provide models that can be applied in other regions. We intend to evaluate if habitat or matrix is more relevant to predict road-kill events for a group of species. Our hypothesis is: more permeable matrix is the most relevant factor to explain road-kill events. To test this hypothesis, we chose vertebrates as the studied assemblage and a highway crossing in an Atlantic Forest region in southeastern Brazil as the study site. Logistic regression models were designed using presence/absence of road-kill events as dependent variables and landscape characteristics as independent variables, which were selected by Akaike's Information Criterion. We considered a set of candidate models containing four types of simple regression models: Habitat effect model; Matrix types effect models; Highway effect model; and, Reference models (intercept and buffer distance). Almost three hundred road-kills and 70 species were recorded. River proximity and herbaceous vegetation cover, both matrix effect models, were associated to most road-killed vertebrate groups. Matrix was more relevant than habitat to predict road-kill of vertebrates. The association between river proximity and road-kill indicates that rivers may be a preferential route for most species. We discuss multi-species mitigation measures and implications to movement ecology and conservation strategies.

  11. Quantifying the importance of patch-specific changes in habitat to metapopulation viability of an endangered songbird.

    Science.gov (United States)

    Horne, Jon S; Strickler, Katherine M; Alldredge, Mathew

    2011-10-01

    A growing number of programs seek to facilitate species conservation using incentive-based mechanisms. Recently, a market-based incentive program for the federally endangered Golden-cheeked Warbler (Dendroica chrysoparia) was implemented on a trial basis at Fort Hood, an Army training post in Texas, USA. Under this program, recovery credits accumulated by Fort Hood through contracts with private landowners are used to offset unintentional loss of breeding habitat of Golden-cheeked Warblers within the installation. Critical to successful implementation of such programs is the ability to value, in terms of changes to overall species viability, both habitat loss and habitat restoration or protection. In this study, we sought to answer two fundamental questions: Given the same amount of change in breeding habitat, does the change in some patches have a greater effect on metapopulation persistence than others? And if so, can characteristics of a patch (e.g., size or spatial location) be used to predict how the metapopulation will respond to these changes? To answer these questions, we describe an approach for using sensitivity analysis of a metapopulation projection model to predict how changes to specific habitat patches would affect species viability. We used a stochastic, discrete-time projection model based on stage-specific estimates of survival and fecundity, as well as various assumptions about dispersal among populations. To assess a particular patch's leverage, we quantified how much metapopulation viability was expected to change in response to changing the size of that patch. We then related original patch size and distance from the largest patch to each patch's leverage to determine if general patch characteristics could be used to develop guidelines for valuing changes to patches within a metapopulation. We found that both the characteristic that best predicted patch leverage and the magnitude of the relationship changed under different model scenarios

  12. Morphological Characteristics and Habitats of Red Seaweed Gracilaria spp. (Gracilariaceae, Rhodophyta) in Santubong and Asajaya, Sarawak, Malaysia.

    Science.gov (United States)

    Othman, Muhammad Nur Arif; Hassan, Ruhana; Harith, Mohd Nasarudin; Sah, Amir Shah Ruddin Md

    2018-03-01

    Red seaweed Gracilaria , one of the largest genus in Division Rhodophyta inhabits Sarawak coastal water. This study was designed to identify the species of Gracilaria using morphological approach and to assess selected water quality parameters in Gracilaria habitats. Three field samplings were carried out in Santubong and Asajaya, Sarawak from November 2013 to December 2014. Overall, three species were identified namely Gracilaria changii , G. blodgettii and G. coronopifolia , attached to net of cage culture in Santubong and root of mangrove trees in Asajaya. In addition, three different taxa of aquatic macroinvertebrates (polychaete, small crab, bivalve) and single species of red seaweed ( Acanthophora sp.) were observed in Gracilaria assemblages. An estimate of 37% to 40% of the upper part of the cage net in Santubong was covered by seaweeds and only 16% to 20% in Asajaya's mangrove. The study had provided better information on identification of Gracilaria and their habitat in Sarawak. Future work involving DNA barcoding of each species is in progress.

  13. Morphological Characteristics and Habitats of Red Seaweed Gracilaria spp. (Gracilariaceae, Rhodophyta) in Santubong and Asajaya, Sarawak, Malaysia

    Science.gov (United States)

    Othman, Muhammad Nur Arif; Hassan, Ruhana; Harith, Mohd Nasarudin; Sah, Amir Shah Ruddin Md

    2018-01-01

    Red seaweed Gracilaria, one of the largest genus in Division Rhodophyta inhabits Sarawak coastal water. This study was designed to identify the species of Gracilaria using morphological approach and to assess selected water quality parameters in Gracilaria habitats. Three field samplings were carried out in Santubong and Asajaya, Sarawak from November 2013 to December 2014. Overall, three species were identified namely Gracilaria changii, G. blodgettii and G. coronopifolia, attached to net of cage culture in Santubong and root of mangrove trees in Asajaya. In addition, three different taxa of aquatic macroinvertebrates (polychaete, small crab, bivalve) and single species of red seaweed (Acanthophora sp.) were observed in Gracilaria assemblages. An estimate of 37% to 40% of the upper part of the cage net in Santubong was covered by seaweeds and only 16% to 20% in Asajaya’s mangrove. The study had provided better information on identification of Gracilaria and their habitat in Sarawak. Future work involving DNA barcoding of each species is in progress. PMID:29644017

  14. Habitat preferences of ground beetle (Coleoptera: Carabidae) species in the northern Black Hills of South Dakota.

    Science.gov (United States)

    Bergmann, David J; Brandenburg, Dylan; Petit, Samantha; Gabel, Mark

    2012-10-01

    Ground beetles (Coleoptera: Carabidae) are a major component of terrestrial invertebrate communities and have been used as bioindicators of habitat change and disturbance. The Black Hills of South Dakota is a small area with a high biodiversity, but the ground beetles of this region are little studied. The habitat preferences of ground beetles in the Black Hills are unknown, and baseline data must be collected if these beetles are to be used in the future as bioindicators. Ground beetles (Coleoptera: Carabidae) were collected from pitfall traps at two sites in each of five kinds of habitats (grassland, bur oak-ironwood forests, ponderosa pine-common juniper forests, aspen-pine forests, and a spruce forest) from which habitat structure characteristics and plant abundance data also were collected. In total, 27 species of ground beetles were identified. Although some species, such as Dicaelus sculptilis Say were found in most habitats, other species showed distinct habitat preferences: Poecilus lucublandus (Say) preferred oak forests, Pasimachus elongatus LeConte preferred grasslands, and Calathus ingratus Dejean preferred high-elevation aspen-pine forests. Pterostichus adstrictus Escholtz was found only in woodlands, and Carabus taedatus Say strictly in higher elevation (over 1,500 m) aspen or coniferous woods, and may represent relict populations of boreal species. Elevation, exposure to sunlight, and cover of woody plants strongly influence the structure of carabid communities in the Black Hills.

  15. Deep Space Habitat Concept Demonstrator

    Science.gov (United States)

    Bookout, Paul S.; Smitherman, David

    2015-01-01

    This project will develop, integrate, test, and evaluate Habitation Systems that will be utilized as technology testbeds and will advance NASA's understanding of alternative deep space mission architectures, requirements, and operations concepts. Rapid prototyping and existing hardware will be utilized to develop full-scale habitat demonstrators. FY 2014 focused on the development of a large volume Space Launch System (SLS) class habitat (Skylab Gen 2) based on the SLS hydrogen tank components. Similar to the original Skylab, a tank section of the SLS rocket can be outfitted with a deep space habitat configuration and launched as a payload on an SLS rocket. This concept can be used to support extended stay at the Lunar Distant Retrograde Orbit to support the Asteroid Retrieval Mission and provide a habitat suitable for human missions to Mars.

  16. Salmon River Habitat Enhancement, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Richard C.

    1986-04-01

    This report has four volumes: a Tribal project annual report (Part 1) and three reports (Parts 2, 3, and 4) prepared for the Tribes by their engineering subcontractor. The Tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved habitat and fish inventories in Bear Valley Creek, Valley County, Idaho that will be used to evaluate responses to ongoing habitat enhancement. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur within the traditional Treaty (Fort Bridger Treaty of 1868) fishing areas of the Shoshone-Bannock Tribes, Fort Hall Reservation, Idaho. Subproject III involved habitat and fish inventories (pretreatment) and habitat problem identification on the Yankee Fork of the Salmon River (including Jordan Creek). Subproject IV during 1985 involved habitat problem identification in the East Fork of the Salmon River and habitat and fish inventories (pretreatment) in Herd Creek, a tributary to the East Fork.

  17. NORTHWOODS Wildlife Habitat Data Base

    Science.gov (United States)

    Mark D. Nelson; Janine M. Benyus; Richard R. Buech

    1992-01-01

    Wildlife habitat data from seven Great Lakes National Forests were combined into a wildlife-habitat matrix named NORTHWOODS. Several electronic file formats of NORTHWOODS data base and documentation are available on floppy disks for microcomputers.

  18. 50 CFR 17.94 - Critical habitats.

    Science.gov (United States)

    2010-10-01

    ... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the... physical constituent elements within the defined area of Critical Habitat that are essential to the... 50 Wildlife and Fisheries 2 2010-10-01 2010-10-01 false Critical habitats. 17.94 Section 17.94...

  19. The areal extent of brown shrimp habitat suitability in Mobile Bay, Alabama, USA: Targeting vegetated habitat restoration

    Science.gov (United States)

    Smith, L.M.; Nestlerode, J.A.; Harwell, L.C.; Bourgeois, P.

    2010-01-01

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability. ?? 2010 Springer Science+Business Media B.V.

  20. Multi- and hyperspectral remote sensing of tropical marine benthic habitats

    Science.gov (United States)

    Mishra, Deepak R.

    Tropical marine benthic habitats such as coral reef and associated environments are severely endangered because of the environmental degradation coupled with hurricanes, El Nino events, coastal pollution and runoff, tourism, and economic development. To monitor and protect this diverse environment it is important to not only develop baseline maps depicting their spatial distribution but also to document their changing conditions over time. Remote sensing offers an important means of delineating and monitoring coral reef ecosystems. Over the last twenty years the scientific community has been investigating the use and potential of remote sensing techniques to determine the conditions of the coral reefs by analyzing their spectral characteristics from space. One of the problems in monitoring coral reefs from space is the effect of the water column on the remotely sensed signal. When light penetrates water its intensity decreases exponentially with increasing depth. This process, known as water column attenuation, exerts a profound effect on remotely sensed data collected over water bodies. The approach presented in this research focuses on the development of semi-analytical models that resolves the confounding influence water column attenuation on substrate reflectance to characterize benthic habitats from high resolution remotely sensed imagery on a per-pixel basis. High spatial resolution satellite and airborne imagery were used as inputs in the models to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). These parameters were subsequently used in various bio-optical algorithms to deduce bottom albedo and then to classify the benthos, generating a detailed map of benthic habitats. IKONOS and QuickBird multispectral satellite data and AISA Eagle hyperspectral airborne data were used in this research for benthic habitat mapping along the north shore of Roatan Island, Honduras. The AISA Eagle classification was

  1. Assessing Greater Sage-Grouse Selection of Brood-Rearing Habitat Using Remotely-Sensed Imagery: Can Readily Available High-Resolution Imagery Be Used to Identify Brood-Rearing Habitat Across a Broad Landscape?

    Science.gov (United States)

    Westover, Matthew; Baxter, Jared; Baxter, Rick; Day, Casey; Jensen, Ryan; Petersen, Steve; Larsen, Randy

    2016-01-01

    Greater sage-grouse populations have decreased steadily since European settlement in western North America. Reduced availability of brood-rearing habitat has been identified as a limiting factor for many populations. We used radio-telemetry to acquire locations of sage-grouse broods from 1998 to 2012 in Strawberry Valley, Utah. Using these locations and remotely-sensed NAIP (National Agricultural Imagery Program) imagery, we 1) determined which characteristics of brood-rearing habitat could be used in widely available, high resolution imagery 2) assessed the spatial extent at which sage-grouse selected brood-rearing habitat, and 3) created a predictive habitat model to identify areas of preferred brood-rearing habitat. We used AIC model selection to evaluate support for a list of variables derived from remotely-sensed imagery. We examined the relationship of these explanatory variables at three spatial extents (45, 200, and 795 meter radii). Our top model included 10 variables (percent shrub, percent grass, percent tree, percent paved road, percent riparian, meters of sage/tree edge, meters of riparian/tree edge, distance to tree, distance to transmission lines, and distance to permanent structures). Variables from each spatial extent were represented in our top model with the majority being associated with the larger (795 meter) spatial extent. When applied to our study area, our top model predicted 75% of naïve brood locations suggesting reasonable success using this method and widely available NAIP imagery. We encourage application of our methodology to other sage-grouse populations and species of conservation concern.

  2. Habitat characteristics of nesting areas and of predated nests in a Mediterranean population of the European pond turtle, Emys orbicularis galloitalica

    Directory of Open Access Journals (Sweden)

    Marco A.L. Zuffi

    2006-01-01

    Full Text Available one of the largest population of Emys orbicularis galloitalica of central Italy inhabits the canal system wet areas within a natural protected park. Features of nesting habitats, nest structure, and predation patterns of 209 nests of a large population of the European pond turtle are here presented and analysed. Nest sites were characterised by sunny bushy areas in strip habitat, digged along north-south oriented canals, on average with about 26% of the area covered by vegetation, less than one meter distant from 30 cm height bushes, at about 11 m from water and at about 13 m distance from wooded areas, 28 m away from a road. Principal Component and discriminant analyses were used on 20 selected variables in order to reduce the number of physical variables, and indicate that canal border, strip habitat, and canal orientation are grouping variables, that correctly classified 41.6%, 66.5%, and 100 % respectively of nest presence.

  3. Larval habitat choice in still water and flume flows by the opportunistic bivalve Mulinia lateralis

    Science.gov (United States)

    Grassle, Judith P.; Snelgrove, Paul V. R.; Butman, Cheryl Ann

    Competent pediveligers of the coot clam Mulinia lateralis (Say) clearly preferred an organically-rich mud over abiotic glass beads in 24-h flume experiments, and often demonstrated the same choice in still-water experiments. We hypothesize that peediveligers with characteristic helical swimming paths above the bottom can exercise habitat choice in both still water nad flow, but that the limited swimming ambits of physiologically older periveligers require near-bottom flows to move the larvae between sediment patches so that they can exercise habitat choice. Although M. lateralis larvae are planktotrophic, their ability to delay metamorphosis in the absence of a preferred sediment cue is limited to about five days, a shorter time than the lecithotrophi larvae of the opportunistic polychaete species, Capitella spp. I and II. Field distributions of all three opportunistic species may result, at least in part, from active habitat selection for high-organic sediments by settling larvae.

  4. Not accounting for interindividual variability can mask habitat selection patterns: a case study on black bears.

    Science.gov (United States)

    Lesmerises, Rémi; St-Laurent, Martin-Hugues

    2017-11-01

    Habitat selection studies conducted at the population scale commonly aim to describe general patterns that could improve our understanding of the limiting factors in species-habitat relationships. Researchers often consider interindividual variation in selection patterns to control for its effects and avoid pseudoreplication by using mixed-effect models that include individuals as random factors. Here, we highlight common pitfalls and possible misinterpretations of this strategy by describing habitat selection of 21 black bears Ursus americanus. We used Bayesian mixed-effect models and compared results obtained when using random intercept (i.e., population level) versus calculating individual coefficients for each independent variable (i.e., individual level). We then related interindividual variability to individual characteristics (i.e., age, sex, reproductive status, body condition) in a multivariate analysis. The assumption of comparable behavior among individuals was verified only in 40% of the cases in our seasonal best models. Indeed, we found strong and opposite responses among sampled bears and individual coefficients were linked to individual characteristics. For some covariates, contrasted responses canceled each other out at the population level. In other cases, interindividual variability was concealed by the composition of our sample, with the majority of the bears (e.g., old individuals and bears in good physical condition) driving the population response (e.g., selection of young forest cuts). Our results stress the need to consider interindividual variability to avoid misinterpretation and uninformative results, especially for a flexible and opportunistic species. This study helps to identify some ecological drivers of interindividual variability in bear habitat selection patterns.

  5. 2004 assessment of habitat improvements in Dinosaur Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Blackman, B.G.; Cowie, D.M.

    2005-01-15

    Formed in 1979 after the completion of the Peace Canyon Dam, Dinosaur Reservoir is 21 km long and backs water up to the tailrace of W.A.C. Bennett Dam. BC Hydro has funded studies to evaluate fish stocking programs and assess habitat limitations and potential enhancements as part of a water licence agreement. The Peace/Williston Fish and Wildlife Compensation Programs (PWFWCP) have undertaken a number of projects to address fish habitat limitations, entrainment and stocking assessments as a result of recommendations stemming from these studies. It was determined that existing baseline fish data was needed in order to evaluate the effectiveness of these activities. A preliminary boat electro-fishing program which was started in October 2001, noted that a propensity for rainbow trout to concentrate near woody debris. In response, a program was started in 2002 to add woody debris to embayment areas throughout the reservoir. These enhanced woody debris structures are located in small sheltered bays and consist of a series of large trees cabled together and anchored to the shore. The area between the cabled trees and the shoreline is filled with woody debris and root wads collected from along the shoreline. The 2004 assessment of habitat improvements in Dinosaur Reservoir presents the findings from a study that compares the number of fish captured using trap nets, angling, and minnow traps, at the woody debris structures to sites with similar physical characteristics where woody debris had not been added. 17 refs., 5 tabs., 4 figs.

  6. Fuzzy modelling of Atlantic salmon physical habitat

    Science.gov (United States)

    St-Hilaire, André; Mocq, Julien; Cunjak, Richard

    2015-04-01

    Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.

  7. Does learning or instinct shape habitat selection?

    Directory of Open Access Journals (Sweden)

    Scott E Nielsen

    Full Text Available Habitat selection is an important behavioural process widely studied for its population-level effects. Models of habitat selection are, however, often fit without a mechanistic consideration. Here, we investigated whether patterns in habitat selection result from instinct or learning for a population of grizzly bears (Ursus arctos in Alberta, Canada. We found that habitat selection and relatedness were positively correlated in female bears during the fall season, with a trend in the spring, but not during any season for males. This suggests that habitat selection is a learned behaviour because males do not participate in parental care: a genetically predetermined behaviour (instinct would have resulted in habitat selection and relatedness correlations for both sexes. Geographic distance and home range overlap among animals did not alter correlations indicating that dispersal and spatial autocorrelation had little effect on the observed trends. These results suggest that habitat selection in grizzly bears are partly learned from their mothers, which could have implications for the translocation of wildlife to novel environments.

  8. Linking seasonal home range size with habitat selection and movement in a mountain ungulate.

    Science.gov (United States)

    Viana, Duarte S; Granados, José Enrique; Fandos, Paulino; Pérez, Jesús M; Cano-Manuel, Francisco Javier; Burón, Daniel; Fandos, Guillermo; Aguado, María Ángeles Párraga; Figuerola, Jordi; Soriguer, Ramón C

    2018-01-01

    Space use by animals is determined by the interplay between movement and the environment, and is thus mediated by habitat selection, biotic interactions and intrinsic factors of moving individuals. These processes ultimately determine home range size, but their relative contributions and dynamic nature remain less explored. We investigated the role of habitat selection, movement unrelated to habitat selection and intrinsic factors related to sex in driving space use and home range size in Iberian ibex, Capra pyrenaica . We used GPS collars to track ibex across the year in two different geographical areas of Sierra Nevada, Spain, and measured habitat variables related to forage and roost availability. By using integrated step selection analysis (iSSA), we show that habitat selection was important to explain space use by ibex. As a consequence, movement was constrained by habitat selection, as observed displacement rate was shorter than expected under null selection. Selection-independent movement, selection strength and resource availability were important drivers of seasonal home range size. Both displacement rate and directional persistence had a positive relationship with home range size while accounting for habitat selection, suggesting that individual characteristics and state may also affect home range size. Ibex living at higher altitudes, where resource availability shows stronger altitudinal gradients across the year, had larger home ranges. Home range size was larger in spring and autumn, when ibex ascend and descend back, and smaller in summer and winter, when resources are more stable. Therefore, home range size decreased with resource availability. Finally, males had larger home ranges than females, which might be explained by differences in body size and reproductive behaviour. Movement, selection strength, resource availability and intrinsic factors related to sex determined home range size of Iberian ibex. Our results highlight the need to integrate

  9. Tidal and seasonal influences in dolphin habitat use in a southern Brazilian estuary

    Directory of Open Access Journals (Sweden)

    Renan Lopes Paitach

    2017-03-01

    Full Text Available In this study we describe how franciscana and Guiana dolphin habitat use is influenced by tidal cycles and seasonality in Babitonga Bay. The franciscanas use a greater area in winter and a smaller area in summer, but the extent of the area used did not vary with the tide. Guiana dolphins did not change the extent of the area used within seasons or tides. Franciscanas remained closer to the mouth of the bay and the islands during ebb tide, moving to the inner bay areas and closer to the mainland coast during flood tide. Guiana dolphin used areas closer to the mainland coast during the flood tide. Guiana dolphin patterns of movement do not seem to be related to the tidal current. Franciscanas used sandier areas while Guiana dolphins preferred muddy areas, with some seasonal variation. We suggest that these dolphins modify their distributions based on habitat accessibility and prey availability. This study enhances our knowledge of critical habitat characteristics for franciscana and Guiana dolphins, and these factors should be considered when planning local human activities targeting species conservation.

  10. Watershed Evaluation and Habitat Response to Recent Storms : Annual Report for 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Jonathan J.; Huntington, Charles W.

    2000-02-01

    evaluated and the methods used to evaluate them. Watershed responses and attributes evaluated include mass failures, historic soil loss, the integration of roads with the drainage network, estimated flood recurrence intervals, and headwater channel morphology. Habitat attributes evaluated include large woody debris, pool frequency and depth, substrate conditions, and bank stability. Multiple analyses of habitat data in the Tucannon and Wenaha subbasins remain to be completed due to difficulties stemming from data characteristics that indicated that some of the pre-existing data may have be of questionable accuracy. Diagnostic attributes of the questionable data included a change in monitoring protocols during the pre- to post-flood analysis period, physically implausible temporal trends in some habitat attributes at some sites, and conflicting results for the same attribute at the same locations from different data sources. Since unreliable data can lead to spurious results, criteria were developed to screen the data for analysis, as described in this report. It is anticipated that while the data screening will prevent spurious results, it will also truncate some of the planned analysis in the Tucannon and Wenaha systems.

  11. Watershed evaluation and habitat response to recent storms; annual report for 1999

    International Nuclear Information System (INIS)

    Rhodes, Jonathan J.; Huntington, Charles W.

    2000-01-01

    evaluated and the methods used to evaluate them. Watershed responses and attributes evaluated include mass failures, historic soil loss, the integration of roads with the drainage network, estimated flood recurrence intervals, and headwater channel morphology. Habitat attributes evaluated include large woody debris, pool frequency and depth, substrate conditions, and bank stability. Multiple analyses of habitat data in the Tucannon and Wenaha subbasins remain to be completed due to difficulties stemming from data characteristics that indicated that some of the pre-existing data may have be of questionable accuracy. Diagnostic attributes of the questionable data included a change in monitoring protocols during the pre- to post-flood analysis period, physically implausible temporal trends in some habitat attributes at some sites, and conflicting results for the same attribute at the same locations from different data sources. Since unreliable data can lead to spurious results, criteria were developed to screen the data for analysis, as described in this report. It is anticipated that while the data screening will prevent spurious results, it will also truncate some of the planned analysis in the Tucannon and Wenaha systems

  12. [Fish community structure and its seasonal change in subtidal sandy beach habitat off southern Gouqi Island].

    Science.gov (United States)

    Wang, Zhen-Hua; Wang, Kai; Zhao, Jing; Zhang, Shou-Yu

    2011-05-01

    To understand the characteristics of fish community structure in sandy beach habitats of island reef water areas, and to evaluate the potential capacity of these habitats in local fish stock maintenance, fishes were monthly collected with multi-mesh trammel nets in 2009 from the subtidal sandy beach habitat off southern Gouqi Island, taking the adjacent rocky reef habitat as the control. alpha and beta species diversity indices, index of relative importance (IRI), relative catch rate, and dominance curve for abundance and biomass (ABC curve) were adopted to compare the fish species composition, diversity, and community pattern between the two habitats, and multivariate statistical analyses such as non-metric multidimensional scaling (nMDS) and cluster were conducted to discuss the fish assemblage patterns. A total of 63 fish species belonging to 11 orders, 38 families, and 56 genera were collected, of which, 46 fish species were appeared in the two habitats. Due to the appearance of more warm water species in sandy bottom, the fishes in subtidal sandy beach habitat showed much higher richness, and the abundance catch rate (ACR) from May to July was higher than that in rocky reef habitat. In most rest months, the ACR in subtidal sandy beach habitat also showed the similar trend. However, the species richness and diversity in spring and summer were significantly lower in subtidal sandy beach habitat than in rocky reef habitat, because of the high species dominance and low evenness in the sandy beach habitat. Japanese tonguefish (Paraplagusia japonica) was the indicator species in the sandy beach habitat, and dominated in early spring, later summer, autumn, and winter when the fishing pressure was not strong. In sandy bottom, a unique community structure was formed and kept in dynamic, due to the nursery use of sandy beach by Japanese anchovy (Engraulis japonicus) from May to July, the gathering of gray mullet (Mugil cephalus) in most months for feeding, and the large

  13. Habitat preference of Roan Antelope (Hippotragus equinus ...

    African Journals Online (AJOL)

    Key words: Habitat Preference, Roan Antelope, Seasons. INTRODUCTION. Habitat quality and quantity have been identified as the primary limiting factors that influence animal population dynamics. (Jansen et al., 2001). Habitat influences the presence, abundance, distribution, movement and behavior of game animals.

  14. Habitat-specific population growth of a farmland bird.

    Directory of Open Access Journals (Sweden)

    Debora Arlt

    Full Text Available BACKGROUND: To assess population persistence of species living in heterogeneous landscapes, the effects of habitat on reproduction and survival have to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: We used a matrix population model to estimate habitat-specific population growth rates for a population of northern wheatears Oenanthe oenanthe breeding in farmland consisting of a mosaic of distinct habitat (land use types. Based on extensive long-term data on reproduction and survival, habitats characterised by tall field layers (spring- and autumn-sown crop fields, ungrazed grasslands displayed negative stochastic population growth rates (log lambda(s: -0.332, -0.429, -0.168, respectively, that were markedly lower than growth rates of habitats characterised by permanently short field layers (pastures grazed by cattle or horses, and farmyards, log lambda(s: -0.056, +0.081, -0.059. Although habitats differed with respect to reproductive performance, differences in habitat-specific population growth were largely due to differences in adult and first-year survival rates, as shown by a life table response experiment (LTRE. CONCLUSIONS/SIGNIFICANCE: Our results show that estimation of survival rates is important for realistic assessments of habitat quality. Results also indicate that grazed grasslands and farmyards may act as source habitats, whereas crop fields and ungrazed grasslands with tall field layers may act as sink habitats. We suggest that the strong decline of northern wheatears in Swedish farmland may be linked to the corresponding observed loss of high quality breeding habitat, i.e. grazed semi-natural grasslands.

  15. Teaching animal habitat selection using wildlife tracking equipment

    Science.gov (United States)

    Laskowski, Jessica; Gillespie, Caitlyn R.; Corral, Lucia; Oden, Amy; Fricke, Kent A.; Fontaine, Joseph J.

