WorldWideScience

Sample records for vehicles energy consumption

  1. Household vehicles energy consumption 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

  2. Online prediction of battery electric vehicle energy consumption

    NARCIS (Netherlands)

    Wang, Jiquan; Besselink, Igo; Nijmeijer, Henk

    2016-01-01

    The energy consumption of battery electric vehicles (BEVs) depends on a number of factors, such as vehicle characteristics, driving behavior, route information, traffic states and weather conditions. The variance of these factors and the correlation among each other make the energy consumption

  3. Battery electric vehicle energy consumption modelling for range estimation

    NARCIS (Netherlands)

    Wang, J.; Besselink, I.J.M.; Nijmeijer, H.

    2017-01-01

    Range anxiety is considered as one of the major barriers to the mass adoption of battery electric vehicles (BEVs). One method to solve this problem is to provide accurate range estimation to the driver. This paper describes a vehicle energy consumption model considering the influence of weather

  4. Analysis of energy consumption and emission of the heterogeneous traffic flow consisting of traditional vehicles and electric vehicles

    Science.gov (United States)

    Xiao, Hong; Huang, Hai-Jun; Tang, Tie-Qiao

    2017-12-01

    Electric vehicle (EV) has become a potential traffic tool, which has attracted researchers to explore various traffic phenomena caused by EV (e.g. congestion, electricity consumption, etc.). In this paper, we study the energy consumption (including the fuel consumption and the electricity consumption) and emissions of heterogeneous traffic flow (that consists of the traditional vehicle (TV) and EV) under three traffic situations (i.e. uniform flow, shock and rarefaction waves, and a small perturbation) from the perspective of macro traffic flow. The numerical results show that the proportion of electric vehicular flow has great effects on the TV’s fuel consumption and emissions and the EV’s electricity consumption, i.e. the fuel consumption and emissions decrease while the electricity consumption increases with the increase of the proportion of electric vehicular flow. The results can help us better understand the energy consumption and emissions of the heterogeneous traffic flow consisting of TV and EV.

  5. Vehicle energy consumption - A contribution to the Coherent Energy and Environmental System Analysis (CEESA) project

    Energy Technology Data Exchange (ETDEWEB)

    Schaltz, E.

    2011-01-15

    In this report simulation models of a Battery Electric Vehicle (BEV) and a Fuel Cell Hybrid Electric Vehicle (FCHEV) have been developed. The models have two features: they both design the vehicles and calculates the energy consumption, efficiency, mass, volume, and cost due to a given drive cycle. The vehicles are designed to fulfill a drive cycle which consist of city, road, and motorway driving, as it is desired that the vehicles should have the same performance as traditional internal combustion engine (ICE) vehicles. For this reason its also chosen to use a midsize car, i.e. a Toyota Avensis, as reference vehicle. The simulation models consist of several sub-models, which have been modeled by use of data sheets. The models have therefore not been verified be experimental results, which is strongly recommenced for future work. The energy consumption per km and efficiency are significant better for the BEV than for the FCHEV. The average energy consumption per km is 304.1 Wh/km and 635.7 Wh/km for the BEV and FCHEV, respectively. The average tank-to-wheel efficiency of the BEV and FCHEV are 54.0% and 23.4%, respectively. For the total car mass and cost and volume of the power system, the results are two-sided. For short distance the BEV is lighter, has smaller volume of the power system, and are cheaper than the FCHEV. However, when the traveling distance increases the difference becomes smaller, and at long distances the FCHEV are the lightest, smallest, and cheapest. (Author)

  6. Baseline test data for the EVA electric vehicle. [low energy consumption automobiles

    Science.gov (United States)

    Harhay, W. C.; Bozek, J.

    1976-01-01

    Two electric vehicles from Electric Vehicle Associates were evaluated for ERDA at the Transportation Research Center of Ohio. The vehicles, loaded to a gross vehicle weight of 3750 pounds, had a range of 56.3 miles at a steady speed of 25 mph and a 27.4 miles range during acceleration-deceleration tests to a top speed of 30 mph. Energy consumption varied from 0.48 kw-hr/mi. to 0.59 kw-hr/mi.

  7. Power-based electric vehicle energy consumption model: Model development and validation

    International Nuclear Information System (INIS)

    Fiori, Chiara; Ahn, Kyoungho; Rakha, Hesham A.

    2016-01-01

    Highlights: • The study developed an instantaneous energy consumption model (VT-CPEM) for EVs. • The model captures instantaneous braking energy regeneration. • The model can be used for transportation modeling and vehicle applications (e.g. eco-routing). • The proposed model can be easily calibrated using publically available EV data. • Usages of air conditioning and heating systems reduce EV energy consumption by up to 10% and 24%, respectively. - Abstract: The limited drive range (The maximum distance that an EV can travel.) of Electric Vehicles (EVs) is one of the major challenges that EV manufacturers are attempting to overcome. To this end, a simple, accurate, and efficient energy consumption model is needed to develop real-time eco-driving and eco-routing systems that can enhance the energy efficiency of EVs and thus extend their travel range. Although numerous publications have focused on the modeling of EV energy consumption levels, these studies are limited to measuring energy consumption of an EV’s control algorithm, macro-project evaluations, or simplified well-to-wheels analyses. Consequently, this paper addresses this need by developing a simple EV energy model that computes an EV’s instantaneous energy consumption using second-by-second vehicle speed, acceleration and roadway grade data as input variables. In doing so, the model estimates the instantaneous braking energy regeneration. The proposed model can be easily implemented in the following applications: in-vehicle, Smartphone eco-driving, eco-routing and transportation simulation software to quantify the network-wide energy consumption levels for a fleet of EVs. One of the main advantages of EVs is their ability to recover energy while braking using a regenerative braking system. State-of-the-art vehicle energy consumption models consider an average constant regenerative braking energy efficiency or regenerative braking factors that are mainly dependent on the vehicle’s average

  8. Modeling an impact of road geometric design on vehicle energy consumption

    Science.gov (United States)

    Luin, Blaž; Petelin, Stojan; Al-Mansour, Fouad

    2017-11-01

    Some roads connect traffic origins and destinations directly, some use winding, indirect routes. Indirect connections result in longer distances driven and increased fuel consumption. A similar effect is observed on congested roads and mountain roads with many changes in altitude. Therefore a framework to assess road networks based on energy consumption is proposed. It has been shown that road geometry has significant impact on overall traffic energy consumption and emissions. The methodology presented in the paper analyzes impact of traffic volume, shares of vehicle classes, road network configuration on the energy used by the vehicles. It can be used to optimize energy consumption with efficient traffic management and to choose optimum new road in the design phase. This is especially important as the energy consumed by the vehicles shortly after construction supersedes the energy spent for the road construction.

  9. ELVIS: Comparing Electric and Conventional Vehicle Energy Consumption and CO2 Emissions

    DEFF Research Database (Denmark)

    Andersen, Ove; Krogh, Benjamin Bjerre; Torp, Kristian

    2017-01-01

    Making the transition from conventional combustion vehicles (CVs) to electric vehicles (EVs) requires the users to be comfortable with the limited range of EVs. We present a system named ELVIS that enables a direct comparison of energy/fuel consumption, CO2 emissions, and travel-time between CVs...

  10. Estimates of the cost and energy consumption of aluminum-air electric vehicles

    Science.gov (United States)

    Cooper, J. F.

    1980-11-01

    Economic costs and primary energy consumption are estimated for general purpose electric vehicles using aluminum-air propulsion batteries within the time frame of the 1990's (earliest possible date of introduction). For an aluminum-air fuel economy of 36 tonne/km/kg-Al (optimized low-gallium alloys), a total refueling cost of 5.6 cents/km (1979$) was estimated for a 1.27 tonne vehicle. This is equivalent to $2 to 3/gal for automobiles of the same weight with fuel economies of 13.5 to 19.3 tonne-km/liter. The total primary energy consumption was estimated to be 1.3 to 1.7 kWh/km (coal) for the electric vehicle, which corresponds roughly to the energy cost of the automobiles using liquid fuels synthesized from coal. The energy consumption is 30 to 70 percent greater than the reference automobile using petroleum-derived gasoline.

  11. Fuel consumption from vehicles of China until 2030 in energy scenarios

    International Nuclear Information System (INIS)

    Zhang Qingyu; Tian Weili; Zheng Yingyue; Zhang Lili

    2010-01-01

    Estimation of fuel (gasoline and diesel) consumption for vehicles in China under different long-term energy policy scenarios is presented here. The fuel economy of different vehicle types is subject to variation of government regulations; hence the fuel consumption of passenger cars (PCs), light trucks (Lts), heavy trucks (Hts), buses and motor cycles (MCs) are calculated with respect to (i) the number of vehicles, (ii) distance traveled, and (iii) fuel economy. On the other hand, the consumption rate of alternative energy sources (i.e. ethanol, methanol, biomass-diesel and CNG) is not evaluated here. The number of vehicles is evaluated using the economic elastic coefficient method, relating to per capita gross domestic product (GDP) from 1997 to 2007. The Long-range Energy Alternatives Planning (LEAP) system software is employed to develop a simple model to project fuel consumption in China until 2030 under these scenarios. Three energy consumption decrease scenarios are designed to estimate the reduction of fuel consumption: (i) 'business as usual' (BAU); (ii) 'advanced fuel economy' (AFE); and (iii) 'alternative energy replacement' (AER). It is shown that fuel consumption is predicted to reach 992.28 Mtoe (million tons oil equivalent) with the BAU scenario by 2030. In the AFE and AER scenarios, fuel consumption is predicted to be 734.68 and 600.36 Mtoe, respectively, by 2030. In the AER scenario, fuel consumption in 2030 will be reduced by 391.92 (39.50%) and 134.29 (18.28%) Mtoe in comparison to the BAU and AFE scenarios, respectively. In conclusion, our models indicate that the energy conservation policies introduced by governmental institutions are potentially viable, as long as they are effectively implemented.

  12. Application of the advanced engineering environment for optimization energy consumption in designed vehicles

    Science.gov (United States)

    Monica, Z.; Sękala, A.; Gwiazda, A.; Banaś, W.

    2016-08-01

    Nowadays a key issue is to reduce the energy consumption of road vehicles. In particular solution one could find different strategies of energy optimization. The most popular but not sophisticated is so called eco-driving. In this strategy emphasized is particular behavior of drivers. In more sophisticated solution behavior of drivers is supported by control system measuring driving parameters and suggesting proper operation of the driver. The other strategy is concerned with application of different engineering solutions that aid optimization the process of energy consumption. Such systems take into consideration different parameters measured in real time and next take proper action according to procedures loaded to the control computer of a vehicle. The third strategy bases on optimization of the designed vehicle taking into account especially main sub-systems of a technical mean. In this approach the optimal level of energy consumption by a vehicle is obtained by synergetic results of individual optimization of particular constructional sub-systems of a vehicle. It is possible to distinguish three main sub-systems: the structural one the drive one and the control one. In the case of the structural sub-system optimization of the energy consumption level is related with the optimization or the weight parameter and optimization the aerodynamic parameter. The result is optimized body of a vehicle. Regarding the drive sub-system the optimization of the energy consumption level is related with the fuel or power consumption using the previously elaborated physical models. Finally the optimization of the control sub-system consists in determining optimal control parameters.

  13. Optimization of the overall energy consumption in cascade fueling stations for hydrogen vehicles

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard; Rokni, Masoud

    2014-01-01

    of refueling stations as a function of number of tanks, volume of the tanks and the pressure in the tanks. This is done for a complete refueling cycle. It is found that the energy consumption decreases with the number of tanks approaching an exponential function. The compressor accounts for app. 50......% of the energy consumption. Going from one tank to three tanks gives an energy saving of app. 30%. Adding more than four tanks the energy saving per extra added tank is less than 4%. The optimal numbers of tanks in the cascade system are three or four....... the vehicles. The cascade system at the station has to be refueled as the tank sizes are limited by the high pressures. The process of filling a vehicle and afterward bringing the tanks in refueling station back to same pressures, are called a complete refueling cycle. This study analyzes power consumption...

  14. Energy Consumption Prediction for Electric Vehicles Based on Real-World Data

    Directory of Open Access Journals (Sweden)

    Cedric De Cauwer

    2015-08-01

    Full Text Available Electric vehicle (EV energy consumption is variable and dependent on a number of external factors such as road topology, traffic, driving style, ambient temperature, etc. The goal of this paper is to detect and quantify correlations between the kinematic parameters of the vehicle and its energy consumption. Real-world data of EV energy consumption are used to construct the energy consumption calculation models. Based on the vehicle dynamics equation as underlying physical model, multiple linear regression is used to construct three models. Each model uses a different level of aggregation of the input parameters, allowing predictions using different types of available input parameters. One model uses aggregated values of the kinematic parameters of trips. This model allows prediction with basic, easily available input parameters such as travel distance, travel time, and temperature. The second model extends this by including detailed acceleration data. The third model uses the raw data of the kinematic parameters as input parameters to predict the energy consumption. Using detailed values of kinematic parameters for the prediction in theory increases the link between the statistical model and its underlying physical principles, but requires these parameters to be available as input in order to make predictions. The first two models show similar results. The third model shows a worse fit than the first two, but has a similar accuracy. This model has great potential for future improvement.

  15. Electric vehicle energy consumption modelling and prediction based on road information

    NARCIS (Netherlands)

    Wang, J.; Besselink, I.J.M.; Nijmeijer, H.

    The limited driving range is considered as a significant barrier to the spread of electric vehicles. One effective method to reduce “range anxiety” is to offer accurate information to the driver on the remaining driving range. However, the energy consumption during driving is largely determined by

  16. Harnessing Big-Data for Estimating the Energy Consumption and Driving Range of Electric Vehicles

    DEFF Research Database (Denmark)

    Fetene, Gebeyehu Manie; Prato, Carlo Giacomo; Kaplan, Sigal

    -effects econometrics model used in this paper predicts that the energy saving speed of driving is between 45 and 56 km/h. In addition to the contribution to the literature about energy efficiency of electric vehicles, the findings from this study enlightens consumers to choose appropriate cars that suit their travel......This study analyses the driving range and investigates the factors affecting the energy consumption rate of fully-battery electric vehicles under real-world driving patterns accounting for weather condition, drivers’ characteristics, and road characteristics. Four data sources are used: (i) up...

  17. Assessment of Vehicle Sizing, Energy Consumption and Cost Through Large Scale Simulation of Advanced Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moawad, Ayman [Argonne National Lab. (ANL), Argonne, IL (United States); Kim, Namdoo [Argonne National Lab. (ANL), Argonne, IL (United States); Shidore, Neeraj [Argonne National Lab. (ANL), Argonne, IL (United States); Rousseau, Aymeric [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. This report reviews the results of the DOE VTO. It gives an assessment of the fuel and light-duty vehicle technologies that are most likely to be established, developed, and eventually commercialized during the next 30 years (up to 2045). Because of the rapid evolution of component technologies, this study is performed every two years to continuously update the results based on the latest state-of-the-art technologies.

  18. Modelling the Effect of Driving Events on Electrical Vehicle Energy Consumption Using Inertial Sensors in Smartphones

    Directory of Open Access Journals (Sweden)

    David Jiménez

    2018-02-01

    Full Text Available Air pollution and climate change are some of the main problems that humankind is currently facing. The electrification of the transport sector will help to reduce these problems, but one of the major barriers for the massive adoption of electric vehicles is their limited range. The energy consumption in these vehicles is affected, among other variables, by the driving behavior, making range a value that must be personalized to each driver and each type of electric vehicle. In this paper we offer a way to estimate a personalized energy consumption model by the use of the vehicle dynamics and the driving events detected by the use of the smartphone inertial sensors, allowing an easy and non-intrusive manner to predict the correct range for each user. This paper proposes, for the classification of events, a deep neural network (Long-Short Time Memory which has been trained with more than 22,000 car trips, and the application to improve the consumption model taking into account the driver behavior captured across different trips, allowing a personalized prediction. Results and validation in real cases show that errors in the predicted consumption values are halved when abrupt events are considered in the model.

  19. Differences in Energy Consumption in Electric Vehicles: An Exploratory Real-World Study in Beijing

    Directory of Open Access Journals (Sweden)

    Kezhen Hu

    2017-01-01

    Full Text Available Electric vehicles (EVs are widely regarded as a promising solution to reduce air pollution in cities and key to a low carbon mobility future. However, their environmental benefits depend on the temporal and spatial context of actual usage (journey energy efficiency and the rolling out of EVs is complicated by issues such as limited range. This paper explores how the energy efficiency of EVs is affected and shaped by driving behavior, personal driving styles, traffic conditions, and infrastructure design in the real world. Tests have been conducted with a Nissan LEAF under a typical driving cycle on the Beijing road network in order to improve understanding of variations in energy efficiency among drivers under different urban traffic conditions. Energy consumption and operation parameters were recorded in both peak and off-peak hours for a total of 13 drivers. The analysis reported in this paper shows that there are clear patterns in energy consumption along a route that are in part related to differences in infrastructure design, traffic conditions, and personal driving styles. The proposed method for analyzing time series data about energy consumption along routes can be used for research with larger fleets of EVs in the future.

  20. Electric vehicles: energy consumption and the comparision with other new vehicle technologies

    NARCIS (Netherlands)

    Weijer, C.J.T. van de; Schillemans, R.A.A.

    1996-01-01

    In the end of the 19th century the electric vehicle (EV) controlled the market for road transport. But with remarkable improvements in the performance of internal combustion engine vehicles (ICEVs), EVs had vanished from the scene by the 1930's. Since then, they have attracted interest from time to

  1. Test methods for evaluating energy consumption and emissions of vehicles with electric, hybrid and fuel cell power trains

    NARCIS (Netherlands)

    Smokers, R.T.M.; Ploumen, S.; Conte, M.; Buning, L.; Meier-Engel, K.

    2000-01-01

    As part of the MATADOR-project measurement methods have been developed for the evaluation of the energy consumption and emissions of vehicles with advanced propulsion systems, such as battery-electric, hybrid electric and fuel cell vehicles. Based on an inventory of existing and prospective standard

  2. Potential for reducing GHG emissions and energy consumption from implementing the aluminum intensive vehicle fleet in China

    International Nuclear Information System (INIS)

    Du, J.D.; Han, W.J.; Peng, Y.H.; Gu, C.C.

    2010-01-01

    The automobile industry in China has rapidly developed in recent years which resulted in an increase in gasoline usage and greenhouse gas (GHG) emissions. Focus on climate change has also accelerated to grow pressure on reducing vehicle weight and improving fuel efficiency. Aluminum (Al) as a light metal has demonstrated a great potential for weight savings in applications such as engine blocks, cylinder heads, wheels, hoods, tailgates etc. However, primary Al production requires intensive energy and the cost of Al is more than traditional steel, which may affect the total benefits realized from using Al in automobiles. Therefore, it is very essential to conduct a study to quantify the life cycle GHG emissions and energy consumption if the plan is to achieve fleet-wide Al intensive vehicles. This paper describes a life cycle assessment (LCA) methodology and the general modeling assumptions used to evaluate the impact of Al intensive vehicle on GHG emissions and energy consumption. The results indicated that the reductions in life cycle GHG emissions and energy consumption were not significant when the maximum Al content in an automobile is 145 kg, which is the average level of Al usage in automobiles in North America. A neural network methodology was used to forecast the vehicle stock in China from 2010 to 2020 and a vehicle fleet model was established to track GHG emissions and energy consumption of the vehicle fleet. A material availability factor was also introduced into the LCA methodology to further assist decision makers in providing rational proposals for a widespread implementation of Al in automobiles. A sensitivity analysis was also conducted to study the impact of the Al content in a vehicle on the final outcomes. The GHG emissions and energy consumption could be further reduced when the Al content in an automobile increases.

  3. Energy consumption: energy consumption in mainland Norway

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, Inger Helene; Killingland, Magnus; Spilde, Dag

    2012-07-25

    The purpose of this report is to describe trends in energy consumption in mainland Norway, with an emphasis on key trends within the largest consumer groups. We also explain common terms and concepts in the field of energy consumption. Finally, we look at forecasts for future energy consumption, produced by bodies outside NVE. Total final energy consumption in mainland Norway in 2009 was 207 TWh. The most important end-user groups are households, service industries, manufacturing industry and transport. In addition, the energy sector in mainland Norway consumed 15 TWh. Energy consumed in the energy sector is not considered as final consumption, as the energy is used to produce new energy products. The long-term trend in energy consumption in mainland Norway is that fuel in the transport sector and electricity for the energy sector increases, while energy consumption in other sectors flattens out. The main reason for an increased use of fuel in the transport sector is the rise in the number of motorised machinery and vehicles in mainland Norway. This has caused a rise in gasoline and diesel consumption of 75 per cent since 1976. The petroleum sector is the largest consumer of energy within the energy sector in mainland Norway, and electricity from onshore to platforms in the North Sea and to new shore side installations has led to a rise in electricity consumption from 1 TWh in 1995 to 5 TWh in 2009. The energy consumption in households showed flat trend from 1996 to 2009, after many years of growth. The main reasons are a warmer climate, higher energy prices, the use of heats pumps and more energy-efficient buildings. In the service industries, the growth in energy consumptions has slightly decreased since the late 1990s, for much the same reasons as for households. In manufacturing industries the energy consumption have flatten out mainly due to the closure of energy-intensive businesses and the establishment of new more energy-efficient businesses. Electricity is

  4. Analytical method to evaluate fuel consumption of hybrid electric vehicles at balanced energy content of the electric storage devices

    Energy Technology Data Exchange (ETDEWEB)

    Katrasnik, Tomaz [University of Ljubljana, Faculty of Mechanical Engineering, Askerceva 6, 1000 Ljubljana (Slovenia)

    2010-11-15

    Innovative analytically based method to calculate corrected fuel consumption of parallel and series hybrid electric vehicles (HEVs) at balanced energy content of the electric storage devices is proposed and validated in the paper. The proposed analytical method is generally applicable and features highly accurate corrected fuel consumption results. It enables calculation of the corrected fuel consumption out of a single fuel consumption test run in a single analytic post-processing step. An additional fuel consumption test run might be needed to obtain highly accurate results if ratio of the energy content deviation of the electric storage devices to the energy used for vehicle propulsion over the test cycle is high. Proposed method enables consideration of non-linear energy flow changes and non-linear HEV component efficiency changes caused by the energy management strategy or by the component characteristics. The method therefore features highly accurate results out of the minimum number of fuel consumption test runs and thus optimizes workload for development or optimization of HEVs. The input data of the method are characteristic energy flows and efficiencies that are derived from the energy flows on selected energy paths of HEVs. (author)

  5. A chinese puzzle for the chinese government - how is it possible to increase the consumption of motor vehicles while at the same time discouraging energy consumption

    International Nuclear Information System (INIS)

    Allaire, J.

    2005-01-01

    The Chinese automotive market has enjoyed a major upturn over the last few years. This breathtaking growth in the number of motor vehicles brings with it numerous challenges in the energy and climatic fields. In this article, we will examine the various dynamics of the Chinese automotive market since the year 2000. We will seek to present the institutional framework developed by the Chinese authorities for the automotive sector in addition to explaining changes in the marketplace. Finally, we will look at energy questions raised as a result of the rapid growth in the number of motor vehicles in China. Although the Chinese authorities wish to increase the number of vehicles in circulation, at the same time they also wish to limit the energy consumption of the road transport sector. The increased prevalence of diesel engines among the Chinese vehicle fleet has already significantly reduced the energy intensity of Chinese vehicles, but although the central government is demanding low consumption vehicles, obstacles still remain such as the quality of fuel. Finally, we propose a range of forward-looking data or this sector, covering the period up to 2010. (author)

  6. Predicting Energy Consumption for Potential Effective Use in Hybrid Vehicle Powertrain Management Using Driver Prediction

    Science.gov (United States)

    Magnuson, Brian

    A proof-of-concept software-in-the-loop study is performed to assess the accuracy of predicted net and charge-gaining energy consumption for potential effective use in optimizing powertrain management of hybrid vehicles. With promising results of improving fuel efficiency of a thermostatic control strategy for a series, plug-ing, hybrid-electric vehicle by 8.24%, the route and speed prediction machine learning algorithms are redesigned and implemented for real- world testing in a stand-alone C++ code-base to ingest map data, learn and predict driver habits, and store driver data for fast startup and shutdown of the controller or computer used to execute the compiled algorithm. Speed prediction is performed using a multi-layer, multi-input, multi- output neural network using feed-forward prediction and gradient descent through back- propagation training. Route prediction utilizes a Hidden Markov Model with a recurrent forward algorithm for prediction and multi-dimensional hash maps to store state and state distribution constraining associations between atomic road segments and end destinations. Predicted energy is calculated using the predicted time-series speed and elevation profile over the predicted route and the road-load equation. Testing of the code-base is performed over a known road network spanning 24x35 blocks on the south hill of Spokane, Washington. A large set of training routes are traversed once to add randomness to the route prediction algorithm, and a subset of the training routes, testing routes, are traversed to assess the accuracy of the net and charge-gaining predicted energy consumption. Each test route is traveled a random number of times with varying speed conditions from traffic and pedestrians to add randomness to speed prediction. Prediction data is stored and analyzed in a post process Matlab script. The aggregated results and analysis of all traversals of all test routes reflect the performance of the Driver Prediction algorithm. The

  7. Evaluation of the energy consumption and climate comfort by means of a complete vehicle simulation; Energieverbrauchs- und Klimakomfortbewertung mittels Gesamtfahrzeugsimulation

    Energy Technology Data Exchange (ETDEWEB)

    Petr, Philipp [Technische Univ. Braunschweig (Germany). Inst. fuer Thermodynamik; Niedersaechsisches Forschungszentrum Fahrzeugtechnik (NFF), Braunschweig (Germany); Mustafa, Rashad [Technische Univ. Braunschweig (Germany). Inst. fuer Fahrzeugtechnik; Niedersaechsisches Forschungszentrum Fahrzeugtechnik (NFF), Braunschweig (Germany); Schulze, Mirko [Technische Univ. Braunschweig (Germany). Inst. fuer Verbrennungskraftmaschinen; Niedersaechsisches Forschungszentrum Fahrzeugtechnik (NFF), Braunschweig (Germany)

    2012-11-01

    Intelligent thermal management for vehicles can significantly reduce energy consumption and improve the climatic comfort. This paper describes an approach of how to analyse and evaluate vehicle thermal management techniques and their combination with different test cycles in a connected vehicle environment as examples. The focus will be particularly on the methodological approach. Based on the energetic analysis of the considered drivetrain topologies conclusions can be drawn about the complex thermal and dynamic relations. The analysis in turn is based on the results of the full vehicle simulation and refers to reference driving cycles and relevant environmental conditions. The energy flow analyses derived from the simulation are used in order to develop suitable thermal management techniques, to evaluate their potential and to integrate them in the vehicle. In addition to the influence of the measures the potential resulting from an intelligent combination of techniques and their control strategies are identified. The energy consumption advantage as well as the improved heating of the passenger compartment - especially at low ambient temperatures - will be evaluated. (orig.)

  8. Predicting vehicle fuel consumption patterns using floating vehicle data.

    Science.gov (United States)

    Du, Yiman; Wu, Jianping; Yang, Senyan; Zhou, Liutong

    2017-09-01

    The status of energy consumption and air pollution in China is serious. It is important to analyze and predict the different fuel consumption of various types of vehicles under different influence factors. In order to fully describe the relationship between fuel consumption and the impact factors, massive amounts of floating vehicle data were used. The fuel consumption pattern and congestion pattern based on large samples of historical floating vehicle data were explored, drivers' information and vehicles' parameters from different group classification were probed, and the average velocity and average fuel consumption in the temporal dimension and spatial dimension were analyzed respectively. The fuel consumption forecasting model was established by using a Back Propagation Neural Network. Part of the sample set was used to train the forecasting model and the remaining part of the sample set was used as input to the forecasting model. Copyright © 2017. Published by Elsevier B.V.

  9. Evaluation of energy consumption, emissions and cost of plug-in hybrid vehicles

    International Nuclear Information System (INIS)

    Silva, Carla; Ross, Marc; Farias, Tiago

    2009-01-01

    Plug-in hybrid vehicles (PHEVs) are gaining attention over the world due to their ability to reduce gasoline/diesel consumption by using electricity from the grid. Despite the efforts of Society of Automotive Engineers Recommended Practice SAE J1711, it has not yet been established a worldwide methodology for calculation of fuel consumption and emission factors when regarding emission standards, with distinct driving cycles. This paper intends to contribute to the creation of this broader methodology, based on SAE J1711, aiming a fair comparison among vehicle technologies, and giving insight on electric grid impact and on CO 2 life-cycle emissions. The methodology was applied to two simulated PHEVs exploring two different powertrain configurations: series and parallel; different driving cycles: CAFE, FTP75, NEDC and JC08; different driving distances (specially analyzing the average commuting daily distance of 20 km) and different user behaviours regarding battery recharging. CO 2 emissions were calculated for fuel consumption, electricity generation and cradle-to-grave. Electric grid power demand was estimated. Maintenance, manufacturer and use costs were discussed.

  10. Experimental assessment of the energy consumption of urban rail vehicles during stabling hours: Influence of ambient temperature

    International Nuclear Information System (INIS)

    Powell, J.P.; González-Gil, A.; Palacin, R.

    2014-01-01

    Urban rail has widely recognised potential to reduce congestion and air pollution in metropolitan areas, given its high capacity and environmental performance. Nevertheless, growing capacity demands and rising energy costs may call for significant energy efficiency improvements in such systems. Energy consumed by stabled rolling stock has been traditionally overlooked in the scientific literature in favour of analysing traction loads, which generally account for the largest share of this consumption. Thus, this paper presents the methodology and results of an experimental investigation that aimed to assess the energy use of stabled vehicles in the Tyne and Wear Metro system (UK). It is revealed that approximately 11% of the rolling stock's total energy consumption is due to the operation of on-board auxiliaries when stabled, and investigation of these loads is therefore a worthwhile exercise. Heating is responsible for the greatest portion of this energy, and an empirical correlation between ambient temperature and power drawn is given. This could prove useful for a preliminary evaluation of further energy saving measures in this area. Even though this investigation focused on a particular metro system in a relatively cold region, its methodology may also be valid for other urban and main line railways operating in different climate conditions. - Highlights: •Energy use of stabled vehicles in an actual metro system is experimentally examined. •Stabling hours account for about 11% of the vehicles' total energy consumption. •Heating is the major consumer during stabling hours. •An empirical correlation between ambient temperature and power drawn is derived. •The methodology described may also be applied to other urban and main line railways

  11. Design and Validation of Real-Time Optimal Control with ECMS to Minimize Energy Consumption for Parallel Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Aiyun Gao

    2017-01-01

    Full Text Available A real-time optimal control of parallel hybrid electric vehicles (PHEVs with the equivalent consumption minimization strategy (ECMS is presented in this paper, whose purpose is to achieve the total equivalent fuel consumption minimization and to maintain the battery state of charge (SOC within its operation range at all times simultaneously. Vehicle and assembly models of PHEVs are established, which provide the foundation for the following calculations. The ECMS is described in detail, in which an instantaneous cost function including the fuel energy and the electrical energy is proposed, whose emphasis is the computation of the equivalent factor. The real-time optimal control strategy is designed through regarding the minimum of the total equivalent fuel consumption as the control objective and the torque split factor as the control variable. The validation of the control strategy proposed is demonstrated both in the MATLAB/Simulink/Advisor environment and under actual transportation conditions by comparing the fuel economy, the charge sustainability, and parts performance with other three control strategies under different driving cycles including standard, actual, and real-time road conditions. Through numerical simulations and real vehicle tests, the accuracy of the approach used for the evaluation of the equivalent factor is confirmed, and the potential of the proposed control strategy in terms of fuel economy and keeping the deviations of SOC at a low level is illustrated.

  12. Modelling the multilevel structure and mixed effects of the factors influencing the energy consumption of electric vehicles

    International Nuclear Information System (INIS)

    Liu, Kai; Wang, Jiangbo; Yamamoto, Toshiyuki; Morikawa, Takayuki

    2016-01-01

    Highlights: • The impacts of driving heterogeneity on EVs’ energy efficiency are examined. • Several multilevel mixed-effects regression models are proposed and compared. • The most reasonable nested structure is extracted from the long term GPS data. • Proposed model improves the energy estimation accuracy by 7.5%. - Abstract: To improve the accuracy of estimation of the energy consumption of electric vehicles (EVs) and to enable the alleviation of range anxiety through the introduction of EV charging stations at suitable locations for the near future, multilevel mixed-effects linear regression models were used in this study to estimate the actual energy efficiency of EVs. The impacts of the heterogeneity in driving behaviour among various road environments and traffic conditions on EV energy efficiency were extracted from long-term daily trip-based energy consumption data, which were collected over 12 months from 68 in-use EVs in Aichi Prefecture in Japan. Considering the variations in energy efficiency associated with different types of EV ownership, different external environments, and different driving habits, a two-level random intercept model, three two-level mixed-effects models, and two three-level mixed-effects models were developed and compared. The most reasonable nesting structure was determined by comparing the models, which were designed with different nesting structures and different random variance component specifications, thereby revealing the potential correlations and non-constant variability of the energy consumption per kilometre (ECPK) and improving the estimation accuracy by 7.5%.

  13. Plug-in-Hybrid Vehicle Use, Energy Consumption, and Greenhouse Emissions: An Analysis of Household Vehicle Placements in Northern California

    Directory of Open Access Journals (Sweden)

    Daniel Kammen

    2011-03-01

    Full Text Available We report on the real-world use over the course of one year of a nickel-metal-hydride plug-in hybrid—the Toyota Plug-In HV—by a set of 12 northern California households able to charge at home and work. From vehicle use data, energy and greenhouse-emissions implications are also explored. A total of 1557 trips—most using under 0.5 gallons of gasoline—ranged up to 2.4 hours and 133 miles and averaged 14 minutes and 7 miles. 399 charging events averaged 2.6 hours. The maximum lasted 4.6 hours. Most recharges added less than 1.4 kWh, with a mean charge of 0.92 kWh. The average power drawn was under one-half kilowatt. The greenhouse gas emissions from driving and charging were estimated to be 2.6 metric tons, about half of the emissions expected from a 22.4-mpg vehicle (the MY2009 fleet-wide real-world average. The findings contribute to better understanding of how plug-in hybrids might be used, their potential impact, and how potential benefits and requirements vary for different plug-in-vehicle designs. For example, based on daily driving distances, 20 miles of charge-depleting range would have been fully utilized on 81% of days driven, whereas 40 miles would not have been fully utilized on over half of travel days.

  14. Electric Vehicle Market Penetration and Impacts on Energy Consumption and CO2 Emission in the Future: Beijing Case

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2017-02-01

    Full Text Available This study focuses on the development of electric vehicles (EV in the private passenger vehicle fleet in Beijing (China, analyzes how EVs will penetrate in the market, and estimates the resulting impacts on energy consumption and CO2 emissions up to 2030. A discrete choice model is adopted with consideration of variables including vehicle technical characteristics, fuel prices, charging conditions and support policies. Results show that by 2030, without technological breakthrough and support policies, the market share of EV will be less than 7%, with gasoline dominating the energy structure. With fast technological progress, charging facility establishment, subsidies and tax breaks, EVs will account for 70% of annual new vehicle sales and nearly half of the vehicle stock by 2030, resulting in the substitution of nearly 1 million tons of gasoline with 3.2 billion kWh electricity in 2030 and the reduction of 0.6 million tons of CO2 emission in 2030. Technological progress, charging conditions and fuel prices are the top three drivers. Subsidies play an important role in the early stage, while tax and supply-side policies can be good options as long-term incentives.

  15. Development of electric vehicles use in China: A study from the perspective of life-cycle energy consumption and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Zhou, Guanghui; Ou, Xunmin; Zhang, Xiliang

    2013-01-01

    China has promoted the use of electric vehicles vigorously since 2009; the program is still in its pilot phase. This study investigates the development of electric vehicle use in China from the perspectives of energy consumption and greenhouse-gas (GHG) emissions. Energy consumption and GHG emissions of plug-in hybrid electric vehicles (PHEVs) and pure battery electric vehicles (BEVs) are examined on the level of the regional power grid in 2009 through comparison with the energy consumption and GHG emissions of conventional gasoline internal combustion engine vehicles. The life-cycle analysis module in Tsinghua-LCAM, which is based on the GREET platform, is adopted and adapted to the life-cycle analysis of automotive energy pathways in China. Moreover, medium term (2015) and long term (2020) energy consumption and greenhouse-gas emissions of PHEVs and BEVs are projected, in accordance with the expected development target in the Energy Efficient and Alternative Energy Vehicles Industry Development Plan (2012–2020) for China. Finally, policy recommendations are provided for the proper development of electric vehicle use in China. - Highlights: • There was a marked difference in energy saving and GHG emission reduction for EVs powered by regional grids in China. • Energy saving and GHG emission reduction from EVs development will be more obvious in China in future. • EVs development will benefit the strategy of oil/ petroleum substitute in China

  16. The industrial energy consumption in 1999

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The Danish industrial energy consumption in 1999 is presented in tables. The tables include: the development in the energy consumption, the amount of employees in each of the main branches, fuel consumption, the fuel and energy consumption in 1999 based on each group of branches and energy category, the energy consumption in 1997 for each group of branches and the percentage distribution on energy category, and the fuel and energy consumption of motor vehicles in 1999 based on each group of branches. (SM)

  17. Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China

    International Nuclear Information System (INIS)

    Ou, Xunmin; Yan, Xiaoyu; Zhang, Xiliang; Liu, Zhen

    2012-01-01

    Highlights: ► We analyzed the life cycle energy intensity and GHG emissions of about 40 pathways of alternative vehicle fuels in China. ► Coal-based liquid fuel has higher life cycle energy intensities and first generation technology bio-fuel has relatively lower intensity. ► By 2020 electricity will have significantly lower GHG intensity and second generation technology bio-fuel will have near zero intensities. -- Abstract: Fossil energy consumption (FEC) and greenhouse gas (GHG) emission intensities of major alternative vehicle fuels (AVFs) in China are calculated and compared with conventional fuels by means of full life-cycle analysis. Currently most of the AVFs have not relatively obvious GHG emission reduction when compared to the gasoline pathway: (1) coal-based AVF has higher intensities in terms of both the FEC and GHG emissions; (2) electricity from the average Chinese grid has the GHG emission intensity similar to that of gasoline pathway although relatively lower FEC intensity; and (3) first generation technology bio-fuel has relatively lower GHG emission intensity and substantially lower FEC intensity. It is forecasted that by 2020 when still comparing to the gasoline pathway: (1) coal-based AVF will still have FEC and GHG emission intensities that are 1.5–1.8 and 1.8–2.5 time those of gasoline pathway, and the application of carbon capture and storage technology can reduce the GHG emission intensity of coal-based AVF; (2) electricity will have significantly lower GHG intensity; and (3) second generation technology bio-fuel will have near zero FEC and GHG intensities.

  18. New taxation on passenger vehicles and energy consumption. Impact on energy and CO{sub 2} from changed taxation in April 2007; Nye bilafgifter og energiforbrug. Energi- og CO{sub 2}-maessige effekter af afgiftsaendringen i april 2007

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, R.; Vestergaard, L.; Hedegaard Soerensen, C. (Tetraplan A/S, Copenhagen (Denmark))

    2009-01-15

    In April 2007 the Danish taxation on passenger vehicles was changed to, amongst other things, lower the CO{sub 2} emission. The changed taxation affects one out of five people, who have purchased a new vehicle for passenger use. And it has improved the overall fuel efficiency of the newly sold passenger vehicles by three percent. However, much of the improvement is based on a shift from gasoline to diesel engines leading to only a slightly lower overall energy consumption and CO{sub 2} emission - about a half percent. The general trend of downsizing and shift from gasoline to diesel engines is only partly due to the changed taxation. Rising oil and fuel prices as well as increased focus on energy consumption and CO{sub 2} emission are the major reason for buying a more fuel efficient vehicle for passenger use. Three out of four people buying new passenger vehicles are willing to choose a more fuel efficient type if the purchase tax and thus the price is lowered. Half of the people buying new passenger vehicles also agree on changing the taxation on passenger vehicles from a purchase based tax, which is quit high in Denmark, to a tax based on the use of the vehicles. Moreover, a majority agree that the taxes on passenger vehicles should, to an even larger extend than today, be based on energy use and CO{sub 2} emission. (au)

  19. On-line identification of vehicle fuel consumption for energy and emission management : an LTP system analysis

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Sijs, J.; Hermans, R.M.; Damen, A.A.H.; Bosch, van den P.P.J.

    2009-01-01

    An Energy Management (EM) system traditionally relies on (quasi) static maps offering efficiency parameters of the vehicle powertrain. During a vehicle's life span, these maps lose validity, so optimal performance for EM is not assured. This paper presents a proof-of-concept for a novel measurement

  20. Energy Consumption Database

    Science.gov (United States)

    Consumption Database The California Energy Commission has created this on-line database for informal reporting ) classifications. The database also provides easy downloading of energy consumption data into Microsoft Excel (XLSX

  1. IEA implementing agreement for hybrid and electric vehicle technologies and programmes, Annex VII hybrid vehicles : Topic 13, assessment of the energy consumption of hybrid trucks using ADVISOR

    NARCIS (Netherlands)

    Eelkema, J.; Winkel, R.G.; Geraets, R.; Verbakel, M.J.L.

    2002-01-01

    This topic report focuses on the possible benefits of the application of a hybrid powertrain in heavy-duty vehicles. The main objective is to assess whether a significant reduction in fuel consumption is feasible. An average Dutch distribution truck with a conventional driveline will be compared to

  2. Vehicle technologies, fuel-economy policies, and fuel-consumption rates of Chinese vehicles

    International Nuclear Information System (INIS)

    Huo Hong; He Kebin; Wang, Michael; Yao Zhiliang

    2012-01-01

    One of the principal ways to reduce transport-related energy use is to reduce fuel-consumption rates of motor vehicles (usually measured in liters of fuel per 100 km). Since 2004, China has implemented policies to improve vehicle technologies and lower the fuel-consumption rates of individual vehicles. Policy evaluation requires accurate and adequate information on vehicle fuel-consumption rates. However, such information, especially for Chinese vehicles under real-world operating conditions, is rarely available from official sources in China. For each vehicle type we first review the vehicle technologies and fuel-economy policies currently in place in China and their impacts. We then derive real-world (or on-road) fuel-consumption rates on the basis of information collected from various sources. We estimate that the real-world fuel-consumption rates of vehicles in China sold in 2009 are 9 L/100 km for light-duty passenger vehicles, 11.4 L/100 km for light-duty trucks, 22 L/100 km for inter-city transport buses, 40 L/100 km for urban transit buses, and 24.9 L/100 km for heavy-duty trucks. These results aid in understanding the levels of fuel consumption of existing Chinese vehicle fleets and the effectiveness of policies in reducing on-road fuel consumption, which can help in designing and evaluating future vehicle energy-efficiency policies. - Highlights: ► Vehicle fuel-consumption rate (VFCR) data are rarely available in China. ► We review the fuel-economy policies currently in place in China and their impacts. ► We derive real-world VFCRs on the basis of information collected from various sources. ► Results aid in understanding the fuel consumption levels of Chinese vehicle fleets. ► Results help in designing and evaluating future vehicle energy-efficiency policies.

  3. On-line identification of vehicle fuel consumption for energy and emission management: an LTP System Analysis

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Sijs, J.; Hermans, R.M.; Damen, A.A.H.; Bosch, P.P.J. van den; Papp, Z.; Lazar, M.

    2008-01-01

    Abstract—An Energy Management (EM) system traditionally relies on (quasi) static maps offering efficiency parameters of the vehicle powertrain. During a vehicle’s life span, these maps lose validity, so optimal performance for EM is not assured. This paper presents a proof-of-concept for a novel

  4. Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data.

    Science.gov (United States)

    Kan, Zihan; Tang, Luliang; Kwan, Mei-Po; Zhang, Xia

    2018-03-21

    The energy consumption and emissions from vehicles adversely affect human health and urban sustainability. Analysis of GPS big data collected from vehicles can provide useful insights about the quantity and distribution of such energy consumption and emissions. Previous studies, which estimated fuel consumption/emissions from traffic based on GPS sampled data, have not sufficiently considered vehicle activities and may have led to erroneous estimations. By adopting the analytical construct of the space-time path in time geography, this study proposes methods that more accurately estimate and visualize vehicle energy consumption/emissions based on analysis of vehicles' mobile activities ( MA ) and stationary activities ( SA ). First, we build space-time paths of individual vehicles, extract moving parameters, and identify MA and SA from each space-time path segment (STPS). Then we present an N-Dimensional framework for estimating and visualizing fuel consumption/emissions. For each STPS, fuel consumption, hot emissions, and cold start emissions are estimated based on activity type, i.e., MA , SA with engine-on and SA with engine-off. In the case study, fuel consumption and emissions of a single vehicle and a road network are estimated and visualized with GPS data. The estimation accuracy of the proposed approach is 88.6%. We also analyze the types of activities that produced fuel consumption on each road segment to explore the patterns and mechanisms of fuel consumption in the study area. The results not only show the effectiveness of the proposed approaches in estimating fuel consumption/emissions but also indicate their advantages for uncovering the relationships between fuel consumption and vehicles' activities in road networks.

  5. Energy consumption and energy prices

    International Nuclear Information System (INIS)

    Bentzen, J.

    1993-01-01

    Data are presented on energy consumption and energy prices related to a number of OECD (Organisation for Economic Co-operation and Development) lands covering the period 1951-1990. The information sources are described and the development of energy consumption and prices in Denmark are illustrated in relation to these other countries. The energy intensity (the relation between energy consumption and the gross national product) is dealt with. Here it is possible to follow development during the whole post-war period. It is generally understood that Denmark saved large amounts of energy after 1973-74 but, taken over the whole post-war period, savings and decline in energy-gross national product relations are less dramatic compared to conditions in other OECD countries. Energy coefficients or elasticities show the relative rise in consumption compared to the relative rise in gross national product (growth rate). This is shown to be typically unstable and an eventual connection with the amount of energy price increase and/or the growth rate of the national economy is considered. Results of Granger causuality tests on energy consumption, national income and energy prices are presented. Effective energy prices were very low in Denmark up to 1970 when they suddenly began to increase. Since the oil crisis Denmark's energy consumption has fallen whereas the other countries have used rather more energy than before. Effective promotion of energy savings must be seen in relation to the fact that the 1970 basis level of energy consumption and intensity was unusually high. The high effective energy prices have also encouraged energy savings in Denmark. (AB)

  6. Energy harvesting water vehicle

    KAUST Repository

    Singh, Devendra

    2018-01-01

    An efficient energy harvesting (EEH) water vehicle is disclosed. The base of the EEH water vehicle is fabricated with rolling cylindrical drums that can rotate freely in the same direction of the water medium. The drums reduce the drag

  7. Energy Consumption vs. Energy Requirement

    Science.gov (United States)

    Fan, L. T.; Zhang, Tengyan; Schlup, John R.

    2006-01-01

    Energy is necessary for any phenomenon to occur or any process to proceed. Nevertheless, energy is never consumed; instead, it is conserved. What is consumed is available energy, or exergy, accompanied by an increase in entropy. Obviously, the terminology, "energy consumption" is indeed a misnomer although it is ubiquitous in the…

  8. Investigation of the Link Between Macroscopic Traffic Flow Characteristics and Individual Vehicle Fuel Consumption

    Science.gov (United States)

    2017-10-01

    This project investigated the factors impacting individual vehicle energy consumption, including vehicle characteristics, ambient temperature, season, speed, driving behavior, and traffic flow. A fleet of 18 vehicles with a variety of ownership, size...

  9. Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data

    Directory of Open Access Journals (Sweden)

    Zihan Kan

    2018-03-01

    Full Text Available The energy consumption and emissions from vehicles adversely affect human health and urban sustainability. Analysis of GPS big data collected from vehicles can provide useful insights about the quantity and distribution of such energy consumption and emissions. Previous studies, which estimated fuel consumption/emissions from traffic based on GPS sampled data, have not sufficiently considered vehicle activities and may have led to erroneous estimations. By adopting the analytical construct of the space-time path in time geography, this study proposes methods that more accurately estimate and visualize vehicle energy consumption/emissions based on analysis of vehicles’ mobile activities (MA and stationary activities (SA. First, we build space-time paths of individual vehicles, extract moving parameters, and identify MA and SA from each space-time path segment (STPS. Then we present an N-Dimensional framework for estimating and visualizing fuel consumption/emissions. For each STPS, fuel consumption, hot emissions, and cold start emissions are estimated based on activity type, i.e., MA, SA with engine-on and SA with engine-off. In the case study, fuel consumption and emissions of a single vehicle and a road network are estimated and visualized with GPS data. The estimation accuracy of the proposed approach is 88.6%. We also analyze the types of activities that produced fuel consumption on each road segment to explore the patterns and mechanisms of fuel consumption in the study area. The results not only show the effectiveness of the proposed approaches in estimating fuel consumption/emissions but also indicate their advantages for uncovering the relationships between fuel consumption and vehicles’ activities in road networks.

  10. Interactive energy consumption visualization

    CSIR Research Space (South Africa)

    Lunga, D

    2014-11-01

    Full Text Available in an office building environment. The main goal is to highlight high consumptions patterns, estimate costs and savings, and recommend energy saving strategies. In its useful nature, the dashboard can provide valuable information for further programs tied...

  11. Turkey's net energy consumption

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol; Oezkaymak, Mehmet

    2005-01-01

    The main goal of this study is to develop the equations for forecasting net energy consumption (NEC) using an artificial neural-network (ANN) technique in order to determine the future level of energy consumption in Turkey. In this study, two different models were used in order to train the neural network. In one of them, population, gross generation, installed capacity and years are used in the input layer of the network (Model 1). Other energy sources are used in input layer of network (Model 2). The net energy consumption is in the output layer for two models. Data from 1975 to 2003 are used for the training. Three years (1981, 1994 and 2003) are used only as test data to confirm this method. The statistical coefficients of multiple determinations (R 2 -value) for training data are equal to 0.99944 and 0.99913 for Models 1 and 2, respectively. Similarly, R 2 values for testing data are equal to 0.997386 and 0.999558 for Models 1 and 2, respectively. According to the results, the net energy consumption using the ANN technique has been predicted with acceptable accuracy. Apart from reducing the whole time required, with the ANN approach, it is possible to find solutions that make energy applications more viable and thus more attractive to potential users. It is also expected that this study will be helpful in developing highly applicable energy policies

  12. Energy harvesting water vehicle

    KAUST Repository

    Singh, Devendra

    2018-01-04

    An efficient energy harvesting (EEH) water vehicle is disclosed. The base of the EEH water vehicle is fabricated with rolling cylindrical drums that can rotate freely in the same direction of the water medium. The drums reduce the drag at the vehicle-water interface. This reduction in drag corresponds to an increase in speed and/or greater fuel efficiency. The mechanical energy of the rolling cylindrical drums is also transformed into electrical energy using an electricity producing device, such as a dynamo or an alternator. Thus, the efficiency of the vehicle is enhanced in two parallel modes: from the reduction in drag at the vehicle-water interface, and from capturing power from the rotational motion of the drums.

  13. Establishing bonds between vehicle certification data and real-world vehicle fuel consumption – A Vehicle Specific Power approach

    International Nuclear Information System (INIS)

    Duarte, G.O.; Gonçalves, G.A.; Baptista, P.C.; Farias, T.L.

    2015-01-01

    Highlights: • Innovative methodology to estimate VSP fuel consumption based on public available data. • Model validation with accurate fuel consumption results (absolute deviation from 4.7% to 9.2%). • Best-selling vehicles in Portugal case study was developed for different driving cycles. - Abstract: A method to perform the energy characterization of a vehicle according to the specific power required while driving was developed using public vehicle certification data. Using a portable emission measurement system, fuel consumption was quantified in a second-by-second basis under on-road conditions for 19 vehicles (spark-ignition, compression-ignition and hybrids). This data allowed building generic curves of fuel consumption as a function of the specific power, according to Vehicle Specific Power methodology. Comparing on-road measurements and the model estimates, a R 2 higher than 0.9 for conventional and hybrid vehicles was obtained regarding modal fuel consumption. Comparing the fuel consumption measured on the drive cycles performed by each vehicle and the correspondent estimates, an absolute deviation of 9.2% ± 9.2% was found for conventional vehicles and 4.7% ± 1.8% for hybrids vehicles. This methodology was validated and applied to estimate the energy impacts of the best-selling vehicles in Portugal for different driving cycles. This prompt method, that does not require vehicle monitoring, can estimate curves of fuel consumption in g/s, as a function of specific power, which allows quantifying the absolute fuel use for any driving cycle

  14. Energy catastrophes and energy consumption

    International Nuclear Information System (INIS)

    Davis, G.

    1991-01-01

    The possibility of energy catastrophes in the production of energy serves to make estimation of the true social costs of energy production difficult. As a result, there is a distinct possibility that the private marginal cost curve of energy producers lies to the left or right of the true cost curve. If so, social welfare will not be maximized, and underconsumption or overconsumption of fuels will exist. The occurrence of energy catastrophes and observance of the market reaction to these occurrences indicates that overconsumption of energy has been the case in the past. Postulations as to market reactions to further energy catastrophes lead to the presumption that energy consumption levels remain above those that are socially optimal

  15. Regional final energy consumptions

    International Nuclear Information System (INIS)

    2011-01-01

    This report comments the differences observed between the French regions and also between these regions and national data in terms of final energy consumption per inhabitant, per GDP unit, and per sector (housing and office building, transport, industry, agriculture). It also comments the evolutions during the last decades, identifies the most recent trends

  16. Energy consumption: Past, present, future

    Science.gov (United States)

    1973-01-01

    The energy consumption history of the United States and the changes which could occur in consumption characteristics in the next 50 years are presented. The various sources of energy are analyzed to show the limitations involved in development and utilization as a function of time available. Several scenarios were prepared to show the consumption and supply of energy under varying conditions.

  17. Energy consumption declined in 1993

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    On presenting the energy consumption figures for 1993 the Minister for Economic Affairs of Baden-Wuerttemberg Dieter Spoeri (SPD) spoke of the eternal task of saving energy. In his view the slight decline in energy consumption from 1992 to 1993 should not be interpreted as a greater willingness to save energy; its main cause is rather to be seen in the course of the economy. According to estimations, total energy consumption fell 0.5% and electricity consumption 1.0% from 1992 to 1993. The economy on the other hand, still a decisive factor in energy consumption, is estimated to have declined 3% during that period. In the ten years from 1983 to 1993 total energy consumption in the Land rose an average annual 1.8% while electricity consumption kept astride with the economy with an average annual rise 2.7%, he said. (orig./HP) [de

  18. Comparison of the primary energy consumption and the CO2-emission of an urban vehicle with conventional and alternative drives

    International Nuclear Information System (INIS)

    Birnbreier, H.

    1992-01-01

    Based on a model car with its basic data corresponding to those of a series-produced small passenger car, conventional and alternative drives were compared. Cars shared the following features: same basic weight without tank, one energy storage system for the same driving range, same acceleration capacity from 0 to 50 km/h. Petrol and diesel were the conventional fuels; methanol, natural gas (pressurized, liquid), hydrogen (pressurized, liquid, hydride) and electric energy (NaS battery) were the alternative fuels. Both primary energy and CO 2 balancings take the different raw materials into account for the production of useful energies. (orig.) [de

  19. Effect of energy taxes on energy consumption

    International Nuclear Information System (INIS)

    Johnsen, T.A.

    1991-01-01

    The energy consumption and taxation in Norway is described in addition to some of the consequences of this taxation on the energy market. Modelling of energy demand is dealt with. It is concluded that the influence of energy taxation on energy consumption is dependent on market conditions for individual energy products. This thesis is elaborated. (AB)

  20. Manufacturing consumption of energy 1991

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  1. Energy consumption and conservation, evaluation

    International Nuclear Information System (INIS)

    Acket, C.

    2006-04-01

    The energy consumption is increasing of more than 1% each year. It is necessary to slow down this growth and much better to inverse it. Observing the main consumption posts, energy saving is possible at short dated for the residential sector and medium and long dated for the transports and the industry. Anyway the individual behaviors are essential. The author presents the situation for each posts, providing data on the energy consumption and saving and recommendations. (A.L.B.)

  2. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  3. Energy consumption assessment methods

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, K S

    1975-01-01

    The why, what, and how-to aspects of energy audits for industrial plants, and the application of energy accounting methods to a chemical plant in order to assess energy conservation possibilities are discussed. (LCL)

  4. Kinetic energy recovery systems in motor vehicles

    Science.gov (United States)

    Śliwiński, C.

    2016-09-01

    The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an energy recovery device in mechanical vehicles which uses torsion springs as the main components of energy accumulation during braking. The desirability of a cooperation of both the mechanical- and electrical energy recovery devices was indicated.

  5. 1999 world energy consumption (ENERDATA)

    International Nuclear Information System (INIS)

    Martin, J.M.

    2000-01-01

    Here is given a compilation of detailed statistical tables on various aspects of world energy production and consumption over the years 1994 to 1999. The present tables indicate the production, trade and consumption of crude oil, liquefied natural gas, oil products, natural gas, coal, lignite, electric power; the energy balance for the year 1999; the total energy consumption in European Union, Western Europe, North America, Japan and Pacific, CIS and Central Europe, Latin America, Asia, Middle East and Africa for the years 1994 to 1999. The CO 2 emissions for these countries are also given. These data are an extraction of the energy statistics yearbook, ENERDATA, June 2000. They are commented by Mr J.M. Martin. According to ENERDATA, the 1999 world energy consumption stagnates. (O.M.)

  6. Energy consumption and technological developments

    International Nuclear Information System (INIS)

    Okorokov, V.R.

    1990-02-01

    The paper determines an outline of the world energy prospects based on principal trends of the development of energy consumption analysed over the long past period. According to the author's conclusion the development of energy systems will be determined in the nearest future (30 - 40 years) by contemporary energy technologies based on the exploitation of traditional energy resources but in the far future technologies based on the exploitation of thermonuclear and solar energy will play the decisive role. (author)

  7. Elasticity of energy consumption

    International Nuclear Information System (INIS)

    Stam, M.

    2004-01-01

    Insight is given into the price elasticities of several energy carriers. Next, attention is paid to the impact of the discussion on changes of the Regulating Energy Levy (REB, abbreviated in Dutch) in the Netherlands [nl

  8. Energy consumption trends in Lithuania

    International Nuclear Information System (INIS)

    Galinis, A.; Miskinis, V.

    2000-01-01

    The paper describes some problems related to integration into EU, current state of the Lithuania economy and energy sector and changes in energy consumption during transition period. It provides and analysis of the main indicators of energy consumption, such as the ratio of primary energy consumption to Gross Domestic Product (GDP), primary and final energy intensity and others based on estimates of Purchasing Power Parity. The paper also discusses problems arising at evaluation of economical and energy indices for the countries in transition and compares them with those existing in other countries of Central and Eastern Europe and in Western countries. It shows uneven tendencies of energy intensity occurring under transitions in Lithuania and other Baltic States. (author)

  9. Investigation of the Link Between Macroscopic Traffic Flow Characteristics and Individual Vehicle Fuel Consumption : Tech Transfer Summary

    Science.gov (United States)

    2017-10-01

    The objective of this project was to investigate the impacts of several factors, including vehicle characteristics, ambient temperature, season, speed, driving behavior, and traffic flow, on individual vehicle energy consumption.

  10. Energy consumption trends in Hawaii

    International Nuclear Information System (INIS)

    Kaya, Abidin; Yalcintas, Melek

    2010-01-01

    This study begins with a review of energy consumption by end-use sector in Hawaii. Then, the energy generated from renewable energy sources is analyzed between 1991 and 2006. The results show that while geothermal is a considerable source of renewable energy on the Island of Hawaii (also known as Big Island), fossil fuel is the main energy source in the State of Hawaii. The energy intensity index for the State of Hawaii is then calculated by dividing energy consumption per capita by the income per capita. The calculated energy intensity index reveals that energy consumption is directly controlled by per capita income. The results also indicate that the energy intensity index increases over time despite positive developments in energy efficient technologies. In the second part of the paper, the effect of the tourism industry on energy usage in the State of Hawaii is analyzed. The results show that tourism volume, measured in terms of tourist arrival numbers, does not change the energy consumption directly. However, a change in tourism volume does affect per capita income within a few months to a year. In the last part of the study, the energy efficiency index of Hawaii is compared with consumption averages for the US, California and the most energy efficient country in Europe, Denmark. The comparison shows that Hawaii lags behind California and Denmark in terms of energy efficiency. The comparison also shows that an increase in energy efficiency corresponds to an increase in per capita income across the board, which is in agreement with a recent report published by the American Physical Society.

  11. Energy Consumption Management in Design

    NARCIS (Netherlands)

    Smit, Jaap

    1997-01-01

    A survey of the basic issues in low power design is presented, including techniques for the analysis of energy consumption in the early design phase of analog and digital circuits. The concept of energy complexity will be introduced in conjunction with techniques for parameterized energy management.

  12. Household energy consumption attitudes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, P

    1976-05-01

    This report contains a summary of the results of a study of household attitudes to energy use and conservation while the author was a member of staff at Massey University. During 1975 seven batches of a mail questionnaire were sent out to a random sample of people drawn from the 1974 Local Body Electoral Rolls. Valid replies were obtained from just under 60% of the 17,500 households to which the forms were sent. The study was undertaken for the simple reason that all energy demand depends on people and yet very little information seemed to be available which showed what people thought about the energy situation and how they felt about the need for conservation. The way people evaluate their energy needs represents a focal element in the energy system as it is this appraisal which results in their demand for energy. The impact of household attitudes goes far beyond the relative share of the energy market taken by the domestic sector, however, as the same people are involved in the demand from all other sectors.

  13. Energy sustainability: consumption, efficiency, and ...

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le

  14. Greenhouse energy consumption

    Science.gov (United States)

    Eric van Steenis

    2009-01-01

    Depending on location and luck, natural gas rates have gone from less that CAN$ 3.00 to more than CAN$ 20.00/gigajoule (Gj). Natural gas rates are currently around CAN$ 13.00/Gj, although industry "analysts" predict an increase. A gigajoule is equivalent to the energy released by the combustion of approximately 30 L (8 gal) of gasoline. It is also equivalent...

  15. Evaluation of an optimized coolant circuit conception in a thermal whole vehicle environment with respect to the consumption of primary energy; Bewertung eines optimierten Kuehlmittelkreislaufkonzeptes in einer thermischen Gesamtfahrzeugumgebung hinsichtlich des Primaerenergieverbrauchs

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Mirko; Neumann, Alexander; Tilch, Benjamin; Eilts, Peter [Technische Univ. Braunschweig (Germany). Inst. fuer Verbrennungskraftmaschinen; Niedersaechsisches Forschungszentrum Fahrzeugtechnik (NFF), Braunschweig (Germany)

    2012-11-01

    This work deals with a co-simulation vehicle environment developed by the institute of internal combustion engines (ivb) of the Technical University Braunschweig as a tool to analyze the thermal effects in the power train during the warm-up phase, especially on the fuel consumption. This allows evaluating new drive train concepts in early stages of development by using power train thermal management techniques (TMM). Therefore you are able to give an objective statement for these techniques by analyzing the changes in fuel consumption. The used simulation models will be introduced and the mechanical and thermal behavior is verified using test bench data. An optimized coolant circuit concept in GT Suite {sup registered}, developed at the institute is identified and coupled to a thermal engine model. In this paper, the potentials for reducing primary energy consumption in the New European Driving Cycle (NEDC) are presented. (orig.)

  16. Electric vehicle energy impacts.

    Science.gov (United States)

    2017-05-01

    The objective of this research project was to evaluate the impacts of electric vehicles (EVs) and : renewable wind and solar photovoltaic (PV) power generation on reducing petroleum imports : and greenhouse gas emissions to Hawaii. In 2015, the state...

  17. Global risks from energy consumption

    International Nuclear Information System (INIS)

    von Hippel, F.

    1983-01-01

    A discussion of some of the global risks associated with current and frequently proposed future levels of consumption of energy from oil, coal, fission, fusion, and renewable sources points out the the dangers are serious and relatively near term. These include world war over Persian Gulf oil, climate change due to the buildup of atmospheric carbon dioxide, the accelerated proliferation of nuclear weapons, and competition between food and energy for land and water. The author urges placing a greater emphasis on how we use energy and how to reduce energy waste. At the levels of consumption which economically justified levels of energy efficiency could bring about, enough flexibility could develop in our choice of a future energy-supply mix to dramatically reduce the associated global risks. 47 references, 3 figures

  18. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  19. Electric and hydrogen consumption analysis in plug-in road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ribau, Joao P.; Silva, Carla M.; Faria, Tiago L. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Department of Mechanical Engineering, Av. Rovisco Pais, 1 Pav. Mecanica I, 2 andar, 1049-001 Lisboa (Portugal)

    2010-07-01

    The main goal of the present study is to analyze some of the capabilities and behavior of two types of plug-in cars: battery electric and hydrogen fuel cell hybrid electric, facing different driving styles, different road gradients, different occupation rates, different electrical loads, and different battery's initial state of charge. In order to do that, four vehicles with different power/weight (kW/kg) ratio (0.044 to 0.150) were simulated in the software ADVISOR, which gives predictions of energy consumption, and behavior of vehicle's power train components (including energy regeneration) along specified driving cycles. The required energy, electricity and/or hydrogen, to overcome the specified driving schedules, allowed to estimate fuel life cycle's CO2 emissions and primary energy. A vehicle with higher power/weight ratio (kW/kg) demonstrated to be less affected in operation and in variation of the energy consumption, facing the different case studies, however may have higher consumptions in some cases. The autonomy, besides depending on the fuel consumption, is directly associated with the type and capacity (kWh) of the chosen battery, plus the stored hydrogen (if fuel cell vehicles are considered, PHEV-FC). The PHEV-FC showed to have higher autonomy than the battery vehicles, but higher energy consumption which is extremely dependent on the type and ratio of energy used, hydrogen or electricity. An aggressive driving style, higher road gradient and increase of weight, required more energy and power to the vehicle and presented consumption increases near to 77%, 621%, 19% respectively. Higher electrical load and battery's initial state of charge, didn't affect directly vehicle's dynamic. The first one drained energy directly from the battery plus demanded a fraction of its power, with energy consumption maximum increasing near 71%. The second one restricted the autonomy without influence directly the energy consumption per

  20. An investigation on energy consumption trend in Japan. Transportation sector

    International Nuclear Information System (INIS)

    Suzuki, Takayoshi

    2005-08-01

    Although energy consumption in the industry sector has almost been stable, energy consumption in the transportation (passenger and freight) sector has increased much after the oil crisis. The increase of energy consumption in the passenger sector can be attributed to the increase in transportation by private passenger vehicles; while the increase in the freight sector was due to the modal shift to trucks. Among transportation methods, automobiles, i.e. passenger vehicles and trucks, are now dominant in terms of energy consumption and also in terms of amount of transportation. Therefore implementing energy conservation measures relating to automobiles is very important in order to suppress the energy consumption in the transportation sector. This report summarizes the results of investigation on energy conservation measures, especially relevant to automobiles. It was found from the investigation that most promising and effective technologies or measures are promoting market penetration of vehicles satisfying ''top runner standard'', development and employment of hybrid vehicles, and introduction of vehicles with ''idling-stop'' systems. (author)

  1. Manufacturing consumption of energy 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  2. Energy management and vehicle synthesis

    Science.gov (United States)

    Czysz, P.; Murthy, S. N. B.

    The major drivers in the development of launch vehicles for the twenty-first century are reduction in cost of vehicles and operations, continuous reusability, mission abort capability with vehicle recovery, and readiness. One approach to the design of such vehicles is to emphasize energy management and propulsion as being the principal means of improvements given the available industrial capability and the required freedom in selecting configuration concept geometries. A methodology has been developed for the rational synthesis of vehicles based on the setting up and utilization of available data and projections, and a reference vehicle. The application of the methodology is illustrated for a single stage to orbit (SSTO) with various limits for the use of airbreathing propulsion.

  3. Changing practices of energy consumption

    DEFF Research Database (Denmark)

    Christensen, Toke Haunstrup; Friis, Freja; Skjølsvold, Tomas Moe

    2017-01-01

    to produce hydrogen for transport use), whereas others emphasise the role of individual consumers. The latter approach is dominant within the smart grid vision. In this paper, we explore implications of smart grid technologies in households for the everyday practices related to electricity consumption...... (microgeneration) influence the everyday practices? What kind of influence does the combination of PVs with other “smart” energy technologies have on everyday practices and electricity consumption patterns? A specific focus is on the time patterns of households’ energy consumption. The analysis is based...... settlement scheme (hourly versus annual net metering) and the trial context play a role. Also, the study finds a broader interest in increasing the level of self-sufficiency through combining PVs with home batteries. Finally, the paper discusses a distinct (male) gendering in relation to who is most actively...

  4. The industrial energy consumption in 2001

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    The Danish industrial energy consumption in 2001 is presented in tables. The tables include: the development in the energy consumption, the amount of employees in each of the main branches, fuel consumption, the fuel and energy consumption in 2001 based on each group of branches and energy category, and the emission of CO 2 . (LN)

  5. Hypercoagulability after energy drink consumption.

    Science.gov (United States)

    Pommerening, Matthew J; Cardenas, Jessica C; Radwan, Zayde A; Wade, Charles E; Holcomb, John B; Cotton, Bryan A

    2015-12-01

    Energy drink consumption in the United States has more than doubled over the last decade and has been implicated in cardiac arrhythmias, myocardial infarction, and even sudden cardiac death. We hypothesized that energy drink consumption may increase the risk of adverse cardiovascular events by increasing platelet aggregation, thereby resulting in a relatively hypercoagulable state and increased risk of thrombosis. Thirty-two healthy volunteers aged 18-40 y were given 16 oz of bottled water or a standardized, sugar-free energy drink on two separate occasions, 1-wk apart. Beverages were consumed after an overnight fast over a 30-min period. Coagulation parameters and platelet function were measured before and 60 min after consumption using thrombelastography and impedance aggregometry. No statistically significant differences in coagulation were detected using kaolin or rapid thrombelastography. In addition, no differences in platelet aggregation were detected using ristocetin, collagen, thrombin receptor-activating peptide, or adenosine diphosphate-induced multiple impedance aggregometry. However, compared to water controls, energy drink consumption resulted in a significant increase in platelet aggregation via arachidonic acid-induced activation (area under the aggregation curve, 72.4 U versus 66.3 U; P = 0.018). Energy drinks are associated with increased platelet activity via arachidonic acid-induced platelet aggregation within 1 h of consumption. Although larger clinical studies are needed to further address the safety and health concerns of these drinks, the increased platelet response may provide a mechanism by which energy drinks increase the risk of adverse cardiovascular events. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Mitigation potential of greenhouse gas emission and implications on fuel consumption due to clean energy vehicles as public passenger transport in Kathmandu Valley of Nepal: A case study of trolley buses in Ring Road

    International Nuclear Information System (INIS)

    Pradhan, Shreekar; Ale, Bhakta Bahadur; Amatya, Vishwa Bhusan

    2006-01-01

    This paper estimates the consequences in fuel consumption and greenhouse gas emission due to the possible intervention of the electric run trolley buses in the existing public transport system in a particular road up to the year 2025 in Kathmandu Valley. It projects the scenarios on the basis that the passenger travel demand is the function of population and income. Basically, it uses the Long Range Energy Alternatives Planning System software to develop Business as Usual scenario and the five alternative scenarios. The alternative scenarios are 100% replacement of vehicles catering to mass-transit in the concerned routes, 50% replacement, 25% replacement, stopping future growth of other vehicles catering to mass-transit in the concerned routes and 25% replacement in the first year, and combination scenarios. The results estimate that the passenger travel demand will increase by three folds from the year 2003 to the year 2025. It projects the three-fold increase of the existing vehicle activity by the year 2025 in Business as Usual scenario. The fuel consumption will increase by 2.4 times compared to the year 2003. It estimates the total greenhouse gas (GHG) emission as 8.5 thousands tons in year 2003 which will increase by more than 3 times in year 2025. It estimates that 174.3 thousands t CO 2 e can be avoided in combination scenario. The paper concludes that the intervention of clean energy transport in the existing public transport can have a significant positive impact on the GHG emission and current fuel consumption

  7. Energy regeneration from decelerating vehicle

    OpenAIRE

    Chishty, Owais; Melis, Wim J.C.

    2012-01-01

    Up to now most car braking systems use hydraulic braking technology, which converts the excess of kinetic energy into heat, effectively resulting in an energy loss. Regenerative breaking technology supposedly deals with this problem by converting kinetic energy back into electrical energy that can then be reused for example during acceleration. Current hybrid vehicles are equipped with regenerative braking technology which makes them particularly interesting for situations with frequent decel...

  8. Urban transport energy consumption: Belgrade case study

    Directory of Open Access Journals (Sweden)

    Jovanović Miomir M.

    2015-01-01

    Full Text Available More than half of the global population now lives in towns and cities. At the same time, transport has become the highest single energy-consuming human activity. Hence, one of the major topics today is the reduction of urban transport demand and of energy consumption in cities. In this article we focused on the whole package of instruments that can reduce energy consumption and transport demand in Belgrade, a city that is currently at a major crossroad. Belgrade can prevent a dramatic increase in energy consumption and CO2 emissions (and mitigate the negative local environmental effects of traffic congestion, traffic accidents and air pollution, only if it: 1 implements a more decisive strategy to limit private vehicles use while its level of car passenger km (PKT is still relatively low; 2 does not try to solve its transport problems only by trying to build urban road infrastructure (bridges and ring roads; and 3 if it continues to provide priority movement for buses (a dominant form of public transport, while 4 at the same time developing urban rail systems (metro or LRT with exclusive tracks, immune to the traffic congestion on urban streets. [Projekat Ministarstva nauke Republike Srbije, br. 37010

  9. Effect of interactions between vehicles and pedestrians on fuel consumption and emissions

    Science.gov (United States)

    Li, Xiang; Sun, Jian-Qiao

    2014-12-01

    This paper presents a study of variations of fuel consumption and emissions of vehicles due to random street crossings of pedestrians. The pedestrian and vehicle movement models as well as the interaction model between the two entities are presented. Extensive numerical simulations of single and multiple cars are carried out to investigate the traffic flow rate, vehicle average speed, fuel consumption, CO, HC and NOx emissions. Generally more noncompliant road-crossings of pedestrians lead to higher level of fuel consumptions and emissions of vehicles, and the traffic situation can be improved by imposing higher vehicle speed limit to some extent. Different traffic characteristics in low and high vehicle density regions are studied. The traffic flow is more influenced by crossing pedestrians in the low vehicle density region, while in the high vehicle density region, the interactions among vehicles dominate. The main contribution of this paper lies in the qualitative analysis of the impact of the interactions between pedestrians and vehicles on the traffic, its energy economy and emissions.

  10. The industrial energy consumption in 2003

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The statistics present the industry's energy consumption and composition, and the development from 1973 to 2003. In this period the composition of the energy consumption has changed considerably: a decrease in the consumption of liquid fuels and an increase in the consumption of natural gas and electric power. The energy consumption in the Danish industry decreased with almost 9 % from 2001 to 2003. This relatively large decrease was mainly due to the closing down of a steel factory. In the wood industry the energy consumption decreased with 36 % from 2001 to 2003, while the energy consumption in the electronics industry increased. (ln)

  11. Household energy consumption and expenditures, 1990

    International Nuclear Information System (INIS)

    1993-01-01

    This report, Household Energy Consumption and Expenditures 1990, is based upon data from the 1990 Residential Energy Consumption Survey (RECS). Focusing on energy end-use consumption and expenditures of households, the 1990 RECS is the eighth in a series conducted since 1978 by the Energy Information Administration (EIA). Over 5,000 households were surveyed, providing information on their housing units, housing characteristics, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information provided represents the characteristics and energy consumption of 94 million households nationwide

  12. Energy consumption of sport halls

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The energy consumption of Finland's sports halls (ball games halls, ice hockey halls and swimming halls) represent approximately 1% of that of the country's whole building stock. In the light of the facts revealed by the energy study the potential energy saving rate in sports halls is 15-25%. The total savings would be something like FIM 30-40 million per annum, of which about a half would be achieved without energy-economic investments only by changing utilization habits and by automatic control measures. The energy-economic investments are for the most part connected with ventilation and their repayment period is from one to five years. On the basis of the energy study the following specific consumption are presented as target values: swimming halls: heat (kWh/m*H3/a)100, electricity (kWh/m*H3/a)35, water (l/m*H3/a)1000 icehockey halls (warm): heat (kWh/m*H3/a)25, electricity (kWh/m*H3/a)15, water (l/m*H3/a)200, ball games halls (multi-purpose halls): heat (kWh/m*H3/a)30, electricity (kWh/m*H3/a)25, water (l/m*H3/a)130. In the study the following points proved to be the central areas of energy saving in sports halls: 1. Flexible regulation of the temperature in sports spaces on the basis of the sport in question. 2. The ventilation of swimming halls should be adjusted in such a way that the humidity of the hall air would comply with the limit humidity curve determined by the quality of structures and the temperature of the outdoor air. 3. An ice skating hall is an establishment producing condensing energy from 8 to 9 months a year worth of approx. 100.000-150.000 Finnmarks. The development of the recovery of condensing energy has become more important. 4. The ventilation of ball games halls may account for over 50% of the energy consumption of the whole building. Therefore special attention should be paid to the optimatization of ventilation as a whole.

  13. FLYWHEEL BASED KINETIC ENERGY RECOVERY SYSTEMS (KERS) INTEGRATED IN VEHICLES

    OpenAIRE

    THOMAS MATHEWS; NISHANTH D

    2013-01-01

    Today, many hybrid electric vehicles have been developed in order to reduce the consumption of fossil fuels; unfortunately these vehicles require electrochemical batteries to store energy, with high costs as well as poor conversion efficiencies. By integrating flywheel hybrid systems, these drawbacks can be overcome and can potentially replace battery powered hybrid vehicles cost effectively. The paper will explain the engineering, mechanics of the flywheel system and it’s working in detail. ...

  14. The world energy consumption in 2005

    International Nuclear Information System (INIS)

    Lapillonne, B.

    2006-01-01

    Based on Enerdata 2005 data, this analysis presents the situation of the world energy consumption in 2005, the electric power consumption per region and production per source, the consumption increase for each energy source and the petroleum and gas consumption increase. (A.L.B.)

  15. SYSTEM FOR AUTOMATIC SELECTION OF THE SPEED RATE OF ELECTRIC VEHICLES FOR REDUCING THE POWER CONSUMPTION

    Directory of Open Access Journals (Sweden)

    K. O. Soroka

    2017-06-01

    Full Text Available Purpose. The work is aimed to design a system for automatic selection of the optimal traffic modes and automatic monitoring of the electric energy consumption by electric transport. This automatic system should provide for the minimum energy expenses. Methodology. Current methodologies: 1 mathematical modeling of traffic modes of ground electric vehicles; 2 comparison of modelling results with the statistical monitoring; 3 system development for automatic choice of traffic modes of electric transport with minimal electrical energy consumptions taking into account the given route schedules and the limitations imposed by the general traffic rules. Findings. The authors obtained a mathematical dependency of the energy consumption by electric transport enterprises on the monthly averaged environment temperature was obtained. A system which allows for an automatic selection of the speed limit and provides automatic monitoring of the electrical energy consumption by electric vehicles was proposed in the form of local network, which works together with existing GPS system. Originality. A mathematical model for calculating the motion curves and energy consumption of electric vehicles has been developed. This model takes into account the characteristic values of the motor engine and the steering system, the change of the mass when loading or unloading passengers, the slopes and radii of the roads, the limitations given by the general traffic rules, and other factors. The dependency of the energy consumption on the averaged monthly environment temperature for public electric transport companies has been calculated. Practical value. The developed mathematical model simplifies the calculations of the traffic dynamics and energy consumption. It can be used for calculating the routing maps, for design and upgrade of the power networks, for development of the electricity saving measures. The system simplifies the work of the vehicle driver and allows reducing

  16. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  17. A system model for assessing vehicle use-phase water consumption in urban mobility networks

    International Nuclear Information System (INIS)

    Yen, Jeff; Bras, Bert

    2012-01-01

    Water consumption is emerging as an important issue potentially influencing the composition of future urban transportation networks, especially as projected urban populations are expected to outpace water availability and as alternative fuels and vehicles are being implemented in such regions. National and State policies aimed at reducing dependence on imported fuels and energy can increase local production of fuels and energy, impacting demand on local water resources. This article details the development of a model-based assessment on water consumption and withdrawal pertaining to the use-phase of conventional and alternative transportation modes based on regional energy and fuel production. An extensive literature review details water consumption from fuel extraction, processing, and distribution as well as power plant operations. Using Model-Based Systems Engineering principles and the Systems Modeling Language, a multi-level, multi-modal framework was developed and applied to the Metro Atlanta transportation system consisting of conventional and alternative vehicles across varying conditions. According to the analysis, vehicles powered by locally produced biofuels and electricity (assuming average local grid mix for charging) consume more water than locally refined gasoline and CNG-powered vehicles. Improvements in power plant technologies, electricity generation (e.g., use of solar and wind versus hydro power) and vehicle efficiencies can reduce such water consumption significantly. Total water withdrawal for each vehicle and fuel is significantly greater than water consumption. - Highlights: ► A model was made to assess the local water consumption due to conventional and alternatively powered vehicles in a city. ► Water consumed in the local and external production of various fuels was reviewed and included. ► Basic battery electric and biofuel powered vehicles consume on average more water than conventional gasoline and Compressed Natural Gas (CNG

  18. Energy consumption 2005 with Danish industry

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The energy consumption in the Danish industries decreased with 4% from 2003 to 2005. The consumption of liquid fuels and district heat decreased with 27% and 21%, respectively. The consumption of solid fuels increased with 13%. The aim of the statistics is to elucidate the industry's energy consumption and its composition. The statistics present the development in the industry from 1973 to 2005, in which period the composition of the energy consumption has changed significantly. Especially, consumption of liquid fuels has decreased and consumption of gas and electricity has increased. (ln)

  19. State energy data report 1992: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

  20. Household energy and consumption and expenditures, 1990

    International Nuclear Information System (INIS)

    1993-01-01

    The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990

  1. Energy consumption and economic growth

    Energy Technology Data Exchange (ETDEWEB)

    Brookes, L G

    1972-10-01

    A mathematical model relating Gross National Product (GNP) per capita to useful energy consumed per capita is demonstrated to predict the shift in this relationship actually experienced in the U.K. and the U.S. over a period of years. World GNP growths in the recent past are used to forecast GNP growth to the year 2030 and also (via the model) the necessary fuel consumption for such growth; likewise, potential production of fossil fuels (exclusive of tar sands and oil shale) is shown to 2030, based on two different assumptions about total world reserves. Fossil fuel ceases to meet world requirements for energy at some time between 1985 and 1995. The most likely candidate for filling the gap is nuclear power.

  2. Estimating the energy consumption impact of casual carpooling

    Energy Technology Data Exchange (ETDEWEB)

    Minett, P. [Trip Convergence Ltd, Epsom, Auckland (New Zealand); Pearce, J. [Trip Convergence Ltd, Remuera, Auckland (New Zealand)

    2011-07-01

    Some of the transportation energy consumed during peak commuter periods is wasted through slow running in congested traffic. Strategies to increase average vehicle occupancy (and reduce vehicle counts and congestion) could be expected to be at the forefront of energy conservation policies. Casual carpooling (also called 'slugging') is a system of carpooling without trip-by-trip pre-arrangement. It operates in three US cities, and has been suggested in New Zealand as a strategy for managing transportation challenges when oil prices rise. The objective of the paper is to find out if casual carpooling reduces energy consumption, and if so, how much. Energy consumption by single occupant vehicles; casual carpool vehicles; and a mix of buses and single occupant vehicles; are estimated and compared, and the impact on the rest of the traffic is calculated. The paper estimates that casual carpooling in San Francisco is conserving in the order of 1.7 to 3.5 million liters of gasoline per year, or 200-400 liters for each participant, much of which comes from the impact on the rest of the traffic. The paper concludes by calling for applied research to discover how to catalyze casual carpooling in other cities as a means of reducing transportation energy consumption. (authors)

  3. Estimating the Energy Consumption Impact of Casual Carpooling

    Directory of Open Access Journals (Sweden)

    Paul Minett

    2011-01-01

    Full Text Available Some of the transportation energy consumed during peak commuter periods is wasted through slow running in congested traffic. Strategies to increase average vehicle occupancy (and reduce vehicle counts and congestion could be expected to be at the forefront of energy conservation policies. Casual carpooling (also called “slugging” is a system of carpooling without trip-by-trip pre-arrangement. It operates in three US cities, and has been suggested in New Zealand as a strategy for managing transportation challenges when oil prices rise. The objective of the paper is to find out if casual carpooling reduces energy consumption, and if so, how much. Energy consumption by single occupant vehicles; casual carpool vehicles; and a mix of buses and single occupant vehicles; are estimated and compared, and the impact on the rest of the traffic is calculated. The paper estimates that casual carpooling in San Francisco is conserving in the order of 1.7 to 3.5 million liters of gasoline per year, or 200-400 liters for each participant, much of which comes from the impact on the rest of the traffic. The paper concludes by calling for applied research to discover how to catalyze casual carpooling in other cities as a means of reducing transportation energy consumption.

  4. An energy management approach of hybrid vehicles using traffic preview information for energy saving

    International Nuclear Information System (INIS)

    Zheng, Chunhua; Xu, Guoqing; Xu, Kun; Pan, Zhongming; Liang, Quan

    2015-01-01

    Highlights: • Energy management approach of hybrid vehicles using traffic preview information. • Vehicle velocity profile and fuel consumption are optimized at the same time. • It is proved that a further energy saving is achieved by the proposed approach. • The proposed approach is useful especially for autonomous hybrid vehicles. - Abstract: The traffic preview information is very helpful for hybrid vehicles when distributing the power requirement of the vehicle to power sources and when determining the next driving route of the vehicle. In this research, an energy management approach for hybrid vehicles is proposed, which optimizes the vehicle velocity profile while minimizing the fuel consumption with the help of the traffic preview information, so that a further energy saving for hybrid vehicles can be achieved. The Pontryagin’s Minimum Principle (PMP) is adopted on the proposed approach. A fuel cell hybrid vehicle (FCHV) is selected as an example, and the proposed energy management approach is applied to the FCHV in a computer simulation environment for the offline and online cases respectively. Simulation results show that the fuel economy of the FCHV is improved by the proposed energy management approach compared to a benchmark case where the driving cycle is fixed and only the hybrid power split (allocation) ratio is optimized. The proposed energy management approach is useful especially for the autonomous hybrid vehicles.

  5. Energy management strategies for vehicle power nets

    NARCIS (Netherlands)

    Koot, M.W.T.; Jager, de A.G.; Kessels, J.T.B.A.; Heemels, W.P.M.H.; Bosch, van den P.P.J.

    2004-01-01

    In the near future a significant increase in electric power consumption in vehicles is to be expected. To limit the associated increase in fuel consumption and exhaust emissions, smart strategies for the generation, storage/retrieval, distribution, and consumption of the electric power can be used.

  6. Household energy consumption and expenditures 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  7. Electrical appliance energy consumption control methods and electrical energy consumption systems

    Science.gov (United States)

    Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA

    2006-03-07

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  8. Electrical appliance energy consumption control methods and electrical energy consumption systems

    Science.gov (United States)

    Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA

    2008-09-02

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  9. Energy consumption in France's industry. Conjuncture note

    International Nuclear Information System (INIS)

    2015-04-01

    Energy consumption in the industry represents today 1/5 of France's end-use energy consumption. Gas and electricity are the most consumed and represent 2/3 of the overall. The 5 most energy consuming industries are the following: paper and cardboard industry, food industry, rubber, plastic and other non-metallic mineral products industry, metallurgy and chemical industry. The reduction of the industry's energy consumption is explained by the decline of production, but above all by the energy efficiency improvement of the sector. Technological innovations in production means have indeed led to reduce energy consumption

  10. Does trade liberalization effect energy consumption?

    International Nuclear Information System (INIS)

    Ghani, Gairuzazmi M.

    2012-01-01

    The effect of trade liberalization on the environment can be directly linked to energy consumption, because energy consumption and production are the underlying cause of most pollutants that harm the environment. The descriptive statistics show that average annual growth of energy consumption per capita after trade liberalization varies among countries; hence it is a possibility that the effect of trade liberalization is conditional on factors other than liberalization per se. The regression results show that trade liberalization per se does not affect the growth of energy consumption of the developing countries analyzed, but its interaction with capital per labor reduces the growth of energy consumption as capital per labor increases. However, the effect is only significant after a certain minimum threshold level capital per labor is reached. On the other hand, economic growth increases energy consumption and its effect is not conditioned on trade liberalization. These two different effects mean that, with regards to energy consumption, countries at a higher level of economic development are more likely to reap the benefit of liberalization relative to less developed countries. - Research highlights: ► This paper examines the effect of trade liberalization on energy consumption. ► Developed countries are more likely to reap the benefit of trade liberalization. ► Growth of energy consumption after trade liberalization varies among countries. ► Interaction of capital per labor with liberalization reduces energy consumption.

  11. State Energy Data Report, 1991: Consumption estimates

    International Nuclear Information System (INIS)

    1993-05-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA's energy models

  12. State energy data report 1993: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

  13. Energy-efficient microcontrollers for electric and hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Makowitz, Rainer; Gryska, Holger; Thanner, Manfred; Steinert, Frank [Freescale Halbleiter GmbH, Muenchen (Germany)

    2010-07-01

    Electric vehicles with their limited supply of energy are accelerating the trend towards more energy-efficient electronics that has started with the discussion on reducing the production of greenhouse gas of vehicles. While electricifaction of functions in a car is a technique that will help reduce overall energy consumption, microcontrollers are playing an important role in energetically optimizing the resulting electronics. In this presentation we give an overview of operating strategies for embedded automotive systems that lead to a set of power modes for the microcontrollers. Examples will be shown how Freescale's microcontrollers are designet to optimize energy consumption in each of these modes. We will also outline what needs to be done in the overall vehicle communication network design and in software to effectively use these new features of microcontrollers. The major elements that would benefit from standardization (e.g. in Autosar) will be indicated. (orig.)

  14. Electric vehicle energy management system

    Science.gov (United States)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  15. State energy data report 1994: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

  16. State energy data report 1994: Consumption estimates

    International Nuclear Information System (INIS)

    1996-10-01

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA's energy models. Division is made for each energy type and end use sector. Nuclear electric power is included

  17. Light and Heavy Tactical Wheeled Vehicle Fuel Consumption Evaluations Using Fuel Efficient Gear Oils (FEGO)

    Science.gov (United States)

    2016-05-01

    UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL... HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C...August 2014 – March 2016 4. TITLE AND SUBTITLE LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FEUL EFFICIENT GEAR OILS

  18. State energy data report 1996: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  19. State energy data report 1996: Consumption estimates

    International Nuclear Information System (INIS)

    1999-02-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA's energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs

  20. Hydrogen tube vehicle for supersonic transport: 2. Speed and energy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects Inc and Supersonic Tubevehicle LLC, 200 Violet St, Suite 100, Golden, CO 80401 (United States)

    2010-06-15

    The central concept of a new idea in high-speed transport is that operation of a vehicle in a hydrogen atmosphere, because of the low density of hydrogen, would increase sonic speed by a factor of 3.8 and decrease drag by 15 relative to air. A hydrogen atmosphere requires that the vehicle operate within a hydrogen-filled tube or pipeline, which serves as a phase separator. The supersonic tube vehicle (STV) can be supersonic with respect to air outside the tube while remaining subsonic inside. It breathes hydrogen fuel for its propulsion fuel cells from the tube itself. This paper, second in a series on the scientific foundations of the supersonic tube vehicle, tests the hypothesis that the STV will be simultaneously fast and energy efficient by comparing its predicted speed and energy consumption with that of four long-haul passenger transport modes: road, rail, maglev, and air. The study establishes the speed ranking STV >> airplane > maglev > train > coach (intercity bus) and the normalized energy consumption ranking Airplane >> coach > maglev > train > STV. Consistent with the hypothesis, the concept vehicle is both the fastest and lowest energy consuming mode. In theory, the vehicle can cruise at Mach 2.8 while consuming less than half the energy per passenger of a Boeing 747 at a cruise speed of Mach 0.81. (author)

  1. Energy storage on board of railway vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, M.; Scholten, J. [Bombardier Transportation, Mannheim (Germany)

    2004-07-01

    The proposed energy storage on board of a Railway vehicle leads to a big step in the reduction of consumed energy. Up to 30% energy saving are expected in a light rail vehicle, at the same time reducing the peak power demand drastically. In addition, with the energy storage an operation without catenary could become reality, which was successfully demonstrated with the prototype light rail vehicle driving with switched off pantograph. This prototype vehicle is in passenger operation since September 2003, the implemented software is optimised on energy savings and first experience is very promising. (authors)

  2. The Relationship Between Energy Consumption and Economic ...

    African Journals Online (AJOL)

    As evidenced from the study, causality runs from energy consumption to economic growth. Energy consumption in Nigeria is mainly based on the use of fossil fuels which is non-renewable. Therefore, in order to actualize its vision of becoming one of the 20th largest economies in the World by the year 2020, government ...

  3. Environmental degradation, energy consumption, population growth ...

    African Journals Online (AJOL)

    Based on the result, there is no evidence of unidirectional causality running from CO2 emissions and energy consumption to economic growth and strong unidirectional causality running from CO2 emissions, energy consumption and economic growth to population growth was found. The long run and short run estimates ...

  4. Research on Energy Management Strategy of Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Deng Tao

    2015-01-01

    Full Text Available To improve the fuel economy and reduce emissions of hybrid electric vehicles, energy management strategy has received high attention. In this paper, by analyzing the deficiency of existing energy management strategy for hybrid cars, it not only puts forward the minimal equivalent fuel consumption adaptive strategy, but also is the first time to consider the driving dynamics target simultaneously, and to explain the future development direction of China’s hybrid energy management strategy.

  5. ENERGY EFFICIENCY AS A CRITERION IN THE VEHICLE FLEET MANAGEMENT PROCESS

    Directory of Open Access Journals (Sweden)

    Davor Vujanović

    2010-01-01

    Full Text Available Transport represents an industry sector with intense energy consumption, the road transport sector within is the dominant subsector. The objective of the research presented in this paper is in defining the activities which applied within road freight transport companies contribute to enhancing vehicles' energy efficiency. Vehicle fleet operation management process effects on fuel consumption decrease have been looked into. Operation parameters that influence vehicle fuel consumption were analysed. In this sense, a survey has been realised in order to evaluate the vehicle load factor impact on the specific fuel consumption. Measures for enhancing vehicle's logistics efficiency have been defined. As a tool for those measures' implementation an algorithm for vehicle fleet operation management was developed which represented a basis for a dedicated software package development for vehicle dispatching process decision support. A set of measures has been recommended and their effects in fuel savings were evaluated.

  6. Can urban rail transit curb automobile energy consumption?

    International Nuclear Information System (INIS)

    Lin, Boqiang; Du, Zhili

    2017-01-01

    With the rapid development of China's economy and the speed of urbanization, China's automobile sector has experienced rapid development. The rapid development of the automobile sector has increased energy consumption. According to the results of this paper, automobile energy consumption accounted for about 10.73% of total energy consumption in China in 2015, about 3.6 times the proportion a decade ago. With the deterioration of urban traffic conditions, relying on expanding the amount of vehicles and city road network cannot solve the problem. Urban rail transit is energy-saving and less-polluting, uses less space, has large capacity, and secure. Urban rail transit, according to the principle of sustainable development, is a green transportation system and should be especially adopted for large and medium-sized cities. The paper uses the binary choice model (Probit and Logit) to analyze the main factors influencing the development of rail transit in Chinese cities, and whether automobile energy consumption is the reason for the construction of urban rail transit. Secondly, we analyze the influence of urban rail transit on automobile energy consumption using DID model. The results indicate that the construction of urban rail traffic can restrain automobile energy consumption significantly, with continuous impact in the second year. - Highlights: • Investigate the main factors influencing the building of rail transit for Chinese cities. • Analyze the influence of urban rail transit on automobile energy consumption by DID model. • The results indicate that the construction of urban rail traffic can restrain automobile energy consumption significantly.

  7. Calculations of energy consumption in ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Kreslins, Andris; Ramata, Anna [Riga Technical University (Latvia)], e-mail: kreslins@rbf.rtu.lv, email: Anna.Ramata@rtu.lv

    2011-07-01

    Energy cost is an important economic factor in the food industry production process. With the rising price of energy, a reduction in energy consumption would greatly impact production and the end product. The aim of this study was to develop a methodology for optimizing energy consumption. A comparison between a traditional ventilation system and a mechanical system was carried out; the necessary enthalpy for heating the air supply and thermal energy consumption were calculated and compared for both systems during the heating season, from October to April, using climatological data for Latvia. Results showed that energy savings of 46% to 87% can be achieved by applying the methodology in the design of industrial buildings; in addition, a well-designed ventilation system increases the workers' productivity. This study presented a methodology which can optimize energy consumption in the food industry sector.

  8. Vehicle to grid: electric vehicles as an energy storage solution

    Science.gov (United States)

    McGee, Rodney; Waite, Nicholas; Wells, Nicole; Kiamilev, Fouad E.; Kempton, Willett M.

    2013-05-01

    With increased focus on intermittent renewable energy sources such as wind turbines and photovoltaics, there comes a rising need for large-scale energy storage. The vehicle to grid (V2G) project seeks to meet this need using electric vehicles, whose high power capacity and existing power electronics make them a promising energy storage solution. This paper will describe a charging system designed by the V2G team that facilitates selective charging and backfeeding by electric vehicles. The system consists of a custom circuit board attached to an embedded linux computer that is installed both in the EVSE (electric vehicle supply equipment) and in the power electronics unit of the vehicle. The boards establish an in-band communication link between the EVSE and the vehicle, giving the vehicle internet connectivity and the ability to make intelligent decisions about when to charge and discharge. This is done while maintaining compliance with existing charging protocols (SAEJ1772, IEC62196) and compatibility with standard "nonintelligent" cars and chargers. Through this system, the vehicles in a test fleet have been able to successfully serve as portable temporary grid storage, which has implications for regulating the electrical grid, providing emergency power, or supplying power to forward military bases.

  9. Residential Energy Consumption Survey: Quality Profile

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

  10. Vehicle Routing Problems with Fuel Consumption and Stochastic Travel Speeds

    Directory of Open Access Journals (Sweden)

    Yanling Feng

    2017-01-01

    Full Text Available Conventional vehicle routing problems (VRP always assume that the vehicle travel speed is fixed or time-dependent on arcs. However, due to the uncertainty of weather, traffic conditions, and other random factors, it is not appropriate to set travel speeds to fixed constants in advance. Consequently, we propose a mathematic model for calculating expected fuel consumption and fixed vehicle cost where average speed is assumed to obey normal distribution on each arc which is more realistic than the existing model. For small-scaled problems, we make a linear transformation and solve them by existing solver CPLEX, while, for large-scaled problems, an improved simulated annealing (ISA algorithm is constructed. Finally, instances from real road networks of England are performed with the ISA algorithm. Computational results show that our ISA algorithm performs well in a reasonable amount of time. We also find that when taking stochastic speeds into consideration, the fuel consumption is always larger than that with fixed speed model.

  11. Fuel consumption optimization for smart hybrid electric vehicle during a car-following process

    Science.gov (United States)

    Li, Liang; Wang, Xiangyu; Song, Jian

    2017-03-01

    Hybrid electric vehicles (HEVs) provide large potential to save energy and reduce emission, and smart vehicles bring out great convenience and safety for drivers. By combining these two technologies, vehicles may achieve excellent performances in terms of dynamic, economy, environmental friendliness, safety, and comfort. Hence, a smart hybrid electric vehicle (s-HEV) is selected as a platform in this paper to study a car-following process with optimizing the fuel consumption. The whole process is a multi-objective optimal problem, whose optimal solution is not just adding an energy management strategy (EMS) to an adaptive cruise control (ACC), but a deep fusion of these two methods. The problem has more restricted conditions, optimal objectives, and system states, which may result in larger computing burden. Therefore, a novel fuel consumption optimization algorithm based on model predictive control (MPC) is proposed and some search skills are adopted in receding horizon optimization to reduce computing burden. Simulations are carried out and the results indicate that the fuel consumption of proposed method is lower than that of the ACC+EMS method on the condition of ensuring car-following performances.

  12. A systems approach to reduce urban rail energy consumption

    International Nuclear Information System (INIS)

    González-Gil, A.; Palacin, R.; Batty, P.; Powell, J.P.

    2014-01-01

    Highlights: • An insightful overview of energy usage in urban rail systems is given. • The principal measures to reduce urban rail energy consumption are appraised. • A methodology is proposed to help implement energy saving schemes in urban rail. • Regenerative braking is shown to offer the greatest energy saving potential. - Abstract: There is increasing interest in the potential of urban rail to reduce the impact of metropolitan transportation due to its high capacity, reliability and absence of local emissions. However, in a context characterised by increasing capacity demands and rising energy costs, and where other transport modes are considerably improving their environmental performance, urban rail must minimise its energy use without affecting its service quality. Urban rail energy consumption is defined by a wide range of interdependent factors; therefore, a system wide perspective is required, rather than focusing on energy savings at subsystem level. This paper contributes to the current literature by proposing an holistic approach to reduce the overall energy consumption of urban rail. Firstly, a general description of this transport mode is given, which includes an assessment of its typical energy breakdown. Secondly, a comprehensive appraisal of the main practices, strategies and technologies currently available to minimise its energy use is provided. These comprise: regenerative braking, energy-efficient driving, traction losses reduction, comfort functions optimisation, energy metering, smart power management and renewable energy micro-generation. Finally, a clear, logical methodology is described to optimally define and implement energy saving schemes in urban rail systems. This includes general guidelines for a qualitative assessment and comparison of measures alongside a discussion on the principal interdependences between them. As a hypothetical example of application, the paper concludes that the energy consumption in existing urban

  13. Estimates of US biomass energy consumption 1992

    International Nuclear Information System (INIS)

    1994-01-01

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large

  14. Estimates of US biomass energy consumption 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-06

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  15. Mission aware energy saving strategies for Army ground vehicles

    Science.gov (United States)

    Dattathreya, Macam S.

    Fuel energy is a basic necessity for this planet and the modern technology to perform many activities on earth. On the other hand, quadrupled automotive vehicle usage by the commercial industry and military has increased fuel consumption. Military readiness of Army ground vehicles is very important for a country to protect its people and resources. Fuel energy is a major requirement for Army ground vehicles. According to a report, a department of defense has spent nearly $13.6 billion on fuel and electricity to conduct ground missions. On the contrary, energy availability on this plant is slowly decreasing. Therefore, saving energy in Army ground vehicles is very important. Army ground vehicles are embedded with numerous electronic systems to conduct missions such as silent and normal stationary surveillance missions. Increasing electrical energy consumption of these systems is influencing higher fuel consumption of the vehicle. To save energy, the vehicles can use any of the existing techniques, but they require complex, expensive, and time consuming implementations. Therefore, cheaper and simpler approaches are required. In addition, the solutions have to save energy according to mission needs and also overcome size and weight constraints of the vehicle. Existing research in the current literature do not have any mission aware approaches to save energy. This dissertation research proposes mission aware online energy saving strategies for stationary Army ground vehicles to save energy as well as to meet the electrical needs of the vehicle during surveillance missions. The research also proposes theoretical models of surveillance missions, fuzzy logic models of engine and alternator efficiency data, and fuzzy logic algorithms. Based on these models, two energy saving strategies are proposed for silent and normal surveillance type of missions. During silent mission, the engine is on and batteries power the systems. During normal surveillance mission, the engine is

  16. State energy data report 1995 - consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.

  17. Energy Beverage Consumption Among Naval Aviation Candidates.

    Science.gov (United States)

    Sather, Thomas E; Delorey, Donald R

    2016-06-01

    Since the debut of energy beverages, the consumption of energy beverages has been immensely popular with young adults. Research regarding energy beverage consumption has included college students, European Union residents, and U.S. Army military personnel. However, energy beverage consumption among naval aviation candidates in the United States has yet to be examined. The purpose of this study was to assess energy beverage consumption patterns (frequency and volume) among naval aviation candidates, including attitudes and perceptions regarding the benefits and safety of energy beverage consumption. A 44-item survey was used to assess energy beverage consumption patterns of 302 students enrolled in the Aviation Preflight Indoctrination Course at Naval Air Station Pensacola, FL. Results indicated that 79% of participants (N = 239) reported consuming energy beverages within the last year. However, of those who reported consuming energy beverages within the last year, only 36% (N = 85) reported consuming energy beverages within the last 30 d. Additionally, 51% (N = 153) of participants reported no regular energy beverages consumption. The majority of participants consumed energy beverages for mental alertness (67%), mental endurance (37%), and physical endurance (12%). The most reported side effects among participants included increased mental alertness (67%), increased heart rate (53%), and restlessness (41%). Naval aviation candidates appear to use energy drinks as frequently as a college student population, but less frequently than expected for an active duty military population. The findings of this study indicate that naval aviation candidates rarely use energy beverages (less than once per month), but when consumed, they use it for fatigue management.

  18. Energy consumptions of households in 2012

    International Nuclear Information System (INIS)

    Denjean, Mathias

    2015-06-01

    Based on results of a survey, this publication comments data presented under the form of tables and graphs and related to the energy consumption by French households during 2012. It addresses expenses and consumptions for individual housing and for a flat in collective building, analyses the energy consumption with respect to surface in the case of individual housing, discusses the influence of dwelling age on consumption, the influence of geographical location in France, the influence o the residence status (owner or renter), and the influence of dwelling occupation (hours per day), and the distribution of the type of consumed energy (electricity, gas, oil, LPG, wood, other) and the money spent on these different energies. The type of energy is also related to the residence status, to the housing type (house or flat), to the flat surface, to the housing type and age, to the geographical location

  19. ENERGY STAR Certified Electric Vehicle Supply Equipment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Electric Vehicle Supply Equipment that are...