    2016-01-01

    We present a hands-on outdoor activity coupled with classroom discussion to teach students about wildlife habitat selection, the process by which animals choose where to live. By selecting locations or habitats with many benefits (e.g., food, shelter, mates) and few costs (e.g., predators), animals improve their ability to survive and reproduce. Biologists track animal movement using radio telemetry technology to study habitat selection so they can better provide species with habitats that promote population growth. We present a curriculum in which students locate “animals” (transmitters) using radio telemetry equipment and apply math skills (use of fractions and percentages) to assess their “animal's” habitat selection by comparing the availability of habitat types with the proportion of “animals” they find in each habitat type.

  16. Creating complex habitats for restoration and reconciliation

    NARCIS (Netherlands)

    Loke, L.H.L.; Ladle, R.J.; Bouma, T.J.; Todd, P.A.

    2015-01-01

    Simplification of natural habitats has become a major conservation challenge and there is a growing consensus that incorporating and enhancing habitat complexity is likely to be critical for future restoration efforts. Habitat complexity is often ascribed an important role in controlling species

  17. Burrow characteristics and habitat associations of armadillos in Brazil and the United States of America

    OpenAIRE

    Colleen M. McDonough; Michael J. DeLaney; Phu Quoc Le; Mark S. Blackmore; W. J. Loughry

    2000-01-01

    We censused and measured armadillo burrows in ten 10 m x 40 m plots in each of four habitat types at a study site in northern Florida and one in the Atlantic coastal rainforest of Brazil. The nine-banded armadillo (Dasypus novemcinctus) was the only species of armadillo found in Florida, but several additional species were present in Brazil. Burrows were more numerous but smaller in Brazil than in the U. S., probably due to the inclusion of burrows dug by the smaller congener D. septemcinctus...

  18. Resource pulses in desert river habitats: productivity-biodiversity hotspots, or mirages?

    Science.gov (United States)

    Free, Carissa L; Baxter, Greg S; Dickman, Christopher R; Leung, Luke K P

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses.

  19. Resource Pulses in Desert River Habitats: Productivity-Biodiversity Hotspots, or Mirages?

    Science.gov (United States)

    Free, Carissa L.; Baxter, Greg S.; Dickman, Christopher R.; Leung, Luke K. P.

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses. PMID:24124446

  20. Habitat specialization through germination cueing

    DEFF Research Database (Denmark)

    Ten Brink, Dirk-Jan; Hendriksma, Harmen; Bruun, Hans Henrik

    2013-01-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently...

  1. Habitat use and movement of the endangered Arroyo Toad (Anaxyrus californicus) in coastal southern California

    Science.gov (United States)

    Gallegos, Elizabeth; Lyren, Lisa M.; Lovich, Robert E.; Mitrovich, Milan J.; Fisher, Robert N.

    2011-01-01

    Information on the habitat use and movement patterns of Arroyo Toads (Anaxyrus californicus) is limited. The temporal and spatial characteristics of terrestrial habitat use, especially as it relates to upland use in coastal areas of the species' range, are poorly understood. We present analyses of radiotelemetry data from 40 individual adult toads tracked at a single site in coastal southern California from March through November of 2004. We quantify adult Arroyo Toad habitat use and movements and interpret results in the context of their life history. We show concentrated activity by both male and female toads along stream terraces during and after breeding, and, although our fall sample size is low, the continued presence of adult toads in the floodplain through the late fall. Adult toads used open sandy flats with sparse vegetation. Home-range size and movement frequency varied as a function of body mass. Observed spatial patterns of movement and habitat use both during and outside of the breeding period as well as available climatological data suggest that overwintering of toads in floodplain habitats of near-coastal areas of southern California may be more common than previously considered. If adult toads are not migrating out of the floodplain at the close of the breeding season but instead overwinter on stream terraces in near-coastal areas, then current management practices that assume toad absence from floodplain habitats may be leaving adult toads over-wintering on stream terraces vulnerable to human disturbance during a time of year when Arroyo Toad mortality is potentially highest.

  2. Effects of natural-channel-design restoration on habitat quality in Catskill Mountain streams, New York

    Science.gov (United States)

    Ernst, Anne G.; Baldigo, Barry P.; Mulvihill, Christiane; Vian, Mark

    2010-01-01

    Stream restoration has received much attention in recent years, yet there has been little effort to evaluate its impacts on physical habitat, stability, and biota. A popular but controversial stream restoration approach is natural channel design (NCD), which cannot be adequately evaluated without a long-term, independent assessment of its effects on stream habitat. Six reaches of five Catskill Mountain streams in southeastern New York were restored during 2000–2003 following NCD techniques to decrease bed and bank degradation, decrease sediment loads, and improve water quality. Habitat surveys were conducted during summer low flows from 2001 to 2007. The effects of the NCD projects on stream condition were assessed via a before–after–control–impact study design to quantify the net changes in stream and bank habitat variables relative to those in unaltered control reaches. Analysis of variance tests of three different measures of bank stability show that on average stream stability increased at treatment sites for 2–5 years after restoration. Mean channel depth, thalweg depth, and the pool–riffle ratio generally increased, whereas mean channel width, percent streambank coverage by trees, and shade decreased. Habitat suitability indices for local salmonid species increased at four of six reaches after restoration. The changes in channel dimensions rendered them generally more characteristic of stabler stream forms in the given valley settings. Although these studies were done relatively soon after project completion, our findings demonstrate that habitat conditions can be improved in degraded Catskill Mountain streams through NCD restoration.

  3. Bald eagle (Haliaeetus leucocephalus population increases in Placentia Bay, Newfoundland: evidence for habitat saturation?

    Directory of Open Access Journals (Sweden)

    Karla R. Letto

    2015-06-01

    Full Text Available Across North America, Bald Eagle (Haliaeetus leucocephalus populations appear to be recovering following bans of DDT. A limited number of studies from across North America have recorded a surplus of nonbreeding adult Bald Eagles in dense populations when optimal habitat and food become limited. Placentia Bay, Newfoundland is one of these. The area has one of the highest densities of Bald Eagles in eastern North America, and has recently experienced an increase in the proportion of nonbreeding adults within the population. We tested whether the observed Bald Eagle population trends in Placentia Bay, Newfoundland during the breeding seasons 1990-2009 are due to habitat saturation. We found no significant differences in habitat or food resource characteristics between occupied territories and pseudo-absence data or between nest sites with high vs. low nest activity/occupancy rates. Therefore there is no evidence for habitat saturation for Bald Eagles in Placentia Bay and alternative hypotheses for the high proportion of nonbreeding adults should be considered. The Newfoundland population provides an interesting case for examination because it did not historically appear to be affected by pollution. An understanding of Bald Eagle population dynamics in a relatively pristine area with a high density can be informative for restoration and conservation of Bald Eagle populations elsewhere.

  4. Habitat or matrix: which is more relevant to predict road-kill of vertebrates?

    Directory of Open Access Journals (Sweden)

    C. Bueno

    Full Text Available Abstract We believe that in tropics we need a community approach to evaluate road impacts on wildlife, and thus, suggest mitigation measures for groups of species instead a focal-species approach. Understanding which landscape characteristics indicate road-kill events may also provide models that can be applied in other regions. We intend to evaluate if habitat or matrix is more relevant to predict road-kill events for a group of species. Our hypothesis is: more permeable matrix is the most relevant factor to explain road-kill events. To test this hypothesis, we chose vertebrates as the studied assemblage and a highway crossing in an Atlantic Forest region in southeastern Brazil as the study site. Logistic regression models were designed using presence/absence of road-kill events as dependent variables and landscape characteristics as independent variables, which were selected by Akaike’s Information Criterion. We considered a set of candidate models containing four types of simple regression models: Habitat effect model; Matrix types effect models; Highway effect model; and, Reference models (intercept and buffer distance. Almost three hundred road-kills and 70 species were recorded. River proximity and herbaceous vegetation cover, both matrix effect models, were associated to most road-killed vertebrate groups. Matrix was more relevant than habitat to predict road-kill of vertebrates. The association between river proximity and road-kill indicates that rivers may be a preferential route for most species. We discuss multi-species mitigation measures and implications to movement ecology and conservation strategies.

  5. Pelagic habitat visualization: the need for a third (and fourth) dimension: HabitatSpace

    Science.gov (United States)

    Beegle-Krause, C; Vance, Tiffany; Reusser, Debbie; Stuebe, David; Howlett, Eoin

    2009-01-01

    Habitat in open water is not simply a 2-D to 2.5-D surface such as the ocean bottom or the air-water interface. Rather, pelagic habitat is a 3-D volume of water that can change over time, leading us to the term habitat space. Visualization and analysis in 2-D is well supported with GIS tools, but a new tool was needed for visualization and analysis in four dimensions. Observational data (cruise profiles (xo, yo, z, to)), numerical circulation model fields (x,y,z,t), and trajectories (larval fish, 4-D line) need to be merged together in a meaningful way for visualization and analysis. As a first step toward this new framework, UNIDATA’s Integrated Data Viewer (IDV) has been used to create a set of tools for habitat analysis in 4-D. IDV was designed for 3-D+time geospatial data in the meteorological community. NetCDF JavaTM libraries allow the tool to read many file formats including remotely located data (e.g. data available via OPeNDAP ). With this project, IDV has been adapted for use in delineating habitat space for multiple fish species in the ocean. The ability to define and visualize boundaries of a water mass, which meets specific biologically relevant criteria (e.g., volume, connectedness, and inter-annual variability) based on model results and observational data, will allow managers to investigate the survival of individual year classes of commercially important fisheries. Better understanding of the survival of these year classes will lead to improved forecasting of fisheries recruitment.

  6. A radiation analysis of lunar surface habitats

    International Nuclear Information System (INIS)

    De Angelis, G.; Wilson, J.W.; Tripathi, R.K.; Clowdsley, M.S.; Nealy, J.E.

    2003-01-01

    An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to minimize the astronaut radiation exposure and at the same time control the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The optimization process performs minimization of mass along all phases of a mission scenario, considered in terms of time frame, equipment, location, crew characteristics and performance required, radiation exposure annual and career limit constraints (those proposed in NCRP 132), and implementation of the ALARA principle. In the lunar environment manned habitats are to host future crews involved in the construction and/or in the utilization of moon based infrastructure. Three different kinds of lunar missions are considered in the analysis, Moon Base Construction Phase, during which astronauts are on the surface just to build an outpost for future resident crews, Moon Base Outpost Phase, during which astronaut crews are resident but continuing exploration and installation activities, and Moon Base Routine Phase, with shifting resident crews. In each scenario various kinds of habitats, from very simple shelters to more complex bases, are considered in detail (e.g. shape, thickness, materials, etc) with considerations of various shielding strategies. The results for all scenarios clearly showed that the direct exposure to the space environment like in transfers and EVAs phases gives the most of the dose, with the proposed shielded habitats and shelters giving quite a good protection from radiation. Operational constraints on hardware and scenarios have all been considered by the optimization techniques. Within the limits of this preliminary analysis, the three Moon Base related mission scenarios are perfectly feasible from the astronaut radiation safety point of view with the currently adopted and proposed

  7. Varying energetic costs of Brent Geese along a continuum from aquatic to agricultural habitats: the importance of habitat-specific energy expenditure

    DEFF Research Database (Denmark)

    Clausen, Kevin Kuhlmann; Clausen, Preben; Fox, Anthony David

    2013-01-01

    and alert than birds feeding in aquatic areas, and also spent much less time roosting. Frequency of disturbance was found to be higher in terrestrial habitats compared to aquatic habitats. These stress-related behavioural differences between habitats highlight the vulnerability of the species associated...... with adapting to different food sources. Combining time-budgets with activity-specific BMR-multiplicators showed that activity-based metabolic rates ranged from 1.7 to 2.7 × BMR within habitats exploited by Brent Geese, and emphasized that aquatic areas represent the energetically least expensive foraging...... habitat for these birds. This is largely the result of habitat-specific variation in time spent flying. These findings underline the importance of measuring habitat-specific behaviour and disturbance when studying avian energetics, and demonstrate the risk of uncritically using allometric relationships...

  8. Data Collection and Simulation of Ecological Habitat and Recreational Habitat in the Shenandoah River, Virginia

    Science.gov (United States)

    Krstolic, Jennifer L.

    2015-01-01

    This report presents updates to methods, describes additional data collected, documents modeling results, and discusses implications from an updated habitat-flow model that can be used to predict ecological habitat for fish and recreational habitat for canoeing on the main stem Shenandoah River in Virginia. Given a 76-percent increase in population predictions for 2040 over 1995 records, increased water-withdrawal scenarios were evaluated to determine the effects on habitat and recreation in the Shenandoah River. Projected water demands for 2040 vary by watershed: the North Fork Shenandoah River shows a 55.9-percent increase, the South Fork Shenandoah River shows a 46.5-percent increase, and the main stem Shenandoah River shows a 52-percent increase; most localities are projected to approach the total permitted surface-water and groundwater withdrawals values by 2040, and a few localities are projected to exceed these values.

  9. CO2 dynamics on three habitats of mangrove ecosystem in Bintan Island, Indonesia

    Science.gov (United States)

    Dharmawan, I. W. E.

    2018-02-01

    Atmospheric carbon dioxide (CO2) has increased over time, implied on global warming and climate change. Blue carbon is one of interesting options to reduce CO2 concentration in the atmosphere. Indonesia has the largest mangrove area in the world which would be potential to mitigate elevated CO2 concentrations. A quantitative study on CO2 dynamic was conducted in the habitat-variable and pristine mangrove of Bintan island. The study was aimed to estimate CO2 flux on three different mangrove habitats, i.e., lagoon, oceanic and riverine. Even though all habitats were dominated by Rhizophora sp, they were significantly differed one another by species composition, density, and soil characteristics. Averagely, CO2 dynamics had the positive budget by ∼0.668 Mmol/ha (82.47%) which consisted of sequestration, decomposition, and soil efflux at 0.810 Mmol/ha/y, -0.125 Mmol/ha/y and -0.017 Mmol/ha/y, respectively. The study found that the fringing habitat had the highest CO2 capturing rate and the lowest rate of litter decomposition which was contrast to the riverine site. Therefore, oceanic mangrove was more efficient in controlling CO2 dynamics due to higher carbon storage on their biomass. A recent study also found that soil density and organic matter had a significant impact on CO2 dynamics.

  10. Karakteristik Habitat Perkembangbiakan Vektor Filariasis di Kecamatan Kodi Balaghar Kabupaten Sumba Barat Daya

    Directory of Open Access Journals (Sweden)

    Mefi Mariana Tallan

    2016-12-01

    Full Text Available Abstract. Subdistrict scores balaghar is on filariasis endemic areas in the shouthwest district Sumba. Filariasis (elephantiasis is a chronic infectious disease caused by the filarial worm that attacks the lymph channels and lymph (lymphatic system that can cause acuteor chronic clinical symptoms and is transmitted by mosquitoes Mansonia, Anopheles, Culex, Amigeres. The purpose researchis to describe the characteristics of the environment and behavior to the incidence on filariasis in District Kodi Balaghar South western Sumba. This research is descriptive study with cross sectional approach that describes the spread of filariasis. Kodi was conducted in Southwest Sumba Regency Balaghar for eight months from April to November 2014. Foundas apotential habitat forlas mosquito breeding habitats where dominant is a puddle of water, springs, drains and small stream swith temperatures ranging from21-350C, from 0,22 to 795luxillumination, range pH between7,2 to 7,7, 0-0.1‰ salinity with elevation ranging from 25-117m/asl. Where is thespecies found in the breeding habitat on is An.vagus, An.barbirostris, An.annularis, Cx.vishnui, Cx.bitaeniorhynchus, Cx.quinquefasciatus, Ar. Kuchingensis.Keywords:Filariasis, Environment, Breeding habitatsAbstrak. Kecamatan Kodi Balaghar merupakan salah satu daerah endemis filariasis di Kabupaten Sumba Barat Daya. Filariasis (penyakit kaki gajah adalah penyakit menular menahun yang disebabkan oleh cacing filaria Wuchereria brancofti, Brugia malayidan B. timori yang menyerang saluran dan kelenjar getah bening (sistem limfatik yang dapat menyebabkan gejala klinis akut atau kronis dan ditularkan oleh nyamuk Mansonia, Anopheles, Culex, Amigeres. Penelitian ini bertujuan untuk mengetahui gambaran karakteristik lingkungan fisik dan biologi di Kecamatan Kodi Balaghar Kabupaten Sumba Barat Daya. Penelitian ini merupakan penelitian deskriptif dengan pendekatan cross sectional yaitu menggambarkan karakteristik lingkungan fisik

  11. Exploring the Application of Optical Remote Sensing as a Method to Estimate the Depth of Backwater Nursery Habitats of the Colorado Pikeminnow

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States); LaGory, Kirk E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    Low-velocity channel-margin habitats serve as important nursery habitats for the endangered Colorado pikeminnow (Ptychocheilus lucius) in the middle Green River between Jensen and Ouray, Utah. These habitats, known as backwaters, are associated with emergent sand bars, and are shaped and reformed annually by peak flows. A recent synthesis of information on backwater characteristics and the factors that influence inter-annual variability in those backwaters (Grippo et al. 2015) evaluated detailed survey information collected annually since 2003 on a relatively small sample of backwaters, as well as reach-wide evaluations of backwater surface area from aerial and satellite imagery. An approach is needed to bridge the gap between these detailed surveys, which estimate surface area, volume, and depth, and the reach-wide assessment of surface area to enable an assessment of the amount of habitat that meets the minimum depth requirements for suitable habitat.

  12. Influence of habitat and number of nestlings on partial brood loss in red-cockaded woodpeckers

    Science.gov (United States)

    James R. McCormick; Richard N. Conner; D. Brent Burt; Daniel Saenz

    2004-01-01

    Partial brood loss in red-cockaded woodpeckers (Picoides borealis) was studied during 2 breeding seasons in eastern Texas. The timing of partial brood loss, group size, number of initial nestlings, number of birds fledged, and habitat characteristics of the group's cavity-tree cluster were examined for 37 woodpecker groups in loblolly- (

  13. Assessing habitat selection when availability changes

    Science.gov (United States)

    Arthur, S.; Garner, G.; ,

    1996-01-01

    We present a method of comparing data on habitat use and availability that allows availability to differ among observations. This method is applicable when habitats change over time and when animals are unable to move throughout a predetermined study area between observations. We used maximum-likelihood techniques to derive an index that estimates the probability that each habitat type would be used if all were equally available. We also demonstrate how these indices can be used to compare relative use of available habitats, assign them ranks, and assess statistical differences between pairs of indices. The set of these indices for all habitats can be compared between groups of animals that represent different seasons, sex or age classes, or experimental treatments. This method allows quantitative comparisons among types and is not affected by arbitrary decisions about which habitats to include in the study. We provide an example by comparing the availability of four categories of sea ice concentration to their use by adult female polar bears, whose movements were monitored by satellite radio tracking in the Bering and Chukchi Seas during 1990. Use of ice categories by bears was nonrandom, and the pattern of use differed between spring and late summer seasons.

  14. Habitat features and predictive habitat modeling for the Colorado chipmunk in southern New Mexico

    Science.gov (United States)

    Rivieccio, M.; Thompson, B.C.; Gould, W.R.; Boykin, K.G.

    2003-01-01

    Two subspecies of Colorado chipmunk (state threatened and federal species of concern) occur in southern New Mexico: Tamias quadrivittatus australis in the Organ Mountains and T. q. oscuraensis in the Oscura Mountains. We developed a GIS model of potentially suitable habitat based on vegetation and elevation features, evaluated site classifications of the GIS model, and determined vegetation and terrain features associated with chipmunk occurrence. We compared GIS model classifications with actual vegetation and elevation features measured at 37 sites. At 60 sites we measured 18 habitat variables regarding slope, aspect, tree species, shrub species, and ground cover. We used logistic regression to analyze habitat variables associated with chipmunk presence/absence. All (100%) 37 sample sites (28 predicted suitable, 9 predicted unsuitable) were classified correctly by the GIS model regarding elevation and vegetation. For 28 sites predicted suitable by the GIS model, 18 sites (64%) appeared visually suitable based on habitat variables selected from logistic regression analyses, of which 10 sites (36%) were specifically predicted as suitable habitat via logistic regression. We detected chipmunks at 70% of sites deemed suitable via the logistic regression models. Shrub cover, tree density, plant proximity, presence of logs, and presence of rock outcrop were retained in the logistic model for the Oscura Mountains; litter, shrub cover, and grass cover were retained in the logistic model for the Organ Mountains. Evaluation of predictive models illustrates the need for multi-stage analyses to best judge performance. Microhabitat analyses indicate prospective needs for different management strategies between the subspecies. Sensitivities of each population of the Colorado chipmunk to natural and prescribed fire suggest that partial burnings of areas inhabited by Colorado chipmunks in southern New Mexico may be beneficial. These partial burnings may later help avoid a fire

  15. Physicochemical characteristics of undrainable water dams utilized ...

    African Journals Online (AJOL)

    pH, electro-conductivity and total dissoved solutes (TDS) were measured in-situ from three reservoirs (Gathathini, Lusoi and Kianda dams) differing in their habitat characteristics. Water samples were collected for determination of the ionic concentartions of the reservoirs. Water quality status differed markedly between sites, ...

  16. Instream Physical Habitat Modelling Types

    DEFF Research Database (Denmark)

    Conallin, John; Boegh, Eva; Krogsgaard, Jørgen

    2010-01-01

    The introduction of the EU Water Framework Directive (WFD) is providing member state water resource managers with significant challenges in relation to meeting the deadline for 'Good Ecological Status' by 2015. Overall, instream physical habitat modelling approaches have advantages and disadvanta......The introduction of the EU Water Framework Directive (WFD) is providing member state water resource managers with significant challenges in relation to meeting the deadline for 'Good Ecological Status' by 2015. Overall, instream physical habitat modelling approaches have advantages...... suit their situations. This paper analyses the potential of different methods available for water managers to assess hydrological and geomorphological impacts on the habitats of stream biota, as requested by the WFD. The review considers both conventional and new advanced research-based instream...... physical habitat models. In parametric and non-parametric regression models, model assumptions are often not satisfied and the models are difficult to transfer to other regions. Research-based methods such as the artificial neural networks and individual-based modelling have promising potential as water...

  17. Associations of dragonflies (Odonata) to habitat variables within the Maltese Islands: a spatio-temporal approach.

    Science.gov (United States)

    Balzan, Mario V

    2012-01-01

    Relatively little information is available on environmental associations and the conservation of Odonata in the Maltese Islands. Aquatic habitats are normally spatio-temporally restricted, often located within predominantly rural landscapes, and are thereby susceptible to farmland water management practices, which may create additional pressure on water resources. This study investigates how odonate assemblage structure and diversity are associated with habitat variables of local breeding habitats and the surrounding agricultural landscapes. Standardized survey methodology for adult Odonata involved periodical counts over selected water-bodies (valley systems, semi-natural ponds, constructed agricultural reservoirs). Habitat variables relating to the type of water body, the floristic and physiognomic characteristics of vegetation, and the composition of the surrounding landscape, were studied and analyzed through a multivariate approach. Overall, odonate diversity was associated with a range of factors across multiple spatial scales, and was found to vary with time. Lentic water-bodies are probably of high conservation value, given that larval stages were mainly associated with this habitat category, and that all species were recorded in the adult stage in this habitat type. Comparatively, lentic and lotic seminatural waterbodies were more diverse than agricultural reservoirs and brackish habitats. Overall, different odonate groups were associated with different vegetation life-forms and height categories. The presence of the great reed, Arundo donax L., an invasive alien species that forms dense stands along several water-bodies within the Islands, seems to influence the abundance and/or occurrence of a number of species. At the landscape scale, roads and other ecologically disturbed ground, surface water-bodies, and landscape diversity were associated with particular components of the odonate assemblages. Findings from this study have several implications for the

  18. Habitat stability, predation risk and ‘memory syndromes’

    Science.gov (United States)

    Dalesman, S.; Rendle, A.; Dall, S.R.X.

    2015-01-01

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits (‘memory syndrome’) related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population. PMID:26013966

  19. Food technology in space habitats

    Science.gov (United States)

    Karel, M.

    1979-01-01

    The research required to develop a system that will provide for acceptable, nutritious, and safe diets for man during extended space missions is discussed. The development of a food technology system for space habitats capable of converting raw materials produced in the space habitats into acceptable food is examined.

  20. Unifying research on the fragmentation of terrestrial and aquatic habitats: patches, connectivity and the matrix in riverscapes

    Science.gov (United States)

    Eros, Tibor; Grant, Evan H. Campbell

    2015-01-01

    While there is an increasing emphasis in terrestrial ecology on determining the influence of the area that surrounds habitat patches (the landscape ‘matrix’) relative to the characteristics of the patches themselves, research on these aspects in running waters is still rather underrepresented.

  1. Mapping, classification, and spatial variation of hardbottom habitats in the northeastern Gulf of Mexico

    Science.gov (United States)

    Kingon, Kelly

    and the biota did not strictly follow gradients or boundaries in substrate or geoform (physical feature or landform), even though these features are often used to classify habitats and biotopes. The percent cover of rock was a significant geomorphology variable for red algae and hard coral coverage while geoforms were related to the heights of sponges and brown algae. Seascape metrics also had significant effects on the sessile biota particularly related to patch edges, heterogeneity, core areas, nearest neighbor distances, and the percent cover of hardbottom. Despite the fact that sessile organisms do not move much, if at all following their planktonic larval stage, the surrounding seascape contributes to the patterns we see in their distribution, coverage, and heights. The third chapter focuses on applying a new classification standard to the benthic habitats in the nearshore northeastern Gulf of Mexico. The United States Geological Survey (USGS) has a standardized system for classifying terrestrial and aquatic habitats found across the U.S. which has been in place for almost 40 years. This classification standard does not include marine and most coastal habitats. Therefore, marine researchers developed a number of classification systems for coastal and marine habitats relevant to their local or regional studies in U.S. waters. A national standardized method for classifying marine and coastal habitats was not adopted until recently. The Coastal and Marine Ecological Classification Standard (CMECS) developed by the Federal Geographic Data Committee was approved last year and is intended to fill the gap in U.S. marine habitat classification standards. Since the classification standard is in its infancy, it has not been applied in many geographic areas. My third chapter is the first study to apply the CMECS to the benthic habitats in the nearshore northeastern Gulf of Mexico off the coast of northwest Florida. Hardbottom and sand habitats are characteristic of this

  2. Environmental variation and habitat separation among small mammals

    International Nuclear Information System (INIS)

    Vickery, W.L.; Iverson, S.L.; Mihok, S.; Schwartz, B.

    1989-01-01

    Habitat use and population density of five species of forest small mammals were monitored by annual spring snap-trap censuses at Pinawa, Manitoba, over 14 years. Population sizes were positively correlated among species and showed no evidence of density-dependent effects. Species were habitat selectors. Habitat use by species did not vary among years. Habitat separation between the dominant species was not correlated with environmental variables or with population size. We suggest that habitat selection and positive covariance among species abundances are the principal factors characterizing the dynamics of this community

  3. Mourning Dove nesting habitat and nest success in Central Missouri

    Science.gov (United States)

    Drobney, R.D.; Schulz, J.H.; Sheriff, S.L.; Fuemmeler, W.J.

    1998-01-01

    Previous Mourning Dove (Zenaida macroura) nesting studies conducted in areas containing a mixture of edge and continuous habitats have focused on edge habitats. Consequently, little is known about the potential contribution of continuous habitats to dove production. In this study we evaluated the relative importance of these two extensive habitat types by monitoring the habitat use and nest success of 59 radio-marked doves during 1990-1991 in central Missouri. Of 83 nests initiated by our marked sample, most (81.9%) were located in edge habitats. Although continuous habitats were selected less as nest sites, the proportion of successful nests did not differ significantly from that in edge habitats. Our data indicate that continuous habitats should not be considered marginal nesting habitat. If the intensity of use and nest success that we observed are representative regionally or nationally, continuous habitats could contribute substantially to annual Mourning Dove production because of the high availability of these habitats throughout much of the Mourning Dove breeding range.

  4. Species distribution model for swift fox in Nebraska.

    Science.gov (United States)

    2016-11-28

    The grasslands of Nebraska are highly altered due to anthropogenic development and : degradation. The loss and degradation of grasslands has significantly impacted populations of : swift fox (Vulpes velox), a Nebraska Natural Legacy Plan Tier1 at ...

  5. Hydrographic influence on the spawning habitat suitability of western Baltic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Hüssy, K.; Hinrichsen, H.-H.; Huwer, B.

    2012-01-01

    Hydrographic influence on the spawning habitat suitability of western Baltic cod (Gadus morhua) – ICES Journal of Marine Science, 69: 1736–1743.Recruitment variability of marine fish is influenced by the reproductive potential of the stock (i.e. stock characteristics and abundance) and the survival...... of early life stages, mediated by environmental conditions of both a physical (water temperature, salinity and oxygen conditions, ocean currents) and a biological nature (i.e. food, predators). The objective of this study is to assess the importance of variability in environmental conditions within...... allowing survival of western Baltic cod eggs indicates that favourable conditions predominantly occurred during the late spawning season in April/May, while minimum survival rates could be expected from January to March. Unsuitable time periods and habitats exhibiting the highest mortality rates...

  6. Disentangling the effects of predator hunting mode and habitat domain on the top-down control of insect herbivores.

    Science.gov (United States)

    Woodcock, Ben A; Heard, Matthew S

    2011-03-01

    1. Polyphagous predatory invertebrates play a key role in the top-down control of insect herbivores. However, predicting predation risk for herbivores is not a simple function of predator species richness. Predation risk may be reduced or enhanced depending on the functional characteristics predator species. We predict that where predator species spatially overlap this will reduce predation risk for herbivores by allowing negative inter-specific interaction between predators to occur. Where increased predation risk occurs, we also predict that this will have a cascading effect through the food chain reducing plant growth. 2. We used a substitutive replicated block design to identify the effect of similarity and dissimilarity in predator hunting mode (e.g. 'sit and wait', 'sit and pursue', and 'active') and habitat domain (e.g. canopy or ground) on the top-down control of planthoppers in grasslands. Predators included within the mesocosms were randomly selected from a pool of 17 local species. 3. Predation risk was reduced where predators shared the same habitat domain, independent of whether they shared hunting modes. Where predators shared the same habitat domains, there was some evidence that this had a cascading negative effect on the re-growth of grass biomass. Where predator habitat domains did not overlap, there were substitutable effects on predation risk to planthoppers. Predation risk for planthoppers was affected by taxonomic identity of predator species, i.e. whether they were beetles, spiders or true bugs. 4. Our results indicated that in multi-predator systems, the risk of predation is typically reduced. Consideration of functional characteristics of individual species, in particular aspects of habitat domain and hunting mode, are crucial in predicting the effects of multi-predator systems on the top-down control of herbivores. © 2010 The Authors. Journal of Animal Ecology © 2010 British Ecological Society.

  7. A test of the substitution-habitat hypothesis in amphibians.

    Science.gov (United States)

    Martínez-Abraín, Alejandro; Galán, Pedro

    2017-12-08

    Most examples that support the substitution-habitat hypothesis (human-made habitats act as substitutes of original habitat) deal with birds and mammals. We tested this hypothesis in 14 amphibians by using percentage occupancy as a proxy of habitat quality (i.e., higher occupancy percentages indicate higher quality). We classified water body types as original habitat (no or little human influence) depending on anatomical, behavioral, or physiological adaptations of each amphibian species. Ten species had relatively high probabilities (0.16-0.28) of occurrence in original habitat, moderate probability of occurrence in substitution habitats (0.11-0.14), and low probability of occurrence in refuge habitats (0.05-0.08). Thus, the substitution-habitat hypothesis only partially applies to amphibians because the low occupancy of refuges could be due to the negligible human persecution of this group (indicating good conservation status). However, low occupancy of refuges could also be due to low tolerance of refuge conditions, which could have led to selective extinction or colonization problems due to poor dispersal capabilities. That original habitats had the highest probabilities of occupancy suggests amphibians have a good conservation status in the region. They also appeared highly adaptable to anthropogenic substitution habitats. © 2017 Society for Conservation Biology.

  8. Abiotic and biotic factors associated with the presence of Anopheles arabiensis immatures and their abundance in naturally occurring and man-made aquatic habitats

    Directory of Open Access Journals (Sweden)

    Gouagna Louis

    2012-07-01

    Full Text Available Abstract Background Anopheles arabiensis (Diptera: Culicidae is a potential malaria vector commonly present at low altitudes in remote areas in Reunion Island. Little attention has been paid to the environmental conditions driving larval development and abundance patterns in potential habitats. Two field surveys were designed to determine whether factors that discriminate between aquatic habitats with and without An. arabiensis larvae also drive larval abundance, comparatively in man-made and naturally occurring habitats. Methods In an initial preliminary survey, a representative sample of aquatic habitats that would be amenable to an intensive long-term study were selected and divided into positive and negative sites based on the presence or absence of Anopheles arabiensis larvae. Subsequently, a second survey was prompted to gain a better understanding of biotic and abiotic drivers of larval abundance, comparatively in man-made and naturally occurring habitats in the two studied locations. In both surveys, weekly sampling was performed to record mosquito species composition and larval density within individual habitats, as well as in situ biological characteristics and physico-chemical properties. Results Whilst virtually any stagnant water body could be a potential breeding ground for An. arabiensis, habitats occupied by their immatures had different structural and biological characteristics when compared to those where larvae were absent. Larval occurrence seemed to be influenced by flow velocity, macrofauna diversity and predation pressure. Interestingly, the relative abundance of larvae in man-made habitats (average: 0.55 larvae per dip, 95%CI [0.3–0.7] was significantly lower than that recorded in naturally occurring ones (0.74, 95%CI [0.5–0.8]. Such differences may be accounted for in part by varying pressures that could be linked to a specific habitat. Conclusions If the larval ecology of An. arabiensis is in general very complex

  9. Physical habitat classification and instream flow modeling to determine habitat availability during low-flow periods, North Fork Shenandoah River, Virginia

    Science.gov (United States)

    Krstolic, Jennifer L.; Hayes, Donald C.; Ruhl, Peter M.

    2006-01-01

    Increasing development and increasing water withdrawals for public, industrial, and agricultural water supply threaten to reduce streamflows in the Shenandoah River basin in Virginia. Water managers need more information to balance human water-supply needs with the daily streamflows necessary for maintaining the aquatic ecosystems. To meet the need for comprehensive information on hydrology, water supply, and instream-flow requirements of the Shenandoah River basin, the U.S. Geological Survey and the Northern Shenandoah Valley Regional Commission conducted a cooperative investigation of habitat availability during low-flow periods on the North Fork Shenandoah River. Historic streamflow data and empirical data on physical habitat, river hydraulics, fish community structure, and recreation were used to develop a physical habitat simulation model. Hydraulic measurements were made during low, medium, and high flows in six reaches at a total of 36 transects that included riffles, runs, and pools, and that had a variety of substrates and cover types. Habitat suitability criteria for fish were developed from detailed fish-community sampling and microhabitat observations. Fish were grouped into four guilds of species and life stages with similar habitat requirements. Simulated habitat was considered in the context of seasonal flow regimes to show the availability of flows that sustain suitable habitat during months when precipitation and streamflow are scarce. The North Fork Shenandoah River basin was divided into three management sections for analysis purposes: the upper section, middle section, and lower section. The months of July, August, and September were chosen to represent a low-flow period in the basin with low mean monthly flows, low precipitation, high temperatures, and high water withdrawals. Exceedance flows calculated from the combined data from these three months describe low-flow periods on the North Fork Shenandoah River. Long-term records from three

  10. Plant distribution and stand characteristics in brackish marshes: Unravelling the roles of abiotic factors and interspecific competition

    Science.gov (United States)

    Carus, Jana; Heuner, Maike; Paul, Maike; Schröder, Boris

    2017-09-01

    Due to increasing pressure on estuarine marshes from sea level rise and river training, there is a growing need to understand how species-environment relationships influence the zonation and growth of tidal marsh vegetation. In the present study, we investigated the distribution and stand characteristics of the two key brackish marsh species Bolboschoenus maritimus and Phragmites australis in the Elbe estuary together with several abiotic habitat factors. We then tested the effect of these habitat factors on plant growth and zonation with generalised linear models (GLMs). Our study provides detailed information on the importance of single habitat factors and their interactions for controlling the distribution patterns and stand characteristics of two key marsh species. Our results suggest that flow velocity is the main factor influencing species distribution and stand characteristics and together with soil-water salinity even affects the inundation tolerance of the two specie investigated here. Additionally, inundation height and duration as well as interspecific competition helped explain the distribution patterns and stand characteristics. By identifying the drivers of marsh zonation and stand characteristics and quantifying their effects, this study provides useful information for evaluating a future contribution of tidal marsh vegetation to ecosystem-based shore protection.

  11. Habitat modeling for biodiversity conservation.

    Science.gov (United States)

    Bruce G. Marcot

    2006-01-01

    Habitat models address only 1 component of biodiversity but can be useful in addressing and managing single or multiple species and ecosystem functions, for projecting disturbance regimes, and in supporting decisions. I review categories and examples of habitat models, their utility for biodiversity conservation, and their roles in making conservation decisions. I...

  12. The variability of leaf anatomical characteristics of Solanum nigrum L. (Solana-les, Solanaceae) from different habitats

    OpenAIRE

    Krstić Lana N.; Merkulov Ljiljana S.; Boža Pal P.

    2002-01-01

    In Europe on the whole as well as in Yugoslavia, the most widespread weed species from the genus Solanum is Solanum nigrum L. Since this species inhabits different habitats, it developed several ways of adaptation to environmental conditions. The influence of ecological factors on plant organism and resulting plant adaptations are most evident in leaf morphology and anatomy. Therefore, the anatomical structure of leaves and leaf epidermal tissue of S. nigrum was analyzed and compared among pl...

  13. KARAKTERISTIK HABITAT TARSIUS (Tarsius Sp. BERDASARKAN SARANG TIDUR DI HUTAN LAMBUSANGO PULAU BUTON PROVINSI SULAWESI TENGGARA

    Directory of Open Access Journals (Sweden)

    Fadhilah Iqra Mansyur

    2017-04-01

    Full Text Available Tarsier is a nocturnal insectivore primates endemic to Sulawesi including Buton Island. Buton tarsier is only occurrence on the island and its likely status as a distinct species make it more threatened than the other species on the mainland. Moreover, the habitat of this species has been suffering from forest clearance through illegal logging and mining. The aims of this study are to identify the sleeping site of the tarsier and the habitat characteristics surround its sleeping sites. The research were carried out from June to August 2014 at Lambsango Forest, Buton Island, Southeast Sulawesi. The data collected consisting locations and types of sleeping sites, habitat component including abiotic and biotic in each site where the tarsier sleeping site found. The study showed that mostly tarsier lived in the in strangler fig trees (Ficus sp., rock crevices and sometimes in trees with hollow crevices or trees with vine tangles. Moreover, the study also showed that the sleeping sites mostly found near to the street, seetlement, and forest edge. Vegetation composition and insect’s abundance also influenced the existence of the sleeping location.  Keywords: Buton Island, habitat, Lambusango Forest, nest, tarsier

  14. Partitioning mechanisms of predator interference in different habitats.

    Science.gov (United States)

    Griffen, Blaine D; Byers, James E

    2006-01-01

    Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific.

  15. Restricted cross-scale habitat selection by American beavers.

    Science.gov (United States)

    Francis, Robert A; Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming

    2017-12-01

    Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection.

  16. To kill, stay or flee: the effects of lions and landscape factors on habitat and kill site selection of cheetahs in South Africa.

    Directory of Open Access Journals (Sweden)

    Susana Rostro-García

    Full Text Available Understanding how animals utilize available space is important for their conservation, as it provides insight into the ecological needs of the species, including those related to habitat, prey and inter and intraspecific interactions. We used 28 months of radio telemetry data and information from 200 kill locations to assess habitat selection at the 3rd order (selection of habitats within home ranges and 4th order (selection of kill sites within the habitats used of a reintroduced population of cheetahs Acinonyx jubatus in Phinda Private Game Reserve, South Africa. Along with landscape characteristics, we investigated if lion Panthera leo presence affected habitat selection of cheetahs. Our results indicated that cheetah habitat selection was driven by a trade-off between resource acquisition and lion avoidance, and the balance of this trade-off varied with scale: more open habitats with high prey densities were positively selected within home ranges, whereas more closed habitats with low prey densities were positively selected for kill sites. We also showed that habitat selection, feeding ecology, and avoidance of lions differed depending on the sex and reproductive status of cheetahs. The results highlight the importance of scale when investigating a species' habitat selection. We conclude that the adaptability of cheetahs, together with the habitat heterogeneity found within Phinda, explained their success in this small fenced reserve. The results provide information for the conservation and management of this threatened species, especially with regards to reintroduction efforts in South Africa.

  17. To Kill, Stay or Flee: The Effects of Lions and Landscape Factors on Habitat and Kill Site Selection of Cheetahs in South Africa

    Science.gov (United States)

    Rostro-García, Susana; Kamler, Jan F.; Hunter, Luke T. B.

    2015-01-01

    Understanding how animals utilize available space is important for their conservation, as it provides insight into the ecological needs of the species, including those related to habitat, prey and inter and intraspecific interactions. We used 28 months of radio telemetry data and information from 200 kill locations to assess habitat selection at the 3rd order (selection of habitats within home ranges) and 4th order (selection of kill sites within the habitats used) of a reintroduced population of cheetahs Acinonyx jubatus in Phinda Private Game Reserve, South Africa. Along with landscape characteristics, we investigated if lion Panthera leo presence affected habitat selection of cheetahs. Our results indicated that cheetah habitat selection was driven by a trade-off between resource acquisition and lion avoidance, and the balance of this trade-off varied with scale: more open habitats with high prey densities were positively selected within home ranges, whereas more closed habitats with low prey densities were positively selected for kill sites. We also showed that habitat selection, feeding ecology, and avoidance of lions differed depending on the sex and reproductive status of cheetahs. The results highlight the importance of scale when investigating a species’ habitat selection. We conclude that the adaptability of cheetahs, together with the habitat heterogeneity found within Phinda, explained their success in this small fenced reserve. The results provide information for the conservation and management of this threatened species, especially with regards to reintroduction efforts in South Africa. PMID:25693067

  18. To kill, stay or flee: the effects of lions and landscape factors on habitat and kill site selection of cheetahs in South Africa.

    Science.gov (United States)

    Rostro-García, Susana; Kamler, Jan F; Hunter, Luke T B

    2015-01-01

    Understanding how animals utilize available space is important for their conservation, as it provides insight into the ecological needs of the species, including those related to habitat, prey and inter and intraspecific interactions. We used 28 months of radio telemetry data and information from 200 kill locations to assess habitat selection at the 3rd order (selection of habitats within home ranges) and 4th order (selection of kill sites within the habitats used) of a reintroduced population of cheetahs Acinonyx jubatus in Phinda Private Game Reserve, South Africa. Along with landscape characteristics, we investigated if lion Panthera leo presence affected habitat selection of cheetahs. Our results indicated that cheetah habitat selection was driven by a trade-off between resource acquisition and lion avoidance, and the balance of this trade-off varied with scale: more open habitats with high prey densities were positively selected within home ranges, whereas more closed habitats with low prey densities were positively selected for kill sites. We also showed that habitat selection, feeding ecology, and avoidance of lions differed depending on the sex and reproductive status of cheetahs. The results highlight the importance of scale when investigating a species' habitat selection. We conclude that the adaptability of cheetahs, together with the habitat heterogeneity found within Phinda, explained their success in this small fenced reserve. The results provide information for the conservation and management of this threatened species, especially with regards to reintroduction efforts in South Africa.

  19. Persistence at distributional edges: Columbia spotted frog habitat in the arid Great Basin, USA.

    Science.gov (United States)

    Arkle, Robert S; Pilliod, David S

    2015-09-01

    A common challenge in the conservation of broadly distributed, yet imperiled species is understanding which factors facilitate persistence at distributional edges, locations where populations are often vulnerable to extirpation due to changes in climate, land use, or distributions of other species. For Columbia spotted frogs (Rana luteiventris) in the Great Basin (USA), a genetically distinct population segment of conservation concern, we approached this problem by examining (1) landscape-scale habitat availability and distribution, (2) water body-scale habitat associations, and (3) resource management-identified threats to persistence. We found that areas with perennial aquatic habitat and suitable climate are extremely limited in the southern portion of the species' range. Within these suitable areas, native and non-native predators (trout and American bullfrogs [Lithobates catesbeianus]) are widespread and may further limit habitat availability in upper- and lower-elevation areas, respectively. At the water body scale, spotted frog occupancy was associated with deeper sites containing abundant emergent vegetation and nontrout fish species. Streams with American beaver (Castor canadensis) frequently had these structural characteristics and were significantly more likely to be occupied than ponds, lakes, streams without beaver, or streams with inactive beaver ponds, highlighting the importance of active manipulation of stream environments by beaver. Native and non-native trout reduced the likelihood of spotted frog occupancy, especially where emergent vegetation cover was sparse. Intensive livestock grazing, low aquatic connectivity, and ephemeral hydroperiods were also negatively associated with spotted frog occupancy. We conclude that persistence of this species at the arid end of its range has been largely facilitated by habitat stability (i.e., permanent hydroperiod), connectivity, predator-free refugia, and a commensalistic interaction with an ecosystem

  20. Management aspects of Building with Nature projects in the context of the EU Bird and Habitat Directives

    NARCIS (Netherlands)

    Vikolainen, Vera; Bressers, Hans; Lulofs, Kris

    2011-01-01

    The implementation of the EU Bird and Habitat Directives by the ports and dredging industry caused severe project disruptions across North-West Europe in the past. The prevalence of negative experience triggered a new approach, which aims to integrate site-specific ecosystem characteristics and

  1. HABITAT: A longitudinal multilevel study of physical activity change in mid-aged adults

    Directory of Open Access Journals (Sweden)

    Brown Wendy J

    2009-03-01

    Full Text Available Abstract Background Little is known about the patterns and influences of physical activity change in mid-aged adults. This study describes the design, sampling, data collection, and analytical plan of HABITAT, an innovative study of (i physical activity change over five years (2007–2011 in adults aged 40–65 years at baseline, and (ii the relative contribution of psychological variables, social support, neighborhood perceptions, area-level factors, and sociodemographic characteristics to physical activity change. Methods/Design HABITAT is a longitudinal multi-level study. 1625 Census Collection Districts (CCDs in Brisbane, Australia were ranked by their index of relative socioeconomic disadvantage score, categorized into deciles, and 20 CCDs from each decile were selected to provide 200 local areas for study inclusion. From each of the 200 CCDs, dwellings with individuals aged between 40–65 years (in 2007 were identified using electoral roll data, and approximately 85 people per CCD were selected to participate (N = 17,000. A comprehensive Geographic Information System (GIS database has been compiled with area-level information on public transport networks, footpaths, topography, traffic volume, street lights, tree coverage, parks, public services, and recreational facilities Participants are mailed a questionnaire every two years (2007, 2009, 2011, with items assessing physical activity (general walking, moderate activity, vigorous activity, walking for transport, cycling for transport, recreational activities, sitting time, perceptions of neighborhood characteristics (traffic, pleasant surroundings, streets, footpaths, crime and safety, distance to recreational and business facilities, social support, social cohesion, activity-related cognitions (attitudes, efficacy, barriers, motivation, health, and sociodemographic characteristics. Analyses will use binary and multinomial logit regression models, as well as generalized linear latent

  2. Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: a multi-parameter approach.

    Science.gov (United States)

    Hübner, Lena; Pennings, Steven C; Zimmer, Martin

    2015-08-01

    Distinct habitats are often linked through fluxes of matter and migration of organisms. In particular, intertidal ecotones are prone to being influenced from both the marine and the terrestrial realms, but whether or not small-scale migration for feeding, sheltering or reproducing is detectable may depend on the parameter studied. Within the ecotone of an upper saltmarsh in the United States, we investigated the sex-specific movement of the semi-terrestrial crab Armases cinereum using an approach of determining multiple measures of across-ecotone migration. To this end, we determined food preference, digestive abilities (enzyme activities), bacterial hindgut communities (genetic fingerprint), and the trophic position of Armases and potential food sources (stable isotopes) of males versus females of different sub-habitats, namely high saltmarsh and coastal forest. Daily observations showed that Armases moved frequently between high-intertidal (saltmarsh) and terrestrial (forest) habitats. Males were encountered more often in the forest habitat, whilst gravid females tended to be more abundant in the marsh habitat but moved more frequently. Food preference was driven by both sex and habitat. The needlerush Juncus was preferred over three other high-marsh detrital food sources, and the periwinkle Littoraria was the preferred prey of male (but not female) crabs from the forest habitats; both male and female crabs from marsh habitat preferred the fiddler crab Uca over three other prey items. In the field, the major food sources were clearly vegetal, but males have a higher trophic position than females. In contrast to food preference, isotope data excluded Uca and Littoraria as major food sources, except for males from the forest, and suggested that Armases consumes a mix of C4 and C3 plants along with animal prey. Digestive enzyme activities differed significantly between sexes and habitats and were higher in females and in marsh crabs. The bacterial hindgut community

  3. Beaked Whale Habitat Characterization and Prediction

    National Research Council Canada - National Science Library

    Ward, Jessica A; Mitchell, Glenn H; Farak, Amy M; Keane, Ellen P

    2005-01-01

    The objective of this study was to characterize known beaked whale habitat and create a predictive beaked whale habitat model of the Gulf of Mexico and east coast of the United States using available...

  4. Pacific Northwest Salmon Habitat Project Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the Pacific Northwest Salmon Habitat Project Database Across the Pacific Northwest, both public and private agents are working to improve riverine habitat for a...

  5. A technical guide for monitoring wildlife habitat

    Science.gov (United States)

    M.M. Rowland; C.D. Vojta

    2013-01-01

    Information about status and trend of wildlife habitat is important for the U.S. Department of Agriculture, Forest Service to accomplish its mission and meet its legal requirements. As the steward of 193 million acres (ac) of Federal land, the Forest Service needs to evaluate the status of wildlife habitat and how it compares with desired conditions. Habitat monitoring...

  6. Clay Animals and Their Habitats

    Science.gov (United States)

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  7. Interfacing models of wildlife habitat and human development to predict the future distribution of puma habitat

    Science.gov (United States)

    Burdett, Christopher L.; Crooks, Kevin R.; Theobald, David M.; Wilson, Kenneth R.; Boydston, Erin E.; Lyren, Lisa A.; Fisher, Robert N.; Vickers, T. Winston; Morrison, Scott A.; Boyce, Walter M.

    2010-01-01

    The impact of human land uses on ecological systems typically differ relative to how extensively natural conditions are modified. Exurban development is intermediate-intensity residential development that often occurs in natural landscapes. Most species-habitat models do not evaluate the effects of such intermediate levels of human development and even fewer predict how future development patterns might affect the amount and configuration of habitat. We addressed these deficiencies by interfacing a habitat model with a spatially-explicit housing-density model to study the effect of human land uses on the habitat of pumas (Puma concolor) in southern California. We studied the response of pumas to natural and anthropogenic features within their home ranges and how mortality risk varied across a gradient of human development. We also used our housing-density model to estimate past and future housing densities and model the distribution of puma habitat in 1970, 2000, and 2030. The natural landscape for pumas in our study area consisted of riparian areas, oak woodlands, and open, conifer forests embedded in a chaparral matrix. Pumas rarely incorporated suburban or urban development into their home ranges, which is consistent with the hypothesis that the behavioral decisions of individuals can be collectively manifested as population-limiting factors at broader spatial scales. Pumas incorporated rural and exurban development into their home ranges, apparently perceiving these areas as modified, rather than non-habitat. Overall, pumas used exurban areas less than expected and showed a neutral response to rural areas. However, individual pumas that selected for or showed a neutral response to exurban areas had a higher risk of mortality than pumas that selected against exurban habitat. Exurban areas are likely hotspots for puma-human conflict in southern California. Approximately 10% of our study area will transform from exurban, rural, or undeveloped areas to suburban or

  8. Fish and aquatic habitat conservation in South America: a continental overview with emphasis on neotropical systems.

    Science.gov (United States)

    Barletta, M; Jaureguizar, A J; Baigun, C; Fontoura, N F; Agostinho, A A; Almeida-Val, V M F; Val, A L; Torres, R A; Jimenes-Segura, L F; Giarrizzo, T; Fabré, N N; Batista, V S; Lasso, C; Taphorn, D C; Costa, M F; Chaves, P T; Vieira, J P; Corrêa, M F M

    2010-06-01

    Fish conservation in South America is a pressing issue. The biodiversity of fishes, just as with all other groups of plants and animals, is far from fully known. Continuing habitat loss may result in biodiversity losses before full species diversity is known. In this review, the main river basins of South America (Magdalena, Orinoco, Amazon and Paraná-La Plata system), together with key aquatic habitats (mangrove-fringed estuaries of the tropical humid, tropical semi-arid and subtropical regions) are analysed in terms of their characteristics and main concerns. Habitat loss was the main concern identified for all South American ecosystems. It may be caused by damming of rivers, deforestation, water pollution, mining, poor agricultural practice or inadequate management practice. Habitat loss has a direct consequence, which is a decrease in the availability of living resources, a serious social and economic issue, especially for South American nations which are all developing countries. The introduction of exotic species and overfishing were also identified as widespread across the continent and its main freshwater, coastal and marine ecosystems. Finally, suggestions are made to find ways to overcome these problems. The main suggestion is a change of paradigm and a new design for conservation actions, starting with integrated research and aiming at the co-ordinated and harmonized management of the main transboundary waters of the continent. The actions would be focused on habitat conservation and social rescue of the less well-off populations of indigenous and non-indigenous peoples. Energy and freshwater demands will also have to be rescaled in order to control habitat loss.

  9. Trapping Triatominae in Silvatic Habitats

    Directory of Open Access Journals (Sweden)

    Noireau François

    2002-01-01

    Full Text Available Large-scale trials of a trapping system designed to collect silvatic Triatominae are reported. Live-baited adhesive traps were tested in various ecosystems and different triatomine habitats (arboreal and terrestrial. The trials were always successful, with a rate of positive habitats generally over 20% and reaching 48.4% for palm trees of the Amazon basin. Eleven species of Triatominae belonging to the three genera of public health importance (Triatoma, Rhodnius and Panstrongylus were captured. This trapping system provides an effective way to detect the presence of triatomines in terrestrial and arboreal silvatic habitats and represents a promising tool for ecological studies. Various lines of research are contemplated to improve the performance of this trapping system.