  20. The relationship among energy prices and energy consumption in China

    International Nuclear Information System (INIS)

    Yuan, Chaoqing; Liu, Sifeng; Wu, Junlong

    2010-01-01

    The pricing mechanism for energy is not in line with the international standards, because the energy prices are controlled by the government partly or completely in China. Chinese government made a lot of efforts to improve the pricing mechanism for energy. The relations between Chinese energy prices and energy consumption are the foundations to reform the mechanism. In this paper, the relations between Chinese energy consumption and energy prices are researched by cointegration equations, impulse response functions, granger causality and variance decomposition. The cointegration relations among energy prices, energy consumption and economic outputs show that higher energy price will decrease energy consumption in Chinese industrial sectors but will not reduce the economic output in the long run. The cointegration relation between energy price and household energy consumption shows that higher energy price will decrease household energy consumption in the long run and increase it in the short run. So Chinese government should deepen the reform of pricing mechanism for energy, and increase the energy prices reasonably to save energy. (author)

  1. How hybrid-electric vehicles are different from conventional vehicles: the effect of weight and power on fuel consumption

    International Nuclear Information System (INIS)

    Reynolds, C; Kandlikar, M

    2007-01-01

    An increasingly diverse set of hybrid-electric vehicles (HEVs) is now available in North America. The recent generation of HEVs have higher fuel consumption, are heavier, and are significantly more powerful than the first generation of HEVs. We compare HEVs for sale in the United States in 2007 to equivalent conventional vehicles and determine how vehicle weight and system power affects fuel consumption within each vehicle set. We find that heavier and more powerful hybrid-electric vehicles are eroding the fuel consumption benefit of this technology. Nonetheless, the weight penalty for fuel consumption in HEVs is significantly lower than in equivalent conventional internal combustion engine vehicles (ICEVs). A 100 kg change in vehicle weight increases fuel consumption by 0.7 l/100 km in ICEVs compared with 0.4 l/100 km in HEVs. When the HEVs are compared with their ICEV counterparts in an equivalence model that differentiates between cars and sports-utility vehicles, the average fuel consumption benefit was 2.7 l/100 km. This analysis further reveals that a HEV which is 100 kg heavier than an identical ICEV would have a fuel consumption penalty of 0.15 l/100 km. Likewise, an increase in the HEV's power by 10 kW results in a fuel consumption penalty of 0.27 l/100 km

  2. A method for evaluating transport energy consumption in suburban areas

    Energy Technology Data Exchange (ETDEWEB)

    Marique, Anne-Francoise, E-mail: afmarique@ulg.ac.be; Reiter, Sigrid, E-mail: Sigrid.Reiter@ulg.ac.be

    2012-02-15

    Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by

  3. A method for evaluating transport energy consumption in suburban areas

    International Nuclear Information System (INIS)

    Marique, Anne-Françoise; Reiter, Sigrid

    2012-01-01

    Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: ► The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. ► Home-to-work travels represent the most important part of calculated transport energy consumption. ► Energy savings can be achieved by reducing distances to travel through a good mix between activities at the

  4. Social costs of energy consumption

    International Nuclear Information System (INIS)

    Hohmeyer, O.

    1988-01-01

    This study systematically compares the external costs and benefits of different electricity generating technologies. It covers environmental and employment effects, the depletion of natural resources, and public subsidies. Electricity production based on fossil fuels and nuclear energy compared with electricity production based on wind energy and photovoltaic systems. The study shows that wind and photovoltaic solar energy induce far less social costs than conventionally generated electricity. The impact of excluding social costs on the competitive position of the different energy technologies is analyzed. It is shown that the allocation process is seriously distorted resulting in sub-optimal investment decisions concerning competing energy technologies. This exclusion of social costs can delay the introduction of renewable energy sources by more than ten years and results in considerable losses to society. (orig./HSCH) With 17 figs., 24 tabs

  5. 2005 primary energy consumption in Germany

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    According to preliminar calculations by the Arbeitsgemeinschaft Energiebilanzen (Working Party on Energy Balances, AGEB), the consumption of an aggregate 486 million TCE of primary energy resources in Germany last year was 1.3% below the level of the year before. Energy consumption was influenced by both the high level of prices and the development of the economy. Hardly any influence was attributable to the level of temperatures, which was largely unchanged compared to the figure of the year before. Oil consumption in 2005 in Germany dropped by nearly 2% to 174.8 million TCE. On the whole, oil with its 36% share in the energy balance remained by far the most important energy resource in Germany. Natural gas consumption of 110.4 million TCE was at the level of the year before. Its share in the primary energy balance rose slightly to 22.7%. Hard coal, because of lower use in power plants and the decline in iron making, showed a 4.6% drop in consumption to 62.8 million TCE. In this way, hard coal contributed 13% to total energy consumption. Lignite consumption dropped by 3.2% to 54.4 million TCE as a result of lower deliveries to power plants. Its 11.2% share in the total consumption of primary energy continued to make lignite the most important domestic energy resource. More than 90% of the lignite produced is used for electricity generation. The contribution to primary energy consumption of nuclear power dropped by more than 2% to 60.7 million TCE. Hydroelectric plants and wind power plants increased their contribution by 3.6%. The contribution to primary energy consumption made by all renewable energy resources rose to 4.6%. AGEB evaluates statistics of all areas of the power economy on the basis of standard criteria in order to combine these data in a comprehensive picture. Since 1994, the energy balances for Germany have been compiled by DIW on behalf of AGEB. (orig.)

  6. Quantitative Effects of Vehicle Parameters on Fuel Consumption for Heavy-Duty Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Kelly, Kenneth; Walkowicz, Kevin; Duran, Adam

    2015-10-16

    The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluations team recently conducted chassis dynamometer tests of a class 8 conventional regional delivery truck over the Heavy Heavy-Duty Diesel Truck (HHDDT), West Virginia University City (WVU City), and Composite International Truck Local and Commuter Cycle (CILCC) drive cycles. A quantitative study was conducted by analyzing the impacts of various factors on fuel consumption (FC) and fuel economy (FE) by modeling and simulating the truck using NREL's Future Automotive Systems Technology Simulator (FASTSim). Factors used in this study included vehicle weight, and the coefficients of rolling resistance and aerodynamic drag. The simulation results from a single parametric study revealed that FC was approximately a linear function of the weight, coefficient of aerodynamic drag, and rolling resistance over various drive cycles. Among these parameters, the truck weight had the largest effect on FC. The study of the impact of two technologies on FE suggested that, depending on the circumstances, it may be more cost effective to reduce one parameter (such as coefficient of aerodynamic drag) to increase fuel economy, or it may be more beneficial to reduce another (such as the coefficient of rolling resistance). It also provided a convenient way to estimate FE by interpolating within the parameter values and extrapolating outside of them. The simulation results indicated that the FC could be reduced from 38.70 L/100 km, 50.72 L/100 km, and 38.42 L/100 km in the baseline truck to 26.78 L/100 km, 43.14 L/100 km and 29.84 L/100 km over the HHDDT, WVU City and CILCC drive cycles, respectively, when the U.S. Department of Energy's three targeted new technologies were applied simultaneously.

  7. Technical analysis on energy conservation and emission reduction of new energy electric vehicle in China

    Science.gov (United States)

    Zheng, Chaocheng

    2017-10-01

    With the global environmental problems and energy crisis continuously emerging, all countries are taking active measures to achieve the benign development of domestic economy and society. Vehicle, as a large oil consumption and emissions of carbon dioxide, nend to be a revolutionary change. Therefore, the development of new energy electric vehicle has become the consensus of the world. On this background, this paper has sorted out the current state and the related development planning of new energy electric vehicles in different countries to predict the car ownership of the new energy electric vehicles using elastic coefficient method and setting different path of development, conclude that under the consideration of energy conservation and emissions reduction factors, our country should mainly promote the BEV to realize the maximum energy conservation and emissions reduction.

  8. Uncertainty analysis of energy consumption in dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Trine Dyrstad

    1997-12-31

    This thesis presents a comprehensive study of an energy estimation model that can be used to examine the uncertainty of predicted energy consumption in a dwelling. The variation and uncertainty of input parameters due to the outdoor climate, the building construction and the inhabitants are studied as a basis for further energy evaluations. The occurring variations of energy consumption in nominal similar dwellings are also investigated due to verification of the simulated energy consumption. The main topics are (1) a study of expected variations and uncertainties in both input parameters used in energy consumption calculations and the energy consumption in the dwelling, (2) the development and evaluation of a simplified energy calculation model that considers uncertainties due to the input parameters, (3) an evaluation of the influence of the uncertain parameters on the total variation so that the most important parameters can be identified, and (4) the recommendation of a simplified procedure for treating uncertainties or possible deviations from average conditions. 90 refs., 182 figs., 73 tabs.

  9. Flexible Energy Consumption in Smart House's

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    2012-01-01

    the consumer have to use the energy when it is available. The main electrical energy consumer in a modern society is buildings and private homes. The amount of electrical energy used in this sector is about 70% of the total electricity consumption. Because of that buildings and private homes has to play...... an automatic and inteligente house control system that maximize the consumption exibility based on the energy users behavior with out aection the living comfort. This behavior is of course dierent from household to household, because of that it is nessasary include an adaptive behavior prediction system...

  10. Energy consumption for shortcuts to adiabaticity

    Science.gov (United States)

    Torrontegui, E.; Lizuain, I.; González-Resines, S.; Tobalina, A.; Ruschhaupt, A.; Kosloff, R.; Muga, J. G.

    2017-08-01

    Shortcuts to adiabaticity let a system reach the results of a slow adiabatic process in a shorter time. We propose to quantify the "energy cost" of the shortcut by the energy consumption of the system enlarged by including the control device. A mechanical model where the dynamics of the system and control device can be explicitly described illustrates that a broad range of possible values for the consumption is possible, including zero (above the adiabatic energy increment) when friction is negligible and the energy given away as negative power is stored and reused by perfect regenerative braking.

  11. Energy consumption characteristics of Guatemalan households

    International Nuclear Information System (INIS)

    Mansilla, C.; Moscoso, M.R.

    1991-01-01

    The sectoral consumption pattern in Guatemala has shown that the residential sector is the major energy consumer. It accounts for 68.9 per cent of total consumption, followed by the transportation sector with 16.6 per cent, and the industrial sector with 9.3 per cent. Because of the importance of the household sector in the national energy balance, the Energy Planning Project carried out a nationwide household survey in 1985 to estimate energy-use patterns. This paper focusses on the findings from the analysis of the 2,500 forms completed during that survey. 4 figs, 1 tab

  12. Potential energy consumption reduction of automotive climate control systems

    International Nuclear Information System (INIS)

    Nielsen, Filip; Uddheim, Åsa; Dalenbäck, Jan-Olof

    2016-01-01

    Highlights: • Twenty-on energy saving measures for vehicle interior climate were evaluated. • Few single energy saving measures could reduce the energy use significantly. • The operation of the system in intermediate conditions determines the energy use. • Required heating/cooling of passenger compartment had small effect on energy use. - Abstract: In recent years fuel consumption of passenger vehicles has received increased attention by customers, the automotive industry, regulatory agencies and academia. One area which affect the fuel consumption is climate control systems. Twenty-one energy saving measures were evaluated regarding the total energy use for vehicle interior climate using simulation. Evaluated properties were heat flow into the passenger compartment, electrical and mechanical work. The simulation model included sub models of the passenger compartment, air-handling unit, Air Conditioning (AC) system, engine and engine cooling system. A real-world representative test cycle, which included tests in cold, intermediate and warm conditions, was used for evaluation. In general, few single energy saving measures could reduce the energy use significantly. The measures with most potential were increased blower efficiency with a reduction of 46% of the electrical work and increased AC-system disengage temperature with a reduction of 27% of the mechanical work. These results show that the operation of the climate control system had a large effect on the energy use, especially compared to the required heating and cooling of the passenger compartment. As a result energy saving measures need to address how heating and cooling is generated before reducing the heat flow into the passenger compartment.

  13. Energy consumption and economic development

    International Nuclear Information System (INIS)

    Tremblay, M.T.

    1994-01-01

    Speaking as an economic planner, the author of this address suggests a scenario that is rather pessimistic for the future of nuclear energy. He emphasizes that technological change will lead to economic growth, but then supposes that improvements in hydrogen energy and solar energy, combined with global competition, may lead to a fall rather than an increase in oil prices early in the next century. The 10 year lead time for bringing a nuclear station from design to commissioning makes it difficult to predict the economics of operation

  14. Energy consumption and conservation in food retailing

    International Nuclear Information System (INIS)

    Tassou, S.A.; Ge, Y.; Hadawey, A.; Marriott, D.

    2011-01-01

    The total annual CO 2 emissions associated with the energy consumption of the major retail food outlets in the UK amount to around 4.0 MtCO 2 . The energy consumption and emissions from supermarkets varies widely and can depend on many factors such as the type and size of the store, business and merchandising practices and refrigeration and environmental control systems used. This paper provides energy consumption data of a sample of 2570 retail food stores from a number of major retail food chains in the UK. The sample covers all major store categories from convenience stores to hypermarkets and includes approximately 30% of the total number of stores in the UK having a net sales area more than 280 m 2 . The data show a wide variability of energy intensity even within stores of the same retail chain. A power law can be used to describe the variation of the average electrical energy intensity of the stores in the sample with sales area. If the electrical intensity of the stores above the average is reduced to the average by energy conservation measures, annual energy savings of the order of 10% or 840 GWh can be achieved representing 355,000 tonnes annual reduction in CO 2 emissions. The paper also discusses the major energy consuming processes in retail food stores and identifies opportunities for energy savings. - Research highlights: → Energy consumption by supermarkets in the UK is significant and a wide variability exists between stores of similar size. → Energy conservation measures to reduce energy consumption of individual stores to the average can produce a0% energy savings. → Significant opportunities for energy savings exist from the integration of HVAC and refrigeration equipment.

  15. Modelling electric trains energy consumption using Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Fernandez, P.; Garcia Roman, C.; Insa Franco, R.

    2016-07-01

    Nowadays there is an evident concern regarding the efficiency and sustainability of the transport sector due to both the threat of climate change and the current financial crisis. This concern explains the growth of railways over the last years as they present an inherent efficiency compared to other transport means. However, in order to further expand their role, it is necessary to optimise their energy consumption so as to increase their competitiveness. Improving railways energy efficiency requires both reliable data and modelling tools that will allow the study of different variables and alternatives. With this need in mind, this paper presents the development of consumption models based on neural networks that calculate the energy consumption of electric trains. These networks have been trained based on an extensive set of consumption data measured in line 1 of the Valencia Metro Network. Once trained, the neural networks provide a reliable estimation of the vehicles consumption along a specific route when fed with input data such as train speed, acceleration or track longitudinal slope. These networks represent a useful modelling tool that may allow a deeper study of railway lines in terms of energy expenditure with the objective of reducing the costs and environmental impact associated to railways. (Author)

  16. Quantification of variables that affect energy consumption

    International Nuclear Information System (INIS)

    Warren, C.S.

    1993-01-01

    Facility energy consumption is the summation of a number of contributory factors, caused by equipment that uses energy in response to demands placed by the user and according to its particular design. While energy efficiency improvements usually concentrate on individual parts or systems, overall energy consumption is analyzed by examining the use of specific fuels. Because independent variables effect the consumption of these fuels, accurate comparisons of a facility's energy consumption for time-measured periods must include these effects. In many cases, it is possible to determine and quantify the effects of one or more of the independent variables through a statistically valid regression analysis of the data. The regression model can be linear, or be dependent on other functions such as powers, time lead or lag, or exponential. The most common model is linear, but other dependencies are often encountered. Regression analyses are not difficult to accomplish, and are included as one of the tools in most spreadsheet software. The analyses provide the energy manager with a means to better understand the energy consumption of his/her facility

  17. Energy consumption in fermentation processes

    Energy Technology Data Exchange (ETDEWEB)

    Bach, P

    1984-01-01

    The purpose of the present publication is to limit energy used to aerate the anaerobic fermentation processes. In yeast production the aeration process consumes the greatest part of the total energy required. A mathematical model, based on literature data, is presented for a yeast fermenter. the effect of various aeration and raw product strategies can be calculated. Simulation of yeast fermentation proves it to be independent of oxygen transport. However interaction between flow conditions and biological kinetics (glucose effect) is a limiting factor. With many feeding point the use of enegy for aeration (mixing) can be reduced to 1/3 of the present one.

  18. The energetic planning and the electric vehicles consumption

    International Nuclear Information System (INIS)

    Peres, Luiz Artur Pecorelli; Lambert Torres, Germano; Nogueira, Luiz Augusto Horta

    1999-01-01

    The central issue of debate was the need to align the energy sector's options and organization with changing global patterns of economic and social development, characterized by the increasing role played by the private sector, greater integration in the world economy, and new economic and social priorities, such as efficiency, decentralization, deregulation, and a closer attention to environmental issues. The aim of the work is to introduce a probabilistic methodology to analyze the impacts in the daily demand curve due to the electric vehicles use and batteries reload. Energy and environment impacts are also analyzed

  19. A cultural model of household energy consumption

    International Nuclear Information System (INIS)

    Lutzenhiser, Loren

    1992-01-01

    In this paper, we consider the development of demand-side research, from an early interest in conservation behavior to a later focus on physical, economic, psychological and social models of energy consumption. Unfortunately, none of these models account satisfactorily for measured energy consumption in the residential sector. Growing interest in the end-uses of energy (e.g. in support of load forecasting, demand-side management and least-cost utility planning), increasing international studies of energy use, and continuing work in the energy and lifestyles research tradition now support an emerging cultural perspective on household energy use. The ecological foundations of the cultural model and its applications in energy research are discussed, along with some of the analytic consequences of this approach. (author)

  20. ENERGY CONSUMPTION AND REAL GDP IN IRAN

    Directory of Open Access Journals (Sweden)

    Ali Akbar Naji Meidani

    2014-01-01

    Full Text Available As one of the most important production factors and one of the most urgent final products, energy has a special position in the growth and development of the country. This paper examines the causal relationship between Real GDP and energy consumption in various economic sectors including (household and commercial, industry, transportation and agriculture sectors for Iran during 1967–2010 using the time series technique known as the Toda-Yamamoto method. Moreover, an error correction model is also estimated so that the results of these two methods are compared. We found a strong unidirectional causality from energy consumption in industry sector to real gross domestic product. Energy consumption in industry sector can observably promote the development of economy.

  1. monthly energy consumption forecasting using wavelet analysis

    African Journals Online (AJOL)

    User

    ABSTRACT. Monthly energy forecasts help heavy consumers of electric power to prepare adequate budget to pay their electricity bills and also draw the attention of management and stakeholders to electric- ity consumption levels so that energy efficiency measures are put in place to reduce cost. In this paper, a wavelet ...

  2. Tables of energies consumption in France

    International Nuclear Information System (INIS)

    1999-08-01

    This short paper presents the evolution of the energy consumption by sector (industry, domestic, tertiary industry, transports, agriculture and all sectors together), since 1973. It gives an abstract of a more complete book: tableaux des consommations d'energie en France; edition 1999. (A.L.B.)

  3. Analysis and Optimization of Building Energy Consumption

    Science.gov (United States)

    Chuah, Jun Wei

    Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit

  4. Energy Star Concepts for Highway Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.

    2003-06-24

    The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

  5. Merging mobility and energy vision with hybrid electric vehicles and vehicle infrastructure integration

    International Nuclear Information System (INIS)

    He Yiming; Chowdhury, Mashrur; Ma Yongchang; Pisu, Pierluigi

    2012-01-01

    As the U.S. federal government is seeking useful applications of Vehicle-Infrastructure Integration (VII) and encouraging a greener and more efficient automobile industry, this paper demonstrated a path to meet the national transportation goal via VII. An impact study was conducted in a midsize U.S. metropolitan area on the potential of utilizing VII communication in Hybrid Electric Vehicle (HEV) operations by simulating a VII-enabled vehicle framework for both conventional HEV and Plug-in Hybrid Electric Vehicles (PHEV). The data collection and communication capability of the VII system allowed the prediction of speed profiles at the vehicle level with an average error rate of 13.2%. With the prediction, at the individual vehicle level, VII technology allowed PHEV and HEV to achieve additional benefits with an approximately 3% decrease in total energy consumption and emission. At the network level, the benefit–cost analysis indicated that the benefit–cost ratios for PHEV and HEV of the VII vehicle network exceed one at the fleet penetration rate of 20% and 30%, respectively. Our findings encourage to support public and private investments in VII infrastructure and its integration with HEV and PHEV in order to reap the increased energy savings from these vehicles. - Highlights: ► A VII-HEV/PHEV framework was simulated for a midsized U.S. metropolitan area. ► A VII-based prediction algorithm was developed for the framework. ► Significant improvement in energy efficiency and emission was achieved at single vehicle level. ► Network analysis was conducted to show cost-effectiveness of this framework.

  6. Highly-resolved modeling of personal transportation energy consumption in the United States

    International Nuclear Information System (INIS)

    Muratori, Matteo; Moran, Michael J.; Serra, Emmanuele; Rizzoni, Giorgio

    2013-01-01

    This paper centers on the estimation of the total primary energy consumption for personal transportation in the United States, to include gasoline and/or electricity consumption, depending on vehicle type. The bottom-up sector-based estimation method introduced here contributes to a computational tool under development at The Ohio State University for assisting decision making in energy policy, pricing, and investment. In order to simulate highly-resolved consumption profiles three main modeling steps are needed: modeling the behavior of drivers, generating realistic driving profiles, and simulating energy consumption of different kinds of vehicles. The modeling proposed allows for evaluating the impact of plug-in electric vehicles on the electric grid – especially at the distribution level. It can serve as a tool to compare different vehicle types and assist policy-makers in estimating their impact on primary energy consumption and the role transportation can play to reduce oil dependency. - Highlights: • Modeling primary energy consumption for personal transportation in the United States. • Behavior of drivers has been simulated in order to establish when driving events occur and the length of each event. • Realistic driving profiles for each driving event are generated using a stochastic model. • The model allows for comparing the initial cost of different vehicles and their expected energy-use operating cost. • Evaluation of the impact of PEVs on the electric grid – especially at the distribution level – can be performed

  7. Control concepts for vehicle drive line to reduce fuel consumption

    Energy Technology Data Exchange (ETDEWEB)

    Ossyra, J.C.

    2005-07-01

    In this work advanced drive line control concepts for off-road vehicles have been developed and investigated to reduce the power losses and finally the fuel consumption of the entire drive system by use of on-line optimization procedure. Two separate closed loop speed controls have been developed for the use on a microcontroller onboard the vehicle: one to control the hydrostatic transmission and the other to control the engine speed. Considering the loss characteristics of the displacement machines in the hydrostatic transmission and the steady state characteristics of the combustion engine by use of pure mathematical approximations of measured curves, a direct optimization strategy is used, which works on-line on a microcontroller. A laboratory hardware-in-the loop test rig has been used to investigate the proposed control concepts. For different typical and desired work cycles of an off-road machine on level ground and uphill a slope the effectiveness of the proposed control concepts have been proven. (orig.)

  8. Exploring energy consumption and demand in China

    International Nuclear Information System (INIS)

    Fan, Ying; Xia, Yan

    2012-01-01

    China has been experiencing industrialization and urbanization since reform and opening of its economy in 1978. Energy consumption in the country has featured issues such as a coal-dominated energy mix, low energy efficiency and high emissions. Thus, it is of great importance to explore the factors driving the increase in energy consumption in the past two decades and estimate the potential for decreasing energy demands in the future. In this paper a hybrid energy input–output model is used to decompose driving factors to identify how these factors impact changes in energy intensity. A modified RAS approach is applied to project energy requirements in a BAU scenario and an alternative scenario. The results show that energy input mix, industry structure and technology improvements have major influences on energy demand. Energy demand in China will continue to increase at a rapid rate if the economy develops as in the past decades, and is projected to reach 4.7 billion tce in 2020. However, the huge potential for a decrease cannot be neglected, since growth could be better by adjusting the energy mix and industrial structure and enhancing technology improvements. The total energy demand could be less than 4.0 billion tce in 2020. -- Highlights: ► In this paper a hybrid energy input–output model is used to decompose driving factors to China’s energy intensity change. ► A modified RAS approach is applied to project energy requirements in China. ► The results show that energy input mix, industry structure and technology improvements have major influences on energy demand. ► Energy demand in China will reach 4.7 billion ton in 2020 if the economy develops as in the past decades. ► There is a huge potential for a decrease of energy demand by adjusting the energy mix and industrial structure and enhancing technology improvements.

  9. Energy Threshold Hypothesis for Household Consumption

    International Nuclear Information System (INIS)

    Ortiz, Samira; Castro-Sitiriche, Marcel; Amador, Isamar

    2017-01-01

    A strong positive relationship among quality of life and electricity consumption at impoverished countries is found in many studies. However, previous work has presented that the positive relationship does not hold beyond certain electricity consumption threshold. Consequently, there is a need of exploring the possibility for communities to live with sustainable level of energy consumption without sacrificing their quality of life. The Gallup-Healthways Report measures global citizen’s wellbeing. This paper provides a new outlook using these elements to explore the relationships among actual percentage of population thriving in most countries and their energy consumption. A measurement of efficiency is computed to determine an adjusted relative social value of energy considering the variability in the happy life years as a function of electric power consumption. Adjustment is performed so single components don’t dominate in the measurement. It is interesting to note that the countries with the highest relative social value of energy are in the top 10 countries of the Gallup report.

  10. Cities and Energy Consumption: a Critical Review

    Directory of Open Access Journals (Sweden)

    Carmela Gargiulo

    2017-12-01

    Full Text Available The relationship between cities and energy consumption has been of great interest for the scientific community for over twenty years. Most of the energy consumption, indeed, occurs in cities because of the high concentration of human activities. Thus, cities are responsible for a big share of carbon dioxide emissions (CO2. However, the debate on this topic is still open, mainly because of the heterogeneity of published studies in the selection, definition and measurement of the urban features influencing energy consumption and CO2 emissions, as well as in the choice of the energy sectors to be considered, in the territorial scale of analysis, and in the geographical distribution of the sample. Therefore, the goal of this research is to systematize and compare the approach, methodology and results of the relevant literature on the relationship between cities and energy consumption over the last twenty years. Furthermore, this critical review identifies the knowledge gap between what is known and what is still under debate and, based on that, it proposes a conceptual framework that will help to outline a new direction for future research and support local policy makers in the definition of strategies and actions that can effectively reduce urban energy use and CO2 emissions.

  11. Energy consumption modeling during dairy sewage pretreatment

    Directory of Open Access Journals (Sweden)

    Dąbrowski Wojciech

    2017-01-01

    Full Text Available The research was conducted in a dairy WWTP located in north-eastern Poland with the average flow of 546 m3d-1 and PE 11500 in 2016. Energy consumption was measured with the help of Lumel 3-phase network parameter transducers installed within the plant. The modeling was conducted based on the quantity and quality of raw sewage, after its screening, averaging and dissolved air flotation. The following parameters were determined: BOD5, COD. N-total and P-total. During the research period. 15 measurement series were carried out. Pollution loads removed in primary treatment varied from 167.0 to 803.5 kgO2d-1 and 1205.9 to 10032 kgO2d-1 for BOD5 and COD respectively. The energy consumption share during dairy pretreatment in relation to the total energy consumption was in the range from 13.8 to 28.5% with the mean value of 18.7% during the research period. Energy consumption indicators relating to removed pollution loads for primary treatment were established with the mean values of 0.74 and 0.83 kWhkg-1d-1 for BOD5 and COD respectively. An attempt was made to determine the influence of raw sewage characteristics and pretreatment efficiency on energy consumption of the object. A model of energy consumption during pretreatment was estimated according to the experimental data obtained in the research period. It was modeled using the linear regression model and principal component analysis.

  12. The effect of energy performance regulations on energy consumption

    NARCIS (Netherlands)

    Guerra-Santin, O.; Itard, L.

    2012-01-01

    Governments have developed energy performance regulations in order to lower energy consumption in the housing stock. Most of these regulations are based on the thermal quality of the buildings. In the Netherlands, the energy efficiency for new buildings is expressed as the EPC (energy performance

  13. Energy consumption for different greenhouse constructions

    Energy Technology Data Exchange (ETDEWEB)

    Djevic, M.; Dimitrijevic, A. [Department for Agricultural Engineering, University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade (RS)

    2009-09-15

    In this paper the influence of greenhouse construction on energy efficiency in winter lettuce production was estimated for four different double plastic covered greenhouses in Serbia region. Plastic coverings were introduced in this region as a mean of making the plant production more energy efficient. Additionally, as a means of lowering energy consumption, tunnel structures were proposed. In order to see whether the greenhouse structure influences energy consumption, four different double plastic covered greenhouses. Two tunnel types, 9 x 58 m and 8 x 25 m, one gutter-connected structure and multi-span plastic covered greenhouse. The gutter-connected structure was 2 x 7 m wide and 39 m long while the multi-span structure was 20 x 6.4 m wide and 42 m long. On the basis of lettuce production output and the energy input, specific energy input, energy output-input ratio and energy productivity were estimated. Results show that the lowest energy consumption was obtained for multi-span greenhouse, 9.76 MJ/m{sup 2}. The highest energy consumption was obtained in tunnel, 9 x 58 m, 13.93 MJ/m{sup 2}. The highest value for output-input ratio was calculated for multi-span greenhouse (0.29), followed by gutter-connected greenhouse (0.21), tunnel 9 x 58 m (0.17) and tunnel, 8 x 25 m (0.15). Results also show that energy productivity can be higher if multi-span greenhouse structures are used. (author)

  14. Commercial and institutional consumption of energy survey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    This paper presented the results of a survey on 2004 energy consumption data for commercial and institutional establishments in Canada. The objective of the survey was to enable Natural Resources Canada to develop programs to support institutions seeking to gain greater energy efficiency and reduce greenhouse gas (GHG) emissions. Data were published by energy source and region. Energy intensity data were presented by region amongst the following commercial and institutional sectors: retail trade including food and non-food; education including colleges and universities; health care including non-hospital health care and hospitals; and accommodation and food services. Data obtained on each establishment's energy consumption and floor area were used to calculate their energy intensity ratio which included accounting for weather conditions, age of buildings and energy sources. It was observed that commercial and institutional establishments consumed nearly 945 million gigajoules in 2004. The wholesale trade and warehousing sector used the highest amount of energy, accounting for 17 per cent of all commercial and institutional energy use. The education sector accounted for 16 per cent of energy use, while the office sector accounted for 14 per cent. The energy intensity rate of hospitals in Canada was the highest of all sectors and subsectors, due to their nearly constant use of lighting and medical equipment. Retail trade accounted for the largest share of establishments at 26 per cent of all establishments, followed by offices with 22 per cent. Education accounted for the largest percentage of floor area. 4 tabs., 10 figs.

  15. A Meta Model for Domestic Energy Consumption

    Directory of Open Access Journals (Sweden)

    K.,J SREEKANTH

    2011-01-01

    Full Text Available Prediction of energy consumption particularly in micro level is of vital importance in terms of energy planning and also implementation of any Clean Development Mechanism (CDM activities that has become the order of the world today. It may be difficult to model household energy consumption using conventional methods such as time series forecasting due to many influencing factors. This paper presents a step wise regression model for forecasting domestic energy consumption based on micro level household survey data collected from Kerala, a state in southern part of India. The analysis of the data reveals significant influence of socio-economic, demographic, geographic, and family attributes upon total household energy requirements. While a wide variation in the pattern of energy requirements across the domestic sector belonging to different expenditure classes, per capita income level can be identified as the most important explanatory variable influencing variation in energy requirements. The models developed also demonstrates the influence of per capita land area, residential area among the higher income group while average age and literacy forms significant variables among the lower income group.

  16. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO{sub 2}-emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market

  17. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    International Nuclear Information System (INIS)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO 2 -emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market. The

  18. Research on charging and discharging control strategy for electric vehicles as distributed energy storage devices

    Science.gov (United States)

    Zhang, Min; Yang, Feng; Zhang, Dongqing; Tang, Pengcheng

    2018-02-01

    A large number of electric vehicles are connected to the family micro grid will affect the operation safety of the power grid and the quality of power. Considering the factors of family micro grid price and electric vehicle as a distributed energy storage device, a two stage optimization model is established, and the improved discrete binary particle swarm optimization algorithm is used to optimize the parameters in the model. The proposed control strategy of electric vehicle charging and discharging is of practical significance for the rational control of electric vehicle as a distributed energy storage device and electric vehicle participating in the peak load regulation of power consumption.

  19. Energy Consumption of Fast Ferries in Danish Domestic Transport

    DEFF Research Database (Denmark)

    Petersen, Morten Steen; Jørgensen, Kaj

    1997-01-01

    Analysis of energy consumption in connection with selected passenger transport trip chains. In particular the publication aims to evaluate the energy consumption of fast ferries in Denmark.......Analysis of energy consumption in connection with selected passenger transport trip chains. In particular the publication aims to evaluate the energy consumption of fast ferries in Denmark....

  20. Scheduling home-appliances to optimize energy consumption

    DEFF Research Database (Denmark)

    Rossello Busquet, Ana

    In order to optimize the energy consumption, energy demand peaks should be avoided, and energy consumption should be smoothly distributed over time. This can be achieved by setting a maximum energy consumption per user’s household. In other words, the overall consumption of the user’s appliances...

  1. Understanding energy consumption: Beyond technology and economics

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, H.; Shove, E.

    1998-07-01

    This paper summarizes two years of efforts among a cross-disciplinary group of senior researchers to bring social and cultural perspectives to modeling of household energy consumption. The work has been organized by the Center for Energy Studies of the University of Geneva. The researchers represent both the physical and social sciences, several institutions and a number of countries. The initiative was based on an acknowledgement of the failure of technical and economic models to explain consumption or more importantly, how consumption patterns change. Technical and economic models most often either ignore social and cultural issues or reduce them to parameters of other variables. An important objective for the Geneva Group has been to engage modelers and social scientists in a dialogue which brings social and cultural context to the fore. The process reveals interesting insights into the frictions of cross-disciplinary interaction and the emergence of new perspectives. Various classical modeling approaches have been discussed and rejected. Gradually, a framework has emerged which says something about the appropriate institutions and actors which contribute to consumption patterns; about how they are related; and finally about how the interinstitutional relationships and the consumption patterns themselves change. A key point of convergence is that a complete understanding of energy end-use will not be possible from an analysis directed at the point of end use alone. The analysis must incorporate what happens inside institutions like manufacturers, retailers, and public policy organizations as well as how those organizations interact with consumers, including media and advertising. Progress towards a better understanding of energy consumption requires a greater engagement of social scientists with these heretofore little explored actors an relationships.

  2. Energy sustainability: consumption, efficiency, and environmental impact

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consump...

  3. Computer Profile of School Facilities Energy Consumption.

    Science.gov (United States)

    Oswalt, Felix E.

    This document outlines a computerized management tool designed to enable building managers to identify energy consumption as related to types and uses of school facilities for the purpose of evaluating and managing the operation, maintenance, modification, and planning of new facilities. Specifically, it is expected that the statistics generated…

  4. Socio-Demographic Differences in Energy Drink Consumption and Reasons for Consumption among US College Students

    Science.gov (United States)

    Poulos, Natalie S.; Pasch, Keryn E.

    2016-01-01

    Background: Energy drink consumption has become increasingly prevalent among US college students, yet little is known about current rates of consumption and reasons for consumption among current energy drink users, particularly differences related to gender and race/ethnicity. Objectives: To better understand energy drink consumption alone and…

  5. Representing in-home and out-of-home energy consumption behavior in Beijing

    International Nuclear Information System (INIS)

    Yu Biying; Zhang Junyi; Fujiwara, Akimasa

    2011-01-01

    It is expected that in-home and out-of-home energy consumption behavior in a household might be correlated with each other, probably due to the existence of household budget constraints. Ownership and usage of energy-saving technologies for in-home appliances (or vehicles) might lead to the increase in out-of-home (or in-home) energy consumption. It is therefore necessary to jointly represent in-home and out-of-home energy consumption in the same modeling framework. With this consideration, we first build a new type of energy consumption model based on the Multiple Discrete-Continuous Extreme Value (MDCEV) modeling framework. Next, we conducted a questionnaire survey in Beijing in 2009 and successfully collected the information about households' energy consumption, ownership/usage of in-home appliances and vehicles, and households' and their members' attributes from 1014 households. Throughout an empirical analysis, it is confirmed that the MDCEV model is effective to simultaneously describe the in-home and out-of-home energy consumption behavior. In addition, it is revealed that a set of household and personal attributes affect the ownership and usage of in-home appliances and vehicles. Furthermore, it is shown that the unobserved factors play a much more important role in explaining energy consumption behavior than the observed attributes of households and their members. - Highlights: → Representing in-home and out-of-home energy consumption behavior jointly. → MDCEV model is built to describe household energy consumption behavior. → Log-linear competitive relationships are found among expenditures of end-uses. → Model results provide some insights about the influence of varied observed factors. → Unobserved factors are more important in explaining energy consumption behavior.

  6. New fuel consumption standards for Chinese passenger vehicles and their effects on reductions of oil use and CO2 emissions of the Chinese passenger vehicle fleet

    International Nuclear Information System (INIS)

    Wang Zhao; Jin Yuefu; Wang Michael; Wei Wu

    2010-01-01

    A new fuel consumption standard for passenger vehicles in China, the so-called Phase 3 standard, was approved technically in 2009 and will take effect in 2012. This standard aims to introduce advanced energy-saving technologies into passenger vehicles and to reduce the average fuel consumption rate of Chinese new passenger vehicle fleet in 2015 to 7 L/100 km. The Phase 3 standard follows the evaluating system by specifying fuel consumption targets for sixteen individual mass-based classes. Different from compliance with the Phases 1 and 2 fuel consumption standards, compliance of the Phase 3 standard is based on corporate average fuel consumption (CAFC) rates for individual automobile companies. A transition period from 2012 to 2014 is designed for manufacturers to gradually adjust their production plans and introduce fuel-efficient technologies. In this paper, we, the designers of the Phase 3 standard, present the design of the overall fuel consumption reduction target, technical feasibility, and policy implications of the Phase 3 standard. We also explore several enforcement approaches for the Phase 3 standard with financial penalties of non-compliance as a priority. Finally, we estimate the overall effect of the Phase 3 standard on oil savings and CO 2 emission reductions.

  7. Saving energy and protecting environment of electric vehicles

    Science.gov (United States)

    Yuan, Lina; Chen, Huajun; Gong, Jing

    2017-05-01

    With the concept of low carbon economy, saving energy, and protecting environment spread, the development of the electric promotes the research pace of wireless charging electronic vehicles, which will become the best choice of energy supply in the future. To generalize and exploit the corresponding alternative fuels and the research and development, and promotion of electric vehicles, becomes the effective means to directly reduce the consumption of fuel, effectively relieves the problem of nervous energy and environmental pollution, and really conforms to the requirements of the national strategy of sustainable development in China. This paper introduces the status of electronic cars and wireless charging, expounds the principle of wireless charging, and concludes the full text.

  8. Potential Energy and Emission Benefits of Vehicle Automation and Connectivity

    Science.gov (United States)

    2017-08-01

    Driving behavior greatly impacts vehicle tailpipe emissions. Connected and automated vehicle (CAV) technologies are designed to smooth driving and relieve traffic congestion and are therefore expected to reduce fuel consumption and tailpipe emissions...

  9. Simulation Tool For Energy Consumption and Production

    DEFF Research Database (Denmark)

    Nysteen, Michael; Mynderup, Henrik; Poulsen, Bjarne

    2013-01-01

    In order to promote adoption of smart grid with the general public it is necessary to be able to visualize the benefits of a smart home. Software tools that model the effects can help significantly with this. However, only little work has been done in the area of simulating and visualizing...... the energy consumption in smart homes. This paper presents a prototype simulation tool that allows graphical modeling of a home. Based on the modeled homes the user is able to simulate the energy consumptions and compare scenarios. The simulations are based on dynamic weather and energy price data as well...... as well as appliances and other electrical components used in the modeled homes....

  10. Electrical energy consumption control apparatuses and electrical energy consumption control methods

    Science.gov (United States)

    Hammerstrom, Donald J.

    2012-09-04

    Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

  11. Road transport-related energy consumption: Analysis of driving factors in Tunisia

    International Nuclear Information System (INIS)

    Mraihi, Rafaa; Abdallah, Khaled ben; Abid, Mehdi

    2013-01-01

    The rapid growth of urban population and the development of road infrastructures in Tunisian cities have brought about many environmental and economic problems, including the rise scored in energy consumption and the increase in the quantity of gas emissions arising from road transport. Despite the critical nature of such problems, no policies have yet been adopted to improve energy efficiency in the transport sector. This paper aims to determine driving factors of energy consumption change for the road mode. It uses decomposition analysis to discuss the effects of economic, demographic and urban factors on the evolution of transport energy consumption. The main result highlighted in the present work is that vehicle fuel intensity, vehicle intensity, GDP per capita, urbanized kilometers and national road network are found to be the main drivers of energy consumption change in the road transport sector during 1990–2006 period. Consequently, several strategies can be elaborated to reduce road transport energy. Economic, fiscal and regulatory instruments can be applied in order to make road transport more sustainable. -- Highlights: •We are interested in determining driving factors of transport energy consumption growth in Tunisia. •We use decomposition analysis approach. •Vehicle fuel and road vehicle intensities are found to be principal factors. •Motorization and urbanization are also found to be responsible

  12. Hybrid Electric Vehicles: Some Theoretical Considerations on Consumption Behaviour

    Directory of Open Access Journals (Sweden)

    Fabio Carlucci

    2018-04-01

    Full Text Available Solving the problem of the lack of environmental sustainability in transport activities requires the involvement of new technologies, particularly in populated cities where mobility activities play a major role in generating externalities. The move from cars powered by conventional internal combustion engines to cars powered by alternative energies can make an important contribution to reducing emissions and achieving a more sustainable transport system. Unfortunately, green car market development still remains uncertain because of the higher production costs of batteries and engines. In this context, surprisingly little attention has been devoted to analysing the economic factors affecting consumers’ behaviour in the choice of hybrid electric vehicles. To fill this gap, the diffusion process of hybrid technology as well as intrinsic and extrinsic motivations and the crowding-out effect on consumers’ purchasing decisions are taken under consideration. Finally, some policy recommendations are provided.

  13. Assessing the Energy Consumption of Smartphone Applications

    Science.gov (United States)

    Abousaleh, Mustafa M.

    Mobile devices are increasingly becoming essential in people's lives. The advancement in technology and mobility factor are allowing users to utilize mobile devices for communication, entertainment, financial planning, fitness tracking, etc. As a result, mobile applications are also becoming important factors contributing to user utility. However, battery capacity is the limiting factor impacting the quality of user experience. Hence, it is imperative to understand how much energy impact do mobile apps have on the system relative to other device activities. This thesis presents a systematic studying of the energy impact of mobile apps features. Time-series electrical current measurements are collected from 4 different modern smartphones. Statistical analysis methodologies are used to calculate the energy impact of each app feature by identifying and extracting mobile app-feature events from the overall current signal. In addition, the app overhead energy costs are also computed. Total energy consumption equations for each component is developed and an overall total energy consumption equation is presented. Minutes Lost (ML) of normal phone operations due to the energy consumption of the mobile app functionality is computed for cases where the mobile app is simulated to run on the various devices for 30 minutes. Tutela Technologies Inc. mobile app, NAT, is used for this study. NAT has two main features: QoS and Throughput. The impact of the QoS feature is indistinguishable, i.e. ML is zero, relative to other phone activities. The ML with only the TP feature enabled is on average 2.1 minutes. Enabling the GPS increases the ML on average to 11.5 minutes. Displaying the app GUI interface in addition to running the app features and enabling the GPS results in an average ML of 12.4 minutes. Amongst the various mobile app features and components studied, the GPS consumes the highest amount of energy. It is estimated that the GPS increases the ML by about 448%.

  14. Intelligent energy management control of vehicle air conditioning system coupled with engine

    International Nuclear Information System (INIS)

    Khayyam, Hamid; Abawajy, Jemal; Jazar, Reza N.

    2012-01-01

    Vehicle Air Conditioning (AC) systems consist of an engine powered compressor activated by an electrical clutch. The AC system imposes an extra load to the vehicle's engine increasing the vehicle fuel consumption and emissions. Energy management control of the vehicle air conditioning is a nonlinear dynamic system, influenced by uncertain disturbances. In addition, the vehicle energy management control system interacts with different complex systems, such as engine, air conditioning system, environment, and driver, to deliver fuel consumption improvements. In this paper, we describe the energy management control of vehicle AC system coupled with vehicle engine through an intelligent control design. The Intelligent Energy Management Control (IEMC) system presented in this paper includes an intelligent algorithm which uses five exterior units and three integrated fuzzy controllers to produce desirable internal temperature and air quality, improved fuel consumption, low emission, and smooth driving. The three fuzzy controllers include: (i) a fuzzy cruise controller to adapt vehicle cruise speed via prediction of the road ahead using a Look-Ahead system, (ii) a fuzzy air conditioning controller to produce desirable temperature and air quality inside vehicle cabin room via a road information system, and (iii) a fuzzy engine controller to generate the required engine torque to move the vehicle smoothly on the road. We optimised the integrated operation of the air conditioning and the engine under various driving patterns and performed three simulations. Results show that the proposed IEMC system developed based on Fuzzy Air Conditioning Controller with Look-Ahead (FAC-LA) method is a more efficient controller for vehicle air conditioning system than the previously developed Coordinated Energy Management Systems (CEMS). - Highlights: ► AC interacts: vehicle, environment, driver components, and the interrelationships between them. ► Intelligent AC algorithm which uses

  15. Energy consumption and environmental effects of passenger transport modes. A life cycle study on passenger transport modes

    International Nuclear Information System (INIS)

    Kalenoja, H.

    1996-01-01

    Energy consumption and environmental effects of different passenger transport modes vary on the different stages of the fuel chain and during the production and maintenance of vehicles and infrastructure. Energy consumption and the environmental effects calculated per passenger mileage depend strongly on the vehicle occupancy. The properties of transport modes on urban areas and on the long distance transport have been evaluated in this study. The energy consumption and environmental effects calculated per passenger mileage have been assessed for passenger car, bus, tram, train, airplane and ferry. The emissions have been evaluated during the whole fuel chain. In this study only the airborne emissions have been taken into account. In the energy consumption calculations the energy content of vehicles and the infrastructure, energy consumption during the fuel chain and during the end use have been taken into consideration. (au)

  16. Comparison of the energy and environmental impact by integrating a H_2 vehicle and an electric vehicle into a zero-energy building

    International Nuclear Information System (INIS)

    Cao, Sunliang

    2016-01-01

    Highlights: • Integrating a commercial-scale H_2 vehicle (HV) or electric vehicle (EV) into a ZEB. • Simultaneously fulfilling net-zero energy building and absolute-zero energy vehicle. • Energy performance comparison between the ZEBs with HV, EV, and no vehicle. • The energy matching-enhancing solutions for integrating the HV or EV with the ZEB. • Solutions for improving the matching and relieving the negative impact on the grid. - Abstract: The boundary extension of a zero-energy building to integrate a new energy vehicle will facilitate the realization of the target set by the EU 2050 roadmap. In this study, either a hydrogen vehicle (HV) or an electric vehicle (EV) is integrated into a renewable-supported building system with appropriate control strategies. The focused variables in this study are renewable energy capacities, vehicle system options, extents to utilize vehicle storages for domestic purposes, and the Excess REe-HW recharging strategies. The analysing aspects include the energy and environmental impact as well as the energy matching and the grid interactions. The results show that the annual net-zero energy/emission balance can be met by a 16, 12, and 12 kW rated wind turbine, or by a 195.8, 160.2, and 142.4 m"2 PV, for the building with the HV, the EV and no vehicle (NV), respectively. The building with the HV will be more demanding in meeting the balance due to the less efficient HV system than that with the EV. Moreover, better matching for the zero-energy system can be achieved by relieving the condition to discharge the vehicle storages for domestic usages and by using the Excess REe-HW recharging strategy. However, their negative effect will be a slight increase in the annual net-energy consumption, due to an increased loss from both the HV/EV integrated system and the thermal storage.

  17. Energy Management Systems to Reduce Electrical Energy Consumption

    OpenAIRE

    Oriti, Giovanna

    2015-01-01

    EXECUTIVE SUMMARY An energy management system comprises an electrical energy storage element such as a battery, renewable electrical energy sources such as solar and wind, a digital signal processing controller and a solid state power converter to interface the elements together. This hardware demonstration in the lab at the Naval Postgraduate School will focus on solid state power conversion methods to improve the reliability and efficiency of electrical energy consumption by Navy facilit...

  18. Impact of Vehicle Hybridization on Fuel Consumption Economy

    OpenAIRE

    Rezaei, Javad

    2018-01-01

    Air pollution, limited number of knownpetroleum resources and increasing of greenhouse gases have led the governmentsand researchers to have more investigation on Hybrid Electric Vehicles.Considering technical availability and manufacturing facilities with regardingto the final vehicle price, hybridization of conventional vehicles could be abetter choice than designing and manufacturing a new hybrid electric car.Parallel-Series hybrid electric vehicles(power-split) which is used in this study...

  19. Improving Energy Efficiency for the Vehicle Assembly Industry: A Discrete Event Simulation Approach

    Science.gov (United States)

    Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer

    2016-11-01

    This paper presented a Discrete Event Simulation (DES) model for investigating and improving energy efficiency in vehicle assembly line. The car manufacturing industry is one of the highest energy consuming industries. Using Rockwell Arena DES package; a detailed model was constructed for an actual vehicle assembly plant. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. Sound energy efficiency model within this industry has two-fold advantage: reducing CO2 emission and cost reduction associated with fuel and electricity consumption. The paper starts with an overview of challenges in energy consumption within the facilities of automotive assembly line and highlights the parameters for energy efficiency. The results of the simulation model indicated improvements for energy saving objectives and reduced costs.

  20. Comparing the Life Cycle Energy Consumption, Global ...

    Science.gov (United States)

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG) emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energyand carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage) centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability

  1. 2014 Navajo Nation Energy and Water Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Suzanne L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woods, Sam [Navajo Transitional Energy Company, Farmington, NM (United States)

    2017-03-31

    The Navajo Nation is the home of the largest land-based Indian reservation in the U.S., covering more than twenty-seven thousand square miles. The land in the southwestern U.S. holds an abundance of natural resources, which are intimately integrated in the history, economy, and growth of the Navajo tribe. This report aims to wholly visualize the Navajo Nation’s resources and energy and water consumption using quantitative data and systems engineering analysis. The energy and water flow chart visualizations provide structured information for tribal leaders, policymakers, and educators around energy and water system discussions, technology development opportunities, and policy decisions. The analysis of both energy and water is a first step to visualizing the interconnectedness and complexities of the energy-water-food nexus of the nation. The goal of this energy analysis was to first estimate coal resource consumption because of the considerable impact coal has on the Navajo economy, recently as much as $26 million per year in coal royalties.

  2. Data mining, mining data : energy consumption modelling

    Energy Technology Data Exchange (ETDEWEB)

    Dessureault, S. [Arizona Univ., Tucson, AZ (United States)

    2007-09-15

    Most modern mining operations are accumulating large amounts of data on production and business processes. Data, however, provides value only if it can be translated into information that appropriate users can utilize. This paper emphasized that a new technological focus should emerge, notably how to concentrate data into information; analyze information sufficiently to become knowledge; and, act on that knowledge. Researchers at the Mining Information Systems and Operations Management (MISOM) laboratory at the University of Arizona have created a method to transform data into action. The data-to-action approach was exercised in the development of an energy consumption model (ECM), in partnership with a major US-based copper mining company, 2 software companies, and the MISOM laboratory. The approach begins by integrating several key data sources using data warehousing techniques, and increasing the existing level of integration and data cleaning. An online analytical processing (OLAP) cube was also created to investigate the data and identify a subset of several million records. Data mining algorithms were applied using the information that was isolated by the OLAP cube. The data mining results showed that traditional cost drivers of energy consumption are poor predictors. A comparison was made between traditional methods of predicting energy consumption and the prediction formed using data mining. Traditionally, in the mines for which data were available, monthly averages of tons and distance are used to predict diesel fuel consumption. However, this article showed that new information technology can be used to incorporate many more variables into the budgeting process, resulting in more accurate predictions. The ECM helped mine planners improve the prediction of energy use through more data integration, measure development, and workflow analysis. 5 refs., 11 figs.

  3. Pakistan energy consumption scenario and some alternate energy option

    International Nuclear Information System (INIS)

    Maher, M.J.

    1997-01-01

    Pakistan with its energy-deficient resources is highly dependent on import-oriented energy affected the economy because of repeated energy price hike on international horizon. The energy consumption pattern in Pakistan comprises about two-third in commercial energy and one-third in non-commercial forms. Most of the country's energy requirements are met by oil, gas hydro power, coal, nuclear energy and thermal power. Pakistan meets it's commercial energy requirements indigenously up to 64%. The balance of deficit of 35-40% is met through import. The consumption of various agro-residues and wood as fuel also plays a vital role. The analysis shows that emphasis needs to be placed on new and renewable resources of energy besides adopting technologies for energy conservation. Renewable energy depends on energy income and constitutes the development process. The are several renewable energy options such as biogas technology, micro-hydro power generation, direct solar energy and biomass energy conservation etc. By improving the conservation techniques as designs of solar converters, pre treating the biomass fuel, increasing the effectiveness of carbonization and pyrolysis increases the energy production. (A.B.)

  4. Energy Awareness Displays - Prototype for personalised energy consumption feedback

    NARCIS (Netherlands)

    Börner, Dirk; Storm, Jeroen; Kalz, Marco; Specht, Marcus

    2012-01-01

    Börner, D., Storm, J., Kalz, M., & Specht, M. (2012). Energy Awareness Displays - Prototype for personalised energy consumption feedback. In A. Ravencroft, S. Lindstaedt, C. D. Kloos, & D. Hernández-Leo (Eds.), 21st Century Learning for 21st Century Skills - 7th European Conference on Technology

  5. Energy saving and consumption reducing evaluation of thermal power plant

    Science.gov (United States)

    Tan, Xiu; Han, Miaomiao

    2018-03-01

    At present, energy saving and consumption reduction require energy saving and consumption reduction measures for thermal power plant, establishing an evaluation system for energy conservation and consumption reduction is instructive for the whole energy saving work of thermal power plant. By analysing the existing evaluation system of energy conservation and consumption reduction, this paper points out that in addition to the technical indicators of power plant, market activities should also be introduced in the evaluation of energy saving and consumption reduction in power plant. Ttherefore, a new evaluation index of energy saving and consumption reduction is set up and the example power plant is calculated in this paper. Rresults show that after introducing the new evaluation index of energy saving and consumption reduction, the energy saving effect of the power plant can be judged more comprehensively, so as to better guide the work of energy saving and consumption reduction in power plant.