  10. Determinants of Habitat Selection by Hatchling Australian Freshwater Crocodiles

    Science.gov (United States)

    Somaweera, Ruchira; Webb, Jonathan K.; Shine, Richard

    2011-01-01

    Animals almost always use habitats non-randomly, but the costs and benefits of using specific habitat types remain unknown for many types of organisms. In a large lake in northwestern Australia (Lake Argyle), most hatchling (banks rather than the more widely available open banks. Mean body sizes of young crocodiles did not differ among the three habitat types. We tested four potential explanations for non-random habitat selection: proximity to nesting sites, thermal conditions, food availability, and exposure to predation. The three alternative habitat types did not differ in proximity to nesting sites, or in thermal conditions. Habitats with higher food availability harboured more hatchlings, and feeding rates (obtained by stomach-flushing of recently-captured crocodiles) were highest in such areas. Predation risk may also differ among habitats: we were twice as likely to capture a crocodile after seeing it in open-bank sites than in the other two habitat types. Thus, habitat selection of hatchling crocodiles in this system may be driven both by prey availability and by predation risk. PMID:22163308

  11. The soil and plant determinants of community structures of the dominant actinobacteria in Marion Island terrestrial habitats, Sub-Antarctica

    CSIR Research Space (South Africa)

    Sanyika, TW

    2012-08-01

    Full Text Available Marion Island is a Sub-Antarctic island made up of distinct ecological habitats based on soil physiochemical, plant cover and physical characteristics. The microbial diversity and ecological determinants in this harsh Sub-Antarctic environment...

  12. Alien Plant Species in the Agricultural Habitats of Ukraine: Diversity and Risk Assessment

    Directory of Open Access Journals (Sweden)

    Burda Raisa

    2018-03-01

    Full Text Available This paper is the first critical review of the diversity of the Ukrainian adventive flora, which has spread in agricultural habitats in the 21st century. The author’s annotated checklist contains the data on 740 species, subspecies and hybrids from 362 genera and 79 families of non-native weeds. The floristic comparative method was used, and the information was generalised into some categories of five characteristic features: climamorphotype (life form, time and method of introduction, level of naturalisation, and distribution into 22 classes of three habitat types according to European Nature Information System (EUNIS. Two assessments of the ecological risk of alien plants were first conducted in Ukraine according to the European methods: the risk of overcoming natural migration barriers and the risk of their impact on the environment. The exposed impact of invasive alien plants on ecosystems has a convertible character; the obtained information confirms a high level of phytobiotic contamination of agricultural habitats in Ukraine. It is necessary to implement European and national documents regarding the legislative and regulative policy on invasive alien species as one of the threats to biotic diversity.

  13. Marine fish community structure and habitat associations on the Canadian Beaufort shelf and slope

    Science.gov (United States)

    Majewski, Andrew R.; Atchison, Sheila; MacPhee, Shannon; Eert, Jane; Niemi, Andrea; Michel, Christine; Reist, James D.

    2017-03-01

    dynamics and ecosystem roles of Beaufort Sea marine fishes, including biological linkages (i.e., fish movements and trophic interactions) among offshore habitats. Understanding regional-scale habitat associations will also provide context to identify potentially unique and/or sensitive habitats and fish community characteristics, thus aiding identification of ecologically and biologically significant areas, and to inform conservation efforts.

  14. Movement behaviour of the carabid beetle Pterostichus melanarius in crops and at a habitat interface explains patterns of population redistribution in the field.

    Directory of Open Access Journals (Sweden)

    Bas Allema

    Full Text Available Animals may respond to habitat quality and habitat edges and these responses may affect their distribution between habitats. We studied the movement behaviour of a ground-dwelling generalist predator, the carabid beetle Pterostichus melanarius (Illiger. We performed a mark-recapture experiment in two adjacent habitats; a large plot with oilseed radish (Raphanus sativus and a plot with rye (Secale cereale. We used model selection to identify a minimal model representing the mark-recapture data, and determine whether habitat-specific motility and boundary behaviour affected population redistribution. We determined movement characteristics of P. melanarius in laboratory arenas with the same plant species using video recording. Both the field and arena results showed preference behaviour of P. melanarius at the habitat interface. In the field, significantly more beetles moved from rye to oilseed radish than from radish to rye. In the arena, habitat entry was more frequent into oilseed radish than into rye. In the field, movement was best described by a Fokker-Planck diffusion model that contained preference behaviour at the interface and did not account for habitat specific motility. Likewise, motility calculated from movement data using the Patlak model was not different between habitats in the arena studies. Motility (m2 d-1 calculated from behavioural data resulted in estimates that were similar to those determined in the field. Thus individual behaviour explained population redistribution in the field qualitatively as well as quantitatively. The findings provide a basis for evaluating movement within and across habitats in complex agricultural landscapes with multiple habitats and habitat interfaces.

  15. Characteristics and Dynamics of a Large Sub-Tidal Sand Wave Field—Habitat for Pacific Sand Lance (Ammodytes personatus, Salish Sea, Washington, USA

    Directory of Open Access Journals (Sweden)

    H. Gary Greene

    2017-10-01

    Full Text Available Deep-water sand wave fields in the San Juan Archipelago of the Salish Sea and Pacific Northwest Washington, USA, have been found to harbor Pacific sand lance (PSL, Ammodytes personatus, a critical forage fish of the region. Little is known of the dynamics of these sand waves and the stability of the PSL sub-tidal habitats. Therefore, we have undertaken an initial investigation to determine the dynamic conditions of a well-known PSL habitat in the San Juan Channel within the Archipelago using bottom sediment sampling, an acoustical doppler current profiling (ADCP system, and multi-beam echo sounder (MBES bathymetry. Our study indicates that the San Juan Channel sand wave field maintained its shape and bedforms geometry throughout the years it has been studied. Based on bed phase diagrams for channelized bedforms, the sand waves appear to be in a dynamic equilibrium condition. Sea level rise may change the current regime within the Archipelago and may alter some of the deep-water or sub-tidal PSL habitats mapped there. Our findings have global significance in that these dynamic bedforms that harbor PSL and sand-eels elsewhere along the west coast of North America and in the North Sea may also be in a marginally dynamic equilibrium condition and may be prone to alteration by sea level rise, indicating an urgency in locating and investigating these habitats in order to sustain the forage fish.

  16. Snapshot recordings provide a first description of the acoustic signatures of deeper habitats adjacent to coral reefs of Moorea

    Directory of Open Access Journals (Sweden)

    Frédéric Bertucci

    2017-11-01

    Full Text Available Acoustic recording has been recognized as a valuable tool for non-intrusive monitoring of the marine environment, complementing traditional visual surveys. Acoustic surveys conducted on coral ecosystems have so far been restricted to barrier reefs and to shallow depths (10–30 m. Since they may provide refuge for coral reef organisms, the monitoring of outer reef slopes and describing of the soundscapes of deeper environment could provide insights into the characteristics of different biotopes of coral ecosystems. In this study, the acoustic features of four different habitats, with different topographies and substrates, located at different depths from 10 to 100 m, were recorded during day-time on the outer reef slope of the north Coast of Moorea Island (French Polynesia. Barrier reefs appeared to be the noisiest habitats whereas the average sound levels at other habitats decreased with their distance from the reef and with increasing depth. However, sound levels were higher than expected by propagation models, supporting that these habitats possess their own sound sources. While reef sounds are known to attract marine larvae, sounds from deeper habitats may then also have a non-negligible attractive potential, coming into play before the reef itself.

  17. Development of a Regional Habitat Classification Scheme for the ...

    African Journals Online (AJOL)

    development, image processing techniques and field survey methods are outlined. Habitat classification, and regional-scale comparisons of relative habitat composition are described. The study demonstrates the use of remote sensing data to construct digital habitat maps for the comparison of regional habitat coverage, ...

  18. CisLunar Habitat Internal Architecture Design Criteria

    Science.gov (United States)

    Jones, R.; Kennedy, K.; Howard, R.; Whitmore, M.; Martin, C.; Garate, J.

    2017-01-01

    BACKGROUND: In preparation for human exploration to Mars, there is a need to define the development and test program that will validate deep space operations and systems. In that context, a Proving Grounds CisLunar habitat spacecraft is being defined as the next step towards this goal. This spacecraft will operate differently from the ISS or other spacecraft in human history. The performance envelope of this spacecraft (mass, volume, power, specifications, etc.) is being defined by the Future Capabilities Study Team. This team has recognized the need for a human-centered approach for the internal architecture of this spacecraft and has commissioned a CisLunar Phase-1 Habitat Internal Architecture Study Team to develop a NASA reference configuration, providing the Agency with a "smart buyer" approach for future acquisition. THE CISLUNAR HABITAT INTERNAL ARCHITECTURE STUDY: Overall, the CisLunar Habitat Internal Architecture study will address the most significant questions and risks in the current CisLunar architecture, habitation, and operations concept development. This effort is achieved through definition of design criteria, evaluation criteria and process, design of the CisLunar Habitat Phase-1 internal architecture, and the development and fabrication of internal architecture concepts combined with rigorous and methodical Human-in-the-Loop (HITL) evaluations and testing of the conceptual innovations in a controlled test environment. The vision of the CisLunar Habitat Internal Architecture Study is to design, build, and test a CisLunar Phase-1 Habitat Internal Architecture that will be used for habitation (e.g. habitability and human factors) evaluations. The evaluations will mature CisLunar habitat evaluation tools, guidelines, and standards, and will interface with other projects such as the Advanced Exploration Systems (AES) Program integrated Power, Avionics, Software (iPAS), and Logistics for integrated human-in-the-loop testing. The mission of the Cis

  19. Should I stay or should I go? A habitat-dependent dispersal kernel improves prediction of movement.

    Directory of Open Access Journals (Sweden)

    Fabrice Vinatier

    Full Text Available The analysis of animal movement within different landscapes may increase our understanding of how landscape features affect the perceptual range of animals. Perceptual range is linked to movement probability of an animal via a dispersal kernel, the latter being generally considered as spatially invariant but could be spatially affected. We hypothesize that spatial plasticity of an animal's dispersal kernel could greatly modify its distribution in time and space. After radio tracking the movements of walking insects (Cosmopolites sordidus in banana plantations, we considered the movements of individuals as states of a Markov chain whose transition probabilities depended on the habitat characteristics of current and target locations. Combining a likelihood procedure and pattern-oriented modelling, we tested the hypothesis that dispersal kernel depended on habitat features. Our results were consistent with the concept that animal dispersal kernel depends on habitat features. Recognizing the plasticity of animal movement probabilities will provide insight into landscape-level ecological processes.

  20. Should I stay or should I go? A habitat-dependent dispersal kernel improves prediction of movement.

    Science.gov (United States)

    Vinatier, Fabrice; Lescourret, Françoise; Duyck, Pierre-François; Martin, Olivier; Senoussi, Rachid; Tixier, Philippe

    2011-01-01

    The analysis of animal movement within different landscapes may increase our understanding of how landscape features affect the perceptual range of animals. Perceptual range is linked to movement probability of an animal via a dispersal kernel, the latter being generally considered as spatially invariant but could be spatially affected. We hypothesize that spatial plasticity of an animal's dispersal kernel could greatly modify its distribution in time and space. After radio tracking the movements of walking insects (Cosmopolites sordidus) in banana plantations, we considered the movements of individuals as states of a Markov chain whose transition probabilities depended on the habitat characteristics of current and target locations. Combining a likelihood procedure and pattern-oriented modelling, we tested the hypothesis that dispersal kernel depended on habitat features. Our results were consistent with the concept that animal dispersal kernel depends on habitat features. Recognizing the plasticity of animal movement probabilities will provide insight into landscape-level ecological processes.

  1. Habitat selection and management of the Hawaiian crow

    Science.gov (United States)

    Giffen, J.G.; Scott, J.M.; Mountainspring, S.

    1987-01-01

    The abundance and range of the Hawaiian crow, or alala, (Corvus hawaiiensis) have decreased drastically since the 1890's. Fewer than 10 breeding pairs remained in the wild in 1985. A sample of 82 nests during 1970-82 were used to determine habitat associations. Two hundred firty-nine alala observations were used to estimate densities occurring in different vegetation types in 1978. Compared to available habitat, more nests and higher bird densities during the breeding season occurred in areas where: (1) canopy cover was > 60%; (2) koa (Acacia koa) and ohia (Metrosideros polymorpha) were dominant species in the crown layer; (3) native plants constituted > 75% of the understory cover; and (4) the elevation was 1,100-1,500 m. Compared to breeding habitat, nonbreeding habitat tended to lie at lower elevations and in wetter forests having the crown layer dominated by ohia but lacking koa. Habitat loss is a major factor underlying the decline of this species although predation on fledgings, avian disease, and shooting also have reduced the population. Remaining key habitat areas have little or no legal protection through zoning and land ownership. Preserves should be established to encompass the location of existing pairs and to assure the provision of optimum breeding habitat and suitable nonbreeding habitat.

  2. Does habitat variability really promote metabolic network modularity?

    Science.gov (United States)

    Takemoto, Kazuhiro

    2013-01-01

    The hypothesis that variability in natural habitats promotes modular organization is widely accepted for cellular networks. However, results of some data analyses and theoretical studies have begun to cast doubt on the impact of habitat variability on modularity in metabolic networks. Therefore, we re-evaluated this hypothesis using statistical data analysis and current metabolic information. We were unable to conclude that an increase in modularity was the result of habitat variability. Although horizontal gene transfer was also considered because it may contribute for survival in a variety of environments, closely related to habitat variability, and is known to be positively correlated with network modularity, such a positive correlation was not concluded in the latest version of metabolic networks. Furthermore, we demonstrated that the previously observed increase in network modularity due to habitat variability and horizontal gene transfer was probably due to a lack of available data on metabolic reactions. Instead, we determined that modularity in metabolic networks is dependent on species growth conditions. These results may not entirely discount the impact of habitat variability and horizontal gene transfer. Rather, they highlight the need for a more suitable definition of habitat variability and a more careful examination of relationships of the network modularity with horizontal gene transfer, habitats, and environments.

  3. Patterns in tropical seagrass photosynthesis in relation to light, depth and habitat

    Science.gov (United States)

    Campbell, Stuart J.; McKenzie, Len J.; Kerville, Simon P.; Bité, Juanita S.

    2007-07-01

    Seagrass meadows across north-eastern Australia, survive a range of environmental conditions in coastal bays, reefs, estuarine and deepwater habitats through adaptation of a range of structural, morphological and physiological features. The aim of this study was to investigate the influence of spatial features (habitat type, site and depth) and photon flux on the photosynthetic performance of 11 tropical seagrass species. Pulse amplitude modulated (PAM) fluorometry was used to generate rapid light curves from which measures of maximal electron transport rate (ETR max), photosynthetic efficiency ( α), saturating irradiance ( Ek) and effective quantum yield (Δ F/ Fm') were derived. The amount of light absorbed by leaves (absorption factor) was also determined for each population. In intertidal habitats many seagrass species exhibited typical sun-type responses with a close coupling of both ETR max and Ek with photon flux. Photosynthetic performance ranged from minima in Thalassodendron ciliatum to maxima in Syringodium isoetifolium. The absence of a coupling between photosynthetic performance and photon flux in subtidal populations was most likely due to highly variable light climates and possible light attenuation, and hence the photo-biology of estuarine and deepwater seagrasses exhibited photosynthetic responses indicative of light limitation. In contrast seagrass species from shallow reef and coastal habitats for the most part exhibited light saturation characteristics. Of all the variables examined ETR max, Ek and Δ F/ Fm' were most responsive to changing light climates and provide reliable physiological indicators of real-time photosynthetic performance of tropical seagrasses under different light conditions.

  4. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats.

    Science.gov (United States)

    Simon, Meinhard; Scheuner, Carmen; Meier-Kolthoff, Jan P; Brinkhoff, Thorsten; Wagner-Döbler, Irene; Ulbrich, Marcus; Klenk, Hans-Peter; Schomburg, Dietmar; Petersen, Jörn; Göker, Markus

    2017-06-01

    Marine Rhodobacteraceae (Alphaproteobacteria) are key players of biogeochemical cycling, comprise up to 30% of bacterial communities in pelagic environments and are often mutualists of eukaryotes. As 'Roseobacter clade', these 'roseobacters' are assumed to be monophyletic, but non-marine Rhodobacteraceae have not yet been included in phylogenomic analyses. Therefore, we analysed 106 genome sequences, particularly emphasizing gene sampling and its effect on phylogenetic stability, and investigated relationships between marine versus non-marine habitat, evolutionary origin and genomic adaptations. Our analyses, providing no unequivocal evidence for the monophyly of roseobacters, indicate several shifts between marine and non-marine habitats that occurred independently and were accompanied by characteristic changes in genomic content of orthologs, enzymes and metabolic pathways. Non-marine Rhodobacteraceae gained high-affinity transporters to cope with much lower sulphate concentrations and lost genes related to the reduced sodium chloride and organohalogen concentrations in their habitats. Marine Rhodobacteraceae gained genes required for fucoidan desulphonation and synthesis of the plant hormone indole 3-acetic acid and the compatible solutes ectoin and carnitin. However, neither plasmid composition, even though typical for the family, nor the degree of oligotrophy shows a systematic difference between marine and non-marine Rhodobacteraceae. We suggest the operational term 'Roseobacter group' for the marine Rhodobacteraceae strains.

  5. Gulf-Wide Information System, Environmental Sensitivity Index Habitats Database, Geographic NAD83, LDWF (2001) [esi_habitats_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains sensitive biological resource data for coastal habitats in Louisiana. Vector polygons represent various habitats, including marsh types, other...

  6. HABITAT DAN PERILAKU KANGKARENG PERUT-PUTIH (Anthracoceros albirostris convexus Temm. 1832 DI RESORT ROWOBENDO TN ALAS PURWO

    Directory of Open Access Journals (Sweden)

    Salvionita BR Tarigan

    2017-04-01

    Full Text Available Oriental pied hornbill (Anthracoceros albirostris is one of hornbill spesies (Bucerotidae that protected in Indonesia based on Goverment Regulation No. 7/1999. The habitat of oriental pied hornbillin Resort Rowobendo Alas Purwo National Park (APNP are natural forest and mixed forest plantation. The characteristic of the bird feeding site is a fruiting tree with a thick meat with the shaped is an oval, thin rind, soft, and contain more water and has sweet taste. The characteristic for the birdresting site is a tree with dense leaf, horizontal withstrong enough branch to withstand oriental pied hornbill. The tree height is about 10-26 m and the diameters  about 29-71 cm. The nesting site characteristic the bird is a tree with diameters about ≥ 50 cm and the height is about ≥10 m. The tree has a hole, main branch that is large and fairly flat with the height of the nest from the ground level of 12-30 m. Behavior of oriental pied hornbill observed are eating, resting, calling, flying and nesting. Keywords: APNP, behavior, habitat, oriental pied hornbill

  7. Habitat connectivity and fragmented nuthatch populations in agricultural landscapes

    NARCIS (Netherlands)

    Langevelde, van F.

    1999-01-01

    In agricultural landscapes, the habitat of many species is subject to fragmentation. When the habitat of a species is fragmented and the distances between patches of habitat are large relative to the movement distances of the species, it can be expected that the degree of habitat

  8. Resource selection by the California condor (Gymnogyps californianus relative to terrestrial-based habitats and meteorological conditions.

    Directory of Open Access Journals (Sweden)

    James W Rivers

    Full Text Available Condors and vultures are distinct from most other terrestrial birds because they use extensive soaring flight for their daily movements. Therefore, assessing resource selection by these avian scavengers requires quantifying the availability of terrestrial-based habitats, as well as meteorological variables that influence atmospheric conditions necessary for soaring. In this study, we undertook the first quantitative assessment of habitat- and meteorological-based resource selection in the endangered California condor (Gymnogyps californianus within its California range and across the annual cycle. We found that condor use of terrestrial areas did not change markedly within the annual cycle, and that condor use was greatest for habitats where food resources and potential predators could be detected and where terrain was amenable for taking off from the ground in flight (e.g., sparse habitats, coastal areas. Condors originating from different release sites differed in their use of habitat, but this was likely due in part to variation in habitats surrounding release sites. Meteorological conditions were linked to condor use of ecological subregions, with thermal height, thermal velocity, and wind speed having both positive (selection and negative (avoidance effects on condor use in different areas. We found little evidence of systematic effects between individual characteristics (i.e., sex, age, breeding status or components of the species management program (i.e., release site, rearing method relative to meteorological conditions. Our findings indicate that habitat type and meteorological conditions can interact in complex ways to influence condor resource selection across landscapes, which is noteworthy given the extent of anthropogenic stressors that may impact condor populations (e.g., lead poisoning, wind energy development. Additional studies will be valuable to assess small-scale condor movements in light of these stressors to help minimize

  9. Habitat connectivity and ecosystem productivity: implications from a simple model.

    Science.gov (United States)

    Cloern, James E

    2007-01-01

    The import of resources (food, nutrients) sustains biological production and food webs in resource-limited habitats. Resource export from donor habitats subsidizes production in recipient habitats, but the ecosystem-scale consequences of resource translocation are generally unknown. Here, I use a nutrient-phytoplankton-zooplankton model to show how dispersive connectivity between a shallow autotrophic habitat and a deep heterotrophic pelagic habitat can amplify overall system production in metazoan food webs. This result derives from the finite capacity of suspension feeders to capture and assimilate food particles: excess primary production in closed autotrophic habitats cannot be assimilated by consumers; however, if excess phytoplankton production is exported to food-limited heterotrophic habitats, it can be assimilated by zooplankton to support additional secondary production. Transport of regenerated nutrients from heterotrophic to autotrophic habitats sustains higher system primary production. These simulation results imply that the ecosystem-scale efficiency of nutrient transformation into metazoan biomass can be constrained by the rate of resource exchange across habitats and that it is optimized when the transport rate matches the growth rate of primary producers. Slower transport (i.e., reduced connectivity) leads to nutrient limitation of primary production in autotrophic habitats and food limitation of secondary production in heterotrophic habitats. Habitat fragmentation can therefore impose energetic constraints on the carrying capacity of aquatic ecosystems. The outcomes of ecosystem restoration through habitat creation will be determined by both functions provided by newly created aquatic habitats and the rates of hydraulic connectivity between them.

  10. Habitat connectivity as a metric for aquatic microhabitat quality: Application to Chinook salmon spawning habitat

    Science.gov (United States)

    Ryan Carnie; Daniele Tonina; Jim McKean; Daniel Isaak

    2016-01-01

    Quality of fish habitat at the scale of a single fish, at the metre resolution, which we defined here as microhabitat, has been primarily evaluated on short reaches, and their results have been extended through long river segments with methods that do not account for connectivity, a measure of the spatial distribution of habitat patches. However, recent...

  11. Karakteristik Habitat dan Keberadaan Larva Aedes spp. pada Wilayah Kasus Demam Berdarah Dengue Tertinggi dan Terendah di Kota Tasikmalaya

    Directory of Open Access Journals (Sweden)

    Muhammad Umar Riandi

    2017-06-01

    Full Text Available Abstract. Dengue hemorrhagic fever is a vector‐borne disease caused by dengue virus and transmitted by Aedes spp. controlling the mosquito population is currently the only means to prevent dengue outbreaks. Thehighest dengue case in Tasikmalaya City until July 2015 was in Cikalang village dan the lowest in Cibunigeulis village. This research was an observational study with a cross‐sectional design with the aim to determine vector density and Aedes sp. presence risk factor based on habitat characteristic in the highest and lowest dengue cases regions. Aedes spp. breeding sites and their characteristic were examined indoor and outdoor at 100 house each in Cikalang dan Cibunigeulis village. The result showed that in Cikalang, larval presence was mostly found in a non‐water‐reservoir containers (18.4%, indoor (6.5%, made of cement/soil/rubber (11.1%, open lid (7.5%, <1 litre volume (14.6%, without draining (22.2%, without larvivorous fish (6.5%, with temephos poured (20.3%, and water company household water source (7,7%. As in Cibunigeulis larval habitats was mostly found in a non‐water‐reservoir containers (8.7%, indoor (0.9%, made of plastic/ceramic/metal/glass (0.9%, open lid (1.1%, <1 litre volume (4%, without draining (2.2%, without larvivorous fish (0.9%, without temephos poured (0.9%, and non‐water company household water source (0.9%. Binary logistic regression analysis showed that household water source (p=0,021, OR=13,78 and drainage (p=0,001, OR=0,101 as a risk factor in Aedes larvae inhabit at Cikalang village and none for Cibunigeulis village. These results showed the importance effect of containers draining factor to the presence of Aedes spp. larvae in the highest dengue cases region.Keywords: Aedes spp., larvae habitat, density, habitat characteristic, TasikmalayaAbstrak. Demam Berdarah Dengue merupakan penyakit menular yang disebabkan oleh virus dengue dan disebarkan oleh nyamuk Aedes spp. Pengendalian populasi nyamuk

  12. Fish habitat mitigation measures for hydrotechnical projects

    International Nuclear Information System (INIS)

    McPhail, G.D.; MacMillan, D.B.; Katopodis, C.

    1992-01-01

    In recent years, the identification and mitigation of environmental impacts of hydrotechnical projects, particularly on fish and fish habitats, have become a major component of project planning and design. Potential impacts to fish and fish habitat may include increased fish mortality, decreased species diversity, and loss or decreases in fish production due to loss of habitat or alteration of its suitability. These impacts arise from flooding of riverine habitat, alteration of flow quantity and distribution, changes in morphology, and alteration of water quality, including suspended sediments, temperature, dissolved oxygen, and mercury. The results of a study for the Canadian Federal Department of Fisheries and Oceans Central and Arctic Region, examining fish habitat mitigation techniques for their applicability to hydrotechnical projects in Canada are summarized. The requirements for achievement and verification of the no net loss policy for a project are discussed. 10 refs., 2 tabs

  13. Prisoners in their habitat? Generalist dispersal by habitat specialists: a case study in southern water vole (Arvicola sapidus.

    Directory of Open Access Journals (Sweden)

    Alejandro Centeno-Cuadros

    Full Text Available Habitat specialists inhabiting scarce and scattered habitat patches pose interesting questions related to dispersal such as how specialized terrestrial mammals do to colonize distant patches crossing hostile matrices. We assess dispersal patterns of the southern water vole (Arvicola sapidus, a habitat specialist whose habitat patches are distributed through less than 2% of the study area (overall 600 km² and whose populations form a dynamic metapopulational network. We predict that individuals will require a high ability to move through the inhospitable matrix in order to avoid genetic and demographic isolations. Genotypes (N = 142 for 10 microsatellites and sequences of the whole mitochondrial Control Region (N = 47 from seven localities revealed a weak but significant genetic structure partially explained by geographic distance. None of the landscape models had a significant effect on genetic structure over that of the Euclidean distance alone and no evidence for efficient barriers to dispersal was found. Contemporary gene flow was not severely limited for A. sapidus as shown by high migration rates estimates (>10% between non-neighbouring areas. Sex-biased dispersal tests did not support differences in dispersal rates, as shown by similar average axial parent-offspring distances, in close agreement with capture-mark-recapture estimates. As predicted, our results do not support any preferences of the species for specific landscape attributes on their dispersal pathways. Here, we combine field and molecular data to illustrate how a habitat specialist mammal might disperse like a habitat generalist, acquiring specific long-distance dispersal strategies as an adaptation to patchy, naturally fragmented, heterogeneous and unstable habitats.

  14. Determinants of habitat selection by hatchling Australian freshwater crocodiles.

    Directory of Open Access Journals (Sweden)

    Ruchira Somaweera

    Full Text Available Animals almost always use habitats non-randomly, but the costs and benefits of using specific habitat types remain unknown for many types of organisms. In a large lake in northwestern Australia (Lake Argyle, most hatchling (<12-month-old freshwater crocodiles (Crocodylus johnstoni are found in floating vegetation mats or grassy banks rather than the more widely available open banks. Mean body sizes of young crocodiles did not differ among the three habitat types. We tested four potential explanations for non-random habitat selection: proximity to nesting sites, thermal conditions, food availability, and exposure to predation. The three alternative habitat types did not differ in proximity to nesting sites, or in thermal conditions. Habitats with higher food availability harboured more hatchlings, and feeding rates (obtained by stomach-flushing of recently-captured crocodiles were highest in such areas. Predation risk may also differ among habitats: we were twice as likely to capture a crocodile after seeing it in open-bank sites than in the other two habitat types. Thus, habitat selection of hatchling crocodiles in this system may be driven both by prey availability and by predation risk.