  6. Reducing supply chain energy use in next-generation vehicle lightweighting

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, Rebecca J.; Das, Sujit; Carpenter, Alberta

    2016-09-29

    Vehicle lightweighting reduces the amount of fuel consumed in a vehicle's use phase, but depending on what lightweight materials replace the conventional materials, and in what amounts, the manufacturing energy may increase or decrease. For carbon fiber reinforced polymer (CFRP), a next-generation lightweighting material, the increase in vehicle manufacturing energy is greater than the fuel savings, resulting in a net increase in energy consumption over a vehicle's manufacturing and use relative to a standard non-lightweighted car. [1] This work explores ways to reduce the supply chain energy of CFRP lightweighted vehicles through alternative production technologies and energy efficiency improvements. The objective is to determine if CFRP can offer energy savings comparable to or greater than aluminum, a conventional lightweighting material. Results of this analysis can be used to inform additional research and development efforts in CFRP production and future directions in lightweight vehicle production. The CFRP supply chain is modeled using the Material Flows through Industry (MFI) scenario modeling tool, which calculates 'mine to materials' energy consumption, material inventories and greenhouse gas emissions for industrial supply chains. In this analysis, the MFI tool is used to model the supply chains of two lightweighted vehicles, an aluminum intensive vehicle (AIV) and a carbon fiber intensive vehicle (CFV), under several manufacturing scenarios. Vehicle specifications are given in [1]. Scenarios investigated cover alternative carbon fiber (CF) feedstocks and energy efficiency improvements at various points in the vehicle supply chains. The alternative CF feedstocks are polyacrylonitrile, lignin and petroleum-derived mesophase pitch. Scenarios in which the energy efficiency of CF and CFRP production increases are explored using sector efficiency potential values, which quantify the reduction in energy consumption achievable when process

  7. Oil pipeline energy consumption and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, J.N.

    1981-01-01

    This report describes an investigation of energy consumption and efficiency of oil pipelines in the US in 1978. It is based on a simulation of the actual movement of oil on a very detailed representation of the pipeline network, and it uses engineering equations to calculate the energy that pipeline pumps must have exerted on the oil to move it in this manner. The efficiencies of pumps and drivers are estimated so as to arrive at the amount of energy consumed at pumping stations. The throughput in each pipeline segment is estimated by distributing each pipeline company's reported oil movements over its segments in proportions predicted by regression equations that show typical throughput and throughput capacity as functions of pipe diameter. The form of the equations is justified by a generalized cost-engineering study of pipelining, and their parameters are estimated using new techniques developed for the purpose. A simplified model of flow scheduling is chosen on the basis of actual energy use data obtained from a few companies. The study yields energy consumption and intensiveness estimates for crude oil trunk lines, crude oil gathering lines and oil products lines, for the nation as well as by state and by pipe diameter. It characterizes the efficiency of typical pipelines of various diameters operating at capacity. Ancillary results include estimates of oil movements by state and by diameter and approximate pipeline capacity utilization nationwide.

  8. Managing environmental aspects resulting from energy consumption

    International Nuclear Information System (INIS)

    2001-01-01

    Human health and environmental impacts of fossil fuel energy consumptions are examined and the ongoing effort to align energy management plans with sustainable development strategies and environmental management systems is described. Human health impacts are manifested in mortality rates, hospital admissions, visits to emergency rooms and physicians' offices, reduced physical performance, increase in the use of medications, impaired pulmonary function and a variety of lesser (or less perceptible) effects. Environmental impacts are demonstrated through climatic change, increase in greenhouse gas emissions, increase in smog, acid rain, and soil, groundwater and surface water contamination. The importance of commitment, integrated planning, measurement and evaluation, periodic review and improvement and documentation in aligning energy and environmental management plans are highlighted, along with the need for behavioral and operational changes, the creation of employee awareness and training, and the adoption of green procurement and life cycle costing. Adoption of the ISO 14000 approach to managing energy consumption is also seen as an important step in the direction of integrated energy and environmental management and sustainable development

  9. Modeling and optimization of HVAC energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Kusiak, Andrew; Li, Mingyang; Tang, Fan [Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242 - 1527 (United States)

    2010-10-15

    A data-driven approach for minimization of the energy to air condition a typical office-type facility is presented. Eight data-mining algorithms are applied to model the nonlinear relationship among energy consumption, control settings (supply air temperature and supply air static pressure), and a set of uncontrollable parameters. The multiple-linear perceptron (MLP) ensemble outperforms other models tested in this research, and therefore it is selected to model a chiller, a pump, a fan, and a reheat device. These four models are integrated into an energy optimization model with two decision variables, the setpoint of the supply air temperature and the static pressure in the air handling unit. The model is solved with a particle swarm optimization algorithm. The optimization results have demonstrated the total energy consumed by the heating, ventilation, and air-conditioning system is reduced by over 7%. (author)

  10. Determinants of household energy consumption in India

    International Nuclear Information System (INIS)

    Ekholm, Tommi; Krey, Volker; Pachauri, Shonali; Riahi, Keywan

    2010-01-01

    Improving access to affordable modern energy is critical to improving living standards in the developing world. Rural households in India, in particular, are almost entirely reliant on traditional biomass for their basic cooking energy needs. This has adverse effects on their health and productivity, and also causes environmental degradation. This study presents a new generic modelling approach, with a focus on cooking fuel choices, and explores response strategies for energy poverty eradication in India. The modelling approach analyzes the determinants of fuel consumption choices for heterogeneous household groups, incorporating the effect of income distributions and traditionally more intangible factors such as preferences and private discount rates. The methodology is used to develop alternate future scenarios that explore how different policy mechanisms such as fuel subsidies and micro-financing can enhance the diffusion of modern, more efficient, energy sources in India.

  11. Determinants of household energy consumption in India

    Energy Technology Data Exchange (ETDEWEB)

    Ekholm, Tommi [VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT (Finland); TKK Helsinki University of Technology, Espoo (Finland); Krey, Volker; Pachauri, Shonali; Riahi, Keywan [International Institute for Applied Systems Analysis, Laxenburg (Austria)

    2010-10-15

    Improving access to affordable modern energy is critical to improving living standards in the developing world. Rural households in India, in particular, are almost entirely reliant on traditional biomass for their basic cooking energy needs. This has adverse effects on their health and productivity, and also causes environmental degradation. This study presents a new generic modelling approach, with a focus on cooking fuel choices, and explores response strategies for energy poverty eradication in India. The modelling approach analyzes the determinants of fuel consumption choices for heterogeneous household groups, incorporating the effect of income distributions and traditionally more intangible factors such as preferences and private discount rates. The methodology is used to develop alternate future scenarios that explore how different policy mechanisms such as fuel subsidies and micro-financing can enhance the diffusion of modern, more efficient, energy sources in India. (author)

  12. Energy consumption and income. A semiparametric panel data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Van, Phu [BETA, CNRS and Universite de Strasbourg, 61 avenue de la Foret Noire, F-67085 Strasbourg (France)

    2010-05-15

    This paper proposes a semiparametric analysis for the study of the relationship between energy consumption per capita and income per capita for an international panel dataset. It shows little evidence for the existence of an environmental Kuznets curve for energy consumption. Energy consumption increases with income for a majority of countries and then stabilizes for very high income countries. Neither changes in energy structure nor macroeconomic cycle/technological change have significant effect on energy consumption. (author)

  13. Hybrid electric vehicles energy management strategies

    CERN Document Server

    Onori, Simona; Rizzoni, Giorgio

    2016-01-01

    This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. In addition to the examples, simulation code is provided via a website, so that readers can work on the actua...

  14. Online energy management for hybrid electric vehicles

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Koot, M.W.T.; Bosch, P.P.J. van den; Kok, D.B.

    2008-01-01

    Hybrid electric vehicles (HEVs) are equipped with multiple power sources for improving the efficiency and performance of their power supply system. An energy management (EM) strategy is needed to optimize the internal power flows and satisfy the driver's power demand. To achieve maximum fuel profits

  15. Life-cycle energy analyses of electric vehicle storage batteries

    Science.gov (United States)

    Sullivan, D.; Morse, T.; Patel, P.; Patel, S.; Bondar, J.; Taylor, L.

    1980-12-01

    Nickel-zinc, lead-acid, nickel-iron, zinc-chlorine, sodium-sulfur (glass electrolyte), sodium-sulfur (ceramic electrolyte), lithium-metal sulfide, and aluminum-air batteries were studied in order to evaluate the energy used to produce the raw materials and to manufacture the battery, the energy consumed by the battery during its operational life, and the energy that could be saved from the recycling of battery materials into new raw materials. The value of the life cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. Battery component materials, the energy requirements for battery production, and credits for recycling are described. The operational energy for an electric vehicle and the procedures used to determine it are discussed.

  16. Modular Energy Storage System for Alternative Energy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna Electronics Inc., Auburn Hills, MI (United States); Ervin, Frank [Magna Electronics Inc., Auburn Hills, MI (United States)

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  17. Energy Consumption Forecasting for University Sector Buildings

    Directory of Open Access Journals (Sweden)

    Khuram Pervez Amber

    2017-10-01

    Full Text Available Reliable energy forecasting helps managers to prepare future budgets for their buildings. Therefore, a simple, easier, less time consuming and reliable forecasting model which could be used for different types of buildings is desired. In this paper, we have presented a forecasting model based on five years of real data sets for one dependent variable (the daily electricity consumption and six explanatory variables (ambient temperature, solar radiation, relative humidity, wind speed, weekday index and building type. A single mathematical equation for forecasting daily electricity usage of university buildings has been developed using the Multiple Regression (MR technique. Data of two such buildings, located at the Southwark Campus of London South Bank University in London, have been used for this study. The predicted test results of MR model are examined and judged against real electricity consumption data of both buildings for year 2011. The results demonstrate that out of six explanatory variables, three variables; surrounding temperature, weekday index and building type have significant influence on buildings energy consumption. The results of this model are associated with a Normalized Root Mean Square Error (NRMSE of 12% for the administrative building and 13% for the academic building. Finally, some limitations of this study have also been discussed.

  18. Energy Intensity of the Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Mieczysław Dziubiński

    2017-12-01

    Full Text Available Continuous energy intensity is a dependency between continuous energy intensity and energy intensity of movement. In the paper it is proposed analyze energy intensity of the movement, as the size specifying the power demand to the wheel drive and presented the balance of power of an electric car moving in the urban cycle. The object of the test was the hybrid vehicle with an internal combustion engine and electric motor. The measurements were carried out for 4 speeds and 2 driving profiles.

  19. Power production and energy consumption in Norway

    International Nuclear Information System (INIS)

    2001-03-01

    The main electrical resource of Norway comes from its rivers: 99% of the electric power is produced by hydroelectric power plants. Other sources, like wind and natural gas, are envisaged for the enhancement of Norway's energy production capacity. In this document, the part devoted to power production presents the different electricity production sources and their impact on the Norwegian economy. The energy consumption is detailed in the third part with an historical review of its evolution and a description of the main sectors involved in this consumption. The forth part describes the main actors of the energy sector with their industrial structure, the research institutes and universities performing R and D in this domain, and the energy trades with surrounding countries. The fifth part stresses on the research projects, on the government promoting actions through the Norwegian Research Council, and gives some examples of todays research projects. The sixth part deals with international cooperation in the R and D domain with a particular attention given to the relations between Norway, France and Europe. (J.S.)

  20. Energy consumption and stocks of energy-converting artefacts

    International Nuclear Information System (INIS)

    Bladh, Mats

    2012-01-01

    The development of total energy consumption is important in a world with limited resources. It is the result of two basic tendencies working in opposite directions: growth in number and in use (such as more cars and driving more) and improvements in energy efficiency (such as more fuel-efficient engines). Since the 1970s growth of energy consumption has slowed down in Sweden. This means that increasing supply has been counteracted by measures improving overall energy efficiency to a larger degree than before. How can long-term development in energy consumption be analysed? This paper proposes a focus on stocks of energy-converting artefacts as a tool for such analyses. In order to show the fruitfulness of this approach, historical data on cars, dwellings and lamps in Sweden are used. Results from the cases in this paper show considerable gains of efficiency in fuel consumption in private cars and heating efficiency in multi-dwelling houses. Demographic factors are important for the outcome. The approach seems to promise a way to analyse energy efficiency that captures both promoting and counteracting factors at both the micro and macro level. - Highlights: ► Growth of energy consumption slowed down in the 1970s, a break in the long-run trend. ► Balance between growth and efficiency factors changes over time and areas of use. ► Savings in heating were not taken back, while those for cars were. ► Focus on stocks of artefacts is a promising tool for analyses. ► Incremental changes within existing stocks can be as big as radical changes.

  1. U. K. surface passenger transport sector. Energy consumption and policy options for conservation

    Energy Technology Data Exchange (ETDEWEB)

    Maltby, D; Monteath, I G; Lawler, K A

    1978-12-01

    Forecasts of U.K. energy consumption in this sector for four future scenarios based on different economic growth rates, energy prices, and energy conservation policies, show that by the year 2000, private transport will probably account for 76-94% of total energy consumption in surface passenger transport. A 33% increase in the average miles-per-gallon fuel consumption through technological improvements in private vehicles, conversion of private vehicles to diesel oil, additional fuel taxation equivalent to 25 or 50% fuel price increase, a 10% reduction in average car engine size (encouraged by taxation), and changes in public transport technology offer energy savings of about 20, 5-10, 6.3 or 12.5, 2-4, and 2%, respectively. There is considerable uncertainty about the outcome of these options.

  2. Minimum energy consumption process synthesis for energy saving

    Energy Technology Data Exchange (ETDEWEB)

    Xiao-Ping, Jia [Institute for Petroleum and Chemical Industry, Qingdao University of Science and Technology, Qingdao 266042, Shandong (China); Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Fang, Wang; Shu-Guang, Xiang; Xin-Sun, Tan; Fang-Yu, Han [Institute for Petroleum and Chemical Industry, Qingdao University of Science and Technology, Qingdao 266042, Shandong (China)

    2008-05-15

    The paper presents a synthesis strategy for the chemical processes with energy saving. The concept of minimum energy consumption process (MECP) is proposed. Three characteristics of MECP are introduced, including thermodynamic minimum energy demand, energy consumption efficiency and integration degree. These characteristics are evaluated according to quantitative thermodynamic analysis and qualitative knowledge rules. The procedure of synthesis strategy is proposed to support the generation of MECP alternatives, which combine flowsheet integration and heat integration. The cases studies will focus on how integration degrees of a process affect the energy-saving results. The separation sequences of the hydrodealkylation of toluene (HDA) process and ethanol distillation process as case studies are used to illustrate. (author)

  3. Trade and energy consumption in the Middle East

    International Nuclear Information System (INIS)

    Sadorsky, Perry

    2011-01-01

    Over the past 30 years many economies have experienced large increases in economic trade, income and energy consumption. This brings up an interesting question. How do increases in trade affect energy consumption? This study uses panel cointegration data estimation techniques to examine the impact of trade on energy consumption in a sample of 8 Middle Eastern countries covering the period 1980 to 2007. Short-run dynamics show Granger causality from exports to energy consumption, and a bi-directional feedback relationship between imports and energy consumption. Long run elasticities estimated from FMOLS show that a 1% increase in per capita exports increases per capita energy consumption by 0.11% while a one percent increase in per capita imports increases per capita energy consumption by 0.04%. These results are important in establishing that increased trade affects energy demand in the Middle East in both the short and long-run. This has implications for energy policy and environmental policy. - Research Highlights: → Trade affects energy consumption in Middle Eastern economies. → Short-run causality runs from exports to energy consumption. → There is a short-run feedback relationship between energy consumption and imports. → In the long-run a 1% increase in per capita exports increases per capita energy consumption by 0.11%. → In the long-run a 1% increase in per capita imports increases per capita energy consumption by 0.04%.

  4. Green smartphone GPUs: Optimizing energy consumption using GPUFreq scaling governors

    KAUST Repository

    Ahmad, Enas M.; Shihada, Basem

    2015-01-01

    and alternatives in controlling the power consumption and performance of their GPUs. We implemented and evaluated our model on a smartphone GPU and measured the energy performance using an external power monitor. The results show that the energy consumption

  5. Baseline projections of transportation energy consumption by mode: 1981 update

    Energy Technology Data Exchange (ETDEWEB)

    Millar, M; Bunch, J; Vyas, A; Kaplan, M; Knorr, R; Mendiratta, V; Saricks, C

    1982-04-01

    A comprehensive set of activity and energy-demand projections for each of the major transportation modes and submodes is presented. Projections are developed for a business-as-usual scenario, which provides a benchmark for assessing the effects of potential conservation strategies. This baseline scenario assumes a continuation of present trends, including fuel-efficiency improvements likely to result from current efforts of vehicle manufacturers. Because of anticipated changes in fuel efficiency, fuel price, modal shifts, and a lower-than-historic rate of economic growth, projected growth rates in transportation activity and energy consumption depart from historic patterns. The text discusses the factors responsible for this departure, documents the assumptions and methodologies used to develop the modal projections, and compares the projections with other efforts.

  6. Motivating sustainable energy consumption in the home

    Energy Technology Data Exchange (ETDEWEB)

    He, H.A.; Greenberg, S. [Calgary Univ., AB (Canada). Dept. of Computer Science

    2009-07-01

    This paper discussed social motivations related to household energy conservation. The aim of the study was to explore how technology can be designed and used in the home to encourage sustainable energy use. The basic techniques used to motivate sustainable energy action included behaviour change techniques; information techniques; positive motivational techniques; and coercive motivational techniques. The psychological theories used in the study included cognitive dissonance as a means of reminding people of the inconsistency of their attitudes towards energy and their behaviour, and utility theory as a means of determining personal motivations for energy conservation. The study showed that people are more motivated to act when presented with personalized information and monetary losses as opposed to monetary gain. Social value orientation and self-reflection motivations were also considered. The study showed that pro-social orientation can be used in the form of ambient displays located in public areas of the home. Self-reflection can be encouraged by allowing family members to annotate visualizations containing a history of their energy consumption data. Results of the study will be used to design actual feedback visualizations of energy use. 18 refs.

  7. Energy consumption projection of Nepal: An econometric approach

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Østergaard, Poul A.; Dalgaard, Tommy

    2014-01-01

    In energy dependent economies, energy consumption is often linked with the growth in Gross Domestic Product (GDP). Energy intensity, defined herewith, as the ratio of the total primary energy consumption (TPE) to the GDP, is a useful concept for understanding the relation between energy demand...... and economic development. The scope of this article is to assess the future primary energy consumption of Nepal, and the projection is carried out along with the formulation of simple linear logarithmic energy consumption models. This initiates with a hypothesis that energy consumption is dependent...... with the national macro-economic parameters. To test the hypothesis, nexus between energy consumption and possible determinant variables are examined. Status of energy consumption between the period of 1996 and 2009, and for the same period, growth of economic parameters are assessed. Three scenarios are developed...

  8. Environmental Assessment of the US Department of Energy Electric and Hybrid Vehicle Program

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.K.; Bernard, M.J. III; Walsh, R.F

    1980-11-01

    This environmental assessment (EA) focuses on the long-term (1985-2000) impacts of the US Department of Energy (DOE) electric and hybrid vehicle (EHV) program. This program has been designed to accelerate the development of EHVs and to demonstrate their commercial feasibility as required by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (P.L. 94-413), as amended (P.L. 95-238). The overall goal of the program is the commercialization of: (1) electric vehicles (EVs) acceptable to broad segments of the personal and commercial vehicle markets, (2) hybrid vehicles (HVs) with range capabilities comparable to those of conventional vehicles (CVs), and (3) advanced EHVs completely competitive with CVs with respect to both cost and performance. Five major EHV projects have been established by DOE: market demonstration, vehicle evaluation and improvement, electric vehicle commercialization, hybrid vehicle commercialization, and advanced vehicle development. Conclusions are made as to the effects of EV and HV commercialization on the: consumption and importation of raw materials; petroleum and total energy consumption; ecosystems impact from the time of obtaining raw material through vehicle use and materials recycling; environmental impacts on air and water quality, land use, and noise; health and safety aspects; and socio-economic factors. (LCL)

  9. A perspective of the Malaysian highway energy consumption and future power supply

    International Nuclear Information System (INIS)

    Saqr, Khalid M.; Musa, Md. Nor

    2011-01-01

    In this short communication, we discuss the energy consumption trends in the Malaysian road transport sector, with a special emphasis on the energy losses due to vehicle aerodynamic drag on highways. The recent trends of energy consumption in the Malaysian road transport sector are reviewed. It is evidently shown that the aerodynamic losses represented exceed 1.2 MTOE annually since 2002. A novel concept of vertical-axis wind turbine (VAWT) farms for harvesting aerodynamic energy losses on Malaysian highways is preliminarily proposed. The novel concept aims at providing a sustainable and green energy source for the lighting of the highway network in the country.

  10. Coupling model of energy consumption with changes in environmental utility

    International Nuclear Information System (INIS)

    He Hongming; Jim, C.Y.

    2012-01-01

    This study explores the relationships between metropolis energy consumption and environmental utility changes by a proposed Environmental Utility of Energy Consumption (EUEC) model. Based on the dynamic equilibrium of input–output economics theory, it considers three simulation scenarios: fixed-technology, technological-innovation, and green-building effect. It is applied to analyse Hong Kong in 1980–2007. Continual increase in energy consumption with rapid economic growth degraded environmental utility. First, energy consumption at fixed-technology was determined by economic outcome. In 1990, it reached a critical balanced state when energy consumption was 22×10 9 kWh. Before 1990 (x 1 9 kWh), rise in energy consumption improved both economic development and environmental utility. After 1990 (x 1 >22×10 9 kWh), expansion of energy consumption facilitated socio-economic development but suppressed environmental benefits. Second, technological-innovation strongly influenced energy demand and improved environmental benefits. The balanced state remained in 1999 when energy consumption reached 32.33×10 9 kWh. Technological-innovation dampened energy consumption by 12.99%, exceeding the fixed-technology condition. Finally, green buildings reduced energy consumption by an average of 17.5% in 1990–2007. They contributed significantly to energy saving, and buffered temperature fluctuations between external and internal environment. The case investigations verified the efficiency of the EUEC model, which can effectively evaluate the interplay of energy consumption and environmental quality. - Highlights: ► We explore relationships between metropolis energy consumption and environmental utility. ► An Environmental Utility of Energy Consumption (EUEC) model is proposed. ► Technological innovation mitigates energy consumption impacts on environmental quality. ► Technological innovation decreases demand of energy consumption more than fixed technology scenario

  11. Energy access: Revelations from energy consumption patterns in rural India

    International Nuclear Information System (INIS)

    Srivastava, Leena; Goswami, Anandajit; Diljun, Gaurang Meher; Chaudhury, Saswata

    2012-01-01

    After decades of research on the subject of energy poverty and access and its impact on human development, the issue has finally gained global attention and commitment through the UN Secretary General's initiative on Sustainable Energy for All. However, the issue of what constitutes energy access and how such access can be supported by efficient subsidies remains a key question that does not have simple answers. At what point along the energy consumption and income spectrum does the energy access problem cease to be one of public policy, thereby letting the market take over? Using data from an extensive survey carried out by the Government of India, this paper highlights the complexities and inadequacies of using a normative consumption based approach to determine the scope and scale of interventions required. Factoring in the environmental and social pillars of sustainable development when defining access to modern energy forms would also significantly inform the level of effort involved in meeting the goal of energy access to all. - Highlights: ► Simple head count measures are inadequate to estimate the energy access challenge. ► The income and energy poor populations in a country need not completely overlap. ► Modern energy service delivery mechanisms, ensuring quality, essential for outcomes. ► Need to create enabling environment that empowers making of desired energy choices.

  12. An energy management for series hybrid electric vehicle using improved dynamic programming

    Science.gov (United States)

    Peng, Hao; Yang, Yaoquan; Liu, Chunyu

    2018-02-01

    With the increasing numbers of hybrid electric vehicle (HEV), management for two energy sources, engine and battery, is more and more important to achieve the minimum fuel consumption. This paper introduces several working modes of series hybrid electric vehicle (SHEV) firstly and then describes the mathematical model of main relative components in SHEV. On the foundation of this model, dynamic programming is applied to distribute energy of engine and battery on the platform of matlab and acquires less fuel consumption compared with traditional control strategy. Besides, control rule recovering energy in brake profiles is added into dynamic programming, so shorter computing time is realized by improved dynamic programming and optimization on algorithm.

  13. Energy consumption maps for quaternary distillation sequences

    DEFF Research Database (Denmark)

    Gomez-Castro, F.I.; Ramírez-Vallejo, N.E.; Segovia-Hernandez, J.G.

    2016-01-01

    Thermally coupled distillation columns represent a very interesting option for the intensification of distillation systems in order to reduce the energy consumption, and, as a consequence, the environmental impact of the separation process. Several thermally coupled distillation schemes can......, for a given mixture, depends on the nature of the mixture, usually quantified for ternary mixtures through the ease of separation index (ESI), and also on the feed composition. As can be noticed, the size of the design and optimization problem increases when these variables are considered in the generation...

  14. Energy consumption and Growth of renewable energies in China

    International Nuclear Information System (INIS)

    Meunie, A.

    2007-01-01

    The Chinese government's ability to shift the energy structure towards renewable energies is now a world stake. The high weight of coal takes the economy into unsustainable growth, both at local level (SO 2 emissions) and at a global level (CO 2 emissions). But the extensive goods accumulation strategy at a pace in the region of 10% per year, prevents renewable energy sources from gaining a growing share of total consumption. On the contrary, the exponential increase in needs makes an ever-growing use of coal quite inescapable. This articles discusses the driving forces behind the energy sector and explores the high potential or renewable resources in China. (author)

  15. An Efficient Two-Objective Hybrid Local Search Algorithm for Solving the Fuel Consumption Vehicle Routing Problem

    OpenAIRE

    Rao, Weizhen; Liu, Feng; Wang, Shengbin

    2016-01-01

    The classical model of vehicle routing problem (VRP) generally minimizes either the total vehicle travelling distance or the total number of dispatched vehicles. Due to the increased importance of environmental sustainability, one variant of VRPs that minimizes the total vehicle fuel consumption has gained much attention. The resulting fuel consumption VRP (FCVRP) becomes increasingly important yet difficult. We present a mixed integer programming model for the FCVRP, and fuel consumption is ...

  16. Aggregate Energy Consumption and Sectoral Output in Nigeria ...

    African Journals Online (AJOL)

    First Lady

    2012-10-27

    Oct 27, 2012 ... 2005); or from economic growth to aggregate energy consumption (Binh,. 2011; Yoo and Kim, ... in order identify sectors of the economy that are energy dependent and also to avoid energy ..... in Indonesia. Energy Policy ...

  17. Welfare implication of reforming energy consumption subsidies

    International Nuclear Information System (INIS)

    Breton, Michèle; Mirzapour, Hossein

    2016-01-01

    Reforming energy consumption subsidies, in particular for fossil fuels, has been frequently referred to as a quick-win policy to enhance environmental mitigation. In addition, the removal of such subsidies may release a sizeable portion of a country's national budget for use on more productive targets. One of the most recognized challenges of such reform is “selling” the new energy prices to citizens, particularly those with a more fragile purchasing power. Several empirical and technical studies have prescribed that the reform might be supported by a direct compensation mechanism in order to ensure feasibility. This is what was done during the recent energy subsidy reform in Iran. However, the compensation mechanism implemented in Iran's reform was successful at the beginning, but did not proceed as expected. This has raised questions about the feasibility and sustainability of the direct compensation mechanism, and even of the reform policy itself. In this paper, we consider a stylized model where direct compensation is the instrument proposed to restore consumers’ utility against increased energy prices. We find that, when prices of Other Goods are affected by the announced reform policy, the feasibility of a subsidy reform critically depends on the value of certain parameters: the initial subsidization rate, the share of energy in the consumers’ bundle, and the energy portion of price of Other Goods. - Highlights: • A model of energy subsidy reform with direct compensation is proposed. • Feasibility of the reform is related to three key parameters. • An illustrative example using data from the recent Iranian reform is discussed.

  18. Understanding change and continuity in residential energy consumption

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten

    2011-01-01

    of material consumer goods in practice theory. Case studies on household energy consumption are used as an empirical basis for these discussions. Looking at household energy consumption through the theoretical lens of practice theory necessitates discussion on whether energy consumption should be viewed......Practice theory has recently emerged within consumer studies as a promising approach that shifts focus from the individual consumer towards the collective aspects of consumption and from spectacular and conspicuous dimensions of consumption towards routine and mundane aspects of consumption...

  19. Influences Energy Consumption has on Green GDP Growth in China

    Science.gov (United States)

    Hongxian, Xie

    2018-02-01

    This paper examines the relationship between China’s total energy consumption growth and GGDP growth based on the data of 1997-2016. With path analysis employed, the direct and indirect influence on GGDP growth rate exerted by several energy consumption ratios as well as the relationship among them is explored. Furtherly, the author determines how much each of these ratios contributes to GGDP. This research suggests that proportion of natural gas consumption and that of other energy consumption are the two major drivers of GGDP growth, while coal and oil consumption proportion inhibits GGDP Growth. Specifically, increasing the proportion of natural gas consumption contributes the most to GGDP growth.

  20. Divisia amount and price index for energy consumption

    International Nuclear Information System (INIS)

    Bentzen, J.

    1993-01-01

    In connection with the calculation of total energy consumption related to aggregation of the individual fuel's combustion values, an alternative to Btu aggregation (combustion value measurement), designated the ''Divisia index'', is presented. This represents an economic measure for energy consumption. The Divisia index is demonstrated in relation to total national energy consumption and total energy consumption within the Danish housing sector and also with regard to the estimation of price and income elasticity within energy demand. It is only possible to utilize the Divisia index in relation to the last 20 years, which is the period where energy consumption has stagnated. The question of possible irreversible effects on energy consumption caused by large variations in energy prices is discussed. It is suggested that the reaction to a fall in prices is different and less significant than is the case with price rises. In the long term, results point at a reasonably high price elasticity within energy demand. (AB) (22 refs.)

  1. Electric vehicles, primary energy sources and CO2 emissions: Romanian case study

    International Nuclear Information System (INIS)

    Varga, Bogdan Ovidiu

    2013-01-01

    Starting on the 24th of April, 2011, the Romanian government offered to subsidize all potential buyers of electric vehicles, both private and corporate, offering 25% off of the retail price up to 5000 euros with no pollution tax. The Romanian government encourages all governmental institutions to consider buying electric vehicles when deciding to change their existing vehicles stock. This decision is strictly related to the Romanian government's approval of a long-term Energy Strategy, building on the National Energy Strategy for the Medium Term. The government's strategy emphasizes increasing energy efficiency and boosting renewable energy use. The first electric vehicles distributed in the Romanian market are the Citroen-C-Zero, the Mitsubishi i-MiEV, the Renault Kangoo Z.E. and the Renault Fluence Z.E. The energy consumption of these vehicles was analyzed, considering the CO 2 generation characteristics of a Romanian electric power plant. -- Highlights: ► Tax and governmental support for electrical vehicles in Romania. ► Evaluate the CO 2 pollution of the electrical vehicles in Romania's case. ► Comprehensive understanding of the influence of primary energy source over the pollution of an electrical vehicle. ► Approach to decrees the pollution of the electrical vehicles.

  2. Nuclear energy consumption and economic growth in nine developed countries

    International Nuclear Information System (INIS)

    Wolde-Rufael, Yemane; Menyah, Kojo

    2010-01-01

    This article attempts to test the causal relationship between nuclear energy consumption and real GDP for nine developed countries for the period 1971-2005 by including capital and labour as additional variables. Using a modified version of the Granger causality test developed by Toda and Yamamoto (1995), we found a unidirectional causality running from nuclear energy consumption to economic growth in Japan, Netherlands and Switzerland; the opposite uni-directional causality running from economic growth to nuclear energy consumption in Canada and Sweden; and a bi-directional causality running between economic growth and nuclear energy consumption in France, Spain, the United Kingdom and the United States. In Spain, the United Kingdom and the USA, increases in nuclear energy consumption caused increases in economic growth implying that conservation measures taken that reduce nuclear energy consumption may negatively affect economic growth. In France, Japan, Netherlands and Switzerland increases in nuclear energy consumption caused decreases in economic growth, suggesting that energy conservation measure taken that reduce nuclear energy consumption may help to mitigate the adverse effects of nuclear energy consumption on economic growth. In Canada and Sweden energy conservation measures affecting nuclear energy consumption may not harm economic growth.

  3. Energy drink consumption and marketing in South Africa.

    Science.gov (United States)

    Stacey, Nicholas; van Walbeek, Corné; Maboshe, Mashekwa; Tugendhaft, Aviva; Hofman, Karen

    2017-12-01

    Energy drinks are a fast-growing class of beverage containing high levels of caffeine and sugar. Advertising and marketing have been key to their growth in South Africa. This paper documents trends in energy drink consumption and energy drink advertising, and examines the relationship between exposure to energy drink advertising and consumption. Logistic regressions were estimated of categories of energy drink consumption on individual characteristics, as well as exposure to energy drink advertising. Exposure to advertising is measured by reported viewing of channels high in energy drink advertising. Energy drink consumption in South Africa is higher among younger, wealthier males. Spending on energy drink advertising is mostly focused on television. Targeted channels include youth, sports and general interest channels. Viewers of channels targeted by energy drink advertisers have higher odds of any and moderate levels of energy drinks consumption. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Improving the performance of a hybrid electric vehicle by utilization regenerative braking energy of vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Mohamed [Automotive and Tractors Department, Faculty of Engineering, Minia University (Egypt)

    2011-07-01

    Environmentally friendly vehicles with range and performance capabilities surpassing those of conventional ones require a careful balance among competing goals for fuel efficiency, performance and emissions. It can be recuperated the energy of deceleration case of the vehicle to reuse it to recharge the storage energy of hybrid electric vehicle and increase the state of charge of batteries under the new conditions of vehicle operating in braking phase. Hybrid electric vehicle has energy storage which allows decreasing required peak value of power from prime mover, which is the internal combustion engine. The paper investigates the relationships between the driving cycle phases and the recuperation energy to the batteries system of hybrid electric vehicle. This work describes also a methodology for integrating this type of hybrid electric vehicle in a simulation program. A design optimization framework is then used to find the best position that we can utilize the recuperation energy to recharge the storage batteries of hybrid electric vehicle.

  5. Modeling and forecasting energy consumption in China: Implications for Chinese energy demand and imports in 2020

    International Nuclear Information System (INIS)

    Adams, F. Gerard; Shachmurove, Yochanan

    2008-01-01

    The Chinese economy is in a stage of energy transition: from low efficiency solid fuels to oil, gas, and electric power, from agriculture to urbanization and industrialization, from heavy industry to lighter and high tech industry, from low motorization to rapid growth of the motor vehicle population. Experts fear that continued rapid economic growth in China will translate into a massive need to expand imports of oil, coal, and gas. We build an econometric model of the Chinese energy economy based on the energy balance. We use that model to forecast Chinese energy consumption and imports to 2020. The study suggests that China will, indeed, require rapidly growing imports of oil, coal, and gas. This growth is not so sensitive to the rate of economic growth as to increases in motorization. It can be offset, but probably only in small part, by increasing domestic energy production or by improvements in the efficiency of use, particularly in the production of electric power. (author)

  6. The Comfortable Home and Energy Consumption

    DEFF Research Database (Denmark)

    Madsen, Line Valdorff

    2017-01-01

    This paper investigates relations between notions of comfort and notions of home, aiming at a better understanding of residential comfort and the related energy consumption. Residential comfort is examined through a practice-theoretical lens and as something that appears in between the social...... and material structures of a home. The approach considers different elements of comfort in homemaking practices, such as the body, materials and social meanings. The paper examines how conceptions of comfort and homeliness interrelate through homemaking practices and thereby redefine comfort within a framework...... of the home and social practices. This implies focus on “the comfortable home” as made up of homemaking practices that include knowhow, sensations and social norms. The empirical basis comprises interviews and visual data from a field study on detached housing on the outskirts of a Danish city. The paper...

  7. Economic growth and energy consumption in Algeria: a causality analysis

    International Nuclear Information System (INIS)

    Cherfi, S.

    2011-01-01

    The purpose of this study is to review the causal link in the Granger sense, between energy consumption and economic growth in Algeria, to determine its implications for economic policy. The analysis was done based on Granger static and causality tests using statistical data on per capita primary energy consumption and gross domestic product per inhabitant in Algeria, over the 1965-2008 period. The results of the survey show that there is, in Algeria, a strong link between energy consumption per inhabitant and GDP per inhabitant. The results also suggest the lack of a long term impetus (no co-integration) between energy consumption and economic growth. In addition, there is a one-way causal link between GDP and energy consumption, i.e. the prior GDP data provides a better forecast of energy consumption level, but not the contrary. In other words, GDP explains consumption, not the contrary. (author)

  8. Energy consumption and economic growth: A causality analysis for Greece

    International Nuclear Information System (INIS)

    Tsani, Stela Z.

    2010-01-01

    This paper investigates the causal relationship between aggregated and disaggregated levels of energy consumption and economic growth for Greece for the period 1960-2006 through the application of a later development in the methodology of time series proposed by Toda and Yamamoto (1995). At aggregated levels of energy consumption empirical findings suggest the presence of a uni-directional causal relationship running from total energy consumption to real GDP. At disaggregated levels empirical evidence suggests that there is a bi-directional causal relationship between industrial and residential energy consumption to real GDP but this is not the case for the transport energy consumption with causal relationship being identified in neither direction. The importance of these findings lies on their policy implications and their adoption on structural policies affecting energy consumption in Greece suggesting that in order to address energy import dependence and environmental concerns without hindering economic growth emphasis should be put on the demand side and energy efficiency improvements.

  9. 10 CFR 431.134 - Uniform test methods for the measurement of energy consumption and water consumption of automatic...

    Science.gov (United States)

    2010-01-01

    ... consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy... of energy consumption and water consumption of automatic commercial ice makers. (a) Scope. This... consumption, but instead calculate the energy use rate (kWh/100 lbs Ice) by dividing the energy consumed...

  10. Impact of the Air-Conditioning System on the Power Consumption of an Electric Vehicle Powered by Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Brahim Mebarki

    2013-01-01

    Full Text Available The car occupies the daily universe of our society; however, noise pollution, global warming gas emissions, and increased fuel consumption are constantly increasing. The electric vehicle is one of the recommended solutions by the raison of its zero emission. Heating and air-conditioning (HVAC system is a part of the power system of the vehicle when the purpose is to provide complete thermal comfort for its occupants, however it requires far more energy than any other car accessory. Electric vehicles have a low-energy storage capacity, and HVAC may consume a substantial amount of the total energy stored, considerably reducing the vehicle range, which is one of the most important parameters for EV acceptability. The basic goal of this paper is to simulate the air-conditioning system impact on the power energy source of an electric vehicle powered by a lithium-ion battery.

  11. Can UK passenger vehicles be designed to meet 2020 emissions targets? A novel methodology to forecast fuel consumption with uncertainty analysis

    International Nuclear Information System (INIS)

    Martin, Niall P.D.; Bishop, Justin D.K.; Choudhary, Ruchi; Boies, Adam M.

    2015-01-01

    Highlights: • This paper introduces a Bayesian methodology to quantify new car fuel consumption. • Model presents user with more realistic, on-road, fuel consumption estimates. • Sources of NEDC uncertainty attributed to imprecise assumptions for resistances. • Fuel consumption of average UK car projected to exceed 2020 emissions standards. - Abstract: Vehicle manufacturers are required to reduce their European sales-weighted emissions to 95 g CO_2/km by 2020, with the aim of reducing on-road fleet fuel consumption. Nevertheless, current fuel consumption models are not suited for the European market and are unable to account for uncertainties when used to forecast passenger vehicle energy-use. Therefore, a new methodology is detailed herein to quantify new car fleet fuel consumption based on vehicle design metrics. The New European Driving Cycle (NEDC) is shown to underestimate on-road fuel consumption in Spark (SI) and Compression Ignition (CI) vehicles by an average of 16% and 13%, respectively. A Bayesian fuel consumption model attributes these discrepancies to differences in rolling, frictional and aerodynamic resistances. Using projected inputs for engine size, vehicle mass, and compression ratio, the likely average 2020 on-road fuel consumption was estimated to be 7.6 L/100 km for SI and 6.4 L/100 km for CI vehicles. These compared to NEDC based estimates of 5.34 L/100 km (SI) and 4.28 L/100 km (CI), both of which exceeded mandatory 2020 fuel equivalent emissions standards by 30.2% and 18.9%, respectively. The results highlight the need for more stringent technological developments for manufacturers to ensure adherence to targets, and the requirements for more accurate measurement techniques that account for discrepancies between standardised and on-road fuel consumption.

  12. Urban household energy consumption in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Pongsapich, Amara; Wongsekiarttirat, Wathana (Chulalongkorn Univ., Bangkok (Thailand). Social Research Inst.)

    1994-05-01

    This study was aimed at developing a better understanding of urban household energy consumption in Thailand through a series of in-depth household energy surveys. Households in urban areas used electricity, LPG, charcoal and fuelwood. Traditional biomass fuels such as husk and dung, as well as kerosene, were essentially not used in urban households. Nearly all households used electricity and most households used LPG. Some households used more than one fuel for cooking, particularly LPG and charcoal. There was a great difference in electricity used between the households in Bangkok and other urban areas. Most households in the study areas used LPG stove or burners for cooking. But charcoal stoves were also used by many households for specific culinary purposes. Electric rice-cookers are widely used for convenience. The study suggests that the number of households using charcoal stoves will decrease gradually and fuelwood use will disappear. Saturation rates for refrigerators and colour television sets were very high and air conditioners were common in Bangkok. Some users may be unaware of the benefits of LPG as a cooking fuel. To improve indoor air quality and cooking safety and reduce pressures on forests from commercial fuelwood use, measures to promote LPG should be undertaken. The government should also provide information about efficient appliances and electricity conservation. (Author)

  13. Microscopic Driving Parameters-Based Energy-Saving Effect Analysis under Different Electric Vehicle Penetration

    Directory of Open Access Journals (Sweden)

    Enjian Yao

    2013-01-01

    Full Text Available Due to the rapid motorization over the recent years, China's transportation sector has been facing an increasing environmental pressure. Compared with gasoline vehicle (GV, electric vehicle (EV is expected to play an important role in the mitigation of CO2 and other pollution emissions, and urban air quality improvement, for its zero emission during use and higher energy efficiency. This paper aims to estimate the energy saving efficiency of EV, especially under different EV penetration and road traffic conditions. First, based on the emission and electricity consumption data collected by a light-duty EV and a light duty GV, a set of electricity consumption rate models and gasoline consumption rate models are established. Then, according to the conversion formula of coal equivalent, these models are transformed into coal equivalent consumption models, which make gasoline consumption and electricity consumption comparable. Finally, the relationship between the EV penetration and the reduction of energy consumption is explored based on the simulation undertaken on the North Second Ring Road in Beijing. The results show that the coal equivalent consumption will decrease by about 5% with the increases of EV penetration by 10% and the maximum energy-saving effect can be achieved when the traffic volume is about 4000 pcu/h.

  14. Energy consumption patterns. A theoretical analysis; Energieverbrauchsverhalten. Eine theoretische Analyse

    Energy Technology Data Exchange (ETDEWEB)

    Flandrich, D.

    2006-07-01

    The author questions the methodological and methodical foundations of energy consumption research and attempts a theory of energy consumption patterns on the basis of psychology, opening up a quite new perspective that has been neglected so far. Energy policy and energy marketing are two fields of applications which are getting more important in these times of increasing prices of energy resources, high public awareness of environmental issues, and deregulated energy markets. (orig.)

  15. Efficiency in energy production and consumption

    Science.gov (United States)

    Kellogg, Ryan Mayer

    This dissertation deals with economic efficiency in the energy industry and consists of three parts. The first examines how joint experience between pairs of firms working together in oil and gas drilling improves productivity. Part two asks whether oil producers time their drilling optimally by taking real options effects into consideration. Finally, I investigate the efficiency with which energy is consumed, asking whether extending Daylight Saving Time (DST) reduces electricity use. The chapter "Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch" examines how oil production companies and the drilling rigs they hire improve drilling productivity by learning through joint experience. I find that the joint productivity of a lead firm and its drilling contractor is enhanced significantly as they accumulate experience working together. Moreover, this result is robust to other relationship specificities and standard firm-specific learning-by-doing effects. The second chapter, "Drill Now or Drill Later: The Effect of Expected Volatility on Investment," investigates the extent to which firms' drilling behavior accords with a key prescription of real options theory: irreversible investments such as drilling should be deferred when the expected volatility of the investments' payoffs increases. I combine detailed data on oil drilling with expectations of future oil price volatility that I derive from the NYMEX futures options market. Conditioning on expected price levels, I find that oil production companies significantly reduce the number of wells they drill when expected price volatility is high. I conclude with "Daylight Time and Energy: Evidence from an Australian Experiment," co-authored with Hendrik Wolff. This chapter assesses DST's impact on electricity demand using a quasi-experiment in which parts of Australia extended DST in 2000 to facilitate the Sydney Olympics. We show that the extension did not reduce overall

  16. uFLIP: Understanding the Energy Consumption of Flash Devices

    DEFF Research Database (Denmark)

    Bjørling, Matias; Bonnet, Philippe; Bouganim, Luc

    2010-01-01

    Understanding the energy consumption of flash devices is important for two reasons. First, energy is emerging as a key metric for data management systems. It is thus important to understand how we can reason about the energy consumption of flash devices beyond their approximate aggregate...... consumption (low power consumption in idle mode, average Watt consumption from the data sheets). Second, when measured at a sufficiently fine granularity, the energy consumption of a given device might complement the performance characteristics derived from its response time profile. Indeed, background work...... which is not directly observable with a response time profile appears clearly when energy is used as a metric. In this paper, we discuss the results from the {uFLIP} benchmark applied to four different {SSD} devices using both response time and energy as metric....

  17. Impacts of wireless charging lanes on travel time and energy consumption in a two-lane road system

    Science.gov (United States)

    He, Jia; Yang, Hai; Huang, Hai-Jun; Tang, Tie-Qiao

    2018-06-01

    In this paper, we propose a method to compare different energy consumption models and design a strategy to study the quantitative effects of wireless charging lane (WCL) on each electric vehicle's (EV's) link travel time. We utilize the modified energy consumption model and strategy to explore electric vehicle's electricity consumption and link travel time in a two-lane system with a WCL. The numerical results show that EVs' charging behavior on WCL will cause the drivers to execute the lane-changing maneuvers frequently and that the WCL has prominent impacts on EV's energy consumption and travel time, i.e., the capacity drops by 8%-17% while the EV's energy consumption increases by 3%-14% in the two-lane road system.

  18. A Study on Vehicle Emission Factor Correction Based on Fuel Consumption Measurement

    Science.gov (United States)

    Wang, Xiaoning; Li, Meng; Peng, Bo

    2018-01-01

    The objective of this study is to address the problem of obvious differences between the calculated and measured emissions of pollutants from motor vehicle by using the existing "Environmental Impact Assessment Specification of Highway Construction Projects". First, a field study collects the vehicle composition ratio, speed, slope, fuel consumption and other essential data. Considering practical applications, the emission factors corresponding to 40km/h and 110km/h and 120km/h velocity are introduced by data fitting. Then, the emission factors of motor vehicle are revised based on the measured fuel consumption, and the pollutant emission modified formula was calculated and compared with the standard recommendation formula. The results show the error between calculated and measured values are within 5%, which can better reflect the actual discharge of the motor vehicle.

  19. Changes in cotton gin energy consumption apportioned by ten functions

    Science.gov (United States)

    The public is concerned about air quality and sustainability. Cotton producers, gin owners and plant managers are concerned about rising energy prices. Both have an interest in cotton gin energy consumption trends. Changes in cotton gins’ energy consumption over the past fifty years, a period of ...

  20. Energy: The consumption will increase in 50% until year 2010

    International Nuclear Information System (INIS)

    1993-01-01

    The energetic consumption will increase about 30% until year 2010. The article presents forecasting of International Energy Agency. Analyzing costs, consumption and demand, the IEA studies the different energy. Sources and their development: Natural gas (big increasing), Natural energy (decreasing), Carbon (stability). Finally recommendations of IEA are presented

  1. Real-Time Vehicle Energy Management System Based on Optimized Distribution of Electrical Load Power

    Directory of Open Access Journals (Sweden)

    Yuefei Wang

    2016-10-01

    Full Text Available As a result of severe environmental pressure and stringent government regulations, refined energy management for vehicles has become inevitable. To improve vehicle fuel economy, this paper presents a bus-based energy management system for the electrical system of internal combustion engine vehicles. Both the model of an intelligent alternator and the model of a lead-acid battery are discussed. According to these models, the energy management for a vehicular electrical system is formulated as a global optimal control problem which aims to minimize fuel consumption. Pontryagin’s minimum principle is applied to solve the optimal control problem to realize a real-time control strategy for electrical energy management in vehicles. The control strategy can change the output of the intelligent alternator and the battery with the changes of electrical load and driving conditions in real-time. Experimental results demonstrate that, compared to the traditional open-loop control strategy, the proposed control strategy for vehicle energy management can effectively reduce fuel consumption and the fuel consumption per 100 km is decreased by approximately 1.7%.

  2. Disaggregate energy consumption and industrial production in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ziramba, Emmanuel [Department of Economics, University of South Africa, P.O Box 392, UNISA 0003 (South Africa)

    2009-06-15

    This paper tries to assess the relationship between disaggregate energy consumption and industrial output in South Africa by undertaking a cointegration analysis using annual data from 1980 to 2005. We also investigate the causal relationships between the various disaggregate forms of energy consumption and industrial production. Our results imply that industrial production and employment are long-run forcing variables for electricity consumption. Applying the [Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics 66, 225-250] technique to Granger-causality, we find bi-directional causality between oil consumption and industrial production. For the other forms of energy consumption, there is evidence in support of the energy neutrality hypothesis. There is also evidence of causality between employment and electricity consumption as well as coal consumption causing employment. (author)

  3. Disaggregate energy consumption and industrial production in South Africa

    International Nuclear Information System (INIS)

    Ziramba, Emmanuel

    2009-01-01

    This paper tries to assess the relationship between disaggregate energy consumption and industrial output in South Africa by undertaking a cointegration analysis using annual data from 1980 to 2005. We also investigate the causal relationships between the various disaggregate forms of energy consumption and industrial production. Our results imply that industrial production and employment are long-run forcing variables for electricity consumption. Applying the [Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics 66, 225-250] technique to Granger-causality, we find bi-directional causality between oil consumption and industrial production. For the other forms of energy consumption, there is evidence in support of the energy neutrality hypothesis. There is also evidence of causality between employment and electricity consumption as well as coal consumption causing employment.

  4. Quantification model for energy consumption in edification

    Directory of Open Access Journals (Sweden)

    Mercader, Mª P.

    2012-12-01

    Full Text Available The research conducted in this paper focuses on the generation of a model for the quantification of energy consumption in building. This is to be done through one of the most relevant environmental impact indicators associated with weight per m2 of construction, as well as the energy consumption resulting from the manufacturing process of materials used in building construction. The practical application of the proposed model on different buildings typologies in Seville, will provide information regarding the building materials, the subsystems and the most relevant construction elements. Hence, we will be able to observe the impact the built surface has on the environment. The results obtained aim to reference the scientific community, providing quantitative data comparable to other types of buildings and geographical areas. Furthermore, it may also allow the analysis and the characterization of feasible solutions to reduce the environmental impact generated by the different materials, subsystems and construction elements commonly used in the different building types defined in this study.

    La investigación realizada en el presente trabajo plantea la generación de un modelo de cuantificación del consumo energético en edificación, a través de uno de los indicadores de impacto ambiental más relevantes asociados al peso por m2 de construcción, el consumo energético derivado del proceso de fabricación de los materiales de construcción empleados en edificación. La aplicación práctica del modelo propuesto sobre diferentes tipologías edificatorias en Sevilla aportará información respecto a los materiales de construcción, subsistemas y elementos constructivos más impactantes, permitiendo visualizar la influencia que presenta la superficie construida en cuanto al impacto ambiental generado. Los resultados obtenidos pretenden servir de referencia a la comunidad científica, aportando datos num

  5. Development of German energy consumption: A deterministic study of energy-relevant customer groups

    International Nuclear Information System (INIS)

    Baumert, M.

    1994-01-01

    A detailed study of the characteristic features of group-specific energy consumption was conducted (identification of the factors determining energy consumption of the productive sector, private households and private mobility demand). The question of who shall determine energy consumption in the future is analysed. This question is answered in a demand-specific study of consumption patterns and -effects. (orig./UA) [de

  6. Energy consumption in commercial buildings: A comparison with BEPS budgets

    Science.gov (United States)

    1980-09-01

    Metered energy consumption data were collected on existing commercial buildings to help establish the proposed building energy performance standards (BEPS). The search has identified 84 buildings whose metered energy consumption is equal to or less than that proposed for their BEPS budgets and another 7 buildings whose metered consumption is less than 20 percent above their BEPS budgets. The methodology used to identify the buildings and to collect their metered energy consumption data are described. The data are analyzed and summarized and conclusions are drawn.

  7. Diffusion of new automotive technologies for improving energy efficiency in Brazil's light vehicle fleet

    International Nuclear Information System (INIS)

    Bastin, Cristina; Szklo, Alexandre; Rosa, Luiz Pinguelli

    2010-01-01

    Historically, Brazil has promoted the development and sales of light duty vehicles running on ethanol (firstly, ethanol-dedicated cars, and recently flexfuel cars). In the 1990s, the country also favored the sales of compact cars to middle and low-income classes. However, in the last years, the profile of vehicles sold in Brazil has converged towards larger and less-efficient vehicles. In 2008, Brazil launched the vehicle labeling program. Based on the outcomes of the historical programs oriented towards the development of automotive innovations, and on a survey conducted with the country's main auto makers, this article evaluates whether the vehicle labeling program will both improve the energy efficiency of light vehicles, and introduce new technologies. Our results indicate that, despite its virtuous intentions, the program will not control the tendency of rising fuel consumption of passenger cars sold in Brazil. Therefore, other policies are needed to boost innovations in Brazil's automotive industry. (author)

  8. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Determination of the design energy consumption and design... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The Design Energy Consumption shall be calculated by modeling the Proposed Design using the same methods...

  9. Habit formation and consumption of energy for heating

    DEFF Research Database (Denmark)

    Leth-Petersen, Søren

    2007-01-01

    In this paper we ask if consumption of energy for space heating by households is habit forming. A model of intertemporal consumption allocation allowing for habit-forming preferences is estimated on a register-based panel data set with high quality information about consumption of natural gas...... for a sample of Danish households. Results indicate that preferences are weakly habit forming...

  10. Widening the scope? How intermediary actors can shape energy consumption

    DEFF Research Database (Denmark)

    Maneschi, Davide

    2013-01-01

    This paper deals with energy consumption in the residential sector and with the implementation of measures to reduce it. While most research dealing with energy consumption has targeted factors and drivers at the individual user level, more recent works have highlighted collective aspects...... of (energy) consumption, both to explain the resilience of consumption patterns and to identify leverage points for the reduction of energy use. One understudied aspect of this discussion is the way “intermediary” actors – those actors who are neither policy makers, nor users, nor energy providers...... – influence energy consumption. This paper presents a review of the literature on intermediaries, providing an overview of their roles and contextualizing their functions in energy efficiency improvements. The review shows how the concept of intermediaries has been used in research dealing with innovation...

  11. Analysis of a Residential Building Energy Consumption Demand Model

    Directory of Open Access Journals (Sweden)

    Meng Liu

    2011-03-01

    Full Text Available In order to estimate the energy consumption demand of residential buildings, this paper first discusses the status and shortcomings of current domestic energy consumption models. Then it proposes and develops a residential building energy consumption demand model based on a back propagation (BP neural network model. After that, taking residential buildings in Chongqing (P.R. China as an example, 16 energy consumption indicators are introduced as characteristics of the residential buildings in Chongqing. The index system of the BP neutral network prediction model is established and the multi-factorial BP neural network prediction model of Chongqing residential building energy consumption is developed using the Cshap language, based on the SQL server 2005 platform. The results obtained by applying the model in Chongqing are in good agreement with actual ones. In addition, the model provides corresponding approximate data by taking into account the potential energy structure adjustments and relevant energy policy regulations.

  12. Autonomous Vehicles Have a Wide Range of Possible Energy Impacts (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A.; Repac, B.; Gonder, J.

    2013-07-01

    This poster presents initial estimates of the net energy impacts of automated vehicles (AVs). Automated vehicle technologies are increasingly recognized as having potential to decrease carbon dioxide emissions and petroleum consumption through mechanisms such as improved efficiency, better routing, lower traffic congestion, and by enabling advanced technologies. However, some effects of AVs could conceivably increase fuel consumption through possible effects such as longer distances traveled, increased use of transportation by underserved groups, and increased travel speeds. The net effect on petroleum use and climate change is still uncertain. To make an aggregate system estimate, we first collect best estimates for the energy impacts of approximately ten effects of AVs. We then use a modified Kaya Identity approach to estimate the range of aggregate effects and avoid double counting. We find that depending on numerous factors, there is a wide range of potential energy impacts. Adoption of automated personal or shared vehicles can lead to significant fuel savings but has potential for backfire.

  13. Intelligent Cooperative MAC Protocol for Balancing Energy Consumption

    Science.gov (United States)

    Wu, S.; Liu, K.; Huang, B.; Liu, F.

    To extend the lifetime of wireless sensor networks, we proposed an intelligent balanced energy consumption cooperative MAC protocol (IBEC-CMAC) based on the multi-node cooperative transmission model. The protocol has priority to access high-quality channels for reducing energy consumption of each transmission. It can also balance the energy consumption among cooperative nodes by using high residual energy nodes instead of excessively consuming some node's energy. Simulation results show that IBEC-CMAC can obtain longer network lifetime and higher energy utilization than direct transmission.

  14. Energy in Ghana: The dominance of transport in petroleum consumption

    International Nuclear Information System (INIS)

    Abeasi, K.

    1991-01-01

    The sustained provision of energy has long been recognized as one of the essential prerequisites for a country's socio-economic development. Until recently, a country's aggregate energy consumption was equated with its relative economic and developmental well-being, represented by the close correlation between gross domestic product (GDP) and per capita consumption of commercial energy. Although events of recent years, principally the swinging increases in petroleum prices and measures taken to improve the efficiency of energy use, have loosened the parallel equation of GDP with energy consumption, yet the position of energy as the bedrock of a country's development remains unshaken. 4 refs, 1 fig., 4 tabs

  15. Elevators and energy consumption; Ascenseurs et consommation d`energie

    Energy Technology Data Exchange (ETDEWEB)

    Caron, J.M.

    1997-03-01

    The mechanical design of elevators in buildings was reviewed and energy consumption of the different designs was evaluated. Although elevators seldom represent more than 2 or 3 per cent of a building`s energy budget, they can consume up to 150 kWh per day. Hydraulic elevators are commonly installed in small buildings with five or less floors. These elevators generally suffer from poor energy efficiency because they are not counterbalanced and are powered by powerful motors to overcome the considerable friction of the pistons in the hydraulic pumps. One advantage however of this design is that they descend under their own weight without any energy. Traction elevators are used in higher buildings where faster elevating speeds are required. These systems have counterweights to offset the average weight of the cabin. However, in these elevators, energy is required for lifting or lowering whenever the cabin and counterweight are not perfectly balanced. New developments in variable-speed drives for electric motors can allow for energy savings in elevators. In addition, the replacement of old electromechanical relay control systems by microprocessor-based circuits can result in substantial savings.

  16. The Factors Influencing Transport Energy Consumption in Urban Areas: a Review

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available Transport energy consumption accounts for about one third of total energy consumption in EU. Despite significant advances in transport technology and fuel formulation, transport energy consumption has increased in most EU countries over the last three decades. This increase in consumption occurred as a result of factors such as higher car ownership, a growth in automobile use and an increase in vehicle distances traveled. As travel and land-use are a function of one another, it is often hypothesized that changing urban structure can result in changes in energy consumption. Understanding how different land use characteristics may influence travel behaviour and the corresponding energy consumption is crucial for planners and policy makers in order to develop strategic actions to shrink the environmental footprint of the urban transportation sector. The aim of this article is to review the current literature on the connections between land use, travel behavior and energy consumption. In particular, this paper seeks to identify the determinants of transport energy consumption in urban areas by reviewing evidence from empirical studies. To this aim, nine characteristics of land use are presented and their effects on both travel behaviour and energy use are discussed Our review shown that, in contrast to the focus on the effect of the built environment on travel, only few researchers have empirically investigated the linkage between the built environment and transportation energy use. The research described in this paper has been developed within the PON04a2_E Smart Energy Master project. It represents part of a much broader research project aimed at the development of an integrated model of urban energy efficiency.

  17. Comparison of policies on vehicle ownership and use between Beijing and Shanghai and their impacts on fuel consumption by passenger vehicles

    International Nuclear Information System (INIS)

    Hao Han; Wang Hewu; Ouyang Minggao

    2011-01-01

    The fast growth of vehicle population in China has caused problems such as traffic congestion and excessive fuel consumption. There have been demands for policy control on growth in private vehicle travel demand. Beijing and Shanghai are China's first two cities to implement policies on vehicle ownership and use. In this paper, we compared policies in the two cities and estimated their impacts on fuel consumption by passenger vehicles. The limitation of vehicle use in Beijing provides limited but immediate reduction in fuel consumption. The limitation of vehicle ownership in Shanghai provides large potential of fuel conservation in a longer term. Under current policy, fuel consumptions by passenger vehicles in Beijing and Shanghai in 2020 were estimated to reach 7.5 and 3.9 billion liters, respectively. The experiences of Beijing and Shanghai are highly relevant for cities in China and abroad that are facing the same problems. - Research Highlights: → Beijing and Shanghai are the first two cities in China to implement policies on vehicle ownership and use. This paper compared policies in the two cities and evaluated their effectiveness. → A bottom-up model was established to simulate the fuel consumption by passenger vehicles. By using this model, fuel consumptions by passenger vehicles in Beijing and Shanghai from 1990 to 2020 under two scenarios of current policy and no policy were estimated. Under current policy, fuel consumptions by passenger vehicles in Beijing and Shanghai in 2020 were estimated to reach 7.5 and 3.9 billion liters, respectively. → This paper discussed the benefits and negative impacts of policies in Beijing and Shanghai, which are highly relevant for cities in China and abroad that are facing the problems of traffic congestion and excessive vehicle fuel consumption.

  18. Energy consumption in the Danish fishery

    DEFF Research Database (Denmark)

    Thrane, Mikkel

    2004-01-01

    Previous studies based on life-cycle assessment (LCA) in Denmark and Sweden have shown that the fishery is the environmental "hot spot" in the life cycle of certain fish products. Within the fishery, fuel consumption is one of the most important factors addressed by LCA. The present study reveals...... that there are great differences in fuel consumption between fisheries targeting groundfish or shellfish and those targeting pelagic fish or industrial fish. Here, I show that fuel consumption per kilogram of caught fish varies considerably as a function of fishing gear and vessel size, even considering the same......) in Denmark and Sweden have shown that the fishery is the environmental "hot spot" in the life cycle of certain fish products. Within the fishery, fuel consumption is one of the most important factors addressed by LCA. The present study reveals that there are great differences in fuel consumption between...

  19. World energy policy. [Design for balance of supplies and consumption

    Energy Technology Data Exchange (ETDEWEB)

    Thring, M W

    1977-01-01

    In an attempt to formulate energy policies, countries have instigated short-term solutions, mostly leading to disaster. Among the examples of such short term dilemmas one can list are: the attempt in the U.S. to avoid air pollution from vehicles which lead to a 20% increase in fuel consumption; the dilemma of censorship and corrupting literature; the dilemma of arms escalation and defense; and the dilemma of inflation, unemployment, and bankruptcy. In many parts of the world the people are in grave danger of experiencing one of the four disasters. This would result in: famine and pestilence killing millions instead of just thousands as at present; World War 3 with the unrestricted use of nuclear, chemical and biological weapons; breakdown of law and order through crime, violence, muggings, hijackings and random bombing to the point where the ordinary citizen has to go around armed and is prepared to shoot his neighbor in self defense; or an 1984 situation in which 'big brother' allow no one any freedom of thought, word or action, so that life has no joy in it (zero quality of life) and people don't care whether they are alive or dead; the author says. The author then reviews statistics pointing out the imbalance of energy consumption by various countries and concludes that this vast gap in standard of living between countries must essentially vanish if the tension leading to World War 3 are to be avoided. With 7,000 million population forecast for the first decade of the 21st century, the author lays out 2 essential conditions for a decent world:(1) energy consumption per capita in rich countries must decrease to around the present world average of 1.8 TCE and poor countries will have to increase to that figure; and (2) only those energy conversion processes should exist that can be constructed to satisfy the needs of the populace within the limited capital resources of the earth. He then shows how these conditions may be satisfied. (MCW)

  20. Uncertainty of Energy Consumption Assessment of Domestic Buildings

    DEFF Research Database (Denmark)

    Brohus, Henrik; Heiselberg, Per; Simonsen, A.

    2009-01-01

    In order to assess the influence of energy reduction initiatives, to determine the expected annual cost, to calculate life cycle cost, emission impact, etc. it is crucial to be able to assess the energy consumption reasonably accurate. The present work undertakes a theoretical and empirical study...... of the uncertainty of energy consumption assessment of domestic buildings. The calculated energy consumption of a number of almost identical domestic buildings in Denmark is compared with the measured energy consumption. Furthermore, the uncertainty is determined by means of stochastic modelling based on input...... to correspond reasonably well; however, it is also found that significant differences may occur between calculated and measured energy consumption due to the spread and due to the fact that the result can only be determined with a certain probability. It is found that occupants' behaviour is the major...

  1. Quantification of Uncertainty in Predicting Building Energy Consumption

    DEFF Research Database (Denmark)

    Brohus, Henrik; Frier, Christian; Heiselberg, Per

    2012-01-01

    Traditional building energy consumption calculation methods are characterised by rough approaches providing approximate figures with high and unknown levels of uncertainty. Lack of reliable energy resources and increasing concerns about climate change call for improved predictive tools. A new...... approach for the prediction of building energy consumption is presented. The approach quantifies the uncertainty of building energy consumption by means of stochastic differential equations. The approach is applied to a general heat balance for an arbitrary number of loads and zones in a building...... for the dynamic thermal behaviour of buildings. However, for air flow and energy consumption it is found to be much more significant due to less “damping”. Probabilistic methods establish a new approach to the prediction of building energy consumption, enabling designers to include stochastic parameters like...

  2. An overview of energy consumption of the globalized world economy

    International Nuclear Information System (INIS)

    Chen, Z.M.; Chen, G.Q.

    2011-01-01

    For the globalized world economy with intensive international trade, an overview of energy consumption is presented by an embodied energy analysis to track both direct and indirect energy uses based on a systems input-output simulation. In 2004, the total amounts of energy embodied in household consumption, government consumption, and investment are 7749, 874, and 2009 Mtoe (million tons of oil equivalent), respectively. The United States is shown as the world's biggest embodied energy importer (683 Mtoe) and embodied energy surplus receiver (290 Mtoe), in contrast to China as the biggest exporter (662 Mtoe) and deficit receiver (274 Mtoe). Energy embodied in consumption per capita varies from 0.05 (Uganda) to 19.54 toe (Rest of North America). Based on a forecast for 2005-2035, China is to replace the United States as the world's leading embodied energy consumer in 2027, when its per capita energy consumption will be one quarter of that of the United States. - Highlights: → We present an overview of global energy profile in terms of embodied energy. → The US and China are top embodied energy consumers as well as traders in 2004. → Equality issue is studied by analyzing per capita embodied energy consumption. → The US remains to be the leading energy consumer until replaced by China in 2027.

  3. Assessing the stationary energy storage equivalency of vehicle-to-grid charging battery electric vehicles

    International Nuclear Information System (INIS)

    Tarroja, Brian; Zhang, Li; Wifvat, Van; Shaffer, Brendan; Samuelsen, Scott

    2016-01-01

    A study has been performed to understand the quantitative impact of key differences between vehicle-to-grid and stationary energy storage systems on renewable utilization, greenhouse gas emissions, and balancing fleet operation, using California as the example. To simulate the combined electricity and light-duty transportation system, a detailed electric grid dispatch model (including stationary energy storage systems) was combined with an electric vehicle charging dispatch model that incorporates conventional smart and vehicle-to-grid capabilities. By subjecting smaller amounts of renewable energy to round-trip efficiency losses and thereby increasing the efficiency of renewable utilization, it was found that vehicle-to-grid energy storage can achieve higher renewable utilization levels and reduced greenhouse gas emissions compared to stationary energy storage systems. Vehicle-to-grid energy storage, however, is not as capable of balancing the power plant fleet compared to stationary energy storage systems due to the constraints of consumer travel patterns. The potential benefits of vehicle-to-grid are strongly dependent on the availability of charging infrastructure at both home and workplaces, with potential benefits being compromised with residential charging availability only. Overall, vehicle-to-grid energy storage can provide benefits over stationary energy storage depending on the system attribute selected for improvement, a finding amenable to managing through policy. - Highlights: • Using vehicle-to-grid-based storage increases the efficiency of renewable energy utilization. • Vehicle-to-grid-based energy storage has less overall flexibility compared to stationary energy storage. • The discharge ability of vehicle-to-grid-based provides a significant benefit over one-way smart charging. • Both workplace and home charging are critical for providing vehicle-to-grid-related benefits. • Increasing charging intelligence reduces stationary energy

  4. Sustainable development of new energy vehicle industry in China

    Science.gov (United States)

    Li, Mingyang; Li, Lingzhi

    2018-03-01

    The new energy vehicle industry in China has developed rapidly in recent years, but there is still a gap in core technology. Some problems are brought the adverse effect on it, such as imperfect infrastructures, imperfect systems in market access and regulatory, single channels for marketing and low acceptance among consumer. Based on the development of new energy vehicle industry home and abroad, this paper puts forward some problems of new energy vehicles industry in China, then offers some feasible suggestions.

  5. The world energy consumption in 2001. Statistical yearbook ENERDATA 2002

    International Nuclear Information System (INIS)

    2002-01-01

    Statistical data on the world energy consumption are given to illustrate the following situation in 2001: the deceleration of the world economic growth and the high prices of oil slowed down the progression of the energy consumption: 0,7 % in 2001; stagnation of the gas and oil consumption and strong progression for coal and electricity in 2001; the deceleration for gas marks a strong inflection compared to the past trends. (A.L.B.)

  6. Danish Sector Guide for Calculation of the Actual Energy Consumption

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard

    2016-01-01

    , the innovation network for sustainable construction, InnoBYG started work on a Danish sector guide for the calculation of actual energy consumption in relation to upgrading of buildings. The focus was to make a common guide for energy calculations that can be used by consultants performing calculations...... consumption compared with the estimated energy demand by calculation. The paper concludes that the result of an energy calculation should not be given as a single figure but rather as a spread between the best and worst case for the assumed conditions. Finally, a brief update on current actions is given...... related to the sector guide for calculation of actual energy consumption. Keywords – Energy calculations, actual energy consumption, energy perfomance...

  7. PARADOX OF ALTERNATIVE ENERGY CONSUMPTION: LEAN OR PROFLIGACY?

    Directory of Open Access Journals (Sweden)

    Eliza Safina

    2017-12-01

    Full Text Available Consumption of alternative energy resources is conventionally considered as an implement of lean management, main target of which is use of renewable (in terms of exhaustibility energy resources. However, when it comes to actual consumption of alternative energy resources, the contradiction is arisen between , the caused need of economy of non-renewable energy resources and rational environmental management and "providence" which is caused by cost reduction of energy consumption. What is the factual providence, how substantial is the dilemma between environmental friendliness and cost effectiveness in matters of energy savings, what is the significance of alternative energy consumption in countries with different economic types, what should balanced solution in energy mentioned issues are contemplated in current article.

  8. Plug-in hybrid electric vehicles in dynamical energy markets

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, P.P.J. van den

    2008-01-01

    The plug-in hybrid electric vehicle allows vehicle propulsion from multiple internal power sources. Electric energy from the grid can be utilized by means of the plug-in connection. An on-line energy management (EM) strategy is proposed to minimize the costs for taking energy from each power source.

  9. Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand

    Science.gov (United States)

    Carignano, Mauro G.; Costa-Castelló, Ramon; Roda, Vicente; Nigro, Norberto M.; Junco, Sergio; Feroldi, Diego

    2017-08-01

    Offering high efficiency and producing zero emissions Fuel Cells (FCs) represent an excellent alternative to internal combustion engines for powering vehicles to alleviate the growing pollution in urban environments. Due to inherent limitations of FCs which lead to slow transient response, FC-based vehicles incorporate an energy storage system to cover the fast power variations. This paper considers a FC/supercapacitor platform that configures a hard constrained powertrain providing an adverse scenario for the energy management strategy (EMS) in terms of fuel economy and drivability. Focusing on palliating this problem, this paper presents a novel EMS based on the estimation of short-term future energy demand and aiming at maintaining the state of energy of the supercapacitor between two limits, which are computed online. Such limits are designed to prevent active constraint situations of both FC and supercapacitor, avoiding the use of friction brakes and situations of non-power compliance in a short future horizon. Simulation and experimentation in a case study corresponding to a hybrid electric bus show improvements on hydrogen consumption and power compliance compared to the widely reported Equivalent Consumption Minimization Strategy. Also, the comparison with the optimal strategy via Dynamic Programming shows a room for improvement to the real-time strategies.

  10. Contact configuration and energy consumption in spinal cord stimulation

    NARCIS (Netherlands)

    de Vos, Cecilia Cecilia Clementine; Hilgerink, M.P.; Buschman, H.P.J.; Holsheimer, J.; Vander Sloten, Jos; Verdonck, Pascal; Nyssen, Marc; Haueisen, Jens

    2009-01-01

    Objective: To test the hypothesis that, in contrast to an increase of the number of anodes which reduces energy consumption per pulse, an increase of the number of cathodes raises the energy consumption. Materials and Methods: Patients with an Itrel 3 Pulse Generator and a Pisces Quad quadripolar

  11. Low-energy-consumption hybrid lasers for silicon photonics

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Ran, Qijiang; Mørk, Jesper

    2012-01-01

    Physics and characteristics of a hybrid vertical-cavity laser that can be an on-chip Si light source with high speed and low energy consumption are discussed.......Physics and characteristics of a hybrid vertical-cavity laser that can be an on-chip Si light source with high speed and low energy consumption are discussed....

  12. The impact of residential density on vehicle usage and fuel consumption: Evidence from national samples

    DEFF Research Database (Denmark)

    Kim, Jinwon; Brownstone, David

    2013-01-01

    This paper investigates the impact of residential density on household vehicle usage and fuel consumption. We estimate a simultaneous equations system to account for the potential residential self-selection problem. While most previous studies focus on a specific region, this paper uses national...

  13. Nuclear energy consumption, oil consumption and economic growth in G-6 countries: Bootstrap panel causality test

    International Nuclear Information System (INIS)

    Chu, Hsiao-Ping; Chang Tsangyao

    2012-01-01

    This study applies bootstrap panel Granger causality to test whether energy consumption promotes economic growth using data from G-6 countries over the period of 1971–2010. Both nuclear and oil consumption data are used in this study. Regarding the nuclear consumption-economic growth nexus, nuclear consumption causes economic growth in Japan, the UK, and the US; economic growth causes nuclear consumption in the US; nuclear consumption and economic growth show no causal relation in Canada, France and Germany. Regarding oil consumption-economic growth nexus, we find that there is one-way causality from economic growth to oil consumption only in the US, and that oil consumption does not Granger cause economic growth in G-6 countries except Germany and Japan. Our results have important policy implications for the G-6 countries within the context of economic development. - Highlights: ► Bootstrap panel Granger causality test whether energy consumption promotes economic growth. ► Data from G-6 countries for both nuclear and oil consumption data are used. ► Results have important policy implications within the context of economic development.

  14. Intelligent analysis of energy consumption in school buildings

    International Nuclear Information System (INIS)

    Raatikainen, Mika; Skön, Jukka-Pekka; Leiviskä, Kauko; Kolehmainen, Mikko

    2016-01-01

    Highlights: • Electricity and heating energy consumptions of six school buildings were compared. • Complex multivariate data was analysed using modern computational methods. • Variation in electricity consumption cost is considerably low between study schools. • District heating variation is very slight in two new study schools. • District heating cost describes energy efficiency and state of building automation. - Abstract: Even though industry consumes nearly half of total energy production, the relative share of total energy consumption related to heating and operating buildings is growing constantly. The motivation for this study was to reveal the differences in electricity use and district heating consumption in school buildings of various ages during the working day and also during the night when human-based consumption is low. The overall aim of this study is to compare the energy (electricity and heating) consumption of six school buildings in Kuopio, Eastern Finland. The selected school buildings were built in different decades, and their ventilation and building automation systems are also inconsistent. The hourly energy consumption data was received from Kuopion Energia, the local energy supply company. In this paper, the results of data analysis on the energy consumption in these school buildings are presented. Preliminary results show that, generally speaking, new school buildings are more energy-efficient than older ones. However, concerning energy efficiency, two very new schools were exceptional because ventilation was on day and night in order to dry the building materials in the constructions. The novelty of this study is that it makes use of hourly smart metering consumption data on electricity and district heating, using modern computational methods to analyse complex multivariate data in order to increase knowledge of the buildings’ consumption profiles and energy efficiency.

  15. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...... vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport...

  16. Energy consumption in the Danish fishery

    DEFF Research Database (Denmark)

    Thrane, Mikkel

    2003-01-01

    Previous studies based on Life Cycle Assessment (LCA) in Denmark and Sweden have shown that the fishery is the environmental "hot spot" in the life cycle of fish products. Within the fishery, fuel consumption is one of the most important factors addressed by LCA. The present study reveals...... that there are great differences in the fuel consumption between fisheries targeting ground or shellfish and those targeting pelagic or industrial fish....

  17. A panel study of nuclear energy consumption and economic growth

    International Nuclear Information System (INIS)

    Apergis, Nicholas; Payne, James E.

    2010-01-01

    This study examines the relationship between nuclear energy consumption and economic growth for sixteen countries within a multivariate panel framework over the period 1980-2005. Pedroni's (1999, 2004) heterogeneous panel cointegration test reveals there is a long-run equilibrium relationship between real GDP, nuclear energy consumption, real gross fixed capital formation, and the labor force with the respective coefficients positive and statistically significant. The results of the panel vector error correction model finds bidirectional causality between nuclear energy consumption and economic growth in the short-run while unidirectional causality from nuclear energy consumption to economic growth in the long-run. Thus, the results provide support for the feedback hypothesis associated with the relationship between nuclear energy consumption and economic growth.

  18. Energy consumption and CO2 emissions in Iran, 2025

    International Nuclear Information System (INIS)

    Mirzaei, Maryam; Bekri, Mahmoud

    2017-01-01

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO 2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO 2 emission trends for Iran over 2000–2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO 2 emissions in 2025 will reach 985 million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO 2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO 2 emission outlines. - Highlights: • Creation of an energy consumption model using system dynamics. • The effect of different policies on energy consumption and emission reductions. • An ascending trend for the environmental costs caused by CO 2 emissions is observed. • An urgent need for energy saving and emission reductions in Iran.

  19. Day-Ahead Energy Planning with 100% Electric Vehicle Penetration in the Nordic Region by 2050

    DEFF Research Database (Denmark)

    Liu, Zhaoxi; Wu, Qiuwei; Nielsen, Arne Hejde

    2014-01-01

    This paper presents the day-ahead energy planning of passenger cars with 100% electric vehicle (EV) penetration in the Nordic region by 2050. EVs will play an important role in the future energy systems which can both reduce the greenhouse gas (GHG) emission from the transport sector and provide...... demand side flexibility required by the smart grids. On the other hand, the EVs will increase the electricity consumption. In order to quantify the electricity consumption increase due to the 100% EV penetration in the Nordic region to facilitate the power system planning studies, the day-ahead energy...

  20. Residential energy consumption: A convergence analysis across Chinese regions

    International Nuclear Information System (INIS)

    Herrerias, M.J.; Aller, Carlos; Ordóñez, Javier

    2017-01-01

    The process of urbanization and the raise of living standards in China have led an increasing trend in the patterns of residential consumption. Projections for the population growth rate in urban areas do not paint a very optimistic picture for energy conservation policies. In addition, the concentration of economic activities around coastal areas calls for new prospects to be formulated for energy policy. In this context, the objective of this paper is twofold. First, we analyse the effect of the urbanization process of the Chinese economy in terms of the long-run patterns of residential energy consumption at national level. By using the concept of club convergence, we examine whether electricity and coal consumption in rural and urban areas converge to the same long-run equilibrium or whether in fact they diverge. Second, the impact of the regional concentration of the economic activity on energy consumption patterns is also assessed by source of energy across Chinese regions from 1995 to 2011. Our results suggest that the process of urbanization has led to coal being replaced by electricity in urban residential energy consumption. In rural areas, the evidence is mixed. The club convergence analysis confirms that rural and urban residential energy consumption converge to different steady-states. At the regional level, we also confirm the effect of the regional concentration of economic activity on residential energy consumption. The existence of these regional clusters converging to different equilibrium levels is indicative of the need of regional-tailored set of energy policies in China.

  1. Commercial and institutional consumption of energy survey : summary report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Fecteau, V.; Hulan, I.; McNabb, D. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency

    2007-06-15

    A survey was conducted on the energy consumption of Canada's commercial and institutional sectors. The primary purpose was to improve the understanding of various aspects of energy consumption in these sector and to enable Natural Resources Canada to develop programs to support institutions that seek to achieve greater energy efficiency and reduce their greenhouse gas emissions. Energy intensity data was presented by energy source and region amongst the following commercial and institutional sectors: retail trade including food and non-food; education including colleges and universities; health care including non-hospital health care and hospitals; and, accommodation and food services. Data obtained on each establishment's energy consumption and floor area were used to calculate their energy intensity ratio. In 2005, the commercial and institutional establishments consumed 1.04 billion gigajoules, nearly double the annual consumption of all private households in Ontario. The total energy intensity was 1.54 GJ per square metre. The lowest energy rating was found in social assistance establishments, while the highest energy rating was in food services and drinking places, followed by hospitals. Quebec and the Atlantic provinces had the lowest energy intensity levels, while the Prairie provinces had the highest energy intensity rate. The survey included data on the age of establishments; the energy sources used for space heating cooling and water heating; establishment spending on energy consumption; and, the use of auxiliary equipment. refs., tabs., figs.

  2. Energy drink consumption among young adults in Denmark

    DEFF Research Database (Denmark)

    Friis, Karina; Lasgaard, Mathias Kamp; Larsen, Finn Breinholt

    2015-01-01

    -demographic factors and health behaviour with energy drink consumption among young adults (16-24 years) in Denmark. Methods The study is based on a public health survey from 2010 (n = 3923). Multiple logistic regression analyses were used to analyse the association between weekly consumption of energy drink...... and the potential explanatory factors of interest. Results In total, 15.8 % of the young adults drink energy drinks on a weekly basis. Men have higher odds of weekly energy drink consumption than women. The study also shows that young age, being employed and having a low educational level are associated with weekly...

  3. Energy consumption and economic growth. Assessing the evidence from Greece

    International Nuclear Information System (INIS)

    Hondroyiannis, George; Lolos, Sarantis; Papapetrou, Evangelia

    2002-01-01

    This paper attempts to shed light into the empirical relationship between energy consumption and economic growth, for Greece (1960-1996) employing the vector error-correction model estimation. The vector specification includes energy consumption, real GDP and price developments, the latter taken to represent a measure of economic efficiency. The empirical evidence suggests that there is a long-run relationship between the three variables, supporting the endogeneity of energy consumption and real output. These findings have important policy implications, since the adoption of suitable structural policies aiming at improving economic efficiency can induce energy conservation without impeding economic growth

  4. Energy consumption, income, and carbon emissions in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Soytas, Ugur [Department of Business Administration, Middle East Technical University Ankara, Turkey 06531 (Turkey); Sari, Ramazan [Department of Economics, Abant Izzet Baysal University Bolu, Turkey 14280 (Turkey); Ewing, Bradley T. [Rawls College of Business Texas Tech University Lubbock, TX 79409-2101 (United States)

    2007-05-15

    This paper investigates the effect of energy consumption and output on carbon emissions in the United States. Earlier research focused on testing the existence and/or shape of an environmental Kuznets curve without taking energy consumption into account. We investigate the Granger causality relationship between income, energy consumption, and carbon emissions, including labor and gross fixed capital formation in the model. We find that income does not Granger cause carbon emissions in the US in the long run, but energy use does. Hence, income growth by itself may not become a solution to environmental problems. (author)

  5. Energy conversion efficiency of hybrid electric heavy-duty vehicles operating according to diverse drive cycles

    Energy Technology Data Exchange (ETDEWEB)

    Banjac, Titina [AVL-AST d.o.o., Trg Leona Stuklja 5, SI-2000 Maribor (Slovenia); Trenc, Ferdinand; Katrasnik, Tomaz [Faculty of Mechanical Engineering, Univ. of Ljubljana, Askerceva 6, SI-1000 Ljubljana (Slovenia)

    2009-12-15

    Energy consumption and exhaust emissions of hybrid electric vehicles (HEVs) strongly depend on the HEV topology, power ratios of their components and applied control strategy. Combined analytical and simulation approach was applied to analyze energy conversion efficiency of different HEV topologies. Analytical approach is based on the energy balance equations and considers all energy paths in the HEVs from the energy sources to the wheels and to other energy sinks. Simulation approach is based on a fast forward-facing simulation model for simulating parallel and series HEVs as well as for conventional internal combustion engine vehicles, and considers all components relevant for modeling energy conversion phenomena. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the fuel economy. It therefore enables identification of most suitable HEV topology and of most suitable power ratios of the components for targeted vehicle application, since it reveals and quantifies the mechanisms that could lead to improved energy conversion efficiency of particular HEV. The paper exposes characteristics of the test cycles that lead to improved energy conversion efficiency of HEVs. Mechanisms leading to improved fuel economy of parallel HEVs through drive-away and vehicle propulsion at low powertrain loads by electric motor are also analyzed. It was also shown that control strategies managing energy flow through electric storage devices significantly influence energy conversion efficiency of series HEVs. (author)

  6. Estimation of Energy Consumption and Greenhouse Gas Emissions of Transportation in Beef Cattle Production

    Directory of Open Access Journals (Sweden)

    Narayanan Kannan

    2016-11-01

    Full Text Available Accounting for transportation is an important part of the life cycle analysis (LCA of beef cattle production because it is associated with energy consumption and greenhouse gas emissions. This paper describes the development and application of a model that estimates energy consumption and greenhouse gas emissions of transport in beef cattle production. The animal transport model is based on the weight and number of animals in each weight category, type of trailer, vehicle, and fuel used. The energy consumption and greenhouse gas emission estimates of animal feed transportation are based on the weight of a truckload and the number of truckloads of feed transported. Our results indicate that a truckload is travelling approximately 326 km in connection with beef cattle production in the study region. The fuel consumption amounts to 24 L of fossil fuel per 1000 kg of boneless beef. The corresponding greenhouse gas emission is 83 kg. It appears from our results that the majority of energy consumption and greenhouse gas emissions are associated with sending the finished cattle to slaughterhouses and bringing feeder cattle to feedlots. Our results point out appreciable reductions in energy consumption and greenhouse gas emissions by changing from conventional fuel to bio-fuel.

  7. Optimal Energy Consumption Analysis of Natural Gas Pipeline

    Science.gov (United States)

    Liu, Enbin; Li, Changjun; Yang, Yi

    2014-01-01

    There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent. PMID:24955410

  8. Renewable energy consumption and income in emerging economies

    International Nuclear Information System (INIS)

    Sadorsky, Perry

    2009-01-01

    Increased economic growth and demand for energy in emerging economies is creating an opportunity for these countries to increase their usage of renewable energy. This paper presents and estimates two empirical models of renewable energy consumption and income for a panel of emerging economies. Panel cointegration estimates show that increases in real per capita income have a positive and statistically significant impact on per capita renewable energy consumption. In the long term, a 1% increase in real income per capita increases the consumption of renewable energy per capita in emerging economies by approximately 3.5%. Long-term renewable energy per capita consumption price elasticity estimates are approximately equal to -0.70.

  9. Practical versus theoretical domestic energy consumption for space heating

    International Nuclear Information System (INIS)

    Audenaert, A.; Briffaerts, K.; Engels, L.

    2011-01-01

    Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: → The energy advice procedure (EAP) calculates the energy use for heating in dwellings. → Calculations are compared with the real energy use for 5 dwellings. → A survey on the occupants' behaviour is used to interpret the observed differences. → Default values used in the EAP can be very different from the observed behaviour.

  10. Practical versus theoretical domestic energy consumption for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, A., E-mail: amaryllis.audenaert@artesis.be [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium); Department of Environment, Technology and Technology Management, University of Antwerp, Prinsstraat 13, B-2000 Antwerp (Belgium); Briffaerts, K. [Unit Transition Energy and Environment, VITO NV, Boeretang 200, B-2400 Mol (Belgium); Engels, L. [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium)

    2011-09-15

    Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: > The energy advice procedure (EAP) calculates the energy use for heating in dwellings. > Calculations are compared with the real energy use for 5 dwellings. > A survey on the occupants' behaviour is used to interpret the observed differences. > Default values used in the EAP can be very different from the observed behaviour.

  11. On the relationship between GDP and energy consumption

    International Nuclear Information System (INIS)

    Sudarsono, B.

    1978-01-01

    The validity of a coupling between the growth in GDP and the growth in energy consumption is reviewed and its importance is discussed. The usefulness of a GDP energy consumption relationship for energy projections is investigated with particular reference to the case of Indonesia. A particular form of such a relationship is obtained for Indonesia with income elasticity decreasing as a function of time and its use is compared with other results. (author)

  12. On the determinants of renewable energy consumption: International Evidence

    OpenAIRE

    Anis Omri; Duc Khuong Nguyen

    2014-01-01

    Over recent years, renewable energy sources have emerged as an important component of world energy consumption. Little is however known about the determinants of renewable energy consumption. This article tackles this issue for a global panel consisting of 64 countries over the period 1990-2011 by using a dynamic system- GMM panel model. We also consider three homogeneous subpanels which are constructed based on the income level of sample countries (high-, middle-, and low-income subpanels). ...

  13. Energy consumption analysis for the Mars deep space station

    Science.gov (United States)

    Hayes, N. V.

    1982-01-01

    Results for the energy consumption analysis at the Mars deep space station are presented. It is shown that the major energy consumers are the 64-Meter antenna building and the operations support building. Verification of the antenna's energy consumption is highly dependent on an accurate knowlege of the tracking operations. The importance of a regular maintenance schedule for the watt hour meters installed at the station is indicated.

  14. Factors affecting wood energy consumption by U.S. households

    Science.gov (United States)

    Nianfu Song; Francisco X. Aguilar; Stephen R. Shifley; Michael E. Goerndt

    2012-01-01

    About 23% of energy derived from woody sources in the U.S. was consumed by households, of which 70% was used by households in rural areas in 2005. We investigated factors affecting household-level wood energy consumption in the four continental U.S. regions using data from the U.S. Residential Energy Consumption Survey. To account for a large number of zero...

  15. Forecast of the energy final consumption for Minas Gerais State

    International Nuclear Information System (INIS)

    Almeida, P.E.F. de; Bechtlufft, P.C.T.; Araujo, M.E.A.; Vasconcelos, E.C.; Las Casas, H.B. de; Monteiro, M.A.G.

    1990-01-01

    This paper is included among the activities of the Energy Planning of Minas Gerais State and presents a forecast of the energy final consumption for the State up to year 2010. Two Scenarios are presented involving brazilian economy's evolution, the State's demography and its sectors: residential, services, transportation, agriculture and cattle-breeding and industry. Finally, it shows two forecast on energy final consumption for Minas Gerais State. (author)

  16. Light-Duty Vehicle Fuel Consumption Displacement Potential up to 2045

    Energy Technology Data Exchange (ETDEWEB)

    Moawad, Ayman [Argonne National Lab. (ANL), Argonne, IL (United States); Rousseau, Aymeric [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The U.S. Department of Energy (DOE) Vehicle Technologies Program (VTP) is developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  17. Potential reduction of energy consumption in public university library

    Science.gov (United States)

    Noranai, Z.; Azman, ADF

    2017-09-01

    Efficient electrical energy usage has been recognized as one of the important factor to reduce cost of electrical energy consumption. Various parties have been emphasized about the importance of using electrical energy efficiently. Inefficient usage of electrical energy usage lead to biggest factor increasing of administration cost in Universiti Tun Hussein Onn Malaysia. With this in view, a project the investigate potential reduction electrical energy consumption in Universiti Tun Hussein Onn Malaysia was carried out. In this project, a case study involving electrical energy consumption of Perpustakaan Tunku Tun Aminah was conducted. The scopes of this project are to identify energy consumption in selected building and to find the factors that contributing to wastage of electrical energy. The MS1525:2001, Malaysian Standard - Code of practice on energy efficiency and use of renewable energy for non-residential buildings was used as reference. From the result, 4 saving measure had been proposed which is change type of the lamp, install sensor, decrease the number of lamp and improve shading coefficient on glass. This saving measure is suggested to improve the efficiency of electrical energy consumption. Improve of human behaviour toward saving energy measure can reduce 10% from the total of saving cost while on building technical measure can reduce 90% from total saving cost.

  18. Assessing links between energy consumption, freight transport, and economic growth: evidence from dynamic simultaneous equation models.

    Science.gov (United States)

    Nasreen, Samia; Saidi, Samir; Ozturk, Ilhan

    2018-06-01

    We investigate this study to examine the relationship between economic growth, freight transport, and energy consumption for 63 developing countries over the period of 1990-2016. In order to make the panel data analysis more homogeneous, we apply the income level of countries to divide the global panel into three sub-panels, namely, lower-middle income countries (LMIC), upper-middle income countries (UMIC), and high-income countries (HIC). Using the generalized method of moments (GMM), the results prove evidence of bidirectional causal relationship between economic growth and freight transport for all selected panels and between economic growth and energy consumption for the high- and upper-middle income panels. For the lower-middle income panel, the causality is unidirectional running from energy consumption to economic growth. Also, the results indicate that the relationship between freight transport and energy use is bidirectional for the high-income countries and unidirectional from freight transport to energy consumption for the upper-middle and lower-middle income countries. Empirical evidence demonstrates the importance of energy for economic activity and rejects the neo-classical assumption that energy is neutral for growth. An important policy recommendation is that there is need of advancements in vehicle technology which can reduce energy intensity from transport sector and improve the energy efficiency in transport activity which in turn allows a greater positive role of transport in global economic activity.

  19. Monitoring and optimization of energy consumption of base transceiver stations

    International Nuclear Information System (INIS)

    Spagnuolo, Antonio; Petraglia, Antonio; Vetromile, Carmela; Formosi, Roberto; Lubritto, Carmine

    2015-01-01

    The growth and development of the mobile phone network has led to an increased demand for energy by the telecommunications sector, with a noticeable impact on the environment. Monitoring of energy consumption is a great tool for understanding how to better manage this consumption and find the best strategy to adopt in order to maximize reduction of unnecessary usage of electricity. This paper reports on a monitoring campaign performed on six BSs (Base Transceiver Stations) located central Italy, with different technology, typology and technical characteristics. The study focuses on monitoring energy consumption and environmental parameters (temperature, noise, and global radiation), linking energy consumption with the load of telephone traffic and with the air conditioning functions used to cool the transmission equipment. Moreover, using experimental data collected, it is shown, with a Monte Carlo simulation based on power saving features, how the BS monitored could save energy. - Highlights: • Energy consumption and environmental parameters of a base transceiver system have been monitored. • Energy consumption is related to the air conditioning functions and to the load of telephone traffic. • Energy saving can be obtained by careful choice of cooling parameters and by turn off BS transceivers. • Energy saving parameters can be estimated by a simulation Monte Carlo method

  20. Energy consumption and economic growth revisited in African countries

    Energy Technology Data Exchange (ETDEWEB)

    Eggoh, Jude C., E-mail: comlanvi-jude.eggoh@univ-orleans.fr [Laboratoire d' Economie d' Orleans (LEO), Universite d' Orleans, Rue de Blois, BP: 6739, 45067 Orleans Cedex 2 (France); Bangake, Chrysost [Laboratoire d' Economie d' Orleans (LEO), Universite d' Orleans, Rue de Blois, BP: 6739, 45067 Orleans Cedex 2 (France); Universite d' Artois and Laboratoire EQUIPPE, Lille 1, FSES, 59655 Villeneuve d' Ascq Cedex (France); Rault, Christophe [Laboratoire d' Economie d' Orleans (LEO), Universite d' Orleans, Rue de Blois, BP: 6739, 45067 Orleans Cedex 2 (France); Toulouse Business School (France)

    2011-11-15

    The aim of this paper is to provide new empirical evidence on the relationship between energy consumption and economic growth for 21 African countries over the period from 1970 to 2006, using recently developed panel cointegration and causality tests. The countries are divided into two groups: net energy importers and net energy exporters. It is found that there exists a long-run equilibrium relationship between energy consumption, real GDP, prices, labor and capital for each group of countries as well as for the whole set of countries. This result is robust to possible cross-country dependence and still holds when allowing for multiple endogenous structural breaks, which can differ among countries. Furthermore, we find that decreasing energy consumption decreases growth and vice versa, and that increasing energy consumption increases growth, and vice versa, and that this applies for both energy exporters and importers. Finally, there is a marked difference in the cointegration relationship when country groups are considered. - Highlights: > We assess the energy consumption and economic growth nexus in 21 African countries. > There exists a long-run relationship between energy consumption and economic growth. > This result is robust to cross-country dependence and for structural breaks. > Our findings finally support the feedback hypothesis of bidirectional causality.

  1. Energy-Efficient Cooperative Techniques for Infrastructure-to-Vehicle Communications

    OpenAIRE

    Nguyen , Tuan-Duc; Berder , Olivier; Sentieys , Olivier

    2011-01-01

    International audience; In wireless distributed networks, cooperative relay and cooperative Multi-Input Multi-Output (MIMO) techniques can be used to exploit the spatial and temporal diversity gain in order to increase the performance or reduce the transmission energy consumption. The energy efficiency of cooperative MIMO and relay techniques is then very useful for the Infrastructure to Vehicle (I2V) and Infrastructure to Infrastructure (I2I) communications in Intelligent Transport Systems (I...

  2. Contactless Electric Igniter for Vehicle to Lower Exhaust Emission and Fuel Consumption

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2014-01-01

    Full Text Available An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well.

  3. Fuel Consumption and Vehicle Emission Models for Evaluating Environmental Impacts of the ETC System

    Directory of Open Access Journals (Sweden)

    Jiancheng Weng

    2015-07-01

    Full Text Available The environmental outcome of the Electronic Toll Collection (ETC system is an important aspect in evaluating the impacts of the ETC system, which is influenced by various factors including the vehicle type, travel speed, traffic volume, and average queue length of Manual Toll Collection (MTC lanes. The primary objective of this paper is to develop a field data-based practical model for evaluating the effects of ETC system on the fuel efficiency and vehicle emission. First, laboratory experiments of seven types of vehicles under various scenarios for toll collection were conducted based on the Vehicle Emissions Testing System (VETS. The indicator calculation models were then established to estimate the comprehensive benefit of ETC system by comparing the test results of MTC lane and ETC lane. Finally, taking Beijing as a case study, the paper calibrated the model parameters, and estimated the monetization value of environmental benefit of the ETC system in terms of vehicle emissions reduction and fuel consumption decrease. The results shows that the applications of ETC system are expected to save fuel consumption of 4.1 million liters and reduce pollution emissions by 730.89 tons in 2013 in Beijing.

  4. Consumption of fuels and energy in the coking industry and ways of reducing consumption

    Energy Technology Data Exchange (ETDEWEB)

    Vasil' ev, Yu.S.; Tsel' ik, M.P.; Belkina, T.V. (Khar' kovskii Nauchno-Issledovatel' skii Uglekhimicheski Institut (USSR))

    1989-08-01

    Coking plants in the USSR consume 4,000 million kWh electric energy, 100 million GJ heat energy and 35,000 million m{sup 3} gaseous fuels per year. Structure of energy consumption is the following: 68% gaseous fuels, 24% steam and 8% electric energy. Processes of coal preparation, crushing, mixing, coking and quenching are analyzed from the point of view of energy consumption. The following methods for reducing energy consumption are discussed: using the FM-25 flotation machines for flotation of coking coal slurries, briquetting the whole coal charge for coking, optimization of air supply rates for combustion of gases used for coke oven heating, use of control systems for coke oven heating considering coal charge density, waste heat utilization from quenching. 4 refs.

  5. Energy consumption in the food supply system

    DEFF Research Database (Denmark)

    Kamp, Andreas; Østergård, Hanne; Hauggaard-Nielsen, Henrik

    2016-01-01

    Historically, productivity gains have been possible by the application of energy intensive technologies. In the future, new technologies and practices based on energy from renewable resources are central for the development of our food supply system and they will contribute in two different ways....... As the energy sector increasingly bases energy supply on renewable sources, the energy requirements of the food sector will automatically substitute renewable energy for non-renewable energy in all stages of food supply. In principle, the food sector does not need to change if renewable energy is sufficient...... and available as the energy carriers that we are used to today. We may think of this as passive adaptation. A passive adaptation strategy may support a development towards the image ‘high input – high output’. The food sector, however, may also actively adapt to a future without fossil fuels and change...

  6. Reduced energy consumption for melting in foundries

    Energy Technology Data Exchange (ETDEWEB)

    Skov-Hansen, S.

    2007-09-15

    By improving the gating technology in traditional gating systems it is possible to reduce the amount of metal to be re-melted, and hence reduce the energy consumption for melting in foundries. Traditional gating systems are known for a straight tapered down runner a well base and 90 deg. bends in the runner system. In the streamlined gating systems there are no sharp changes in direction and a large effort is done to confine and control the flow of the molten metal during mould filling. Experiments in real production lines have proven that using streamlined gating systems improves yield by decreasing the poured weight compared to traditional layouts. In a layout for casting of valve housings in a vertically parted mould the weight of the gating system was reduced by 1,1kg which is a 20% weight reduction for the gating system. In a layout for horizontally parted moulds the weight of the gating system has been reduced by 3,7kg which is a weight reduction of 60% for the gating system. The experiments casting valve housings in ductile iron also proved that it is possible to lower the pouring temperature from 1400 deg. C to 1300 deg. C without the risk of cold runs. Glass plate fronted moulds have been used to study the flow of melt during mould filling. These experiments have also been used for studying the flow pattern when ceramic filters are used. The thorough study of the use of filters revealed that the metal passing through the filter is divided into a number of small jets. This proves that filters do not have the claimed positive effect on the flow of metal. The volumes necessary on either side of the filter is not filled till a backpressure is build up and results in formation of pressure shocks when backfilled. These pressure shocks result in more turbulence inside the casting than the same gating system with no filter. Not using filters can mean a reduction in poured weight of 0,6kg. To examine if the experiments using glass plate fronted moulds give

  7. Economic energy distribution and consumption in a microgrid Part 2

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Andersen, Palle

    2014-01-01

    Energy management of a small scale electrical microgrid is investigated. The microgrid comprises residential houses with local renewable generation, consumption and storage units. The microgrid has the possibility of connection to the electricity grid as well to compensate energy decit of local...... power producers. The nal objective is to full the microgrid's energy demands mainly from the local electricity producers. The other objective is to manage power consumption such that the consumption cost is minimum for individual households. In this study, a hierarchical controller composed of three...... levels is proposed. Each layer from bottom to top focus on individual energy consuming units, individual buildings, and the microgrid respectively. At the middle layer, a model predictive controller is formulated to schedule the building's energy consumption using potential load exibilities. The top...

  8. THE INFLUENCE OF AN APARTMENT POSITIONING ON ENERGY CONSUMPTION

    Directory of Open Access Journals (Sweden)

    Marcela PRADA

    2013-06-01

    Full Text Available This work is part of the highly topical subject of global warming and energy conservation. The article contains parametric studies of energy consumption and CO² emissions for an apartment located in a block of flats, depending on its location. It was studied the energy consumption of an apartment having different cardinal orientations in the same building and of an apartment with the same position inside the building but located in different climatic zones. The case studies show the difference between the energy consumption of an apartment depending on its position, thus resulting in a few general directions for their heat insulation, so that the specific energy consumption of the apartment is below 100 kWh/m² year.

  9. Energy consumption of the households 1960-1996

    International Nuclear Information System (INIS)

    Bentzen, J.; Engsted, T.

    1999-01-01

    During the 1960s energy consumption of Danish households increased relatively fast, but the oil price shocks of the 1970s and subsequent energy policy changes reversed this development towards stagnation in energy consumption in the recent decades. Using time series data covering the period 1960-1996 the final energy consumption of the residential sector is analysed in the framework of co-integration and error-correction modelling. The long run income and price elasticities are found to be 1.17 and -0.85, respectively, but in the short run energy prices seem to influence consumption less as only income and the weather conditions appear significantly in the short run dynamics of the estimated error-correction model. (au)

  10. Energy consumption and quality of man's life. Chapter 1

    International Nuclear Information System (INIS)

    1998-01-01

    In Chapter 1 a dependence of public life quality showings from energy consumption value is proved. Priority of fuel-energetic complex development is grounded as well. Specific features of Kazakhstan power engineering during its integration into world economics are given. Problems of liberalization of power engineering economy are illustrated. Dependences between assessments of human potential and energy consumption level in the world and Kazakhstan are given in tabular form. In Kazakhstan under relatively stable education level index an energy consumption reduction was resulted to gross national product decrease on via capita

  11. Efficiency improvement for vehicle powertrains using energy integration techniques

    OpenAIRE

    Dimitrova, Zlatina; Maréchal, François

    2016-01-01

    The main design criteria for the modern sustainable development of vehicle powertrains are the high energy efficiency of the conversion system, the competitive cost and the lowest possible environmental impacts. The need for efficiency improvement of the vehicle energy system induces the search for an innovative methodology during the design process. In this article the energy services for mobility and comfort are integrated. The energy integration of the mobility and the comfort service is a...

  12. Modelling energy consumption in a manufacturing plant using productivity KPIs

    Energy Technology Data Exchange (ETDEWEB)

    Gallachoir, Brian O.; Cahill, Caiman (Sustainable Energy Research Group, Dept. of Civil and Environmental Engineering, Univ. College Cork (Ireland))

    2009-07-01

    Energy efficiency initiatives in industrial plants are often focused on getting energy-consuming utilities and devices to operate more efficiently, or on conserving energy. While such device-oriented energy efficiency measures can achieve considerable savings, greater energy efficiency improvement may be achieved by improving the overall productivity and quality of manufacturing processes. The paper highlights the observed relationship between productivity and energy efficiency using aggregated data on unit consumption and production index data for Irish industry. Past studies have developed simple top-down models of final energy consumption in manufacturing plants using energy consumption and production output figures, but these models do not help identify opportunities for energy savings that could achieved through increased productivity. This paper proposes an improved and innovative method of modelling plant final energy demand that introduces standard productivity Key Performance Indicators (KPIs) into the model. The model demonstrates the relationship between energy consumption and productivity, and uses standard productivity metrics to identify the areas of manufacturing activity that offer the most potential for improved energy efficiency. The model provides a means of comparing the effect of device-oriented energy efficiency measures with the potential for improved energy efficiency through increased productivity.