  15. Habitat connectivity and fragmented nuthatch populations in agricultural landscapes

    OpenAIRE

    Langevelde, van, F.

    1999-01-01

    In agricultural landscapes, the habitat of many species is subject to fragmentation. When the habitat of a species is fragmented and the distances between patches of habitat are large relative to the movement distances of the species, it can be expected that the degree of habitat connectivity affects processes at population and individual level. In this thesis, I report on a study of effects of habitat fragmentation and opportunities to mitigate these effects by planning ecological n...

  16. Demographic Characteristics of a Maine Woodcock Population and Effects of Habitat Management

    Science.gov (United States)

    Dwyer, T.J.; Sepik, G.F.; Derleth, E.L.; McAuley, D.G.

    1988-01-01

    immigration seemed to fit best. Only the number of males in the population changed significantly during the study. An increase from 88 males in 1976 to 156 in 1980 was attributed to habitat management. Singingmale surveys on our area detected little change in the number of singing males, but our independent population estimates from mark-recapture data showed a larger total male population by 1980. Annual density estimates for all age and sex classes ranged from 19 to 25 birds/l00 ha. A hypothesis on the breeding system of the American woodcock is presented as well as a discussion of management implications, including the importance of creating high-quality habitat on private lands.

  17. Vulnerability Assessment of Mangrove Habitat to the Variables of the Oceanography Using CVI Method (Coastal Vulnerability Index) in Trimulyo Mangrove Area, Genuk District, Semarang

    Science.gov (United States)

    Ahmad, Rifandi Raditya; Fuad, Muhammad

    2018-02-01

    Some functions of mangrove areas in coastal ecosystems as a green belt, because mangrove serves as a protector of the beach from the sea waves, as a good habitat for coastal biota and for nutrition supply. Decreased condition or degradation of mangrove habitat caused by several oceanographic factors. Mangrove habitats have some specific characteristics such as salinity, tides, and muddy substrates. Considering the role of mangrove area is very important, it is necessary to study about the potential of mangrove habitat so that the habitat level of mangrove habitat in the east coast of Semarang city is known. The purpose of this research is to obtain an index and condition of habitat of mangrove habitat at location of research based on tidal, salinity, substrate type, coastline change. Observation by using purposive method and calculation of habitat index value of mangrove habitat using CVI (Coastal Vulnerability Index) method with scores divided into 3 groups namely low, medium and high. The results showed that there is a zone of research belonging to the medium vulnerability category with the most influential variables is because there is abrasion that sweeps the mangrove substrate. Trimulyo mangrove habitat has high vulnerable variable of tidal frequency, then based on value variable Salinity is categorized as low vulnerability, whereas for mangrove habitat vulnerability based on variable type of substrate belong to low and medium vulnerability category. The CVI values of mangrove habitats divided into zones 1; 2; and 3 were found to varying values of 1.54; 3.79; 1.09, it indicates that there is a zone with the vulnerability of mangrove habitat at the study site belonging to low and medium vulnerability category.

  18. Habitat Dan Perilaku Kangkareng Perut-putih (Anthracoceros Albirostris Convexus Temm. 1832) Di Resort Rowobendo Tn Alas Purwo

    OpenAIRE

    Tarigan, Salvionita BR; Hernowo, Jarwadi Budi

    2016-01-01

    Oriental pied hornbill (Anthracoceros albirostris) is one of hornbill spesies (Bucerotidae) that protected in Indonesia based on Goverment Regulation No. 7/1999. The habitat of oriental pied hornbillin Resort Rowobendo Alas Purwo National Park (APNP) are natural forest and mixed forest plantation. The characteristic of the bird feeding site is a fruiting tree with a thick meat with the shaped is an oval, thin rind, soft, and contain more water and has sweet taste. The characteristic for the b...

  19. HABITAT DAN PERILAKU KANGKARENG PERUT-PUTIH (Anthracoceros albirostris convexus Temm. 1832) DI RESORT ROWOBENDO TN ALAS PURWO

    OpenAIRE

    Salvionita BR Tarigan; Jarwadi Budi Hernowo

    2017-01-01

    Oriental pied hornbill (Anthracoceros albirostris) is one of hornbill spesies (Bucerotidae) that protected in Indonesia based on Goverment Regulation No. 7/1999. The habitat of oriental pied hornbillin Resort Rowobendo Alas Purwo National Park (APNP) are natural forest and mixed forest plantation. The characteristic of the bird feeding site is a fruiting tree with a thick meat with the shaped is an oval, thin rind, soft, and contain more water and has sweet taste. The characteristic for the b...

  20. The global distribution of deep-water Antipatharia habitat

    Science.gov (United States)

    Yesson, Chris; Bedford, Faye; Rogers, Alex D.; Taylor, Michelle L.

    2017-11-01

    Antipatharia are a diverse group of corals with many species found in deep water. Many Antipatharia are habitat for associates, have extreme longevity and some species can occur beyond 8500 m depth. As they are major constituents of'coral gardens', which are Vulnerable Marine Ecosystems (VMEs), knowledge of their distribution and environmental requirements is an important pre-requisite for informed conservation planning particularly where the expense and difficulty of deep-sea sampling prohibits comprehensive surveys. This study uses a global database of Antipatharia distribution data to perform habitat suitability modelling using the Maxent methodology to estimate the global extent of black coral habitat suitability. The model of habitat suitability is driven by temperature but there is notable influence from other variables of topography, surface productivity and oxygen levels. This model can be used to predict areas of suitable habitat, which can be useful for conservation planning. The global distribution of Antipatharia habitat suitability shows a marked contrast with the distribution of specimen observations, indicating that many potentially suitable areas have not been sampled, and that sampling effort has been disproportionate to shallow, accessible areas inside marine protected areas (MPAs). Although 25% of Antipatharia observations are located in MPAs, only 7-8% of predicted suitable habitat is protected, which is short of the Convention on Biological Diversity target to protect 10% of ocean habitats by 2020.

  1. Macrofaunal communities associated with chemosynthetic habitats from the U.S. Atlantic margin: A comparison among depth and habitat types

    Science.gov (United States)

    Bourque, Jill R.; Robertson, Craig M.; Brooke, Sandra; Demopoulos, Amanda W.J.

    2016-01-01

    Hydrocarbon seeps support distinct benthic communities capable of tolerating extreme environmental conditions and utilizing reduced chemical compounds for nutrition. In recent years, several locations of methane seepage have been mapped along the U.S. Atlantic continental slope. In 2012 and 2013, two newly discovered seeps were investigated in this region: a shallow site near Baltimore Canyon (BCS, 366–412 m) and a deep site near Norfolk Canyon (NCS, 1467–1602 m), with both sites containing extensive chemosynthetic mussel bed and microbial mat habitats. Sediment push cores, suction samples, and Ekman box cores were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 μm) in mussel beds, mats, and slope habitats at both sites. Community data from the deep site were also assessed in relation to the associated sediment environment (organic carbon and nitrogen, stable carbon and nitrogen isotopes, grain size, and depth). Infaunal assemblages and densities differed both between depths and among habitat types. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments and were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in BCS microbial mat habitats, but higher in mussel and slope sediments compared to NCS habitats. Multivariate statistical analysis revealed specific sediment properties as important for distinguishing the macrofaunal communities, including larger grain sizes present within NCS microbial mat habitats and depleted stable carbon isotopes (δ13C) in sediments present at mussel beds. These results suggest that habitat differences in the quality and source of organic matter are driving the observed patterns in the infaunal assemblages, including high β diversity and high variability in the macrofaunal community composition. This

  2. The energetic consequences of habitat structure for forest stream salmonids.

    Science.gov (United States)

    Naman, Sean M; Rosenfeld, Jordan S; Kiffney, Peter M; Richardson, John S

    2018-05-08

    1.Increasing habitat availability (i.e. habitat suitable for occupancy) is often assumed to elevate the abundance or production of mobile consumers; however, this relationship is often nonlinear (threshold or unimodal). Identifying the mechanisms underlying these nonlinearities is essential for predicting the ecological impacts of habitat change, yet the functional forms and ultimate causation of consumer-habitat relationships are often poorly understood. 2.Nonlinear effects of habitat on animal abundance may manifest through physical constraints on foraging that restrict consumers from accessing their resources. Subsequent spatial incongruence between consumers and resources should lead to unimodal or saturating effects of habitat availability on consumer production if increasing the area of habitat suitable for consumer occupancy comes at the expense of habitats that generate resources. However, the shape of this relationship could be sensitive to cross-ecosystem prey subsidies, which may be unrelated to recipient habitat structure and result in more linear habitat effects on consumer production. 3.We investigated habitat-productivity relationships for juveniles of stream-rearing Pacific salmon and trout (Oncorhynchus spp.), which typically forage in low-velocity pool habitats, while their prey (drifting benthic invertebrates) are produced upstream in high-velocity riffles. However, juvenile salmonids also consume subsidies of terrestrial invertebrates that may be independent of pool-riffle structure. 4.We measured salmonid biomass production in 13 experimental enclosures each containing a downstream pool and upstream riffle, spanning a gradient of relative pool area (14-80% pool). Increasing pool relative to riffle habitat area decreased prey abundance, leading to a nonlinear saturating effect on fish production. We then used bioenergetics model simulations to examine how the relationship between pool area and salmonid biomass is affected by varying levels of

  3. Global screening for Critical Habitat in the terrestrial realm.

    Science.gov (United States)

    Brauneder, Kerstin M; Montes, Chloe; Blyth, Simon; Bennun, Leon; Butchart, Stuart H M; Hoffmann, Michael; Burgess, Neil D; Cuttelod, Annabelle; Jones, Matt I; Kapos, Val; Pilgrim, John; Tolley, Melissa J; Underwood, Emma C; Weatherdon, Lauren V; Brooks, Sharon E

    2018-01-01

    Critical Habitat has become an increasingly important concept used by the finance sector and businesses to identify areas of high biodiversity value. The International Finance Corporation (IFC) defines Critical Habitat in their highly influential Performance Standard 6 (PS6), requiring projects in Critical Habitat to achieve a net gain of biodiversity. Here we present a global screening layer of Critical Habitat in the terrestrial realm, derived from global spatial datasets covering the distributions of 12 biodiversity features aligned with guidance provided by the IFC. Each biodiversity feature is categorised as 'likely' or 'potential' Critical Habitat based on: 1. Alignment between the biodiversity feature and the IFC Critical Habitat definition; and 2. Suitability of the spatial resolution for indicating a feature's presence on the ground. Following the initial screening process, Critical Habitat must then be assessed in-situ by a qualified assessor. This analysis indicates that a total of 10% and 5% of the global terrestrial environment can be considered as likely and potential Critical Habitat, respectively, while the remaining 85% did not overlap with any of the biodiversity features assessed and was classified as 'unknown'. Likely Critical Habitat was determined principally by the occurrence of Key Biodiversity Areas and Protected Areas. Potential Critical Habitat was predominantly characterised by data representing highly threatened and unique ecosystems such as ever-wet tropical forests and tropical dry forests. The areas we identified as likely or potential Critical Habitat are based on the best available global-scale data for the terrestrial realm that is aligned with IFC's Critical Habitat definition. Our results can help businesses screen potential development sites at the early project stage based on a range of biodiversity features. However, the study also demonstrates several important data gaps and highlights the need to incorporate new and

  4. Ground beetle habitat templets and riverbank integrity

    OpenAIRE

    Van Looy, Kris; Vanacker, Stijn; Jochems, Hans; De Blust, Geert; Dufrêne, M

    2006-01-01

    The habitat templet approach was used in a scale-sensitive bioindicator assessment for the ecological integrity of riverbanks and for specific responses to river management. Ground beetle habitat templets were derived from a catchment scale sampling, integrating the overall variety of bank types. This coarse-filter analysis was integrated in the reach scale fine-filtering approaches of community responses to habitat integrity and river management impacts. Higher species diversity was associat...

  5. Landscape resistance and habitat combine to provide an optimal model of genetic structure and connectivity at the range margin of a small mammal.

    Science.gov (United States)

    Marrotte, R R; Gonzalez, A; Millien, V

    2014-08-01

    We evaluated the effect of habitat and landscape characteristics on the population genetic structure of the white-footed mouse. We develop a new approach that uses numerical optimization to define a model that combines site differences and landscape resistance to explain the genetic differentiation between mouse populations inhabiting forest patches in southern Québec. We used ecological distance computed from resistance surfaces with Circuitscape to infer the effect of the landscape matrix on gene flow. We calculated site differences using a site index of habitat characteristics. A model that combined site differences and resistance distances explained a high proportion of the variance in genetic differentiation and outperformed models that used geographical distance alone. Urban and agriculture-related land uses were, respectively, the most and the least resistant landscape features influencing gene flow. Our method detected the effect of rivers and highways as highly resistant linear barriers. The density of grass and shrubs on the ground best explained the variation in the site index of habitat characteristics. Our model indicates that movement of white-footed mouse in this region is constrained along routes of low resistance. Our approach can generate models that may improve predictions of future northward range expansion of this small mammal. © 2014 John Wiley & Sons Ltd.

  6. A Review of Bioeconomic Modelling of Habitat-Fisheries Interactions

    Directory of Open Access Journals (Sweden)

    Naomi S. Foley

    2012-01-01

    Full Text Available This paper reviews the bioeconomic literature on habitat-fisheries connections. Many such connections have been explored in the bioeconomic literature; however, missing from the literature is an analysis merging the potential influences of habitat on both fish stocks and fisheries into one general, overarching theoretical model. We attempt to clarify the nature of linkages between the function of habitats and the economic activities they support. More specifically, we identify theoretically the ways that habitat may enter the standard Gordon-Schaefer model, and nest these interactions in the general model. Habitat influences are defined as either biophysical or bioeconomic. Biophysical effects relate to the functional role of habitat in the growth of the fish stock and may be either essential or facultative to the species. Bioeconomic interactions relate to the effect of habitat on fisheries and can be shown through either the harvest function or the profit function. We review how habitat loss can affect stock, effort, and harvest under open access and maximum economic yield managed fisheries.

  7. Bird assemblage patterns in relation to anthropogenic habitat ...

    African Journals Online (AJOL)

    Using habitat stratification, birds were surveyed along transects in tidal and supralittoral sub-habitats using DISTANCE sampling protocol, and along the river by encounter rates to determine abundance and species richness. Indices of human activity as well as habitat structure parameters including ground cover, plant ...

  8. Integrating and interpreting the Habitats- and Birds Directives

    NARCIS (Netherlands)

    Kistenkas, F.H.

    2005-01-01

    The Birds Directive of 1979 and the Habitats Directive of 1992 might be seen as the two major EU nature conservation directives, both protecting a habitats network throughout Europe and species. The transposition of both the Habitats and Birds Directive (HBD) into domestic national or subnational

  9. Adaptive breeding habitat selection: Is it for the birds?

    Science.gov (United States)

    Chalfoun, Anna D.; Schmidt, Kenneth A.

    2012-01-01

    The question of why animals choose particular habitats has important implications for understanding behavioral evolution and distribution of organisms in the wild and for delineating between habitats of different quality for conservation and management. Habitats chosen by animals can influence fitness outcomes via the costs (e.g., predation risk) and benefits (e.g., food availability) of habitat use. Habitat preferences should therefore be under selection to favor those that confer fitness advantages (Clark and Shutler 1999). Indeed, prevailing theory suggests that the habitat preferences of animals should be adaptive, such that fitness is higher in preferred habitats (Hildén 1965, Southwood 1977, Martin 1998). However, studies have often identified apparent mismatches between observed habitat preferences and fitness outcomes across a wide variety of taxa (Valladares and Lawton 1991, Mayhew 1997, Kolbe and Janzen 2002, Arlt and Pärt 2007, Mägi et al. 2009). Certainly, one limitation of studies may be that assessment of “fitness” is typically constrained to fitness surrogates such as nest success rather than lifetime reproductive success or classic Fisherian fitness (Endler 1986). Nevertheless, important habitat choices such as nest sites influence the probability that temporarily sedentary, dependent young are discovered by enemies such as predators and parasites. We therefore expect, on average, to see congruence between evolved habitat preferences and relevant components of fitness (e.g., nest success). Here, we (1) review the prevalence of apparent mismatches between avian breeding-habitat preferences and fitness outcomes using nest-site selection as a focus; (2) describe several potential mechanisms for such mismatches, including anthropogenic, methodological, and ecological–evolutionary; and (3) suggest a framework for understanding the contexts in which habitat preferences represent adaptive decisions, with a primary focus on ecological information

  10. Plant distribution patterns related to species characteristics and spatial and temporal habitat heterogeneity in a network of ditch banks

    NARCIS (Netherlands)

    Geertsema, W.; Sprangers, J.T.C.M.

    2002-01-01

    In this study we investigated the relationship between the distribution patterns of a number of herbaceous plant species and the isolation and age of habitat patches. The study was conducted for a network of ditch banks in an agricultural landscape in The Netherlands. Thirteen plant species were

  11. Swift fox survey along Heartland Expressway Corridor.

    Science.gov (United States)

    2015-05-01

    The swift fox (Vulpes velox) is a small canid classified as endangered within the : state of Nebraska. Future construction of the Heartland Expressway Corridor (HEC), a : 300 km road expansion project in the panhandle of the state, may impact the res...

  12. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole [Pacific Northwest National Laboratory

    2008-03-17

    This document is the first annual report for the study titled 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River'. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program. The goal of the 2007-2009 Tidal Freshwater Monitoring Study is to answer the following questions: In what types of habitats within the tidal freshwater area of the lower Columbia River and estuary (LCRE; Figure 1) are yearling and subyearling salmonids found, when are they present, and under what environmental conditions?1 And, what is the ecological importance2 of shallow (0-5 m) tidal freshwater habitats to the recovery of Upper Columbia River spring Chinook salmon and steelhead and Snake River fall Chinook salmon? Research in 2007 focused mainly on the first question, with fish stock identification data providing some indication of Chinook salmon presence at the variety of habitat types sampled. The objectives and sub-objectives for the 2007 study were as follows: (1) Habitat and Fish Community Characteristics-Provide basic data on habitat and fish community characteristics for yearling and subyearling salmonids at selected sites in the tidal freshwater reach in the vicinity of the Sandy River delta. (1a) Characterize vegetation assemblage percent cover, conventional water quality, substrate composition, and beach slope at each of six sampling sites in various tidal freshwater habitat types. (1b

  13. Ghost of habitat past: historic habitat affects the contemporary distribution of giant garter snakes in a modified landscape.

    Science.gov (United States)

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2014-01-01

    Historic habitat conditions can affect contemporary communities and populations, but most studies of historic habitat are based on the reduction in habitat extent or connectivity. Little is known about the effects of historic habitat on contemporary species distributions when historic habitat has been nearly completely removed, but species persist in a highly altered landscape. More than 93% of the historic wetlands in the Central Valley of California, USA, have been drained and converted to agricultural and other uses, but agricultural wetlands, such as rice and its supporting infrastructure of canals, allow some species to persist. Little is known about the distribution of giant garter snakes Thamnophis gigas, a rare aquatic snake species inhabiting this predominantly agricultural landscape, or the variables that affect where this species occurs. We used occupancy modeling to examine the distribution of giant garter snakes at the landscape scale in the Sacramento Valley (northern portion of the Central Valley) of California, with an emphasis on the relative strength of historic and contemporary variables (landscape-scale habitat, local microhabitat, vegetation composition and relative prey counts) for predicting giant garter snake occurrence. Proximity to historic marsh best explained variation in the probability of occurrence of giant garter snakes at the landscape scale, with greater probability of occurrence near historic marsh. We suspect that the importance of distance to historic marsh represents dispersal limitations of giant garter snakes. These results suggest that preserving and restoring areas near historic marsh, and minimizing activities that reduce the extent of marsh or marsh-like (e.g. rice agriculture, canal) habitats near historic marsh may be advantageous to giant garter snakes.

  14. Stream characteristics and their implications for the protection of riparian fens and meadows

    DEFF Research Database (Denmark)

    Baattrup-Pedersen, A.; Larsen, S.E.; Andersen, Peter Mejlhede

    2011-01-01

    the influence of stream size, morphology and chemical water characteristics for the distribution of water-dependent terrestrial habitat types, i.e. alkaline fens, periodically inundated meadows and meadows in riparian areas in Denmark using an extensive data set covering a total of 254 stream reaches. A species......1. Running waters, including associated riparian areas, are embraced by international legal frameworks outlining targets for the preservation, protection and improvement of the quality of the environment. Interactions between stream and river processes and riparian habitats have not received much...... attention in the management of stream ecosystems, and integrated measures that consider both the ecological status of streams and rivers (sensu EU Water Framework Directive, WFD) and the conservation status of riparian habitats and species (sensu EU Habitats Directive, HD) are rare. 2. Here, we analysed...

  15. Habitat factors influencing the distribution of Cymbopogon validus in ...

    African Journals Online (AJOL)

    Habitat factors influencing the distribution of Cymbopogon validus in Mkambati Game Reserve, Transkei. ... disturbance; game reserve; grassland; grasslands; habitat conditions; habitat factors; mkambati game ... AJOL African Journals Online.

  16. Fish habitat considerations associated with hydro-electric developments in Quebec region

    International Nuclear Information System (INIS)

    Bain, H.; Stoneman, M.

    2005-01-01

    Alternative approaches for evaluating the effects of 2 large Hydro Quebec proposed facilities on fish habitats were presented. The proposed projects will convert long stretches of river into water reservoirs and reduce the flow in the rivers below the impoundments for parts of the year. Rivers will be transformed into water reservoirs upstream by the dams, and a moderately large river will be transformed downstream into a much smaller river with a regulated flow. Productive capacity of fish populations is difficult to measure in large water bodies, and complications in the evaluation process have posed problems in the application of a traditional no-net-loss policy. It was suggested that estimates of biomass and productivity should be obtained from established methods of electrofishing combined with maps of the river and stream characteristics. For lakes and reservoirs, biomass and production will be estimated from models using a morphoedaphic index and measures of lake reservoir areas. Productivity will be partitioned among species according to surveys of existing lakes and reservoirs. It was also proposed that mitigation and compensation should be considered on a case-by-case basis related to importance of impact on fish production; geographic range of the impacts; regional fisheries management objectives for commercial, recreational, and subsistence fisheries and biodiversity conservation. Special attention will be given to listed species such as Atlantic salmon and lake sturgeon. Additional field sampling was recommended in areas impacted by the developments. Concerns about the technical methods used in sampling and monitoring data were reviewed, as well as issues concerning protected and unprotected species. It was suggested that predictive models of fish population characteristics will need to be parameterized for temperature ranges associated with the projects. It was noted that habitat suitability index methods do not consider the ecological flexibility

  17. Habitat split and the global decline of amphibians.

    Science.gov (United States)

    Becker, Carlos Guilherme; Fonseca, Carlos Roberto; Haddad, Célio Fernando Baptista; Batista, Rômulo Fernandes; Prado, Paulo Inácio

    2007-12-14

    The worldwide decline in amphibians has been attributed to several causes, especially habitat loss and disease. We identified a further factor, namely "habitat split"-defined as human-induced disconnection between habitats used by different life history stages of a species-which forces forest-associated amphibians with aquatic larvae to make risky breeding migrations between suitable aquatic and terrestrial habitats. In the Brazilian Atlantic Forest, we found that habitat split negatively affects the richness of species with aquatic larvae but not the richness of species with terrestrial development (the latter can complete their life cycle inside forest remnants). This mechanism helps to explain why species with aquatic larvae have the highest incidence of population decline. These findings reinforce the need for the conservation and restoration of riparian vegetation.

  18. Steelhead Critical Habitat, Coast - NOAA [ds122

    Data.gov (United States)

    California Department of Resources — This layer depicts areas designated for Steelhead Critical Habitat as well as habitat type and quality in the Coastal California Steelhead ESUs (evolutionarily...

  19. Relación entre características del hábitat y estructura del ensamble de insectos en humedales palustres urbanos del centro-sur de Chile Relationship between habitat characteristics and insect assemblage structure in urban freshwater marshes from central-south Chile

    Directory of Open Access Journals (Sweden)

    ROMINA VILLAGRÁN-MELLA

    2006-06-01

    los efectos de la urbanización sobre el funcionamiento de estos ecosistemas. Sin embargo, dada la falta de información biológica y taxonómica en especies de insectos asociados a humedales palustres, solo características del hábitat con efectos significativos a un nivel taxonómico alto podrían ser consideradas para establecer recomendaciones iniciales de planes de manejoWetlands are one of the most productive ecosystems which provide a number of ecosystem functions, maintaining also a high biodiversity. Nevertheless, almost half of the wetlands in the world have disappeared in the last century due to urban development process. Along the Chilean landscape a great variety of aquatic habitats exist. Due to urban expansion those ecosystems have been exposed to strong anthropogenic pressures. In the intercomunal area Concepción-Talcahuano- San Pedro (Biobío Region, more than 23 % (1,734 ha of the wetland areas have been lost in the last three decades. We evaluated the relationship between habitat characteristics (morphometric, limnology and vegetation and the insect assemblage's structure in seven freshwater marshes in this intercomunal area. Our aim was to assess the influence of urbanization on the diversity patterns of these ecosystems. Insect abundance and species diversity were positively correlated to matrix pristinness and oxygen concentration of the water, this last feature was the best predictor for the structure of the insect assemblage. Of the 24 insect morphospecies included in the analysis, the abundance of only seven species was significantly related to the quantified habitat characteristics. Matrix pristinness, wetland area, vegetation heterogeneity and water oxygen concentration were positively related to species abundance, however, conductivity and water density showed a negative effect on the abundance. The insect species diversity decrease determined by the habitat characteristics associated to habitat loss, habitat fragmentation, habitat

  20. Interaction between birds and macrofauna within food webs of six intertidal habitats of the Wadden Sea.

    Science.gov (United States)

    Horn, Sabine; de la Vega, Camille; Asmus, Ragnhild; Schwemmer, Philipp; Enners, Leonie; Garthe, Stefan; Binder, Kirsten; Asmus, Harald

    2017-01-01

    The determination of food web structures using Ecological Network Analysis (ENA) is a helpful tool to get insight into complex ecosystem processes. The intertidal area of the Wadden Sea is structured into diverse habitat types which differ in their ecological functioning. In the present study, six different intertidal habitats (i.e. cockle field, razor clam field, mud flat, mussel bank, sand flat and seagrass meadow) were analyzed using ENA to determine similarities and characteristic differences in the food web structure of the systems. All six systems were well balanced between their degree of organization and their robustness. However, they differed in their detailed features. The cockle field and the mussel bank exhibited a strong dependency on external imports. The razor clam field appeared to be a rather small system with low energy transfer. In the mud flat microphytobenthos was used as a main food source and the system appeared to be sensitive to perturbations. Bird predation was the most pronounced in the sand flat and the seagrass meadow and led to an increase in energy transfer and parallel trophic cycles in these habitats. Habitat diversity appears to be an important trait for the Wadden Sea as each subsystem seems to have a specific role in the overall functioning of the entire ecosystem.