  13. Sector review of UK higher education energy consumption

    International Nuclear Information System (INIS)

    Ward, Ian; Ogbonna, Anthony; Altan, Hasim

    2008-01-01

    The UK education and education-related services are said to be one of the fastest-growing export earners in recent years and are known to have had significant impacts at the micro- and macro-levels of the UK. This review looks at energy consumption of this fast growing sector. It concentrates on the energy consumption patterns of the funded higher education institutions in the UK. The findings indicate energy consumption in the sector has been on the increase in the 6 years up to 2006; rising by about 2.7% above the 2001 consumption levels. This increase is, however, not evenly spread across the entire sector. The high energy-consuming institutions appear to be increasing their net consumption, relative to other institutions. Gross internal area, staff and research student full-time equivalent were found to have highest correlation with energy consumption across the sector and may be used as proxy indicators for energy consumption as well as the targets of interventions

  14. Energy consumption quota of public buildings based on statistical analysis

    International Nuclear Information System (INIS)

    Zhao Jing; Xin Yajuan; Tong Dingding

    2012-01-01

    The establishment of building energy consumption quota as a comprehensive indicator used to evaluate the actual energy consumption level is an important measure for promoting the development of building energy efficiency. This paper focused on the determination method of the quota, and firstly introduced the procedure of establishing energy consumption quota of public buildings including four important parts: collecting data, classifying and calculating EUIs, standardizing EUIs, determining the measure method of central tendency. The paper also illustrated the standardization process of EUI by actual calculation based on the samples of 10 commercial buildings and 19 hotel buildings. According to the analysis of the frequency distribution of standardized EUIs of sample buildings and combining the characteristics of each measure method of central tendency, comprehensive application of mode and percentage rank is selected to be the best method for determining the energy consumption quota of public buildings. Finally the paper gave some policy proposals on energy consumption quota to help achieve the goal of further energy conservation. - Highlights: ► We introduce the procedure of determining energy consumption quota (ECQ). ► We illustrate the standardization process of EUI by actual calculation of samples. ► Measures of central tendency are brought into determine the ECQ. ► Comprehensive application of mode and percentage rank is the best method for ECQ. ► Punitive or incentive measures for ECQ are proposed.

  15. Energy Drink Consumption Practices of Young People in Bahrain.

    Science.gov (United States)

    Nassaif, Maryam M; Alobed, Ghufran J J; Alaam, Noor A A; Alderrazi, Abdulla N; Awdhalla, Muyssar S; Vaithinathan, Asokan G

    2015-01-01

    Energy drink (ED) consumption is becoming increasingly popular among young Bahrainis, who may be unaware of the health risks associated with ED consumption. To date, there have been few publications on the consumption of ED in Bahrain, particularly among adolescents. This study seeks to fill a gap in the literature on energy drink consumption practices of Bahraini adolescents. Data were collected using a previously established European Food Safety Authority questionnaire. Cross-sectional analyses were conducted on a convenience sample of 262 Bahraini students aged 10 to 18 years. Most participants consumed energy drinks 2 to 3 times per week and consumed two or more cans at a time. Eighty percent of partcipants preferred energy drinks with sugar. Participants in the older age group and higher educational level consumed more ED. The majority (57%) consumed ED at home with friends as part of socialization. Notably, 60% of the parents of the respondents have not consumed energy drinks. Prominent reasons for consumption of energy drinks included: taste (40%), energy (30%), stay awake (13%), augment concentration (4%), and enhance sports performance (6%). Energy drink consumption is a popular socialization activity among adolescents of Bahrain. The potential health risks necessitates the need for novel health promotion strategies and advocacy efforts for healthy hydration practices.

  16. Energy consumption in smelting reduction (SR) processes

    International Nuclear Information System (INIS)

    Assis, Paulo Santos; Salierno, Giovanni Felice; Fang, Jue; Mankhand, Tilak R.; Assis, Carlos Frederico Campos de

    2010-01-01

    In contrast, conventional processes use coke and hematite/sinter in the blast furnace, in SR processes, other alternative fuels and iron ore sources, like charcoal and fine iron ores, can be used to produce sponge iron. The use of these alternative sources, by SR processes, can reduce environmental impacts and lower production costs. At first, the concepts of the theoretical gas utilization ratio, the smelting heat of the iron ore and the effective calorific value of coal were introduced. Then, the reason for gas utilization ratio and its performance in the shaft as a reducer in the smelting process are discussed and calculated. The relationship between coal consumption and iron ore reduction in the fluidized bed are also discussed. Finally, the influence of post-combustion on coal consumption in an iron bath furnace are calculated and discussed. (author)

  17. Modeling Aggregate Hourly Energy Consumption in a Regional Building Stock

    Directory of Open Access Journals (Sweden)

    Anna Kipping

    2017-12-01

    Full Text Available Sound estimates of future heat and electricity demand with high temporal and spatial resolution are needed for energy system planning, grid design, and evaluating demand-side management options and polices on regional and national levels. In this study, smart meter data on electricity consumption in buildings are combined with cross-sectional building information to model hourly electricity consumption within the household and service sectors on a regional basis in Norway. The same modeling approach is applied to model aggregate hourly district heat consumption in three different consumer groups located in Oslo. A comparison of modeled and metered hourly energy consumption shows that hourly variations and aggregate consumption per county and year are reproduced well by the models. However, for some smaller regions, modeled annual electricity consumption is over- or underestimated by more than 20%. Our results indicate that the presented method is useful for modeling the current and future hourly energy consumption of a regional building stock, but that larger and more detailed training datasets are required to improve the models, and more detailed building stock statistics on regional level are needed to generate useful estimates on aggregate regional energy consumption.

  18. Vehicle lightweighting vs. electrification: Life cycle energy and GHG emissions results for diverse powertrain vehicles

    International Nuclear Information System (INIS)

    Lewis, Anne Marie; Kelly, Jarod C.; Keoleian, Gregory A.

    2014-01-01

    Highlights: • We modeled life cycle energy and greenhouse gas (GHG) emissions from diverse powertrain vehicles. • Lightweight versions of the vehicle models were compared against baseline models. • Maximum energy and GHG emissions occur with aluminum vs. advanced high strength steel. • Design harmonization method shows 0.2–0.3 kg of support required per 1 kg powertrain mass increase. - Abstract: This work assesses the potential of electrified vehicles and mass reduction to reduce life cycle energy and greenhouse gas (GHG) emissions. Life cycle assessment (LCA) is used to account for processes upstream and downstream of the vehicle operation, thereby incorporating regional variation of energy and GHG emissions due to electricity production and distinct energy and GHG emissions due to conventional and lightweight materials. Design harmonization methods developed in previous work are applied to create baseline and lightweight vehicle models of an internal combustion vehicle (ICV), hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV). Thus, each vehicle is designed to be functionally equivalent and incorporate the structural support required for heavier powertrains. Lightweight vehicles are designed using body-in-white (BIW) mass reduction scenarios with aluminum and advanced/high strength steel (A/HSS). For the mass reduction scenarios considered in this work, results indicate that the greatest life cycle energy and GHG emissions reductions occur when steel is replaced by aluminum. However, since A/HSS requires less energy to produce as compared to aluminum, the energy and GHG reductions per unit mass removed is greatest for A/HSS. Results of the design harmonization modeling method show that 0.2–0.3 kg of structural support is required per unit increase in powertrain mass, thus extending previous methods

  19. Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city

    International Nuclear Information System (INIS)

    Zhang, Shaojun; Wu, Ye; Un, Puikei; Fu, Lixin; Hao, Jiming

    2016-01-01

    Modeling fuel consumption of light-duty passenger vehicles has created substantial concerns due to the uncertainty from real-world operating conditions. Macao is world-renowned for its tourism industry and high population density. An empirical model is developed to estimate real-world fuel consumption and carbon dioxide emissions for gasoline-powered light-duty passenger vehicles in Macao by considering local fleet configuration and operating conditions. Thanks to increasingly stringent fuel consumption limits in vehicle manufacturing countries, estimated type-approval fuel consumption for light-duty passenger vehicles in Macao by model year was reduced from 7.4 L/100 km in 1995 to 5.9 L/100 km in 2012, although a significant upsizing trend has considerably offset potential energy-saving benefit. However, lower driving speed and the air-conditioning usage tend to raise fleet-average fuel consumption and carbon dioxide emission factors, which are estimated to be 10.1 L/100 km and 240 g/km in 2010. Fleet-total fuel consumption and carbon dioxide emissions are modeled through registered vehicle population-based and link-level traffic demand approaches and the results satisfactorily coincide with the historical record of fuel sales in Macao. Temporal and spatial variations in fuel consumption and carbon dioxide emissions from light-duty passenger vehicles further highlight the importance of effective traffic management in congested areas of Macao. - Highlights: • A fuel consumption model is developed for Macao's light-duty passenger cars. • Increased vehicle size partially offset energy benefit from tightened fuel consumption standard. • Lower speed and use of air-conditioning greatly increase fuel use of Macao light-duty passenger cars. • A high resolution inventory of fuel use and carbon dioxide emissions is built with link-level traffic data. • Policy suggestions are provided to mitigate fuel use in a traffic populated city.

  20. Pittsburgh 2013 Energy Baseline: Consumption, Trends & Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Tarka, Thomas J. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); James III, Robert E. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Withum, Jeffrey A. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Plowman, Brian [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Shih, Chung Yan [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2017-03-01

    The United States (U.S.) Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) are working in conjunction with the City of Pittsburgh (City) to transform how energy is produced, transported, and consumed in the City. This transformation will rely on 21st Century Energy Infrastructure designs, which leverage advanced technology and design techniques to modernize energy infrastructure, create new business models and markets, and expand technology research and development opportunities. Achieving this vision will require developing solutions that are unique to the City: its climate, topography, energy needs, resources, and existing infrastructure.a In this way, the City will demonstrate what the American “City of the Future” looks like, with all its attendant environmental, economic, and job-creation benefits. It will also serve as a template for other cities seeking to reinvent their energy systems.

  1. Energy Management Strategy for Hybrid Electric Vehicle Based on Driving Condition Identification Using KGA-Means

    Directory of Open Access Journals (Sweden)

    Shuxian Li

    2018-06-01

    Full Text Available In order to solve the problem related to adaptive energy management strategies based on driving condition identification being difficult to be applied to a real hybrid electric vehicle (HEV controller, this paper proposes an energy management strategy by combining the driving condition identification algorithm based on genetic optimized K-means clustering algorithm (KGA-means, and the equivalent consumption minimization strategy (ECMS. The simulation results show that compared with ECMS, the energy management strategy proposed in this article drives the engine working point closer to the best efficiency curve, and smooths out the state of charge (SOC change and better maintains the SOC in a highly efficient area. As a result, the vehicle fuel consumption reduces by 6.84%.

  2. Output, renewable energy consumption and trade in Africa

    International Nuclear Information System (INIS)

    Ben Aïssa, Mohamed Safouane; Ben Jebli, Mehdi; Ben Youssef, Slim

    2014-01-01

    We use panel cointegration techniques to examine the relationship between renewable energy consumption, trade and output in a sample of 11 African countries covering the period 1980–2008. The results from panel error correction model reveal that there is evidence of a bidirectional causality between output and exports and between output and imports in both the short and long-run. However, in the short-run, there is no evidence of causality between output and renewable energy consumption and between trade (exports or imports) and renewable energy consumption. Also, in the long-run, there is no causality running from output or trade to renewable energy. In the long-run, our estimations show that renewable energy consumption and trade have a statistically significant and positive impact on output. Our energy policy recommendations are that national authorities should design appropriate fiscal incentives to encourage the use of renewable energies, create more regional economic integration for renewable energy technologies, and encourage trade openness because of its positive impact on technology transfer and on output. - Highlights: • We examine the relationship between renewable energy consumption, trade and output in African countries. • There is a bidirectional causality between output and trade in both the short and long-run. • In the short-run, there is no causality between renewable energy consumption and trade or output. • In the long-run, renewable energy consumption and trade have a statistically significant positive impact on output. • African authorities should encourage trade openness because of its positive impact on technology transfer and on output

  3. A methodology for the data energy regional consumption consistency analysis

    International Nuclear Information System (INIS)

    Canavarros, Otacilio Borges; Silva, Ennio Peres da

    1999-01-01

    The article introduces a methodology for data energy regional consumption consistency analysis. The work was going based on recent studies accomplished by several cited authors and boarded Brazilian matrices and Brazilian energetics regional balances. The results are compared and analyzed

  4. Psychological strategies to reduce energy consumption: project summary report

    Energy Technology Data Exchange (ETDEWEB)

    Becker, L J; Seligman, C; Darley, J M

    1979-06-30

    This report reviews the research conducted in connection with a project to apply psychological theory and procedures to the problems of encouraging residential energy conservation. A major part of the project involved surveys of residents' energy-related attitudes. The best (and only consistent) attitudinal predictor of residents' actual energy consumption was their attitude about thermal comfort. A number of other attitudes that could conceivably have been related to consumption, such as attitudes about the reality of the crisis, were not found to be related to consumption. Another major focus of the project was on the effectiveness of feedback (that is, giving residents information about their energy use) as an aid to residents' conservation efforts. A series of experiments demonstrated that frequent, credible energy-consumption feedback, coupled with encouragement to adopt a reasonable but difficult energy-conservation goal, could facilitate conservation. However, these studies also demonstrated that residents could not be given just any kind of information about their energy use as feedback and that even proper feedback would not lead to conservation in all households. Conditions that are crucial for the success of feedback as a conservation aid are discussed. Other studies conducted by the project looked at the effect on energy consumption of (1) a device to reduce air-conditioning waste by signalling when it is cool outside, (2) an automatic multi-setback thermostat, and (3) utility companies' average payment plans. A survey of residents' knowledge of their energy use also was conducted. 23 references.

  5. Minimizing energy consumption of accelerators and storage ring facilities

    International Nuclear Information System (INIS)

    The discussion of energy usage falls naturally into three parts. The first is a review of what the problem is, the second is a description of steps that can be taken to conserve energy at existing facilities, and the third is a review of the implications of energy consumption on future facilities

  6. Moisture buffering phenomenon and its impact on building energy consumption

    DEFF Research Database (Denmark)

    Zhang, Mingjie; Qin, Menghao; Rode, Carsten

    2017-01-01

    buffering on building energy consumption in different climate conditions is assessed by using numerical simulations. The results show that the potential energy saving rate could be up to 25–30% when using proper hygroscopic materials in the test building in temperate climates and semi-arid climates. Finally......, the relationship between MBV and potential energy saving rate is also discussed....

  7. On-site energy consumption at softwood sawmills in Montana

    Science.gov (United States)

    Dan Loeffler; Nathaniel Anderson; Todd A. Morgan; Colin B. Sorenson

    2016-01-01

    Total on-site energy requirements for wood product manufacturing are generally not well understood or publicly available, particularly at subregional scales, such as the state level. This article uses a mail survey of softwood sawmills in Montana to develop a profile of all on-site energy consumption. Energy use is delineated by fuel type on a production basis...

  8. Energy Resources Consumption Minimization in Housing Construction

    Directory of Open Access Journals (Sweden)

    Balastov Alexey

    2017-01-01

    Full Text Available The article deals with the energy savings analysis during operation of buildings, provides the heat balance of residential premises, considers options for energy-efficient solutions for hot water supply systems in buildings. As technical facilities that allow the use of secondary heat sources and solar energy, there are also considered the systems with heat recovery of “gray” wastewater, heat pumps, solar collectors and photoelectric converters.

  9. Tables of energy consumptions in France

    International Nuclear Information System (INIS)

    1997-01-01

    This work presents in a detailed way important data about the evolution of energy in France during the last twenty years. for the totality of economic sectors, then for each of them ( industry, residential, transports and agriculture sector), this analysis brings to light the part that each form of energy takes to the supply of the French market, the importance of equipment parks and the energy economies that have been realized. (N.C.)

  10. Forecasting of the energy consumption; Zamke prognoziranja potrosnje energije

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Z [Zagreb (Croatia)

    1997-12-31

    Urged by earlier continuous failures in forecasting the consumption of energy in the world, essentially characterized by megalomania, the author presents his views on causes of such occurrences. Fundamental cause is considered - logic of a circle - insensitive to social and economic effects on the humanity in general and particularly to the energy consumption. Besides, a lethal influence of voluntarism has been specially studied as well. (author). 13 refs.

  11. Simulation of Energy Consumption and Emissions from Rail Traffic

    DEFF Research Database (Denmark)

    Lindgreen, Erik Bjørn Grønning; Sorenson, Spencer C

    . The calculation procedure is evaluated with respect to resolution of operation conditions, and then evaluated by comparison with experimental data for a variety of passenger and goods trains. The results indicate that the energy consumption from modeling approach is valid to better that 10% for known operating...... characteristics. Emissions are calculated from the energy consumption using average fuel based emissions factors and electrical production emissions factors....

  12. Occupants Influence on the Energy Consumption of Danish Domestic Buildings

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Knudsen, Henrik Nellemose; Kanstrup, Anne Marie

    This report is one of the results from the project “Occupants influence on the energy consumption of Danish domestic buildings – Phase 1”, which is partly funded by EUDP (Journalnr.: 64009-0248, Programområde: Energieffektivisering) The report provides state-of-the-art reviews within the various...... disciplines represented in the project by the project members, which all represent areas that relate to the title on occupants influence on the energy consumption....

  13. Price sensitivity of residential energy consumption in Norway

    International Nuclear Information System (INIS)

    Nesbakken, R.

    1999-01-01

    The main aim of this paper is to test the stability of the results of a model which focus on the relationship between the choice of heating equipment and the residential energy consumption. The results for the income and energy price variables are of special interest. Stability in the time dimension is tested by applying the model on micro data for each of the years 1993-1995. The parameter estimates are stable within a 95% confidence interval. However, the estimated impact of the energy price variable on energy consumption was considerably weaker in 1994 than in 1993 and 1995. The results for two different income groups in the pooled data set are also subject to stability testing. The energy price sensitivity in residential energy consumption is found to be higher for high-income households than for low-income households. 19 refs

  14. Total energy consumption in Finland increased by one percent

    International Nuclear Information System (INIS)

    Timonen, L.

    2000-01-01

    The total energy consumption in Finland increased by less than a percent in 1999. The total energy consumption in 1999 was 1310 PJ corresponding to about 31 million toe. The electric power consumption increased moderately by 1.6%, which is less than the growth of the gross national product (3.5%). The final consumption of energy grew even less, only by 0.5%. Import of electric power increased by 19% in 1999. The import of electric power was due to the availability of low-priced electric power on the Nordic electricity markets. Nuclear power generation increased by 5% and the consumption of wood-based fuels by 3%. The increment of the nuclear power generation increased because of the increased output capacity and good operability of the power plants. Wind power production doubles, but the share of it in the total energy consumption is only about 0.01%. The peat consumption decreased by 12% and the consumption of hydroelectric power by 15%. The decrease in production of hydroelectric power was compensated by an increase import of electric power. The consumption of fossil fuels, coal, oil and natural gas remained nearly the same as in 1998. The gasoline consumption, however, decreased, but the consumption of diesel oil increased due to the increased road transport. The share of the fossil fuels was nearly half of the total energy consumption. The consumption of renewable energy sources remained nearly the same, in 23% if the share of peat is excluded, and in 30% if the share of peat is included. Wood-based fuels are the most significant type of renewable fuels. The share of them in 1999 was over 80% of the total usage of the renewable energy sources. The carbon dioxide emissions in Finland decreased in 1999 by 1.0 million tons. The total carbon dioxide emissions were 56 million tons. The decrease was mainly due to the decrease of the peat consumption. The final consumption of energy increased by 0.5%, being hence about 1019 PJ. Industry is the main consumer of energy

  15. Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Hao, Han; Liu, Feiqi; Liu, Zongwei; Zhao, Fuquan

    2016-01-01

    Highlights: • A process-based, well-to-wheel conceptualized life cycle assessment model is established. • The impacts of using low-octane gasoline on compression ignition engines are examined. • Life cycle energy consumption and GHG emissions reductions are 24.6% and 21.6%. • Significant technical and market barriers are still to be overcome. - Abstract: The use of low-octane gasoline on Gasoline Compression Ignition (GCI) engines is considered as a competitive alternative to the conventional vehicle propulsion technologies. In this study, a process-based, well-to-wheel conceptualized life cycle assessment model is established to estimate the life cycle energy consumption and greenhouse gas (GHG) emissions of the conventional gasoline-Spark Ignition (SI) and low-octane gasoline-GCI pathways. It is found that compared with the conventional pathway, the low-octane gasoline-GCI pathway leads to a 24.6% reduction in energy consumption and a 22.8% reduction in GHG emissions. The removal of the isomerization and catalytic reforming units in the refinery and the higher energy efficiency in the vehicle use phase are the substantial drivers behind the reductions. The results indicate that by promoting the use of low-octane gasoline coupled with the deployment of GCI vehicles, considerable reductions of energy consumption and GHG emissions in the transport sector can be achieved. However, significant technical and market barriers are still to be overcome. The inherent problems of NO_x and PM exhaust emissions associated with GCI engines need to be further addressed with advanced combustion techniques. Besides, the yield of low-octane gasoline needs to be improved through adjusting the refinery configurations.

  16. Conference on new consumption and commercialization models for photovoltaic energy

    International Nuclear Information System (INIS)

    Freier, Karin; Fontaine, Pierre; Mayer, Joerg; Jimenez, Julien; Richard, Pascal; Vogtmann, Michael; Schaefer, Felix; Martin, Nicolas; Buis, Sabine

    2014-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on new consumption and commercialization models for photovoltaic energy. In the framework of this French-German exchange of experience, about 120 participants exchanged views on the new economic models for solar energy producers while the photovoltaic industry has to face a progressive reduction of feed-in tariffs and of other incentive mechanisms. Beside the legal and economic aspects, technical questions around energy storage and integration of photovoltaic production to the grid were also addressed. This document brings together the available presentations (slides) made during this event: 1 - Stimulating self-consumption and direct selling within the EEG (Karin Freier); 2 - Development of PV self-consumption in France (Pierre Fontaine); 3 - experience from applying the new support program for solar energy storage systems (Joerg Mayer); 4 - Call for solar photovoltaic projects for own consumption in Aquitaine region (Julien Jimenez); 5 - SMA Flexible Storage System - New version of the Sunny Island inverter for smart photovoltaic energy storage (Pascal Richard); 6 - PV Own Consumption in industry and commerce - examples und Operating Concepts (Michael Vogtmann); 7 - Supplying tenants in multiple-family housing with solar power in the 'Neue Heimat' project (Felix Schaefer); 8 - How to manage PV-storage self-consumption from a grid point of view? (Nicolas Martin); 9 - Closing talk (Sabine Buis)

  17. Energy Consumption Management of Virtual Cloud Computing Platform

    Science.gov (United States)

    Li, Lin

    2017-11-01

    For energy consumption management research on virtual cloud computing platforms, energy consumption management of virtual computers and cloud computing platform should be understood deeper. Only in this way can problems faced by energy consumption management be solved. In solving problems, the key to solutions points to data centers with high energy consumption, so people are in great need to use a new scientific technique. Virtualization technology and cloud computing have become powerful tools in people’s real life, work and production because they have strong strength and many advantages. Virtualization technology and cloud computing now is in a rapid developing trend. It has very high resource utilization rate. In this way, the presence of virtualization and cloud computing technologies is very necessary in the constantly developing information age. This paper has summarized, explained and further analyzed energy consumption management questions of the virtual cloud computing platform. It eventually gives people a clearer understanding of energy consumption management of virtual cloud computing platform and brings more help to various aspects of people’s live, work and son on.

  18. Continuing growth for world energy consumption

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    The World Energy Outlook of the global energy markets from 1971 to 2020, recently released by the International Energy Agency, is summarised. Covering demand, supply and energy prices, it provides an in-depth review of oil, gas, coal, biomass and power generation. With projections for all energy sectors, it offers a valuable insight into the development of the international energy business. The projections cover all world regions, including industrial and developing countries, and provide a comprehensive view of the main developments and issues affecting demand and supply on a global basis. The Outlook's projections have been derived from a 'reference scenario' that assumes global economic growth of more than 3% per annum, but a slowdown in population growth. Fossil-fuel prices are generally assumed to remain flat throughout the first decade of the projection period (to 2020), with oil and gas prices increasing after 2010 in response to the supply-side pressures. The scenario takes account of a range of major new policies and measures adopted in OECD countries, many of which relate to commitments under the Kyoto Protocol enacted or announced up to mid-2000. Despite the policies and measures in the OECD countries, energy-related carbon dioxide emissions will increase, averaging 2.1% per annum to 2020. This amounts to 60% increase between 1997 and 2020. Fast-growing developing countries heavily contributing to increase in carbon dioxide, as they do in global energy demand

  19. Deep learning for estimating building energy consumption

    NARCIS (Netherlands)

    Mocanu, E.; Nguyen, H.P.; Gibescu, M.; Kling, W.L.

    To improve the design of the electricity infrastructure and the efficient deployment of distributed and renewable energy sources, a new paradigm for the energy supply chain is emerging, leading to the development of smart grids. There is a need to add intelligence at all levels in the grid, acting

  20. Water consumption in the energy sector

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Drews, Martin; Gani, Rafiqul

    2016-01-01

    or biofuels. Hydropower is based on water in rivers or reservoirs. Feedstock production for biofuels may depend on water for irrigation. On the other hand, energy is necessary for pumping of ground- and surface water, for water treatment as well as for transport and distribution of water to end......-users. The waste water is often returned to the environment after energy requiring waste water management.......Energy, water, and food systems are closely interlinked in the Energy-Water-Food Nexus. Water is of paramount importance for the energy sector. Fossil fuels require water for extraction, trans-port and processing. Thermal power plants require water for cooling, whether they use nuclear, fossil...

  1. SDP Policy Iteration-Based Energy Management Strategy Using Traffic Information for Commuter Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaohong Jiao

    2014-07-01

    Full Text Available This paper demonstrates an energy management method using traffic information for commuter hybrid electric vehicles. A control strategy based on stochastic dynamic programming (SDP is developed, which minimizes on average the equivalent fuel consumption, while satisfying the battery charge-sustaining constraints and the overall vehicle power demand for drivability. First, according to the sample information of the traffic speed profiles, the regular route is divided into several segments and the statistic characteristics in the different segments are constructed from gathered data on the averaged vehicle speeds. And then, the energy management problem is formulated as a stochastic nonlinear and constrained optimal control problem and a modified policy iteration algorithm is utilized to generate a time-invariant state-dependent power split strategy. Finally, simulation results over some driving cycles are presented to demonstrate the effectiveness of the proposed energy management strategy.

  2. Modelling Electrical Energy Consumption in Automotive Paint Shop

    Science.gov (United States)

    Oktaviandri, Muchamad; Safiee, Aidil Shafiza Bin

    2018-03-01

    Industry players are seeking ways to reduce operational cost to sustain in a challenging economic trend. One key aspect is an energy cost reduction. However, implementing energy reduction strategy often struggle with obstructions, which slow down their realization and implementation. Discrete event simulation method is an approach actively discussed in current research trend to overcome such obstructions because of its flexibility and comprehensiveness. Meanwhile, in automotive industry, paint shop is considered the most energy consumer area which is reported consuming about 50%-70% of overall automotive plant consumption. Hence, this project aims at providing a tool to model and simulate energy consumption at paint shop area by conducting a case study at XYZ Company, one of the automotive companies located at Pekan, Pahang. The simulation model was developed using Tecnomatix Plant Simulation software version 13. From the simulation result, the model was accurately within ±5% for energy consumption and ±15% for maximum demand after validation with real system. Two different energy saving scenarios were tested. Scenario 1 was based on production scheduling approach under low demand situation which results energy saving up to 30% on the consumption. Meanwhile scenario 2 was based on substituting high power compressor with the lower power compressor. The results were energy consumption saving of approximately 1.42% and maximum demand reduction about 1.27%. This approach would help managers and engineers to justify worthiness of investment for implementing the reduction strategies.

  3. Specific energy consumption in microwave drying of garlic cloves

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.P. [Department of Processing and Food Engineering, College of Technology and Agricultural Engineering, Udaipur 313 001, Rajasthan (India); Prasad, Suresh [Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur 721 302 (India)

    2006-09-15

    The convective and microwave-convective drying of garlic cloves was carried out in a laboratory scale microwave dryer, which was developed for this purpose. The specific energy consumption involved in the two drying processes was estimated from the energy supplied to the various components of the dryer during the drying period. The specific energy consumption was computed by dividing the total energy supplied by amount of water removed during the drying process. The specific energy consumption in convective drying of garlic cloves at 70{sup o}C temperature and 1.0m/s air velocity was estimated as 85.45MJ/kg of water evaporated. The increase in air velocity increased the energy consumption. The specific energy consumption at 40W of microwave power output, 70{sup o}C air temperature and 1.0m/s air velocity was 26.32MJ/kg of water removed, resulting in about a 70% energy saving as compared to convective drying processes. The drying time increased with increase in air velocity in microwave-convective drying process; a trend reverse to what was observed in convective drying process of garlic cloves. (author)

  4. Peak energy consumption and CO2 emissions in China

    International Nuclear Information System (INIS)

    Yuan, Jiahai; Xu, Yan; Hu, Zheng; Zhao, Changhong; Xiong, Minpeng; Guo, Jingsheng

    2014-01-01

    China is in the processes of rapid industrialization and urbanization. Based on the Kaya identity, this paper proposes an analytical framework for various energy scenarios that explicitly simulates China's economic development, with a prospective consideration on the impacts of urbanization and income distribution. With the framework, China's 2050 energy consumption and associated CO 2 reduction scenarios are constructed. Main findings are: (1) energy consumption will peak at 5200–5400 million tons coal equivalent (Mtce) in 2035–2040; (2) CO 2 emissions will peak at 9200–9400 million tons (Mt) in 2030–2035, whilst it can be potentially reduced by 200–300 Mt; (3) China's per capita energy consumption and per capita CO 2 emission are projected to peak at 4 tce and 6.8 t respectively in 2020–2030, soon after China steps into the high income group. - Highlights: • A framework for modeling China's energy and CO 2 emissions is proposed. • Scenarios are constructed based on various assumptions on the driving forces. • Energy consumption will peak in 2035–2040 at 5200–5400 Mtce. • CO 2 emissions will peak in 2030–2035 at about 9300 Mt and be cut by 300 Mt in a cleaner energy path. • Energy consumption and CO 2 emissions per capita will peak soon after China steps into the high income group

  5. Simulation of embedded systems for energy consumption estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lafond, S.

    2009-07-01

    Technology developments in semiconductor fabrication along with a rapid expansion of the market for portable devices, such as PDAs and mobile phones, make the energy consumption of embedded systems a major problem. Indeed the need to provide an increasing number of computational intensive applications and at the same time to maximize the battery life of portable devices can be seen as incompatible trends. System simulation is a flexible and convenient method for analyzinging and exploring the performance of a system or sub-system. At the same time, the increasing use of computational intensive applications strengthens the need to maximize the battery life of portable devices. As a consequence, the simulation of embedded systems for energy consumption estimation is becoming essential in order to study and explore the influence of system design choices on the system energy consumption. The original publications presented in the second part of this thesis propose several frameworks for evaluating the effects of particular system and software architectures on the system energy consumption. From a software point of view Java and C based applications are studied, and from a hardware perspective systems using general purpose processor and heterogeneous platforms with dedicated hardware accelerators are analyzed. Papers 1 and 2 present a framework for estimating the energy consumption of an embedded Java Virtual Machine and show how an accurate energy consumption model of Java opcodes can be obtained. Paper 3 evaluates the cost-effectiveness of Forward Error Correction algorithms in terms of energy consumption and demonstrates that a substantial energy saving is achievable in a DVB-H receiver when a FEC algorithm is used for file downloading scenarios. Paper 4 and 5 present the simulation of heterogeneous platforms and point out the drawback of different mechanisms used to synchronize a hardware accelerator used as a peripheral device. Paper 6 shows that the use of a multi

  6. Energy consumption in the food chain - Comparing alternative options in food production and consumption

    NARCIS (Netherlands)

    Dutilh, CE; Kramer, KJ

    Energy consumption in the various stages of the food chain, provides a reasonable indicator for the environmental impact in the production of food. This paper provides specific information on the energy requirement for the main alternatives in each production stage, which should allow the

  7. Energy consumption and information transmission in model neurons

    International Nuclear Information System (INIS)

    Torrealdea, Francisco J.; Sarasola, Cecilia; D'Anjou, Alicia

    2009-01-01

    This work deals with the problem of whether biological computation optimizes energy use in the way neurons communicate. By assigning an electrical energy function to a Hindmarsh-Rose neuron we are able to find its average energy consumption when it reacts to incoming signals sent by another neuron coupled to it by an electrical synapse. We find that there are values of the coupling strength at which the ratio of mutual information to energy consumption is maximum and, therefore, communicating at these coupling values would be energetically the most efficient option.

  8. Energy consumption and information transmission in model neurons

    Energy Technology Data Exchange (ETDEWEB)

    Torrealdea, Francisco J. [Department of Computer Science, University of the Basque Country, 20018 San Sebastian (Spain)], E-mail: francisco.torrealdea@ehu.es; Sarasola, Cecilia [Department of Physics of Materials, University of the Basque Country, 20018 San Sebastian (Spain); D' Anjou, Alicia [Department of Computer Science, University of the Basque Country, 20018 San Sebastian (Spain)

    2009-04-15

    This work deals with the problem of whether biological computation optimizes energy use in the way neurons communicate. By assigning an electrical energy function to a Hindmarsh-Rose neuron we are able to find its average energy consumption when it reacts to incoming signals sent by another neuron coupled to it by an electrical synapse. We find that there are values of the coupling strength at which the ratio of mutual information to energy consumption is maximum and, therefore, communicating at these coupling values would be energetically the most efficient option.

  9. Energy consumption and energy R and D in OECD: Perspectives from oil prices and economic growth

    International Nuclear Information System (INIS)

    Leng Wong, Siang; Chia, Wai-Mun; Chang, Youngho

    2013-01-01

    We estimate the short-run and long-run elasticities of various types of energy consumption and energy R and D to changes in oil prices and income of the 20 OECD countries over the period of 1980–2010 using the Nerlove partial adjustment model (NPAM). We find negative income elasticity for coal consumption but positive income elasticity for oil and gas consumption suggesting the importance of economic growth in encouraging the usage of cleaner energy from coal to oil and gas. By introducing time dummies into the regressions, we show that climatic mitigation policies are able to promote the usage of cleaner energies. Through the dynamic linkages between energy consumption and energy R and D, we find that fossil fuel consumption promotes fossil fuel R and D and fossil fuel R and D in turn drives its own consumption. Renewable energy R and D which is more responsive to economic growth reduces fossil fuel consumption and hence fossil fuel R and D. - Highlights: • Economic growth encourages the use of cleaner forms of energy. • Economic growth promotes renewable energy R and D. • Subsidies for renewable energy R and D promote renewable energy consumption. • Fossil fuel R and D promotes fossil fuel consumption in countries with oil reserves. • Oil consumption reduces significantly with higher oil prices

  10. Energy consumption of chemical uranium enrichment

    International Nuclear Information System (INIS)

    Miyake, T.; Takeda, K.; Obanawa, H.

    1987-01-01

    A quantitative study of chemical separation energy for enriching uranium-235 by the redox chromatography was conducted. Isotope exchange reactions between U 4+ -UO 2 2+ ions in the enrichment column are maintained by the redox reactions. The chemical separation energy is ultimately supplied by hydrogen and oxygen gas for regenerating redox agents. The redox energy for the isotope separation is theoretically predicted as a function of the dynamic enrichment factor observed in the chromatographic development of uranium adsorption band. Thermodynamic treatments of the equilibrium reactions implies and inverse redox reaction which can be enhanced by the chemical potential of the ion-exchange reaction of oxidant. Experimental results showed 30 to 90% recovery of the redox energy by the inverse reaction. These results will devise a simplified redox chromatography process where a number of columns in one module is reduced

  11. Energy drink consumption among New Zealand adolescents: Associations with mental health, health risk behaviours and body size.

    Science.gov (United States)

    Utter, Jennifer; Denny, Simon; Teevale, Tasileta; Sheridan, Janie

    2018-03-01

    With the increase in popularity of energy drinks come multiple concerns about the associated health indicators of young people. The current study aims to describe the frequency of consumption of energy drinks in a nationally representative sample of adolescents and to explore the relationship between energy drink consumption and health risk behaviours, body size and mental health. Data were collected as part of Youth'12, a nationally representative survey of high school students in New Zealand (2012). In total, 8500 students answered a comprehensive questionnaire about their health and well-being, including multiple measures of mental well-being, and were weighed and measured for height. More than one-third (35%) of young people consumed energy drinks in the past week, and 12% consumed energy drinks four or more times in the past week. Energy drink consumption was significantly associated with greater depressive symptoms, greater emotional difficulties and lower general subjective well-being. Frequent energy drink consumption was also associated with binge drinking, smoking, engagement in unsafe sex, violent behaviours, risky motor vehicle use and disordered eating behaviours. There was no association between consumption of energy drinks and student body size. Consumption of energy drinks is associated with a range of health risk behaviours for young people. Strategies to limit consumption of energy drinks by young people are warranted. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  12. Low energy consumption vortex wave flow membrane bioreactor.

    Science.gov (United States)

    Wang, Zhiqiang; Dong, Weilong; Hu, Xiaohong; Sun, Tianyu; Wang, Tao; Sun, Youshan

    2017-11-01

    In order to reduce the energy consumption and membrane fouling of the conventional membrane bioreactor (MBR), a kind of low energy consumption vortex wave flow MBR was exploited based on the combination of biofilm process and membrane filtration process, as well as the vortex wave flow technique. The experimental results showed that the vortex wave flow state in the membrane module could be formed when the Reynolds number (Re) of liquid was adjusted between 450 and 1,050, and the membrane flux declined more slowly in the vortex wave flow state than those in the laminar flow state and turbulent flow state. The MBR system was used to treat domestic wastewater under the condition of vortex wave flow state for 30 days. The results showed that the removal efficiency for CODcr and NH 3 -N was 82% and 98% respectively, and the permeate quality met the requirement of 'Water quality standard for urban miscellaneous water consumption (GB/T 18920-2002)'. Analysis of the energy consumption of the MBR showed that the average energy consumption was 1.90 ± 0.55 kWh/m 3 (permeate), which was only two thirds of conventional MBR energy consumption.

  13. Fuel consumption and greenhouse gas calculator for diesel and biodiesel-powered vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Factors that influence fuel consumption include environmental conditions, maintenance, poor driving techniques, and driving speed. Developed by Natural Resources Canada, the SmartDriver training programs were designed to help fleet managers, drivers, and instructors to learn methods of improving fuel economy. This fuel consumption and greenhouse gas (GHG) calculator for diesel and biodiesel-powered vehicles provides drivers with a method of calculating fuel consumption rates when driving. It includes a log-book in which to record odometer readings and a slide-rule in which to determine the litres of fuel used during a trip. The scale showed the number of kg of GHGs produced by burning a particular amount of fuel for both biodiesel and diesel fuels. 1 fig.

  14. A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles

    Science.gov (United States)

    Wang, Bin; Xu, Jun; Cao, Binggang; Zhou, Xuan

    2015-05-01

    This paper proposes a novel topology of multimode hybrid energy storage system (HESS) and its energy management strategy for electric vehicles (EVs). Compared to the conventional HESS, the proposed multimode HESS has more operating modes and thus it could in further enhance the efficiency of the system. The rule-based control strategy and the power-balancing strategy are developed for the energy management strategy to realize mode selection and power distribution. Generally, the DC-DC converter will operate at peak efficiency to convey the energy from the batteries to the UCs. Otherwise, the pure battery mode or the pure ultracapacitors (UCs) mode will be utilized without the DC-DC converter. To extend the battery life, the UCs have the highest priority to recycle the energy and the batteries are isolated from being recharged directly during regenerative braking. Simulations and experiments are established to validate the proposed multimode HESS and its energy management strategy. The results reveal that the energy losses in the DC-DC converter, the total energy consumption and the overall system efficiency of the proposed multimode HESS are improved compared to the conventional HESS.

  15. Tweeting : Smart meters raise awareness of energy consumption in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-11-15

    The University of Mississippi (UM) will monitor, analyze and report on energy consumption in its campus buildings in real-time using SmartSynch Smart Meters. The technology uses smart meter data to help identify a detailed pattern of electricity usage with the objective of finding methods to alter behaviour to reduce electricity usage and carbon emissions. SmartSynch installed 16 Smart Meters on campus with additional deployments being planned. The technology will enable the university to monitor energy consumption, track building power performance over time, compare building energy usage, and review the impact of the weather on energy use while reducing its carbon footprint. Additionally, UM will use Facebook, Twitter and an RSS feed to provide regular public updates on its buildings' energy consumption based on SmartSynch Smart Meter data. Each building will have its own profile on the social networking sites. 1 ref., 1 fig.

  16. Carbon dioxide emissions, output, and energy consumption categories in Algeria.

    Science.gov (United States)

    Amri, Fethi

    2017-06-01

    This study examines the relation between CO 2 emissions, income, non-renewable, and renewable energy consumption in Algeria during the period extending from 1980 to 2011. Our work gives particular attention to the validity of environmental Kuznets curve (EKC) hypothesis. The autoregressive distributed lag (ARDL) with break point method outcome demonstrates the positive effect of non-renewable type of energy on CO 2 emissions consumption. On the contrary, the results reveal an insignificant effect of renewable energy on environment improvement. Moreover, the results accept the existence of EKC hypothesis but the highest gross domestic product value in logarithm scale of our data is inferior to the estimated turning point. Consequently, policy-makers in Algeria should expand the ratio of renewable energy and should decrease the quota of non-renewable energy consumption.

  17. The energy consumption of control systems; Het energiegebruik van regelinstallaties

    Energy Technology Data Exchange (ETDEWEB)

    Van Gulik, A.R.; De Wildt, M.G. [Grontmij Nederland, Amersfoort (Netherlands)

    2013-07-15

    Control systems for e.g. indoor climate and illumination are essential in modern building services, and useful for comfort or energy conservation. Energy conservation is of course an important aim, but what is the energy consumption of the control systems? Is the consumption higher than the savings? This question was subject of a comprehensive study, with measurements and simulation calculations. It can be concluded that the energy consumption of control installation for spaces is substantial [Dutch] Regelinstallaties voor bijvoorbeeld klimaatregeling, verlichtingsregeling en domotica zijn niet meer weg te denken uit de moderne installatietechniek, of ze nu dienen voor comfort, gemak of energiebesparing. Maar hoeveel energie gebruiken deze installaties eigenlijk? Voor ontwerpers blijkt dit helemaal geen issue te zijn terwijl adviseurs, installateurs en zelfs fabrikanten zeggen hiervan geen idee te hebben. Door metingen en het gebruik van berekeningsmodellen is vastgesteld wat het energiegebruik van regelinstallaties op jaarbasis is. Dit blijkt substantieel te zijn, maar er zijn mogelijkheden om het gebruik te reduceren.

  18. Tweeting : Smart meters raise awareness of energy consumption in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2009-11-15

    The University of Mississippi (UM) will monitor, analyze and report on energy consumption in its campus buildings in real-time using SmartSynch Smart Meters. The technology uses smart meter data to help identify a detailed pattern of electricity usage with the objective of finding methods to alter behaviour to reduce electricity usage and carbon emissions. SmartSynch installed 16 Smart Meters on campus with additional deployments being planned. The technology will enable the university to monitor energy consumption, track building power performance over time, compare building energy usage, and review the impact of the weather on energy use while reducing its carbon footprint. Additionally, UM will use Facebook, Twitter and an RSS feed to provide regular public updates on its buildings' energy consumption based on SmartSynch Smart Meter data. Each building will have its own profile on the social networking sites. 1 ref., 1 fig.

  19. Wireless network interface energy consumption implications of popular streaming formats

    Science.gov (United States)

    Chandra, Surendar

    2001-12-01

    With the proliferation of mobile streaming multimedia, available battery capacity constrains the end-user experience. Since streaming applications tend to be long running, wireless network interface card's (WNIC) energy consumption is particularly an acute problem. In this work, we explore the WNIC energy consumption implications of popular multimedia streaming formats from Microsoft (Windows media), Real (Real media) and Apple (Quick Time). We investigate the energy consumption under varying stream bandwidth and network loss rates. We also explore history-based client-side strategies to reduce the energy consumed by transitioning the WNICs to a lower power consuming sleep state. We show that Microsoft media tends to transmit packets at regular intervals; streams optimized for 28.8 Kbps can save over 80% in energy consumption with 2% data loss. A high bandwidth stream (768 Kbps) can still save 57% in energy consumption with less than 0.3% data loss. For high bandwidth streams, Microsoft media exploits network-level packet fragmentation, which can lead to excessive packet loss (and wasted energy) in a lossy network. Real stream packets tend to be sent closer to each other, especially at higher bandwidths. Quicktime packets sometimes arrive in quick succession; most likely an application level fragmentation mechanism. Such packets are harder to predict at the network level without understanding the packet semantics.

  20. Analysis on Energy Consumption and Indoor Environment in Kunming, China

    Directory of Open Access Journals (Sweden)

    Tianchi Hu

    2012-10-01

    Full Text Available The purposes of this study are to investigate and analyze the actual conditions of the urban residential energy consumption, and hence to ascertain what will be the important factors that influence the annual energy consumption in Kunming, which has a mild climate. The questionnaire surveys reveal building characteristics, housing appliances, household characteristics, indoor thermal environment and aspects of life style, during winter and summer seasons. The questionnaire analyses show that only 5% of the investigated households have air conditioning, and 12% have heating appliances. Most households use solar energy as a water heater energy source because the sunshine hours in Kunming are long. The energy consumption analyses show that the average annual energy consumption of households in Kunming reached 12.2 GJ, and cooking accounted for 5.3 GJ, which is the largest part. Most of the time in summer, the outdoor temperature is lower than living room and bedroom temperatures; thus, natural ventilation is a useful cooling method for households in Kunming. The absolute humidity in summer is about 11 g/kg, while in winter it is about 5 g/kg. The influence factor analyses show that building construction year, water heater type and annual income are important influential factors on annual energy consumption.

  1. The energy consumption in the ceramic tile industry in Brazil

    International Nuclear Information System (INIS)

    Ciacco, Eduardo F.S.; Rocha, Jose R.; Coutinho, Aparecido R.

    2017-01-01

    The ceramic industry occupies a prominent place in the Brazilian industrial context, representing about 1.0% in the GDP composition. On the other hand, it represent about 1.9% of all energy consumed in the country, and 5.8% of the energy consumed in the Brazilian industrial sector in 2014. Regarding the power consumption by the ceramic industry, most is derived from renewable sources (firewood), followed by use of fossil fuels, mainly natural gas (NG). This study was conducted to quantify the energy consumption in the production of ceramic tiles (CT), by means of experimental data obtained directly in the industry and at every step of the manufacturing process. The step of firing and sintering has the highest energy consumption, with approximately 56% of the total energy consumed. In sequence, have the atomization steps with 30% and the drying with 14%, of total energy consumption in the production of ceramic tiles, arising from the use of NG. In addition, it showed that the production of ceramic tiles by wet process has energy consumption four times the dry production process, due to the atomization step.

  2. Online-based energy auditing and incentive mechanisms to reduce domestic energy consumption

    OpenAIRE

    Lossin, Felix; Staake, Thorsten; Fleisch, Elgar

    2014-01-01

    Domestic energy consumption accounts for about 20-30% of total energy use in western countries [1], [2]. On the level of single households, however, energy consumption tends to vary greatly. This is particularly due to differences regarding behavior and decisions made by individuals. For example, heating and ventilation behavior, the intensity of the use of electrical appliances and hot water, as well as home insulation and weatherization provisions affect total energy consumption. Therefore,...

  3. Production, consumption and research on solar energy

    DEFF Research Database (Denmark)

    Sanz-Casado, Elias; Lascurain-Sánchez, Maria Luisa; Serrano-Lopez, Antonio Eleazar

    2014-01-01

    An analysis of scientific publications on solar energy was conducted to determine whether public interest in the subject is mirrored by more intense research in the area. To this end, the research published by Spain and Germany, the two EU countries with the highest installed photovoltaic capacity......, was analyzed based on Web of Science data. The results show that: solar output has risen substantially; solar research has a greater impact (measured in terms of citations) than publications on other renewables such as wind power; scientific production on solar energy is high in Germany and Spain, which...... intense. The main conclusion is the divergence in Germany and Spain between solar energy demand/output growth, being exponential, and the growth of research papers on the subject, which is linear...

  4. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    Science.gov (United States)

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications.

  5. An Energy Consumption Study for a Malaysian University

    OpenAIRE

    Fu E. Tang

    2012-01-01

    The increase in energy demand has raised concerns over adverse impacts on the environment from energy generation. It is important to understand the status of energy consumption for institutions such as Curtin Sarawak to ensure the sustainability of energy usage, and also to reduce its costs. In this study, a preliminary audit framework was developed and was conducted around the Malaysian campus to obtain information such as the number and specifications of electrical appl...

  6. Concerned consumption. Global warming changing household domestication of energy

    International Nuclear Information System (INIS)

    Aune, Margrethe; Godbolt, Åsne Lund; Sørensen, Knut H.; Ryghaug, Marianne; Karlstrøm, Henrik; Næss, Robert

    2016-01-01

    This paper addresses possible effects of the growing focus on global warming on households’ domestication of energy and the dynamics of energy consumption by comparing data pertaining to the domestication of energy within Norwegian households from two time periods: first, 1991–1995, when climate change was given little public attention, and, second, 2006–2009, after climate change became a major public concern. In the first period, we observed that the domestication of energy resulted in an energy culture emphasizing comfort and convenience with respect to everyday life and the abundant supply of clean hydropower. In the second period, this culture seemed to have changed, making households more concerned about their energy consumption. Consumption of energy was linked to climate change, and many interviewees claimed to save energy. However, the dominant expectation was still to be able to manage everyday life in a convenient and comfortable way. Thus, climate change concerns produced some but not very radical changes in the practical domestication of energy, including energy saving. A main effect was feelings of guilt, tempered by arguments regarding why change is difficult and complaints about political inaction. Thus, public engagement with climate change issues may facilitate energy efficiency policy but to succeed, wider climate policy measures seem to be needed. - Highlights: • Increased climate change focus has affected household domestication of energy. • The changes produced concerns about energy consumption. • Some energy saving activities were reported. • Household energy cultures are less stable than anticipated. • Suggests wider climate policy measures to motivate for energy efficiency.

  7. Estimating Energy Consumption of Transport Modes in China Using DEA

    Directory of Open Access Journals (Sweden)

    Weibin Lin

    2015-04-01

    Full Text Available The rapid growth of transport requirements in China will incur increasing transport energy demands and associated environmental pressures. In this paper, we employ a generalized data envelopment analysis (DEA to evaluate the relative energy efficiency of rail, road, aviation and water transport from 1971 to 2011 by considering the energy input and passenger-kilometers (PKM and freight ton-kilometers (TKM outputs. The results show that the optimal energy efficiencies observed in 2011 are for rail and water transport, with the opposite observed for the energy efficiencies of aviation and road transport. In addition, we extend the DEA model to estimate future transport energy consumption in China. If each transport mode in 2020 is optimized throughout the observed period, the national transport energy consumption in 2020 will reach 497,701 kilotons coal equivalent (ktce, whereas the annual growth rate from 2011 to 2020 will be 5.7%. Assuming that efficiency improvements occur in this period, the estimated national transport energy consumption in 2020 will be 443,126 ktce, whereas the annual growth rate from 2011 to 2020 will be 4.4%, which is still higher than that of the national total energy consumption (3.8%.

  8. Energy consumption and CO2 emissions in Iran, 2025.

    Science.gov (United States)

    Mirzaei, Maryam; Bekri, Mahmoud

    2017-04-01

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO 2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO 2 emission trends for Iran over 2000-2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO 2 emissions in 2025 will reach 985million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO 2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO 2 emission outlines. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Energy consumptions per sector; Les consommations d'energie par secteur

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document presents the energy consumption data of France per energy type and sector of use in the form of tables and graphics for the last decade and sometimes before: 1 - residential and tertiary sector: energy consumption per energy source, energy consumption per use (coal, heavy and domestic fuels, natural gas, LPG (butane, propane), electricity), comparison of the share of each energy source between 1973 and 2003, 20 years of space heating data in main dwellings (1982-2002), district heating networks from 1987 to 1997; 2 - transportation sector: fuel consumption of individual cars in France (1990-2003, 1990-2002, 1990-2001, 1987-1999), some indicators about the energy consumption in transports in France (2000-2001); 3 - industry sector: consumption of fuel substitutes in the cement industry in 2001, importance and limitations. (J.S.)

  10. Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model

    Directory of Open Access Journals (Sweden)

    Tian Wu

    2014-11-01

    Full Text Available This paper presents a model for the projection of Chinese vehicle stocks and road vehicle energy demand through 2050 based on low-, medium-, and high-growth scenarios. To derive a gross-domestic product (GDP-dependent Gompertz function, Chinese GDP is estimated using a recursive dynamic Computable General Equilibrium (CGE model. The Gompertz function is estimated using historical data on vehicle development trends in North America, Pacific Rim and Europe to overcome the problem of insufficient long-running data on Chinese vehicle ownership. Results indicate that the number of projected vehicle stocks for 2050 is 300, 455 and 463 million for low-, medium-, and high-growth scenarios respectively. Furthermore, the growth in China’s vehicle stock will increase beyond the inflection point of Gompertz curve by 2020, but will not reach saturation point during the period 2014–2050. Of major road vehicle categories, cars are the largest energy consumers, followed by trucks and buses. Growth in Chinese vehicle demand is primarily determined by per capita GDP. Vehicle saturation levels solely influence the shape of the Gompertz curve and population growth weakly affects vehicle demand. Projected total energy consumption of road vehicles in 2050 is 380, 575 and 586 million tonnes of oil equivalent for each scenario.

  11. Towards low energy mobility using light and ultralight electric vehicles

    OpenAIRE

    Van den Bossche, Alex; Sergeant, Peter; Hofman, Isabelle

    2012-01-01

    Electrical vehicles are seriously considered today. However their energy needs depend seriously on the way how they are designed, ranging from electric bicycles to the electrical utility vehicle, it can differ from 1kWh to more than 20kWh/100km. One can look at the problem if it is better to use compressed natural gas in a vehicle directly or is it better to make electricity first and use that electricity in an electric vehicle. A special attention is given to the development of ultra-ligh...

  12. Present and future energy consumption for passenger transportation in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Kuhne, M.; Wolffram, U.

    1981-01-01

    Passenger transportation in Germany was investigated in order to determine real energy consumption. For typical passengers, energy consumption for overland travel and charter flights was studied. The energy needed for air traffic was compared with that for transportation overland (railway, car, bus), taking into account transportation to the airport or railway station. Transportation makes up about 17% of German primary energy consumption, i.e., road traffic 14%, railway traffic 1.6%, and air traffic 1%. Specific energy consumption (overland travel) of intercity trains, airplanes and cars is in the proportion 1.0 to 3.7 to 4.0 (1980) and is expected to be 1 to 2.4 to 3.1 by the year 2000. For holiday trips, specific energy consumption for bus, train, car and airplane travel is in the proportion 1.0 to 1.4 to 3.6 to 3.4 (1980) and is expected to be 1 to 1.4 to 2.5 to 2.9 by 2000. (ESA)

  13. Circadian rhythm of energy expenditure and oxygen consumption.

    Science.gov (United States)

    Leuck, Marlene; Levandovski, Rosa; Harb, Ana; Quiles, Caroline; Hidalgo, Maria Paz

    2014-02-01

    This study aimed to evaluate the effect of continuous and intermittent methods of enteral nutrition (EN) administration on circadian rhythm. Thirty-four individuals, aged between 52 and 80 years, were fed through a nasoenteric tube. Fifteen individuals received a continuous infusion for 24 hours/d, and 19 received an intermittent infusion in comparable quantities, every 4 hours from 8:00 to 20:00. In each patient, 4 indirect calorimetric measurements were carried out over 24 hours (A: 7:30, B: 10:30, C: 14:30, and D: 21:30) for 3 days. Energy expenditure and oxygen consumption were significantly higher in the intermittent group than in the continuous group (1782 ± 862 vs 1478 ± 817 kcal/24 hours, P = .05; 257 125 vs 212 117 ml/min, P = .048, respectively). The intermittent group had higher levels of energy expenditure and oxygen consumption at all the measured time points compared with the continuous group. energy expenditure and oxygen consumption in both groups were significantly different throughout the day for 3 days. There is circadian rhythm variation of energy expenditure and oxygen consumption with continuous and intermittent infusion for EN. This suggests that only one indirect daily calorimetric measurement is not able to show the patient's true needs. Energy expenditure is higher at night with both food administration methods. Moreover, energy expenditure and oxygen consumption are higher with the intermittent administration method at all times.

  14. Energy Efficient Smartphones: Minimizing the Energy Consumption of Smartphone GPUs using DVFS Governors

    KAUST Repository

    Ahmad, Enas M.

    2013-01-01

    , they are significantly adding an overhead on the limited energy of the battery. This thesis aims at enhancing the energy efficiency of modern smartphones and increasing their battery life by minimizing the energy consumption of smartphones Graphical Processing Unit (GPU

  15. Estimating Household Travel Energy Consumption in Conjunction with a Travel Demand Forecasting Model

    Energy Technology Data Exchange (ETDEWEB)

    Garikapati, Venu M. [Systems Analysis and Integration Section, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401; You, Daehyun [Maricopa Association of Governments, 302 North First Avenue, Suite 300, Phoenix, AZ 85003; Zhang, Wenwen [School of City and Regional Planning, Center for Geographic Information Systems, Georgia Institute of Technology, 760 Spring Street, Suite 230, Atlanta, GA 30308; Pendyala, Ram M. [School of Sustainable Engineering and the Built Environment, Arizona State University, 660 South College Avenue, Tempe, AZ 85281; Guhathakurta, Subhrajit [School of City and Regional Planning, Center for Geographic Information Systems, Georgia Institute of Technology, 760 Spring Street, Suite 230, Atlanta, GA 30308; Brown, Marilyn A. [School of Public Policy, 685 Cherry Street, Georgia Institute of Technology, Atlanta, GA 30332; Dilkina, Bistra [School of Computational Science and Engineering, 266 Ferst Drive, Georgia Institute of Technology, Atlanta, GA 30332

    2017-01-01

    This paper presents a methodology for the calculation of the consumption of household travel energy at the level of the traffic analysis zone (TAZ) in conjunction with information that is readily available from a standard four-step travel demand model system. This methodology embeds two algorithms. The first provides a means of allocating non-home-based trips to residential zones that are the source of such trips, whereas the second provides a mechanism for incorporating the effects of household vehicle fleet composition on fuel consumption. The methodology is applied to the greater Atlanta, Georgia, metropolitan region in the United States and is found to offer a robust mechanism for calculating the footprint of household travel energy at the level of the individual TAZ; this mechanism makes possible the study of variations in the energy footprint across space. The travel energy footprint is strongly correlated with the density of the built environment, although socioeconomic differences across TAZs also likely contribute to differences in travel energy footprints. The TAZ-level calculator of the footprint of household travel energy can be used to analyze alternative futures and relate differences in the energy footprint to differences in a number of contributing factors and thus enables the design of urban form, formulation of policy interventions, and implementation of awareness campaigns that may produce more-sustainable patterns of energy consumption.

  16. Convergence in energy consumption per capita among ASEAN countries

    International Nuclear Information System (INIS)

    Mishra, Vinod; Smyth, Russell

    2014-01-01

    We test for convergence in energy consumption per capita among ASEAN countries over the period 1971 to 2011 using the panel KPSS stationarity test and panel Lagrange multiplier (LM) unit root test. The results for the panel stationarity and unit root tests with structural breaks find support for energy convergence in ASEAN. - Highlights: • We test for convergence in energy consumption per capita among the ASEAN nations. • Univariate conventional unit root tests provide mixed evidence of convergence. • Panel unit root tests with structural breaks support convergence hypothesis

  17. The method of planning the energy consumption for electricity market

    Science.gov (United States)

    Russkov, O. V.; Saradgishvili, S. E.

    2017-10-01

    The limitations of existing forecast models are defined. The offered method is based on game theory, probabilities theory and forecasting the energy prices relations. New method is the basis for planning the uneven energy consumption of industrial enterprise. Ecological side of the offered method is disclosed. The program module performed the algorithm of the method is described. Positive method tests at the industrial enterprise are shown. The offered method allows optimizing the difference between planned and factual consumption of energy every hour of a day. The conclusion about applicability of the method for addressing economic and ecological challenges is made.

  18. Methods for Reducing the Energy Consumption of Mobile Broadband Networks

    DEFF Research Database (Denmark)

    Micallef, Gilbert

    2010-01-01

    Up until recently, very little consideration has been given towards reducing the energy consumption of the networks supporting mobile communication. This has now become an important issue since with the predicted boost in traffic, network operators are required to upgrade and extend their networks......, increasing also their overall energy consumption. However, traffic analysis shows that during a 24 hour period, the volume of carried traffic varies continuously, with the network operating anywhere close to its full capacity for very short periods of time. The problem is that during hours of low network...... traffic the energy consumption remains high. This article proposes two major solutions for mitigating this problem. In the first case, an energy saving between 14% and 36% is observed by allowing the network to dynamically optimize its available capacity based on the traffic being carried. In the second...

  19. Energy Consumption Information Services for Smart Home Inhabitants

    Science.gov (United States)

    Schwanzer, Michael; Fensel, Anna

    We investigate services giving users an adequate insight on his or her energy consumption habits in order to optimize it in the long run. The explored energy awareness services are addressed to inhabitants of smart homes, equipped with smart meters, advanced communication facilities, sensors and actuators. To analyze the potential of such services, a game at a social network Facebook has been designed and implemented, and the information about players' responses and interactions within the game environment has been collected and analyzed. The players have had their virtual home energy usage visualized in different ways, and had to optimize the energy consumption basing on their own perceptions of the consumption information. Evaluations reveal, in particular, that users are specifically responsive to information shown as a real-time graph and as costs in Euro, and are able to produce and share with each other policies for managing their smart home environments.

  20. Consumption Behavior Analytics-Aided Energy Forecasting and Dispatch

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Rui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jiang, Huaiguang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Kaiqing [University of Illinois Urbana-Champaign; Zhang, Jun Jason [University of Denver

    2017-08-17

    For decades, electricity customers have been treated as mere recipients of electricity in vertically integrated power systems. However, as customers have widely adopted distributed energy resources and other forms of customer participation in active dispatch (such as demand response) have taken shape, the value of mining knowledge from customer behavior patterns and using it for power system operation is increasing. Further, the variability of renewable energy resources has been considered a liability to the grid. However, electricity consumption has shown the same level of variability and uncertainty, and this is sometimes overlooked. This article investigates data analytics and forecasting methods to identify correlations between electricity consumption behavior and distributed photovoltaic (PV) output. The forecasting results feed into a predictive energy management system that optimizes energy consumption in the near future to balance customer demand and power system needs.

  1. Electricity's "Disappearing Act": Understanding Energy Consumption and Phantom Loads

    Science.gov (United States)

    Rusk, Bryan; Mahfouz, Tarek; Jones, James

    2011-01-01

    Energy exists in many forms and can be converted from one form to another. However, this conversion is not 100% efficient, and energy is lost in the form of heat during conversion. In addition, approximately 6% of the monthly consumption of the average American household's electricity is neither lost nor used by its residents. These losses are…

  2. Engineering tools for complex task of reducing energy consumption

    NARCIS (Netherlands)

    Hensen, J.L.M.

    1994-01-01

    Reduction of energy consumption in buildings while ensuring a good indoor environment is a very challenging and difficult engineering task. For this we need tools which are based on an integral approach of the building, control systems, occupants and outdoor environment. A building energy simulation

  3. Electrode contact configuration and energy consumption in spinal cord stimulation

    NARCIS (Netherlands)

    de Vos, Cecilia Cecilia Clementine; de Vos, Cecile C.; Hilgerink, Marjolein P.; Buschman, Hendrik P.J.; Buschman, H.P.J.; Holsheimer, J.

    2009-01-01

    Objective. To test the hypothesis that in spinal cord stimulation, in contrast to an increase of the number of anodes which reduces energy consumption per pulse, an increase of the number of cathodes raises the energy per pulse. Methods. Patients with an Itrel 3 pulse generator and a Pisces Quad

  4. Energy consumption performance analysis of electrical mitad at ...

    African Journals Online (AJOL)

    The Injera baking electrical mitad is the most energy-consuming device in every household in Ethiopia. This research presents a detail engineering study on the energy-consumption performance of existing electrical mitad in Mekelle city. The research work considered thirty-one electrical mitad from different workshops in ...

  5. In Situ Magnetohydrodynamic Energy Generation for Planetary Entry Vehicles

    Science.gov (United States)

    Ali, H. K.; Braun, R. D.

    2014-06-01

    This work aims to study the suitability of multi-pass entry trajectories for harnessing of vehicle kinetic energy through magnetohydrodynamic power generation from the high temperature entry plasma. Potential mission configurations are analyzed.

  6. Effect Of Platooning on Fuel Consumption of Class 8 Vehicles Over a Range of Speeds, Following Distances, and Mass

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; Duran, A.; Diez, J.; Burton, K.; Nicholson, A.

    2014-10-01

    This research project evaluates fuel consumption results of two Class 8 tractor-trailer combinations platooned together compared to their standalone fuel consumption. A series of ten modified SAE Type II J1321 fuel consumption track tests were performed to document fuel consumption of two platooned vehicles and a control vehicle at varying steady-state speeds, following distances, and gross vehicle weights (GVWs). The steady-state speeds ranged from 55 mph to 70 mph, the following distances ranged from a 20-ft following distance to a 75-ft following distance, and the GVWs were 65K lbs and 80K lbs. All tractors involved had U.S. Environmental Protection Agency (EPA) SmartWay-compliant aerodynamics packages installed, and the trailers were equipped with side skirts. Effects of vehicle speed, following distance, and GVW on fuel consumption were observed and analyzed. The platooning demonstration system used in this study consisted of radar systems, Dedicated Short-Range Communication (DSRC) vehicle-to-vehicle (V2V) communications, vehicle braking and torque control interface, cameras and driver displays. The lead tractor consistently demonstrated an improvement in average fuel consumption reduction as following distance decreased, with results showing 2.7% to 5.3% fuel savings at a GVW of 65k. The trailing vehicle achieved fuel consumption savings ranging from 2.8% to 9.7%; tests during which the engine cooling fan did not operate achieved savings of 8.4% to 9.7%. 'Team' fuel savings, considering the platooned vehicles as one, ranged from 3.7% to 6.4%, with the best combined result being for 55 mph, 30-ft following distance, and 65k GVW.

  7. Correlation of breast cancer incidence with the number of motor vehicles and consumption of gasoline in Korea.

    Science.gov (United States)

    Park, Boyoung; Shin, Aesun; Jung-Choi, Kyunghee; Ha, Eunhee; Cheong, Hae-Kwan; Kim, Hyun Jeong; Park, Kyung Hwa; Jang, Sungmi; Moon, Byung-In; Ha, Mina

    2014-01-01

    While several reproductive and lifestyle-related factors are already well-known as established risk factors for breast cancer, environmental factors have attracted attention only recently. The objective of the current study was to assess the association between the breast cancer incidences in females, the mortality rate and the number of motor vehicles on the one side and the consumption of gasoline which could work as a major source of air pollution at the other side. The breast cancer incidences and the mortality trends were compared with various indices of westernization like dietary patterns or industrialization with 10 years lag of time. Geographical variations with 10, 15 and 20 years lag of time were assessed between the breast cancer incidence in 2010 and the number of motor vehicles as well as the consumption of gasoline. The upward trend of motor vehicle numbers proved to be comparable to those of breast cancer incidence and mortality. However, the consumption of gasoline started to decrease since the mid-1990s. The geographic distribution of motor vehicle numbers and gasoline consumption in 1990 is in a positive correlation with the breast cancer incidence rates in 2010 and the 20-year lag time (R2 0.379 with the number of motor vehicles and 0.345 with consumption of gasoline). In a linear relationship between the breast cancer incidences in 2010 and the log transformed number of motor vehicles, the log transformed consumption of gasoline in 2000 also showed a positive relationship (R2 0.367 with the number of motor vehicles and 0.329 with consumption of gasoline). The results of the current study indicate that there may be a positive relation between the number of vehicles, gasoline consumption and the incidence of breast cancer from the aspects of long-term trends and geographical variation.

  8. China's energy consumption: A perspective from Divisia aggregation approach

    International Nuclear Information System (INIS)

    Liao, Hua; Wei, Yi-Ming

    2010-01-01

    China's total energy consumption, according to the official data, decreased impressively during 1997-1998 and increased sharply during 2003-2007, which in turn resulted in energy intensity fluctuation. Many literatures explained this ''unusual phenomenon'' from the perspectives of technical change, economic structure shifting and statistical data quality. They measured aggregate energy in thermal units by using linear summation approaches. In this paper, from the perspectives of heterogeneity and imperfect substitutability among diverse energy types, we further examine China's aggregate energy consumption by using Divisia (Sato-Vartia) approach. The results show that China's aggregate energy consumption and intensity fluctuated slightly less than values calculated by using conventional linear approaches, and the ''unusual phenomenon'' is partly explained. It also implies that China's energy intensity changes in 2006-2007 are slightly more optimistic than those officially reported, and the official communique of provincial energy intensity reduction achievements are partly bias. Some provincial achievement are underestimated or overestimated on some provinces. Our empirical results are also helpful to further research, such as energy-economic modeling, energy price elasticity, and elasticity of substitution among capital-labor-energy-material (KLEM). The difficulties or defects when using Divisia approach are also discussed in this paper. (author)

  9. Energy balance of forage consumption by phyllophagous insects: optimization model

    Directory of Open Access Journals (Sweden)

    O. V. Tarasova

    2015-06-01

    Full Text Available The model of optimal food consumption by phytophagous insects proposed, in which the metabolic costs are presented in the form of two components – the cost of food utilization and costs for proper metabolism of the individuals. Two measures were introduced – the «price» of food conversion and the «price» of biomass synthesis of individuals to assess the effectiveness of food consumption by caterpillars. The proposed approach to the description of food consumption by insects provides the exact solutions of the equation of energy balance of food consumption and determining the effectiveness of consumption and the risk of death of the individual. Experiments on larvae’s feeding in laboratory conditions were carried out to verify the model. Caterpillars of Aporia crataegi L. (Lepidoptera, Pieridae were the research subjects. Supply­demand balance, calculated value of the environmental price of consumption and efficiency of food consumption for each individual were determined from experimental data. It was found that the fertility of the female does not depend on the weight of food consumed by it, but is linearly dependent on the food consumption efficiency index. The greater the efficiency of food consumption by an individual, the higher its fertility. The data obtained in the course of experiments on the feeding caterpillars Aporia crataegi were compared with the data presented in the works of other authors and counted in the proposed model of consumption. Calculations allowed estimation of the critical value of food conversion price below which the energy balance is negative and the existence of an individual is not possible.

  10. Energy Consumption and Freight Transport Demand in Denmark

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Bonilla, David

    2008-01-01

    Considering the externalities of freight transport activity (energy use, accidents, congestion, its related GHG emissions, and lost oil revenues) this article reviews trends from 1990-2005 in truck freight fuel intensity (energy use per tonne-km moved), on road truck fuel economy (L/ 100 km driven......). We review changes in decoupling truck freight activity from GDP. We examine separately five manufacturing sectors using data from Statistics Denmark on vehicle performance for 1980-2006. Our four major findings are: (1) truck freight energy intensity (mj/tonne-km) continues to grow as well as CO2...... emissions; (2) decoupling has not been large enough to reduce overall energy use of truck; (3) because of the absence of fuel economy regulations, a low average vehicle load, increased hauling distance, overall energy use of truck freight will continue to expand; (4) results show that standard freight...

  11. Food transport refrigeration - Approaches to reduce energy consumption and environmental impacts of road transport

    International Nuclear Information System (INIS)

    Tassou, S.A.; De-Lille, G.; Ge, Y.T.

    2009-01-01

    Food transport refrigeration is a critical link in the food chain not only in terms of maintaining the temperature integrity of the transported products but also its impact on energy consumption and CO 2 emissions. This paper provides a review of (a) current approaches in road food transport refrigeration, (b) estimates of their environmental impacts, and (c) research on the development and application of alternative technologies to vapour compression refrigeration systems that have the potential to reduce the overall energy consumption and environmental impacts. The review and analysis indicate that greenhouse gas emissions from conventional diesel engine driven vapour compression refrigeration systems commonly employed in food transport refrigeration can be as high as 40% of the greenhouse gas emissions from the vehicle's engine. For articulated vehicles over 33 ton, which are responsible for over 80% of refrigerated food transportation in the UK, the reject heat available form the engine is sufficient to drive sorption refrigeration systems and satisfy most of the refrigeration requirements of the vehicle. Other promising technologies that can lead to a reduction in CO 2 emissions are air cycle refrigeration and hybrid systems in which conventional refrigeration technologies are integrated with thermal energy storage. For these systems, however, to effectively compete with diesel driven vapour compression systems, further research and development work is needed to improve their efficiency and reduce their weight

  12. Forecasting of Energy and Petroleum Consumption by Motor Transport in the Regions of the Russian Federation

    Directory of Open Access Journals (Sweden)

    Leontiy Viktorovich Eder

    2017-09-01

    Full Text Available The paper offers the directions for the improvement of methodological approach to forecasting the energy consumption in transport, taking into account special features of Russian regions. The authors developed a multivariate model allowing to predict the motor vehicle rate specified for the regions of the Russian Federation depending on the economic, social and institutional features. We formalized the dynamic (trend model for predicting the effectiveness of energy consumption per unit of the vehicle in Russia with details on Federal districts. In the study, in predicting the number of motor transport, the authors applied the methods of economic and mathematical simulation modelling based on the results of the econometric analysis for the calculation of the population having motor transport. In determining the potential specific energy consumption, we have aggregated trending patterns and convergence. The study has shown that by 2040, the number of passenger cars in Russia will grow to 57.1 million, and the total number of all types of road transport will grow by 14.9 million units to 66.2 million. The highest growth rates are predicted in the Central regions of Russia and in some areas of Siberia. The smallest growth rates are expected in the Chukotka Autonomous District, Kamchatka and Primorsky regions. Energy efficiency in transport and active introduction of alternative motor fuels, primarily methane, will reduce the consumption of gasoline and diesel fuel by motor transport. Thus, in the forecast period of 2018–2040, the consumption of petroleum products by motor transport will be reduced by 8.9 million tons: from 61,9 million tons of oil to 51.7 million tons of oil. The results of the study can be applied for the formulation of proposals on the creation of scientific and methodological apparatus to predict the development of transport sector and oil products supply in of the regions of Russia.

  13. Energy conversion phenomena in plug-in hybrid-electric vehicles

    International Nuclear Information System (INIS)

    Katrasnik, Tomaz

    2011-01-01

    Research highlights: → Energy conversion phenomena of PHEVs for different drive cycles and depletion rates of energy sources. → Detailed physically based framework for analyzing energy conversion phenomena in PHEVs. → Interaction of energy flows and energy losses with energy consumption of the PHEV. → Identification and explanation of mechanisms leading to optimal tank-to-wheel efficiency. → Analysis of well-to-wheel efficiencies for different realistic well-to-tank scenarios. -- Abstract: Energy flows and energy conversion efficiencies of commercial plug-in hybrid-electric vehicles (PHEV) are analyzed for parallel and series PHEV topologies. The analysis is performed by a combined analytical and simulation approach. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the energy consumption of the PHEV. Thereby the paper reveals energy conversion phenomena of different PHEV topologies operating according to charge depleting and charge sustaining modes as well as according to different test cycles. It is shown in the paper that amount of the energy depleted from both on-board energy sources is significantly influenced by the efficiencies of energy conversion chains from on-board energy sources to the wheels. It is also shown that energy used to power the PHEV according to particular test cycles varies based on its operating mode, which influences energy flows on different energy paths within the PHEVs and consequently overall energy consumed by the PHEV. The paper additionally discusses well-to-wheel efficiencies considering different realistic well-to-tank scenarios. It is shown that well-to-tank efficiency of electric energy generation significantly influences optimal operating mode of the PHEV if consumption of primary energy sources is considered.

  14. Urban Systems and Energy Consumptions: A Critical Approach

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available City transformations are also due to the development of new energy sources, which have influenced economy and lifestyles, as well as the physical and functional organization of urban systems. Cities are the key place where it is need to act for the achievement of strategic environmental objectives, such as reducing greenhouse gas emissions and energy saving. The hard resolution of these challenges depends on several factors: their multidimensional nature, the change of the economic and settlement development model, and also the complexity of the relationships between the elements that constitute the urban systems and that affect energy consumption. According to this awareness the Project Smart Energy Master for the energy management of territory financed by PON 04A2_00120 R & C Axis II, from 2012 to 2015 has been developed: it is aimed at supporting local authorities in the development of strategies for the reduction of energy consumption through actions designed to change behavior (in terms of use and energy consumption and to improve the energy efficiency of equipment and infrastructure. With the goal of describing some of the results of the methodological phase of this project, this paper proposes a review of the major studies on the issue of energy consumption at the urban scale in the first section; in the second section the outcomes of the first phase of the development of the comprehension/interpretive model related to the identification of the set of physical/environmental variables at urban scale, that most affect the energy consumption, are described; the third makes a critical review of the reference scientific literature, characterised by a too sectoral approach, compared to the complexity of the topic.

  15. Estimating the rebound effect in US manufacturing energy consumption

    International Nuclear Information System (INIS)

    Bentzen, Jan

    2004-01-01

    The energy price shocks of the 1970s are usually assumed to have increased the search for new energy saving technologies where eventual gains in energy efficiencies will reduce the real per unit price of energy services and hence, the consumption of energy will rise and partially offset the initial reduction in the usage of energy sources. This is the 'rebound effect', which is estimated for the US manufacturing sector using time series data applying the dynamic OLS method (DOLS). When allowing for asymmetric price effects the rebound effect is found to be approximately 24% for the US manufacturing sector

  16. Light vehicle energy efficiency programs and their impact on Brazilian CO2 emissions

    International Nuclear Information System (INIS)

    Wills, William; La Rovere, Emilio Lebre

    2010-01-01

    This paper analyses the impact of an energy efficiency program for light vehicles in Brazil on emissions of carbon dioxide (CO 2 ), the main greenhouse gas in the atmosphere. Several energy efficiency programs for light vehicles around the world are reviewed. The cases of Japan and Europe were selected for presentation here given their status as current and future world leaders in the control of passenger vehicle fuel consumption. The launching of the National Climate Change Plan and the pressure on the Brazilian car industry due to the world financial crisis make it a good time for the Brazilian government to implement such a program, and its various benefits are highlighted in this study. Three scenarios are established for Brazil covering the 2000-2030 period: the first with no efficiency goals, the second with the Japanese goals applied with a 10 years delay, and the third, with the Japanese goals applied with no delay. The consequences of a vehicular efficiency program and its middle and long-term effects on the consumption of energy and the CO 2 emissions are quantified and discussed. The simulation results indicate that efficiency goals may make an important contribution to reducing vehicular emissions and fuel consumption in Brazil, compared to a baseline scenario.

  17. Light vehicle energy efficiency programs and their impact on Brazilian CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Wills, William; La Rovere, Emilio Lebre [Centro de Estudos Integrados sobre Meio Ambiente e Mudancas Climaticas, Centro Clima/COPPE/UFRJ, Centro de Tecnologia, Bloco I2000, sala 208, Cidade Universitaria, Ilha do Fundao, CEP: 21941-972 Rio de Janeiro, RJ (Brazil)

    2010-11-15

    This paper analyses the impact of an energy efficiency program for light vehicles in Brazil on emissions of carbon dioxide (CO{sub 2}), the main greenhouse gas in the atmosphere. Several energy efficiency programs for light vehicles around the world are reviewed. The cases of Japan and Europe were selected for presentation here given their status as current and future world leaders in the control of passenger vehicle fuel consumption. The launching of the National Climate Change Plan and the pressure on the Brazilian car industry due to the world financial crisis make it a good time for the Brazilian government to implement such a program, and its various benefits are highlighted in this study. Three scenarios are established for Brazil covering the 2000-2030 period: the first with no efficiency goals, the second with the Japanese goals applied with a 10 years delay, and the third, with the Japanese goals applied with no delay. The consequences of a vehicular efficiency program and its middle and long-term effects on the consumption of energy and the CO{sub 2} emissions are quantified and discussed. The simulation results indicate that efficiency goals may make an important contribution to reducing vehicular emissions and fuel consumption in Brazil, compared to a baseline scenario. (author)

  18. Energy and Environmental Implications of Hybrid and Electric Vehicles in China

    Directory of Open Access Journals (Sweden)

    Haiyan Wang

    2013-05-01

    Full Text Available The promotion of hybrid and electric vehicles (EVs has been proposed as one promising solution for reducing transport energy consumption and mitigating vehicular emissions in China. In this study, the energy and environmental impacts of hybrid and EVs during 2010–2020 were evaluated through an energy conversion analysis and a life cycle assessment (LCA, and the per-kilometer energy consumptions of gasoline, coal, natural gas (NG, oil, biomass, garbage and electricity for EVs and HEVs were estimated. Results show that the EVs and HEVs can reduce the energy consumption of vehicles by national average ratios of 17%–19% and 30%–33%, respectively. The study also calculated the detailed emission factors of SO2, NOX, VOC, CO, NH3, PM10, PM2.5, OC, EC, CO2, N2O, CH4, Pb and Hg. It is indicated that the HEVs can bring significant reductions of NOX, VOC and CO emissions and lesser decreases of SO2 and CO2 for a single vehicle. The EVs could decrease many of the VOC, NH3, CO and CO2 emissions, but increase the SO2, NOX and particles by 10.8–13.0, 2.7–2.9 and 3.6–11.5 times, respectively. In addition, the electricity sources had significant influence on energy consumption (EC and emissions. A high proportion of coal-fired energy resulted in large ECs and emission factors. The total energy consumption and pollutants emission changes in 2015 and 2020 were also calculated. Based on the energy use and emission analysis of HEVs and EVs, it is suggested that EVs should be promoted in the regions with higher proportions of hydropower, natural gas-fired power and clean energy power, while HEVs can be widely adopted in the regions with high coal-fired power ratios. This is to achieve a higher energy consumption reduction and pollutant emission mitigation. Moreover, the results can also provide scientific support for the total amount control of regional air pollutants in China.

  19. URBAN FEATURES AND ENERGY CONSUMPTION AT LOCAL LEVEL

    Directory of Open Access Journals (Sweden)

    Ali Soltani

    2012-12-01

    Full Text Available There has been a growing interest in discovering the human effects on the environment and energy consumption in recent decades. It is estimated that the share of energy consumed in transportation and housing systems are around 20 and 30 percent of total energy consumption respectively. Furthermore, the residential greenhouse emissions depend on urban form and structure. This paper explores the effects of urban features on residential energy consumption at neighborhood level using data collected through household questionnaire (n=140. Two residential districts in metropolitan Shiraz, south of Iran, were selected as case study areas. Different features of two areas were compared including building density, typology, housing location, parcel size, floor area and construction materials. Ordinary linear regression was used to discover the impact of explanatory variables on energy consumption. It was found that some physical variables such as parcel size, setback and number of floors played significant roles in explaining the variances exist in energy use level. The results can be used by governmental agencies to modify land use policies and subdivision rules in hope of saving energy and achieving a sustainable community.

  20. Hybrid vehicle energy management: singular optimal control

    NARCIS (Netherlands)

    Delprat, S.; Hofman, T.; Paganelli, S.

    2017-01-01

    Hybrid vehicle energymanagement is often studied in simulation as an optimal control problem. Under strict convexity assumptions, a solution can be developed using Pontryagin’s minimum principle. In practice, however, many engineers do not formally check these assumptions resulting in the possible

  1. Energy consumption and economic development in Sub-Sahara Africa

    International Nuclear Information System (INIS)

    Kebede, Ellene; Kagochi, John; Jolly, Curtis M.

    2010-01-01

    Sub-Saharan African countries' economic development is dependent on energy consumption. This paper assesses total energy demand, which is composed of traditional energy (wood fuel) and commercial energy (electricity and petroleum), in the Central, East, South, and West regions of Sub-Saharan Africa. Cross-sectional time series data for 20 countries in 25 years are analyzed, and the results of the study show that wood fuel accounts for 70% of energy consumption, followed by petroleum, with most industrial activities utilizing some form of wood fuel. Regression results suggest that energy demand is inversely related to the price of petroleum and industrial development, but positively related to GDP, population growth rate, and agricultural expansion, and that price elasticity is less than one. The model results also show that there are regional differences in energy demand. In addition, the interaction of population growth rates by regions generates mixed results, and there are regional differences in the use of commercial energy consumption, and GDP growth. The findings of this study suggest that countries must diversify their energy sources and introduce energy-efficient devices and equipment at all levels of the economy to improve GDP growth rate and GDP per capita. (author)

  2. Energy sources consumption: end uses, efficiency and productivity

    International Nuclear Information System (INIS)

    Martin, J.M.

    2005-01-01

    This document analyzes the impact of the choices made by all actors, from the energy producers to the process and infrastructure designers and the end users, in the evolution of energy consumptions. Some very little improvements made in the energy efficiency of appliances can become equivalent to the production of several oil fields or power plants at the world scale. More efficient energy uses will not replace the additional productions but they must be considered together to be compared. The energy files are first analyzed as a whole in order to show the hidden field of energy choices. In this framework, users, designers and fitters have to face very different choices because they consider efficiency improvements under different aspects: scientifical, technical, economical and social (public information and habits). These differences in efficiency uses have a time and spatial impact on the growth of energy consumption. The economical and social factors influence the collective way to consume energy and are expressed by the energy intensity of the economic activity. The last part of this document analyzes the influence of this notion on the world energy consumption scenarios at the 2050 prospects. (J.S.)

  3. Reducing consumption of electric current and energy carriers. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Ruppo, A.S.; Gruzdev, Yu.M.

    1985-01-01

    Evaluates the energy conservation program developed by the Giproshakht research institute is evaluated. The program was used in the Afanas'evo hydraulic mine in the Tulaugol association (with annual coal output of 2.1 Mt). Energy conservation program consisted of 2 groups of tasks: reducing energy consumption of the mine, and reducing energy consumption during the maximum demand hours in the morning and evening. The following methods were used: reducing idle running of chain and belt conveyors, separate draining of mine water free of dust and rock particles (reducing range of water cleaning), use of automatic control systems for mine blowers, automatic control of the system for coal drying, more efficient use of coal and materials transport in the mine. Energy demand of the mine during peak demand hours was reduced by adjusting fluctuations of energy consumption of the mine to fluctuations of energy demand in the power system of the area, e.g. by reducing mine draining in the morning and evening and operating at full capacity during the time of reduced energy demand. Using the energy conservation measures economized 4,324,300 kWh electric energy annually.

  4. Energy consumption and economic development in Sub-Sahara Africa

    Energy Technology Data Exchange (ETDEWEB)

    Kebede, Ellene [Department of Agricultural and Environmental Science, 210 Campbell, Hall, Tuskegee University, Tuskegee, AL 36088 (United States); Kagochi, John [School of Business Administration, University of Houston-Victoria, 3007, N. Ben Wilson, Victoria, 77901 (United States); Jolly, Curtis M. [Department of Agricultural Economics and Rural Sociology, 212 Comer, Hall Auburn University, AL 36849 (United States)

    2010-05-15

    Sub-Saharan African countries' economic development is dependent on energy consumption. This paper assesses total energy demand, which is composed of traditional energy (wood fuel) and commercial energy (electricity and petroleum), in the Central, East, South, and West regions of Sub-Saharan Africa. Cross-sectional time series data for 20 countries in 25 years are analyzed, and the results of the study show that wood fuel accounts for 70% of energy consumption, followed by petroleum, with most industrial activities utilizing some form of wood fuel. Regression results suggest that energy demand is inversely related to the price of petroleum and industrial development, but positively related to GDP, population growth rate, and agricultural expansion, and that price elasticity is less than one. The model results also show that there are regional differences in energy demand. In addition, the interaction of population growth rates by regions generates mixed results, and there are regional differences in the use of commercial energy consumption, and GDP growth. The findings of this study suggest that countries must diversify their energy sources and introduce energy-efficient devices and equipment at all levels of the economy to improve GDP growth rate and GDP per capita. (author)

  5. Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries

    International Nuclear Information System (INIS)

    Burke, Paul J.; Nishitateno, Shuhei

    2013-01-01

    Countries differ considerably in terms of the price drivers pay for gasoline. This paper uses data for 132 countries for the period 1995–2008 to investigate the implications of these differences for the consumption of gasoline for road transport. To address the potential for simultaneity bias, we use both a country's oil reserves and the international crude oil price as instruments for a country's average gasoline pump price. We obtain estimates of the long-run price elasticity of gasoline demand of between − 0.2 and − 0.5. Using newly available data for a sub-sample of 43 countries, we also find that higher gasoline prices induce consumers to substitute to vehicles that are more fuel-efficient, with an estimated elasticity of + 0.2. Despite the small size of our elasticity estimates, there is considerable scope for low-price countries to achieve gasoline savings and vehicle fuel economy improvements via reducing gasoline subsidies and/or increasing gasoline taxes. - Highlights: ► We estimate the determinants of gasoline demand and new-vehicle fuel economy. ► Estimates are for a large sample of countries for the period 1995–2008. ► We instrument for gasoline prices using oil reserves and the world crude oil price. ► Gasoline demand and fuel economy are inelastic with respect to the gasoline price. ► Large energy efficiency gains are possible via higher gasoline prices

  6. Intelligent battery energy management and control for vehicle-to-grid via cloud computing network

    International Nuclear Information System (INIS)

    Khayyam, Hamid; Abawajy, Jemal; Javadi, Bahman; Goscinski, Andrzej; Stojcevski, Alex; Bab-Hadiashar, Alireza

    2013-01-01

    Highlights: • The intelligent battery energy management substantially reduces the interactions of PEV with parking lots. • The intelligent battery energy management improves the energy efficiency. • The intelligent battery energy management predicts the road load demand for vehicles. - Abstract: Plug-in Electric Vehicles (PEVs) provide new opportunities to reduce fuel consumption and exhaust emission. PEVs need to draw and store energy from an electrical grid to supply propulsive energy for the vehicle. As a result, it is important to know when PEVs batteries are available for charging and discharging. Furthermore, battery energy management and control is imperative for PEVs as the vehicle operation and even the safety of passengers depend on the battery system. Thus, scheduling the grid power electricity with parking lots would be needed for efficient charging and discharging of PEV batteries. This paper aims to propose a new intelligent battery energy management and control scheduling service charging that utilize Cloud computing networks. The proposed intelligent vehicle-to-grid scheduling service offers the computational scalability required to make decisions necessary to allow PEVs battery energy management systems to operate efficiently when the number of PEVs and charging devices are large. Experimental analyses of the proposed scheduling service as compared to a traditional scheduling service are conducted through simulations. The results show that the proposed intelligent battery energy management scheduling service substantially reduces the required number of interactions of PEV with parking lots and grid as well as predicting the load demand calculated in advance with regards to their limitations. Also it shows that the intelligent scheduling service charging using Cloud computing network is more efficient than the traditional scheduling service network for battery energy management and control

  7. Study on energy consumption of adapters and battery chargers

    International Nuclear Information System (INIS)

    Zijlstra, J.K.; Couvee, J.D.J.

    2001-04-01

    Under the authority of the Dutch Energy Agency 'Novem' industrial design and engineering office NewProducts has performed an inventory study on the energy consumption of adapters and battery chargers. Besides the energy aspects, various aspects of the adapters and chargers have been discussed: The products are classified in categories based on type of the appliance and function of the adapter; The proportions of the Dutch market of adapters and chargers and the players on this market are discussed in brief; The relevant technical background, especially with respect to the energy consumption is discussed. In general there are two types of adapters, linear and switch mode; Product specifications collected from several manufacturers are presented; To fill up the lack of data some measurements have been made of which the results are presented. Together with the product specifications this gives an overview of the performances of adapters and chargers; During the study several ideas and new developments have been found for reducing energy consumption. A remarkable conclusion is that there is no or not much attention from manufacturers or consumers for energy consumption of adapters or no-load power consumption, although there are some initiatives for reduction, e.g. the Code of Conduct on Efficiency of External Power Supplies of the European Union. Lots of linear adapters are still sold and in use, although the efficiency of the switch mode adapters is a lot better. The problem is the higher price. The switch mode adapters are being sold together with sophisticated electronic appliances. Most of the other initiatives and solutions to reduce the no-load energy consumption and improve the efficiency are also technical

  8. Household energy consumption and consumer electronics: The case of television

    International Nuclear Information System (INIS)

    Crosbie, Tracey

    2008-01-01

    In recent years, there has been a dramatic rise in the number of consumer electronics in households. These new technologies and the services that support them enable new highly energy intensive behaviours. Using in-depth interview data collected from 20 households in 2006, this paper explores these energy intensive behaviours, using the example of the use of televisions. In doing so, it illustrates how the design and marketing of consumer electronics, and the services which support them, actively encourage energy intensive behaviours and how householders are reconfiguring their homes and lifestyles to fit these behaviours. This latter point is significant because, as householders change their homes and daily lives to fit energy intensive consuming behaviours, it will become increasingly difficult to encourage people to reduce their household energy consumption. This paper concludes with the implications of the research findings for policies designed to reduce household energy consumption

  9. Analysis of Home Energy Consumption by K-Mean

    Directory of Open Access Journals (Sweden)

    Fahad Razaque

    2017-10-01

    Full Text Available The smart meter offered exceptional chances to well comprehend energy consumption manners in which quantity of data being generated. One request was the separation of energy load-profiles into clusters of related conduct. The Research measured the resemblance between groups them together and load-profiles into clusters by k-means clustering algorithm. The cluster met, also called “Gender (Male/Female, House (Rented/Owned and customers status (Satisfied/Unsatisfied” display methods of consuming energy. It provided value information aimed at utilities to generate specific electricity charges and healthier aim energy efficiency programs. The results show that 43% extremely dissatisfied of energy customer is achieved by using energy consumption.

  10. Energy consumption by gender in some European countries

    International Nuclear Information System (INIS)

    Raety, R.; Carlsson-Kanyama, A.

    2010-01-01

    Household total energy use has been estimated in numerous studies in recent decades and differences have mainly been explained by levels of income/expenditure. Studies of gender consumption patterns show that men eat more meat than women and drive longer distances, potentially leading to higher total energy use by men. In this study we calculated the total energy use for male and female consumption patterns in four European countries (Germany, Norway, Greece and Sweden) by studying single households. Significant differences in total energy use were found in two countries, Greece and Sweden. The largest differences found between men and women were for travel and eating out, alcohol and tobacco, where men used much more energy than women. We suggest that these findings are policy relevant for the EU, which aims to mainstream gender issues into all activities and to lower its total energy use.

  11. Limiting biomass consumption for heating in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2012-01-01

    -scale solar thermal, large heat pumps, geothermal heat, industrial surplus heat, and waste incineration. Where the energy density in the building stock is not high enough for DH to be economical, geothermal heat pumps can be recommended for individual heating systems, even though biomass consumption is higher......The utilisation of biomass poses large challenges in renewable energy systems while buildings account for a substantial part of the energy supply even in 100% renewable energy systems. In this paper the focus is on how the heating sector can reduce its consumption of biomass, thus leaving biomass...... for other sectors, but while still enabling a 100% renewable energy system. The analyses of heating technologies shows that district heating (DH) systems are important in limiting the dependence on biomass and create cost effective solutions. DH systems are especially important in renewable energy systems...

  12. The Role of Technical Innovation and Sustainability on Energy Consumption: A Case Study on the Taiwanese Automobile Industry

    Directory of Open Access Journals (Sweden)

    Chao-Wu Chou

    2015-06-01

    Full Text Available The impact of global warming and climate change is one of the most critical challenges of the 21st century. The greenhouse effect caused by technological development and industrial pollution has accelerated the speed of global warming. The continuous improvement in automobile energy consumption is one of the most effective ways to reduce global warming. A comparative analysis is proposed to examine the various automobiles that utilize technological innovation to improve their energy consumption. Their contribution to CO2 emissions is then investigated. This study focuses on technical innovation and output power of a conventional engine. The results indicate that innovative engines (such as the Ford turbo petrol/diesel engine, the EcoBoost/TDCi have improved energy consumption and reduce CO2 emissions. In addition, the Toyota hybrid vehicles have also improved energy consumption and reduced greenhouse gases emissions.

  13. Ten years of energy consumption in the tertiary sector

    International Nuclear Information System (INIS)

    Rabai, Yacine

    2012-11-01

    This document presents and comments data regarding electricity consumption by the tertiary sector over the last ten years in France. It notably outlines its strong increase compared to the other sectors (housing, industry, transport, agriculture). It comments the evolution of the energy mix of the tertiary sector (electricity with 47%, gas with 25% and oil with 19% are prevailing). It briefly comments the evolution of energy efficiency within this sector. It indicates and comments the shares of energy consumption, of high voltage electricity and gas consumption by the different sub-sectors (retail, automobile and motorcycle repair, public administration, health and social activity, real estate, specialised, scientific and technical activities, education, and so on)

  14. Data Acquisition and Transmission System for Building Energy Consumption Monitoring

    Directory of Open Access Journals (Sweden)

    Liang Zhao

    2013-01-01

    Full Text Available Building energy consumption monitoring and management system have been developed widely in China in order to gain the real-time data of energy consumption in buildings for analyzing it in the next state work. This paper describes a low-cost and small-sized collector based on the STM32 microcontroller, which can be placed in a building easily to implement the work of data acquisition, storage, and transmission. The collector gathers the electricity, water, heat, and energy consumption data through the RS485 field bus and stores the data into an SD card with mass storage, finally, using Internet to finish the communication and transmission to data server through TCP protocol. The collector has been used in application for two years, and the results show that the system is reliable and stable.

  15. Biomass energy consumption in Nigeria: integrating demand and supply

    International Nuclear Information System (INIS)

    Momoh, S.; Soaga, J.

    1999-01-01

    The study examined the present and future consumption of biomass energy in Nigeria. Direct consumption of fire wood for domestic purposes is the predominant form of biomass energy consumption. Charcoal plays minot roles in biomass energy supply. The current and expected demand for fuelwood is projected to increase by 399% whereas supply is expected to decrease by 17.2% between 1995 and year 2010. Resource adequacy in terms of planned supply is on the decline. Forest estates which is the only planned strategy for fuelwood and wood production is projected to decline from 6.37 million ha. in 1990 to 2.4 million ha, in year 2010. The possibilities of meeting the fuelwood demand in the future is precarious. Policy measures aimed at increasing forest estates. reduction of loss of forest lands to other uses and encouragement of private forestry are recommended

  16. Research and Analysis on Energy Consumption Features of Civil Airports

    Science.gov (United States)

    Li, Bo; Zhang, Wen; Wang, Jianping; Xu, Junku; Su, Jixiang

    2017-11-01

    Civil aviation is an important part of China’s transportation system, and also the fastest-growing field of comprehensive transportation. Airports, as a key infrastructure of the air transportation system, are the junctions of air and ground transportation. Large airports are generally comprehensive transportation hubs that integrate various modes of transportation, serving as important functional zones of cities. Compared with other transportation hubs, airports cover a wide area, with plenty of functional sections, complex systems and strong specialization, while airport buildings represented by terminals have exhibited characteristics of large space, massive energy consumption, high requirement for safety and comfort, as well as concentrated and rapidly changing passenger flows. Through research and analysis on energy consumption features of civil airports, and analysis on energy consumption features of airports with different sizes or in different climate regions, this article has drawn conclusions therefrom.

  17. Energy consumption, pollutant emissions and economic growth in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Menyah, Kojo [London Metropolitan Business School, London Metropolitan University (United Kingdom); Wolde-Rufael, Yemane [Independent Researcher (United Kingdom)

    2010-11-15

    This paper examines the long-run and the causal relationship between economic growth, pollutant emissions and energy consumption for South Africa for the period 1965-2006 in a multivariate framework which includes labour and capital as additional variables. Using the bound test approach to cointegration, we found a short-run as well as a long-run relationship among the variables with a positive and a statistically significant relationship between pollutant emissions and economic growth. Further, applying a modified version of the Granger causality test we also found a unidirectional causality running from pollutant emissions to economic growth; from energy consumption to economic growth and from energy consumption to CO{sub 2} emissions all without a feedback. The econometric evidence suggests that South Africa has to sacrifice economic growth or reduce its energy consumption per unit of output or both in order to reduce pollutant emissions. In the long-run however, it is possible to meet the energy needs of the country and at the same time reduce CO{sub 2} emissions by developing energy alternatives to coal, the main source of CO{sub 2} emissions. However, the econometric results upon which the policy suggestions are made should be interpreted with care, as they may not be sufficiently robust enough to categorically warrant the choice of an unpalatable policy option by South Africa. (author)

  18. Prediction of residential building energy consumption: A neural network approach

    International Nuclear Information System (INIS)

    Biswas, M.A. Rafe; Robinson, Melvin D.; Fumo, Nelson

    2016-01-01

    Some of the challenges to predict energy utilization has gained recognition in the residential sector due to the significant energy consumption in recent decades. However, the modeling of residential building energy consumption is still underdeveloped for optimal and robust solutions while this research area has become of greater relevance with significant advances in computation and simulation. Such advances include the advent of artificial intelligence research in statistical model development. Artificial neural network has emerged as a key method to address the issue of nonlinearity of building energy data and the robust calculation of large and dynamic data. The development and validation of such models on one of the TxAIRE Research houses has been demonstrated in this paper. The TxAIRE houses have been designed to serve as realistic test facilities for demonstrating new technologies. The input variables used from the house data include number of days, outdoor temperature and solar radiation while the output variables are house and heat pump energy consumption. The models based on Levenberg-Marquardt and OWO-Newton algorithms had promising results of coefficients of determination within 0.87–0.91, which is comparable to prior literature. Further work will be explored to develop a robust model for residential building application. - Highlights: • A TxAIRE research house energy consumption data was collected in model development. • Neural network models developed using Levenberg–Marquardt or OWO-Newton algorithms. • Model results match well with data and statistically consistent with literature.

  19. Accuracy of past projections of US energy consumption

    International Nuclear Information System (INIS)

    O'Neill, B.C.; Desai, Mausami

    2005-01-01

    Energy forecasts play a key role in development of energy and environmental policy. Evaluations of the accuracy of past projections can provide insight into the uncertainty that may be associated with current forecasts. They can also be used to identify sources of inaccuracies, and potentially lead to improvements in projections over time. Here we assess the accuracy of projections of US energy consumption produced by the Energy Information Administration over the period 1982-2000. We find that energy consumption projections have tended to underestimate future consumption. Projections 10-13 years into the future have had an average error of about 4%, and about half that for shorter time horizons. These errors mask much larger, offsetting errors in the projection of GDP and energy intensity (EI). GDP projections have consistently been too high, and EI projection consistently too low, by more than 15% for projections of 10 years or more. Further work on the source of these sizable inaccuracies should be a high priority. Finally, we find no evidence of improvement in projections of consumption, GDP, or EI since 1982

  20. Energy consumption and economic development after the energy price increases of 1973

    International Nuclear Information System (INIS)

    Danielewski, J.

    1993-01-01

    The interdependence between energy consumption and economic development are highlighted in this research, which focuses on energy price rises between 1973 and 1989. Three groups of countries are identified, developing and developed market economies and centrally planned economies. Two areas of interdependence are examined, firstly the dynamic relationship between primary energy consumption growth and real economic growth and secondly the static relationship between primary energy consumption and national income. In the period under review, developing market economies reacted most strongly to higher energy prices, with lower energy consumption while maintaining real growth in the Gross Domestic Product. However developing countries and centrally planned economies increased their energy consumption per unit of national income although the rate of increase slowed after 1975. (UK)

  1. Advanced Range Safety System for High Energy Vehicles

    Science.gov (United States)

    Claxton, Jeffrey S.; Linton, Donald F.

    2002-01-01

    The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.

  2. Modeling light-duty plug-in electric vehicles for national energy and transportation planning

    International Nuclear Information System (INIS)

    Wu, Di; Aliprantis, Dionysios C.

    2013-01-01

    This paper sets forth a family of models of light-duty plug-in electric vehicle (PEV) fleets, appropriate for conducting long-term national-level planning studies of the energy and transportation sectors in an integrated manner. Using one of the proposed models, three case studies on the evolution of the U.S. energy and transportation infrastructures are performed, where portfolios of optimum investments over a 40-year horizon are identified, and interdependencies between the two sectors are highlighted. The results indicate that with a gradual but aggressive introduction of PEVs coupled with investments in renewable energy, the total cost from the energy and transportation systems can be reduced by 5%, and that overall emissions from electricity generation and light-duty vehicle (LDV) tailpipes can be reduced by 10% over the 40-year horizon. The annual gasoline consumption from LDVs can be reduced by 66% by the end of the planning horizon, but an additional 800 TWh of annual electricity demand will be introduced. In addition, various scenarios of greenhouse gas (GHG) emissions reductions are investigated. It is found that GHG emissions can be significantly reduced with only a marginal cost increment, by shifting electricity generation from coal to renewable sources. - Highlights: • We model plug-in electric vehicles (PEVs) for long-term national planning studies. • Realistic travel patterns are used to estimate the vehicles' energy consumption. • National energy and transportation system interdependencies are considered. • Case studies illustrate optimum investments in energy and transportation sectors. • PEVs synergistically with renewable energy can aggressively reduce GHG emissions

  3. Energy consumption and total factor productivity growth in Iranian agriculture

    Directory of Open Access Journals (Sweden)

    Reza Moghaddasi

    2016-11-01

    Full Text Available In this study we investigated the relation between energy consumption and growth of total factor productivity (TFP of agriculture in Iran from 1974 to 2012 using Solow residual method. The results from estimated aggregate Cobb–Douglas production function showed that one percent change in the value of labor, capital and energy will lead to 4.07, 0.09 and 0.49 percent change in agriculture value added, respectively. Also in a long term, based on the Johansen cointegration test, there is a negative relation between TFP growth and energy consumption in Iranian agriculture which might be due to cheap and inefficient energy use in this sector. Gradual liberalization of energy price and use of so called green box support policies is recommended.

  4. Analysis of federal incentives used to stimulate energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R.J.; Cone, B.W.; Emery, J.C.; Huelshoff, M.; Lenerz, D.E.; Marcus, A.; Morris, F.A.; Sheppard, W.J.; Sommers, P.

    1981-08-01

    The purpose of the analysis is to identify and quantify Federal incentives that have increased the consumption of coal, oil, natural gas, and electricity. The introductory chapter is intended as a device for presenting the policy questions about the incentives that can be used to stimulate desired levels of energy development. In the theoretical chapter federal incentives were identified for the consumption of energy as Federal government actions whose major intent or result is to stimulate energy consumption. The stimulus comes through changing values of variables included in energy demand functions, thereby inducing energy consumers to move along the function in the direction of greater quantity of energy demanded, or through inducing a shift of the function to a position where more energy will be demanded at a given price. The demand variables fall into one of six categories: price of the energy form, price of complements, price of substitutes, preferences, income, and technology. The government can provide such incentives using six different policy instruments: taxation, disbursements, requirements, nontraditional services, traditional services, and market activity. The four major energy forms were examined. Six energy-consuming sectors were examined: residential, commercial, industrial, agricultural, transportation, and public. Two types of analyses of incentive actions are presented in this volume. The generic chapter focused on actions taken in 1978 across all energy forms. The subsequent chapters traced the patterns of incentive actions, energy form by energy form, from the beginning of the 20th century, to the present. The summary chapter includes the results of the previous chapters presented by energy form, incentive type, and user group. Finally, the implications of these results for solar policy are presented in the last chapter. (MCW)

  5. Projected energy and water consumption of Pacific Northwest irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    King, L. D.; Hellickson, M. L.; Schmisseur, W. E.; Shearer, M. N.

    1978-10-01

    A computer model has been developed to predict present and future regional water, energy, labor, and capital requirements of irrigated agricultural production in Idaho, Oregon, and Washington. The energy requirements calculated were on-farm pumping, and total energies. Total energies are the combined energies of on-farm pumping, manufacture, and installation. Irrigation system selections and modifications were based on an economic analysis utilizing the following input parameters: water, energy, labor, and capital costs and requirements; groundwater and surface water pumping lifts; improved application efficiencies; and pumping plant efficiencies. Major conclusions and implications of this analysis indicate that: as water application efficiencies increases additional quantities of water will not become available to other users; an overall increase in water application efficiencies resulted in decreases in gross water applications and increases in overall on-farm pumping and total energy consumptions; more energy will be consumed as pumping and total energies than will be conserved through decreased diversion pumping energy requirements; pump-back and similar technologies have the potential of both increasing application efficiencies and energy conservation; and the interrelationships understood between applying water in quantities greater than required for crop consumptive use and leaching, and late season in-steam flow augmentation and/or aquifer recharge are not well understood, and sound policy decisions concerning agricultural use of water and energy cannot be made until these interrelationships are better understood.

  6. A social capital approach to household energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    McMichael, Megan [School of Construction Management and Engineering, The Univ. of Reading (United Kingdom)

    2007-07-01

    This paper examines the concept of social capital in relation to household energy consumption in an effort to further understand social influences on energy use in the United Kingdom. The considerable focus on building science and technology notwithstanding, it is widely recognised that social factors influence energy use at the household level. Much of the research on changing behaviour has focused on influencing individual actions. Whilst promoting changes in individual behaviour is important, social level analysis provides a broader framework for understanding householder energy use. Social capital broadly refers to the social resources available through networks, social norms and associated levels of trust and reciprocity. The literature of energy, in the form of environmental protection and consumption, is investigated here with regards to social capital to determine the utility of any theoretical and empirical relationship. It is argued that insights from the associations of social and energy consumption can assist energy efficiency practitioners and researchers in understanding the broader social framework that underpins household energy use, but that more robust empirical research is necessary.

  7. Commercialisation of Renewable Energy Technologies for Various Consumption Needs

    Energy Technology Data Exchange (ETDEWEB)

    Jiahua Pan [Chinese Academy of Social Sciences (China)

    2005-12-15

    Can renewable energy technologies meet various consumption needs? It may be argued that without commercial viability, renewable energy technologies cannot compete with conventional energy technologies in this respect. The following issues are to be examined in this paper: (1) the types of renewable energy technologies needed in relation to consumption needs; (2) whether these technologies are commercially viable; (3) the extent to which these technologies can supply the energy needed for industrialisation and economic development in developing countries; (4) policy implications of commercialising renewable energy technologies; and, (5) the role of Asia-Europe cooperation on technological development, diffusion and transfer. The evaluation will concentrate on market potential rather than technological potential, as some of the renewable energy technologies are yet to be commercial. This examination will be made in the context of the specific consumption needs of a major developing country like China in its current period of high economic growth rates and rapid industrialisation. Asia-Europe co-operation on renewable energy technologies can speed up the process of commercialisation through demonstration, direct investment, joint venture, Build-Operate-Transfer (BOT), financial aid and capacity building (both technological know-how and institutional)

  8. Energy consumption of electricity end uses in Malaysian historic buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kamaruzzaman, Syahrul N.; Edwards, Rodger E.; Zawawi, Emma M.A.

    2007-07-15

    Malaysia has inherited hundreds of heritage buildings from the past including those from the Indian, Chinese and Colonial eras apart from the indigenous traditional buildings. These buildings have the most unique ecstatic value from the viewpoint of architecture, culture, art, etc. Malaysian economy boom in 1980s spurred the need for more buildings especially in large cities. As a result, most of the historic buildings have been converted and transformed into commercial use. As reported by METP, Malaysian buildings energy uses are reflected by the energy consumption in the industrial and commercial sectors. Most of the buildings' energy consumption is electricity, used for running and operating the plants, lighting, lifts and escalators and other equipment in the buildings. These are amongst the factors that have resulted in the high demand for electricity in Malaysia. As outlined in the eighth Malaysia Plan, Malaysia is taking steps in conserving energy and reducing energy consumption on electricity consumption in building. This paper aims to present the breakdown of the major electricity end uses characteristics of historic buildings in Malaysia. The analysis was performed on annual data, allowing comparison with published benchmarks to give an indication of efficiency. Based on data collected a 'normalisation' calculated electricity consumption was established with the intention of improving the comparison between buildings in different climatic regions or with different occupancy patterns. This is useful for identifying where the design needed further attention and helped pinpoint problem areas within a building. It is anticipated that this study would give a good indication on the electricity consumption characteristics of historic buildings in Malaysia. (Author)

  9. Energy drinks consumption in Erbil city: A population based study

    Directory of Open Access Journals (Sweden)

    Yassin A. Asaad

    2017-08-01

    Full Text Available Background and objective: Energy drinks have become increasingly prevalent among young adults and adolescents in recent years, particularly young students and athletes who see the consumption of energy drinks as an easy and quick way to boost academic and athletic performance. This study was conducted to determine the prevalence of consumption of energy drinks in a sample of adolescent and adults in Erbil city as well as perceived benefits and its health hazards. Methods: A convenience sample of 600 individuals from different sectors and social groups of Erbil city was selected. Data was obtained through direct interview. The data was managed through SPSS program version 18, using appropriate statistical tests. Results: The prevalence of energy drinks consumption among the study population was 42.7%, especially adolescents and young adults (those ≤ 25 years and was more common among males than females (55.7% and 29.8%, respectively. The main reasons for its consumption were related to getting energy and improving the mood and performance (66.0% and 30.4%, respectively. 62.7% of participants think that it is harmful and could have adverse effects such as heartbeat irregularity and blood pressure swinging, addiction, and osteoporosis (46.2%, 33.7% and 13.2%, respectively. Televisions were the major source of advertisement (71.45. A significant statistical association had been found between the age, gender and educational status of the participants and consuming energy drinks (P = 0.001, 0.001 and 0.002, respectively. Conclusion: Energy drinks consumption found to be highly prevalent in adolescents and young adults in Erbil city, which calls for review and regulating the sale of these drinks including adolescents' education, raising community’s awareness, banning selling it in public places and increasing taxes.

  10. An Efficient Two-Objective Hybrid Local Search Algorithm for Solving the Fuel Consumption Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    Weizhen Rao

    2016-01-01

    Full Text Available The classical model of vehicle routing problem (VRP generally minimizes either the total vehicle travelling distance or the total number of dispatched vehicles. Due to the increased importance of environmental sustainability, one variant of VRPs that minimizes the total vehicle fuel consumption has gained much attention. The resulting fuel consumption VRP (FCVRP becomes increasingly important yet difficult. We present a mixed integer programming model for the FCVRP, and fuel consumption is measured through the degree of road gradient. Complexity analysis of FCVRP is presented through analogy with the capacitated VRP. To tackle the FCVRP’s computational intractability, we propose an efficient two-objective hybrid local search algorithm (TOHLS. TOHLS is based on a hybrid local search algorithm (HLS that is also used to solve FCVRP. Based on the Golden CVRP benchmarks, 60 FCVRP instances are generated and tested. Finally, the computational results show that the proposed TOHLS significantly outperforms the HLS.

  11. Estimating building energy consumption using extreme learning machine method

    International Nuclear Information System (INIS)

    Naji, Sareh; Keivani, Afram; Shamshirband, Shahaboddin; Alengaram, U. Johnson; Jumaat, Mohd Zamin; Mansor, Zulkefli; Lee, Malrey

    2016-01-01

    The current energy requirements of buildings comprise a large percentage of the total energy consumed around the world. The demand of energy, as well as the construction materials used in buildings, are becoming increasingly problematic for the earth's sustainable future, and thus have led to alarming concern. The energy efficiency of buildings can be improved, and in order to do so, their operational energy usage should be estimated early in the design phase, so that buildings are as sustainable as possible. An early energy estimate can greatly help architects and engineers create sustainable structures. This study proposes a novel method to estimate building energy consumption based on the ELM (Extreme Learning Machine) method. This method is applied to building material thicknesses and their thermal insulation capability (K-value). For this purpose up to 180 simulations are carried out for different material thicknesses and insulation properties, using the EnergyPlus software application. The estimation and prediction obtained by the ELM model are compared with GP (genetic programming) and ANNs (artificial neural network) models for accuracy. The simulation results indicate that an improvement in predictive accuracy is achievable with the ELM approach in comparison with GP and ANN. - Highlights: • Buildings consume huge amounts of energy for operation. • Envelope materials and insulation influence building energy consumption. • Extreme learning machine is used to estimate energy usage of a sample building. • The key effective factors in this study are insulation thickness and K-value.

  12. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Science.gov (United States)

    2010-10-27

    ... Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings; Correction AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... the fossil fuel- generated energy consumption [[Page 66009

  13. Residential energy consumption in urban China: A decomposition analysis

    International Nuclear Information System (INIS)

    Zhao Xiaoli; Li Na; Ma, Chunbo

    2012-01-01

    Residential energy consumption (REC) is the second largest energy use category (10%) in China and urban residents account for 63% of the REC. Understanding the underlying drivers of variations of urban REC thus helps to identify challenges and opportunities and provide advices for future policy measures. This paper applies the LMDI method to a decomposition of China's urban REC during the period of 1998–2007 at disaggregated product/activity level using data collected from a wide range of sources. Our results have shown an extensive structure change towards a more energy-intensive household consumption structure as well as an intensive structure change towards high-quality and cleaner energy such as electricity, oil, and natural gas, which reflects a changing lifestyle and consumption mode in pursuit of a higher level of comfort, convenience and environmental protection. We have also found that China's price reforms in the energy sector have contributed to a reduction of REC while scale factors including increased urban population and income levels have played a key role in the rapid growth of REC. We suggest that further deregulation in energy prices and regulatory as well as voluntary energy efficiency and conservation policies in the residential sector should be promoted. - Highlights: ► We examine china's residential energy consumption (REC) at detailed product level. ► Results show significant extensive and intensive structure changed. ► Price deregulation in the energy sector has contributed a reduction of REC. ► Growth of population and income played a key role in REC rapid growth. ► We provide policy suggestions to promote REC saving.

  14. A Low Power Consumption Algorithm for Efficient Energy Consumption in ZigBee Motes.

    Science.gov (United States)

    Vaquerizo-Hdez, Daniel; Muñoz, Pablo; R-Moreno, María D; F Barrero, David

    2017-09-22

    Wireless Sensor Networks (WSNs) are becoming increasingly popular since they can gather information from different locations without wires. This advantage is exploited in applications such as robotic systems, telecare, domotic or smart cities, among others. To gain independence from the electricity grid, WSNs devices are equipped with batteries, therefore their operational time is determined by the time that the batteries can power on the device. As a consequence, engineers must consider low energy consumption as a critical objective to design WSNs. Several approaches can be taken to make efficient use of energy in WSNs, for instance low-duty-cycling sensor networks (LDC-WSN). Based on the LDC-WSNs, we present LOKA, a LOw power Konsumption Algorithm to minimize WSNs energy consumption using different power modes in a sensor mote. The contribution of the work is a novel algorithm called LOKA that implements two duty-cycling mechanisms using the end-device of the ZigBee protocol (of the Application Support Sublayer) and an external microcontroller (Cortex M0+) in order to minimize the energy consumption of a delay tolerant networking. Experiments show that using LOKA, the energy required by the sensor device is reduced to half with respect to the same sensor device without using LOKA.

  15. A Low Power Consumption Algorithm for Efficient Energy Consumption in ZigBee Motes

    Directory of Open Access Journals (Sweden)

    Daniel Vaquerizo-Hdez

    2017-09-01

    Full Text Available Wireless Sensor Networks (WSNs are becoming increasingly popular since they can gather information from different locations without wires. This advantage is exploited in applications such as robotic systems, telecare, domotic or smart cities, among others. To gain independence from the electricity grid, WSNs devices are equipped with batteries, therefore their operational time is determined by the time that the batteries can power on the device. As a consequence, engineers must consider low energy consumption as a critical objective to design WSNs. Several approaches can be taken to make efficient use of energy in WSNs, for instance low-duty-cycling sensor networks (LDC-WSN. Based on the LDC-WSNs, we present LOKA, a LOw power Konsumption Algorithm to minimize WSNs energy consumption using different power modes in a sensor mote. The contribution of the work is a novel algorithm called LOKA that implements two duty-cycling mechanisms using the end-device of the ZigBee protocol (of the Application Support Sublayer and an external microcontroller (Cortex M0+ in order to minimize the energy consumption of a delay tolerant networking. Experiments show that using LOKA, the energy required by the sensor device is reduced to half with respect to the same sensor device without using LOKA.

  16. Measuring and evaluating energy consumption in street lighting networks

    International Nuclear Information System (INIS)

    Janiga, P.; Gasparovsky, D.

    2012-01-01

    Smart metering and smart grid are incoming technologies that provide new opportunities in various fields. In connection with the issue of evaluation of the energy aspects of public lighting networks opens up the possibility of evaluating and measuring consumption. Based on the obtained values would be possible to determine energy consumption of lighting systems. This obtained value could serve as a basis for comparing the relevant networks and thus the optimality assessment of lighting designs. Currently, the measure placed in the switchboard of public lighting. If we have considered sections parametramim same lighting, it is necessary to obtain more value from the measured or determined to assess the consumption of time. Proposal of such methods is still under construction but the basic methods have already been outlined. (Authors)

  17. Energy drink consumption and impact on caffeine risk.

    Science.gov (United States)

    Thomson, Barbara M; Campbell, Donald M; Cressey, Peter; Egan, Ursula; Horn, Beverley

    2014-01-01

    The impact of caffeine from energy drinks occurs against a background exposure from naturally occurring caffeine (coffee, tea, cocoa and foods containing these ingredients) and caffeinated beverages (kola-type soft drinks). Background caffeine exposure, excluding energy drinks, was assessed for six New Zealand population groups aged 15 years and over (n = 4503) by combining concentration data for 53 caffeine-containing foods with consumption information from the 2008/09 New Zealand Adult Nutrition Survey (ANS). Caffeine exposure for those who consumed energy drinks (n = 138) was similarly assessed, with inclusion of energy drinks. Forty-seven energy drink products were identified on the New Zealand market in 2010. Product volumes ranged from 30 to 600 ml per unit, resulting in exposures of 10-300 mg caffeine per retail unit consumed. A small percentage, 3.1%, of New Zealanders reported consuming energy drinks, with most energy drink consumers (110/138) drinking one serving per 24 h. The maximum number of energy drinks consumed per 24 h was 14 (total caffeine of 390 mg). A high degree of brand loyalty was evident. Since only a minor proportion of New Zealanders reported consuming energy drinks, a greater number of New Zealanders exceeded a potentially adverse effect level (AEL) of 3 mg kg(-1) bw day(-1) for caffeine from caffeine-containing foods than from energy drinks. Energy drink consumption is not a risk at a population level because of the low prevalence of consumption. At an individual level, however, teenagers, adults (20-64 years) and females (16-44 years) were more likely to exceed the AEL by consuming energy drinks in combination with caffeine-containing foods.

  18. The 2005 energy year in Finland: Electricity consumption down

    International Nuclear Information System (INIS)

    2006-01-01

    Electricity consumption declined by 2.5% in 2005, largely as a result of a six-week labour dispute in the paper indusry and mild weather conditions, according to a report on energy industry develop rents in 2005 published by Finnish Energy Industries. Over the longer term, energy consumption is forecast to grow by close to 2% a year. Water levels in waterways and water systems across the Nordic countries returned to normal in 2005 after a long period of reduced resources, stabilising hydropower output generally Following high levels of electricity exports westwards in 2004, electricity imports from the West reached almost record levels in Finland in 2005. Together with imports from Russia, Finland imported more electricity last year than ever before - and a full fifth of Finland's energy needs were covered by net electricity imports in 2005. Two thirds of imports came from Russia, with imports reaching almost the maximum capacity of the countries' interconnectors

  19. China building energy consumption: Situation, challenges and corresponding measures

    International Nuclear Information System (INIS)

    Cai, W.G.; Wu, Y.; Zhong, Y.; Ren, H.

    2009-01-01

    As one of the biggest parts of total national energy consumption (TNEC), building energy consumption (BEC) catches public eyes and has been regarded as a crucial problem of the current society. For the past 20 years, BEC in china has been increasing at a high speed. To curb the rapid growing of BEC, china has enforced and implemented a series of policies. These include enforcing BEC constraints on new building projects, promoting more environment friendly building designs, establishing a more sophisticated legislation for building energy conservation, and increasing the total budget in the area of BEC control. This article analyzed china BEC situation and the challenges. As the main point, the measures required by China government to improve building energy efficiency were introduced as well.

  20. Evaluation of energy consumption in different drying methods

    Energy Technology Data Exchange (ETDEWEB)

    Motevali, Ali; Minaei, Saeid; Khoshtagaza, Mohammad Hadi [Department of Agricultural Machinery Engineering, Agricultural Faculty, Tarbiat Modares University, Tehran 14115-111 (Iran, Islamic Republic of)

    2011-02-15

    This study was conducted to evaluate energy consumption in various drying systems including hot-air convection, use of microwave pretreatment with convection dryer, microwave drying, vacuum drying and infrared drying. Tests were conducted using pomegranate arils under various experimental conditions as follows. In convection dryer at six temperature levels (45, 50, 55, 60, 65 and 70 C) and three air velocity levels (0.5, 1 and 1.5 m/s) at three pretreatments of control, 100 W microwave pretreatment for 20 min and 200 W microwave pretreatment for 10 min. Experiments in the microwave dryer were done at three power levels of 100, 200 and 300 W and in vacuum dryer at five temperature levels (50, 60, 70, 80, and 90 C) under 250 kPa pressure. For infrared drying, there were four air velocity levels (0.3, 0.5, 0.7 and 1 m/s) and three illumination levels (0.22, 0.31 and 0.49 W/cm{sup 2}). Experimental results showed that minimum and maximum energy consumption in pomegranate drying were associated with microwave and vacuum dryers, respectively. The use of microwave pretreatment in drying pomegranate arils in hot air dryer decreased drying time and energy consumption in comparison with pure convection drying. In infrared drying, it was found that drying time increased with air velocity which resulted in increased energy consumption. (author)

  1. Investigating the effect of design patterns on energy consumption

    NARCIS (Netherlands)

    Feitosa, Daniel; Alders, Rutger; Ampatzoglou, Apostolos; Avgeriou, Paris; Nakagawa, Elisa Yumi

    Gang of Four (GoF) patterns are well-known best practices for the design of object-oriented systems. In this paper, we aim at empirically assessing their relationship to energy consumption, ie, a performance indicator that has recently attracted the attention of both researchers and practitioners.

  2. Developing an Analytical Framework for Argumentation on Energy Consumption Issues

    Science.gov (United States)

    Jin, Hui; Mehl, Cathy E.; Lan, Deborah H.

    2015-01-01

    In this study, we aimed to develop a framework for analyzing the argumentation practice of high school students and high school graduates. We developed the framework in a specific context--how energy consumption activities such as changing diet, converting forests into farmlands, and choosing transportation modes affect the carbon cycle. The…

  3. Energy consumption of auxiliary systems of electric cars

    Directory of Open Access Journals (Sweden)

    Evtimov Ivan

    2017-01-01

    Full Text Available The paper analyzes the power demand of the auxiliary systems of electric cars. On the basis of existing electric cars an analysis of energy consumption of different auxiliary systems is done. As a result possibilities for rational use of these systems have been proposed, which can increase the mileage per one charge of the battery.

  4. Evaluation of energy consumption in different drying methods

    International Nuclear Information System (INIS)

    Motevali, Ali; Minaei, Saeid; Khoshtagaza, Mohammad Hadi

    2011-01-01

    This study was conducted to evaluate energy consumption in various drying systems including hot-air convection, use of microwave pretreatment with convection dryer, microwave drying, vacuum drying and infrared drying. Tests were conducted using pomegranate arils under various experimental conditions as follows. In convection dryer at six temperature levels (45, 50, 55, 60, 65 and 70 o C) and three air velocity levels (0.5, 1 and 1.5 m/s) at three pretreatments of control, 100 W microwave pretreatment for 20 min and 200 W microwave pretreatment for 10 min. Experiments in the microwave dryer were done at three power levels of 100, 200 and 300 W and in vacuum dryer at five temperature levels (50, 60, 70, 80, and 90 o C) under 250 kPa pressure. For infrared drying, there were four air velocity levels (0.3, 0.5, 0.7 and 1 m/s) and three illumination levels (0.22, 0.31 and 0.49 W/cm 2 ). Experimental results showed that minimum and maximum energy consumption in pomegranate drying were associated with microwave and vacuum dryers, respectively. The use of microwave pretreatment in drying pomegranate arils in hot air dryer decreased drying time and energy consumption in comparison with pure convection drying. In infrared drying, it was found that drying time increased with air velocity which resulted in increased energy consumption.

  5. Energy consumption-based accounts: A comparison of results using different energy extension vectors

    OpenAIRE

    Owen, A; Brockway, P; Brand-Correa, L; Bunse, L; Sakai, M; Barrett, J

    2017-01-01

    Increasing attention has been focussed on the use of consumption-based approaches to energy accounting via input-output (IO) methods. Of particular interest is the examination of energy supply chains, given the associated risks from supply-chain issues, including availability shocks, taxes on fossil fuels and fluctuating energy prices. Using a multiregional IO (MRIO) database to calculate energy consumption-based accounts (CBA) allows analysts to both determine the quantity and source of ener...

  6. Apoptosis of rats’ cardiomyocytes after chronic energy drinks consumption

    Directory of Open Access Journals (Sweden)

    Slawinski Miroslaw Aleksander

    2018-03-01

    Full Text Available Energy drinks (ED are beverages containing caffeine, taurine, vitamins, herbal extracts, and sugar or sweeteners. They are marketed as capable of improving stamina, athletic performance and concentration, moreover, as serving as a source of energy. Still, there are very few papers describing the impact of ED on cell biology – including cell apoptosis within tissues. Therefore, in our study, we assessed the symptoms of rat cardiomyocytes apoptosis after 8 weeks consumption of ED.

  7. High-efficiency pumps drastically reduce energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2002-05-01

    Wilo's Stratos pumps for air conditioning and other domestic heating applications combine the advantages of wet runner technology with an innovative electronic commutator motor. The energy consumption of these high-efficiency pumps is halved compared with similar wet runner designs. With vast numbers of pumps used in buildings across Europe alone, the adoption of this technology potentially offers significant energy sayings. (Author)

  8. Hybrid and plug-in hybrid electric vehicle performance testing by the US Department of Energy Advanced Vehicle Testing Activity

    Science.gov (United States)

    Karner, Donald; Francfort, James

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.

  9. Energy consumption and economic growth on the focus on nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Ozkan, Filiz [Sakarya Univ., Sakarya (Turkey). Dept. of Financial Econometric; Pektas, Ali Osman [Bahcesehir Univ., Istanbul (Turkey). Dept. of Civil Engineering; Ozkan, Omer [Istanbul Medeniyet Univ. (Turkey). Dept. of Civil Engineering

    2017-01-15

    Since the quest for global and personal prosperity, the drive to eradicate poverty and the motivation to ensure sustainability for the world are collectively dependent on a supply of safe, emissions-free power there are many studies in literature focuses on the relationship between economic growth and energy consumption. This study tries to enlarge the dimensions of these researches by using a large dataset. The second aim of this study is to focus on Nuclear energy consumption. According to the empirical results of the study, Energy consumption is found as co-integrated with the GDP in all 55 countries. There exist bidirectional causality between nuclear, renewable energy consumption and the GDP. Additionally, the unidirectional causality extends from economic growth to hydroelectric, petroleum, coal and total energy consumption.

  10. Energy consumption and economic growth on the focus on nuclear energy

    International Nuclear Information System (INIS)

    Ozkan, Filiz; Pektas, Ali Osman; Ozkan, Omer

    2017-01-01

    Since the quest for global and personal prosperity, the drive to eradicate poverty and the motivation to ensure sustainability for the world are collectively dependent on a supply of safe, emissions-free power there are many studies in literature focuses on the relationship between economic growth and energy consumption. This study tries to enlarge the dimensions of these researches by using a large dataset. The second aim of this study is to focus on Nuclear energy consumption. According to the empirical results of the study, Energy consumption is found as co-integrated with the GDP in all 55 countries. There exist bidirectional causality between nuclear, renewable energy consumption and the GDP. Additionally, the unidirectional causality extends from economic growth to hydroelectric, petroleum, coal and total energy consumption.

  11. Optimizing Energy Consumption in Vehicular Sensor Networks by Clustering Using Fuzzy C-Means and Fuzzy Subtractive Algorithms

    Science.gov (United States)

    Ebrahimi, A.; Pahlavani, P.; Masoumi, Z.

    2017-09-01

    Traffic monitoring and managing in urban intelligent transportation systems (ITS) can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC) for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs); moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH), and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM) and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  12. OPTIMIZING ENERGY CONSUMPTION IN VEHICULAR SENSOR NETWORKS BY CLUSTERING USING FUZZY C-MEANS AND FUZZY SUBTRACTIVE ALGORITHMS

    Directory of Open Access Journals (Sweden)

    A. Ebrahimi

    2017-09-01

    Full Text Available Traffic monitoring and managing in urban intelligent transportation systems (ITS can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs; moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH, and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  13. Building and occupant characteristics as determinants of residential energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Nieves, A.L.

    1981-10-01

    The major goals of the research are to gain insight into the probable effects of building energy performance standards on energy consumption; to obtain observations of actual residential energy consumption that could affirm or disaffirm comsumption estimates of the DOE 2.0A simulation model; and to investigate home owner's conservation investments and home purchase decisions. The first chapter covers the investigation of determinants of household energy consumption. The presentation begins with the underlying economic theory and its implications, and continues with a description of the data collection procedures, the formulation of variables, and then of data analysis and findings. In the second chapter the assumptions and limitations of the energy use projections generated by the DOE 2.0A model are discussed. Actual electricity data for the houses are then compared with results of the simulation. The third chapter contains information regarding households' willingness to make energy conserving investments and their ranking of various conservation features. In the final chapter conclusions and recommendations are presented with an emphasis on the policy implications of this study. (MCW)

  14. Energy consumption optimization of a continuous ice cream process

    International Nuclear Information System (INIS)

    González-Ramírez, J.E.; Leducq, D.; Arellano, M.; Alvarez, G.

    2013-01-01

    Highlights: • This work investigates potential energy savings of an ice cream freezer. • From a full load compressor to a variable speed compressor one in freezer. • 30% less of energy consumption. • It is possible to save between 11 and 14 MWh per year by optimizing freezers. - Abstract: This work investigates potential energy saves in an ice cream freezer by using a variable speed compressor and optimization’s methodology for operating conditions during the process. Two configurations to control the refrigeration capacity were analyzed, the first one, modifies the pressure through the pilot control valve (conventional refrigeration system) and the second one with a variable speed compressor, both with a float expansion valve. Variable speed compressor configuration has showed the highest coefficient of performance and around of 30% less of energy consumption than the conventional one. The optimization of operating conditions in order to minimize the energy consumption is also presented. It was calculated only in France, for all ice cream and sorbet production, it is possible to save energy between 11 and 14 MWh per year by optimizing the operation of the refrigeration system through a variable speed compressor configuration

  15. Actual energy consumption in dwellings. The effect of energy performance regulations and occupant behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Guerra Santin, O.

    2010-10-19

    Residential buildings have continuously improved in energy efficiency, partly as a consequence of the introduction of energy regulations in many countries. Although better thermal properties and systems efficiency have lowered energy consumption for space heating in recent decades, substantial differences in energy consumption in similar dwellings are still being observed. These differences in consumption are thought to be caused by differences in occupancy patterns, by quality of construction and by rebound effects. This research addresses the effect of energy performance regulations and occupant behavior on energy consumption for space and water heating in dwellings built after the introduction of the energy performance regulations in the Netherlands. The results of this research show that improving the energy efficiency of buildings alone is not enough to decrease that energy consumption. The large differences found in the use of dwellings indicate that, especially in energy efficient houses, occupant behavior provides an opportunity for further reductions in the energy consumption for space heating which could boost the efforts to conserve energy worldwide.

  16. Final Energy Consumption Trends and Drivers in Czech Republic and Latvia

    OpenAIRE

    Zhiqian Yu; Dalia Streimikiene; Tomas Balezentis; Rimantas Dapkus; Radislav Jovovic; Veselin Draskovic

    2017-01-01

    This paper analyses the trends of final energy consumption in Latvia and Czech Republic. Analysis of final energy consumption during 2000-2013 period indicated the main driving forces of final energy consumption during and after world financial crisis of 2008. The paper aimed to evaluate the impact of economic activity and other factors on final energy consumption. The decomposition of the final energy consumption is assessed by analyzing effect of different drivers by the main end-users sect...

  17. Energy Drink Consumption: Beneficial and Adverse Health Effects.

    Science.gov (United States)

    Alsunni, Ahmed Abdulrahman

    2015-10-01

    Consumption of energy drinks has been increasing dramatically in the last two decades, particularly amongst adolescents and young adults. Energy drinks are aggressively marketed with the claim that these products give an energy boost to improve physical and cognitive performance. However, studies supporting these claims are limited. In fact, several adverse health effects have been related to energy drink; this has raised the question of whether these beverages are safe. This review was carried out to identify and discuss the published articles that examined the beneficial and adverse health effects related to energy drink. It is concluded that although energy drink may have beneficial effects on physical performance, these products also have possible detrimental health consequences. Marketing of energy drinks should be limited or forbidden until independent research confirms their safety, particularly among adolescents.

  18. The impact of glazing on energy consumption and comfort

    International Nuclear Information System (INIS)

    Stegou-Sagia, A.; Antonopoulos, K.; Angelopoulou, C.; Kotsiovelos, G.

    2007-01-01

    Given the importance of buildings on the energy balance in Greece, an attempt has been made to study their energy behaviour and thermal comfort. Our primary purpose is to provide an estimation of the building's energy consumption and examine how this affects the comfort conditions. This includes the definition of thermal conditions acceptable for various activities at different times of day during each month of the year. We cannot underestimate the value of real measurements and observations of the building's energy systems, but such data are not always available. The best opportunities for improving energy performance occur early in the design process. Our simulation results can give an indication on which end uses are the most energy consuming, the 'weaknesses' of a building and thus urge the owner or engineer to take effective conservation energy measures

  19. The impact of electric vehicles on the outlook of future energy system

    Science.gov (United States)

    Zhuk, A.; Buzoverov, E.

    2018-02-01

    Active promotion of electric vehicles (EVs) and technology of fast EV charging in the medium term may cause significant peak loads on the energy system, what necessitates making strategic decisions related to the development of generating capacities, distribution networks with EV charging infrastructure, and priorities in the development of battery electric vehicles and vehicles with electrochemical generators. The paper analyses one of the most significant aspects of joint development of electric transport system and energy system in the conditions of substantial growth of energy consumption by EVs. The assessments of per-unit-costs of operation and depreciation of EV power unit were made, taking into consideration the expenses of electric power supply. The calculations show that the choice of electricity buffering method for EV fast charging depends on the character of electricity infrastructure in the region where the electric transport is operating. In the conditions of high density of electricity network and a large number of EVs, the stationary storage facilities or the technology of distributed energy storage in EV batteries - vehicle-to-grid (V2G) technology may be used for buffering. In the conditions of low density and low capacity of electricity networks, the most economical solution could be usage of EVs with traction power units based on the combination of air-aluminum electrochemical generator and a buffer battery of small capacity.

  20. Evaluation strategy of regenerative braking energy for supercapacitor vehicle.

    Science.gov (United States)

    Zou, Zhongyue; Cao, Junyi; Cao, Binggang; Chen, Wen

    2015-03-01

    In order to improve the efficiency of energy conversion and increase the driving range of electric vehicles, the regenerative energy captured during braking process is stored in the energy storage devices and then will be re-used. Due to the high power density of supercapacitors, they are employed to withstand high current in the short time and essentially capture more regenerative energy. The measuring methods for regenerative energy should be investigated to estimate the energy conversion efficiency and performance of electric vehicles. Based on the analysis of the regenerative braking energy system of a supercapacitor vehicle, an evaluation system for energy recovery in the braking process is established using USB portable data-acquisition devices. Experiments under various braking conditions are carried out. The results verify the higher efficiency of energy regeneration system using supercapacitors and the effectiveness of the proposed measurement method. It is also demonstrated that the maximum regenerative energy conversion efficiency can reach to 88%. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Autonomous Vehicles Have a Wide Range of Possible Energy Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Austin Brown, Brittany Repac, Jeff Gonder

    2013-07-15

    Self-driving or “autonomous” vehicles (AVs) have leapt from science fiction into the forefront of transportation technology news. The technology is likely still years away from widespread commercial adoption, but the recent progress makes it worth considering the potential national impacts of widespread implementation. This poster makes an initial assessment of the energy impacts of AV adoptionon a per-vehicle basis and on total personal vehicle fuel use. While AVs offer numerous potential advantages in energy use, there are significant factors that could decrease or even eliminate the energy benefits under some circumstances. This analysis attempts to describe, quantify, and combine many of the possible effects. The nature and magnitude of these effects remain highly uncertain. This set of effects is very unlikely to be exhaustive, but this analysis approach can serve as a base for future estimates.

  2. Wheel Slip Control for Improving Traction-Ability and Energy Efficiency of a Personal Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Kanghyun Nam

    2015-07-01

    Full Text Available In this paper, a robust wheel slip control system based on a sliding mode controller is proposed for improving traction-ability and reducing energy consumption during sudden acceleration for a personal electric vehicle. Sliding mode control techniques have been employed widely in the development of a robust wheel slip controller of conventional internal combustion engine vehicles due to their application effectiveness in nonlinear systems and robustness against model uncertainties and disturbances. A practical slip control system which takes advantage of the features of electric motors is proposed and an algorithm for vehicle velocity estimation is also introduced. The vehicle velocity estimator was designed based on rotational wheel dynamics, measurable motor torque, and wheel velocity as well as rule-based logic. The simulations and experiments were carried out using both CarSim software and an experimental electric vehicle equipped with in-wheel-motors. Through field tests, traction performance and effectiveness in terms of energy saving were all verified. Comparative experiments with variations of control variables proved the effectiveness and practicality of the proposed control design.

  3. Kinetic energy recovery and power management for hybrid electric vehicles

    OpenAIRE

    Suntharalingam, P

    2011-01-01

    The major contribution of the work presented in this thesis is a thorough investigation of the constraints on regenerative braking and kinetic energy recovery enhancement for electric/hybrid electric vehicles during braking. Regenerative braking systems provide an opportunity to recycle the braking energy, which is otherwise dissipated as heat in the brake pads. However, braking energy harnessing is a relatively new concept in the automotive sector which still requires further research and de...

  4. Minimizing the Energy Consumption in ‎Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammed Saad Talib

    2017-12-01

    Full Text Available Energy in Wireless Sensor networks (WSNs represents an essential factor in designing, controlling and operating the sensor networks. Minimizing the consumed energy in WSNs application is a crucial issue for the network effectiveness and efficiency in terms of lifetime, cost and operation. Number of algorithms and protocols were proposed and implemented to decrease the energy consumption. WSNs operate with battery powered sensors. Sensors batteries have not easily rechargeable even though having restricted power. Frequently the network failure occurs due to the sensors energy insufficiency. MAC protocols in WSNs achieved low duty-cycle by employing periodic sleep and wakeup. Predictive Wakeup MAC (PW-MAC protocol was made use of the asynchronous duty cycling. It reduces the consumption of the node energy by allowing the senders to predict the receiver′s wakeup times. The WSN must be applied in an efficient manner to utilize the sensor nodes and their energy to ensure efficient network throughput. Prediction of the WSN lifetime previously to its installation represents a significant concern. To ensure energy efficiency the sensors duty cycles must be adjusted appropriately to meet the network traffic demands. The energy consumed in each node due to its switching between the active and the idle states were also estimated. The sensors are assumed to be randomly deployed. This paper aims to improve the randomly deployed network lifetime by scheduling the effects of transmission, reception and sleep states on the sensor node energy consumption. Results for these states with many performance metrics were also studied and discussed

  5. Analytical framework for analyzing the energy conversion efficiency of different hybrid electric vehicle topologies

    International Nuclear Information System (INIS)

    Katrasnik, Tomaz

    2009-01-01

    Energy consumption and exhaust emissions of hybrid electric vehicles (HEVs) strongly depend on the HEV topology, power ratios of the components and applied control strategy. There are many available patterns of combining the power flows to meet load requirements making it difficult to analyze and evaluate a newly designed HEV. In order to enhance design of HEVs, the paper provides a stand alone analytical framework for evaluating energy conversion phenomena of different HEV topologies. Analytical analysis is based on the energy balance equations and considers the complete energy path in the HEVs from the energy sources to the wheels and to other energy sinks. The analytical framework enables structuring large amount of data in physically meaningful energy flows and associated energy losses, and therefore provides insightful information for HEV optimization. It therefore enables identification of most suitable HEV topology and of most suitable power ratios of the components, since it reveals and quantifies the instruments that could lead to improved energy conversion efficiency of particular HEV. The analytical framework is also applicable for correcting the energy consumption of the HEV to the value corresponding to balanced energy content of the electric storage devices.

  6. Impact of external conditions on energy consumption in industrial halls

    Science.gov (United States)

    Żabnieńśka-Góra, Alina

    2017-11-01

    The energy demand for heating the halls buildings is high. The impact on this may have the technology of production, building construction and technology requirements (HVAC systems). The isolation of the external partitions, the location of the object in relation to the surrounding buildings and the degree of the interior insolation (windows and skylights) are important in the context of energy consumption. The article discusses the impact of external conditions, wind and sunlight on energy demand in the industrial hall. The building model was prepared in IDA ICE 4.0 simulation software. Model validation was done based on measurements taken in the analyzed building.

  7. Energy consumption of small refrigerators - Information leaflet; Merkblatt Kleinkuehlschrank

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    In this leaflet published by the Swiss Federal Office of Energy (SFOE), the energy consumption of small refrigerators with a capacity of less than 100 litres is reported on. Such small refrigerators are often used in hotel rooms or in campers. It is noted that, in comparison, a typical, 150 litre class A++ domestic refrigerator uses only a fraction of the amount of energy used by such small refrigerators. The results of measurements made according to EN 153 and ISO 15502 norms are discussed. Recommendations are made on the purchase and operation of these small refrigerators.

  8. A Single-Degree-of-Freedom Energy Optimization Strategy for Power-Split Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Chaoying Xia

    2017-07-01

    Full Text Available This paper presents a single-degree-of-freedom energy optimization strategy to solve the energy management problem existing in power-split hybrid electric vehicles (HEVs. The proposed strategy is based on a quadratic performance index, which is innovatively designed to simultaneously restrict the fluctuation of battery state of charge (SOC and reduce fuel consumption. An extended quadratic optimal control problem is formulated by approximating the fuel consumption rate as a quadratic polynomial of engine power. The approximated optimal control law is obtained by utilizing the solution properties of the Riccati equation and adjoint equation. It is easy to implement in real-time and the engineering significance is explained in details. In order to validate the effectiveness of the proposed strategy, the forward-facing vehicle simulation model is established based on the ADVISOR software (Version 2002, National Renewable Energy Laboratory, Golden, CO, USA. The simulation results show that there is only a little fuel consumption difference between the proposed strategy and the Pontryagin’s minimum principle (PMP-based global optimal strategy, and the proposed strategy also exhibits good adaptability under different initial battery SOC, cargo mass and road slope conditions.

  9. A survey of energy drink and alcohol mixed with energy drink consumption.

    Science.gov (United States)

    Magnezi, Racheli; Bergman, Lisa Carroll; Grinvald-Fogel, Haya; Cohen, Herman Avner

    2015-01-01

    Energy drink consumption among youth is increasing despite recommendations by the American Academy of Pediatrics to eliminate consumption by youth. This study provides information on consumption of energy drinks and alcohol mixed with energy drinks (AmED) in a sample of Israeli youth and how consumer knowledge about the risks affects consumption rates. The study was conducted in three Tel Aviv public schools, with a total enrollment of 1,253 students in grades 8 through 12. Among them, 802 students completed a 49-item questionnaire about energy drink and AmED consumption, for a 64 % response rate Non-responders included 451 students who were absent or refused to participate. All students in the same school were administered the questionnaire on the same day. Energy drinks are popular among youth (84.2 % have ever drunk). More tenth through twelfth grade students consumed energy drinks than eighth and ninth grade students. Students who began drinking in elementary school (36.8 %) are at elevated risk for current energy drink (P consumption (OR 1.925; 95 %CI 1.18-3.14). The association between current AmED consumption and drinking ED at a young age is important. Boys and those who start drinking early have a greater risk of both ED and AmED consumption. The characteristics of early drinkers can help increase awareness of potential at-risk youth, such as junior and senior high school students with less educated or single parents. Risks posed by early use on later energy drink and AmED consumption are concerning. We suggest that parents should limit accessibility. Increased knowledge about acceptable and actual amounts of caffeine in a single product might decrease consumption.

  10. Impact of Extended Daylight Saving Time on National Energy Consumption Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, D. B.; Hadley, S. W.; Chin, S-M.

    2008-10-01

    The Energy Policy Act of 2005 (Pub. L. No. 109-58; EPAct 2005) amended the Uniform Time Act of 1966 (Pub. L. No. 89-387) to increase the portion of the year that is subject to Daylight Saving Time. (15 U.S.C. 260a note) EPAct 2005 extended the duration of Daylight Saving Time in the spring by changing its start date from the first Sunday in April to the second Sunday in March, and in the fall by changing its end date from the last Sunday in October to the first Sunday in November. (15 U.S.C. 260a note) EPAct 2005 also called for the Department of Energy to evaluate the impact of Extended Daylight Saving Time on energy consumption in the United States and to submit a report to Congress. (15 U.S.C. 260a note) This report presents the results of impacts of Extended Daylight Saving Time on the national energy consumption in the United States. The key findings are: (1) The total electricity savings of Extended Daylight Saving Time were about 1.3 Tera Watt-hour (TWh). This corresponds to 0.5 percent per each day of Extended Daylight Saving Time, or 0.03 percent of electricity consumption over the year. In reference, the total 2007 electricity consumption in the United States was 3,900 TWh. (2) In terms of national primary energy consumption, the electricity savings translate to a reduction of 17 Trillion Btu (TBtu) over the spring and fall Extended Daylight Saving Time periods, or roughly 0.02 percent of total U.S. energy consumption during 2007 of 101,000 TBtu. (3) During Extended Daylight Saving Time, electricity savings generally occurred over a three- to five-hour period in the evening with small increases in usage during the early-morning hours. On a daily percentage basis, electricity savings were slightly greater during the March (spring) extension of Extended Daylight Saving Time than the November (fall) extension. On a regional basis, some southern portions of the United States exhibited slightly smaller impacts of Extended Daylight Saving Time on energy savings

  11. Effects of urbanisation on energy consumption in China

    International Nuclear Information System (INIS)

    Wang, Qiang

    2014-01-01

    As a key issue in China's economic development, urbanisation creates increasing pressure on energy supply and the natural environment. Thus, a better understanding of the relationship between urbanisation and energy consumption is necessary for Chinese decision makers at various levels to address energy security and sustainable economic and social development. This paper empirically investigates the effects of China's urbanisation on residential energy consumption (REC) and production energy consumption (PEC) through a time-series analysis. The results show that compared with rural areas, urbanisation slows per capita REC growth because of the economy of scale and technological advantages associated with urbanisation but has greater promotional effects on the growth of REC and the improvement of REC structure. The economic growth caused by urbanisation most significantly contributes to an increase in PEC, whereas technological advancement was found to reduce the scale of PEC (except from 2001 to 2005). Finally, the structural effect of the energy supply increased rather than decreased China's PEC, and the effect of industrial structure adjustment on PEC was found to be insignificant. - Highlights: • Urbanisation slows per capita REC growth when compared with rural areas. • Urbanisation has a greater promotional effect on REC growth and a stronger improved effect on energy structure than do rural areas. • The economic growth effect of urbanisation is responsible for the majority of PEC growth. • Technological advancement in conjunction with urbanisation has an adverse effect on the increase in PEC. • The structural effect of the energy supply on the urbanisation process has increased rather than decreased China's PEC. • There is no significant evidence that industrial structure adjustment in the urbanisation process affects PEC

  12. Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks

    Science.gov (United States)

    Magnetto, D.; Vidiella, G.

    2012-06-01

    The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger, thermoelectric modules and DC/DC converter. The main objective of the project is to design, optimize and produce a prototype system to be tested on a 2.3l diesel truck. The base case is a Thermo Electric Generator (TEG) producing 1 KWel at 130 km/h. We present the system design and estimated output power from benchmark Bi2Te3 modules. We discuss key drivers for the optimization of the thermal-to-electric efficiency, such as materials, thermo-mechanical aspects and integration.

  13. The relationship between energy consumption structure, economic structure and energy intensity in China

    International Nuclear Information System (INIS)

    Feng Taiwen; Sun Linyan; Zhang Ying

    2009-01-01

    This paper investigates the long-run equilibrium relationships, temporal dynamic relationships and causal relationships between energy consumption structure, economic structure and energy intensity in China. Time series variables over the periods from 1980 to 2006 are employed in empirical tests. Cointegration tests suggest that these three variables tend to move together in the long-run. In addition, Granger causality tests indicate that there is a unidirectional causality running from energy intensity to economic structure but not vice versa. Impulse response analysis provides reasonable evidences that one shock of the three variables will cause the periods of destabilized that followed. However, the impact of the energy consumption structure shock on energy intensity and the impact of the economic structure shock on energy consumption structure seem to be rather marginal. The findings have significant implications from the point of view of energy conservation and economic development. In order to decrease energy intensity, Chinese government must continue to reduce the proportion of coal in energy consumption, increase the utilization efficiency of coal and promote the upgrade of economic structure. Furthermore, a full analysis of factors that may relate to energy intensity (e.g. energy consumption structure, economic structure) should be conducted before making energy policies.

  14. Sustainable energy consumption and production - a global view

    Energy Technology Data Exchange (ETDEWEB)

    Hernes, H.

    1995-12-31

    The paper gives a global view of sustainable energy consumption and production both in developed and developing countries. There is a need of replacing fossil fuel sources with renewable energy at a speed parallel to the depletion of the oil and gas sources. According to the author, the actual growth in developing countries` use of oil, coal and other sources of energy has almost tripled since 1970. Future population growth alone will spur a further 70% jump in energy use in 30 years, even if per capita consumption remains at current levels. For the OECD countries, energy use rose one fifth as much as economic growth between 1973 and 1989. Countries like China and India, and other developing countries, have huge coal reserves and energy needs. Policy makers have to integrate environmental concerns in decision making over the choice between different fuels, energy technologies and stricter environmental standards. Life cycle analyses can contribute to the development of overall indicators of environmental performance of different technologies. According to the IPCC (Intergovernmental Panel on Climate Change), anthropogenic CO{sub 2} emissions must be reduced by more than 60% in order to stabilize the CO{sub 2} concentration in the atmosphere. 8 refs.

  15. 78 FR 1779 - Disclosures Regarding Energy Consumption and Water Use of Certain Home Appliances and Other...

    Science.gov (United States)

    2013-01-09

    ... FEDERAL TRADE COMMISSION 16 CFR Part 305 [3084-AB15] Disclosures Regarding Energy Consumption and... product's energy consumption or energy efficiency rating as determined from Department of Energy (DOE... icemaker energy consumption because the current DOE test procedure does not measure a model's icemaker...

  16. Impacts of energy consumption and emissions on the trip cost without late arrival at the equilibrium state

    Science.gov (United States)

    Tang, Tie-Qiao; Wang, Tao; Chen, Liang; Shang, Hua-Yan

    2017-08-01

    In this paper, we apply a car-following model, fuel consumption model, emission model and electricity consumption model to explore the influences of energy consumption and emissions on each commuter's trip costs without late arrival at the equilibrium state. The numerical results show that the energy consumption and emissions have significant impacts on each commuter's trip cost without late arrival at the equilibrium state. The fuel cost and emission cost prominently enhance each commuter's trip cost and the trip cost increases with the number of vehicles, which shows that considering the fuel cost and emission cost in the trip cost will destroy the equilibrium state. However, the electricity cost slightly enhances each commuter's trip cost, but the trip cost is still approximately a constant, which indicates that considering the electricity cost in the trip cost does not destroy the equilibrium state.

  17. Taxation on environmental pollution and energy consumption 1995

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The document gives statistics on taxation of pollution caused to the environment and on energy consumption in Denmark. These forms of taxation are rapidly increasing in Denmark as a consequence of the country's environmental policy. In 1995 the total state revenue from these sources was 23.5 billion Danish kroner which comprises 7.1% (compared to 6.5% for 1994) of the total revenue from all forms of taxation. Revenues in 1995 are 8.2 billion Danish kroner higher than in 1986. The State's revenue from taxation of energy consumption was 18.4 billion Danish kroner, which is 78% of revenues from taxation on both environmental pollution and on energy consumption. Revenues from taxation on pollution of the environment was 5.2 billion Danish kroner. The contribution of the taxation of environmental pollution has increased from 2% in 1986 to 22% in 1995 of the total revenue from taxation of both environmental pollution and energy consumption. Statistics include revenues from taxation on petrol, electric power, the use of gas and diesel oil and fuel oils, on kerosone and tar fuels for heating, on autogas and bottled gas, and on pit coal and lignite. Details are given on taxation revenues from the taxation of the different forms of environmental pollution such as carbon dioxide and rubbish etc. and on the taxation on carbon dioxide emission from the use of energy products such as electricity and various fuels. Information is given on grants given to projects for reducing the emission of carbon dioxide from 1993-1996 and on the phasing of taxation on environmental pollution in accordance with the Danish tax reforms. (AB)

  18. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    OpenAIRE

    Recker, W. W.; Kang, J. E.

    2010-01-01

    With the success of Hybrid Electric Vehicles (HEVs) in the automobile market, Plug-In Hybrid Electric Vehicles (PHEVs) are emerging as the next evolution of this attractive alternative. PHEV market penetration is expected to lead to lower gasoline consumption and less emission. The main objective of this research is to assess PHEVs’ energy profile impacts based on simulation of vehicles used in activity and travel patterns drawn from the 2000-2001 California Statewide Household Travel Survey....

  19. Energy drink consumption and increased risk for alcohol dependence.

    Science.gov (United States)

    Arria, Amelia M; Caldeira, Kimberly M; Kasperski, Sarah J; Vincent, Kathryn B; Griffiths, Roland R; O'Grady, Kevin E

    2011-02-01

    Energy drinks are highly caffeinated beverages that are increasingly consumed by young adults. Prior research has established associations between energy drink use and heavier drinking and alcohol-related problems among college students. This study investigated the extent to which energy drink use might pose additional risk for alcohol dependence over and above that from known risk factors. Data were collected via personal interview from 1,097 fourth-year college students sampled from 1 large public university as part of an ongoing longitudinal study. Alcohol dependence was assessed according to DSM-IV criteria. After adjustment for the sampling design, 51.3%(wt) of students were classified as "low-frequency" energy drink users (1 to 51 days in the past year) and 10.1%(wt) as "high-frequency" users (≥52 days). Typical caffeine consumption varied widely depending on the brand consumed. Compared to the low-frequency group, high-frequency users drank alcohol more frequently (141.6 vs. 103.1 days) and in higher quantities (6.15 vs. 4.64 drinks/typical drinking day). High-frequency users were at significantly greater risk for alcohol dependence relative to both nonusers (AOR = 2.40, 95% CI = 1.27 to 4.56, p = 0.007) and low-frequency users (AOR = 1.86, 95% CI = 1.10, 3.14, p = 0.020), even after holding constant demographics, typical alcohol consumption, fraternity/sorority involvement, depressive symptoms, parental history of alcohol/drug problems, and childhood conduct problems. Low-frequency energy drink users did not differ from nonusers on their risk for alcohol dependence. Weekly or daily energy drink consumption is strongly associated with alcohol dependence. Further research is warranted to understand the possible mechanisms underlying this association. College students who frequently consume energy drinks represent an important target population for alcohol prevention. Copyright © 2010 by the Research Society on Alcoholism.

  20. Energy Consumption and Greenhouse Gas Emission of Korean Offshore Fisheries

    Science.gov (United States)

    Lee, Jihoon; Kim, Taeho; Ellingsen, Harald; Hognes, Erik Skontorp; Hwang, Bokyu

    2018-06-01

    This paper presents the energy and greenhouse gas (GHG) emission assessments of Korean offshore fisheries. The consumption of energy by fisheries is a significant concern because of its attendant environmental effect, as well as the cost of the fuel consumed in fishing industry. With the global attention of reducing GHG emission and increasing energy efficiency of fuel, the seafood industry needs to further understand its energy use and reduce its GHG emission. In the present study, the amount of energy consumed and the GHG emission of Korean offshore fisheries in a period from 2009 to 2013 were examined. Offshore fisheries accounted for 24% of Korean production in 2013 and 60% of fuel consumption related GHG emission. Whereas the total GHG emission intensity of this sector improved slightly between 2009 and 2012; as such emission decreased by approximately 1.9%, which increased again in 2013. The average amount of total GHG emission in this five years period was 1.78 × 106 tons of carbon dioxide equivalent/year (t CO2 eq. y-1). Active fishing gear was found to consume 20% more fuel than passive gear. However, the production from passive gear was 28%, lower than 72% from active gear. The reason for this is that less abundant stationary resources are harvested using passive gear. Furthermore, the consumption of fuel was significantly influenced by the fishing method. Implementation and development of new fishing technologies and methods are important for improving energy efficiency and reducing the climate impact on fisheries. To realize these purposes, the fishery management system needs to be established by centralizing on energy efficiency and climate effect.