  1. Eco-physiological adaptation of dominant tree species at two contrasting karst habitats in southwestern China [v1; ref status: indexed, http://f1000r.es/xt

    Directory of Open Access Journals (Sweden)

    Shouren Zhang

    2013-05-01

    Full Text Available The purpose of this study was to investigate the eco-physiological adaptation of indigenous woody species to their habitats in karst areas of southwestern China. Two contrasting forest habitats were studied: a degraded habitat in Daxiagu and a well-developed habitat in Tianlongshan, and the eco-physiological characteristics of the trees were measured for three growth seasons. Photosynthetic rate (Pn, stomatal conductance (gs, and transpiration rate (Tr of the tree species in Daxiagu were 2-3 times higher than those in Tianlongshan under ambient conditions. However, this habitat effect was not significant when measurements were taken under controlled conditions. Under controlled conditions, Pn, gs, and Tr of the deciduous species were markedly higher than those for the evergreen species. Habitat had no significant effect on water use efficiency (WUE or photochemical characteristics of PSII. The stomatal sensitivity of woody species in the degraded habitat was much higher than that in the well-developed habitat. Similarly, the leaf total nitrogen (N and phosphorus (P contents expressed on the basis of either dry mass or leaf area were also much higher in Daxiagu than they were in Tianlongshan. The mass-based leaf total N content of deciduous species was much higher than that of evergreen species, while leaf area-based total N and P contents of evergreens were significantly higher than those of deciduous species. The photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE of deciduous species were much higher than those of evergreens. Further, the PPUE of the woody species in Tianlongshan was much higher than that  of the woody species in Daxiagu. The results from three growth seasons imply that the tree species were able to adapt well to their growth habitats. Furthermore, it seems that so-called “temporary drought stress” may not occur, or may not be severe for most woody plants in karst areas of southwestern China.

  2. Designated Critical Habitat

    Data.gov (United States)

    Kansas Data Access and Support Center — Critical habitats include those areas documented as currently supporting self-sustaining populations of any threatened or endangered species of wildlife as well as...

  3. Chinook Critical Habitat, Coast - NOAA [ds124

    Data.gov (United States)

    California Department of Resources — This layer depicts areas designated for Chinook Critical Habitat as well as habitat type and quality in the California Coastal Evolutionary Significant Unit (ESU -...

  4. Habitat selection models for Pacific sand lance (Ammodytes hexapterus) in Prince William Sound, Alaska

    Science.gov (United States)

    Ostrand, William D.; Gotthardt, Tracey A.; Howlin, Shay; Robards, Martin D.

    2005-01-01

    We modeled habitat selection by Pacific sand lance (Ammodytes hexapterus) by examining their distribution in relation to water depth, distance to shore, bottom slope, bottom type, distance from sand bottom, and shoreline type. Through both logistic regression and classification tree models, we compared the characteristics of 29 known sand lance locations to 58 randomly selected sites. The best models indicated a strong selection of shallow water by sand lance, with weaker association between sand lance distribution and beach shorelines, sand bottoms, distance to shore, bottom slope, and distance to the nearest sand bottom. We applied an information-theoretic approach to the interpretation of the logistic regression analysis and determined importance values of 0.99, 0.54, 0.52, 0.44, 0.39, and 0.25 for depth, beach shorelines, sand bottom, distance to shore, gradual bottom slope, and distance to the nearest sand bottom, respectively. The classification tree model indicated that sand lance selected shallow-water habitats and remained near sand bottoms when located in habitats with depths between 40 and 60 m. All sand lance locations were at depths lance and the independent variables are discussed.

  5. Effects of water management, connectivity, and surrounding land use on habitat use by frogs in rice paddies in Japan.

    Science.gov (United States)

    Naito, Risa; Yamasaki, Michimasa; Lmanishi, Ayumi; Natuhara, Yosihiro; Morimoto, Yukihiro

    2012-09-01

    In Japan, rice paddies play an important role as a substitute habitat for wetland species, and support rich indigenous ecosystems. However, since the 1950s, agricultural modernization has altered the rice paddy environment, and many previously common species are now endangered. It is urgently necessary to evaluate rice paddies as habitats for conservation. Among the species living in rice paddies, frogs are representative and are good indicator species, so we focused on frog species and analyzed the influence of environmental factors on their habitat use. We found four frog species and one subspecies (Hyla japonica, Pelophylax nigromaculatus, Glandirana rugosa, Lithobates catesbeianus, and Pelophylax porosa brevipoda) at our study sites in Shiga prefecture. For all but L. catesbeianus, we analyzed the influence of environmental factors related to rice paddy structure, water management and availability, agrochemical use, connectivity, and land use on breeding and non-breeding habitat use. We constructed generalized additive mixed models with survey date as the smooth term and applied Akaike's information criterion to choose the bestranked model. Because life histories and biological characteristics vary among species, the factors affecting habitat use by frogs are also expected to differ by species. We found that both breeding and non-breeding habitat uses of each studied species were influenced by different combinations of environmental factors and that in most cases, habitat use showed seasonality. For frog conservation in rice paddies, we need to choose favorable rice paddy in relation to surrounding land use and apply suitable management for target species.

  6. Spatial Heterogeneity of Habitat Suitability for Rift Valley Fever Occurrence in Tanzania: An Ecological Niche Modelling Approach

    Science.gov (United States)

    Sindato, Calvin; Stevens, Kim B.; Karimuribo, Esron D.; Mboera, Leonard E. G.; Paweska, Janusz T.; Pfeiffer, Dirk U.

    2016-01-01

    Background Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Materials and Methods Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Principal Findings Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). Conclusion/Significance The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with

  7. Advantages of a Modular Mars Surface Habitat Approach

    Science.gov (United States)

    Rucker, Michelle A.; Hoffman, Stephan J.; Andrews, Alida; Watts, Kevin

    2018-01-01

    Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach.

  8. 50 CFR 660.395 - Essential Fish Habitat (EFH)

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Essential Fish Habitat (EFH) 660.395... Groundfish Fisheries § 660.395 Essential Fish Habitat (EFH) Essential fish habitat (EFH) is defined as those waters and substrate necessary to fish for spawning, breeding, feeding or growth to maturity (16 U.S.C...

  9. Juvenile-adult habitat shift in permian fossil reptiles and amphibians.

    Science.gov (United States)

    Bakker, R T

    1982-07-02

    Among extant large reptiles, juveniles often occupy different habitats from those of adults or subadults and thus avoid competition with and predation from the older animals; small juveniles often choose cryptic habitats because they are vulnerable to a wide variety of predators. Evidence from fossil humeri and femora of Early Permian reptiles collected from sediments of several distinct habitats indicate that similar shifts in habitat occurred. Juvenile Dimetrodon seem to have favored cryptic habitats around swamp and swampy lake margins; adults favored open habitats on the floodplains. Similar patterns of habitat shift seem to be present in the reptile Ophiacodon and the amphibian Eryops and may have been common in fossil tetrapods of the Permian-Triassic.

  10. Managing harvest and habitat as integrated components

    Science.gov (United States)

    Osnas, Erik; Runge, Michael C.; Mattsson, Brady J.; Austin, Jane E.; Boomer, G. S.; Clark, R. G.; Devers, P.; Eadie, J. M.; Lonsdorf, E. V.; Tavernia, Brian G.

    2014-01-01

    In 2007, several important initiatives in the North American waterfowl management community called for an integrated approach to habitat and harvest management. The essence of the call for integration is that harvest and habitat management affect the same resources, yet exist as separate endeavours with very different regulatory contexts. A common modelling framework could help these management streams to better understand their mutual effects. Particularly, how does successful habitat management increase harvest potential? Also, how do regional habitat programmes and large-scale harvest strategies affect continental population sizes (a metric used to express habitat goals)? In the ensuing five years, several projects took on different aspects of these challenges. While all of these projects are still on-going, and are not yet sufficiently developed to produce guidance for management decisions, they have been influential in expanding the dialogue and producing some important emerging lessons. The first lesson has been that one of the more difficult aspects of integration is not the integration across decision contexts, but the integration across spatial and temporal scales. Habitat management occurs at local and regional scales. Harvest management decisions are made at a continental scale. How do these actions, taken at different scales, combine to influence waterfowl population dynamics at all scales? The second lesson has been that consideration of the interface of habitat and harvest management can generate important insights into the objectives underlying the decision context. Often the objectives are very complex and trade-off against one another. The third lesson follows from the second – if an understanding of the fundamental objectives is paramount, there is no escaping the need for a better understanding of human dimensions, specifically the desires of hunters and nonhunters and the role they play in conservation. In the end, the compelling question is

  11. Current practices in the identification of critical habitat for threatened species.

    Science.gov (United States)

    Camaclang, Abbey E; Maron, Martine; Martin, Tara G; Possingham, Hugh P

    2015-04-01

    The term critical habitat is used to describe the subset of habitat that is essential to the survival and recovery of species. Some countries legally require that critical habitat of listed threatened and endangered species be identified and protected. However, there is little evidence to suggest that the identification of critical habitat has had much impact on species recovery. We hypothesized that this may be due at least partly to a mismatch between the intent of critical habitat identification, which is to protect sufficient habitat for species persistence and recovery, and its practice. We used content analysis to systematically review critical habitat documents from the United States, Canada, and Australia. In particular, we identified the major trends in type of information used to identify critical habitat and in occupancy of habitat identified as critical. Information about population viability was used to identify critical habitat for only 1% of the species reviewed, and for most species, designated critical habitat did not include unoccupied habitat. Without reference to population viability, it is difficult to determine how much of a species' occupied and unoccupied habitat will be required for persistence. We therefore conclude that the identification of critical habitat remains inconsistent with the goal of protecting sufficient habitat to support persistence and recovery of the species. Ensuring that critical habitat identification aligns more closely with its intent will improve the accuracy of the designations and may therefore help improve the benefits to species recovery when combined with adequate implementation and enforcement of legal protections. © 2014 Society for Conservation Biology.

  12. How Well Can We Predict Salmonid Spawning Habitat with LiDAR?

    Science.gov (United States)

    Pfeiffer, A.; Finnegan, N. J.; Hayes, S.

    2013-12-01

    Suitable salmonid spawning habitat is, to a great extent, determined by physical, landscape driven characteristics such as channel morphology and grain size. Identifying reaches with high-quality spawning habitat is essential to restoration efforts in areas where salmonid species are endangered or threatened. While both predictions of suitable habitat and observations of utilized habitat are common in the literature, they are rarely combined. Here we exploit a unique combination of high-resolution LiDAR data and seven years of 387 individually surveyed Coho and Steelhead redds in Scott Creek, a 77 km2 un-glaciated coastal California drainage in the Santa Cruz Mountains, to both make and test predictions of spawning habitat. Using a threshold channel assumption, we predict grain size throughout Scott Creek via a shear stress model that incorporates channel width, instead of height, using Manning's equation (Snyder et al., 2013). Slope and drainage area are computed from a LiDAR-derived DEM, and channel width is calculated via hydraulic modeling. Our results for median grain size predictions closely match median grain sizes (D50) measured in the field, with the majority of sites having predicted D50's within a factor of two of the observed values, especially for reaches with D50 > 0.02m. This success suggests that the threshold model used to predict grain size is appropriate for un-glaciated alluvial channel systems. However, it appears that grain size alone is not a strong predictor of salmon spawning. Reaches with a high (>0.1m) average predicted D50 do have lower redd densities, as expected based on spawning gravel sizes in the literature. However, reaches with lower (<0.1m) predicted D50 have a wide range of redd densities, suggesting that reach-average grain size alone cannot explain spawning site selection in the finer-grained reaches of Scott Creek. We turn to analysis of bedform morphology in order to explain the variation in redd density in the low

  13. A comparison of top-down and bottom-up approaches to benthic habitat mapping to inform offshore wind energy development

    Science.gov (United States)

    LaFrance, Monique; King, John W.; Oakley, Bryan A.; Pratt, Sheldon

    2014-07-01

    Recent interest in offshore renewable energy within the United States has amplified the need for marine spatial planning to direct management strategies and address competing user demands. To assist this effort in Rhode Island, benthic habitat classification maps were developed for two sites in offshore waters being considered for wind turbine installation. Maps characterizing and representing the distribution and extent of benthic habitats are valuable tools for improving understanding of ecosystem patterns and processes, and promoting scientifically-sound management decisions. This project presented the opportunity to conduct a comparison of the methodologies and resulting map outputs of two classification approaches, “top-down” and “bottom-up” in the two study areas. This comparison was undertaken to improve understanding of mapping methodologies and their applicability, including the bottom-up approach in offshore environments where data density tends to be lower, as well as to provide case studies for scientists and managers to consider for their own areas of interest. Such case studies can offer guidance for future work for assessing methodologies and translating them to other areas. The traditional top-down mapping approach identifies biological community patterns based on communities occurring within geologically defined habitat map units, under the concept that geologic environments contain distinct biological assemblages. Alternatively, the bottom-up approach aims to establish habitat map units centered on biological similarity and then uses statistics to identify relationships with associated environmental parameters and determine habitat boundaries. When applied to the two study areas, both mapping approaches produced habitat classes with distinct macrofaunal assemblages and each established statistically strong and significant biotic-abiotic relationships with geologic features, sediment characteristics, water depth, and/or habitat

  14. Disentangling the influences of habitat structure and limnological predictors on stream fish communities of a coastal basin, southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Fabio Cop Ferreira

    Full Text Available In stream environments habitat structure and limnological factors interact regulating patterns of energy and material transfer and affecting fish communities. In the coastal basins of Southeastern Brazil, limnological and structural characteristics differ between clear and blackwaters streams. The former have a diversity of substrate types, higher water velocities, and lower water conductivity, while the latter have sandy substrate, tea-colored and acidic waters, and low water velocities. In this study, we verified the relative importance of habitat structure and limnological variables in predicting patterns of variation in stream fish communities. Eight first to third order streams were sampled in the coastal plain of Itanhaém River basin. We captured 34 fish species and verified that community structure was influenced by physical habitat and limnology, being the former more important. A fraction of the variation could not be totally decomposed, and it was assigned to the joint influence of limnology and habitat structure. Some species that were restricted to blackwater streams, may have physiological and behavioral adaptations to deal with the lower pH levels. When we examined only the clearwater streams, all the explained variation in fish community composition was assigned to structural factors, which express specific preferences for different types of habitats.

  15. Modeling effects of conservation grassland losses on amphibian habitat

    Science.gov (United States)

    Mushet, David M.; Neau, Jordan L.; Euliss, Ned H.

    2014-01-01

    Amphibians provide many ecosystem services valued by society. However, populations have declined globally with most declines linked to habitat change. Wetlands and surrounding terrestrial grasslands form habitat for amphibians in the North American Prairie Pothole Region (PPR). Wetland drainage and grassland conversion have destroyed or degraded much amphibian habitat in the PPR. However, conservation grasslands can provide alternate habitat. In the United States, the Conservation Reserve Program (CRP) is the largest program maintaining grasslands on agricultural lands. We used an ecosystem services model (InVEST) parameterized for the PPR to quantify amphibian habitat over a six-year period (2007–2012). We then quantified changes in availability of amphibian habitat under various land-cover scenarios representing incremental losses (10%, 25%, 50%, 75%, and 100%) of CRP grasslands from 2012 levels. The area of optimal amphibian habitat in the four PPR ecoregions modeled (i.e., Northern Glaciated Plains, Northwestern Glaciated Plains, Lake Agassiz Plain, Des Moines Lobe) declined by approximately 22%, from 3.8 million ha in 2007 to 2.9 million ha in 2012. These losses were driven by the conversion of CRP grasslands to croplands, primarily for corn and soybean production. Our modeling identified an additional 0.8 million ha (26%) of optimal amphibian habitat that would be lost if remaining CRP lands are returned to crop production. An economic climate favoring commodity production over conservation has resulted in substantial losses of amphibian habitat across the PPR that will likely continue into the future. Other regions of the world face similar challenges to maintaining amphibian habitats.

  16. The effect of fire on habitat selection of mammalian herbivores: the role of body size and vegetation characteristics.

    Science.gov (United States)

    Eby, Stephanie L; Anderson, T Michael; Mayemba, Emilian P; Ritchie, Mark E

    2014-09-01

    Given the role of fire in shaping ecosystems, especially grasslands and savannas, it is important to understand its broader impact on these systems. Post-fire stimulation of plant nutrients is thought to benefit grazing mammals and explain their preference for burned areas. However, fire also reduces vegetation height and increases visibility, thereby potentially reducing predation risk. Consequently, fire may be more beneficial to smaller herbivores, with higher nutritional needs and greater risks of predation. We tested the impacts of burning on different sized herbivores' habitat preference in Serengeti National Park, as mediated by burning's effects on vegetation height, live : dead biomass ratio and leaf nutrients. Burning caused a less than 4 month increase in leaf nitrogen (N), and leaf non-N nutrients [copper (Cu), potassium (K), and magnesium (Mg)] and a decrease in vegetation height and live : dead biomass. During this period, total herbivore counts were higher on burned areas. Generally, smaller herbivores preferred burned areas more strongly than larger herbivores. Unfortunately, it was not possible to determine the vegetation characteristics that explained burned area preference for each of the herbivore species observed. However, total herbivore abundance and impala (Aepyceros melampus) preference for burned areas was due to the increases in non-N nutrients caused by burning. These findings suggest that burned area attractiveness to herbivores is mainly driven by changes to forage quality and not potential decreases in predation risk caused by reductions in vegetation height. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  17. Intercohort density dependence drives brown trout habitat selection

    Science.gov (United States)

    Ayllón, Daniel; Nicola, Graciela G.; Parra, Irene; Elvira, Benigno; Almodóvar, Ana

    2013-01-01

    Habitat selection can be viewed as an emergent property of the quality and availability of habitat but also of the number of individuals and the way they compete for its use. Consequently, habitat selection can change across years due to fluctuating resources or to changes in population numbers. However, habitat selection predictive models often do not account for ecological dynamics, especially density dependent processes. In stage-structured population, the strength of density dependent interactions between individuals of different age classes can exert a profound influence on population trajectories and evolutionary processes. In this study, we aimed to assess the effects of fluctuating densities of both older and younger competing life stages on the habitat selection patterns (described as univariate and multivariate resource selection functions) of young-of-the-year, juvenile and adult brown trout Salmo trutta. We observed all age classes were selective in habitat choice but changed their selection patterns across years consistently with variations in the densities of older but not of younger age classes. Trout of an age increased selectivity for positions highly selected by older individuals when their density decreased, but this pattern did not hold when the density of younger age classes varied. It suggests that younger individuals are dominated by older ones but can expand their range of selected habitats when density of competitors decreases, while older trout do not seem to consider the density of younger individuals when distributing themselves even though they can negatively affect their final performance. Since these results may entail critical implications for conservation and management practices based on habitat selection models, further research should involve a wider range of river typologies and/or longer time frames to fully understand the patterns of and the mechanisms underlying the operation of density dependence on brown trout habitat

  18. Nest Site Characteristics of Cavity Nesting Birds in Central Missouri

    Science.gov (United States)

    Jeffery D. Brawn; Bernice Tannenbaum; Keith E. Evans

    1984-01-01

    Two study sites in central Missouri oak-hickory forests were searched for nest sites of cavity nesting birds. Researchers located and measured 133 nests of 11 species. Cavity nesting bird habitat selection is affected by both snag characteristics and vegetation structure.

  19. Leveraging Carbon Cycling in Coastal Wetlands for Habitat Conservation: Blue Carbon Policy Opportunities (Invited)

    Science.gov (United States)

    Sutton-Grier, A.

    2013-12-01

    Recent scientific studies suggest that the carbon sequestered and stored in coastal wetlands (specifically mangroves, salt marshes, and seagrass meadows) is an important, previously not well-recognized service provided by these ecosystems. Coastal wetlands have unique characteristics that make them incredibly efficient, natural carbon sinks with most carbon stored belowground in soils. Based on this new scientific evidence, there is growing interest in leveraging the carbon services of these habitats (termed 'blue carbon') to develop new policy opportunities to protect and restore coastal wetlands around the globe. The overall goal is to take full advantage of the carbon services of these habitats in order to ensure and maintain the many benefits provided to society by these habitats - including natural climate, food security, and storm protection benefits - and to enhance the resiliency of coastal communities and economies around the world. This presentation will give an update on some of the policy opportunities including: (1) examining how the implementation of U.S. federal policies can be expanded to include carbon services of ecosystems in order to improve management and decision making; (2) developing an international blue carbon community of science and practice to provide best practice guidance for protection and restoration of blue carbon habitats; and (3) developing innovative financing mechanisms for coastal conservation including carbon market credits for wetlands. Finally, the presentation will conclude by highlighting some of the most pressing blue carbon scientific gaps that need to be filled in order to support these developing policies.

  20. Stream Habitat Reach Summary - NCWAP [ds158

    Data.gov (United States)

    California Natural Resource Agency — The Stream Habitat - NCWAP - Reach Summary [ds158] shapefile contains in-stream habitat survey data summarized to the stream reach level. It is a derivative of the...

  1. A Conceptual Approach to Recreation Habitat Analysis

    National Research Council Canada - National Science Library

    Hamilton, H. R

    1996-01-01

    .... The Habitat Evaluation Procedures (HEP) is a commonly used technique for assessing human impacts on the vigor of wildlife species, and serves as the model for the Recreation Habitat Analysis Method (RHAM...

  2. The evolution of mapping habitat for northern spotted owls (Strix occidentalis caurina): A comparison of photo-interpreted, Landsat-based, and lidar-based habitat maps

    Science.gov (United States)

    Ackers, Steven H.; Davis, Raymond J.; Olsen, K.; Dugger, Catherine

    2015-01-01

    Wildlife habitat mapping has evolved at a rapid pace over the last few decades. Beginning with simple, often subjective, hand-drawn maps, habitat mapping now involves complex species distribution models (SDMs) using mapped predictor variables derived from remotely sensed data. For species that inhabit large geographic areas, remote sensing technology is often essential for producing range wide maps. Habitat monitoring for northern spotted owls (Strix occidentalis caurina), whose geographic covers about 23 million ha, is based on SDMs that use Landsat Thematic Mapper imagery to create forest vegetation data layers using gradient nearest neighbor (GNN) methods. Vegetation data layers derived from GNN are modeled relationships between forest inventory plot data, climate and topographic data, and the spectral signatures acquired by the satellite. When used as predictor variables for SDMs, there is some transference of the GNN modeling error to the final habitat map.Recent increases in the use of light detection and ranging (lidar) data, coupled with the need to produce spatially accurate and detailed forest vegetation maps have spurred interest in its use for SDMs and habitat mapping. Instead of modeling predictor variables from remotely sensed spectral data, lidar provides direct measurements of vegetation height for use in SDMs. We expect a SDM habitat map produced from directly measured predictor variables to be more accurate than one produced from modeled predictors.We used maximum entropy (Maxent) SDM modeling software to compare predictive performance and estimates of habitat area between Landsat-based and lidar-based northern spotted owl SDMs and habitat maps. We explored the differences and similarities between these maps, and to a pre-existing aerial photo-interpreted habitat map produced by local wildlife biologists. The lidar-based map had the highest predictive performance based on 10 bootstrapped replicate models (AUC = 0.809 ± 0.011), but the

  3. Salmon River Habitat Enhancement, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  4. Evaluating the habitat capability model for Merriam's turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1995-01-01

    Habitat capability (HABCAP) models for wildlife assist land managers in predicting the consequences of their management decisions. Models must be tested and refined prior to using them in management planning. We tested the predicted patterns of habitat selection of the R2 HABCAP model using observed patterns of habitats selected by radio-marked Merriam’s turkey (

  5. Influence of habitat degradation on fish replenishment

    Science.gov (United States)

    McCormick, M. I.; Moore, J. A. Y.; Munday, P. L.

    2010-09-01

    Temperature-induced coral bleaching is a major threat to the biodiversity of coral reef ecosystems. While reductions in species diversity and abundance of fish communities have been documented following coral bleaching, the mechanisms that underlie these changes are poorly understood. The present study examined the impacts of coral bleaching on the early life-history processes of coral reef fishes. Daily monitoring of fish settlement patterns found that ten times as many fish settled to healthy coral than sub-lethally bleached coral. Species diversity of settling fishes was least on bleached coral and greatest on dead coral, with healthy coral having intermediate levels of diversity. Laboratory experiments using light-trap caught juveniles showed that different damselfish species chose among healthy, bleached and dead coral habitats using different combinations of visual and olfactory cues. The live coral specialist, Pomacentrus moluccensis, preferred live coral and avoided bleached and dead coral, using mostly visual cues to inform their habitat choice. The habitat generalist, Pomacentrus amboinensis, also preferred live coral and avoided bleached and dead coral but selected these habitats using both visual and olfactory cues. Trials with another habitat generalist, Dischistodus sp., suggested that vision played a significant role. A 20 days field experiment that manipulated densities of P. moluccensis on healthy and bleached coral heads found an influence of fish density on juvenile weight and growth, but no significant influence of habitat quality. These results suggests that coral bleaching will affect settlement patterns and species distributions by influencing the visual and olfactory cues that reef fish larvae use to make settlement choices. Furthermore, increased fish density within the remaining healthy coral habitats could play an important role in influencing population dynamics.

  6. Global patterns of fragmentation and connectivity of mammalian carnivore habitat.

    Science.gov (United States)

    Crooks, Kevin R; Burdett, Christopher L; Theobald, David M; Rondinini, Carlo; Boitani, Luigi

    2011-09-27

    Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges, a greater proportion of habitat within their range, greater habitat connectivity and a lower risk of extinction. Species with higher connectivity (i.e. less habitat isolation) also had a greater proportion of high-quality habitat, but had smaller, not larger, ranges, probably reflecting shorter distances between habitat patches for species with restricted distributions; such species were also more threatened, as would be expected given the negative relationship between range size and extinction risk. Fragmentation and connectivity did not differ among Carnivora families, and body mass was associated with connectivity but not fragmentation. On average, only 54.3 per cent of a species' geographical range comprised high-quality habitat, and more troubling, only 5.2 per cent of the range comprised such habitat within protected areas. Identification of global hotspots of fragmentation and connectivity will help guide strategic priorities for carnivore conservation.

  7. Food Web Response to Habitat Restoration in Various Coastal Wetland Ecosystems

    Science.gov (United States)

    James, W. R.; Nelson, J. A.

    2017-12-01

    Coastal wetland habitats provide important ecosystem services, including supporting coastal food webs. These habitats are being lost rapidly. To combat the effects of these losses, millions of dollars have been invested to restore these habitats. However, the relationship between restoring habitat and restoring ecosystem functioning is poorly understood. Analyzing energy flow through food web comparisons between restored and natural habitats can give insights into ecosystem functioning. Using published stable isotope values from organisms in restored and natural habitats, we assessed the food web response of habitat restoration in salt marsh, mangrove, sea grass, and algal bed ecosystems. We ran Bayesian mixing models to quantify resource use by consumers and generated habitat specific niche hypervolumes for each ecosystem to assess food web differences between restored and natural habitats. Salt marsh, mangrove, and sea grass ecosystems displayed functional differences between restored and natural habitats. Salt marsh and mangrove food webs varied in the amount of each resource used, while the sea grass food web displayed more variation between individual organisms. The algal bed food web showed little variation between restored and natural habitats.

  8. Estuaries and Tidal Marshes. Habitat Pac.

    Science.gov (United States)

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    This educational packet consists of an overview, three lesson plans, student data sheets, and a poster. The overview examines estuaries and tidal or salt marshes by discussing the plants and animals in these habitats, marsh productivity, benefits and management of the habitats, historical aspects, and development and pollution. A glossary and list…

  9. STUDI POLA SPASIAL PERSEBARAN GAHARU (Aquilaria spp. DAN KETERKAITANNYA DENGAN KONDISI HABITAT DI TAMAN NASIONAL KUTAI KALIMANTAN TIMUR

    Directory of Open Access Journals (Sweden)

    Didit Okta Pribadi

    2009-01-01

    Full Text Available Agarwood is an important forest product due to its high economic value. However, the natural population of agarwood species has been decreasing rapidly because of over exploitation, therefore the international trade of the most important agarwood species (i.e. Aquilaria malaccensis is restricted to just a small quota. This research was conducted in an attempt to provide basic information for the conservation of Aquilaria spp. by identifying the species spatial distribution and habitat characteristics and developing a linkage model between their abundance and habitat characteristics. Data were collected through a field survey at Kutai National Park in August 2006 with Aquilaria spp. as the target species. Data on the species localities were used to determine the species densities and the value of Distance Index of Dispersion. The ordinance levels between the target species and the surrounding other species were identified using a correspondence analysis, while the linkage model between the species abundance and habitat characteristics was established using an ordinal multinomial logit model. The results showed that Aquilaria spp. had a low density (0.01/ha and were spatially distributed in a clump pattern. The abundance of Aquilaria species had a close association with soil texture, humidity and acidity, land elevation, air temperature and humidity, and light intensity. The abundance decreased with increasing the proportion of sandy clay loam content, soil humidity and acidity, land elevation, and light intensity. In contrast, the abundance increased with increasing sandy loam content, air temperature and air humidity. The existence of A. malaccensis was likely to associate with the existence of Goniothalamus sp., Macaranga sp., Vordia splendidissima, Lygopodium sp., and Stachyphrynium borneensis.

  10. A GIS model of habitat suitability for Solanum conocarpum (Solanaceae) in St. John, US Virgin Islands

    Science.gov (United States)

    Palumbo, Matthew D.; Fleming, Jonathan P.; Monsegur, Omar A.; Vilella, Francisco

    2016-01-01

    Solanum conocarpum (Solanaceae) (Marron Bacora) is a rare, dry-forest shrub endemic to the island of St. John, US Virgin Islands, considered for listing under the Endangered Species Act. Given its status as a species of conservation concern, we incorporated environmental characteristics of 3 observed populations and 5 additional known locations into a geographic information system (GIS) analysis to create a habitat-suitability model for the species on the island of St. John. Our model identified 1929.87 ha of highly suitable and moderately suitable habitat. Of these, 1161.20 ha (60.2%) occurred within the boundaries of Virgin Islands National Park. Our model provides spatial information on potential locations for future surveys and restoration sites for this endemic species of the US Virgin Islands.

  11. Complementary habitat use by wild bees in agro-natural landscapes.

    Science.gov (United States)

    Mandelik, Yael; Winfree, Rachael; Neeson, Thomas; Kremen, Claire

    2012-07-01

    Human activity causes abrupt changes in resource availability across the landscape. In order to persist in human-altered landscapes organisms need to shift their habitat use accordingly. Little is known about the mechanisms by which whole communities persist in human-altered landscapes, including the role of complementary habitat use. We define complementary habitat use as the use of different habitats at different times by the same group of species during the course of their activity period. We hypothesize that complementary habitat use is a mechanism through which native bee species persist in human-altered landscapes. To test this idea, we studied wild bee communities in agro-natural landscapes and explored their community-level patterns of habitat and resource use over space and time. The study was conducted in six agro-natural landscapes in the eastern United States, each containing three main bee habitat types (natural habitat, agricultural fields, and old fields). Each of the three habitats exhibited a unique seasonal pattern in amount, diversity, and composition of floral resources, and together they created phenological complementarity in foraging resources for bees. Individual bee species as well as the bee community responded to these spatiotemporal patterns in floral availability and exhibited a parallel pattern of complementary habitat use. The majority of wild bee species, including all the main crop visitors, used fallow areas within crops early in the season, shifted to crops in mid-season, and used old-field habitats later in the season. The natural-forest habitat supported very limited number of bees, mostly visitors of non-crop plants. Old fields are thus an important feature in these arable landscapes for maintaining crop pollination services. Our study provides a detailed examination of how shifts in habitat and resource use may enable bees to persist in highly dynamic agro-natural landscapes, and points to the need for a broad cross-habitat

  12. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico

    Directory of Open Access Journals (Sweden)

    Neville Paul

    2006-12-01

    Full Text Available Abstract Background We conducted Geographic Information System (GIS habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. Results We found 16% of suitable habitat (6% of the study area distributed in 13 patches of at least 3,200 ha and 11% of suitable habitat (4% of the study area distributed in four patches over 7,238 ha. The area converted from native vegetation types comprised 17% of the study area. Ninety-five percent of agricultural conversion occurred on private lands in the northeastern corner of the study area. Most known herbicide-related conversions (82% occurred in rangelands in the western part of the study area, on lands managed primarily by the US Bureau of Land Management (BLM. We identified 88,190 ha (10% of the study area of habitats with reasonable restoration potential. Sixty-two percent of the primary population area (PPA contained occupied, suitable, or potentially suitable habitat, leaving 38% that could be considered for oil and gas development. Conclusion Although suitable LPCH habitat appears at first glance to be abundant in southeastern New Mexico, only a fraction of apparently suitable vegetation types constitute quality habitat. However, we identified habitat patches that could be restored through mesquite control or shin-oak reintroduction. The analysis also identified areas of unsuitable habitat with low restoration potential that could be targeted for oil and gas exploration, in lieu of occupied, high-quality habitats. Used in combination with GIS analysis and current LPCH population data, the habitat map represents a powerful conservation and management tool.

  13. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico.

    Science.gov (United States)

    Johnson, Kristine; Neville, Teri B; Neville, Paul

    2006-12-04

    We conducted Geographic Information System (GIS) habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus) conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. We found 16% of suitable habitat (6% of the study area) distributed in 13 patches of at least 3,200 ha and 11% of suitable habitat (4% of the study area) distributed in four patches over 7,238 ha. The area converted from native vegetation types comprised 17% of the study area. Ninety-five percent of agricultural conversion occurred on private lands in the northeastern corner of the study area. Most known herbicide-related conversions (82%) occurred in rangelands in the western part of the study area, on lands managed primarily by the US Bureau of Land Management (BLM). We identified 88,190 ha (10% of the study area) of habitats with reasonable restoration potential. Sixty-two percent of the primary population area (PPA) contained occupied, suitable, or potentially suitable habitat, leaving 38% that could be considered for oil and gas development. Although suitable LPCH habitat appears at first glance to be abundant in southeastern New Mexico, only a fraction of apparently suitable vegetation types constitute quality habitat. However, we identified habitat patches that could be restored through mesquite control or shin-oak reintroduction. The analysis also identified areas of unsuitable habitat with low restoration potential that could be targeted for oil and gas exploration, in lieu of occupied, high-quality habitats. Used in combination with GIS analysis and current LPCH population data, the habitat map represents a powerful conservation and management tool.

  14. Physical habitat simulation system reference manual: version II

    Science.gov (United States)

    Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.

    1989-01-01

    There are four major components of a stream system that determine the productivity of the fishery (Karr and Dudley 1978). These are: (1) flow regime, (2) physical habitat structure (channel form, substrate distribution, and riparian vegetation), (3) water quality (including temperature), and (4) energy inputs from the watershed (sediments, nutrients, and organic matter). The complex interaction of these components determines the primary production, secondary production, and fish population of the stream reach. The basic components and interactions needed to simulate fish populations as a function of management alternatives are illustrated in Figure I.1. The assessment process utilizes a hierarchical and modular approach combined with computer simulation techniques. The modular components represent the "building blocks" for the simulation. The quality of the physical habitat is a function of flow and, therefore, varies in quality and quantity over the range of the flow regime. The conceptual framework of the Incremental Methodology and guidelines for its application are described in "A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology" (Bovee 1982). Simulation of physical habitat is accomplished using the physical structure of the stream and streamflow. The modification of physical habitat by temperature and water quality is analyzed separately from physical habitat simulation. Temperature in a stream varies with the seasons, local meteorological conditions, stream network configuration, and the flow regime; thus, the temperature influences on habitat must be analysed on a stream system basis. Water quality under natural conditions is strongly influenced by climate and the geological materials, with the result that there is considerable natural variation in water quality. When we add the activities of man, the possible range of water quality possibilities becomes rather large. Consequently, water quality must also be analysed on a

  15. Comparison of two methods for estimating the abundance, diversity and habitat preference of fluvial macroinvertebrates in contrasting habitats

    NARCIS (Netherlands)

    Alonso, A.; Camargo, J.A.

    2010-01-01

    In this research we evaluate the effects of the method used for estimating the potential surface available for benthic macroinvertebrates in macrophyte and unvegetated habitats on several metrics and habitat preference of aquatic macroinvertebrates in the upper catchment of the Henares River

  16. Explaining variation in adult Anopheles indoor resting abundance: the relative effects of larval habitat proximity and insecticide-treated bed net use.

    Science.gov (United States)

    McCann, Robert S; Messina, Joseph P; MacFarlane, David W; Bayoh, M Nabie; Gimnig, John E; Giorgi, Emanuele; Walker, Edward D

    2017-07-17

    Spatial determinants of malaria risk within communities are associated with heterogeneity of exposure to vector mosquitoes. The abundance of adult malaria vectors inside people's houses, where most transmission takes place, should be associated with several factors: proximity of houses to larval habitats, structural characteristics of houses, indoor use of vector control tools containing insecticides, and human behavioural and environmental factors in and near houses. While most previous studies have assessed the association of larval habitat proximity in landscapes with relatively low densities of larval habitats, in this study these relationships were analysed in a region of rural, lowland western Kenya with high larval habitat density. 525 houses were sampled for indoor-resting mosquitoes across an 8 by 8 km study area using the pyrethrum spray catch method. A predictive model of larval habitat location in this landscape, previously verified, provided derivations of indices of larval habitat proximity to houses. Using geostatistical regression models, the association of larval habitat proximity, long-lasting insecticidal nets (LLIN) use, house structural characteristics (wall type, roof type), and peridomestic variables (cooking in the house, cattle near the house, number of people sleeping in the house) with mosquito abundance in houses was quantified. Vector abundance was low (mean, 1.1 adult Anopheles per house). Proximity of larval habitats was a strong predictor of Anopheles abundance. Houses without an LLIN had more female Anopheles gambiae s.s., Anopheles arabiensis and Anopheles funestus than houses where some people used an LLIN (rate ratios, 95% CI 0.87, 0.85-0.89; 0.84, 0.82-0.86; 0.38, 0.37-0.40) and houses where everyone used an LLIN (RR, 95% CI 0.49, 0.48-0.50; 0.39, 0.39-0.40; 0.60, 0.58-0.61). Cooking in the house also reduced Anopheles abundance across all species. The number of people sleeping in the house, presence of cattle near the house

  17. Habitat Mapping and Classification of the Grand Bay National Estuarine Research Reserve using AISA Hyperspectral Imagery

    Science.gov (United States)

    Rose, K.

    2012-12-01

    Habitat mapping and classification provides essential information for land use planning and ecosystem research, monitoring and management. At the Grand Bay National Estuarine Research Reserve (GRDNERR), Mississippi, habitat characterization of the Grand Bay watershed will also be used to develop a decision-support tool for the NERR's managers and state and local partners. Grand Bay NERR habitat units were identified using a combination of remotely sensed imagery, aerial photography and elevation data. Airborne Imaging Spectrometer for Applications (AISA) hyperspectral data, acquired 5 and 6 May 2010, was analyzed and classified using ENVI v4.8 and v5.0 software. The AISA system was configured to return 63 bands of digital imagery data with a spectral range of 400 to 970 nm (VNIR), spectral resolution (bandwidth) at 8.76 nm, and 1 m spatial resolution. Minimum Noise Fraction (MNF) and Inverse Minimum Noise Fraction were applied to the data prior to using Spectral Angle Mapper ([SAM] supervised) and ISODATA (unsupervised) classification techniques. The resulting class image was exported to ArcGIS 10.0 and visually inspected and compared with the original imagery as well as auxiliary datasets to assist in the attribution of habitat characteristics to the spectral classes, including: National Agricultural Imagery Program (NAIP) aerial photography, Jackson County, MS, 2010; USFWS National Wetlands Inventory, 2007; an existing GRDNERR habitat map (2004), SAV (2009) and salt panne (2002-2003) GIS produced by GRDNERR; and USACE lidar topo-bathymetry, 2005. A field survey to validate the map's accuracy will take place during the 2012 summer season. ENVI's Random Sample generator was used to generate GIS points for a ground-truth survey. The broad range of coastal estuarine habitats and geomorphological features- many of which are transitional and vulnerable to environmental stressors- that have been identified within the GRDNERR point to the value of the Reserve for

  18. Habitat Evaluation Procedures (HEP) Report; Gamblin Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On August 12, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Gamblin Lake property, an acquisition completed by the Kalispel Tribe of Indians in December 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Gamblin Lake Project provides a total of 273.28 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 127.92 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 21.06 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Wet meadow provides 78.05 HUs for Canada goose and mallard. Emergent wetland habitat provides 46.25 HUs for mallard, muskrat, and Canada goose. The objective of using HEP at the Gamblin Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  19. A test of the habitat suitability model for Merriam's wild turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1996-01-01

    An important research area regarding the wild turkey (Meleagris gallopavo) is development of sound habitat models. Habitat models provide standardized methods to quantify wild turkey habitat and stimulate new research hypotheses. Habitat suitability index (HSI) models show species-habitat relationships on a scale of O-l, with 1 being optimum. A...

  20. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico

    OpenAIRE

    Johnson, Kristine; Neville, Teri B; Neville, Paul

    2006-01-01

    Abstract Background We conducted Geographic Information System (GIS) habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus) conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. Results We f...

  1. Habitat Fragmentation and Native Bees: a Premature Verdict?

    Directory of Open Access Journals (Sweden)

    James H. Cane

    2001-06-01

    Full Text Available Few studies directly address the consequences of habitat fragmentation for communities of pollinating insects, particularly for the key pollinator group, bees (Hymenoptera: Apiformes. Bees typically live in habitats where nesting substrates and bloom are patchily distributed and spatially dissociated. Bee studies have all defined habitat fragments as remnant patches of floral hosts or forests, overlooking the nesting needs of bees. Several authors conclude that habitat fragmentation is broadly deleterious, but their own data show that some native species proliferate in sampled fragments. Other studies report greater densities and comparable diversities of native bees at flowers in some fragment size classes relative to undisrupted habitats, but find dramatic shifts in species composition. Insightful studies of habitat fragmentation and bees will consider fragmentation, alteration, and loss of nesting habitats, not just patches of forage plants, as well as the permeability of the surrounding matrix to interpatch movement. Inasmuch as the floral associations and nesting habits of bees are often attributes of species or subgenera, ecological interpretations hinge on authoritative identifications. Study designs must accommodate statistical problems associated with bee community samples, especially non-normal data and frequent zero values. The spatial scale of fragmentation must be appreciated: bees of medium body size can regularly fly 1-2 km from nest site to forage patch. Overall, evidence for prolonged persistence of substantial diversity and abundances of native bee communities in habitat fragments of modest size promises practical solutions for maintaining bee populations. Provided that reserve selection, design, and management can address the foraging and nesting needs of bees, networks of even small reserves may hold hope for sustaining considerable pollinator diversity and the ecological services pollinators provide.

  2. Habitat associations of migrating and overwintering grassland birds in Southern Texas

    Science.gov (United States)

    Igl, Lawrence D.; Ballard, Bart M.

    1999-01-01

    We report on the habitat associations of 21 species of grassland birds overwintering in or migrating through southern Texas, during 1991-1992 and 1992-1993. Ninety percent of our grassland bird observations were made during winter and spring, and only 10% occurred during fall. Grassland species made up a high proportion of the total bird densities in grassland and shrub-grassland habitats, but much lower proportions in the habitats with more woody vegetation. Fewer grassland species were observed in grassland and woodland than in brushland, parkland, and shrub-grassland habitats. Grassland birds generally were found in higher densities in habitats that had woody canopy coverage of < 30%; densities of grassland birds were highest in shrub-grassland habitat and lowest in woodland habitat. Species that are grassland specialists on their breeding grounds tended to be more habitat specific during the nonbreeding season compared to shrub-grassland specialists, which were more general in their nonbreeding-habitat usage. Nonetheless, our data demonstrate that grassland birds occur in a variety of habitats during the nonbreeding season and seem to occupy a broader range of habitats than previously described.

  3. Chamaedorea: diverse species in diverse habitats

    Directory of Open Access Journals (Sweden)

    1992-01-01

    Full Text Available DIVERSES ESPÈCES DANS DIVERS HABITATS. Des espèces extraordinairement diverses se trouvant dans des habitats également divers caractérisent Chamaedorea, un genre qui compte environ 90 espèces dioïques limitées aux sous-bois des forêts néo-tropicales constamment dans la pluie et les nuages du Mexique à la Bolivie et à l’Équateur. Une vaste gamme de formes biologiques, de tiges, de feuilles, d’inflorescences, de fleurs, et de fruits reflète la diversité des espèces. Bien que le genre soit plus riche en espèces dans les forêts denses et humides situées entre 800-1,500 mètres d’altitude, quelques espèces exceptionnelles se trouvent dans des forêts moins denses et/ou occasionnellement sèches, sur des substances dures ou dans d’autres habitats inhabituels. DIVERSAS ESPECIES EN DIVERSOS HÁBITATS. Especies notablemente diversas presentes en habitats igualmente diversos caracterizan a Chamaedorea, un genero de aproximadamente 90 especies dioicas limitadas al sotobosque de los bosques lluviosos y nubosos neotropicales desde Mexico hasta Bolivia y Ecuador. Una amplia gama de formas biológicas, tallos, hojas, inflorescencias, flores, y frutos refleja la diversidad de las especies. Aunque el género es más rico en especies en los bosques densos y húmedos de 800-1,500 metros de altura, unas pocas especies excepcionales ocurren en bosques abiertos o ocasionalmente secos, en substrato severo o en otros habitats extraordinarios. Remarkably diverse species occurring in equally diverse habitats characterize Chamaedorea, a genus of about 90, dioecious species restricted to the understory of neotropical rain and cloud forests from Mexico to Bolivia and Ecuador. A vast array of habits, stems, leaves, inflorescences, flowers, and fruits reflect the diversity of species. Although the genus is most species-rich in dense, moist or wet, diverse forests from 800-1,500 meters elevation, a few exceptional species occur in open and/or seasonally

  4. Specializing on vulnerable habitat: Acropora selectivity among damselfish recruits and the risk of bleaching-induced habitat loss

    Science.gov (United States)

    Bonin, M. C.

    2012-03-01

    Coral reef habitats are increasingly being degraded and destroyed by a range of disturbances, most notably climate-induced coral bleaching. Habitat specialists, particularly those associated with susceptible coral species, are clearly among the most vulnerable to population decline or extinction. However, the degree of specialization on coral microhabitats is still unclear for one of the most ubiquitous, abundant and well studied of coral reef fish families—the damselfishes (Pomacentridae). Using high taxonomic resolution surveys of microhabitat use and availability, this study provides the first species-level description of patterns of Acropora selectivity among recruits of 10 damselfish species in order to determine their vulnerability to habitat degradation. In addition, surveys of the bleaching susceptibility of 16 branching coral species revealed which preferred recruitment microhabitats are at highest risk of decline as a result of chronic coral bleaching. Four species (i.e., Chrysiptera parasema, Pomacentrus moluccensis, Dascyllus melanurus and Chromis retrofasciata) were identified as highly vulnerable because they used only branching hard corals as recruitment habitat and primarily associated with only 2-4 coral species. The bleaching surveys revealed that five species of Acropora were highly susceptible to bleaching, with more than 50% of colonies either severely bleached or already dead. These highly susceptible corals included two of the preferred microhabitats of the specialist C. parasema and represented a significant proportion of its total recruitment microhabitat. In contrast, highly susceptible corals were rarely used by another specialist, P. moluccensis, suggesting that this species faces a lower risk of bleaching-induced habitat loss compared to C. parasema. As degradation to coral reef habitats continues, specialists will increasingly be forced to use alternative recruitment microhabitats, and this is likely to reduce population

  5. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  6. Assessing habitat connectivity for ground-dwelling animals in an urban environment.

    Science.gov (United States)

    Braaker, S; Moretti, M; Boesch, R; Ghazoul, J; Obrist, M K; Bontadina, F

    To ensure viable species populations in fragmented landscapes, individuals must be able to move between suitable habitat patches. Despite the increased interest in biodiversity assessment in urban environments, the ecological relevance of habitat connectivity in highly fragmented landscapes remains largely unknown. The first step to understanding the role of habitat connectivity in urban ecology is the challenging task of assessing connectivity in the complex patchwork of contrasting habitats that is found in cities. We developed a data-based framework, minimizing the use of subjective assumptions, to assess habitat connectivity that consists of the following sequential steps: (1) identification of habitat preference based on empirical habitat-use data; (2) derivation of habitat resistance surfaces evaluating various transformation functions; (3) modeling of different connectivity maps with electrical circuit theory (Circuitscape), a method considering all possible pathways across the landscape simultaneously; and (4) identification of the best connectivity map with information-theoretic model selection. We applied this analytical framework to assess habitat connectivity for the European hedgehog Erinaceus europaeus, a model species for ground-dwelling animals, in the city of Zurich, Switzerland, using GPS track points from 40 individuals. The best model revealed spatially explicit connectivity “pinch points,” as well as multiple habitat connections. Cross-validation indicated the general validity of the selected connectivity model. The results show that both habitat connectivity and habitat quality affect the movement of urban hedgehogs (relative importance of the two variables was 19.2% and 80.8%, respectively), and are thus both relevant for predicting urban animal movements. Our study demonstrates that even in the complex habitat patchwork of cities, habitat connectivity plays a major role for ground-dwelling animal movement. Data-based habitat connectivity

  7. Desert tortoise use of burned habitat in the Eastern Mojave desert

    Science.gov (United States)

    Drake, Karla K.; Esque, Todd C.; Nussear, Kenneth E.; DeFalco, Lesley; Scoles, Sara; Modlin, Andrew T.; Medica, Philip A.

    2015-01-01

    Wildfires burned 24,254 ha of critical habitat designated for the recovery of the threatened Mojave desert tortoise (Gopherus agassizii) in southern Nevada during 2005. The proliferation of non-native annual grasses has increased wildfire frequency and extent in recent decades and continues to accelerate the conversion of tortoise habitat across the Mojave Desert. Immediate changes to vegetation are expected to reduce quality of critical habitat, yet whether tortoises will use burned and recovering habitat differently from intact unburned habitat is unknown. We compared movement patterns, home-range size, behavior, microhabitat use, reproduction, and survival for adult desert tortoises located in, and adjacent to, burned habitat to understand how tortoises respond to recovering burned habitat. Approximately 45% of home ranges in the post-fire environment contained burned habitat, and numerous observations (n = 12,223) corroborated tortoise use of both habitat types (52% unburned, 48% burned). Tortoises moved progressively deeper into burned habitat during the first 5 years following the fire, frequently foraging in burned habitats that had abundant annual plants, and returning to adjacent unburned habitat for cover provided by intact perennial vegetation. However, by years 6 and 7, the live cover of the short-lived herbaceous perennial desert globemallow (Sphaeralcea ambigua) that typically re-colonizes burned areas declined, resulting in a contraction of tortoise movements from the burned areas. Health and egg production were similar between burned and unburned areas indicating that tortoises were able to acquire necessary resources using both areas. This study documents that adult Mojave desert tortoises continue to use habitat burned once by wildfire. Thus, continued management of this burned habitat may contribute toward the recovery of the species in the face of many sources of habitat loss.

  8. Beyond habitat structure: Landscape heterogeneity explains the monito del monte (Dromiciops gliroides) occurrence and behavior at habitats dominated by exotic trees.

    Science.gov (United States)

    Salazar, Daniela A; Fontúrbel, Francisco E

    2016-09-01

    Habitat structure determines species occurrence and behavior. However, human activities are altering natural habitat structure, potentially hampering native species due to the loss of nesting cavities, shelter or movement pathways. The South American temperate rainforest is experiencing an accelerated loss and degradation, compromising the persistence of many native species, and particularly of the monito del monte (Dromiciops gliroides Thomas, 1894), an arboreal marsupial that plays a key role as seed disperser. Aiming to compare 2 contrasting habitats (a native forest and a transformed habitat composed of abandoned Eucalyptus plantations and native understory vegetation), we assessed D. gliroides' occurrence using camera traps and measured several structural features (e.g. shrub and bamboo cover, deadwood presence, moss abundance) at 100 camera locations. Complementarily, we used radio telemetry to assess its spatial ecology, aiming to depict a more complete scenario. Moss abundance was the only significant variable explaining D. gliroides occurrence between habitats, and no structural variable explained its occurrence at the transformed habitat. There were no differences in home range, core area or inter-individual overlapping. In the transformed habitats, tracked individuals used native and Eucalyptus-associated vegetation types according to their abundance. Diurnal locations (and, hence, nesting sites) were located exclusively in native vegetation. The landscape heterogeneity resulting from the vicinity of native and Eucalyptus-associated vegetation likely explains D. gliroides occurrence better than the habitat structure itself, as it may be use Eucalyptus-associated vegetation for feeding purposes but depend on native vegetation for nesting. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  9. Lowland tapir distribution and habitat loss in South America

    Directory of Open Access Journals (Sweden)

    Jose Luis Passos Cordeiro

    2016-09-01

    Full Text Available The development of species distribution models (SDMs can help conservation efforts by generating potential distributions and identifying areas of high environmental suitability for protection. Our study presents a distribution and habitat map for lowland tapir in South America. We also describe the potential habitat suitability of various geographical regions and habitat loss, inside and outside of protected areas network. Two different SDM approaches, MAXENT and ENFA, produced relative different Habitat Suitability Maps for the lowland tapir. While MAXENT was efficient at identifying areas as suitable or unsuitable, it was less efficient (when compared to the results by ENFA at identifying the gradient of habitat suitability. MAXENT is a more multifaceted technique that establishes more complex relationships between dependent and independent variables. Our results demonstrate that for at least one species, the lowland tapir, the use of a simple consensual approach (average of ENFA and MAXENT models outputs better reflected its current distribution patterns. The Brazilian ecoregions have the highest habitat loss for the tapir. Cerrado and Atlantic Forest account for nearly half (48.19% of the total area lost. The Amazon region contains the largest area under protection, and the most extensive remaining habitat for the tapir, but also showed high levels of habitat loss outside protected areas, which increases the importance of support for proper management.

  10. Lowland tapir distribution and habitat loss in South America.

    Science.gov (United States)

    Cordeiro, Jose Luis Passos; Fragoso, José M V; Crawshaw, Danielle; Oliveira, Luiz Flamarion B

    2016-01-01

    The development of species distribution models (SDMs) can help conservation efforts by generating potential distributions and identifying areas of high environmental suitability for protection. Our study presents a distribution and habitat map for lowland tapir in South America. We also describe the potential habitat suitability of various geographical regions and habitat loss, inside and outside of protected areas network. Two different SDM approaches, MAXENT and ENFA, produced relative different Habitat Suitability Maps for the lowland tapir. While MAXENT was efficient at identifying areas as suitable or unsuitable, it was less efficient (when compared to the results by ENFA) at identifying the gradient of habitat suitability. MAXENT is a more multifaceted technique that establishes more complex relationships between dependent and independent variables. Our results demonstrate that for at least one species, the lowland tapir, the use of a simple consensual approach (average of ENFA and MAXENT models outputs) better reflected its current distribution patterns. The Brazilian ecoregions have the highest habitat loss for the tapir. Cerrado and Atlantic Forest account for nearly half (48.19%) of the total area lost. The Amazon region contains the largest area under protection, and the most extensive remaining habitat for the tapir, but also showed high levels of habitat loss outside protected areas, which increases the importance of support for proper management.

  11. Habitat Evaluation Procedures (HEP) Report; Beaver Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On August 14, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in November 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Beaver Lake Project provides a total of 232.26 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 136.58 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 20.02 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Scrub-shrub wetland habitat provides 7.67 HUs for mallard, yellow warbler, and white-tailed deer. Grassland meadow provides 22.69 HUs for Canada goose and mallard. Emergent wetlands provide 35.04 HUs for Canada goose, mallard, and muskrat. Open water provided 10.26 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  12. Eco-physiological adaptation of dominant tree species at two contrasting karst habitats in southwestern China [v2; ref status: indexed, http://f1000r.es/2d9

    Directory of Open Access Journals (Sweden)

    Shouren Zhang

    2013-11-01

    Full Text Available The purpose of this study was to investigate the eco-physiological adaptation of indigenous woody species to their habitats in karst areas of southwestern China. Two contrasting forest habitats were studied: a degraded habitat in Daxiagu and a well-developed habitat in Tianlongshan, and the eco-physiological characteristics of the trees were measured for three growth seasons. Photosynthetic rate (Pn, stomatal conductance (gs, and transpiration rate (Tr of the tree species in Daxiagu were 2-3 times higher than those in Tianlongshan under ambient conditions. However, this habitat effect was not significant when measurements were taken under controlled conditions. Under controlled conditions, Pn, gs, and Tr of the deciduous species were markedly higher than those for the evergreen species. Habitat had no significant effect on water use efficiency (WUE or photochemical characteristics of PSII. The stomatal sensitivity of woody species in the degraded habitat was much higher than that in the well-developed habitat. Similarly, the leaf total nitrogen (N and phosphorus (P contents expressed on the basis of either dry mass or leaf area were also much higher in Daxiagu than they were in Tianlongshan. The mass-based leaf total N content of deciduous species was much higher than that of evergreen species, while leaf area-based total N and P contents of evergreens were significantly higher than those of deciduous species. The photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE of deciduous species were much higher than those of evergreens. Further, the PPUE of the woody species in Tianlongshan was much higher than that  of the woody species in Daxiagu. The results from three growth seasons imply that the tree species were able to adapt well to their growth habitats. Furthermore, it seems that so-called “temporary drought stress” may not occur, or may not be severe for most woody plants in karst areas of southwestern China.

  13. The spatial structure of habitat selection: A caribou's-eye-view

    Science.gov (United States)

    Mayor, Stephen J.; Schaefer, James A.; Schneider, David C.; Mahoney, Shane P.

    2009-03-01

    Greater understanding of habitat selection requires investigation at the scales at which organisms perceive and respond to their environment. Such knowledge could reveal the relative importance of factors limiting populations and the extent of response to habitat changes, and so guide conservation initiatives. We conducted a novel, spatially explicit analysis of winter habitat selection by caribou ( Rangifer tarandus) in Newfoundland, Canada, to elucidate the spatial scales of habitat selection. We combined conventional hierarchical habitat analysis with a newly developed geospatial approach that quantifies selection across scales as the difference in variance between available and used sites. We used both ordination and univariate analyses of lichen and plant cover, snow hardness and depth. This represents the first use of ordination with geostatistics for the assessment of habitat selection. Caribou habitat selection was driven by shallow, soft snow and high cover of Cladina lichens and was strongest at feeding microsites (craters) and broader feeding areas. Habitat selection was most evident at distance lags of up to 15 km, perhaps an indication of the perceptual abilities of caribou.

  14. Does fragmentation of Urtica habitats affect phytophagous and predatory insects differentially?

    Science.gov (United States)

    Zabel, Jörg; Tscharntke, Teja

    1998-09-01

    Effects of habitat fragmentation on the insect community of stinging nettle (Urtica dioica L.) were studied, using 32 natural nettle patches of different area and degree of isolation in an agricultural landscape. Habitat fragmentation reduced the species richness of Heteroptera, Auchenorrhyncha, and Coleoptera, and the abundance of populations. Habitat isolation and area reduction did not affect all insect species equally. Monophagous herbivores had a higher probability of absence from small patches than all (monophagous and polyphagous) herbivore species, and the percentage of monophagous herbivores increased with habitat area. Abundance and population variability of species were negatively correlated and could both be used as a predictor of the percentage of occupied habitats. Species richness of herbivores correlated (positively) with habitat area, while species richness of predators correlated (negatively) with habitat isolation. In logistic regressions, the probability of absence of monophagous herbivores from habitat patches could only be explained by habitat area (in 4 out of 10 species) and predator absence probability only by habitat isolation (in 3 out of 14 species). Presumably because of the instability of higher-trophic-level populations and dispersal limitation, predators were more affected by habitat isolation than herbivores, while they did not differ from herbivore populations with respect to abundance or variability. Thus increasing habitat connectivity in the agricultural landscape should primarily promote predator populations.

  15. Island Species Richness Increases with Habitat Diversity

    NARCIS (Netherlands)

    Hortal, J.; Triantis, K.A.; Meiri, S.; Thebault, E.M.C.; Sfenthourakis, S.

    2009-01-01

    Species richness is commonly thought to increase with habitat diversity. However, a recent theoretical model aiming to unify niche and island biogeography theories predicted a hump-shaped relationship between richness and habitat diversity. Given the contradiction between model results and previous

  16. The Use of Aerial RGB Imagery and LIDAR in Comparing Ecological Habitats and Geomorphic Features on a Natural versus Man-Made Barrier Island

    Directory of Open Access Journals (Sweden)

    Carlton P. Anderson

    2016-07-01

    Full Text Available The Mississippi (MS barrier island chain along the northern Gulf of Mexico coastline is subject to rapid changes in habitat, geomorphology and elevation by natural and anthropogenic disturbances. The purpose of this study was to compare habitat type coverage with respective elevation, geomorphic features and short-term change between the naturally-formed East Ship Island and the man-made Sand Island. Ground surveys, multi-year remotely-sensed data, habitat classifications and digital elevation models were used to quantify short-term habitat and geomorphic change, as well as to examine the relationships between habitat types and micro-elevation. Habitat types and species composition were the same on both islands with the exception of the algal flat existing on the lower elevated spits of East Ship. Both islands displayed common patterns of vegetation succession and ranges of existence in elevation. Additionally, both islands showed similar geomorphic features, such as fore and back dunes and ponds. Storm impacts had the most profound effects on vegetation and geomorphic features throughout the study period. Although vastly different in age, these two islands show remarkable commonalities among the traits investigated. In comparison to East Ship, Sand Island exhibits key characteristics of a natural barrier island in terms of its vegetated habitats, geomorphic features and response to storm impacts, although it was established anthropogenically only decades ago.

  17. CADDIS Volume 2. Sources, Stressors and Responses: Physical Habitat - Detailed Conceptual Diagram

    Science.gov (United States)

    Introduction to the Physical Habitat module, when to list Physical Habitat as a candidate cause, ways to measure Physical Habitat, simple and detailed conceptual diagrams for Physical Habitat, Physical Habitat module references and literature reviews.

  18. CADDIS Volume 2. Sources, Stressors and Responses: Physical Habitat - Simple Conceptual Diagram

    Science.gov (United States)

    Introduction to the Physical Habitat module, when to list Physical Habitat as a candidate cause, ways to measure Physical Habitat, simple and detailed conceptual diagrams for Physical Habitat, Physical Habitat module references and literature reviews.

  19. Pollen and gene flow in fragmented habitats

    NARCIS (Netherlands)

    Kwak, Manja M.; Velterop, Odilia; van Andel, Jelte

    . Habitat fragmentation affects both plants and pollinators. Habitat fragmentation leads to changes in species richness, population number and size, density, and shape, thus to changes in the spatial arrangement of flowers. These changes influence the amount of food for flower-visiting insects and

  20. Environmental factors and habitat use influence body condition of individuals in a species at risk, the grizzly bear.

    Science.gov (United States)

    Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B; Janz, David M

    2014-01-01

    Metrics used to quantify the condition or physiological states of individuals provide proactive mechanisms for understanding population dynamics in the context of environmental factors. Our study examined how anthropogenic disturbance, habitat characteristics and hair cortisol concentrations interpreted as a sex-specific indicator of potential habitat net-energy demand affect the body condition of grizzly bears (n = 163) in a threatened population in Alberta, Canada. We quantified environmental variables by modelling spatial patterns of individual habitat use based on global positioning system telemetry data. After controlling for gender, age and capture effects, we assessed the influence of biological and environmental variables on body condition using linear mixed-effects models in an information theoretical approach. Our strongest model suggested that body condition was improved when patterns of habitat use included greater vegetation productivity, increased influence of forest harvest blocks and oil and gas well sites, and a higher percentage of regenerating and coniferous forest. However, body condition was negatively affected by habitat use in close proximity to roads and in areas where potential energetic demands were high. Poor body condition was also associated with increased selection of parks and protected areas and greater seasonal vegetation productivity. Adult females, females with cubs-of-year, juvenile females and juvenile males were in poorer body condition compared with adult males, suggesting that intra-specific competition and differences in habitat use based on gender and age may influence body condition dynamics. Habitat net-energy demand also tended to be higher in areas used by females which, combined with observed trends in body condition, could affect reproductive success in this threatened population. Our results highlight the importance of considering spatiotemporal variability in environmental factors and habitat use when assessing

  1. Breeding Guild Determines Frog Distributions in Response to Edge Effects and Habitat Conversion in the Brazil's Atlantic Forest.

    Directory of Open Access Journals (Sweden)

    Rodrigo B Ferreira

    Full Text Available Understanding the response of species with differing life-history traits to habitat edges and habitat conversion helps predict their likelihood of persistence across changing landscape. In Brazil's Atlantic Forest, we evaluated frog richness and abundance by breeding guild at four distances from the edge of a reserve: i 200 m inside the forest, ii 50 m inside the forest, iii at the forest edge, and iv 50 m inside three different converted habitats (coffee plantation, non-native Eucalyptus plantation, and abandoned pastures, hereafter matrix types. By sampling a dry and a wet season, we recorded 622 individual frogs representing 29 species, of which three were undescribed. Breeding guild (i.e. bromeliad, leaf-litter, and water-body breeders was the most important variable explaining frog distributions in relation to edge effects and matrix types. Leaf-litter and bromeliad breeders decreased in richness and abundance from the forest interior toward the matrix habitats. Water-body breeders increased in richness toward the matrix and remained relatively stable in abundance across distances. Number of large trees (i.e. DBH > 15 cm and bromeliads best explained frog richness and abundance across distances. Twenty species found in the interior of the forest were not found in any matrix habitat. Richness and abundance across breeding guilds were higher in the rainy season but frog distributions were similar across the four distances in the two seasons. Across matrix types, leaf-litter species primarily used Eucalyptus plantations, whereas water-body species primarily used coffee plantations. Bromeliad breeders were not found inside any matrix habitat. Our study highlights the importance of primary forest for bromeliad and leaf-litter breeders. We propose that water-body breeders use edge and matrix habitats to reach breeding habitats along the valleys. Including life-history characteristics, such as breeding guild, can improve predictions of frog

  2. Breeding Guild Determines Frog Distributions in Response to Edge Effects and Habitat Conversion in the Brazil's Atlantic Forest.

    Science.gov (United States)

    Ferreira, Rodrigo B; Beard, Karen H; Crump, Martha L

    2016-01-01

    Understanding the response of species with differing life-history traits to habitat edges and habitat conversion helps predict their likelihood of persistence across changing landscape. In Brazil's Atlantic Forest, we evaluated frog richness and abundance by breeding guild at four distances from the edge of a reserve: i) 200 m inside the forest, ii) 50 m inside the forest, iii) at the forest edge, and iv) 50 m inside three different converted habitats (coffee plantation, non-native Eucalyptus plantation, and abandoned pastures, hereafter matrix types). By sampling a dry and a wet season, we recorded 622 individual frogs representing 29 species, of which three were undescribed. Breeding guild (i.e. bromeliad, leaf-litter, and water-body breeders) was the most important variable explaining frog distributions in relation to edge effects and matrix types. Leaf-litter and bromeliad breeders decreased in richness and abundance from the forest interior toward the matrix habitats. Water-body breeders increased in richness toward the matrix and remained relatively stable in abundance across distances. Number of large trees (i.e. DBH > 15 cm) and bromeliads best explained frog richness and abundance across distances. Twenty species found in the interior of the forest were not found in any matrix habitat. Richness and abundance across breeding guilds were higher in the rainy season but frog distributions were similar across the four distances in the two seasons. Across matrix types, leaf-litter species primarily used Eucalyptus plantations, whereas water-body species primarily used coffee plantations. Bromeliad breeders were not found inside any matrix habitat. Our study highlights the importance of primary forest for bromeliad and leaf-litter breeders. We propose that water-body breeders use edge and matrix habitats to reach breeding habitats along the valleys. Including life-history characteristics, such as breeding guild, can improve predictions of frog distributions in

  3. Changes in habitat complexity negatively affect diverse gastropod assemblages in coralline algal turf.

    Science.gov (United States)

    Kelaher, B P

    2003-05-01

    The physical structure of a habitat generally has a strong influence on the diversity and abundance of associated organisms. I investigated the role of coralline algal turf structure in determining spatial variation of gastropod assemblages at different tidal heights of a rocky shore near Sydney, Australia. The structural characteristics of algal turf tested were frond density (or structural complexity) and frond length (the vertical scale over which structural complexity was measured). This definition of structural complexity assumes that complexity of the habitat increases with increasing frond density. While frond length was unrelated to gastropod community structure, I found significant correlations between density of fronds and multivariate and univariate measures of gastropod assemblages, indicating the importance of structural complexity. In contrast to previous studies, here there were negative relationships between the density of fronds and the richness and abundance of gastropods. Artificial habitat mimics were used to manipulate the density of fronds to test the hypothesis that increasing algal structural complexity decreases the richness and abundance of gastropods. As predicted, there were significantly more species of gastropods in loosely packed than in tightly packed turf at both low- and mid-shore levels. Despite large differences between gastropod assemblages at different tidal heights, the direction and magnitude of these negative effects were similar at low- and mid-shore levels and, therefore, relatively independent of local environmental conditions. These novel results extend our previous understanding of the ecological effects of habitat structure because they demonstrate possible limitations of commonly used definitions of structural complexity, as well as distinct upper thresholds in the relationship between structural complexity and faunal species richness.

  4. Zonation and habitat selection on a reclaimed coastal foredune ...

    African Journals Online (AJOL)

    Three distinct zones, four habitats and six subhabitats were identified. Zonation and habitat selection appeared to be related to cover for two small mammal species. The arthropod orders were less susceptible to zonation and strict habitat selection, although some of the species showed selection. The normally unfavourable ...

  5. Habitat Evaluation Procedures Report; Graves Property - Yakama Nation.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul; Muse, Anthony

    2008-02-01

    A habitat evaluation procedures (HEP) analysis was conducted on the Graves property (140 acres) in June 2007 to determine the number of habitat units to credit Bonneville Power Administration (BPA) for providing funds to acquire the property as partial mitigation for habitat losses associated with construction of McNary Dam. HEP surveys also documented the general ecological condition of the property. The Graves property was significantly damaged from past/present livestock grazing practices. Baseline HEP surveys generated 284.28 habitat units (HUs) or 2.03 HUs per acre. Of these, 275.50 HUs were associated with the shrubsteppe/grassland cover type while 8.78 HUs were tied to the riparian shrub cover type.

  6. The Effect of the Habitat Type on Soil and Plant Diversity Properties in Natural Ecosystems in the Northern Alborz (Case Study: Vaz Watershed

    Directory of Open Access Journals (Sweden)

    M. Salarvand

    2016-09-01

    Full Text Available This study aimed to compare plant species diversity indices (diversity and richness and some physico-chemical properties of soil among forest, ecotone and rangeland habitats. Vegetation sampling was done randomly at each habitat. One dominant community was selected in each habitat and one key area was distinguished in each community and 8×1m2 plots were randomly established in each key area. In each plot, the list of existing plants and cover percentage for each species were determined and soil samples were taken from depths of 0-10 cm. The Shannon-Wiener and Simpson diversity indices and Margalef and Menhinic richness indices were estimated using PAST software. Physical and chemical characteristics of the soil were compared at three sites by analysis of variance (One Way ANOVA. The results showed that the lowest and highest values of all species diversity and richness were occurred in forest and ecotone habitats, respectively. Bulk density, sand and pH value of soil were significantly the highest in the rangeland. The percentage of clay and organic carbon in forest habitat were higher than the two other habitats. This study revealed the importance of ecotone in preserving the diversity and species richness.

  7. Application of habitat thresholds in conservation: Considerations, limitations, and future directions

    Directory of Open Access Journals (Sweden)

    Yntze van der Hoek

    2015-01-01

    Full Text Available Habitat thresholds are often interpreted as the minimum required area of habitat, and subsequently promoted as conservation targets in natural resource policies and planning. Unfortunately, several recent reviews and messages of caution on the application of habitat thresholds in conservation have largely fallen on deaf ears, leading to a dangerous oversimplification and generalization of the concept. We highlight the prevalence of oversimplification/over-generalization of results from habitat threshold studies in policy documentation, the consequences of such over-generalization, and directions for habitat threshold studies that have conservation applications without risking overgeneralization. We argue that in order to steer away from misapplication of habitat thresholds in conservation, we should not focus on generalized nominal habitat values (i.e., amounts or percentages of habitat, but on the use of habitat threshold modeling for comparative exercises of area-sensitivity or the identification of environmental dangers. In addition, we should remain focused on understanding the processes and mechanisms underlying species responses to habitat change. Finally, studies could that focus on deriving nominal value threshold amounts should do so only if the thresholds are detailed, species-specific, and translated to conservation targets particular to the study area only.

  8. Habitat or matrix: which is more relevant to predict road-kill of vertebrates?

    OpenAIRE

    Bueno,C.; Sousa,C. O. M.; Freitas,S. R.

    2015-01-01

    Abstract We believe that in tropics we need a community approach to evaluate road impacts on wildlife, and thus, suggest mitigation measures for groups of species instead a focal-species approach. Understanding which landscape characteristics indicate road-kill events may also provide models that can be applied in other regions. We intend to evaluate if habitat or matrix is more relevant to predict road-kill events for a group of species. Our hypothesis is: more permeable matrix is the most r...

  9. Habitat Concepts for Deep Space Exploration

    Science.gov (United States)

    Smitherman, David; Griffin, Brand N.

    2014-01-01

    Future missions under consideration requiring human habitation beyond the International Space Station (ISS) include deep space habitats in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar missions, satellite servicing, and Mars vehicle servicing missions. Habitat designs are also under consideration for missions beyond the Earth-Moon system, including transfers to near-Earth asteroids and Mars orbital destinations. A variety of habitat layouts have been considered, including those derived from the existing ISS designs and those that could be fabricated from the Space Launch System (SLS) propellant tanks. This paper presents a comparison showing several options for asteroid, lunar, and Mars mission habitats using ISS derived and SLS derived modules and identifies some of the advantages and disadvantages inherent in each. Key findings indicate that the larger SLS diameter modules offer built-in compatibility with the launch vehicle, single launch capability without on-orbit assembly, improved radiation protection, lighter structures per unit volume, and sufficient volume to accommodate consumables for long duration missions without resupply. The information provided with the findings includes mass and volume comparison data that should be helpful to future exploration mission planning efforts.

  10. Deep Space Habitat Wireless Smart Plug

    Science.gov (United States)

    Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.

    2014-01-01

    NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.

  11. Demographic and habitat requirements for conservation of bull trout

    Science.gov (United States)

    Bruce E. Rieman; John D. Mclntyre

    1993-01-01

    Elements in bull trout biology, population dynamics, habitat, and biotic interactions important to conservation of the species are identified. Bull trout appear to have more specific habitat requirements than other salmonids, but no critical thresholds of acceptable habitat condition were found. Size, temporal variation, and spatial distribution are likely to influence...

  12. Tracking changes and preventing loss in critical tiger habitat.

    Science.gov (United States)

    Joshi, Anup R; Dinerstein, Eric; Wikramanayake, Eric; Anderson, Michael L; Olson, David; Jones, Benjamin S; Seidensticker, John; Lumpkin, Susan; Hansen, Matthew C; Sizer, Nigel C; Davis, Crystal L; Palminteri, Suzanne; Hahn, Nathan R

    2016-04-01

    The global population of wild tigers remains dangerously low at fewer than 3500 individuals. Habitat loss, along with poaching, can undermine the international target recovery of doubling the number of wild tigers by 2022. Using a new satellite-based monitoring system, we analyzed 14 years of forest loss data within the 76 landscapes (ranging from 278 to 269,983 km(2)) that have been prioritized for conservation of wild tigers. Our analysis provides an update of the status of tiger habitat and describes new applications of technology to detect precisely where forest loss is occurring in order to curb future habitat loss. Across the 76 landscapes, forest loss was far less than anticipated (79,597 ± 22,629 km(2), 7.7% of remaining habitat) over the 14-year study period (2001-2014). Habitat loss was unevenly distributed within a subset of 29 landscapes deemed most critical for doubling wild tiger populations: 19 showed little change (1.5%), whereas 10 accounted for more than 98% (57,392 ± 16,316 km(2)) of habitat loss. Habitat loss in source population sites within 76 landscapes ranged from no loss to 435 ± 124 km(2) ([Formula: see text], SD = 89, total = 1676 ± 476 km(2)). Doubling the tiger population by 2022 requires moving beyond tracking annual changes in habitat. We highlight near-real-time forest monitoring technologies that provide alerts of forest loss at relevant spatial and temporal scales to prevent further erosion.

  13. Tracing multi-habitat support of coastal fishes

    Science.gov (United States)

    Hydrologic linkages among coastal wetland and nearshore areas allow coastal fish to move among the habitats, which has led to a variety of habitat use patterns. In the Great Lakes, fine-scale microchemical analyses of yellow perch otoliths have revealed life-history categories th...

  14. Habitat heterogeneity influences restoration efficacy: Implications of a habitat-specific management regime for an invaded marsh

    Science.gov (United States)

    Tang, Long; Gao, Yang; Wang, Cheng-Huan; Li, Bo; Chen, Jia-Kuan; Zhao, Bin

    2013-07-01

    Invasive species have to be managed to prevent adverse consequences. Spartina alterniflora has invaded many marshes where salinity and inundation are often key factors affecting vegetation. The former was surface clipped twice and native Phragmites australis was planted in invaded zones to examine the effects of habitat properties on the efficacy of invader control and native restoration. The results showed that two clipping treatments almost eliminated S. alterniflora in the zones with long inundation periods of 80 h/15 d but stimulated compensatory growth of S. alterniflora in the zones with short inundation periods. Transplanted P. australis performed better over time in zones with low salinity (removal of the above-ground parts of S. alterniflora should be used only in the middle tidal zones and that native vegetation should be planted in zones above the mean high water level while the others zones in the saltmarsh should be restored to mud flats. Usually, invasive plants can flourish in highly heterogeneous habitats, which can influence management efficacy by influencing the re-growth of treated invaders and the performance of restored native species. Therefore, habitat-specific management regimes for invasive species can be expected to be more efficient because of their dependence on specific habitats.

  15. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Willamette River Basin, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the basis to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  16. The role of density-dependent and -independent processes in spawning habitat selection by salmon in an Arctic riverscape.

    Directory of Open Access Journals (Sweden)

    Brock M Huntsman

    Full Text Available Density-dependent (DD and density-independent (DI habitat selection is strongly linked to a species' evolutionary history. Determining the relative importance of each is necessary because declining populations are not always the result of altered DI mechanisms but can often be the result of DD via a reduced carrying capacity. We developed spatially and temporally explicit models throughout the Chena River, Alaska to predict important DI mechanisms that influence Chinook salmon spawning success. We used resource-selection functions to predict suitable spawning habitat based on geomorphic characteristics, a semi-distributed water-and-energy balance hydrologic model to generate stream flow metrics, and modeled stream temperature as a function of climatic variables. Spawner counts were predicted throughout the core and periphery spawning sections of the Chena River from escapement estimates (DD and DI variables. Additionally, we used isodar analysis to identify whether spawners actively defend spawning habitat or follow an ideal free distribution along the riverscape. Aerial counts were best explained by escapement and reference to the core or periphery, while no models with DI variables were supported in the candidate set. Furthermore, isodar plots indicated habitat selection was best explained by ideal free distributions, although there was strong evidence for active defense of core spawning habitat. Our results are surprising, given salmon commonly defend spawning resources, and are likely due to competition occurring at finer spatial scales than addressed in this study.

  17. [Habitat factor analysis for Torreya grandis cv. Merrillii based on spatial information technology].

    Science.gov (United States)

    Wang, Xiao-ming; Wang, Ke; Ao, Wei-jiu; Deng, Jin-song; Han, Ning; Zhu, Xiao-yun

    2008-11-01

    Torreya grandis cv. Merrillii, a tertiary survival plant, is a rare tree species of significant economic value and expands rapidly in China. Its special habitat factor analysis has the potential value to provide guide information for its planting, management, and sustainable development, because the suitable growth conditions for this tree species are special and strict. In this paper, the special habitat factors for T. grandis cv. Merrillii in its core region, i.e., in seven villages of Zhuji City, Zhejiang Province were analyzed with Principal Component Analysis (PCA) and a series of data, such as IKONOS image, Digital Elevation Model (DEM), and field survey data supported by the spatial information technology. The results showed that T. grandis cv. Merrillii exhibited high selectivity of environmental factors such as elevation, slope, and aspect. 96.22% of T. grandis cv. Merrillii trees were located at the elevation from 300 to 600 m, 97.52% of them were found to present on the areas whose slope was less than 300, and 74.43% of them distributed on sunny and half-sunny slopes. The results of PCA analysis indicated that the main environmental factors affecting the habitat of T. grandis cv. Merrillii were moisture, heat, and soil nutrients, and moisture might be one of the most important ecological factors for T. grandis cv. Merrillii due to the unique biological and ecological characteristics of the tree species.

  18. Fish assemblages associated with natural and anthropogenically-modified habitats in a marine embayment: comparison of baited videos and opera-house traps.

    Directory of Open Access Journals (Sweden)

    Corey B Wakefield

    Full Text Available Marine embayments and estuaries play an important role in the ecology and life history of many fish species. Cockburn Sound is one of a relative paucity of marine embayments on the west coast of Australia. Its sheltered waters and close proximity to a capital city have resulted in anthropogenic intrusion and extensive seascape modification. This study aimed to compare the sampling efficiencies of baited videos and fish traps in determining the relative abundance and diversity of temperate demersal fish species associated with naturally occurring (seagrass, limestone outcrops and soft sediment and modified (rockwall and dredge channel habitats in Cockburn Sound. Baited videos sampled a greater range of species in higher total and mean abundances than fish traps. This larger amount of data collected by baited videos allowed for greater discrimination of fish assemblages between habitats. The markedly higher diversity and abundances of fish associated with seagrass and limestone outcrops, and the fact that these habitats are very limited within Cockburn Sound, suggests they play an important role in the fish ecology of this embayment. Fish assemblages associated with modified habitats comprised a subset of species in lower abundances when compared to natural habitats with similar physical characteristics. This suggests modified habitats may not have provided the necessary resource requirements (e.g. shelter and/or diet for some species, resulting in alterations to the natural trophic structure and interspecific interactions. Baited videos provided a more efficient and non-extractive method for comparing fish assemblages and habitat associations of smaller bodied species and juveniles in a turbid environment.

  19. Steelhead Critical Habitat, Central Valley - NOAA [ds123

    Data.gov (United States)

    California Natural Resource Agency — This layer depicts areas designated for Steelhead Critical Habitat as well as habitat type and quality in the California Central Valley Evolutionary Significant Unit...

  20. Landscape structure shapes habitat finding ability in a butterfly.

    Directory of Open Access Journals (Sweden)

    Erik Öckinger

    Full Text Available Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L. from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape.