WorldWideScience

Sample records for vehicle routing algorithms

  1. Evolutionary algorithms for the Vehicle Routing Problem with Time Windows

    NARCIS (Netherlands)

    Bräysy, Olli; Dullaert, Wout; Gendreau, Michel

    2004-01-01

    This paper surveys the research on evolutionary algorithms for the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW can be described as the problem of designing least cost routes from a single depot to a set of geographically scattered points. The routes must be designed in such a way

  2. Approximation Algorithm for a Heterogeneous Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    Jungyun Bae

    2015-08-01

    Full Text Available This article addresses a fundamental path planning problem which aims to route a collection of heterogeneous vehicles such that each target location is visited by some vehicle and the sum of the travel costs of the vehicles is minimal. Vehicles are heterogeneous as the cost of traveling between any two locations depends on the type of the vehicle. Algorithms are developed for this path planning problem with bounds on the quality of the solutions produced by the algorithms. Computational results show that high quality solutions can be obtained for the path planning problem involving four vehicles and 40 targets using the proposed approach.

  3. Dynamic Vehicle Routing Using an Improved Variable Neighborhood Search Algorithm

    Directory of Open Access Journals (Sweden)

    Yingcheng Xu

    2013-01-01

    Full Text Available In order to effectively solve the dynamic vehicle routing problem with time windows, the mathematical model is established and an improved variable neighborhood search algorithm is proposed. In the algorithm, allocation customers and planning routes for the initial solution are completed by the clustering method. Hybrid operators of insert and exchange are used to achieve the shaking process, the later optimization process is presented to improve the solution space, and the best-improvement strategy is adopted, which make the algorithm can achieve a better balance in the solution quality and running time. The idea of simulated annealing is introduced to take control of the acceptance of new solutions, and the influences of arrival time, distribution of geographical location, and time window range on route selection are analyzed. In the experiment, the proposed algorithm is applied to solve the different sizes' problems of DVRP. Comparing to other algorithms on the results shows that the algorithm is effective and feasible.

  4. A novel heuristic algorithm for capacitated vehicle routing problem

    Science.gov (United States)

    Kır, Sena; Yazgan, Harun Reşit; Tüncel, Emre

    2017-09-01

    The vehicle routing problem with the capacity constraints was considered in this paper. It is quite difficult to achieve an optimal solution with traditional optimization methods by reason of the high computational complexity for large-scale problems. Consequently, new heuristic or metaheuristic approaches have been developed to solve this problem. In this paper, we constructed a new heuristic algorithm based on the tabu search and adaptive large neighborhood search (ALNS) with several specifically designed operators and features to solve the capacitated vehicle routing problem (CVRP). The effectiveness of the proposed algorithm was illustrated on the benchmark problems. The algorithm provides a better performance on large-scaled instances and gained advantage in terms of CPU time. In addition, we solved a real-life CVRP using the proposed algorithm and found the encouraging results by comparison with the current situation that the company is in.

  5. Vehicle routing problem with time windows using natural inspired algorithms

    Science.gov (United States)

    Pratiwi, A. B.; Pratama, A.; Sa’diyah, I.; Suprajitno, H.

    2018-03-01

    Process of distribution of goods needs a strategy to make the total cost spent for operational activities minimized. But there are several constrains have to be satisfied which are the capacity of the vehicles and the service time of the customers. This Vehicle Routing Problem with Time Windows (VRPTW) gives complex constrains problem. This paper proposes natural inspired algorithms for dealing with constrains of VRPTW which involves Bat Algorithm and Cat Swarm Optimization. Bat Algorithm is being hybrid with Simulated Annealing, the worst solution of Bat Algorithm is replaced by the solution from Simulated Annealing. Algorithm which is based on behavior of cats, Cat Swarm Optimization, is improved using Crow Search Algorithm to make simplier and faster convergence. From the computational result, these algorithms give good performances in finding the minimized total distance. Higher number of population causes better computational performance. The improved Cat Swarm Optimization with Crow Search gives better performance than the hybridization of Bat Algorithm and Simulated Annealing in dealing with big data.

  6. A branch-and-cut algorithm for the vehicle routing problem with multiple use of vehicles

    Directory of Open Access Journals (Sweden)

    İsmail Karaoğlan

    2015-06-01

    Full Text Available This paper addresses the vehicle routing problem with multiple use of vehicles (VRPMUV, an important variant of the classic vehicle routing problem (VRP. Unlike the classical VRP, vehicles are allowed to use more than one route in the VRPMUV. We propose a branch-and-cut algorithm for solving the VRPMUV. The proposed algorithm includes several valid inequalities from the literature for the purpose of improving its lower bounds, and a heuristic algorithm based on simulated annealing and a mixed integer programming-based intensification procedure for obtaining the upper bounds. The algorithm is evaluated in terms of the test problems derived from the literature. The computational results which follow show that, if there were 120 customers on the route (in the simulation, the problem would be solved optimally in a reasonable amount of time.

  7. SOLVING THE PROBLEM OF VEHICLE ROUTING BY EVOLUTIONARY ALGORITHM

    Directory of Open Access Journals (Sweden)

    Remigiusz Romuald Iwańkowicz

    2016-03-01

    Full Text Available In the presented work the vehicle routing problem is formulated, which concerns planning the collection of wastes by one garbage truck from a certain number of collection points. The garbage truck begins its route in the base point, collects the load in subsequent collection points, then drives the wastes to the disposal site (landfill or sorting plant and returns to the another visited collection points. The filled garbage truck each time goes to the disposal site. It returns to the base after driving wastes from all collection points. Optimization model is based on genetic algorithm where individual is the whole garbage collection plan. Permutation is proposed as the code of the individual.

  8. An optimization algorithm for a capacitated vehicle routing problem ...

    Indian Academy of Sciences (India)

    In this paper, vehicle routing problem (VRP) with time windows and real world constraints are considered as a real-world application on google maps. Also, tabu search is used and Hopfield neural networks is utilized. Basic constraints consist of customer demands, time windows, vehicle speed, vehicle capacity andworking ...

  9. A New Plant Intelligent Behaviour Optimisation Algorithm for Solving Vehicle Routing Problem

    OpenAIRE

    Chagwiza, Godfrey

    2018-01-01

    A new plant intelligent behaviour optimisation algorithm is developed. The algorithm is motivated by intelligent behaviour of plants and is implemented to solve benchmark vehicle routing problems of all sizes, and results were compared to those in literature. The results show that the new algorithm outperforms most of algorithms it was compared to for very large and large vehicle routing problem instances. This is attributed to the ability of the plant to use previously stored memory to respo...

  10. A hybrid GA-TS algorithm for open vehicle routing optimization of coal mines material

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.W.; Ding, C.; Zhu, K.J. [China University of Geoscience, Wuhan (China)

    2011-08-15

    In the open vehicle routing problem (OVRP), the objective is to minimize the number of vehicles and the total distance (or time) traveled. This study primarily focuses on solving an open vehicle routing problem (OVRP) by applying a novel hybrid genetic algorithm and the Tabu search (GA-TS), which combines the GA's parallel computing and global optimization with TS's Tabu search skill and fast local search. Firstly, the proposed algorithm uses natural number coding according to the customer demands and the captivity of the vehicle for globe optimization. Secondly, individuals of population do TS local search with a certain degree of probability, namely, do the local routing optimization of all customer sites belong to one vehicle. The mechanism not only improves the ability of global optimization, but also ensures the speed of operation. The algorithm was used in Zhengzhou Coal Mine and Power Supply Co., Ltd.'s transport vehicle routing optimization.

  11. A Food Chain Algorithm for Capacitated Vehicle Routing Problem with Recycling in Reverse Logistics

    Science.gov (United States)

    Song, Qiang; Gao, Xuexia; Santos, Emmanuel T.

    2015-12-01

    This paper introduces the capacitated vehicle routing problem with recycling in reverse logistics, and designs a food chain algorithm for it. Some illustrative examples are selected to conduct simulation and comparison. Numerical results show that the performance of the food chain algorithm is better than the genetic algorithm, particle swarm optimization as well as quantum evolutionary algorithm.

  12. Multiple depots vehicle routing based on the ant colony with the genetic algorithm

    Directory of Open Access Journals (Sweden)

    ChunYing Liu

    2013-09-01

    Full Text Available Purpose: the distribution routing plans of multi-depots vehicle scheduling problem will increase exponentially along with the adding of customers. So, it becomes an important studying trend to solve the vehicle scheduling problem with heuristic algorithm. On the basis of building the model of multi-depots vehicle scheduling problem, in order to improve the efficiency of the multiple depots vehicle routing, the paper puts forward a fusion algorithm on multiple depots vehicle routing based on the ant colony algorithm with genetic algorithm. Design/methodology/approach: to achieve this objective, the genetic algorithm optimizes the parameters of the ant colony algorithm. The fusion algorithm on multiple depots vehicle based on the ant colony algorithm with genetic algorithm is proposed. Findings: simulation experiment indicates that the result of the fusion algorithm is more excellent than the other algorithm, and the improved algorithm has better convergence effective and global ability. Research limitations/implications: in this research, there are some assumption that might affect the accuracy of the model such as the pheromone volatile factor, heuristic factor in each period, and the selected multiple depots. These assumptions can be relaxed in future work. Originality/value: In this research, a new method for the multiple depots vehicle routing is proposed. The fusion algorithm eliminate the influence of the selected parameter by optimizing the heuristic factor, evaporation factor, initial pheromone distribute, and have the strong global searching ability. The Ant Colony algorithm imports cross operator and mutation operator for operating the first best solution and the second best solution in every iteration, and reserves the best solution. The cross and mutation operator extend the solution space and improve the convergence effective and the global ability. This research shows that considering both the ant colony and genetic algorithm

  13. A branch-and-cut-and-price algorithm for the cumulative capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Wøhlk, Sanne; Lysgaard, Jens

    2014-01-01

    The paper considers the Cumulative Capacitated Vehicle Routing Problem (CCVRP), which is a variation of the well-known Capacitated Vehicle Routing Problem (CVRP). In this problem, the traditional objective of minimizing total distance or time traveled by the vehicles is replaced by minimizing...... the sum of arrival times at the customers. A branch-and-cut-and-price algorithm for obtaining optimal solutions to the problem is proposed. Computational results based on a set of standard CVRP benchmarks are presented....

  14. Using Grey Wolf Algorithm to Solve the Capacitated Vehicle Routing Problem

    Science.gov (United States)

    Korayem, L.; Khorsid, M.; Kassem, S. S.

    2015-05-01

    The capacitated vehicle routing problem (CVRP) is a class of the vehicle routing problems (VRPs). In CVRP a set of identical vehicles having fixed capacities are required to fulfill customers' demands for a single commodity. The main objective is to minimize the total cost or distance traveled by the vehicles while satisfying a number of constraints, such as: the capacity constraint of each vehicle, logical flow constraints, etc. One of the methods employed in solving the CVRP is the cluster-first route-second method. It is a technique based on grouping of customers into a number of clusters, where each cluster is served by one vehicle. Once clusters are formed, a route determining the best sequence to visit customers is established within each cluster. The recently bio-inspired grey wolf optimizer (GWO), introduced in 2014, has proven to be efficient in solving unconstrained, as well as, constrained optimization problems. In the current research, our main contributions are: combining GWO with the traditional K-means clustering algorithm to generate the ‘K-GWO’ algorithm, deriving a capacitated version of the K-GWO algorithm by incorporating a capacity constraint into the aforementioned algorithm, and finally, developing 2 new clustering heuristics. The resulting algorithm is used in the clustering phase of the cluster-first route-second method to solve the CVR problem. The algorithm is tested on a number of benchmark problems with encouraging results.

  15. Analysis of parameter estimation and optimization application of ant colony algorithm in vehicle routing problem

    Science.gov (United States)

    Xu, Quan-Li; Cao, Yu-Wei; Yang, Kun

    2018-03-01

    Ant Colony Optimization (ACO) is the most widely used artificial intelligence algorithm at present. This study introduced the principle and mathematical model of ACO algorithm in solving Vehicle Routing Problem (VRP), and designed a vehicle routing optimization model based on ACO, then the vehicle routing optimization simulation system was developed by using c ++ programming language, and the sensitivity analyses, estimations and improvements of the three key parameters of ACO were carried out. The results indicated that the ACO algorithm designed in this paper can efficiently solve rational planning and optimization of VRP, and the different values of the key parameters have significant influence on the performance and optimization effects of the algorithm, and the improved algorithm is not easy to locally converge prematurely and has good robustness.

  16. An Ant Colony Optimization and Hybrid Metaheuristics Algorithm to Solve the Split Delivery Vehicle Routing Problem

    Science.gov (United States)

    2015-01-01

    solution approach that combines heuristic search and integer programming. Boudia et al. (2007) solved an SDVRP instance using a memetic algorithm with...Boudia, M., Prins, C., Reghioui, M., 2007. An effective memetic algorithm with population management for the split delivery vehicle routing problem

  17. Formulations and exact algorithms for the vehicle routing problem with time windows

    DEFF Research Database (Denmark)

    Kallehauge, Brian

    2008-01-01

    In this paper we review the exact algorithms proposed in the last three decades for the solution of the vehicle routing problem with time windows (VRPTW). The exact algorithms for the VRPTW are in many aspects inherited from work on the traveling salesman problem (TSP). In recognition of this fact...

  18. Comparing genetic algorithm and particle swarm optimization for solving capacitated vehicle routing problem

    Science.gov (United States)

    Iswari, T.; Asih, A. M. S.

    2018-04-01

    In the logistics system, transportation plays an important role to connect every element in the supply chain, but it can produces the greatest cost. Therefore, it is important to make the transportation costs as minimum as possible. Reducing the transportation cost can be done in several ways. One of the ways to minimizing the transportation cost is by optimizing the routing of its vehicles. It refers to Vehicle Routing Problem (VRP). The most common type of VRP is Capacitated Vehicle Routing Problem (CVRP). In CVRP, the vehicles have their own capacity and the total demands from the customer should not exceed the capacity of the vehicle. CVRP belongs to the class of NP-hard problems. These NP-hard problems make it more complex to solve such that exact algorithms become highly time-consuming with the increases in problem sizes. Thus, for large-scale problem instances, as typically found in industrial applications, finding an optimal solution is not practicable. Therefore, this paper uses two kinds of metaheuristics approach to solving CVRP. Those are Genetic Algorithm and Particle Swarm Optimization. This paper compares the results of both algorithms and see the performance of each algorithm. The results show that both algorithms perform well in solving CVRP but still needs to be improved. From algorithm testing and numerical example, Genetic Algorithm yields a better solution than Particle Swarm Optimization in total distance travelled.

  19. A Hybrid Chaos-Particle Swarm Optimization Algorithm for the Vehicle Routing Problem with Time Window

    Directory of Open Access Journals (Sweden)

    Qi Hu

    2013-04-01

    Full Text Available State-of-the-art heuristic algorithms to solve the vehicle routing problem with time windows (VRPTW usually present slow speeds during the early iterations and easily fall into local optimal solutions. Focusing on solving the above problems, this paper analyzes the particle encoding and decoding strategy of the particle swarm optimization algorithm, the construction of the vehicle route and the judgment of the local optimal solution. Based on these, a hybrid chaos-particle swarm optimization algorithm (HPSO is proposed to solve VRPTW. The chaos algorithm is employed to re-initialize the particle swarm. An efficient insertion heuristic algorithm is also proposed to build the valid vehicle route in the particle decoding process. A particle swarm premature convergence judgment mechanism is formulated and combined with the chaos algorithm and Gaussian mutation into HPSO when the particle swarm falls into the local convergence. Extensive experiments are carried out to test the parameter settings in the insertion heuristic algorithm and to evaluate that they are corresponding to the data’s real-distribution in the concrete problem. It is also revealed that the HPSO achieves a better performance than the other state-of-the-art algorithms on solving VRPTW.

  20. Branch-and-cut algorithms for the split delivery vehicle routing problem

    NARCIS (Netherlands)

    Archetti, Claudia; Bianchessi, Nicola; Speranza, M. Grazia

    2014-01-01

    In this paper we present two exact branch-and-cut algorithms for the Split Delivery Vehicle Routing Problem (SDVRP) based on two relaxed formulations that provide lower bounds to the optimum. Procedures to obtain feasible solutions to the SDVRP from a feasible solution to the relaxed formulations

  1. A branch-and-cut algorithm for the Time Window Assignment Vehicle Routing Problem

    NARCIS (Netherlands)

    K. Dalmeijer (Kevin); R. Spliet (Remy)

    2016-01-01

    textabstractThis paper presents a branch-and-cut algorithm for the Time Window Assignment Vehicle Routing Problem (TWAVRP), the problem of assigning time windows for delivery before demand volume becomes known. A novel set of valid inequalities, the precedence inequalities, is introduced and

  2. Genetic algorithm with Lin-Kernighan heuristic as a substep of solving the multinomenclature vehicle routing problem

    Directory of Open Access Journals (Sweden)

    T.A. Yakovleva

    2011-05-01

    Full Text Available This paper is dealing with the vehicle routing problem, where different types of vehicles are managing to deliver different types of products. Three step heuristic with genetic algorithm is proposed for solving the problem.

  3. An optimization algorithm for a capacitated vehicle routing problem ...

    Indian Academy of Sciences (India)

    Pinar Kirci

    PINAR KIRCI. Engineering Sciences Department, Istanbul University, Istanbul, Turkey .... In VRP solution methods, tabu search algorithm belongs to ..... systems which are considered in statistical mechanics is ..... Procedia-Social Behav. Sci.

  4. Model and algorithm for bi-fuel vehicle routing problem to reduce GHG emissions.

    Science.gov (United States)

    Abdoli, Behroz; MirHassani, Seyed Ali; Hooshmand, Farnaz

    2017-09-01

    Because of the harmful effects of greenhouse gas (GHG) emitted by petroleum-based fuels, the adoption of alternative green fuels such as biodiesel and compressed natural gas (CNG) is an inevitable trend in the transportation sector. However, the transition to alternative fuel vehicle (AFV) fleets is not easy and, particularly at the beginning of the transition period, drivers may be forced to travel long distances to reach alternative fueling stations (AFSs). In this paper, the utilization of bi-fuel vehicles is proposed as an operational approach. We present a mathematical model to address vehicle routing problem (VRP) with bi-fuel vehicles and show that the utilization of bi-fuel vehicles can lead to a significant reduction in GHG emissions. Moreover, a simulated annealing algorithm is adopted to solve large instances of this problem. The performance of the proposed algorithm is evaluated on some random instances.

  5. Vehicle Routing Problem Using Genetic Algorithm with Multi Compartment on Vegetable Distribution

    Science.gov (United States)

    Kurnia, Hari; Gustri Wahyuni, Elyza; Cergas Pembrani, Elang; Gardini, Syifa Tri; Kurnia Aditya, Silfa

    2018-03-01

    The problem that is often gained by the industries of managing and distributing vegetables is how to distribute vegetables so that the quality of the vegetables can be maintained properly. The problems encountered include optimal route selection and little travel time or so-called TSP (Traveling Salesman Problem). These problems can be modeled using the Vehicle Routing Problem (VRP) algorithm with rating ranking, a cross order based crossing, and also order based mutation mutations on selected chromosomes. This study uses limitations using only 20 market points, 2 point warehouse (multi compartment) and 5 vehicles. It is determined that for one distribution, one vehicle can only distribute to 4 market points only from 1 particular warehouse, and also one such vehicle can only accommodate 100 kg capacity.

  6. Stochastic time-dependent vehicle routing problem: Mathematical models and ant colony algorithm

    Directory of Open Access Journals (Sweden)

    Zhengyu Duan

    2015-11-01

    Full Text Available This article addresses the stochastic time-dependent vehicle routing problem. Two mathematical models named robust optimal schedule time model and minimum expected schedule time model are proposed for stochastic time-dependent vehicle routing problem, which can guarantee delivery within the time windows of customers. The robust optimal schedule time model only requires the variation range of link travel time, which can be conveniently derived from historical traffic data. In addition, the robust optimal schedule time model based on robust optimization method can be converted into a time-dependent vehicle routing problem. Moreover, an ant colony optimization algorithm is designed to solve stochastic time-dependent vehicle routing problem. As the improvements in initial solution and transition probability, ant colony optimization algorithm has a good performance in convergence. Through computational instances and Monte Carlo simulation tests, robust optimal schedule time model is proved to be better than minimum expected schedule time model in computational efficiency and coping with the travel time fluctuations. Therefore, robust optimal schedule time model is applicable in real road network.

  7. Capacitated vehicle-routing problem model for scheduled solid waste collection and route optimization using PSO algorithm.

    Science.gov (United States)

    Hannan, M A; Akhtar, Mahmuda; Begum, R A; Basri, H; Hussain, A; Scavino, Edgar

    2018-01-01

    Waste collection widely depends on the route optimization problem that involves a large amount of expenditure in terms of capital, labor, and variable operational costs. Thus, the more waste collection route is optimized, the more reduction in different costs and environmental effect will be. This study proposes a modified particle swarm optimization (PSO) algorithm in a capacitated vehicle-routing problem (CVRP) model to determine the best waste collection and route optimization solutions. In this study, threshold waste level (TWL) and scheduling concepts are applied in the PSO-based CVRP model under different datasets. The obtained results from different datasets show that the proposed algorithmic CVRP model provides the best waste collection and route optimization in terms of travel distance, total waste, waste collection efficiency, and tightness at 70-75% of TWL. The obtained results for 1 week scheduling show that 70% of TWL performs better than all node consideration in terms of collected waste, distance, tightness, efficiency, fuel consumption, and cost. The proposed optimized model can serve as a valuable tool for waste collection and route optimization toward reducing socioeconomic and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem.

    Science.gov (United States)

    Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing

    2015-01-01

    Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA.

  9. A Combination of Genetic Algorithm and Particle Swarm Optimization for Vehicle Routing Problem with Time Windows.

    Science.gov (United States)

    Xu, Sheng-Hua; Liu, Ji-Ping; Zhang, Fu-Hao; Wang, Liang; Sun, Li-Jian

    2015-08-27

    A combination of genetic algorithm and particle swarm optimization (PSO) for vehicle routing problems with time windows (VRPTW) is proposed in this paper. The improvements of the proposed algorithm include: using the particle real number encoding method to decode the route to alleviate the computation burden, applying a linear decreasing function based on the number of the iterations to provide balance between global and local exploration abilities, and integrating with the crossover operator of genetic algorithm to avoid the premature convergence and the local minimum. The experimental results show that the proposed algorithm is not only more efficient and competitive with other published results but can also obtain more optimal solutions for solving the VRPTW issue. One new well-known solution for this benchmark problem is also outlined in the following.

  10. A memory structure adapted simulated annealing algorithm for a green vehicle routing problem.

    Science.gov (United States)

    Küçükoğlu, İlker; Ene, Seval; Aksoy, Aslı; Öztürk, Nursel

    2015-03-01

    Currently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions.

  11. Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem.

    Science.gov (United States)

    Ezugwu, Absalom E; Akutsah, Francis; Olusanya, Micheal O; Adewumi, Aderemi O

    2018-01-01

    The intelligent water drop algorithm is a swarm-based metaheuristic algorithm, inspired by the characteristics of water drops in the river and the environmental changes resulting from the action of the flowing river. Since its appearance as an alternative stochastic optimization method, the algorithm has found applications in solving a wide range of combinatorial and functional optimization problems. This paper presents an improved intelligent water drop algorithm for solving multi-depot vehicle routing problems. A simulated annealing algorithm was introduced into the proposed algorithm as a local search metaheuristic to prevent the intelligent water drop algorithm from getting trapped into local minima and also improve its solution quality. In addition, some of the potential problematic issues associated with using simulated annealing that include high computational runtime and exponential calculation of the probability of acceptance criteria, are investigated. The exponential calculation of the probability of acceptance criteria for the simulated annealing based techniques is computationally expensive. Therefore, in order to maximize the performance of the intelligent water drop algorithm using simulated annealing, a better way of calculating the probability of acceptance criteria is considered. The performance of the proposed hybrid algorithm is evaluated by using 33 standard test problems, with the results obtained compared with the solutions offered by four well-known techniques from the subject literature. Experimental results and statistical tests show that the new method possesses outstanding performance in terms of solution quality and runtime consumed. In addition, the proposed algorithm is suitable for solving large-scale problems.

  12. A New Improved Quantum Evolution Algorithm with Local Search Procedure for Capacitated Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    Ligang Cui

    2013-01-01

    Full Text Available The capacitated vehicle routing problem (CVRP is the most classical vehicle routing problem (VRP; many solution techniques are proposed to find its better answer. In this paper, a new improved quantum evolution algorithm (IQEA with a mixed local search procedure is proposed for solving CVRPs. First, an IQEA with a double chain quantum chromosome, new quantum rotation schemes, and self-adaptive quantum Not gate is constructed to initialize and generate feasible solutions. Then, to further strengthen IQEA's searching ability, three local search procedures 1-1 exchange, 1-0 exchange, and 2-OPT, are adopted. Experiments on a small case have been conducted to analyze the sensitivity of main parameters and compare the performances of the IQEA with different local search strategies. Together with results from the testing of CVRP benchmarks, the superiorities of the proposed algorithm over the PSO, SR-1, and SR-2 have been demonstrated. At last, a profound analysis of the experimental results is presented and some suggestions on future researches are given.

  13. A Framing Link Based Tabu Search Algorithm for Large-Scale Multidepot Vehicle Routing Problems

    Directory of Open Access Journals (Sweden)

    Xuhao Zhang

    2014-01-01

    Full Text Available A framing link (FL based tabu search algorithm is proposed in this paper for a large-scale multidepot vehicle routing problem (LSMDVRP. Framing links are generated during continuous great optimization of current solutions and then taken as skeletons so as to improve optimal seeking ability, speed up the process of optimization, and obtain better results. Based on the comparison between pre- and postmutation routes in the current solution, different parts are extracted. In the current optimization period, links involved in the optimal solution are regarded as candidates to the FL base. Multiple optimization periods exist in the whole algorithm, and there are several potential FLs in each period. If the update condition is satisfied, the FL base is updated, new FLs are added into the current route, and the next period starts. Through adjusting the borderline of multidepot sharing area with dynamic parameters, the authors define candidate selection principles for three kinds of customer connections, respectively. Link split and the roulette approach are employed to choose FLs. 18 LSMDVRP instances in three groups are studied and new optimal solution values for nine of them are obtained, with higher computation speed and reliability.

  14. Formulations and Branch-and-Cut Algorithms for the Generalized Vehicle Routing Problem

    DEFF Research Database (Denmark)

    Bektas, Tolga; Erdogan, Günes; Røpke, Stefan

    2011-01-01

    The Generalized Vehicle Routing Problem (GVRP) consists of nding a set of routes for a number of vehicles with limited capacities on a graph with the vertices partitioned into clusters with given demands such that the total cost of travel is minimized and all demands are met. This paper offers four...

  15. A hybrid metaheuristic algorithm for the multi-depot covering tour vehicle routing problem

    NARCIS (Netherlands)

    Allahyari, S.; Salari, M.; Vigo, D.

    2015-01-01

    We propose a generalization of themulti-depot capacitated vehicle routing problem where the assumption of visiting each customer does not hold. In this problem, called the Multi-Depot Covering Tour Vehicle Routing Problem (MDCTVRP), the demand of each customer could be satisfied in two different

  16. A Problem-Reduction Evolutionary Algorithm for Solving the Capacitated Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    Wanfeng Liu

    2015-01-01

    Full Text Available Assessment of the components of a solution helps provide useful information for an optimization problem. This paper presents a new population-based problem-reduction evolutionary algorithm (PREA based on the solution components assessment. An individual solution is regarded as being constructed by basic elements, and the concept of acceptability is introduced to evaluate them. The PREA consists of a searching phase and an evaluation phase. The acceptability of basic elements is calculated in the evaluation phase and passed to the searching phase. In the searching phase, for each individual solution, the original optimization problem is reduced to a new smaller-size problem. With the evolution of the algorithm, the number of common basic elements in the population increases until all individual solutions are exactly the same which is supposed to be the near-optimal solution of the optimization problem. The new algorithm is applied to a large variety of capacitated vehicle routing problems (CVRP with customers up to nearly 500. Experimental results show that the proposed algorithm has the advantages of fast convergence and robustness in solution quality over the comparative algorithms.

  17. Vehicle Routing with Three-dimensional Container Loading Constraints—Comparison of Nested and Joint Algorithms

    Science.gov (United States)

    Koloch, Grzegorz; Kaminski, Bogumil

    2010-10-01

    In the paper we examine a modification of the classical Vehicle Routing Problem (VRP) in which shapes of transported cargo are accounted for. This problem, known as a three-dimensional VRP with loading constraints (3D-VRP), is appropriate when transported commodities are not perfectly divisible, but they have fixed and heterogeneous dimensions. In the paper restrictions on allowable cargo positionings are also considered. These restrictions are derived from business practice and they extended the baseline 3D-VRP formulation as considered by Koloch and Kaminski (2010). In particular, we investigate how additional restrictions influence relative performance of two proposed optimization algorithms: the nested and the joint one. Performance of both methods is compared on artificial problems and on a big-scale real life case study.

  18. A hybrid meta-heuristic algorithm for the vehicle routing problem with stochastic travel times considering the driver's satisfaction

    Science.gov (United States)

    Tavakkoli-Moghaddam, Reza; Alinaghian, Mehdi; Salamat-Bakhsh, Alireza; Norouzi, Narges

    2012-05-01

    A vehicle routing problem is a significant problem that has attracted great attention from researchers in recent years. The main objectives of the vehicle routing problem are to minimize the traveled distance, total traveling time, number of vehicles and cost function of transportation. Reducing these variables leads to decreasing the total cost and increasing the driver's satisfaction level. On the other hand, this satisfaction, which will decrease by increasing the service time, is considered as an important logistic problem for a company. The stochastic time dominated by a probability variable leads to variation of the service time, while it is ignored in classical routing problems. This paper investigates the problem of the increasing service time by using the stochastic time for each tour such that the total traveling time of the vehicles is limited to a specific limit based on a defined probability. Since exact solutions of the vehicle routing problem that belong to the category of NP-hard problems are not practical in a large scale, a hybrid algorithm based on simulated annealing with genetic operators was proposed to obtain an efficient solution with reasonable computational cost and time. Finally, for some small cases, the related results of the proposed algorithm were compared with results obtained by the Lingo 8 software. The obtained results indicate the efficiency of the proposed hybrid simulated annealing algorithm.

  19. A Hybrid Tabu Search Algorithm for a Real-World Open Vehicle Routing Problem Involving Fuel Consumption Constraints

    Directory of Open Access Journals (Sweden)

    Yunyun Niu

    2018-01-01

    Full Text Available Outsourcing logistics operation to third-party logistics has attracted more attention in the past several years. However, very few papers analyzed fuel consumption model in the context of outsourcing logistics. This problem involves more complexity than traditional open vehicle routing problem (OVRP, because the calculation of fuel emissions depends on many factors, such as the speed of vehicles, the road angle, the total load, the engine friction, and the engine displacement. Our paper proposed a green open vehicle routing problem (GOVRP model with fuel consumption constraints for outsourcing logistics operations. Moreover, a hybrid tabu search algorithm was presented to deal with this problem. Experiments were conducted on instances based on realistic road data of Beijing, China, considering that outsourcing logistics plays an increasingly important role in China’s freight transportation. Open routes were compared with closed routes through statistical analysis of the cost components. Compared with closed routes, open routes reduce the total cost by 18.5% with the fuel emissions cost down by nearly 29.1% and the diver cost down by 13.8%. The effect of different vehicle types was also studied. Over all the 60- and 120-node instances, the mean total cost by using the light-duty vehicles is the lowest.

  20. Multiobjective Quantum Evolutionary Algorithm for the Vehicle Routing Problem with Customer Satisfaction

    Directory of Open Access Journals (Sweden)

    Jingling Zhang

    2012-01-01

    Full Text Available The multiobjective vehicle routing problem considering customer satisfaction (MVRPCS involves the distribution of orders from several depots to a set of customers over a time window. This paper presents a self-adaptive grid multi-objective quantum evolutionary algorithm (MOQEA for the MVRPCS, which takes into account customer satisfaction as well as travel costs. The degree of customer satisfaction is represented by proposing an improved fuzzy due-time window, and the optimization problem is modeled as a mixed integer linear program. In the MOQEA, nondominated solution set is constructed by the Challenge Cup rules. Moreover, an adaptive grid is designed to achieve the diversity of solution sets; that is, the number of grids in each generation is not fixed but is automatically adjusted based on the distribution of the current generation of nondominated solution set. In the study, the MOQEA is evaluated by applying it to classical benchmark problems. Results of numerical simulation and comparison show that the established model is valid and the MOQEA is effective for MVRPCS.

  1. Approximation algorithms for deadline-TSP and vehicle routing with time-windows

    NARCIS (Netherlands)

    Bansal, N.; Blum, A.; Chawla, S.; Meyerson, A.; Babai, L.

    2004-01-01

    Given a metric space G on n nodes, with a start node r and deadlines D(v) for each vertex v, we consider the Deadline-TSP problem of finding a path starting at r that visits as many nodes as possible by their deadlines. We also consider the more general Vehicle Routing with Time-Windows problem, in

  2. A branch-and-cut algorithm for the symmetric two-echelon capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Jepsen, Mads Kehlet; Spoorendonk, Simon; Røpke, Stefan

    2013-01-01

    This paper presents an exact method for solving the symmetric two-echelon capacitated vehicle routing problem, a transportation problem concerned with the distribution of goods from a depot to a set of customers through a set of satellite locations. The presented method is based on an edge flow...

  3. An Efficient Two-Objective Hybrid Local Search Algorithm for Solving the Fuel Consumption Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    Weizhen Rao

    2016-01-01

    Full Text Available The classical model of vehicle routing problem (VRP generally minimizes either the total vehicle travelling distance or the total number of dispatched vehicles. Due to the increased importance of environmental sustainability, one variant of VRPs that minimizes the total vehicle fuel consumption has gained much attention. The resulting fuel consumption VRP (FCVRP becomes increasingly important yet difficult. We present a mixed integer programming model for the FCVRP, and fuel consumption is measured through the degree of road gradient. Complexity analysis of FCVRP is presented through analogy with the capacitated VRP. To tackle the FCVRP’s computational intractability, we propose an efficient two-objective hybrid local search algorithm (TOHLS. TOHLS is based on a hybrid local search algorithm (HLS that is also used to solve FCVRP. Based on the Golden CVRP benchmarks, 60 FCVRP instances are generated and tested. Finally, the computational results show that the proposed TOHLS significantly outperforms the HLS.

  4. A Novel Discrete Differential Evolution Algorithm for the Vehicle Routing Problem in B2C E-Commerce

    Science.gov (United States)

    Xia, Chao; Sheng, Ying; Jiang, Zhong-Zhong; Tan, Chunqiao; Huang, Min; He, Yuanjian

    2015-12-01

    In this paper, a novel discrete differential evolution (DDE) algorithm is proposed to solve the vehicle routing problems (VRP) in B2C e-commerce, in which VRP is modeled by the incomplete graph based on the actual urban road system. First, a variant of classical VRP is described and a mathematical programming model for the variant is given. Second, the DDE is presented, where individuals are represented as the sequential encoding scheme, and a novel reparation operator is employed to repair the infeasible solutions. Furthermore, a FLOYD operator for dealing with the shortest route is embedded in the proposed DDE. Finally, an extensive computational study is carried out in comparison with the predatory search algorithm and genetic algorithm, and the results show that the proposed DDE is an effective algorithm for VRP in B2C e-commerce.

  5. A Two-Phase Heuristic Algorithm for the Common Frequency Routing Problem with Vehicle Type Choice in the Milk Run

    Directory of Open Access Journals (Sweden)

    Yu Lin

    2015-01-01

    Full Text Available High frequency and small lot size are characteristics of milk runs and are often used to implement the just-in-time (JIT strategy in logistical systems. The common frequency problem, which simultaneously involves planning of the route and frequency, has been extensively researched in milk run systems. In addition, vehicle type choice in the milk run system also has a significant influence on the operating cost. Therefore, in this paper, we simultaneously consider vehicle routing planning, frequency planning, and vehicle type choice in order to optimize the sum of the cost of transportation, inventory, and dispatch. To this end, we develop a mathematical model to describe the common frequency problem with vehicle type choice. Since the problem is NP hard, we develop a two-phase heuristic algorithm to solve the model. More specifically, an initial satisfactory solution is first generated through a greedy heuristic algorithm to maximize the ratio of the superior arc frequency to the inferior arc frequency. Following this, a tabu search (TS with limited search scope is used to improve the initial satisfactory solution. Numerical examples with different sizes establish the efficacy of our model and our proposed algorithm.

  6. Developing cross entropy genetic algorithm for solving Two-Dimensional Loading Heterogeneous Fleet Vehicle Routing Problem (2L-HFVRP)

    Science.gov (United States)

    Paramestha, D. L.; Santosa, B.

    2018-04-01

    Two-dimensional Loading Heterogeneous Fleet Vehicle Routing Problem (2L-HFVRP) is a combination of Heterogeneous Fleet VRP and a packing problem well-known as Two-Dimensional Bin Packing Problem (BPP). 2L-HFVRP is a Heterogeneous Fleet VRP in which these costumer demands are formed by a set of two-dimensional rectangular weighted item. These demands must be served by a heterogeneous fleet of vehicles with a fix and variable cost from the depot. The objective function 2L-HFVRP is to minimize the total transportation cost. All formed routes must be consistent with the capacity and loading process of the vehicle. Sequential and unrestricted scenarios are considered in this paper. We propose a metaheuristic which is a combination of the Genetic Algorithm (GA) and the Cross Entropy (CE) named Cross Entropy Genetic Algorithm (CEGA) to solve the 2L-HFVRP. The mutation concept on GA is used to speed up the algorithm CE to find the optimal solution. The mutation mechanism was based on local improvement (2-opt, 1-1 Exchange, and 1-0 Exchange). The probability transition matrix mechanism on CE is used to avoid getting stuck in the local optimum. The effectiveness of CEGA was tested on benchmark instance based 2L-HFVRP. The result of experiments shows a competitive result compared with the other algorithm.

  7. Vehicle-Routing Optimization for Municipal Solid Waste Collection Using Genetic Algorithm: The Case of Southern Nablus City

    Science.gov (United States)

    Assaf, Ramiz; Saleh, Yahya

    2017-09-01

    Municipalities are responsible for solid waste collectiont for environmental, social and economic purposes. Practices of municipalities should be effective and efficient, with the objectives of reducing the total incurred costs in the solid waste collection network concurrently achieving the highest service level. This study aims at finding the best routes of solid waste collection network in Nablus city-Palestine. More specifically, the study seeks the optimal route that minimizes the total travelled distance by the trucks and hence the resulted costs. The current situation is evaluated and the problem is modelled as a Vehicle Routing Problem (VRP). The VRP is then optimized via a genetic algorithm. Specifically, compared to the current situation, the trucks total travelled distance was reduced by 66%, whereas the collection time was reduced from 7 hours per truck-trip to 2.3 hours. The findings of this study is useful for all municipality policy makers that are responsible for solid waste collection.

  8. An artificial bee colony algorithm for the capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Szeto, W.Y.; Wu, Yongzhong; Ho, Sin C.

    2011-01-01

    This paper introduces an artificial bee colony heuristic for solving the capacitated vehicle routing problem. The artificial bee colony heuristic is a swarm-based heuristic, which mimics the foraging behavior of a honey bee swarm. An enhanced version of the artificial bee colony heuristic is also...... proposed to improve the solution quality of the original version. The performance of the enhanced heuristic is evaluated on two sets of standard benchmark instances, and compared with the original artificial bee colony heuristic. The computational results show that the enhanced heuristic outperforms...

  9. Shortest Paths and Vehicle Routing

    DEFF Research Database (Denmark)

    Petersen, Bjørn

    This thesis presents how to parallelize a shortest path labeling algorithm. It is shown how to handle Chvátal-Gomory rank-1 cuts in a column generation context. A Branch-and-Cut algorithm is given for the Elementary Shortest Paths Problem with Capacity Constraint. A reformulation of the Vehicle...... Routing Problem based on partial paths is presented. Finally, a practical application of finding shortest paths in the telecommunication industry is shown....

  10. Biased random key genetic algorithm with insertion and gender selection for capacitated vehicle routing problem with time windows

    Science.gov (United States)

    Rochman, Auliya Noor; Prasetyo, Hari; Nugroho, Munajat Tri

    2017-06-01

    Vehicle Routing Problem (VRP) often occurs when the manufacturers need to distribute their product to some customers/outlets. The distribution process is typically restricted by the capacity of the vehicle and the working hours at the distributor. This type of VRP is also known as Capacitated Vehicle Routing Problem with Time Windows (CVRPTW). A Biased Random Key Genetic Algorithm (BRKGA) was designed and coded in MATLAB to solve the CVRPTW case of soft drink distribution. The standard BRKGA was then modified by applying chromosome insertion into the initial population and defining chromosome gender for parent undergoing crossover operation. The performance of the established algorithms was then compared to a heuristic procedure for solving a soft drink distribution. Some findings are revealed (1) the total distribution cost of BRKGA with insertion (BRKGA-I) results in a cost saving of 39% compared to the total cost of heuristic method, (2) BRKGA with the gender selection (BRKGA-GS) could further improve the performance of the heuristic method. However, the BRKGA-GS tends to yield worse results compared to that obtained from the standard BRKGA.

  11. A Solution Approach from an Analytic Model to Heuristic Algorithm for Special Case of Vehicle Routing Problem with Stochastic Demands

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available We define a special case for the vehicle routing problem with stochastic demands (SC-VRPSD where customer demands are normally distributed. We propose a new linear model for computing the expected length of a tour in SC-VRPSD. The proposed model is based on the integration of the “Traveling Salesman Problem” (TSP and the Assignment Problem. For large-scale problems, we also use an Iterated Local Search (ILS algorithm in order to reach an effective solution.

  12. Locating Depots for Capacitated Vehicle Routing

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Nagarajan, Viswanath

    2016-01-01

    We study a location-routing problem in the context of capacitated vehicle routing. The input to the k-location capacitated vehicle routing problem (k-LocVRP) consists of a set of demand locations in a metric space and a fleet of k identical vehicles, each of capacity Q. The objective is to locate k...... depots, one for each vehicle, and compute routes for the vehicles so that all demands are satisfied and the total cost is minimized. Our main result is a constant-factor approximation algorithm for k-LocVRP. In obtaining this result, we introduce a common generalization of the k-median and minimum...... spanning tree problems (called k median forest), which might be of independent interest. We give a local-search based (3+ε)-approximation algorithm for k median forest, which leads to a (12+ε)-approximation algorithm for k-LocVRP, for any constant ε>0....

  13. Locating Depots for Capacitated Vehicle Routing

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Nagarajan, Viswanath

    2016-01-01

    depots, one for each vehicle, and compute routes for the vehicles so that all demands are satisfied and the total cost is minimized. Our main result is a constant-factor approximation algorithm for k-LocVRP. In obtaining this result, we introduce a common generalization of the k-median and minimum...... spanning tree problems (called k median forest), which might be of independent interest. We give a local-search based (3+ε)-approximation algorithm for k median forest, which leads to a (12+ε)-approximation algorithm for k-LocVRP, for any constant ε>0.......We study a location-routing problem in the context of capacitated vehicle routing. The input to the k-location capacitated vehicle routing problem (k-LocVRP) consists of a set of demand locations in a metric space and a fleet of k identical vehicles, each of capacity Q. The objective is to locate k...

  14. Two phase genetic algorithm for vehicle routing and scheduling problem with cross-docking and time windows considering customer satisfaction

    Science.gov (United States)

    Baniamerian, Ali; Bashiri, Mahdi; Zabihi, Fahime

    2018-03-01

    Cross-docking is a new warehousing policy in logistics which is widely used all over the world and attracts many researchers attention to study about in last decade. In the literature, economic aspects has been often studied, while one of the most significant factors for being successful in the competitive global market is improving quality of customer servicing and focusing on customer satisfaction. In this paper, we introduce a vehicle routing and scheduling problem with cross-docking and time windows in a three-echelon supply chain that considers customer satisfaction. A set of homogeneous vehicles collect products from suppliers and after consolidation process in the cross-dock, immediately deliver them to customers. A mixed integer linear programming model is presented for this problem to minimize transportation cost and early/tardy deliveries with scheduling of inbound and outbound vehicles to increase customer satisfaction. A two phase genetic algorithm (GA) is developed for the problem. For investigating the performance of the algorithm, it was compared with exact and lower bound solutions in small and large-size instances, respectively. Results show that there are at least 86.6% customer satisfaction by the proposed method, whereas customer satisfaction in the classical model is at most 33.3%. Numerical examples results show that the proposed two phase algorithm could achieve optimal solutions in small-size instances. Also in large-size instances, the proposed two phase algorithm could achieve better solutions with less gap from the lower bound in less computational time in comparison with the classic GA.

  15. A granular t abu search algorithm for a real case study of a vehicle routing problem with a heterogeneous fleet and time windows

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, Jose; Escobar, John Willmer; Linfati, Rodrigo

    2017-07-01

    We consider a real case study of a vehicle routing problem with a heterogeneous fleet and time windows (HFVRPTW) for a franchise company bottling Coca-Cola products in Colombia. This study aims to determine the routes to be performed to fulfill the demand of the customers by using a heterogeneous fleet and considering soft time windows. The objective is to minimize the distance traveled by the performed routes. Design/methodology/approach: We propose a two-phase heuristic algorithm. In the proposed approach, after an initial phase (first phase), a granular tabu search is applied during the improvement phase (second phase). Two additional procedures are considered to help that the algorithm could escape from local optimum, given that during a given number of iterations there has been no improvement. Findings: Computational experiments on real instances show that the proposed algorithm is able to obtain high-quality solutions within a short computing time compared to the results found by the software that the company currently uses to plan the daily routes. Originality/value: We propose a novel metaheuristic algorithm for solving a real routing problem by considering heterogeneous fleet and time windows. The efficiency of the proposed approach has been tested on real instances, and the computational experiments shown its applicability and performance for solving NP-Hard Problems related with routing problems with similar characteristics. The proposed algorithm was able to improve some of the current solutions applied by the company by reducing the route length and the number of vehicles.

  16. A granular t abu search algorithm for a real case study of a vehicle routing problem with a heterogeneous fleet and time windows

    International Nuclear Information System (INIS)

    Bernal, Jose; Escobar, John Willmer; Linfati, Rodrigo

    2017-01-01

    We consider a real case study of a vehicle routing problem with a heterogeneous fleet and time windows (HFVRPTW) for a franchise company bottling Coca-Cola products in Colombia. This study aims to determine the routes to be performed to fulfill the demand of the customers by using a heterogeneous fleet and considering soft time windows. The objective is to minimize the distance traveled by the performed routes. Design/methodology/approach: We propose a two-phase heuristic algorithm. In the proposed approach, after an initial phase (first phase), a granular tabu search is applied during the improvement phase (second phase). Two additional procedures are considered to help that the algorithm could escape from local optimum, given that during a given number of iterations there has been no improvement. Findings: Computational experiments on real instances show that the proposed algorithm is able to obtain high-quality solutions within a short computing time compared to the results found by the software that the company currently uses to plan the daily routes. Originality/value: We propose a novel metaheuristic algorithm for solving a real routing problem by considering heterogeneous fleet and time windows. The efficiency of the proposed approach has been tested on real instances, and the computational experiments shown its applicability and performance for solving NP-Hard Problems related with routing problems with similar characteristics. The proposed algorithm was able to improve some of the current solutions applied by the company by reducing the route length and the number of vehicles.

  17. An Efficient Two-Objective Hybrid Local Search Algorithm for Solving the Fuel Consumption Vehicle Routing Problem

    OpenAIRE

    Rao, Weizhen; Liu, Feng; Wang, Shengbin

    2016-01-01

    The classical model of vehicle routing problem (VRP) generally minimizes either the total vehicle travelling distance or the total number of dispatched vehicles. Due to the increased importance of environmental sustainability, one variant of VRPs that minimizes the total vehicle fuel consumption has gained much attention. The resulting fuel consumption VRP (FCVRP) becomes increasingly important yet difficult. We present a mixed integer programming model for the FCVRP, and fuel consumption is ...

  18. An optimal control-based algorithm for hybrid electric vehicle using preview route information

    NARCIS (Netherlands)

    Ngo, D.V.; Hofman, T.; Steinbuch, M.; Serrarens, A.F.A.

    2010-01-01

    Control strategies for Hybrid Electric Vehicles (HEVs) are generally aimed at optimally choosing the power distribution between the internal combustion engine and the electric motor in order to minimize the fuel consumption and/or emissions. Using vehicle navigation systems in combination with

  19. Feasible Initial Population with Genetic Diversity for a Population-Based Algorithm Applied to the Vehicle Routing Problem with Time Windows

    Directory of Open Access Journals (Sweden)

    Marco Antonio Cruz-Chávez

    2016-01-01

    Full Text Available A stochastic algorithm for obtaining feasible initial populations to the Vehicle Routing Problem with Time Windows is presented. The theoretical formulation for the Vehicle Routing Problem with Time Windows is explained. The proposed method is primarily divided into a clustering algorithm and a two-phase algorithm. The first step is the application of a modified k-means clustering algorithm which is proposed in this paper. The two-phase algorithm evaluates a partial solution to transform it into a feasible individual. The two-phase algorithm consists of a hybridization of four kinds of insertions which interact randomly to obtain feasible individuals. It has been proven that different kinds of insertions impact the diversity among individuals in initial populations, which is crucial for population-based algorithm behavior. A modification to the Hamming distance method is applied to the populations generated for the Vehicle Routing Problem with Time Windows to evaluate their diversity. Experimental tests were performed based on the Solomon benchmarking. Experimental results show that the proposed method facilitates generation of highly diverse populations, which vary according to the type and distribution of the instances.

  20. A Branch-and-Price Algorithm for Two Multi-Compartment Vehicle Routing Problems

    DEFF Research Database (Denmark)

    Mirzaei, Samira; Wøhlk, Sanne

    2017-01-01

    by comparing the optimal costs of the two versions. Computational results are presented for instances with up to 100 customers and the algorithm can solve instances with up to 50 customers and 4 commodities to optimality. NOTE: An early version of the paper was made public on the website of the journal...

  1. A New TS Algorithm for Solving Low-Carbon Logistics Vehicle Routing Problem with Split Deliveries by Backpack—From a Green Operation Perspective

    Science.gov (United States)

    Fu, Zhuo; Wang, Jiangtao

    2018-01-01

    In order to promote the development of low-carbon logistics and economize logistics distribution costs, the vehicle routing problem with split deliveries by backpack is studied. With the help of the model of classical capacitated vehicle routing problem, in this study, a form of discrete split deliveries was designed in which the customer demand can be split only by backpack. A double-objective mathematical model and the corresponding adaptive tabu search (TS) algorithm were constructed for solving this problem. By embedding the adaptive penalty mechanism, and adopting the random neighborhood selection strategy and reinitialization principle, the global optimization ability of the new algorithm was enhanced. Comparisons with the results in the literature show the effectiveness of the proposed algorithm. The proposed method can save the costs of low-carbon logistics and reduce carbon emissions, which is conducive to the sustainable development of low-carbon logistics. PMID:29747469

  2. A New TS Algorithm for Solving Low-Carbon Logistics Vehicle Routing Problem with Split Deliveries by Backpack-From a Green Operation Perspective.

    Science.gov (United States)

    Xia, Yangkun; Fu, Zhuo; Tsai, Sang-Bing; Wang, Jiangtao

    2018-05-10

    In order to promote the development of low-carbon logistics and economize logistics distribution costs, the vehicle routing problem with split deliveries by backpack is studied. With the help of the model of classical capacitated vehicle routing problem, in this study, a form of discrete split deliveries was designed in which the customer demand can be split only by backpack. A double-objective mathematical model and the corresponding adaptive tabu search (TS) algorithm were constructed for solving this problem. By embedding the adaptive penalty mechanism, and adopting the random neighborhood selection strategy and reinitialization principle, the global optimization ability of the new algorithm was enhanced. Comparisons with the results in the literature show the effectiveness of the proposed algorithm. The proposed method can save the costs of low-carbon logistics and reduce carbon emissions, which is conducive to the sustainable development of low-carbon logistics.

  3. A granular tabu search algorithm for a real case study of a vehicle routing problem with a heterogeneous fleet and time windows

    Directory of Open Access Journals (Sweden)

    Jose Bernal

    2017-10-01

    Full Text Available Purpose: We consider a real case study of a vehicle routing problem with a heterogeneous fleet and time windows (HFVRPTW for a franchise company bottling Coca-Cola products in Colombia. This study aims to determine the routes to be performed to fulfill the demand of the customers by using a heterogeneous fleet and considering soft time windows. The objective is to minimize the distance traveled by the performed routes. Design/methodology/approach: We propose a two-phase heuristic algorithm. In the proposed approach, after an initial phase (first phase, a granular tabu search is applied during the improvement phase (second phase. Two additional procedures are considered to help that the algorithm could escape from local optimum, given that during a given number of iterations there has been no improvement. Findings: Computational experiments on real instances show that the proposed algorithm is able to obtain high-quality solutions within a short computing time compared to the results found by the software that the company currently uses to plan the daily routes. Originality/value: We propose a novel metaheuristic algorithm for solving a real routing problem by considering heterogeneous fleet and time windows. The efficiency of the proposed approach has been tested on real instances, and the computational experiments shown its applicability and performance for solving NP-Hard Problems related with routing problems with similar characteristics. The proposed algorithm was able to improve some of the current solutions applied by the company by reducing the route length and the number of vehicles.

  4. An overview of smart grid routing algorithms

    Science.gov (United States)

    Wang, Junsheng; OU, Qinghai; Shen, Haijuan

    2017-08-01

    This paper summarizes the typical routing algorithm in smart grid by analyzing the communication business and communication requirements of intelligent grid. Mainly from the two kinds of routing algorithm is analyzed, namely clustering routing algorithm and routing algorithm, analyzed the advantages and disadvantages of two kinds of typical routing algorithm in routing algorithm and applicability.

  5. Optimum Route Planning and Scheduling for Unmanned Aerial Vehicles

    National Research Council Canada - National Science Library

    Sonmezocak, Erkan; Kurt, Senol

    2008-01-01

    .... The route planning of UAVs is the most critical and challenging problem of wartime. This thesis will develop three algorithms to solve a model that produces executable routings in order to dispatch three Unmanned Aerial Vehicles (UAV...

  6. Development of a hybrid genetic algorithm based decision support system for vehicle routing and scheduling in supply chain logistics managment

    OpenAIRE

    Khanian, Seyed Mohammad Shafi

    2007-01-01

    Vehicle Routing and Scheduling (VRS) constitute an important part of logistics management. Given the fact that the worldwide cost on physical distribution is evermore increasing, the global competition and the complex nature of logistics problems, one area, which determines the efficiency of all others, is the VRS activities. The application of Decision Support Systems (DSS) to assist logistics management with an efficient VRS could be of great benefit. Although the benefits of DSS in VRS are...

  7. Stochastic vehicle routing with recourse

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Nagarajan, Viswanath; Saket, Rishi

    2012-01-01

    instantiations, a recourse route is computed - but costs here become more expensive by a factor λ. We present an O(log2n ·log(nλ))-approximation algorithm for this stochastic routing problem, under arbitrary distributions. The main idea in this result is relating StochVRP to a special case of submodular...

  8. Locating Depots for Capacitated Vehicle Routing

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Nagarajan, Viswanath

    2011-01-01

    that all demands are satisfied and the total cost is minimized. Our main result is a constant-factor approximation algorithm for k-LocVRP. To achieve this result, we reduce k-LocVRP to the following generalization of k median, which might be of independent interest. Given a metric (V, d), bound k...... median forest, which leads to a (12+E)-approximation algorithm for k-LocVRP, for any constant E > 0. The algorithm for k median forest is t-swap local search, and we prove that it has locality gap 3 + 2 t ; this generalizes the corresponding result for k median [3]. Finally we consider the k median......We study a location-routing problem in the context of capacitated vehicle routing. The input to k-LocVRP is a set of demand locations in a metric space and a fleet of k vehicles each of capacity Q. The objective is to locate k depots, one for each vehicle, and compute routes for the vehicles so...

  9. Optimization Using Simulation of the Vehicle Routing Problem

    OpenAIRE

    Nayera E. El-Gharably; Khaled S. El-Kilany; Aziz E. El-Sayed

    2013-01-01

    A key element of many distribution systems is the routing and scheduling of vehicles servicing a set of customers. A wide variety of exact and approximate algorithms have been proposed for solving the vehicle routing problems (VRP). Exact algorithms can only solve relatively small problems of VRP, which is classified as NP-Hard. Several approximate algorithms have proven successful in finding a feasible solution not necessarily optimum. Although different parts of the pro...

  10. Full truckload vehicle routing problem with profits

    Directory of Open Access Journals (Sweden)

    Jian Li

    2014-04-01

    Full Text Available A new variant of the full truckload vehicle routing problem is studied. In this problem there are more than one delivery points corresponding to the same pickup point, and one order is allowed to be served several times by the same vehicle or different vehicles. For the orders which cannot be assigned because of resource constraint, the logistics company outsources them to other logistics companies at a certain cost. To maximize its profits, logistics company decides which to be transported by private fleet and which to be outsourced. The mathematical model is constructed for the problem. Since the problem is NP-hard and it is difficult to solve the large-scale problems with an exact algorithm, a hybrid genetic algorithm is proposed. Computational results show the effectiveness of the hybrid genetic algorithm.

  11. Route planning algorithms: Planific@ Project

    Directory of Open Access Journals (Sweden)

    Gonzalo Martín Ortega

    2009-12-01

    Full Text Available Planific@ is a route planning project for the city of Madrid (Spain. Its main aim is to develop an intelligence system capable of routing people from one place in the city to any other using the public transport. In order to do this, it is necessary to take into account such things as: time, traffic, user preferences, etc. Before beginning to design the project is necessary to make a comprehensive study of the variety of main known route planning algorithms suitable to be used in this project.

  12. The Pyramidal Capacitated Vehicle Routing Problem

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    This paper introduces the Pyramidal Capacitated Vehicle Routing Problem (PCVRP) as a restricted version of the Capacitated Vehicle Routing Problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the Pyramidal Traveling Salesman Problem (PTSP). A pyramidal...

  13. The pyramidal capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    2010-01-01

    This paper introduces the pyramidal capacitated vehicle routing problem (PCVRP) as a restricted version of the capacitated vehicle routing problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the pyramidal traveling salesman problem (PTSP). A pyramidal...

  14. Vehicle Routing With User Generated Trajectory Data

    DEFF Research Database (Denmark)

    Ceikute, Vaida; Jensen, Christian S.

    Rapidly increasing volumes of GPS data collected from vehicles provide new and increasingly comprehensive insight into the routes that drivers prefer. While routing services generally compute shortest or fastest routes, recent studies suggest that local drivers often prefer routes that are neithe...

  15. Vehicle routing problem in investment fund allocation

    Science.gov (United States)

    Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah Rozita; Mohd, Ismail

    2013-04-01

    Since its introduction by Dantzig and Ramser in 1959, vehicle routing problem keeps evolving in theories, applications and variability. The evolution in computing and technology are also important contributors to research in solving vehicle routing problem. The main sectors of interests among researchers and practitioners for vehicle routing problem are transportation, distribution and logistics. However, literature found that concept and benefits of vehicle routing problem are not taken advantages of by researchers in the field of investment. Other methods found used in investment include multi-objective programming, linear programming, goal programming and integer programming. Yet the application of vehicle routing problem is not fully explored. A proposal on a framework of the fund allocation optimization using vehicle routing problem is presented here. Preliminary results using FTSE Bursa Malaysia data testing the framework are also given.

  16. Periodic Heterogeneous Vehicle Routing Problem With Driver Scheduling

    Science.gov (United States)

    Mardiana Panggabean, Ellis; Mawengkang, Herman; Azis, Zainal; Filia Sari, Rina

    2018-01-01

    The paper develops a model for the optimal management of logistic delivery of a given commodity. The company has different type of vehicles with different capacity to deliver the commodity for customers. The problem is then called Periodic Heterogeneous Vehicle Routing Problem (PHVRP). The goal is to schedule the deliveries according to feasible combinations of delivery days and to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the sum of the costs of all routes over the planning horizon. We propose a combined approach of heuristic algorithm and exact method to solve the problem.

  17. Commercial vehicle route tracking using video detection.

    Science.gov (United States)

    2010-10-31

    Interstate commercial vehicle traffic is a major factor in the life of any road surface. The ability to track : these vehicles and their routes through the state can provide valuable information to planning : activities. We propose a method using vid...

  18. Routing Unmanned Vehicles in GPS-Denied Environments

    OpenAIRE

    Sundar, Kaarthik; Misra, Sohum; Rathinam, Sivakumar; Sharma, Rajnikant

    2017-01-01

    Most of the routing algorithms for unmanned vehicles, that arise in data gathering and monitoring applications in the literature, rely on the Global Positioning System (GPS) information for localization. However, disruption of GPS signals either intentionally or unintentionally could potentially render these algorithms not applicable. In this article, we present a novel method to address this difficulty by combining methods from cooperative localization and routing. In particular, the article...

  19. Routing Optimization of Intelligent Vehicle in Automated Warehouse

    Directory of Open Access Journals (Sweden)

    Yan-cong Zhou

    2014-01-01

    Full Text Available Routing optimization is a key technology in the intelligent warehouse logistics. In order to get an optimal route for warehouse intelligent vehicle, routing optimization in complex global dynamic environment is studied. A new evolutionary ant colony algorithm based on RFID and knowledge-refinement is proposed. The new algorithm gets environmental information timely through the RFID technology and updates the environment map at the same time. It adopts elite ant kept, fallback, and pheromones limitation adjustment strategy. The current optimal route in population space is optimized based on experiential knowledge. The experimental results show that the new algorithm has higher convergence speed and can jump out the U-type or V-type obstacle traps easily. It can also find the global optimal route or approximate optimal one with higher probability in the complex dynamic environment. The new algorithm is proved feasible and effective by simulation results.

  20. Classification of Dynamic Vehicle Routing Systems

    DEFF Research Database (Denmark)

    Larsen, Allan; Madsen, Oli B.G.; Solomon, Marius M.

    2007-01-01

    This chapter discusses important characteristics seen within dynamic vehicle routing problems. We discuss the differences between the traditional static vehicle routing problems and its dynamic counterparts. We give an in-depth introduction to the degree of dynamism measure which can be used to c...

  1. Time and timing in vehicle routing problems

    NARCIS (Netherlands)

    Jabali, O.

    2010-01-01

    The distribution of goods to a set of geographically dispersed customers is a common problem faced by carrier companies, well-known as the Vehicle Routing Problem (VRP). The VRP consists of finding an optimal set of routes that minimizes total travel times for a given number of vehicles with a fixed

  2. The vehicle routing problem latest advances and new challenges

    CERN Document Server

    Golden, Bruce L; Wasil, Edward A

    2008-01-01

    The Vehicle Routing Problem (VRP) has been an especially active and fertile area of research. Over the past five to seven years, there have been numerous technological advances and exciting challenges that are of considerable interest to students, teachers, and researchers. The Vehicle Routing Problem: Latest Advances and New Challenges will focus on a host of significant technical advances that have evolved over the past few years for modeling and solving vehicle routing problems and variants. New approaches for solving VRPs have been developed from important methodological advances. These developments have resulted in faster solution algorithms, more accurate techniques, and an improvement in the ability to solve large-scale, complex problems. The book will systematically examine these recent developments in the VRP and provide the following in a unified and carefully developed presentation: Present novel problems that have arisen in the vehicle routing domain and highlight new challenges for the field; Pre...

  3. Performansi Algoritma CODEQ dalam Penyelesaian Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    Annisa Kesy Garside

    2014-01-01

    Full Text Available Genetic Algorithm, Tabu Search, Simulated Annealing, and Ant Colony Optimization showed a good performance in solving vehicle routing problem. However, the generated solution of those algorithms was changeable regarding on the input parameter of each algorithm. CODEQ is a new, parameter free meta-heuristic algorithm that had been successfully used to solve constrained optimization problems, integer programming, and feed-forward neural network. The purpose of this research are improving CODEQ algorithm to solve vehicle routing problem and testing the performance of the improved algorithm. CODEQ algorithm is started with population initiation as initial solution, generated of mutant vector for each parent in every iteration, replacement of parent by mutant when fitness function value of mutant is better than parent’s, generated of new vector for each iteration based on opposition value or chaos principle, replacement of worst solution by new vector when fitness function value of new vector is better, iteration ceasing when stooping criterion is achieved, and sub-tour determination based on vehicle capacity constraint. The result showed that the average deviation of the best-known and the best-test value is 6.35%. Therefore, CODEQ algorithm is good in solving vehicle routing problem.

  4. Capacity Constrained Routing Algorithms for Evacuation Route Planning

    National Research Council Canada - National Science Library

    Lu, Qingsong; George, Betsy; Shekhar, Shashi

    2006-01-01

    .... In this paper, we propose a new approach, namely a capacity constrained routing planner which models capacity as a time series and generalizes shortest path algorithms to incorporate capacity constraints...

  5. A Genetic Algorithm on Inventory Routing Problem

    Directory of Open Access Journals (Sweden)

    Nevin Aydın

    2014-03-01

    Full Text Available Inventory routing problem can be defined as forming the routes to serve to the retailers from the manufacturer, deciding on the quantity of the shipment to the retailers and deciding on the timing of the replenishments. The difference of inventory routing problems from vehicle routing problems is the consideration of the inventory positions of retailers and supplier, and making the decision accordingly. Inventory routing problems are complex in nature and they can be solved either theoretically or using a heuristics method. Metaheuristics is an emerging class of heuristics that can be applied to combinatorial optimization problems. In this paper, we provide the relationship between vendor-managed inventory and inventory routing problem. The proposed genetic for solving vehicle routing problem is described in detail.

  6. Optimizing departure times in vehicle routes

    NARCIS (Netherlands)

    Kok, A.L.; Hans, Elias W.; Schutten, Johannes M.J.

    2008-01-01

    Most solution methods for the vehicle routing problem with time windows (VRPTW) develop routes from the earliest feasible departure time. However, in practice, temporal traffic congestions make that such solutions are not optimal with respect to minimizing the total duty time. Furthermore, VRPTW

  7. Optimizing Departure Times in Vehicle Routes

    NARCIS (Netherlands)

    Kok, A.L.; Hans, Elias W.; Schutten, Johannes M.J.

    2011-01-01

    Most solution methods for the vehicle routing problem with time windows (VRPTW) develop routes from the earliest feasible departure time. In practice, however, temporary traffic congestion make such solutions non-optimal with respect to minimizing the total duty time. Furthermore, the VRPTW does not

  8. Partial Path Column Generation for the Vehicle Routing Problem

    DEFF Research Database (Denmark)

    Jepsen, Mads Kehlet; Petersen, Bjørn

    This paper presents a column generation algorithm for the Capacitated Vehicle Routing Problem (CVRP) and the Vehicle Routing Problem with Time Windows (VRPTW). Traditionally, column generation models of the CVRP and VRPTW have consisted of a Set Partitioning master problem with each column...... of the giant tour’; a so-called partial path, i.e., not necessarily starting and ending in the depot. This way, the length of the partial path can be bounded and a better control of the size of the solution space for the pricing problem can be obtained....

  9. A branch-and-cut-and-price algorithm for the mixed capacitated general routing problem

    DEFF Research Database (Denmark)

    Bach, Lukas; Wøhlk, Sanne; Lysgaard, Jens

    2016-01-01

    In this paper, we consider the Mixed Capacitated General Routing Problem which is a combination of the Capacitated Vehicle Routing Problem and the Capacitated Arc Routing Problem. The problem is also known as the Node, Edge, and Arc Routing Problem. We propose a Branch-and-Cut-and-Price algorithm...

  10. The Time Window Vehicle Routing Problem Considering Closed Route

    Science.gov (United States)

    Irsa Syahputri, Nenna; Mawengkang, Herman

    2017-12-01

    The Vehicle Routing Problem (VRP) determines the optimal set of routes used by a fleet of vehicles to serve a given set of customers on a predefined graph; the objective is to minimize the total travel cost (related to the travel times or distances) and operational cost (related to the number of vehicles used). In this paper we study a variant of the predefined graph: given a weighted graph G and vertices a and b, and given a set X of closed paths in G, find the minimum total travel cost of a-b path P such that no path in X is a subpath of P. Path P is allowed to repeat vertices and edges. We use integer programming model to describe the problem. A feasible neighbourhood approach is proposed to solve the model

  11. PROPOSAL OF ALGORITHM FOR ROUTE OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Robert Ramon de Carvalho Sousa

    2016-06-01

    Full Text Available This article uses “Six Sigma” methodology for the elaboration of an algorithm for routing problems which is able to obtain more efficient results than those from Clarke and Wright´s (CW algorithm (1964 in situations of random increase of product delivery demands, facing the incapability of service level increase . In some situations, the algorithm proposed obtained more efficient results than the CW algorithm. The key factor was a reduction in the number of mistakes (one way routes and in the level of result variation.

  12. PROPOSAL OF ALGORITHM FOR ROUTE OPTIMIZATION

    OpenAIRE

    Robert Ramon de Carvalho Sousa; Abimael de Jesus Barros Costa; Eliezé Bulhões de Carvalho; Adriano de Carvalho Paranaíba; Daylyne Maerla Gomes Lima Sandoval

    2016-01-01

    This article uses “Six Sigma” methodology for the elaboration of an algorithm for routing problems which is able to obtain more efficient results than those from Clarke and Wright´s (CW) algorithm (1964) in situations of random increase of product delivery demands, facing the incapability of service level increase . In some situations, the algorithm proposed obtained more efficient results than the CW algorithm. The key factor was a reduction in the number of mistakes (on...

  13. Vehicle Routing Problems for Drone Delivery

    OpenAIRE

    Dorling, Kevin; Heinrichs, Jordan; Messier, Geoffrey G.; Magierowski, Sebastian

    2016-01-01

    Unmanned aerial vehicles, or drones, have the potential to significantly reduce the cost and time of making last-mile deliveries and responding to emergencies. Despite this potential, little work has gone into developing vehicle routing problems (VRPs) specifically for drone delivery scenarios. Existing VRPs are insufficient for planning drone deliveries: either multiple trips to the depot are not permitted, leading to solutions with excess drones, or the effect of battery and payload weight ...

  14. Routing algorithms in networks-on-chip

    CERN Document Server

    Daneshtalab, Masoud

    2014-01-01

    This book provides a single-source reference to routing algorithms for Networks-on-Chip (NoCs), as well as in-depth discussions of advanced solutions applied to current and next generation, many core NoC-based Systems-on-Chip (SoCs). After a basic introduction to the NoC design paradigm and architectures, routing algorithms for NoC architectures are presented and discussed at all abstraction levels, from the algorithmic level to actual implementation.  Coverage emphasizes the role played by the routing algorithm and is organized around key problems affecting current and next generation, many-core SoCs. A selection of routing algorithms is included, specifically designed to address key issues faced by designers in the ultra-deep sub-micron (UDSM) era, including performance improvement, power, energy, and thermal issues, fault tolerance and reliability.   ·         Provides a comprehensive overview of routing algorithms for Networks-on-Chip and NoC-based, manycore systems; ·         Describe...

  15. A Monarch Butterfly Optimization for the Dynamic Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    Shifeng Chen

    2017-09-01

    Full Text Available The dynamic vehicle routing problem (DVRP is a variant of the Vehicle Routing Problem (VRP in which customers appear dynamically. The objective is to determine a set of routes that minimizes the total travel distance. In this paper, we propose a monarch butterfly optimization (MBO algorithm to solve DVRPs, utilizing a greedy strategy. Both migration operation and the butterfly adjusting operator only accept the offspring of butterfly individuals that have better fitness than their parents. To improve performance, a later perturbation procedure is implemented, to maintain a balance between global diversification and local intensification. The computational results indicate that the proposed technique outperforms the existing approaches in the literature for average performance by at least 9.38%. In addition, 12 new best solutions were found. This shows that this proposed technique consistently produces high-quality solutions and outperforms other published heuristics for the DVRP.

  16. Fund allocation using capacitated vehicle routing problem

    Science.gov (United States)

    Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah Rozita; Darus, Maslina

    2014-09-01

    In investment fund allocation, it is unwise for an investor to distribute his fund into several assets simultaneously due to economic reasons. One solution is to allocate the fund into a particular asset at a time in a sequence that will either maximize returns or minimize risks depending on the investor's objective. The vehicle routing problem (VRP) provides an avenue to this issue. VRP answers the question on how to efficiently use the available fleet of vehicles to meet a given service demand, subjected to a set of operational requirements. This paper proposes an idea of using capacitated vehicle routing problem (CVRP) to optimize investment fund allocation by employing data of selected stocks in the FTSE Bursa Malaysia. Results suggest that CRVP can be applied to solve the issue of investment fund allocation and increase the investor's profit.

  17. Optimization for routing vehicles of seafood product transportation

    Science.gov (United States)

    Soenandi, I. A.; Juan, Y.; Budi, M.

    2017-12-01

    Recently, increasing usage of marine products is creating new challenges for businesses of marine products in terms of transportation that used to carry the marine products like seafood to the main warehouse. This can be a problem if the carrier fleet is limited, and there are time constraints in terms of the freshness of the marine product. There are many ways to solve this problem, including the optimization of routing vehicles. In this study, this strategy is to implement in the marine product business in Indonesia with such an expected arrangement of the company to optimize routing problem in transportation with time and capacity windows. Until now, the company has not used the scientific method to manage the routing of their vehicle from warehouse to the location of marine products source. This study will solve a stochastic Vehicle Routing Problems (VRP) with time and capacity windows by using the comparison of six methods and looking the best results for the optimization, in this situation the company could choose the best method, in accordance with the existing condition. In this research, we compared the optimization with another method such as branch and bound, dynamic programming and Ant Colony Optimization (ACO). Finally, we get the best result after running ACO algorithm with existing travel time data. With ACO algorithm was able to reduce vehicle travel time by 3189.65 minutes, which is about 23% less than existing and based on consideration of the constraints of time within 2 days (including rest time for the driver) using 28 tons capacity of truck and the companies need two units of vehicles for transportation.

  18. Rich Vehicle Routing Problems and Applications

    DEFF Research Database (Denmark)

    Wen, Min

    very short computational time on real-life data involving up to 200 pairs of suppliers and customers. The second problem we consider is a dynamic vehicle routing problem with multiple objectives over a planning horizon that consists of multiple periods. In this problem, customer orders are revealed...... the company’s solution in terms of all the objectives, including the travel time, customer waiting and daily workload balances, under the given constraints considered in the work. Finally, we address an integrated vehicle routing and driver scheduling problem, in which a large number of practical constraints....... The method is implemented and tested on real-life data involving up to 2000 orders. It is shown that the method is able to provide solutions of good quality within reasonable running time....

  19. Waste Collection Vehicle Routing Problem: Literature Review

    OpenAIRE

    Hui Han; Eva Ponce Cueto

    2015-01-01

    Waste generation is an issue which has caused wide public concern in modern societies, not only for the quantitative rise of the amount of waste generated, but also for the increasing complexity of some products and components. Waste collection is a highly relevant activity in the reverse logistics system and how to collect waste in an efficient way is an area that needs to be improved. This paper analyzes the major contribution about Waste Collection Vehicle Routing Problem (WCVRP) in litera...

  20. Waste Collection Vehicle Routing Problem: Literature Review

    Directory of Open Access Journals (Sweden)

    Hui Han

    2015-08-01

    Full Text Available Waste generation is an issue which has caused wide public concern in modern societies, not only for the quantitative rise of the amount of waste generated, but also for the increasing complexity of some products and components. Waste collection is a highly relevant activity in the reverse logistics system and how to collect waste in an efficient way is an area that needs to be improved. This paper analyzes the major contribution about Waste Collection Vehicle Routing Problem (WCVRP in literature. Based on a classification of waste collection (residential, commercial and industrial, firstly the key findings for these three types of waste collection are presented. Therefore, according to the model (Node Routing Problems and Arc Routing problems used to represent WCVRP, different methods and techniques are analyzed in this paper to solve WCVRP. This paper attempts to serve as a roadmap of research literature produced in the field of WCVRP.

  1. Dynamic origin-to-destination routing of wirelessly connected, autonomous vehicles on a congested network

    Science.gov (United States)

    Davis, L. C.

    2017-07-01

    Up-to-date information wirelessly communicated among vehicles can be used to select the optimal route between a given origin and destination. To elucidate how to make use of such information, simulations are performed for autonomous vehicles traveling on a square lattice of roads. All the possible routes between the origin and the destination (without backtracking) are of the same length. Congestion is the only determinant of delay. At each intersection, right-of-way is given to the closest vehicle. There are no traffic lights. Trip times of a subject vehicle are recorded for various initial conditions using different routing algorithms. Surprisingly, the simplest algorithm, which is based on the total number of vehicles on a route, is as good as one based on computing travel times from the average velocity of vehicles on each road segment.

  2. Routing Cooperating Vehicles to Perform Precedence-Linked Tasks

    National Research Council Canada - National Science Library

    Vakhutinsky, Andrew; Wu, Cynara

    2005-01-01

    The problem of scheduling cooperating vehicles is a generalization of the classical vehicle routing problem where certain tasks are linked by precedence constraints and vehicles have varying constrained resources...

  3. Intelligent emission-sensitive routing for plugin hybrid electric vehicles.

    Science.gov (United States)

    Sun, Zhonghao; Zhou, Xingshe

    2016-01-01

    The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs.

  4. An Endosymbiotic Evolutionary Algorithm for the Hub Location-Routing Problem

    Directory of Open Access Journals (Sweden)

    Ji Ung Sun

    2015-01-01

    Full Text Available We consider a capacitated hub location-routing problem (HLRP which combines the hub location problem and multihub vehicle routing decisions. The HLRP not only determines the locations of the capacitated p-hubs within a set of potential hubs but also deals with the routes of the vehicles to meet the demands of customers. This problem is formulated as a 0-1 mixed integer programming model with the objective of the minimum total cost including routing cost, fixed hub cost, and fixed vehicle cost. As the HLRP has impractically demanding for the large sized problems, we develop a solution method based on the endosymbiotic evolutionary algorithm (EEA which solves hub location and vehicle routing problem simultaneously. The performance of the proposed algorithm is examined through a comparative study. The experimental results show that the proposed EEA can be a viable solution method for the supply chain network planning.

  5. Analysis of an Automated Vehicle Routing Problem in Logistics considering Path Interruption

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2017-01-01

    Full Text Available The application of automated vehicles in logistics can efficiently reduce the cost of logistics and reduce the potential risks in the last mile. Considering the path restriction in the initial stage of the application of automated vehicles in logistics, the conventional model for a vehicle routing problem (VRP is modified. Thus, the automated vehicle routing problem with time windows (AVRPTW model considering path interruption is established. Additionally, an improved particle swarm optimisation (PSO algorithm is designed to solve this problem. Finally, a case study is undertaken to test the validity of the model and the algorithm. Four automated vehicles are designated to execute all delivery tasks required by 25 stores. Capacities of all of the automated vehicles are almost fully utilised. It is of considerable significance for the promotion of automated vehicles in last-mile situations to develop such research into real problems arising in the initial period.

  6. Vehicle Routing Problems with Fuel Consumption and Stochastic Travel Speeds

    Directory of Open Access Journals (Sweden)

    Yanling Feng

    2017-01-01

    Full Text Available Conventional vehicle routing problems (VRP always assume that the vehicle travel speed is fixed or time-dependent on arcs. However, due to the uncertainty of weather, traffic conditions, and other random factors, it is not appropriate to set travel speeds to fixed constants in advance. Consequently, we propose a mathematic model for calculating expected fuel consumption and fixed vehicle cost where average speed is assumed to obey normal distribution on each arc which is more realistic than the existing model. For small-scaled problems, we make a linear transformation and solve them by existing solver CPLEX, while, for large-scaled problems, an improved simulated annealing (ISA algorithm is constructed. Finally, instances from real road networks of England are performed with the ISA algorithm. Computational results show that our ISA algorithm performs well in a reasonable amount of time. We also find that when taking stochastic speeds into consideration, the fuel consumption is always larger than that with fixed speed model.

  7. Bellman Ford algorithm - in Routing Information Protocol (RIP)

    Science.gov (United States)

    Krianto Sulaiman, Oris; Mahmud Siregar, Amir; Nasution, Khairuddin; Haramaini, Tasliyah

    2018-04-01

    In a large scale network need a routing that can handle a lot number of users, one of the solutions to cope with large scale network is by using a routing protocol, There are 2 types of routing protocol that is static and dynamic, Static routing is manually route input based on network admin, while dynamic routing is automatically route input formed based on existing network. Dynamic routing is efficient used to network extensively because of the input of route automatic formed, Routing Information Protocol (RIP) is one of dynamic routing that uses the bellman-ford algorithm where this algorithm will search for the best path that traversed the network by leveraging the value of each link, so with the bellman-ford algorithm owned by RIP can optimize existing networks.

  8. Anticipatory vehicle routing using delegate multi-agent systems

    OpenAIRE

    Weyns, Danny; Holvoet, Tom; Helleboogh, Alexander

    2007-01-01

    This paper presents an agent-based approach, called delegate multi-agent systems, for anticipatory vehicle routing to avoid traffic congestion. In this approach, individual vehicles are represented by agents, which themselves issue light-weight agents that explore alternative routes in the environment on behalf of the vehicles. Based on the evaluation of the alternatives, the vehicles then issue light-weight agents for allocating road segments, spreading the vehicles’ intentions and coordi...

  9. Vehicle routing with dynamic travel times : a queueing approach

    NARCIS (Netherlands)

    Woensel, van T.; Kerbache, L.; Peremans, H.; Vandaele, N.J.

    2008-01-01

    Transportation is an important component of supply chain competitiveness since it plays a major role in the inbound, inter-facility, and outbound logistics. In this context, assigning and scheduling vehicle routes is a crucial management problem. In this paper, a vehicle routing problem with dynamic

  10. On the vehicle routing problem with time windows

    DEFF Research Database (Denmark)

    Kallehauge, Brian

    2006-01-01

    . The fourth and final paper ‘Vehicle routing problem with time windows’ (Kallehauge, Larsen, Madsen, and Solomon. In Desaulniers, Desrosiers, and Solomon, editors, Column generation, pages 67-98, Springer, New York, 2005) is a contribution to a book on column generation edited by G. Desaulniers, J. Desrosiers......The vehicle routing problem with time windows is concerned with the optimal routing of a fleet of vehicles between a depot and a number of customers that must be visited within a specified time interval, called a time window. The purpose of this thesis is to develop new and efficient solution...... techniques for solving the vehicle routing problem with time windows (VRPTW). The thesis consists of a section of introductory remarks and four independent papers. The first paper ‘Formulations and exact approaches for the vehicle routing problem with time windows’ (Kallehauge, 2005, unpublished) is a review...

  11. One Kind of Routing Algorithm Modified in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Wei Ni Ni

    2016-01-01

    Full Text Available The wireless sensor networks are the emerging next generation sensor networks, Routing technology is the wireless sensor network communication layer of the core technology. To build reliable paths in wireless sensor networks, we can consider two ways: providing multiple paths utilizing the redundancy to assure the communication reliability or constructing transmission reliability mechanism to assure the reliability of every hop. Braid multipath algorithm and ReInforM routing algorithm are the realizations of these two mechanisms. After the analysis of these two algorithms, this paper proposes a ReInforM routing algorithm based braid multipath routing algorithm.

  12. Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Haitao Xu

    2018-01-01

    Full Text Available As we all know, there are a great number of optimization problems in the world. One of the relatively complicated and high-level problems is the vehicle routing problem (VRP. Dynamic vehicle routing problem (DVRP is a major variant of VRP, and it is closer to real logistic scene. In DVRP, the customers’ demands appear with time, and the unserved customers’ points must be updated and rearranged while carrying out the programming paths. Owing to the complexity and significance of the problem, DVRP applications have grabbed the attention of researchers in the past two decades. In this paper, we have two main contributions to solving DVRP. Firstly, DVRP is solved with enhanced Ant Colony Optimization (E-ACO, which is the traditional Ant Colony Optimization (ACO fusing improved K-means and crossover operation. K-means can divide the region with the most reasonable distance, while ACO using crossover is applied to extend search space and avoid falling into local optimum prematurely. Secondly, several new evaluation benchmarks are proposed, which can objectively and comprehensively estimate the proposed method. In the experiment, the results for different scale problems are compared to those of previously published papers. Experimental results show that the algorithm is feasible and efficient.

  13. Autonomous intelligent vehicles theory, algorithms, and implementation

    CERN Document Server

    Cheng, Hong

    2011-01-01

    Here is the latest on intelligent vehicles, covering object and obstacle detection and recognition and vehicle motion control. Includes a navigation approach using global views; introduces algorithms for lateral and longitudinal motion control and more.

  14. Congestion avoidance and break scheduling within vehicle routing

    NARCIS (Netherlands)

    Kok, A.L.

    2010-01-01

    Vehicle routing is a complex daily task for businesses such as logistic service providers and distribution firms. Planners have to assign many orders to many vehicles and, for each vehicle, assign a delivery sequence. The objective is to minimize total transport costs. These costs typically include

  15. Intelligent Shuttle Management and Routing Algorithm

    Science.gov (United States)

    Thomas, Toshen M.; Subashanthini, S.

    2017-11-01

    Nowadays, most of the big Universities and campuses have Shuttle cabs running in them to cater the transportational needs of the students and faculties. While some shuttle services ask for a meagre sum to be paid for the usage, no digital payment system is onboard these vehicles to go truly cashless. Even more troublesome is the fact that sometimes during the day, some of these cabs run with bare number of passengers, which can result in unwanted budget loss to the shuttle operator. The main purpose of this paper is to create a system with two types of applications: A web portal and an Android app, to digitize the Shuttle cab industry. This system can be used for digital cashless payment feature, tracking passengers, tracking cabs and more importantly, manage the number of shuttle cabs in every route to maximize profit. This project is built upon an ASP.NET website connected to a cloud service along with an Android app that tracks and reads the passengers ID using an attached barcode reader along with the current GPS coordinates, and sends these data to the cloud for processing using the phone’s internet connectivity.

  16. A multi-objective location routing problem using imperialist competitive algorithm

    Directory of Open Access Journals (Sweden)

    Amir Mohammad Golmohammadi

    2016-06-01

    Full Text Available Nowadays, most manufacturing units try to locate their requirements and the depot vehicle routing in order to transport the goods at optimum cost. Needless to mention that the locations of the required warehouses influence on the performance of vehicle routing. In this paper, a mathematical programming model to optimize the storage location and vehicle routing are presented. The first objective function of the model minimizes the total cost associated with the transportation and storage, and the second objective function minimizes the difference distance traveled by vehicles. The study uses Imperialist Competitive Algorithm (ICA to solve the resulted problems in different sizes. The preliminary results have indicated that the proposed study has performed better than NSGA-II and PAES methods in terms of Quality metric and Spacing metric.

  17. Optimizing investment fund allocation using vehicle routing problem framework

    Science.gov (United States)

    Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah Rozita

    2014-07-01

    The objective of investment is to maximize total returns or minimize total risks. To determine the optimum order of investment, vehicle routing problem method is used. The method which is widely used in the field of resource distribution shares almost similar characteristics with the problem of investment fund allocation. In this paper we describe and elucidate the concept of using vehicle routing problem framework in optimizing the allocation of investment fund. To better illustrate these similarities, sectorial data from FTSE Bursa Malaysia is used. Results show that different values of utility for risk-averse investors generate the same investment routes.

  18. Multicriteria vehicle routing problem solved by artificial immune system

    Directory of Open Access Journals (Sweden)

    Bogna MRÓWCZYŃSKA

    2015-09-01

    Full Text Available Vehicles route planning in large transportation companies, where drivers are workers, usually takes place on the basis of experience or intuition of the employees. Because of the cost and environmental protection, it is important to save fuel, thus planning routes in an optimal way. In this article an example of the problem is presented solving delivery vans route planning taking into account the distance and travel time within the constraints of vehicle capacities, restrictions on working time of drivers and having varying degrees of movement. An artificial immune system was used for the calculations.

  19. Routing of Electric Vehicles: City Distribution in Copenhagen

    DEFF Research Database (Denmark)

    Linde, Esben; Larsen, Allan; Nørrelund, Anders Vedsted

    In this work, a Vehicle Routing Problem with Time Windows considering EV constraints of limited driving range and freight capacity is addressed (EVRPTW). The EVs are allowed to recharge at certain locations, and aspects of intelligent location of these recharging points are considered....... The objective is to find the least cost plan for EV routing and compare this to conventional routing. A heuristic method is developed and tested on data based on real-life collected data on distribution vehicles in central Copenhagen, Denmark. The EVRPTW has so far received little attention in the literature...

  20. Research and application of genetic algorithm in path planning of logistics distribution vehicle

    Science.gov (United States)

    Wang, Yong; Zhou, Heng; Wang, Ying

    2017-08-01

    The core of the logistics distribution system is the vehicle routing planning, research path planning problem, provide a better solution has become an important issue. In order to provide the decision support for logistics and distribution operations, this paper studies the problem of vehicle routing with capacity constraints (CVRP). By establishing a mathematical model, the genetic algorithm is used to plan the path of the logistics vehicle to meet the minimum logistics and transportation costs.

  1. A capacitated vehicle routing problem with order available time in e-commerce industry

    Science.gov (United States)

    Liu, Ling; Li, Kunpeng; Liu, Zhixue

    2017-03-01

    In this article, a variant of the well-known capacitated vehicle routing problem (CVRP) called the capacitated vehicle routing problem with order available time (CVRPOAT) is considered, which is observed in the operations of the current e-commerce industry. In this problem, the orders are not available for delivery at the beginning of the planning period. CVRPOAT takes all the assumptions of CVRP, except the order available time, which is determined by the precedent order picking and packing stage in the warehouse of the online grocer. The objective is to minimize the sum of vehicle completion times. An efficient tabu search algorithm is presented to tackle the problem. Moreover, a Lagrangian relaxation algorithm is developed to obtain the lower bounds of reasonably sized problems. Based on the test instances derived from benchmark data, the proposed tabu search algorithm is compared with a published related genetic algorithm, as well as the derived lower bounds. Also, the tabu search algorithm is compared with the current operation strategy of the online grocer. Computational results indicate that the gap between the lower bounds and the results of the tabu search algorithm is small and the tabu search algorithm is superior to the genetic algorithm. Moreover, the CVRPOAT formulation together with the tabu search algorithm performs much better than the current operation strategy of the online grocer.

  2. Joint optimization of green vehicle scheduling and routing problem with time-varying speeds

    Science.gov (United States)

    Zhang, Dezhi; Wang, Xin; Ni, Nan; Zhang, Zhuo

    2018-01-01

    Based on an analysis of the congestion effect and changes in the speed of vehicle flow during morning and evening peaks in a large- or medium-sized city, the piecewise function is used to capture the rules of the time-varying speed of vehicles, which are very important in modelling their fuel consumption and CO2 emission. A joint optimization model of the green vehicle scheduling and routing problem with time-varying speeds is presented in this study. Extra wages during nonworking periods and soft time-window constraints are considered. A heuristic algorithm based on the adaptive large neighborhood search algorithm is also presented. Finally, a numerical simulation example is provided to illustrate the optimization model and its algorithm. Results show that, (1) the shortest route is not necessarily the route that consumes the least energy, (2) the departure time influences the vehicle fuel consumption and CO2 emissions and the optimal departure time saves on fuel consumption and reduces CO2 emissions by up to 5.4%, and (3) extra driver wages have significant effects on routing and departure time slot decisions. PMID:29466370

  3. Nearest greedy for solving the waste collection vehicle routing problem: A case study

    Science.gov (United States)

    Mat, Nur Azriati; Benjamin, Aida Mauziah; Abdul-Rahman, Syariza; Wibowo, Antoni

    2017-11-01

    This paper presents a real case study pertaining to an issue related to waste collection in the northern part of Malaysia by using a constructive heuristic algorithm known as the Nearest Greedy (NG) technique. This technique has been widely used to devise initial solutions for issues concerning vehicle routing. Basically, the waste collection cycle involves the following steps: i) each vehicle starts from a depot, ii) visits a number of customers to collect waste, iii) unloads waste at the disposal site, and lastly, iv) returns to the depot. Moreover, the sample data set used in this paper consisted of six areas, where each area involved up to 103 customers. In this paper, the NG technique was employed to construct an initial route for each area. The solution proposed from the technique was compared with the present vehicle routes implemented by a waste collection company within the city. The comparison results portrayed that NG offered better vehicle routes with a 11.07% reduction of the total distance traveled, in comparison to the present vehicle routes.

  4. Multiple Charging Station Location-Routing Problem with Time Window of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Wang Li-ying

    2015-11-01

    Full Text Available This paper presents the electric vehicle (EV multiple charging station location-routing problem with time window to optimize the routing plan of capacitated EVs and the strategy of charging stations. In particular, the strategy of charging stations includes both infrastructure-type selection and station location decisions. The problem accounts for two critical constraints in logistic practice: the vehicle loading capacity and the customer time windows. A hybrid heuristic that incorporates an adaptive variable neighborhood search (AVNS with the tabu search algorithm for intensification was developed to address the problem. The specialized neighborhood structures and the selection methods of charging station used in the shaking step of AVNS were proposed. In contrast to the commercial solver CPLEX, experimental results on small-scale test instances demonstrate that the algorithm can find nearly optimal solutions on small-scale instances. The results on large-scale instances also show the effectiveness of the algorithm.

  5. Single-Commodity Vehicle Routing Problem with Pickup and Delivery Service

    Directory of Open Access Journals (Sweden)

    Goran Martinovic

    2008-01-01

    Full Text Available We present a novel variation of the vehicle routing problem (VRP. Single commodity cargo with pickup and delivery service is considered. Customers are labeled as either cargo sink or cargo source, depending on their pickup or delivery demand. This problem is called a single commodity vehicle routing problem with pickup and delivery service (1-VRPPD. 1-VRPPD deals with multiple vehicles and is the same as the single-commodity traveling salesman problem (1-PDTSP when the number of vehicles is equal to 1. Since 1-VRPPD specializes VRP, it is hard in the strong sense. Iterative modified simulated annealing (IMSA is presented along with greedy random-based initial solution algorithm. IMSA provides a good approximation to the global optimum in a large search space. Experiment is done for the instances with different number of customers and their demands. With respect to average values of IMSA execution times, proposed method is appropriate for practical applications.

  6. Disruption management of the vehicle routing problem with vehicle breakdown

    DEFF Research Database (Denmark)

    Mu, Q; Fu, Z; Lysgaard, Jens

    2011-01-01

    solution needs to be quickly generated to minimise the costs. Two Tabu Search algorithms are developed to solve the problem and are assessed in relation to an exact algorithm. A set of test problems has been generated and computational results from experiments using the heuristic algorithms are presented....

  7. Partial path column generation for the vehicle routing problem with time windows

    DEFF Research Database (Denmark)

    Petersen, Bjørn; Jepsen, Mads Kehlet

    2009-01-01

    This paper presents a column generation algorithm for the Vehicle Routing Problem with Time Windows (VRPTW). Traditionally, column generation models of the VRPTW have consisted of a Set Partitioning master problem with each column representing a route, i.e., a resource feasible path starting...... and ending at the depot. Elementary routes (no customer visited more than once) have shown superior results on difficult instances (less restrictive capacity and time windows). However, the pricing problems do not scale well when the number of feasible routes increases, i.e., when a route may contain a large...... number of customers. We suggest to relax that ‘each column is a route’ into ‘each column is a part of the giant tour’; a so-called partial path, i.e., not necessarily starting and ending in the depot. This way, the length of the partial path can be bounded and a better control of the size of the solution...

  8. Optimal Routing for Heterogeneous Fixed Fleets of Multicompartment Vehicles

    OpenAIRE

    Wang, Qian; Ji, Qingkai; Chiu, Chun-Hung

    2014-01-01

    We present a metaheuristic called the reactive guided tabu search (RGTS) to solve the heterogeneous fleet multicompartment vehicle routing problem (MCVRP), where a single vehicle is required for cotransporting multiple customer orders. MCVRP is commonly found in delivery of fashion apparel, petroleum distribution, food distribution, and waste collection. In searching the optimum solution of MCVRP, we need to handle a large amount of local optima in the solution spaces. To overcome this proble...

  9. Capacitated Vehicle Routing with Nonuniform Speeds

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Molinaro, Marco; Nagarajan, Viswanath

    2016-01-01

    is the distance traveled divided by its speed.Our algorithm relies on a new approximate minimum spanning tree construction called Level-Prim, which is related to but different from Light Approximate Shortest-path Trees. We also extend the widely used tour-splitting technique to nonuniform speeds, using ideas from...

  10. Simulated annealing (SA to vehicle routing problems with soft time windows

    Directory of Open Access Journals (Sweden)

    Suphan Sodsoon

    2014-12-01

    Full Text Available The researcher has applied and develops the meta-heuristics method to solve Vehicle Routing Problems with Soft Time Windows (VRPSTW. For this case there was only one depot, multi customers which each generally sparse either or demand was different though perceived number of demand and specific period of time to receive them. The Operation Research was representative combinatorial optimization problems and is known to be NP-hard. In this research algorithm, use Simulated Annealing (SA to determine the optimum solutions which rapidly time solving. After developed the algorithms, apply them to examine the factors and the optimum extended time windows and test these factors with vehicle problem routing under specific time windows by Solomon in OR-Library in case of maximum 25 customers. Meanwhile, 6 problems are including of C101, C102, R101, R102, RC101 and RC102 respectively. The result shows the optimum extended time windows at level of 50%. At last, after comparison these answers with the case of vehicle problem routing under specific time windows and flexible time windows, found that percentage errors on number of vehicles approximately by -28.57% and percentage errors on distances approximately by -28.57% which this algorithm spent average processing time on 45.5 sec/problems.

  11. Energy Aware Simple Ant Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sohail Jabbar

    2015-01-01

    Full Text Available Network lifetime is one of the most prominent barriers in deploying wireless sensor networks for large-scale applications because these networks employ sensors with nonrenewable scarce energy resources. Sensor nodes dissipate most of their energy in complex routing mechanisms. To cope with limited energy problem, we present EASARA, an energy aware simple ant routing algorithm based on ant colony optimization. Unlike most algorithms, EASARA strives to avoid low energy routes and optimizes the routing process through selection of least hop count path with more energy. It consists of three phases, that is, route discovery, forwarding node, and route selection. We have improved the route discovery procedure and mainly concentrate on energy efficient forwarding node and route selection, so that the network lifetime can be prolonged. The four possible cases of forwarding node and route selection are presented. The performance of EASARA is validated through simulation. Simulation results demonstrate the performance supremacy of EASARA over contemporary scheme in terms of various metrics.

  12. Algorithm Research of Individualized Travelling Route Recommendation Based on Similarity

    Directory of Open Access Journals (Sweden)

    Xue Shan

    2015-01-01

    Full Text Available Although commercial recommendation system has made certain achievement in travelling route development, the recommendation system is facing a series of challenges because of people’s increasing interest in travelling. It is obvious that the core content of the recommendation system is recommendation algorithm. The advantages of recommendation algorithm can bring great effect to the recommendation system. Based on this, this paper applies traditional collaborative filtering algorithm for analysis. Besides, illustrating the deficiencies of the algorithm, such as the rating unicity and rating matrix sparsity, this paper proposes an improved algorithm combing the multi-similarity algorithm based on user and the element similarity algorithm based on user, so as to compensate for the deficiencies that traditional algorithm has within a controllable range. Experimental results have shown that the improved algorithm has obvious advantages in comparison with the traditional one. The improved algorithm has obvious effect on remedying the rating matrix sparsity and rating unicity.

  13. Vehicle routing with cross-docking

    DEFF Research Database (Denmark)

    Wen, Min; Larsen, Jesper; Clausen, Jens

    2009-01-01

    a set of homogeneous vehicles are used to transport orders from the suppliers to the corresponding customers via a cross-dock. The orders can be consolidated at the cross-dock but cannot be stored for very long because the cross-dock does not have long-term inventory-holding capabilities. The objective...... of the VRPCD is to minimize the total travel time while respecting time window constraints at the nodes and a time horizon for the whole transportation operation. In this paper, a mixed integer programming formulation for the VRPCD is proposed. A tabu search heuristic is embedded within an adaptive memory...... values) within very short computational time....

  14. Selective epidemic vaccination under the performant routing algorithms

    Science.gov (United States)

    Bamaarouf, O.; Alweimine, A. Ould Baba; Rachadi, A.; EZ-Zahraouy, H.

    2018-04-01

    Despite the extensive research on traffic dynamics and epidemic spreading, the effect of the routing algorithms strategies on the traffic-driven epidemic spreading has not received an adequate attention. It is well known that more performant routing algorithm strategies are used to overcome the congestion problem. However, our main result shows unexpectedly that these algorithms favor the virus spreading more than the case where the shortest path based algorithm is used. In this work, we studied the virus spreading in a complex network using the efficient path and the global dynamic routing algorithms as compared to shortest path strategy. Some previous studies have tried to modify the routing rules to limit the virus spreading, but at the expense of reducing the traffic transport efficiency. This work proposed a solution to overcome this drawback by using a selective vaccination procedure instead of a random vaccination used often in the literature. We found that the selective vaccination succeeded in eradicating the virus better than a pure random intervention for the performant routing algorithm strategies.

  15. An algorithm for link restoration of wavelength routing optical networks

    DEFF Research Database (Denmark)

    Limal, Emmanuel; Stubkjær, Kristian

    1999-01-01

    We present an algorithm for restoration of single link failure in wavelength routing multihop optical networks. The algorithm is based on an innovative study of networks using graph theory. It has the following original features: it (i) assigns working and spare channels simultaneously, (ii......) prevents the search for unacceptable routing paths by pointing out channels required for restoration, (iii) offers a high utilization of the capacity resources and (iv) allows a trivial search for the restoration paths. The algorithm is for link restoration of networks without wavelength translation. Its...

  16. Route-Based Control of Hybrid Electric Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J. D.

    2008-01-01

    Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

  17. Vehicle routing with stochastic time-dependent travel times

    NARCIS (Netherlands)

    Lecluyse, C.; Woensel, van T.; Peremans, H.

    2009-01-01

    Assigning and scheduling vehicle routes in a stochastic time-dependent environment is a crucial management problem. The assumption that in a real-life environment everything goes according to an a priori determined static schedule is unrealistic. Our methodology builds on earlier work in which the

  18. The Vehicle Routing Problem with Time Windows and Temporal Dependencies

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Dohn, Anders Høeg; Larsen, Jesper

    to be scheduled with a certain slack between them. They refer to the vehicle problem as having interdependent time windows. Temporal dependencies have been modeled for a home care routing problem in a mixed integer programming model (MIP) which was solved with a standard MIP solver. An application with general...

  19. Reachability cuts for the vehicle routing problem with time windows

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    2004-01-01

    This paper introduces a class of cuts, called reachability cuts, for the Vehicle Routing Problem with Time Windows (VRPTW). Reachability cuts are closely related to cuts derived from precedence constraints in the Asymmetric Traveling Salesman Problem with Time Windows and to k-path cuts...

  20. Path inequalities for the vehicle routing problem with time windows

    DEFF Research Database (Denmark)

    Kallehauge, Brian; Boland, Natashia; Madsen, Oli B.G.

    2007-01-01

    In this paper we introduce a new formulation of the vehicle routing problem with time windows (VRPTW) involving only binary variables. The new formulation is based on the formulation of the asymmetric traveling salesman problem with time windows by Ascheuer et al. (Networks 36 (2000) 69-79) and has...

  1. Vehicle routing with stochastic time-dependent travel times

    NARCIS (Netherlands)

    Lecluyse, C.; Woensel, van T.; Peremans, H.

    2007-01-01

    Assigning and scheduling vehicle routes in a stochastic time-dependent environment is a crucial management problem. The assumption that in a real-life environment everything goes according to an a priori determined static schedule is unrealistic. Our methodology builds on earlier work in which the

  2. Capacitated Bounded Cardinality Hub Routing Problem: Model and Solution Algorithm

    OpenAIRE

    Gelareha, Shahin; Monemic, Rahimeh Neamatian; Semetd, Frederic

    2017-01-01

    In this paper, we address the Bounded Cardinality Hub Location Routing with Route Capacity wherein each hub acts as a transshipment node for one directed route. The number of hubs lies between a minimum and a maximum and the hub-level network is a complete subgraph. The transshipment operations take place at the hub nodes and flow transfer time from a hub-level transporter to a spoke-level vehicle influences spoke- to-hub allocations. We propose a mathematical model and a branch-and-cut algor...

  3. Planning of Vehicle Routing with Backup Provisioning Using Wireless Sensor Technologies

    Directory of Open Access Journals (Sweden)

    Noélia Correia

    2017-08-01

    Full Text Available Wireless sensor technologies can be used by intelligent transportation systems to provide innovative services that lead to improvements in road safety and congestion, increasing end-user satisfaction. In this article, we address vehicle routing with backup provisioning, where the possibility of reacting to overloading/overcrowding of vehicles at certain stops is considered. This is based on the availability of vehicle load information, which can be captured using wireless sensor technologies. After discussing the infrastructure and monitoring tool, the problem is mathematically formalized, and a heuristic algorithm using local search procedures is proposed. Results show that planning routes with backup provisioning can allow fast response to overcrowding while reducing costs. Therefore, sustainable urban mobility, with efficient use of resources, can be provided while increasing the quality of service perceived by users.

  4. Variable neighborhood search to solve the vehicle routing problem for hazardous materials transportation.

    Science.gov (United States)

    Bula, Gustavo Alfredo; Prodhon, Caroline; Gonzalez, Fabio Augusto; Afsar, H Murat; Velasco, Nubia

    2017-02-15

    This work focuses on the Heterogeneous Fleet Vehicle Routing problem (HFVRP) in the context of hazardous materials (HazMat) transportation. The objective is to determine a set of routes that minimizes the total expected routing risk. This is a nonlinear function, and it depends on the vehicle load and the population exposed when an incident occurs. Thus, a piecewise linear approximation is used to estimate it. For solving the problem, a variant of the Variable Neighborhood Search (VNS) algorithm is employed. To improve its performance, a post-optimization procedure is implemented via a Set Partitioning (SP) problem. The SP is solved on a pool of routes obtained from executions of the local search procedure embedded on the VNS. The algorithm is tested on two sets of HFVRP instances based on literature with up to 100 nodes, these instances are modified to include vehicle and arc risk parameters. The results are competitive in terms of computational efficiency and quality attested by a comparison with Mixed Integer Linear Programming (MILP) previously proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Ant colony system (ACS with hybrid local search to solve vehicle routing problems

    Directory of Open Access Journals (Sweden)

    Suphan Sodsoon

    2016-02-01

    Full Text Available This research applied an Ant Colony System algorithm with a Hybrid Local Search to solve Vehicle Routing Problems (VRP from a single depot when the customers’ requirements are known. VRP is an NP-hard optimization problem and has usually been successfully solved optimum by heuristics. A fleet of vehicles of a specific capacity are used to serve a number of customers at minimum cost, without violating the constraints of vehicle capacity. There are meta-heuristic approaches to solve these problems, such as Simulated Annealing, Genetic Algorithm, Tabu Search and the Ant Colony System algorithm. In this case a hybrid local search was used (Cross-Exchange, Or-Opt and 2-Opt algorithm with an Ant Colony System algorithm. The Experimental Design was tested on 7 various problems from the data set online in the OR-Library. There are five different problems in which customers are randomly distributed with the depot in an approximately central location. The customers were grouped into clusters. The results are evaluated in terms of optimal routes using optimal distances. The experimental results are compared with those obtained from meta-heuristics and they show that the proposed method outperforms six meta-heuristics in the literature.

  6. Congested Link Inference Algorithms in Dynamic Routing IP Network

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2017-01-01

    Full Text Available The performance descending of current congested link inference algorithms is obviously in dynamic routing IP network, such as the most classical algorithm CLINK. To overcome this problem, based on the assumptions of Markov property and time homogeneity, we build a kind of Variable Structure Discrete Dynamic Bayesian (VSDDB network simplified model of dynamic routing IP network. Under the simplified VSDDB model, based on the Bayesian Maximum A Posteriori (BMAP and Rest Bayesian Network Model (RBNM, we proposed an Improved CLINK (ICLINK algorithm. Considering the concurrent phenomenon of multiple link congestion usually happens, we also proposed algorithm CLILRS (Congested Link Inference algorithm based on Lagrangian Relaxation Subgradient to infer the set of congested links. We validated our results by the experiments of analogy, simulation, and actual Internet.

  7. Route-Based Signal Preemption Control of Emergency Vehicle

    Directory of Open Access Journals (Sweden)

    Haibo Mu

    2018-01-01

    Full Text Available This paper focuses on the signal preemption control of emergency vehicles (EV. A signal preemption control method based on route is proposed to reduce time delay of EV at intersections. According to the time at which EV is detected and the current phase of each intersection on the travelling route of EV, the calculation methods of the earliest start time and the latest start time of green light at each intersection are given. Consequently, the effective time range of green light at each intersection is determined in theory. A multiobjective programming model, whose objectives are the minimal residence time of EV at all intersections and the maximal passing numbers of general society vehicles, is presented. Finally, a simulation calculation is carried out. Calculation results indicate that, by adopting the signal preemption method based on route, the delay of EV is reduced and the number of society vehicles passing through the whole system is increased. The signal preemption control method of EV based on route can reduce the time delay of EV and improve the evacuation efficiency of the system.

  8. Effective ANT based Routing Algorithm for Data Replication in MANETs

    Directory of Open Access Journals (Sweden)

    N.J. Nithya Nandhini

    2013-12-01

    Full Text Available In mobile ad hoc network, the nodes often move and keep on change its topology. Data packets can be forwarded from one node to another on demand. To increase the data accessibility data are replicated at nodes and made as sharable to other nodes. Assuming that all mobile host cooperative to share their memory and allow forwarding the data packets. But in reality, all nodes do not share the resources for the benefits of others. These nodes may act selfishly to share memory and to forward the data packets. This paper focuses on selfishness of mobile nodes in replica allocation and routing protocol based on Ant colony algorithm to improve the efficiency. The Ant colony algorithm is used to reduce the overhead in the mobile network, so that it is more efficient to access the data than with other routing protocols. This result shows the efficiency of ant based routing algorithm in the replication allocation.

  9. Lagrangian duality applied to the vehicle routing problem with time windows

    DEFF Research Database (Denmark)

    Kallehauge, Brian; Larsen, Jesper; Madsen, Oli B.G.

    2006-01-01

    This paper considers the vehicle routing problem with time windows, where the service of each customer must start within a specified time interval. We consider the Lagrangian relaxation of the constraint set requiring that each customer must be served by exactly one vehicle yielding a constrained...... respectively, which to date are the largest problems ever solved to optimality. We have implemented the LBCP algorithm using the ABACUS open-source framework for solving mixed-integer linear-programs by branch, cut, and price....

  10. The Time-Dependent Multiple-Vehicle Prize-Collecting Arc Routing Problem

    DEFF Research Database (Denmark)

    Black, Daniel; Eglese, Richard; Wøhlk, Sanne

    2015-01-01

    -life traffic situations where the travel times change with the time of day are taken into account. Two metaheuristic algorithms, one based on Variable Neighborhood Search and one based on Tabu Search, are proposed and tested for a set of benchmark problems, generated from real road networks and travel time......In this paper, we introduce a multi vehicle version of the Time-Dependent Prize-Collecting Arc Routing Problem (TD-MPARP). It is inspired by a situation where a transport manager has to choose between a number of full truck load pick-ups and deliveries to be performed by a fleet of vehicles. Real...

  11. Vehicle Routing Problem with Time Windows and Simultaneous Delivery and Pick-Up Service Based on MCPSO

    Directory of Open Access Journals (Sweden)

    Xiaobing Gan

    2012-01-01

    Full Text Available This paper considers two additional factors of the widely researched vehicle routing problem with time windows (VRPTW. The two factors, which are very common characteristics in realworld, are uncertain number of vehicles and simultaneous delivery and pick-up service. Using minimization of the total transport costs as the objective of the extension VRPTW, a mathematic model is constructed. To solve the problem, an efficient multiswarm cooperative particle swarm optimization (MCPSO algorithm is applied. And a new encoding method is proposed for the extension VRPTW. Finally, comparing with genetic algorithm (GA and particle swarm optimization (PSO algorithm, the MCPSO algorithm performs best for solving this problem.

  12. A Column Generation for the Heterogeneous Fixed Fleet Open Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    Majid Yousefikhoshbakht

    2017-07-01

    Full Text Available This paper addressed the heterogeneous fixed fleet open vehicle routing problem (HFFOVRP, in which the vehicles are not required to return to the depot after completing a service. In this new problem, the demands of customers are fulfilled by a heterogeneous fixed fleet of vehicles having various capacities, fixed costs and variable costs. This problem is an important variant of the open vehicle routing problem (OVRP and can cover more practical situations in transportation and logistics. Since this problem belongs to NP-hard Problems, An approach based on column generation (CG is applied to solve the HFFOVRP. A tight integer programming model is presented and the linear programming relaxation of which is solved by the CG technique. Since there have been no existing benchmarks, this study generated 19 test problems and the results of the proposed CG algorithm is compared to the results of exact algorithm. Computational experience confirms that the proposed algorithm can provide better solutions within a comparatively shorter period of time.

  13. The vehicle routing problem with edge set costs

    DEFF Research Database (Denmark)

    Reinhardt, Line Blander; Jepsen, Mads Kehlet; Pisinger, David

    We consider an important generalization of the vehicle routing problem with time windows in which a fixed cost must be paid for accessing a set of edges. This fixed cost could reflect payment for toll roads, investment in new facilities, the need for certifications and other costly investments....... The certifications and contributions impose a cost for the company while they also give unlimited usage of a set of roads to all vehicles belonging to the company. Different versions for defining the edge sets are discussed and formulated. A MIP-formulation of the problem is presented, and a solution method based...

  14. Two models of the capacitated vehicle routing problem

    Directory of Open Access Journals (Sweden)

    Zuzana Borčinova

    2017-01-01

    Full Text Available The aim of the Capacitated Vehicle Routing Problem (CVRP is to find a set of minimum total cost routes for a fleet of capacitated vehicles based at a single depot, to serve a set of customers. There exist various integer linear programming models of the CVRP. One of the main differences lies in the way to eliminate sub-tours, i.e. cycles that do not go through the depot. In this paper, we describe a well-known flow formulation of CVRP, where sub-tour elimination constraints have a cardinality exponentially growing with the number of customers. Then we present a mixed linear programming formulation with polynomial cardinality of sub-tour elimination constraints. Both of the models were implemented and compared on several benchmarks.

  15. Public Transport Route Finding using a Hybrid Genetic Algorithm

    OpenAIRE

    Liviu Adrian COTFAS; Andreea DIOSTEANU

    2011-01-01

    In this paper we present a public transport route finding solution based on a hybrid genetic algorithm. The algorithm uses two heuristics that take into consideration the number of trans-fers and the remaining distance to the destination station in order to improve the convergence speed. The interface of the system uses the latest web technologies to offer both portability and advanced functionality. The approach has been evaluated using the data for the Bucharest public transport network.

  16. Evacuation route planning during nuclear emergency using genetic algorithm

    International Nuclear Information System (INIS)

    Suman, Vitisha; Sarkar, P.K.

    2012-01-01

    In nuclear industry the routing in case of any emergency is a cause of concern and of great importance. Even the smallest of time saved in the affected region saves a huge amount of otherwise received dose. Genetic algorithm an optimization technique has great ability to search for the optimal path from the affected region to a destination station in a spatially addressed problem. Usually heuristic algorithms are used to carry out these types of search strategy, but due to the lack of global sampling in the feasible solution space, these algorithms have considerable possibility of being trapped into local optima. Routing problems mainly are search problems for finding the shortest distance within a time limit to cover the required number of stations taking care of the traffics, road quality, population size etc. Lack of any formal mechanisms to help decision-makers explore the solution space of their problem and thereby challenges their assumptions about the number and range of options available. The Genetic Algorithm provides a way to optimize a multi-parameter constrained problem with an ease. Here use of Genetic Algorithm to generate a range of options available and to search a solution space and selectively focus on promising combinations of criteria makes them ideally suited to such complex spatial decision problems. The emergency response and routing can be made efficient, in accessing the closest facilities and determining the shortest route using genetic algorithm. The accuracy and care in creating database can be used to improve the result of the final output. The Genetic algorithm can be used to improve the accuracy of result on the basis of distance where other algorithm cannot be obtained. The search space can be utilized to its great extend

  17. Public Transport Route Finding using a Hybrid Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Liviu Adrian COTFAS

    2011-01-01

    Full Text Available In this paper we present a public transport route finding solution based on a hybrid genetic algorithm. The algorithm uses two heuristics that take into consideration the number of trans-fers and the remaining distance to the destination station in order to improve the convergence speed. The interface of the system uses the latest web technologies to offer both portability and advanced functionality. The approach has been evaluated using the data for the Bucharest public transport network.

  18. A green vehicle routing problem with customer satisfaction criteria

    Science.gov (United States)

    Afshar-Bakeshloo, M.; Mehrabi, A.; Safari, H.; Maleki, M.; Jolai, F.

    2016-12-01

    This paper develops an MILP model, named Satisfactory-Green Vehicle Routing Problem. It consists of routing a heterogeneous fleet of vehicles in order to serve a set of customers within predefined time windows. In this model in addition to the traditional objective of the VRP, both the pollution and customers' satisfaction have been taken into account. Meanwhile, the introduced model prepares an effective dashboard for decision-makers that determines appropriate routes, the best mixed fleet, speed and idle time of vehicles. Additionally, some new factors evaluate the greening of each decision based on three criteria. This model applies piecewise linear functions (PLFs) to linearize a nonlinear fuzzy interval for incorporating customers' satisfaction into other linear objectives. We have presented a mixed integer linear programming formulation for the S-GVRP. This model enriches managerial insights by providing trade-offs between customers' satisfaction, total costs and emission levels. Finally, we have provided a numerical study for showing the applicability of the model.

  19. A case study of heterogeneous fleet vehicle routing problem: Touristic distribution application in Alanya

    Directory of Open Access Journals (Sweden)

    Kenan Karagül

    2014-07-01

    Full Text Available In this study, Fleet Size and Mix Vehicle Routing Problem is considered in order to optimize the distribution of the tourists who have traveled between the airport and the hotels in the shortest distance by using the minimum cost. The initial solution space for the related methods are formed as a combination of Savings algorithm, Sweep algorithm and random permutation alignment. Then, two well-known solution methods named as Standard Genetic Algorithms and random search algorithms are used for changing the initial solutions. Computational power of the machine and heuristic algorithms are used instead of human experience and human intuition in order to solve the distribution problem of tourists coming to hotels in Alanya region from Antalya airport. For this case study, daily data of tourist distributions performed by an agency operating in Alanya region are considered. These distributions are then modeled as Vehicle Routing Problem to calculate the solutions for various applications. From the comparisons with the decision of a human expert, it is seen that the proposed methods produce better solutions with respect to human experience and insight. Random search method produces a solution more favorable in terms of time. As a conclusion, it is seen that, owing to the distribution plans offered by the obtained solutions, the agencies may reduce the costs by achieving savings up to 35%.

  20. Dynamic vehicle routing problems: Three decades and counting

    DEFF Research Database (Denmark)

    Psaraftis, Harilaos N.; Wen, Min; Kontovas, Christos A.

    2016-01-01

    of DVRP papers according to 11 criteria. These are (1) type of problem, (2) logistical context, (3) transportation mode, (4) objective function, (5) fleet size, (6) time constraints, (7) vehicle capacity constraints, (8) the ability to reject customers, (9) the natureof the dynamic element, (10......Since the late 70s, much research activity has taken place on the class of dynamic vehicle routing problems (DVRP), with the time period after year 2000 witnessing areal explosion in related papers. Our paper sheds more light into work in this area over more than 3 decades by developing a taxonomy......) the nature of the stochasticity (if any), and (11) the solution method. We comment on technological vis-à-vis methodological advances for this class of problems and suggest directions for further research. The latter include alternative objective functions, vehicle speed as decision variable, more explicit...

  1. A study of routing algorithms for SCI-Based multistage networks

    International Nuclear Information System (INIS)

    Wu Bin; Kristiansen, E.; Skaali, B.; Bogaerts, A.; )

    1994-03-01

    The report deals with a particular class of multistage Scalable Coherent Interface (SCI) network systems and two important routing algorithms, namely self-routing and table-look up routing. The effect of routing delay on system performance is investigated by simulations. Adaptive routing and deadlock-free routing are studied. 8 refs., 11 figs., 1 tab

  2. The production route selection algorithm in virtual manufacturing networks

    Science.gov (United States)

    Krenczyk, D.; Skolud, B.; Olender, M.

    2017-08-01

    The increasing requirements and competition in the global market are challenges for the companies profitability in production and supply chain management. This situation became the basis for construction of virtual organizations, which are created in response to temporary needs. The problem of the production flow planning in virtual manufacturing networks is considered. In the paper the algorithm of the production route selection from the set of admissible routes, which meets the technology and resource requirements and in the context of the criterion of minimum cost is proposed.

  3. Dynamic route guidance strategy in a two-route pedestrian-vehicle mixed traffic flow system

    Science.gov (United States)

    Liu, Mianfang; Xiong, Shengwu; Li, Bixiang

    2016-05-01

    With the rapid development of transportation, traffic questions have become the major issue for social, economic and environmental aspects. Especially, during serious emergencies, it is very important to alleviate road traffic congestion and improve the efficiency of evacuation to reduce casualties, and addressing these problems has been a major task for the agencies responsible in recent decades. Advanced road guidance strategies have been developed for homogeneous traffic flows, or to reduce traffic congestion and enhance the road capacity in a symmetric two-route scenario. However, feedback strategies have rarely been considered for pedestrian-vehicle mixed traffic flows with variable velocities and sizes in an asymmetric multi-route traffic system, which is a common phenomenon in many developing countries. In this study, we propose a weighted road occupancy feedback strategy (WROFS) for pedestrian-vehicle mixed traffic flows, which considers the system equilibrium to ease traffic congestion. In order to more realistic simulating the behavior of mixed traffic objects, the paper adopted a refined and dynamic cellular automaton model (RDPV_CA model) as the update mechanism for pedestrian-vehicle mixed traffic flow. Moreover, a bounded rational threshold control was introduced into the feedback strategy to avoid some negative effect of delayed information and reduce. Based on comparisons with the two previously proposed strategies, the simulation results obtained in a pedestrian-vehicle traffic flow scenario demonstrated that the proposed strategy with a bounded rational threshold was more effective and system equilibrium, system stability were reached.

  4. Research on the optimization of vehicle distribution routes in logistics enterprises

    Science.gov (United States)

    Fan, Zhigou; Ma, Mengkun

    2018-01-01

    With the rapid development of modern logistics, the vehicle routing problem has become one of the urgent problems in the logistics industry. The rationality of distribution route planning directly affects the efficiency and quality of logistics distribution. This paper first introduces the definition of logistics distribution and the three methods of optimizing the distribution routes, and then analyzes the current vehicle distribution route by using a representative example, finally puts forward the optimization schemes of logistics distribution route.

  5. Routing the asteroid surface vehicle with detailed mechanics

    Science.gov (United States)

    Yu, Yang; Baoyin, He-Xi

    2014-06-01

    The motion of a surface vehicle on/above an irregular object is investigated for a potential interest in the insitu explorations to asteroids of the solar system. A global valid numeric method, including detailed gravity and geomorphology, is developed to mimic the behaviors of the test particles governed by the orbital equations and surface coupling effects. A general discussion on the surface mechanical environment of a specified asteroid, 1620 Geographos, is presented to make a global evaluation of the surface vehicle's working conditions. We show the connections between the natural trajectories near the ground and differential features of the asteroid surface, which describes both the good and bad of typical terrains from the viewpoint of vehicles' dynamic performances. Monte Carlo simulations are performed to take a further look at the trajectories of particles initializing near the surface. The simulations reveal consistent conclusions with the analysis, i.e., the open-field flat ground and slightly concave basins/valleys are the best choices for the vehicles' dynamical security. The dependence of decending trajectories on the releasing height is studied as an application; the results show that the pole direction (where the centrifugal force is zero) is the most stable direction in which the shift of a natural trajectory will be well limited after landing. We present this work as an example for pre-analysis that provides guidance to engineering design of the exploration site and routing the surface vehicles.

  6. An innovative localisation algorithm for railway vehicles

    Science.gov (United States)

    Allotta, B.; D'Adamio, P.; Malvezzi, M.; Pugi, L.; Ridolfi, A.; Rindi, A.; Vettori, G.

    2014-11-01

    In modern railway automatic train protection and automatic train control systems, odometry is a safety relevant on-board subsystem which estimates the instantaneous speed and the travelled distance of the train; a high reliability of the odometry estimate is fundamental, since an error on the train position may lead to a potentially dangerous overestimation of the distance available for braking. To improve the odometry estimate accuracy, data fusion of different inputs coming from a redundant sensor layout may be used. The aim of this work has been developing an innovative localisation algorithm for railway vehicles able to enhance the performances, in terms of speed and position estimation accuracy, of the classical odometry algorithms, such as the Italian Sistema Controllo Marcia Treno (SCMT). The proposed strategy consists of a sensor fusion between the information coming from a tachometer and an Inertial Measurements Unit (IMU). The sensor outputs have been simulated through a 3D multibody model of a railway vehicle. The work has provided the development of a custom IMU, designed by ECM S.p.a, in order to meet their industrial and business requirements. The industrial requirements have to be compliant with the European Train Control System (ETCS) standards: the European Rail Traffic Management System (ERTMS), a project developed by the European Union to improve the interoperability among different countries, in particular as regards the train control and command systems, fixes some standard values for the odometric (ODO) performance, in terms of speed and travelled distance estimation. The reliability of the ODO estimation has to be taken into account basing on the allowed speed profiles. The results of the currently used ODO algorithms can be improved, especially in case of degraded adhesion conditions; it has been verified in the simulation environment that the results of the proposed localisation algorithm are always compliant with the ERTMS requirements

  7. Improvement of Network Performance by In-Vehicle Routing Using Floating Car Data

    Directory of Open Access Journals (Sweden)

    Gerdien A. Klunder

    2017-01-01

    Full Text Available This paper describes a study which gives insight into the size of improvement that is possible with individual in-car routing advice based on the actual traffic situation derived from floating car data (FCD. It also gives an idea about the required penetration rate of floating car data needed to achieve a certain degree of improvement. The study uses real loop detector data from the region of Amsterdam collected for over a year, a route generating algorithm for in-car routing advice, and emulated floating car data to generate the routing advice. The case with in-car routing advice has been compared to the base case, where drivers base their routing decisions on average knowledge of travel times in the network. The improvement in total delay using the in-vehicle system is dependent on penetration rate and accuracy of the floating car data and varies from 2.0% to 3.4% for 10% penetration rate. This leads to yearly savings of about 15 million euros if delay is monetarised using standard prices for value of time (VOT.

  8. Secure Multicast Routing Algorithm for Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Rakesh Matam

    2016-01-01

    Full Text Available Multicast is an indispensable communication technique in wireless mesh network (WMN. Many applications in WMN including multicast TV, audio and video conferencing, and multiplayer social gaming use multicast transmission. On the other hand, security in multicast transmissions is crucial, without which the network services are significantly disrupted. Existing secure routing protocols that address different active attacks are still vulnerable due to subtle nature of flaws in protocol design. Moreover, existing secure routing protocols assume that adversarial nodes cannot share an out-of-band communication channel which rules out the possibility of wormhole attack. In this paper, we propose SEMRAW (SEcure Multicast Routing Algorithm for Wireless mesh network that is resistant against all known active threats including wormhole attack. SEMRAW employs digital signatures to prevent a malicious node from gaining illegitimate access to the message contents. Security of SEMRAW is evaluated using the simulation paradigm approach.

  9. Minimizing the Carbon Footprint for the Time-Dependent Heterogeneous-Fleet Vehicle Routing Problem with Alternative Paths

    Directory of Open Access Journals (Sweden)

    Wan-Yu Liu

    2014-07-01

    Full Text Available Torespondto the reduction of greenhouse gas emissions and global warming, this paper investigates the minimal-carbon-footprint time-dependent heterogeneous-fleet vehicle routing problem with alternative paths (MTHVRPP. This finds a route with the smallestcarbon footprint, instead of the shortestroute distance, which is the conventional approach, to serve a number of customers with a heterogeneous fleet of vehicles in cases wherethere may not be only one path between each pair of customers, and the vehicle speed differs at different times of the day. Inheriting from the NP-hardness of the vehicle routing problem, the MTHVRPP is also NP-hard. This paper further proposes a genetic algorithm (GA to solve this problem. The solution representedbyour GA determines the customer serving ordering of each vehicle type. Then, the capacity check is used to classify multiple routes of each vehicle type, and the path selection determines the detailed paths of each route. Additionally, this paper improves the energy consumption model used for calculating the carbon footprint amount more precisely. Compared with the results without alternative paths, our experimental results show that the alternative path in this experimenthas a significant impact on the experimental results in terms of carbon footprint.

  10. Computational results with a branch and cut code for the capacitated vehicle routing problem

    Energy Technology Data Exchange (ETDEWEB)

    Augerat, P.; Naddef, D. [Institut National Polytechnique, 38 - Grenoble (France); Belenguer, J.M.; Benavent, E.; Corberan, A. [Valencia Univ. (Spain); Rinaldi, G. [Consiglio Nazionale delle Ricerche, Rome (Italy)

    1995-09-01

    The Capacitated Vehicle Routing Problem (CVRP) we consider in this paper consists in the optimization of the distribution of goods from a single depot to a given set of customers with known demand using a given number of vehicles of fixed capacity. There are many practical routing applications in the public sector such as school bus routing, pick up and mail delivery, and in the private sector such as the dispatching of delivery trucks. We present a Branch and Cut algorithm to solve the CVRP which is based in the partial polyhedral description of the corresponding polytope. The valid inequalities used in our method can ne found in Cornuejols and Harche (1993), Harche and Rinaldi (1991) and in Augerat and Pochet (1995). We concentrated mainly on the design of separation procedures for several classes of valid inequalities. The capacity constraints (generalized sub-tour eliminations inequalities) happen to play a crucial role in the development of a cutting plane algorithm for the CVRP. A large number of separation heuristics have been implemented and compared for these inequalities. There has been also implemented heuristic separation algorithms for other classes of valid inequalities that also lead to significant improvements: comb and extended comb inequalities, generalized capacity inequalities and hypo-tour inequalities. The resulting cutting plane algorithm has been applied to a set of instances taken from the literature and the lower bounds obtained are better than the ones previously known. Some branching strategies have been implemented to develop a Branch an Cut algorithm that has been able to solve large CVRP instances, some of them which had never been solved before. (authors). 32 refs., 3 figs., 10 tabs.

  11. Optimal Routing for Heterogeneous Fixed Fleets of Multicompartment Vehicles

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2014-01-01

    Full Text Available We present a metaheuristic called the reactive guided tabu search (RGTS to solve the heterogeneous fleet multicompartment vehicle routing problem (MCVRP, where a single vehicle is required for cotransporting multiple customer orders. MCVRP is commonly found in delivery of fashion apparel, petroleum distribution, food distribution, and waste collection. In searching the optimum solution of MCVRP, we need to handle a large amount of local optima in the solution spaces. To overcome this problem, we design three guiding mechanisms in which the search history is used to guide the search. The three mechanisms are experimentally demonstrated to be more efficient than the ones which only apply the known distance information. Armed with the guiding mechanisms and the well-known reactive mechanism, the RGTS can produce remarkable solutions in a reasonable computation time.

  12. Route Selection with Unspecified Sites Using Knowledge Based Genetic Algorithm

    Science.gov (United States)

    Kanoh, Hitoshi; Nakamura, Nobuaki; Nakamura, Tomohiro

    This paper addresses the problem of selecting a route to a given destination that traverses several non-specific sites (e.g. a bank, a gas station) as requested by a driver. The proposed solution uses a genetic algorithm that includes viral infection. The method is to generate two populations of viruses as domain specific knowledge in addition to a population of routes. A part of an arterial road is regarded as a main virus, and a road that includes a site is regarded as a site virus. An infection occurs between two points common to a candidate route and the virus, and involves the substitution of the intersections carried by the virus for those on the existing candidate route. Crossover and infection determine the easiest-to-drive and quasi-shortest route through the objective landmarks. Experiments using actual road maps show that this infection-based mechanism is an effective way of solving the problem. Our strategy is general, and can be effectively used in other optimization problems.

  13. Performance of clustering techniques for solving multi depot vehicle routing problem

    Directory of Open Access Journals (Sweden)

    Eliana M. Toro-Ocampo

    2016-01-01

    Full Text Available The vehicle routing problem considering multiple depots is classified as NP-hard. MDVRP determines simultaneously the routes of a set of vehicles and aims to meet a set of clients with a known demand. The objective function of the problem is to minimize the total distance traveled by the routes given that all customers must be served considering capacity constraints in depots and vehicles. This paper presents a hybrid methodology that combines agglomerative clustering techniques to generate initial solutions with an iterated local search algorithm (ILS to solve the problem. Although previous studies clustering methods have been proposed like strategies to generate initial solutions, in this work the search is intensified on the information generated after applying the clustering technique. Besides an extensive analysis on the performance of techniques, and their effect in the final solution is performed. The operation of the proposed methodology is feasible and effective to solve the problem regarding the quality of the answers and computational times obtained on request evaluated literature

  14. A hybrid metaheuristic for the time-dependent vehicle routing problem with hard time windows

    Directory of Open Access Journals (Sweden)

    N. Rincon-Garcia

    2017-01-01

    Full Text Available This article paper presents a hybrid metaheuristic algorithm to solve the time-dependent vehicle routing problem with hard time windows. Time-dependent travel times are influenced by different congestion levels experienced throughout the day. Vehicle scheduling without consideration of congestion might lead to underestimation of travel times and consequently missed deliveries. The algorithm presented in this paper makes use of Large Neighbourhood Search approaches and Variable Neighbourhood Search techniques to guide the search. A first stage is specifically designed to reduce the number of vehicles required in a search space by the reduction of penalties generated by time-window violations with Large Neighbourhood Search procedures. A second stage minimises the travel distance and travel time in an ‘always feasible’ search space. Comparison of results with available test instances shows that the proposed algorithm is capable of obtaining a reduction in the number of vehicles (4.15%, travel distance (10.88% and travel time (12.00% compared to previous implementations in reasonable time.

  15. The Emergency Vehicle Routing Problem with Uncertain Demand under Sustainability Environments

    Directory of Open Access Journals (Sweden)

    Jin Qin

    2017-02-01

    Full Text Available The reasonable utilization of limited resources is critical to realize the sustainable developments. In the initial 72-h crucial rescue period after the disaster, emergency supplies have always been insufficient and the demands in the affected area have always been uncertain. In order to improve timeliness, utilization and sustainability of emergency service, the allocation of the emergency supplies and the emergency vehicle routes should be determined simultaneously. Assuming the uncertain demands follow normal distribution, an optimization model for the emergency vehicle routing, by considering the insufficient supplies and the uncertain demands, is developed. The objective function is applied to minimize the total costs, including the penalty costs induced by more or less supplies than the actual demands at all demand points, as well as the constraints of the time windows and vehicle load capacity taken into account. In more details, a solution method for the model, based on the genetic algorithm, is proposed, which solves the problem in two stages. A numerical example is presented to demonstrate the efficiency and validity of the proposed model and algorithm.

  16. The Dynamic Multi-Period Vehicle Routing Problem

    DEFF Research Database (Denmark)

    Wen, Min; Cordeau, Jean-Francois; Laporte, Gilbert

    This paper considers the Dynamic Multi-Period Vehicle Routing Problem which deals with the distribution of orders from a depot to a set of customers over a multi-period time horizon. Customer orders and their feasible service periods are dynamically revealed over time. The objectives are to minim......This paper considers the Dynamic Multi-Period Vehicle Routing Problem which deals with the distribution of orders from a depot to a set of customers over a multi-period time horizon. Customer orders and their feasible service periods are dynamically revealed over time. The objectives...... are to minimize total travel costs and customer waiting, and to balance the daily workload over the planning horizon. This problem originates from a large distributor operating in Sweden. It is modeled as a mixed integer linear program, and solved by means of a three-phase heuristic that works over a rolling...... planning horizon. The multi-objective aspect of the problem is handled through a scalar technique approach. Computational results show that our solutions improve upon those of the Swedish distributor....

  17. Implementation of Cooperation for Recycling Vehicle Routing Optimization in Two-Echelon Reverse Logistics Networks

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2018-04-01

    Full Text Available The formation of a cooperative alliance is an effective means of approaching the vehicle routing optimization in two-echelon reverse logistics networks. Cooperative mechanisms can contribute to avoiding the inefficient assignment of resources for the recycling logistics operations and reducing long distance transportation. With regard to the relatively low performance of waste collection, this paper proposes a three-phase methodology to properly address the corresponding vehicle routing problem on two echelons. First, a bi-objective programming model is established to minimize the total cost and the number of vehicles considering semitrailers and vehicles sharing. Furthermore, the Clarke–Wright (CW savings method and the Non-dominated Sorting Genetic Algorithm-II (NSGA-II are combined to design a hybrid routing optimization heuristic, which is denoted CW_NSGA-II. Routes on the first and second echelons are obtained on the basis of sub-optimal solutions provided by CW algorithm. Compared to other intelligent algorithms, CW_NSGA-II reduces the complexity of the multi-objective solutions search and mostly converges to optimality. The profit generated by cooperation among retail stores and the recycling hub in the reverse logistics network is fairly and reasonably distributed to the participants by applying the Minimum Costs-Remaining Savings (MCRS method. Finally, an empirical study in Chengdu City, China, reveals the superiority of CW_NSGA over the multi-objective particle swarm optimization and the multi objective genetic algorithms in terms of solutions quality and convergence. Meanwhile, the comparison of MCRS method with the Shapley value model, equal profit method and cost gap allocation proves that MCRS method is more conducive to the stability of the cooperative alliance. In general, the implementation of cooperation in the optimization of the reverse logistics network effectively leads to the sustainable development of urban and sub

  18. The Linehaul-Feeder Vehicle Routing Problem with Virtual Depots and Time Windows

    Directory of Open Access Journals (Sweden)

    Huey-Kuo Chen

    2011-01-01

    Full Text Available This paper addresses the linehaul-feeder vehicle routing problem with virtual depots and time windows (LFVRPTW. Small and large vehicles deliver services to customers within time constraints; small vehicles en route may reload commodities from either the physical depot or from the larger vehicle at a virtual depot before continuing onward. A two-stage solution heuristic involving Tabu search is proposed to solve this problem. The test results show that the LFVRPTW performs better than the vehicle routing problem with time windows in terms of both objective value and the number of small vehicles dispatched.

  19. Routing strategies for efficient deployment of alternative fuel vehicles for freight delivery.

    Science.gov (United States)

    2017-02-01

    With increasing concerns on environmental issues, recent research on Vehicle Routing Problems : (VRP) has added new factors such as greenhouse gas emissions and alternative fuel vehicles into : the models. In this report, we consider one such promisi...

  20. Modified artificial bee colony for the vehicle routing problems with time windows.

    Science.gov (United States)

    Alzaqebah, Malek; Abdullah, Salwani; Jawarneh, Sana

    2016-01-01

    The natural behaviour of the honeybee has attracted the attention of researchers in recent years and several algorithms have been developed that mimic swarm behaviour to solve optimisation problems. This paper introduces an artificial bee colony (ABC) algorithm for the vehicle routing problem with time windows (VRPTW). A Modified ABC algorithm is proposed to improve the solution quality of the original ABC. The high exploration ability of the ABC slows-down its convergence speed, which may due to the mechanism used by scout bees in replacing abandoned (unimproved) solutions with new ones. In the Modified ABC a list of abandoned solutions is used by the scout bees to memorise the abandoned solutions, then the scout bees select a solution from the list based on roulette wheel selection and replace by a new solution with random routs selected from the best solution. The performance of the Modified ABC is evaluated on Solomon benchmark datasets and compared with the original ABC. The computational results demonstrate that the Modified ABC outperforms the original ABC also produce good solutions when compared with the best-known results in the literature. Computational investigations show that the proposed algorithm is a good and promising approach for the VRPTW.

  1. Design Optimization of Space Launch Vehicles Using a Genetic Algorithm

    National Research Council Canada - National Science Library

    Bayley, Douglas J

    2007-01-01

    .... A genetic algorithm (GA) was employed to optimize the design of the space launch vehicle. A cost model was incorporated into the optimization process with the goal of minimizing the overall vehicle cost...

  2. Vehicle Routing Problem with Backhaul, Multiple Trips and Time Window

    Directory of Open Access Journals (Sweden)

    Johan Oscar Ong

    2011-01-01

    Full Text Available Transportation planning is one of the important components to increase efficiency and effectiveness in the supply chain system. Good planning will give a saving in total cost of the supply chain. This paper develops the new VRP variants’, VRP with backhauls, multiple trips, and time window (VRPBMTTW along with its problem solving techniques by using Ant Colony Optimization (ACO and Sequential Insertion as initial solution algorithm. ACO is modified by adding the decoding process in order to determine the number of vehicles, total duration time, and range of duration time regardless of checking capacity constraint and time window. This algorithm is tested by using set of random data and verified as well as analyzed its parameter changing’s. The computational results for hypothetical data with 50% backhaul and mix time windows are reported.

  3. Mathematical Formulation and Comparison of Solution Approaches for the Vehicle Routing Problem with Access Time Windows

    Directory of Open Access Journals (Sweden)

    Rafael Grosso

    2018-01-01

    Full Text Available The application of the principles of sustainability to the implementation of urban freight policies requires the estimation of all the costs and externalities involved. We focus here on the case of access time windows, which ban the access of freight vehicles to central urban areas in many European cities. Even though this measure seeks to reduce congestion and emissions in the most crowded periods of the day, it also imposes additional costs for carriers and results in higher emissions and energy consumption. We present here a mathematical model for the Vehicle Routing Problem with Access Time Windows, a variant of the VRP suitable for planning delivery routes in a city subject to this type of accessibility restriction. We use the model to find exact solutions to small problem instances based on a case study and then compare the performance over larger instances of a modified savings algorithm, a genetic algorithm, and a tabu search procedure, with the results showing no clear prevalence of any of them, but confirming the significance of those additional costs and externalities.

  4. A Hybrid Genetic Algorithm for Multi-Trip Green Capacitated Arc Routing Problem in the Scope of Urban Services

    Directory of Open Access Journals (Sweden)

    Erfan Babaee Tirkolaee

    2018-04-01

    Full Text Available Greenhouse gases (GHG are the main reason for the global warming during the past decades. On the other hand, establishing a well-structured transportation system will yield to create least cost-pollution. This paper addresses a novel model for the multi-trip Green Capacitated Arc Routing Problem (G-CARP with the aim of minimizing total cost including the cost of generation and emission of greenhouse gases, the cost of vehicle usage and routing cost. The cost of generation and emission of greenhouse gases is based on the calculation of the amount of carbon dioxide emitted from vehicles, which depends on such factors as the vehicle speed, weather conditions, load on the vehicle and traveled distance. The main applications of this problem are in municipalities for urban waste collection, road surface marking and so forth. Due to NP-hardness of the problem, a Hybrid Genetic Algorithm (HGA is developed, wherein a heuristic and simulated annealing algorithm are applied to generate initial solutions and a Genetic Algorithm (GA is then used to generate the best possible solution. The obtained numerical results indicate that the proposed algorithm could present desirable performance within a suitable computational run time. Finally, a sensitivity analysis is implemented on the maximum available time of the vehicles in order to determine the optimal policy.

  5. An Optimization Routing Algorithm for Green Communication in Underground Mines

    Directory of Open Access Journals (Sweden)

    Heng Xu

    2018-06-01

    Full Text Available With the long-term dependence of humans on ore-based energy, underground mines are utilized around the world, and underground mining is often dangerous. Therefore, many underground mines have established networks that manage and acquire information from sensor nodes deployed on miners and in other places. Since the power supplies of many mobile sensor nodes are batteries, green communication is an effective approach of reducing the energy consumption of a network and extending its longevity. To reduce the energy consumption of networks, all factors that negatively influence the lifetime should be considered. The degree constraint minimum spanning tree (DCMST is introduced in this study to consider all the heterogeneous factors and assign weights for the next step of the evaluation. Then, a genetic algorithm (GA is introduced to cluster sensor nodes in the network and balance energy consumption according to several heterogeneous factors and routing paths from DCMST. Based on a comparison of the simulation results, the optimization routing algorithm proposed in this study for use in green communication in underground mines can effectively reduce the network energy consumption and extend the lifetimes of networks.

  6. Subset-row inequalities applied to the vehicle routing problem with time windows

    DEFF Research Database (Denmark)

    Jepsen, Mads Kehlet; Petersen, Bjørn; Spoorendonk, Simon

    2008-01-01

    constraints as the pricing problem. We introduce the subset-row inequalities, which are Chvatal-Gomory rank-1 cuts based on a subset of the constraints in the master problem. Applying a subset-row inequality in the master problem increases the complexity of the label-setting algorithm used to solve......This paper presents a branch-and-cut-and-price algorithm for the vehicle-routing problem with time windows. The standard Dantzig-Wolfe decomposition of the arc flow formulation leads to a set-partitioning problem as the master problem and an elementary shortest-path problem with resource...... the pricing problem because an additional resource is added for each inequality. We propose a modified dominance criterion that makes it possible to dominate more labels by exploiting the step-like structure of the objective function of the pricing problem. Computational experiments have been performed...

  7. Optimization Route of Food Logistics Distribution Based on Genetic and Graph Cluster Scheme Algorithm

    OpenAIRE

    Jing Chen

    2015-01-01

    This study takes the concept of food logistics distribution as the breakthrough point, by means of the aim of optimization of food logistics distribution routes and analysis of the optimization model of food logistics route, as well as the interpretation of the genetic algorithm, it discusses the optimization of food logistics distribution route based on genetic and cluster scheme algorithm.

  8. Evolutionary algorithm for vehicle driving cycle generation.

    Science.gov (United States)

    Perhinschi, Mario G; Marlowe, Christopher; Tamayo, Sergio; Tu, Jun; Wayne, W Scott

    2011-09-01

    Modeling transit bus emissions and fuel economy requires a large amount of experimental data over wide ranges of operational conditions. Chassis dynamometer tests are typically performed using representative driving cycles defined based on vehicle instantaneous speed as sequences of "microtrips", which are intervals between consecutive vehicle stops. Overall significant parameters of the driving cycle, such as average speed, stops per mile, kinetic intensity, and others, are used as independent variables in the modeling process. Performing tests at all the necessary combinations of parameters is expensive and time consuming. In this paper, a methodology is proposed for building driving cycles at prescribed independent variable values using experimental data through the concatenation of "microtrips" isolated from a limited number of standard chassis dynamometer test cycles. The selection of the adequate "microtrips" is achieved through a customized evolutionary algorithm. The genetic representation uses microtrip definitions as genes. Specific mutation, crossover, and karyotype alteration operators have been defined. The Roulette-Wheel selection technique with elitist strategy drives the optimization process, which consists of minimizing the errors to desired overall cycle parameters. This utility is part of the Integrated Bus Information System developed at West Virginia University.

  9. Iterated Local Search Algorithm with Strategic Oscillation for School Bus Routing Problem with Bus Stop Selection

    Directory of Open Access Journals (Sweden)

    Mohammad Saied Fallah Niasar

    2017-02-01

    Full Text Available he school bus routing problem (SBRP represents a variant of the well-known vehicle routing problem. The main goal of this study is to pick up students allocated to some bus stops and generate routes, including the selected stops, in order to carry students to school. In this paper, we have proposed a simple but effective metaheuristic approach that employs two features: first, it utilizes large neighborhood structures for a deeper exploration of the search space; second, the proposed heuristic executes an efficient transition between the feasible and infeasible portions of the search space. Exploration of the infeasible area is controlled by a dynamic penalty function to convert the unfeasible solution into a feasible one. Two metaheuristics, called N-ILS (a variant of the Nearest Neighbourhood with Iterated Local Search algorithm and I-ILS (a variant of Insertion with Iterated Local Search algorithm are proposed to solve SBRP. Our experimental procedure is based on the two data sets. The results show that N-ILS is able to obtain better solutions in shorter computing times. Additionally, N-ILS appears to be very competitive in comparison with the best existing metaheuristics suggested for SBRP

  10. Discrete Optimization Model for Vehicle Routing Problem with Scheduling Side Cosntraints

    Science.gov (United States)

    Juliandri, Dedy; Mawengkang, Herman; Bu'ulolo, F.

    2018-01-01

    Vehicle Routing Problem (VRP) is an important element of many logistic systems which involve routing and scheduling of vehicles from a depot to a set of customers node. This is a hard combinatorial optimization problem with the objective to find an optimal set of routes used by a fleet of vehicles to serve the demands a set of customers It is required that these vehicles return to the depot after serving customers’ demand. The problem incorporates time windows, fleet and driver scheduling, pick-up and delivery in the planning horizon. The goal is to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the overall costs of all routes over the planning horizon. We model the problem as a linear mixed integer program. We develop a combination of heuristics and exact method for solving the model.

  11. Determining the Effectiveness of Incorporating Geographic Information Into Vehicle Performance Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Sera White

    2012-04-01

    This thesis presents a research study using one year of driving data obtained from plug-in hybrid electric vehicles (PHEV) located in Sacramento and San Francisco, California to determine the effectiveness of incorporating geographic information into vehicle performance algorithms. Sacramento and San Francisco were chosen because of the availability of high resolution (1/9 arc second) digital elevation data. First, I present a method for obtaining instantaneous road slope, given a latitude and longitude, and introduce its use into common driving intensity algorithms. I show that for trips characterized by >40m of net elevation change (from key on to key off), the use of instantaneous road slope significantly changes the results of driving intensity calculations. For trips exhibiting elevation loss, algorithms ignoring road slope overestimated driving intensity by as much as 211 Wh/mile, while for trips exhibiting elevation gain these algorithms underestimated driving intensity by as much as 333 Wh/mile. Second, I describe and test an algorithm that incorporates vehicle route type into computations of city and highway fuel economy. Route type was determined by intersecting trip GPS points with ESRI StreetMap road types and assigning each trip as either city or highway route type according to whichever road type comprised the largest distance traveled. The fuel economy results produced by the geographic classification were compared to the fuel economy results produced by algorithms that assign route type based on average speed or driving style. Most results were within 1 mile per gallon ({approx}3%) of one another; the largest difference was 1.4 miles per gallon for charge depleting highway trips. The methods for acquiring and using geographic data introduced in this thesis will enable other vehicle technology researchers to incorporate geographic data into their research problems.

  12. Applications of a saving method with max-min ant system to a vehicle routing problem with time windows and speed limits

    Directory of Open Access Journals (Sweden)

    Suphan Sodsoon

    2014-06-01

    Full Text Available This study aims to solve a Vehicle Routing Problem with Time Windows and Speed Limits (VRPTWSL, which has received considerable attention in recent years. The vehicle routing problem with time windows is an extension of the well-known Vehicle Routing Problem (VRP and involves a fleet of vehicles set of from a depot to serve a number of customers at different geographic locations with various demands within specific time and speed limits before returning to the depot eventually. To solve the problem, an efficient Saving Method-Max Min Ant System (Saving-MMAS with Local Search algorithm is applied. Using minimization of the total transportation costs as the objective of the extension VRPTWSL, a mathematic model is constructed. Finally, the Saving-MMAS algorithms indicated the good quality of the method in this problem.

  13. Wavelength converter placement for different RWA algorithms in wavelength-routed all-optical networks

    Science.gov (United States)

    Chu, Xiaowen; Li, Bo; Chlamtac, Imrich

    2002-07-01

    Sparse wavelength conversion and appropriate routing and wavelength assignment (RWA) algorithms are the two key factors in improving the blocking performance in wavelength-routed all-optical networks. It has been shown that the optimal placement of a limited number of wavelength converters in an arbitrary mesh network is an NP complete problem. There have been various heuristic algorithms proposed in the literature, in which most of them assume that a static routing and random wavelength assignment RWA algorithm is employed. However, the existing work shows that fixed-alternate routing and dynamic routing RWA algorithms can achieve much better blocking performance. Our study in this paper further demonstrates that the wavelength converter placement and RWA algorithms are closely related in the sense that a well designed wavelength converter placement mechanism for a particular RWA algorithm might not work well with a different RWA algorithm. Therefore, the wavelength converter placement and the RWA have to be considered jointly. The objective of this paper is to investigate the wavelength converter placement problem under fixed-alternate routing algorithm and least-loaded routing algorithm. Under the fixed-alternate routing algorithm, we propose a heuristic algorithm called Minimum Blocking Probability First (MBPF) algorithm for wavelength converter placement. Under the least-loaded routing algorithm, we propose a heuristic converter placement algorithm called Weighted Maximum Segment Length (WMSL) algorithm. The objective of the converter placement algorithm is to minimize the overall blocking probability. Extensive simulation studies have been carried out over three typical mesh networks, including the 14-node NSFNET, 19-node EON and 38-node CTNET. We observe that the proposed algorithms not only outperform existing wavelength converter placement algorithms by a large margin, but they also can achieve almost the same performance comparing with full wavelength

  14. Improved AODV route recovery in mobile ad-hoc networks using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Ahmad Maleki

    2014-09-01

    Full Text Available An important issue in ad-hoc on-demand distance vector (AODV routing protocols is route failure caused by node mobility in the MANETs. The AODV requires a new route discovery procedure whenever a route breaks and these frequent route discoveries increase transmission delays and routing overhead. The present study proposes a new method for AODVs using a genetic algorithm to improve the route recovery mechanism. When failure occurs in a route, the proposed method (GAAODV makes decisions regarding the QOS parameter to select source or local repair. The task of the genetic algorithm is to find an appropriate combination of weights to optimize end-to-end delay. This paper evaluates the metrics of routing overhead, average end-to-end delay, and packet delivery ratio. Comparison of the new algorithm and AODV (RFC 3561 using a NS-2 simulator shows that GAAODV obtains better results for the QOS parameters.

  15. An Opportunistic Routing for Data Forwarding Based on Vehicle Mobility Association in Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Leilei Wang

    2017-11-01

    Full Text Available Vehicular ad hoc networks (VANETs have emerged as a new powerful technology for data transmission between vehicles. Efficient data transmission accompanied with low data delay plays an important role in selecting the ideal data forwarding path in VANETs. This paper proposes a new opportunity routing protocol for data forwarding based on vehicle mobility association (OVMA. With assistance from the vehicle mobility association, data can be forwarded without passing through many extra intermediate nodes. Besides, each vehicle carries the only replica information to record its associated vehicle information, so the routing decision can adapt to the vehicle densities. Simulation results show that the OVMA protocol can extend the network lifetime, improve the performance of data delivery ratio, and reduce the data delay and routing overhead when compared to the other well-known routing protocols.

  16. Vision-based vehicle detection and tracking algorithm design

    Science.gov (United States)

    Hwang, Junyeon; Huh, Kunsoo; Lee, Donghwi

    2009-12-01

    The vision-based vehicle detection in front of an ego-vehicle is regarded as promising for driver assistance as well as for autonomous vehicle guidance. The feasibility of vehicle detection in a passenger car requires accurate and robust sensing performance. A multivehicle detection system based on stereo vision has been developed for better accuracy and robustness. This system utilizes morphological filter, feature detector, template matching, and epipolar constraint techniques in order to detect the corresponding pairs of vehicles. After the initial detection, the system executes the tracking algorithm for the vehicles. The proposed system can detect front vehicles such as the leading vehicle and side-lane vehicles. The position parameters of the vehicles located in front are obtained based on the detection information. The proposed vehicle detection system is implemented on a passenger car, and its performance is verified experimentally.

  17. An Improved Differential Evolution Algorithm for Maritime Collision Avoidance Route Planning

    Directory of Open Access Journals (Sweden)

    Yu-xin Zhao

    2014-01-01

    Full Text Available High accuracy navigation and surveillance systems are pivotal to ensure efficient ship route planning and marine safety. Based on existing ship navigation and maritime collision prevention rules, an improved approach for collision avoidance route planning using a differential evolution algorithm was developed. Simulation results show that the algorithm is capable of significantly enhancing the optimized route over current methods. It has the potential to be used as a tool to generate optimal vessel routing in the presence of conflicts.

  18. Modeling and Solving the Multi-depot Vehicle Routing Problem with Time Window by Considering the Flexible end Depot in Each Route

    Directory of Open Access Journals (Sweden)

    Mohammad Mirabi

    2016-11-01

    Full Text Available This paper considers the multi-depot vehicle routing problem with time window in which each vehicle starts from a depot and there is no need to return to its primary depot after serving customers. The mathematical model which is developed by new approach aims to minimizing the transportation cost including the travelled distance, the latest and the earliest arrival time penalties. Furthermore, in order to reduce the problem searching space, a novel GA clustering method is developed. Finally, Experiments are run on number problems of varying depots and time window, and customer sizes. The method is compared to two other clustering techniques, fuzzy C means (FCM and K-means algorithm. Experimental results show the robustness and effectiveness of the proposed algorithm.

  19. A heterogeneous fleet vehicle routing model for solving the LPG distribution problem: A case study

    International Nuclear Information System (INIS)

    Onut, S; Kamber, M R; Altay, G

    2014-01-01

    Vehicle Routing Problem (VRP) is an important management problem in the field of distribution and logistics. In VRPs, routes from a distribution point to geographically distributed points are designed with minimum cost and considering customer demands. All points should be visited only once and by one vehicle in one route. Total demand in one route should not exceed the capacity of the vehicle that assigned to that route. VRPs are varied due to real life constraints related to vehicle types, number of depots, transportation conditions and time periods, etc. Heterogeneous fleet vehicle routing problem is a kind of VRP that vehicles have different capacity and costs. There are two types of vehicles in our problem. In this study, it is used the real world data and obtained from a company that operates in LPG sector in Turkey. An optimization model is established for planning daily routes and assigned vehicles. The model is solved by GAMS and optimal solution is found in a reasonable time

  20. A heterogeneous fleet vehicle routing model for solving the LPG distribution problem: A case study

    Science.gov (United States)

    Onut, S.; Kamber, M. R.; Altay, G.

    2014-03-01

    Vehicle Routing Problem (VRP) is an important management problem in the field of distribution and logistics. In VRPs, routes from a distribution point to geographically distributed points are designed with minimum cost and considering customer demands. All points should be visited only once and by one vehicle in one route. Total demand in one route should not exceed the capacity of the vehicle that assigned to that route. VRPs are varied due to real life constraints related to vehicle types, number of depots, transportation conditions and time periods, etc. Heterogeneous fleet vehicle routing problem is a kind of VRP that vehicles have different capacity and costs. There are two types of vehicles in our problem. In this study, it is used the real world data and obtained from a company that operates in LPG sector in Turkey. An optimization model is established for planning daily routes and assigned vehicles. The model is solved by GAMS and optimal solution is found in a reasonable time.

  1. METHOD OF CHOOSING THE TECHNOLOGY OF VEHICLE OPERATION ON DELIVERY ROUTES

    Directory of Open Access Journals (Sweden)

    Ye. Nagornyi

    2014-10-01

    Full Text Available A method for determining the technology of vehicles operation on delivery (team routes, which allows to determine the optimal sequence of cargo delivery to customers by vehicles of certain capacity in order to meet the requirements of cargo owners regarding the conditions of service is offered. Recommendations for creation of an automated system of forming the technology of vehicles operation on delivery routes are developed.

  2. Methodology for kinematic cycle characterization of vehicles with fixed routes in urban areas

    OpenAIRE

    Jiménez Alonso, Felipe; Román de Andrés, Alfonso; López Martínez, José María

    2013-01-01

    This paper analyses the driving cycles of a fleet of vehicles with predetermined urban itineraries. Most driving cycles developed for such type of vehicles do not properly address variability among itineraries. Here we develop a polygonal driving cycle that assesses each group of related routes, based on microscopic parameters. It measures the kinematic cycles of the routes traveled by the vehicle fleet, segments cycles into micro-cycles, and characterizes their properties, groups them int...

  3. An efficient heuristic for the multi-compartment vehicle routing problem

    OpenAIRE

    Paulo Vitor Silvestrin

    2016-01-01

    We study a variant of the vehicle routing problem that allows vehicles with multiple compartments. The need for multiple compartments frequently arises in practical applications when there are several products of different quality or type, that must be kept or handled separately. The resulting problem is called the multi-compartment vehicle routing problem (MCVRP). We propose a tabu search heuristic and embed it into an iterated local search to solve the MCVRP. In several experiments we analy...

  4. Cooperative vehicles for robust traffic congestion reduction: An analysis based on algorithmic, environmental and agent behavioral factors.

    Directory of Open Access Journals (Sweden)

    Prajakta Desai

    Full Text Available Traffic congestion continues to be a persistent problem throughout the world. As vehicle-to-vehicle communication develops, there is an opportunity of using cooperation among close proximity vehicles to tackle the congestion problem. The intuition is that if vehicles could cooperate opportunistically when they come close enough to each other, they could, in effect, spread themselves out among alternative routes so that vehicles do not all jam up on the same roads. Our previous work proposed a decentralized multiagent based vehicular congestion management algorithm entitled Congestion Avoidance and Route Allocation using Virtual Agent Negotiation (CARAVAN, wherein the vehicles acting as intelligent agents perform cooperative route allocation using inter-vehicular communication. This paper focuses on evaluating the practical applicability of this approach by testing its robustness and performance (in terms of travel time reduction, across variations in: (a environmental parameters such as road network topology and configuration; (b algorithmic parameters such as vehicle agent preferences and route cost/preference multipliers; and (c agent-related parameters such as equipped/non-equipped vehicles and compliant/non-compliant agents. Overall, the results demonstrate the adaptability and robustness of the decentralized cooperative vehicles approach to providing global travel time reduction using simple local coordination strategies.

  5. Cooperative vehicles for robust traffic congestion reduction: An analysis based on algorithmic, environmental and agent behavioral factors.

    Science.gov (United States)

    Desai, Prajakta; Loke, Seng W; Desai, Aniruddha

    2017-01-01

    Traffic congestion continues to be a persistent problem throughout the world. As vehicle-to-vehicle communication develops, there is an opportunity of using cooperation among close proximity vehicles to tackle the congestion problem. The intuition is that if vehicles could cooperate opportunistically when they come close enough to each other, they could, in effect, spread themselves out among alternative routes so that vehicles do not all jam up on the same roads. Our previous work proposed a decentralized multiagent based vehicular congestion management algorithm entitled Congestion Avoidance and Route Allocation using Virtual Agent Negotiation (CARAVAN), wherein the vehicles acting as intelligent agents perform cooperative route allocation using inter-vehicular communication. This paper focuses on evaluating the practical applicability of this approach by testing its robustness and performance (in terms of travel time reduction), across variations in: (a) environmental parameters such as road network topology and configuration; (b) algorithmic parameters such as vehicle agent preferences and route cost/preference multipliers; and (c) agent-related parameters such as equipped/non-equipped vehicles and compliant/non-compliant agents. Overall, the results demonstrate the adaptability and robustness of the decentralized cooperative vehicles approach to providing global travel time reduction using simple local coordination strategies.

  6. Parallel algorithms for placement and routing in VLSI design. Ph.D. Thesis

    Science.gov (United States)

    Brouwer, Randall Jay

    1991-01-01

    The computational requirements for high quality synthesis, analysis, and verification of very large scale integration (VLSI) designs have rapidly increased with the fast growing complexity of these designs. Research in the past has focused on the development of heuristic algorithms, special purpose hardware accelerators, or parallel algorithms for the numerous design tasks to decrease the time required for solution. Two new parallel algorithms are proposed for two VLSI synthesis tasks, standard cell placement and global routing. The first algorithm, a parallel algorithm for global routing, uses hierarchical techniques to decompose the routing problem into independent routing subproblems that are solved in parallel. Results are then presented which compare the routing quality to the results of other published global routers and which evaluate the speedups attained. The second algorithm, a parallel algorithm for cell placement and global routing, hierarchically integrates a quadrisection placement algorithm, a bisection placement algorithm, and the previous global routing algorithm. Unique partitioning techniques are used to decompose the various stages of the algorithm into independent tasks which can be evaluated in parallel. Finally, results are presented which evaluate the various algorithm alternatives and compare the algorithm performance to other placement programs. Measurements are presented on the parallel speedups available.

  7. Location and multi-depot vehicle routing for emergency vehicles using tour coverage and random sampling

    Directory of Open Access Journals (Sweden)

    Alireza Goli

    2015-09-01

    Full Text Available Distribution and optimum allocation of emergency resources are the most important tasks, which need to be accomplished during crisis. When a natural disaster such as earthquake, flood, etc. takes place, it is necessary to deliver rescue efforts as quickly as possible. Therefore, it is important to find optimum location and distribution of emergency relief resources. When a natural disaster occurs, it is not possible to reach some damaged areas. In this paper, location and multi-depot vehicle routing for emergency vehicles using tour coverage and random sampling is investigated. In this study, there is no need to visit all the places and some demand points receive their needs from the nearest possible location. The proposed study is implemented for some randomly generated numbers in different sizes. The preliminary results indicate that the proposed method was capable of reaching desirable solutions in reasonable amount of time.

  8. The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations

    DEFF Research Database (Denmark)

    Hiermann, Gerhard; Puchinger, Jakob; Røpke, Stefan

    2016-01-01

    Due to new regulations and further technological progress in the field of electric vehicles, the research community faces the new challenge of incorporating the electric energy based restrictions into vehicle routing problems. One of these restrictions is the limited battery capacity which makes...... detours to recharging stations necessary, thus requiring efficient tour planning mechanisms in order to sustain the competitiveness of electric vehicles compared to conventional vehicles. We introduce the Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations (E......-FSMFTW) to model decisions to be made with regards to fleet composition and the actual vehicle routes including the choice of recharging times and locations. The available vehicle types differ in their transport capacity, battery size and acquisition cost. Furthermore, we consider time windows at customer...

  9. Potential air pollutant emission from private vehicles based on vehicle route

    Science.gov (United States)

    Huboyo, H. S.; Handayani, W.; Samadikun, B. P.

    2017-06-01

    Air emissions related to the transportation sector has been identified as the second largest emitter of ambient air quality in Indonesia. This is due to large numbers of private vehicles commuting within the city as well as inter-city. A questionnaire survey was conducted in Semarang city involving 711 private vehicles consisting of cars and motorcycles. The survey was conducted in random parking lots across the Semarang districts and in vehicle workshops. Based on the parking lot survey, the average distance private cars travelled in kilometers (VKT) was 17,737 km/year. The machine start-up number of cars during weekdays; weekends were on average 5.19 and 3.79 respectively. For motorcycles the average of kilometers travelled was 27,092 km/year. The machine start-up number of motorcycles during weekdays and weekends were on average 5.84 and 3.98, respectively. The vehicle workshop survey showed the average kilometers travelled to be 9,510 km/year for motorcycles, while for private cars the average kilometers travelled was 21,347 km/year. Odometer readings for private cars showed a maximum of 3,046,509 km and a minimum of 700 km. Meanwhile, for motorcycles, odometer readings showed a maximum of 973,164 km and a minimum of roughly 54.24 km. Air pollutant emissions on East-West routes were generally higher than those on South-North routes. Motorcycles contribute significantly to urban air pollution, more so than cars. In this study, traffic congestion and traffic volume contributed much more to air pollution than the impact of fluctuating terrain.

  10. A constructive heuristic for time-dependent multi-depot vehicle routing problem with time-windows and heterogeneous fleet

    Directory of Open Access Journals (Sweden)

    Behrouz Afshar-Nadjafi

    2017-01-01

    Full Text Available In this paper, we consider the time-dependent multi-depot vehicle routing problem. The objective is to minimize the total heterogeneous fleet cost assuming that the travel time between locations depends on the departure time. Also, hard time window constraints for the customers and limitation on maximum number of the vehicles in depots must be satisfied. The problem is formulated as a mixed integer programming model. A constructive heuristic procedure is proposed for the problem. Also, the efficiency of the proposed algorithm is evaluated on 180 test problems. The obtained computational results indicate that the procedure is capable to obtain a satisfying solution.

  11. Totally opportunistic routing algorithm (TORA) for underwater wireless sensor network.

    Science.gov (United States)

    Rahman, Ziaur; Hashim, Fazirulhisyam; Rasid, Mohd Fadlee A; Othman, Mohamed

    2018-01-01

    Underwater Wireless Sensor Network (UWSN) has emerged as promising networking techniques to monitor and explore oceans. Research on acoustic communication has been conducted for decades, but had focused mostly on issues related to physical layer such as high latency, low bandwidth, and high bit error. However, data gathering process is still severely limited in UWSN due to channel impairment. One way to improve data collection in UWSN is the design of routing protocol. Opportunistic Routing (OR) is an emerging technique that has the ability to improve the performance of wireless network, notably acoustic network. In this paper, we propose an anycast, geographical and totally opportunistic routing algorithm for UWSN, called TORA. Our proposed scheme is designed to avoid horizontal transmission, reduce end to end delay, overcome the problem of void nodes and maximize throughput and energy efficiency. We use TOA (Time of Arrival) and range based equation to localize nodes recursively within a network. Once nodes are localized, their location coordinates and residual energy are used as a matrix to select the best available forwarder. All data packets may or may not be acknowledged based on the status of sender and receiver. Thus, the number of acknowledgments for a particular data packet may vary from zero to 2-hop. Extensive simulations were performed to evaluate the performance of the proposed scheme for high network traffic load under very sparse and very dense network scenarios. Simulation results show that TORA significantly improves the network performance when compared to some relevant existing routing protocols, such as VBF, HHVBF, VAPR, and H2DAB, for energy consumption, packet delivery ratio, average end-to-end delay, average hop-count and propagation deviation factor. TORA reduces energy consumption by an average of 35% of VBF, 40% of HH-VBF, 15% of VAPR, and 29% of H2DAB, whereas the packet delivery ratio has been improved by an average of 43% of VBF, 26

  12. Totally opportunistic routing algorithm (TORA) for underwater wireless sensor network

    Science.gov (United States)

    Hashim, Fazirulhisyam; Rasid, Mohd Fadlee A.; Othman, Mohamed

    2018-01-01

    Underwater Wireless Sensor Network (UWSN) has emerged as promising networking techniques to monitor and explore oceans. Research on acoustic communication has been conducted for decades, but had focused mostly on issues related to physical layer such as high latency, low bandwidth, and high bit error. However, data gathering process is still severely limited in UWSN due to channel impairment. One way to improve data collection in UWSN is the design of routing protocol. Opportunistic Routing (OR) is an emerging technique that has the ability to improve the performance of wireless network, notably acoustic network. In this paper, we propose an anycast, geographical and totally opportunistic routing algorithm for UWSN, called TORA. Our proposed scheme is designed to avoid horizontal transmission, reduce end to end delay, overcome the problem of void nodes and maximize throughput and energy efficiency. We use TOA (Time of Arrival) and range based equation to localize nodes recursively within a network. Once nodes are localized, their location coordinates and residual energy are used as a matrix to select the best available forwarder. All data packets may or may not be acknowledged based on the status of sender and receiver. Thus, the number of acknowledgments for a particular data packet may vary from zero to 2-hop. Extensive simulations were performed to evaluate the performance of the proposed scheme for high network traffic load under very sparse and very dense network scenarios. Simulation results show that TORA significantly improves the network performance when compared to some relevant existing routing protocols, such as VBF, HHVBF, VAPR, and H2DAB, for energy consumption, packet delivery ratio, average end-to-end delay, average hop-count and propagation deviation factor. TORA reduces energy consumption by an average of 35% of VBF, 40% of HH-VBF, 15% of VAPR, and 29% of H2DAB, whereas the packet delivery ratio has been improved by an average of 43% of VBF, 26

  13. A new algorithm for solving the inventory routing problem with direct shipment

    Directory of Open Access Journals (Sweden)

    Ali Hossein Mirzaei

    2012-02-01

    Full Text Available   In this paper a multi-commodity multi-period inventory routing problem in a two-echelon supply chain consisting of a manufacturer and a set of retailers has been studied. In addition to inventory management and distribution planning, production planning has also been considered in the above problem. The objective is to minimize total system cost that consists of production setup, inventory holding and distribution costs. The commodities are delivered to the retailers by an identical fleet of limited capacity vehicles through direct shipment strategy. Also it is assumed that production and storage capacity is limited and stockout is not allowed. Since similar problems without distribution planning are known as NP-hard, this is also an NP-hard problem. Therefore, in this paper, a new improved particle swarm optimization algorithm has been developed consisting of two distinguished phases for problem solving. First, the values of binary variables are determined using the proposed algorithm and then, the continuous variables are calculated by solving a linear programming model. Performance of the proposed algorithm has been compared with genetic and original particle swarm optimization algorithms using various samples of random problems. The findings imply significant performance of the proposed algorithm.         

  14. Mobility-Assisted on-Demand Routing Algorithm for MANETs in the Presence of Location Errors

    Directory of Open Access Journals (Sweden)

    Trung Kien Vu

    2014-01-01

    Full Text Available We propose a mobility-assisted on-demand routing algorithm for mobile ad hoc networks in the presence of location errors. Location awareness enables mobile nodes to predict their mobility and enhances routing performance by estimating link duration and selecting reliable routes. However, measured locations intrinsically include errors in measurement. Such errors degrade mobility prediction and have been ignored in previous work. To mitigate the impact of location errors on routing, we propose an on-demand routing algorithm taking into account location errors. To that end, we adopt the Kalman filter to estimate accurate locations and consider route confidence in discovering routes. Via simulations, we compare our algorithm and previous algorithms in various environments. Our proposed mobility prediction is robust to the location errors.

  15. Research on vehicle routing optimization for the terminal distribution of B2C E-commerce firms

    Science.gov (United States)

    Zhang, Shiyun; Lu, Yapei; Li, Shasha

    2018-05-01

    In this paper, we established a half open multi-objective optimization model for the vehicle routing problem of B2C (business-to-customer) E-Commerce firms. To minimize the current transport distance as well as the disparity between the excepted shipments and the transport capacity in the next distribution, we applied the concept of dominated solution and Pareto solutions to the standard particle swarm optimization and proposed a MOPSO (multi-objective particle swarm optimization) algorithm to support the model. Besides, we also obtained the optimization solution of MOPSO algorithm based on data randomly generated through the system, which verified the validity of the model.

  16. Backtracking search algorithm in CVRP models for efficient solid waste collection and route optimization.

    Science.gov (United States)

    Akhtar, Mahmuda; Hannan, M A; Begum, R A; Basri, Hassan; Scavino, Edgar

    2017-03-01

    Waste collection is an important part of waste management that involves different issues, including environmental, economic, and social, among others. Waste collection optimization can reduce the waste collection budget and environmental emissions by reducing the collection route distance. This paper presents a modified Backtracking Search Algorithm (BSA) in capacitated vehicle routing problem (CVRP) models with the smart bin concept to find the best optimized waste collection route solutions. The objective function minimizes the sum of the waste collection route distances. The study introduces the concept of the threshold waste level (TWL) of waste bins to reduce the number of bins to be emptied by finding an optimal range, thus minimizing the distance. A scheduling model is also introduced to compare the feasibility of the proposed model with that of the conventional collection system in terms of travel distance, collected waste, fuel consumption, fuel cost, efficiency and CO 2 emission. The optimal TWL was found to be between 70% and 75% of the fill level of waste collection nodes and had the maximum tightness value for different problem cases. The obtained results for four days show a 36.80% distance reduction for 91.40% of the total waste collection, which eventually increases the average waste collection efficiency by 36.78% and reduces the fuel consumption, fuel cost and CO 2 emission by 50%, 47.77% and 44.68%, respectively. Thus, the proposed optimization model can be considered a viable tool for optimizing waste collection routes to reduce economic costs and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. JOINT OPTIMIZATION OF PRODUCTION PLANNING AND VEHICLE ROUTING PROBLEMS: A REVIEW OF EXISTING STRATEGIES

    Directory of Open Access Journals (Sweden)

    Marc Reimann

    2014-05-01

    Full Text Available Keen competition and increasingly demanding customers have forced companies to use their resources more efficiently and to integrate production and transportation planning. In the last few years more and more researchers have also focused on this challenging problem by trying to determine the complexity of the individual problems and then developing fast and robust algorithms to solve them. This paper reviews existing literature on integrated production and distribution decisions at the tactical and operational level, where the distribution part is modelled as some variation of the well-known Vehicle Routing Problem (VRP. The focus is thereby on problems that explicitly consider deliveries to multiple clients in a less-than-truckload fashion. In terms of the production decisions we distinguish in our review between tactical and operational production problems by considering lot-sizing/capacity allocation and scheduling models, respectively.

  18. Solving a multi-objective location routing problem for infectious waste disposal using hybrid goal programming and hybrid genetic algorithm

    Directory of Open Access Journals (Sweden)

    Narong Wichapa

    2018-01-01

    Full Text Available Infectious waste disposal remains one of the most serious problems in the medical, social and environmental domains of almost every country. Selection of new suitable locations and finding the optimal set of transport routes for a fleet of vehicles to transport infectious waste material, location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Determining locations for infectious waste disposal is a difficult and complex process, because it requires combining both intangible and tangible factors. Additionally, it depends on several criteria and various regulations. This facility location problem for infectious waste disposal is complicated, and it cannot be addressed using any stand-alone technique. Based on a case study, 107 hospitals and 6 candidate municipalities in Upper-Northeastern Thailand, we considered criteria such as infrastructure, geology and social & environmental criteria, evaluating global priority weights using the fuzzy analytical hierarchy process (Fuzzy AHP. After that, a new multi-objective facility location problem model which hybridizes fuzzy AHP and goal programming (GP, namely the HGP model, was tested. Finally, the vehicle routing problem (VRP for a case study was formulated, and it was tested using a hybrid genetic algorithm (HGA which hybridizes the push forward insertion heuristic (PFIH, genetic algorithm (GA and three local searches including 2-opt, insertion-move and interexchange-move. The results show that both the HGP and HGA can lead to select new suitable locations and to find the optimal set of transport routes for vehicles delivering infectious waste material. The novelty of the proposed methodologies, HGP, is the simultaneous combination of relevant factors that are difficult to interpret and cost factors in order to determine new suitable locations, and HGA can be applied to determine the transport routes which provide a minimum number of vehicles

  19. Real time monitoring system used in route planning for the electric vehicle

    Science.gov (United States)

    Ionescu, LM; Mazare, A.; Serban, G.; Ionita, S.

    2017-10-01

    The electric vehicle is a new consumer of electricity that is becoming more and more widespread. Under these circumstances, new strategies for optimizing power consumption and increasing vehicle autonomy must be designed. These must include route planning along with consumption, fuelling points and points of interest. The hardware and software solution proposed by us allows: non-invasive monitoring of power consumption, energy autonomy - it does not add any extra consumption, data transmission to a server and data fusion with the route, the points of interest of the route and the power supply points. As a result: an optimal route planning service will be provided to the driver, considering the route, the requirements of the electric vehicle and the consumer profile. The solution can be easily installed on any type of electric car - it does not involve any intervention on the equipment.

  20. Location-Based Self-Adaptive Routing Algorithm for Wireless Sensor Networks in Home Automation

    Directory of Open Access Journals (Sweden)

    Hong SeungHo

    2011-01-01

    Full Text Available The use of wireless sensor networks in home automation (WSNHA is attractive due to their characteristics of self-organization, high sensing fidelity, low cost, and potential for rapid deployment. Although the AODVjr routing algorithm in IEEE 802.15.4/ZigBee and other routing algorithms have been designed for wireless sensor networks, not all are suitable for WSNHA. In this paper, we propose a location-based self-adaptive routing algorithm for WSNHA called WSNHA-LBAR. It confines route discovery flooding to a cylindrical request zone, which reduces the routing overhead and decreases broadcast storm problems in the MAC layer. It also automatically adjusts the size of the request zone using a self-adaptive algorithm based on Bayes' theorem. This makes WSNHA-LBAR more adaptable to the changes of the network state and easier to implement. Simulation results show improved network reliability as well as reduced routing overhead.

  1. Evaluation of Opportunistic Routing Algorithms on Opportunistic Mobile Sensor Networks with Infrastructure Assistance

    NARCIS (Netherlands)

    Le Viet Duc, L Duc; Scholten, Johan; Havinga, Paul J.M.

    2012-01-01

    Recently the increasing number of sensors integrated in smartphones, especially the iPhone and Android phones, has motivated the development of routing algorithms for Opportunistic Mobile Sensor Networks (OppMSNs). Although there are many existing opportunistic routing algorithms, researchers still

  2. An Optimal Routing Algorithm in Service Customized 5G Networks

    Directory of Open Access Journals (Sweden)

    Haipeng Yao

    2016-01-01

    Full Text Available With the widespread use of Internet, the scale of mobile data traffic grows explosively, which makes 5G networks in cellular networks become a growing concern. Recently, the ideas related to future network, for example, Software Defined Networking (SDN, Content-Centric Networking (CCN, and Big Data, have drawn more and more attention. In this paper, we propose a service-customized 5G network architecture by introducing the ideas of separation between control plane and data plane, in-network caching, and Big Data processing and analysis to resolve the problems traditional cellular radio networks face. Moreover, we design an optimal routing algorithm for this architecture, which can minimize average response hops in the network. Simulation results reveal that, by introducing the cache, the network performance can be obviously improved in different network conditions compared to the scenario without a cache. In addition, we explore the change of cache hit rate and average response hops under different cache replacement policies, cache sizes, content popularity, and network topologies, respectively.

  3. Solving a bi-objective vehicle routing problem under uncertainty by a revised multi-choice goal programming approach

    Directory of Open Access Journals (Sweden)

    Hossein Yousefi

    2017-06-01

    Full Text Available A vehicle routing problem with time windows (VRPTW is an important problem with many real applications in a transportation problem. The optimum set of routes with the minimum distance and vehicles used is determined to deliver goods from a central depot, using a vehicle with capacity constraint. In the real cases, there are other objective functions that should be considered. This paper considers not only the minimum distance and the number of vehicles used as the objective function, the customer’s satisfaction with the priority of customers is also considered. Additionally, it presents a new model for a bi-objective VRPTW solved by a revised multi-choice goal programming approach, in which the decision maker determines optimistic aspiration levels for each objective function. Two meta-heuristic methods, namely simulated annealing (SA and genetic algorithm (GA, are proposed to solve large-sized problems. Moreover, the experimental design is used to tune the parameters of the proposed algorithms. The presented model is verified by a real-world case study and a number of test problems. The computational results verify the efficiency of the proposed SA and GA.

  4. The waste collection vehicle routing problem with time windows in a city logistics context

    DEFF Research Database (Denmark)

    Buhrkal, Katja Frederik; Larsen, Allan; Røpke, Stefan

    2012-01-01

    Collection of waste is an important logistic activity within any city. In this paper we study how to collect waste in an efficient way. We study the Waste Collection Vehicle Routing Problem with Time Window which is concerned with finding cost optimal routes for garbage trucks such that all garbage...

  5. Optimal Routing and Scheduling of Charge for Electric Vehicles: Case Study

    OpenAIRE

    Barco, John; Guerra, Andres; Muñoz, Luis; Quijano, Nicanor

    2013-01-01

    In Colombia, there is an increasing interest about improving public transportation. One of the proposed strategies in that way is the use battery electric vehicles (BEVs). One of the new challenges is the BEVs routing problem, which is subjected to the traditional issues of the routing problems, and must also consider the particularities of autonomy, charge and battery degradation of the BEVs. In this work, a scheme that coordinates the routing, scheduling of charge and operating costs of BEV...

  6. A model-based eco-routing strategy for electric vehicles in large urban networks

    OpenAIRE

    De Nunzio , Giovanni; Thibault , Laurent; Sciarretta , Antonio

    2016-01-01

    International audience; A novel eco-routing navigation strategy and energy consumption modeling approach for electric vehicles are presented in this work. Speed fluctuations and road network infrastructure have a large impact on vehicular energy consumption. Neglecting these effects may lead to large errors in eco-routing navigation, which could trivially select the route with the lowest average speed. We propose an energy consumption model that considers both accelerations and impact of the ...

  7. A Hybrid Adaptive Routing Algorithm for Event-Driven Wireless Sensor Networks

    Science.gov (United States)

    Figueiredo, Carlos M. S.; Nakamura, Eduardo F.; Loureiro, Antonio A. F.

    2009-01-01

    Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption. PMID:22423207

  8. Using the hybrid fuzzy goal programming model and hybrid genetic algorithm to solve a multi-objective location routing problem for infectious waste disposal

    Directory of Open Access Journals (Sweden)

    Narong Wichapa

    2017-11-01

    Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.

  9. An Improved Shuffled Frog Leaping Algorithm and Its Application in Dynamic Emergency Vehicle Dispatching

    Directory of Open Access Journals (Sweden)

    Xiaohong Duan

    2018-01-01

    Full Text Available The traditional method for solving the dynamic emergency vehicle dispatching problem can only get a local optimal strategy in each horizon. In order to obtain the dispatching strategy that can better respond to changes in road conditions during the whole dispatching process, the real-time and time-dependent link travel speeds are fused, and a time-dependent polygonal-shaped link travel speed function is set up to simulate the predictable changes in road conditions. Response times, accident severity, and accident time windows are taken as key factors to build an emergency vehicle dispatching model integrating dynamic emergency vehicle routing and selection. For the unpredictable changes in road conditions caused by accidents, the dispatching strategy is adjusted based on the real-time link travel speed. In order to solve the dynamic emergency vehicle dispatching model, an improved shuffled frog leaping algorithm (ISFLA is proposed. The global search of the improved algorithm uses the probability model of estimation of distribution algorithm to avoid the partial optimal solution. Based on the Beijing expressway network, the efficacy of the model and the improved algorithm were tested from three aspects. The results have shown the following: (1 Compared with SFLA, the optimization performance of ISFLA is getting better and better with the increase of the number of decision variables. When the possible emergency vehicle selection strategies are 815, the objective function value of optimal selection strategies obtained by the base algorithm is 210.10% larger than that of ISFLA. (2 The prediction error of the travel speed affects the accuracy of the initial emergency vehicle dispatching. The prediction error of ±10 can basically meet the requirements of the initial dispatching. (3 The adjustment of emergency vehicle dispatching strategy can successfully bypassed road sections affected by accidents and shorten the response time.

  10. Algoritmos genéticos e computação paralela para problemas de roteirização de veículos com janelas de tempo e entregas fracionadas Genetic algorithms and parallel computing for a vehicle routing problem with time windows and split deliveries

    Directory of Open Access Journals (Sweden)

    Guilherme Guidolin de Campos

    2006-05-01

    Full Text Available O presente trabalho propõe a utilização de metaheurísticas e computação paralela para a resolução de um problema real de roteirização de veículos com frota heterogênea, janelas de tempo e entregas fracionadas, no qual a demanda dos clientes pode ser maior que a capacidade dos veículos. O problema consiste na determinação de um conjunto de rotas econômicas que devem atender à necessidade de cada cliente respeitando todas as restrições. A estratégia adotada para a resolução do problema consiste na utilização de uma adaptação da heurística construtiva proposta por Clarke e Wright (1964 como solução inicial. Posteriormente, implementa-se um algoritmo genético paralelo que é resolvido com o auxílio de um cluster de computadores, com o objetivo de explorar novos espaços de soluções. Os resultados obtidos demonstram que a heurística construtiva básica apresenta resultados satisfatórios para o problema, mas pode ser melhorada substancialmente com o uso de técnicas mais sofisticadas. A aplicação do algoritmo genético paralelo de múltiplas populações com solução inicial, que apresentou os melhores resultados, proporciona redução no custo total da operação da ordem de 10%, em relação à heurística construtiva, e 13%, quando comparada às soluções utilizadas originalmente pela empresa.The present work considers the use of metaheuristics and parallel computing to solve a real problem of vehicle routing involving a heterogeneous fleet, time windows and split deliveries, in which customer demand can exceed vehicle capacity. The problem consists of determining a set of economical routes that meet each customer's needs while still being subject to all the constraints. The strategy adopted to solve the problem consists of an adaptation of the constructive heuristics proposed by Clarke & Wright (1964 as the initial solution. More sophisticated algorithms are then applied to achieve improvements, such as

  11. Solving stochastic multiobjective vehicle routing problem using probabilistic metaheuristic

    Directory of Open Access Journals (Sweden)

    Gannouni Asmae

    2017-01-01

    closed form expression. This novel approach is based on combinatorial probability and can be incorporated in a multiobjective evolutionary algorithm. (iiProvide probabilistic approaches to elitism and diversification in multiobjective evolutionary algorithms. Finally, The behavior of the resulting Probabilistic Multi-objective Evolutionary Algorithms (PrMOEAs is empirically investigated on the multi-objective stochastic VRP problem.

  12. Transmission Scheduling and Routing Algorithms for Delay Tolerant Networks

    Science.gov (United States)

    Dudukovich, Rachel; Raible, Daniel E.

    2016-01-01

    The challenges of data processing, transmission scheduling and routing within a space network present a multi-criteria optimization problem. Long delays, intermittent connectivity, asymmetric data rates and potentially high error rates make traditional networking approaches unsuitable. The delay tolerant networking architecture and protocols attempt to mitigate many of these issues, yet transmission scheduling is largely manually configured and routes are determined by a static contact routing graph. A high level of variability exists among the requirements and environmental characteristics of different missions, some of which may allow for the use of more opportunistic routing methods. In all cases, resource allocation and constraints must be balanced with the optimization of data throughput and quality of service. Much work has been done researching routing techniques for terrestrial-based challenged networks in an attempt to optimize contact opportunities and resource usage. This paper examines several popular methods to determine their potential applicability to space networks.

  13. Using the hybrid fuzzy goal programming model and hybrid genetic algorithm to solve a multi-objective location routing problem for infectious waste disposaL

    Energy Technology Data Exchange (ETDEWEB)

    Wichapa, Narong; Khokhajaikiat, Porntep

    2017-07-01

    Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.

  14. Using the hybrid fuzzy goal programming model and hybrid genetic algorithm to solve a multi-objective location routing problem for infectious waste disposaL

    International Nuclear Information System (INIS)

    Wichapa, Narong; Khokhajaikiat, Porntep

    2017-01-01

    Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.

  15. DARAL: A Dynamic and Adaptive Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Francisco José Estévez

    2016-06-01

    Full Text Available The evolution of Smart City projects is pushing researchers and companies to develop more efficient embedded hardware and also more efficient communication technologies. These communication technologies are the focus of this work, presenting a new routing algorithm based on dynamically-allocated sub-networks and node roles. Among these features, our algorithm presents a fast set-up time, a reduced overhead and a hierarchical organization, which allows for the application of complex management techniques. This work presents a routing algorithm based on a dynamically-allocated hierarchical clustering, which uses the link quality indicator as a reference parameter, maximizing the network coverage and minimizing the control message overhead and the convergence time. The present work based its test scenario and analysis in the density measure, considered as a node degree. The routing algorithm is compared with some of the most well known routing algorithms for different scenario densities.

  16. An Effective Hybrid Routing Algorithm in WSN: Ant Colony Optimization in combination with Hop Count Minimization

    Directory of Open Access Journals (Sweden)

    Ailian Jiang

    2018-03-01

    Full Text Available Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs. This paper investigates the existing ant colony optimization (ACO-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime.

  17. Bilayer Local Search Enhanced Particle Swarm Optimization for the Capacitated Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    A. K. M. Foysal Ahmed

    2018-03-01

    Full Text Available The classical capacitated vehicle routing problem (CVRP is a very popular combinatorial optimization problem in the field of logistics and supply chain management. Although CVRP has drawn interests of many researchers, no standard way has been established yet to obtain best known solutions for all the different problem sets. We propose an efficient algorithm Bilayer Local Search-based Particle Swarm Optimization (BLS-PSO along with a novel decoding method to solve CVRP. Decoding method is important to relate the encoded particle position to a feasible CVRP solution. In bilayer local search, one layer of local search is for the whole population in any iteration whereas another one is applied only on the pool of the best particles generated in different generations. Such searching strategies help the BLS-PSO to perform better than the existing proposals by obtaining best known solutions for most of the existing benchmark problems within very reasonable computational time. Computational results also show that the performance achieved by the proposed algorithm outperforms other PSO-based approaches.

  18. Multiple vehicle routing and dispatching to an emergency scene

    OpenAIRE

    M S Daskin; A Haghani

    1984-01-01

    A model of the distribution of arrival time at the scene of an emergency for the first of many vehicles is developed for the case in which travel times on the links of the network are normally distributed and the path travel times of different vehicles are correlated. The model suggests that the probability that the first vehicle arrives at the scene within a given time may be increased by reducing the path time correlations, even if doing so necessitates increasing the mean path travel time ...

  19. Route Assessment for Unmanned Aerial Vehicle Based on Cloud Model

    Directory of Open Access Journals (Sweden)

    Xixia Sun

    2014-01-01

    Full Text Available An integrated route assessment approach based on cloud model is proposed in this paper, where various sources of uncertainties are well kept and modeled by cloud theory. Firstly, a systemic criteria framework incorporating models for scoring subcriteria is developed. Then, the cloud model is introduced to represent linguistic variables, and survivability probability histogram of each route is converted into normal clouds by cloud transformation, enabling both randomness and fuzziness in the assessment environment to be managed simultaneously. Finally, a new way to measure the similarity between two normal clouds satisfying reflexivity, symmetry, transitivity, and overlapping is proposed. Experimental results demonstrate that the proposed route assessment approach outperforms fuzzy logic based assessment approach with regard to feasibility, reliability, and consistency with human thinking.

  20. Research on routing algorithm based on the VANET

    Directory of Open Access Journals (Sweden)

    AN Li

    2016-01-01

    Full Text Available For the characteristics of high speed mobility of nodes, frequent changes of dynamic topology and frequent interrupts of the communication links in the VANET, this paper analyzed the defect of the current mobile ad-hoc network routing protocol, and carried on the simulation analysis on the adaptability of AODV, DSR and DSDV routing protocols in VANET applications in the VANET. Through the above research, this paper obtained the conclusion that the AODV routing protocol is more suitable for vehicular ad hoc network environment

  1. Project : transit demand and routing after autonomous vehicle availability.

    Science.gov (United States)

    2015-12-01

    Autonomous vehicles (AVs) create the potential for improvements in traffic operations as well as : new behaviors for travelers such as car sharing among trips through driverless repositioning. Most studies : on AVs have focused on technology or traff...

  2. Multifeature Fusion Vehicle Detection Algorithm Based on Choquet Integral

    Directory of Open Access Journals (Sweden)

    Wenhui Li

    2014-01-01

    Full Text Available Vision-based multivehicle detection plays an important role in Forward Collision Warning Systems (FCWS and Blind Spot Detection Systems (BSDS. The performance of these systems depends on the real-time capability, accuracy, and robustness of vehicle detection methods. To improve the accuracy of vehicle detection algorithm, we propose a multifeature fusion vehicle detection algorithm based on Choquet integral. This algorithm divides the vehicle detection problem into two phases: feature similarity measure and multifeature fusion. In the feature similarity measure phase, we first propose a taillight-based vehicle detection method, and then vehicle taillight feature similarity measure is defined. Second, combining with the definition of Choquet integral, the vehicle symmetry similarity measure and the HOG + AdaBoost feature similarity measure are defined. Finally, these three features are fused together by Choquet integral. Being evaluated on public test collections and our own test images, the experimental results show that our method has achieved effective and robust multivehicle detection in complicated environments. Our method can not only improve the detection rate but also reduce the false alarm rate, which meets the engineering requirements of Advanced Driving Assistance Systems (ADAS.

  3. Power Balance AODV Routing Algorithm of WSN in Precision Agriculture Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Xiaoqin Qin

    2013-11-01

    Full Text Available As one of important technologies of IOT (Internet of Things, WSN (Wireless Sensor Networks has been widely used in precision agriculture environment monitoring. WSN is a kind of energy-constrained network, but power balance is not taken into account in traditional routing protocols. A novel routing algorithm, named Power Balance Ad hoc On-Demand Distance Vector (PB-AODV, is proposed on cross-layer design. In the route discovery process of PB-AODV, routing path is established by the Received Signal Strength Indication (RSSI value. The optimal transmitting power, which is computed according to RSSI value, power threshold and node’s surplus energy, is encapsulated into Route Reply Packet. Hence, the sender node can adjust its transmission power to save energy according to the Route Reply Packet. Simulation results show that the proposed algorithm is effective for load balancing, and increases the WSN’s lifetime 14.3% consequently.

  4. Optimization of municipal waste collection scheduling and routing using vehicle assignment problem (case study of Surabaya city waste collection)

    Science.gov (United States)

    Ramdhani, M. N.; Baihaqi, I.; Siswanto, N.

    2018-04-01

    Waste collection and disposal become a major problem for many metropolitan cities. Growing population, limited vehicles, and increased road traffic make the waste transportation become more complex. Waste collection involves some key considerations, such as vehicle assignment, vehicle routes, and vehicle scheduling. In the scheduling process, each vehicle has a scheduled departure that serve each route. Therefore, vehicle’s assignments should consider the time required to finish one assigment on that route. The objective of this study is to minimize the number of vehicles needed to serve all routes by developing a mathematical model which uses assignment problem approach. The first step is to generated possible routes from the existing routes, followed by vehicle assignments for those certain routes. The result of the model shows fewer vehicles required to perform waste collection asa well as the the number of journeys that the vehicle to collect the waste to the landfill. The comparison of existing conditions with the model result indicates that the latter’s has better condition than the existing condition because each vehicle with certain route has an equal workload, all the result’s model has the maximum of two journeys for each route.

  5. Distributed Multi-Commodity Network Flow Algorithm for Energy Optimal Routing in Wireless Sensor Networks.

    Directory of Open Access Journals (Sweden)

    J. Trdlicka

    2010-12-01

    Full Text Available This work proposes a distributed algorithm for energy optimal routing in a wireless sensor network. The routing problem is described as a mathematical problem by the minimum-cost multi-commodity network flow problem. Due to the separability of the problem, we use the duality theorem to derive the distributed algorithm. The algorithm computes the energy optimal routing in the network without any central node or knowledge of the whole network structure. Each node only needs to know the flow which is supposed to send or receive and the costs and capacities of the neighboring links. An evaluation of the presented algorithm on benchmarks for the energy optimal data flow routing in sensor networks with up to 100 nodes is presented.

  6. An Efficient Shortest Path Routing Algorithm for Directed Indoor Environments

    Directory of Open Access Journals (Sweden)

    Sultan Alamri

    2018-03-01

    Full Text Available Routing systems for outdoor space have become the focus of many research works. Such routing systems are based on spatial road networks where moving objects (such as cars are affected by the directed roads and the movement of traffic, which may include traffic jams. Indoor routing, on the other hand, must take into account the features of indoor space such as walls and rooms. In this paper, we take indoor routing in a new direction whereby we consider the features that a building has in common with outdoor spaces. Inside some buildings, there may be directed floors where moving objects must move in a certain direction through directed corridors in order to reach a certain location. For example, on train platforms or in museums, movement in the corridors may be directed. In these directed floor spaces, a routing system enabling a visitor to take the shortest path to a certain location is essential. Therefore, this work proposes a new approach for buildings with directed indoor spaces, where each room can be affected by the density of the moving objects. The proposed system obtains the shortest path between objects or rooms taking into consideration the directed indoor space and the capacity of the objects to move within each room/cell.

  7. MULTI-VEHICLE COVERING TOUR PROBLEM: BUILDING ROUTES FOR URBAN PATROLLING

    Directory of Open Access Journals (Sweden)

    Washington Alves de Oliveira

    2015-12-01

    Full Text Available ABSTRACT In this paper we study a particular aspect of the urban community policing: routine patrol route planning. We seek routes that guarantee visibility, as this has a sizable impact on the community perceived safety, allowing quick emergency responses and providing surveillance of selected sites (e.g., hospitals, schools. The planning is restricted to the availability of vehicles and strives to achieve balanced routes. We study an adaptation of the model for the multi-vehicle covering tour problem, in which a set of locations must be visited, whereas another subset must be close enough to the planned routes. It constitutes an NP-complete integer programming problem. Suboptimal solutions are obtained with several heuristics, some adapted from the literature and others developed by us. We solve some adapted instances from TSPLIB and an instance with real data, the former being compared with results from literature, and latter being compared with empirical data.

  8. On the multiple depots vehicle routing problem with heterogeneous fleet capacity and velocity

    Science.gov (United States)

    Hanum, F.; Hartono, A. P.; Bakhtiar, T.

    2018-03-01

    This current manuscript concerns with the optimization problem arising in a route determination of products distribution. The problem is formulated in the form of multiple depots and time windowed vehicle routing problem with heterogeneous capacity and velocity of fleet. Model includes a number of constraints such as route continuity, multiple depots availability and serving time in addition to generic constraints. In dealing with the unique feature of heterogeneous velocity, we generate a number of velocity profiles along the road segments, which then converted into traveling-time tables. An illustrative example of rice distribution among villages by bureau of logistics is provided. Exact approach is utilized to determine the optimal solution in term of vehicle routes and starting time of service.

  9. Route Generation for a Synthetic Character (BOT) Using a Partial or Incomplete Knowledge Route Generation Algorithm in UT2004 Virtual Environment

    Science.gov (United States)

    Hanold, Gregg T.; Hanold, David T.

    2010-01-01

    This paper presents a new Route Generation Algorithm that accurately and realistically represents human route planning and navigation for Military Operations in Urban Terrain (MOUT). The accuracy of this algorithm in representing human behavior is measured using the Unreal Tournament(Trademark) 2004 (UT2004) Game Engine to provide the simulation environment in which the differences between the routes taken by the human player and those of a Synthetic Agent (BOT) executing the A-star algorithm and the new Route Generation Algorithm can be compared. The new Route Generation Algorithm computes the BOT route based on partial or incomplete knowledge received from the UT2004 game engine during game play. To allow BOT navigation to occur continuously throughout the game play with incomplete knowledge of the terrain, a spatial network model of the UT2004 MOUT terrain is captured and stored in an Oracle 11 9 Spatial Data Object (SOO). The SOO allows a partial data query to be executed to generate continuous route updates based on the terrain knowledge, and stored dynamic BOT, Player and environmental parameters returned by the query. The partial data query permits the dynamic adjustment of the planned routes by the Route Generation Algorithm based on the current state of the environment during a simulation. The dynamic nature of this algorithm more accurately allows the BOT to mimic the routes taken by the human executing under the same conditions thereby improving the realism of the BOT in a MOUT simulation environment.

  10. InfoRoute: the CISMeF Context-specific Search Algorithm.

    Science.gov (United States)

    Merabti, Tayeb; Lelong, Romain; Darmoni, Stefan

    2015-01-01

    The aim of this paper was to present a practical InfoRoute algorithm and applications developed by CISMeF to perform a contextual information retrieval across multiple medical websites in different health domains. The algorithm was developed to treat multiple types of queries: natural, Boolean and advanced. The algorithm also generates multiple types of queries: Boolean query, PubMed query or Advanced query. Each query can be extended via an inter alignments relationship from UMLS and HeTOP portal. A web service and two web applications have been developed based on the InfoRoute algorithm to generate links-query across multiple websites, i.e.: "PubMed" or "ClinicalTrials.org". The InfoRoute algorithm is a useful tool to perform contextual information retrieval across multiple medical websites in both English and French.

  11. Refinements of the column generation process for the Vehicle Routing Problem with Time Windows

    DEFF Research Database (Denmark)

    Larsen, Jesper

    2004-01-01

    interval denoted the time window. The objective is to determine routes for the vehicles that minimizes the accumulated cost (or distance) with respect to the above mentioned constraints. Currently the best approaches for determining optimal solutions are based on column generation and Branch......-and-Bound, also known as Branch-and-Price. This paper presents two ideas for run-time improvements of the Branch-and-Price framework for the Vehicle Routing Problem with Time Windows. Both ideas reveal a significant potential for using run-time refinements when speeding up an exact approach without compromising...

  12. An Improved Ant Colony Algorithm for Solving the Path Planning Problem of the Omnidirectional Mobile Vehicle

    Directory of Open Access Journals (Sweden)

    Jiang Zhao

    2016-01-01

    Full Text Available This paper presents an improved ant colony algorithm for the path planning of the omnidirectional mobile vehicle. The purpose of the improved ant colony algorithm is to design an appropriate route to connect the starting point and ending point of the environment with obstacles. Ant colony algorithm, which is used to solve the path planning problem, is improved according to the characteristics of the omnidirectional mobile vehicle. And in the improved algorithm, the nonuniform distribution of the initial pheromone and the selection strategy with direction play a very positive role in the path search. The coverage and updating strategy of pheromone is introduced to avoid repeated search reducing the effect of the number of ants on the performance of the algorithm. In addition, the pheromone evaporation coefficient is segmented and adjusted, which can effectively balance the convergence speed and search ability. Finally, this paper provides a theoretical basis for the improved ant colony algorithm by strict mathematical derivation, and some numerical simulations are also given to illustrate the effectiveness of the theoretical results.

  13. Aircraft Route Optimization using the A-Star Algorithm

    Science.gov (United States)

    2014-03-27

    Map Cost array allows a search for a route that not only seeks to minimize the distance travelled, but also considers other factors that may impact ...Rules (VFR) flight profile requires aviators to plan a 20-minute fuel reserve into the flight while an Instrument Flight Rules ( IFR ) flight profile

  14. Time Dependent Heterogeneous Vehicle Routing Problem for Catering Service Delivery Problem

    Science.gov (United States)

    Azis, Zainal; Mawengkang, Herman

    2017-09-01

    The heterogeneous vehicle routing problem (HVRP) is a variant of vehicle routing problem (VRP) which describes various types of vehicles with different capacity to serve a set of customers with known geographical locations. This paper considers the optimal service deliveries of meals of a catering company located in Medan City, Indonesia. Due to the road condition as well as traffic, it is necessary for the company to use different type of vehicle to fulfill customers demand in time. The HVRP incorporates time dependency of travel times on the particular time of the day. The objective is to minimize the sum of the costs of travelling and elapsed time over the planning horizon. The problem can be modeled as a linear mixed integer program and we address a feasible neighbourhood search approach to solve the problem.

  15. Artificial immune algorithm for multi-depot vehicle scheduling problems

    Science.gov (United States)

    Wu, Zhongyi; Wang, Donggen; Xia, Linyuan; Chen, Xiaoling

    2008-10-01

    In the fast-developing logistics and supply chain management fields, one of the key problems in the decision support system is that how to arrange, for a lot of customers and suppliers, the supplier-to-customer assignment and produce a detailed supply schedule under a set of constraints. Solutions to the multi-depot vehicle scheduling problems (MDVRP) help in solving this problem in case of transportation applications. The objective of the MDVSP is to minimize the total distance covered by all vehicles, which can be considered as delivery costs or time consumption. The MDVSP is one of nondeterministic polynomial-time hard (NP-hard) problem which cannot be solved to optimality within polynomial bounded computational time. Many different approaches have been developed to tackle MDVSP, such as exact algorithm (EA), one-stage approach (OSA), two-phase heuristic method (TPHM), tabu search algorithm (TSA), genetic algorithm (GA) and hierarchical multiplex structure (HIMS). Most of the methods mentioned above are time consuming and have high risk to result in local optimum. In this paper, a new search algorithm is proposed to solve MDVSP based on Artificial Immune Systems (AIS), which are inspirited by vertebrate immune systems. The proposed AIS algorithm is tested with 30 customers and 6 vehicles located in 3 depots. Experimental results show that the artificial immune system algorithm is an effective and efficient method for solving MDVSP problems.

  16. An adaptive large neighborhood search heuristic for Two-Echelon Vehicle Routing Problems arising in city logistics

    Science.gov (United States)

    Hemmelmayr, Vera C.; Cordeau, Jean-François; Crainic, Teodor Gabriel

    2012-01-01

    In this paper, we propose an adaptive large neighborhood search heuristic for the Two-Echelon Vehicle Routing Problem (2E-VRP) and the Location Routing Problem (LRP). The 2E-VRP arises in two-level transportation systems such as those encountered in the context of city logistics. In such systems, freight arrives at a major terminal and is shipped through intermediate satellite facilities to the final customers. The LRP can be seen as a special case of the 2E-VRP in which vehicle routing is performed only at the second level. We have developed new neighborhood search operators by exploiting the structure of the two problem classes considered and have also adapted existing operators from the literature. The operators are used in a hierarchical scheme reflecting the multi-level nature of the problem. Computational experiments conducted on several sets of instances from the literature show that our algorithm outperforms existing solution methods for the 2E-VRP and achieves excellent results on the LRP. PMID:23483764

  17. An adaptive large neighborhood search heuristic for Two-Echelon Vehicle Routing Problems arising in city logistics.

    Science.gov (United States)

    Hemmelmayr, Vera C; Cordeau, Jean-François; Crainic, Teodor Gabriel

    2012-12-01

    In this paper, we propose an adaptive large neighborhood search heuristic for the Two-Echelon Vehicle Routing Problem (2E-VRP) and the Location Routing Problem (LRP). The 2E-VRP arises in two-level transportation systems such as those encountered in the context of city logistics. In such systems, freight arrives at a major terminal and is shipped through intermediate satellite facilities to the final customers. The LRP can be seen as a special case of the 2E-VRP in which vehicle routing is performed only at the second level. We have developed new neighborhood search operators by exploiting the structure of the two problem classes considered and have also adapted existing operators from the literature. The operators are used in a hierarchical scheme reflecting the multi-level nature of the problem. Computational experiments conducted on several sets of instances from the literature show that our algorithm outperforms existing solution methods for the 2E-VRP and achieves excellent results on the LRP.

  18. Intelligent QoS routing algorithm based on improved AODV protocol for Ad Hoc networks

    Science.gov (United States)

    Huibin, Liu; Jun, Zhang

    2016-04-01

    Mobile Ad Hoc Networks were playing an increasingly important part in disaster reliefs, military battlefields and scientific explorations. However, networks routing difficulties are more and more outstanding due to inherent structures. This paper proposed an improved cuckoo searching-based Ad hoc On-Demand Distance Vector Routing protocol (CSAODV). It elaborately designs the calculation methods of optimal routing algorithm used by protocol and transmission mechanism of communication-package. In calculation of optimal routing algorithm by CS Algorithm, by increasing QoS constraint, the found optimal routing algorithm can conform to the requirements of specified bandwidth and time delay, and a certain balance can be obtained among computation spending, bandwidth and time delay. Take advantage of NS2 simulation software to take performance test on protocol in three circumstances and validate the feasibility and validity of CSAODV protocol. In results, CSAODV routing protocol is more adapt to the change of network topological structure than AODV protocol, which improves package delivery fraction of protocol effectively, reduce the transmission time delay of network, reduce the extra burden to network brought by controlling information, and improve the routing efficiency of network.

  19. Application of cloud computing in power routing for clusters of microgrids using oblivious network routing algorithm

    DEFF Research Database (Denmark)

    Amini, M. Hadi; Broojeni, Kianoosh G.; Dragicevic, Tomislav

    2017-01-01

    of microgrid while preventing congestion as well as minimizing the power loss. Then, we present a two-layer simulation platform which considers both communication layer and physical layer of the microgrids' cluster. In order to improve the security of communication network, we perform the computations...... regarding the oblivious power routing via a cloud-based network. The proposed framework can be used for further studies that deal with the real-time simulation of the clusters of microgrids. In order to validate the effectiveness of the proposed framework, we implement our proposed oblivious routing scheme...

  20. Reliable Ant Colony Routing Algorithm for Dual-Channel Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    YongQiang Li

    2018-01-01

    Full Text Available For the problem of poor link reliability caused by high-speed dynamic changes and congestion owing to low network bandwidth in ad hoc networks, an ant colony routing algorithm, based on reliable path under dual-channel condition (DSAR, is proposed. First, dual-channel communication mode is used to improve network bandwidth, and a hierarchical network model is proposed to optimize the dual-layer network. Thus, we reduce network congestion and communication delay. Second, a comprehensive reliable path selection strategy is designed, and the reliable path is selected ahead of time to reduce the probability of routing restart. Finally, the ant colony algorithm is used to improve the adaptability of the routing algorithm to changes of network topology. Simulation results show that DSAR improves the reliability of routing, packet delivery, and throughput.

  1. mDARAL: A Multi-Radio Version for the DARAL Routing Algorithm.

    Science.gov (United States)

    Estévez, Francisco José; Castillo-Secilla, José María; González, Jesús; Olivares, Joaquín; Glösekötter, Peter

    2017-02-09

    Smart Cities are called to change the daily life of human beings. This concept permits improving the efficiency of our cities in several areas such as the use of water, energy consumption, waste treatment, and mobility both for people as well as vehicles throughout the city. This represents an interconnected scenario in which thousands of embedded devices need to work in a collaborative way both for sensing and modifying the environment properly. Under this scenario, the majority of devices will use wireless protocols for communicating among them, representing a challenge for optimizing the use of the electromagnetic spectrum. When the density of deployed nodes increases, the competition for using the physical medium becomes harder and, in consequence, traffic collisions will be higher, affecting data-rates in the communication process. This work presents mDARAL , a multi-radio routing algorithm based on the Dynamic and Adaptive Radio Algorithm ( DARAL ), which has the capability of isolating groups of nodes into sub-networks. The nodes of each sub-network will communicate among them using a dedicated radio frequency, thus isolating the use of the radio channel to a reduced number of nodes. Each sub-network will have a master node with two physical radios, one for communicating with its neighbours and the other for being the contact point among its group and other sub-networks. The communication among sub-networks is done through master nodes in a dedicated radio frequency. The algorithm works to maximize the overall performance of the network through the distribution of the traffic messages into unoccupied frequencies. The obtained results show that mDARAL achieves great improvement in terms of the number of control messages necessary to connect a node to the network, convergence time and energy consumption during the connection phase compared to DARAL .

  2. mDARAL: A Multi-Radio Version for the DARAL Routing Algorithm

    Directory of Open Access Journals (Sweden)

    Francisco José Estévez

    2017-02-01

    Full Text Available Smart Cities are called to change the daily life of human beings. This concept permits improving the efficiency of our cities in several areas such as the use of water, energy consumption, waste treatment, and mobility both for people as well as vehicles throughout the city. This represents an interconnected scenario in which thousands of embedded devices need to work in a collaborative way both for sensing and modifying the environment properly. Under this scenario, the majority of devices will use wireless protocols for communicating among them, representing a challenge for optimizing the use of the electromagnetic spectrum. When the density of deployed nodes increases, the competition for using the physical medium becomes harder and, in consequence, traffic collisions will be higher, affecting data-rates in the communication process. This work presents mDARAL, a multi-radio routing algorithm based on the Dynamic and Adaptive Radio Algorithm (DARAL, which has the capability of isolating groups of nodes into sub-networks. The nodes of each sub-network will communicate among them using a dedicated radio frequency, thus isolating the use of the radio channel to a reduced number of nodes. Each sub-network will have a master node with two physical radios, one for communicating with its neighbours and the other for being the contact point among its group and other sub-networks. The communication among sub-networks is done through master nodes in a dedicated radio frequency. The algorithm works to maximize the overall performance of the network through the distribution of the traffic messages into unoccupied frequencies. The obtained results show that mDARAL achieves great improvement in terms of the number of control messages necessary to connect a node to the network, convergence time and energy consumption during the connection phase compared to DARAL.

  3. Capacitated Vehicle Routing with Non-Uniform Speeds

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Molinaro, Marco; Nagarajan, Viswanath

    2011-01-01

    -uniform speeds (that we call Heterogenous CVRP), and present a constant-factor approximation algorithm. The technical heart of our result lies in achieving a constant approximation to the following TSP variant (called Heterogenous TSP). Given a metric denoting distances between vertices, a depot r containing k...

  4. Municipal solid waste transportation optimisation with vehicle routing approach: case study of Pontianak City, West Kalimantan

    Science.gov (United States)

    Kamal, M. A.; Youlla, D.

    2018-03-01

    Municipal solid waste (MSW) transportation in Pontianak City becomes an issue that need to be tackled by the relevant agencies. The MSW transportation service in Pontianak City currently requires very high resources especially in vehicle usage. Increasing the number of fleets has not been able to increase service levels while garbage volume is growing every year along with population growth. In this research, vehicle routing optimization approach was used to find optimal and efficient routes of vehicle cost in transporting garbage from several Temporary Garbage Dump (TGD) to Final Garbage Dump (FGD). One of the problems of MSW transportation is that there is a TGD which exceed the the vehicle capacity and must be visited more than once. The optimal computation results suggest that the municipal authorities only use 3 vehicles from 5 vehicles provided with the total minimum cost of IDR. 778,870. The computation time to search optimal route and minimal cost is very time consuming. This problem is influenced by the number of constraints and decision variables that have are integer value.

  5. Genetic Algorithm Based Microscale Vehicle Emissions Modelling

    Directory of Open Access Journals (Sweden)

    Sicong Zhu

    2015-01-01

    Full Text Available There is a need to match emission estimations accuracy with the outputs of transport models. The overall error rate in long-term traffic forecasts resulting from strategic transport models is likely to be significant. Microsimulation models, whilst high-resolution in nature, may have similar measurement errors if they use the outputs of strategic models to obtain traffic demand predictions. At the microlevel, this paper discusses the limitations of existing emissions estimation approaches. Emission models for predicting emission pollutants other than CO2 are proposed. A genetic algorithm approach is adopted to select the predicting variables for the black box model. The approach is capable of solving combinatorial optimization problems. Overall, the emission prediction results reveal that the proposed new models outperform conventional equations in terms of accuracy and robustness.

  6. Path Planning Algorithms for Autonomous Border Patrol Vehicles

    Science.gov (United States)

    Lau, George Tin Lam

    This thesis presents an online path planning algorithm developed for unmanned vehicles in charge of autonomous border patrol. In this Pursuit-Evasion game, the unmanned vehicle is required to capture multiple trespassers on its own before any of them reach a target safe house where they are safe from capture. The problem formulation is based on Isaacs' Target Guarding problem, but extended to the case of multiple evaders. The proposed path planning method is based on Rapidly-exploring random trees (RRT) and is capable of producing trajectories within several seconds to capture 2 or 3 evaders. Simulations are carried out to demonstrate that the resulting trajectories approach the optimal solution produced by a nonlinear programming-based numerical optimal control solver. Experiments are also conducted on unmanned ground vehicles to show the feasibility of implementing the proposed online path planning algorithm on physical applications.

  7. Routing and scheduling of hazardous materials shipments: algorithmic approaches to managing spent nuclear fuel transport

    International Nuclear Information System (INIS)

    Cox, R.G.

    1984-01-01

    Much controversy surrounds government regulation of routing and scheduling of Hazardous Materials Transportation (HMT). Increases in operating costs must be balanced against expected benefits from local HMT bans and curfews when promulgating or preempting HMT regulations. Algorithmic approaches for evaluating HMT routing and scheduling regulatory policy are described. A review of current US HMT regulatory policy is presented to provide a context for the analysis. Next, a multiobjective shortest path algorithm to find the set of efficient routes under conflicting objectives is presented. This algorithm generates all efficient routes under any partial ordering in a single pass through the network. Also, scheduling algorithms are presented to estimate the travel time delay due to HMT curfews along a route. Algorithms are presented assuming either deterministic or stochastic travel times between curfew cities and also possible rerouting to avoid such cities. These algorithms are applied to the case study of US highway transport of spent nuclear fuel from reactors to permanent repositories. Two data sets were used. One data set included the US Interstate Highway System (IHS) network with reactor locations, possible repository sites, and 150 heavily populated areas (HPAs). The other data set contained estimates of the population residing with 0.5 miles of the IHS and the Eastern US. Curfew delay is dramatically reduced by optimally scheduling departure times unless inter-HPA travel times are highly uncertain. Rerouting shipments to avoid HPAs is a less efficient approach to reducing delay

  8. Research on distributed QOS routing algorithm based on TCP/IP

    Science.gov (United States)

    Liu, Xiaoyue; Chen, Yongqiang

    2011-10-01

    At present, network environment follow protocol standard of IPV4 is intended to do the best effort of network to provide network applied service for users, however, not caring about service quality.Thus the packet loss rate is high, it cannot reach an ideal applied results. This article through the establishment of mathematical model, put forward a new distributed multi QOS routing algorithm, given the realization process of this distributed QOS routing algorithm, and simulation was carried out by simulation software. The results show the proposed algorithm can improve the utilization rate of network resources and the service quality of network application.

  9. Capacitated Hub Routing Problem in Hub-and-Feeder Network Design: Modeling and Solution Algorithm

    OpenAIRE

    Gelareh , Shahin; Neamatian Monemi , Rahimeh; Semet , Frédéric

    2015-01-01

    International audience; In this paper, we address the Bounded Cardinality Hub Location Routing with Route Capacity wherein eachhub acts as a transshipment node for one directed route. The number of hubs lies between a minimum anda maximum and the hub-level network is a complete subgraph. The transshipment operations take place atthe hub nodes and flow transfer time from a hub-level transporter to a spoke-level vehicle influences spoketo-hub allocations. We propose a mathematical model and a b...

  10. Constraint Programming based Local Search for the Vehicle Routing Problem with Time Windows

    OpenAIRE

    Sala Reixach, Joan

    2012-01-01

    El projecte es centra en el "Vehicle Routing Problem with Time Windows". Explora i testeja un mètode basat en una formulació del problema en termes de programació de restriccions. Implementa un mètode de cerca local amb la capacitat de fer grans moviments anomenat "Large Neighbourhood Search".

  11. New heuristics for the fleet size and mix vehicle routing problem with time windows

    NARCIS (Netherlands)

    Dullaert, W.; Janssens, Gerrit K.; Sirensen, K.; Vernimmen, Bert

    2002-01-01

    In the Fleet Size and Mix Vehicle Routing Problem with Time Windows (FSMVRPTW) customers need to be serviced in their time windows at minimal costs by a heterogeneous fleet. In this paper new heuristics for the FSMVRPTW are developed. The performance of the heuristics is shown to be significantly

  12. The life and times of the Savings Method for Vehicle Routing Problems

    African Journals Online (AJOL)

    Forty ve years ago, an academic and practitioner from the north of England published a method of tackling the vehicle routing problem (VRP) in an American journal. Little could they have realised how the method they devised would still be a signicant part of the research agenda nearly half a century later. Adaptations of ...

  13. Opportunity costs calculation in agent-based vehicle routing and scheduling

    NARCIS (Netherlands)

    Mes, Martijn R.K.; van der Heijden, Matthijs C.; Schuur, Peter

    2006-01-01

    In this paper we consider a real-time, dynamic pickup and delivery problem with timewindows where orders should be assigned to one of a set of competing transportation companies. Our approach decomposes the problem into a multi-agent structure where vehicle agents are responsible for the routing and

  14. Vehicle Routing with Traffic Congestion and Drivers' Driving and Working Rules

    NARCIS (Netherlands)

    Kok, A.L.; Hans, Elias W.; Schutten, Johannes M.J.; Zijm, Willem H.M.

    2010-01-01

    For the intensively studied vehicle routing problem (VRP), two real-life restrictions have received only minor attention in the VRP-literature: traffic congestion and driving hours regulations. Traffic congestion causes late arrivals at customers and long travel times resulting in large transport

  15. A simultaneous facility location and vehicle routing problem arising in health care logistics in the Netherlands

    NARCIS (Netherlands)

    Veenstra, Marjolein; Roodbergen, Kees Jan; Coelho, Leandro C.; Zhu, Stuart X.

    2018-01-01

    This paper introduces a simultaneous facility location and vehicle routing problem that arises in health care logistics in the Netherlands. In this problem, the delivery of medication from a local pharmacy can occur via lockers, from where patients that are within the coverage distance of a locker

  16. Metaheuristics applied to vehicle routing. A case study. Parte 1: formulating the problem

    Directory of Open Access Journals (Sweden)

    Guillermo González Vargas

    2006-09-01

    Full Text Available This paper deals with VRP (vehicle routing problem mathematical formulation and presents some methodologies used by different authors to solve VRP variation. This paper is presented as the springboard for introducing future papers about a manufacturing company’s location decisions based on the total distance traveled to distribute its product.

  17. Collaborative en-route and slot allocation algorithm based on fuzzy comprehensive evaluation

    Science.gov (United States)

    Yang, Shangwen; Guo, Baohua; Xiao, Xuefei; Gao, Haichao

    2018-01-01

    To allocate the en-routes and slots to the flights with collaborative decision making, a collaborative en-route and slot allocation algorithm based on fuzzy comprehensive evaluation was proposed. Evaluation indexes include flight delay costs, delay time and the number of turning points. Analytic hierarchy process is applied to determining index weights. Remark set for current two flights not yet obtained the en-route and slot in flight schedule is established. Then, fuzzy comprehensive evaluation is performed, and the en-route and slot for the current two flights are determined. Continue selecting the flight not yet obtained an en-route and a slot in flight schedule. Perform fuzzy comprehensive evaluation until all flights have obtained the en-routes and slots. MatlabR2007b was applied to numerical test based on the simulated data of a civil en-route. Test results show that, compared with the traditional strategy of first come first service, the algorithm gains better effect. The effectiveness of the algorithm was verified.

  18. Comparative chlorpyrifos pharmacokinetics via multiple routes of exposure and vehicles of administration in the adult rat

    International Nuclear Information System (INIS)

    Smith, Jordan Ned; Campbell, James A.; Busby-Hjerpe, Andrea L.; Lee, Sookwang; Poet, Torka S.; Barr, Dana B.; Timchalk, Charles

    2009-01-01

    Chlorpyrifos (CPF) is a commonly used organophosphorus pesticide. A number of toxicity and mechanistic studies have been conducted in animals, where CPF has been administered via a variety of different exposure routes and dosing vehicles. This study compared chlorpyrifos (CPF) pharmacokinetics using oral, intravenous (IV), and subcutaneous (SC) exposure routes and corn oil, saline/Tween 20, and dimethyl sulfoxide (DMSO) as dosing vehicles. Two groups of rats were co-administered target doses (5 mg/kg) of CPF and isotopically labeled CPF (L-CPF). One group was exposed by both oral (CPF) and IV (L-CPF) routes using saline/Tween 20 vehicle; whereas, the second group was exposed by the SC route using two vehicles, corn oil (CPF) and DMSO (L-CPF). A third group was only administered CPF by the oral route in corn oil. For all treatments, blood and urine time course samples were collected and analyzed for 3,5,6-trichloro-2-pyridinol (TCPy), and isotopically labeled 3,5,6-trichloro-2-pyridinol (L-TCPy). Peak TCPy/L-TCPy concentrations in blood (20.2 μmol/l), TCPy/L-TCPy blood AUC (94.9 μmol/l h), and percent of dose excreted in urine (100%) were all highest in rats dosed orally with CPF in saline/Tween 20 and second highest in rats dosed orally with CPF in corn oil. Peak TCPy concentrations in blood were more rapidly obtained after oral administration of CPF in saline/Tween 20 compared to all other dosing scenarios (>1.5 h). These results indicate that orally administered CPF is more extensively metabolized than systemic exposures of CPF (SC and IV), and vehicle of administration also has an effect on absorption rates. Thus, equivalent doses via different routes and/or vehicles of administration could potentially lead to different body burdens of CPF, different rates of bioactivation to CPF-oxon, and different toxic responses. Simulations using a physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for CPF are consistent with these possibilities

  19. Roteamento de veículos com base em sistemas de informação geográfica Vehicle routing based on geographical information systems

    Directory of Open Access Journals (Sweden)

    Roberto Diéguez Galvão

    1997-08-01

    Full Text Available Um algoritmo para roteamento de veículos é integrado a um Sistema de Informação Geográfica, de cuja base de dados obtém as informações necessárias para o roteamento e no qual mostra as rotas resultantes. O algoritmo de roteamento utilizado tem como base a metaheurística de simulated annealing, que apresenta neste caso resultados computacionais de boa qualidade. Descrevemos a interface do algoritmo com um SIG específico e a aplicação do sistema resultante a um programa de entregas simulado, no bairro de Copacabana, no Rio de Janeiro.An algorithm for vehicle routing is embedded into a Geographical Information System (GIS, from the database of which it extracts the information needed for the routing and where it displays the resulting routes. The routing algorithm is a simulated annealing metaheuristic that produces good quality routes in reduced computational times. We describe the embedding of the algorithm into a specific GIS software and the application of the routing system to a simulated delivery schedule in the neighbourhood of Copacabana, in Rio de Janeiro.

  20. Simulation of product distribution at PT Anugrah Citra Boga by using capacitated vehicle routing problem method

    Science.gov (United States)

    Lamdjaya, T.; Jobiliong, E.

    2017-01-01

    PT Anugrah Citra Boga is a food processing industry that produces meatballs as their main product. The distribution system of the products must be considered, because it needs to be more efficient in order to reduce the shipment cost. The purpose of this research is to optimize the distribution time by simulating the distribution channels with capacitated vehicle routing problem method. Firstly, the distribution route is observed in order to calculate the average speed, time capacity and shipping costs. Then build the model using AIMMS software. A few things that are required to simulate the model are customer locations, distances, and the process time. Finally, compare the total distribution cost obtained by the simulation and the historical data. It concludes that the company can reduce the shipping cost around 4.1% or Rp 529,800 per month. By using this model, the utilization rate can be more optimal. The current value for the first vehicle is 104.6% and after the simulation it becomes 88.6%. Meanwhile, the utilization rate of the second vehicle is increase from 59.8% to 74.1%. The simulation model is able to produce the optimal shipping route with time restriction, vehicle capacity, and amount of vehicle.

  1. Ship Pipe Routing Design Using NSGA-II and Coevolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Wentie Niu

    2016-01-01

    Full Text Available Pipe route design plays a prominent role in ship design. Due to the complex configuration in layout space with numerous pipelines, diverse design constraints, and obstacles, it is a complicated and time-consuming process to obtain the optimal route of ship pipes. In this article, an optimized design method for branch pipe routing is proposed to improve design efficiency and to reduce human errors. By simplifying equipment and ship hull models and dividing workspace into three-dimensional grid cells, the mathematic model of layout space is constructed. Based on the proposed concept of pipe grading method, the optimization model of pipe routing is established. Then an optimization procedure is presented to deal with pipe route planning problem by combining maze algorithm (MA, nondominated sorting genetic algorithm II (NSGA-II, and cooperative coevolutionary nondominated sorting genetic algorithm II (CCNSGA-II. To improve the performance in genetic algorithm procedure, a fixed-length encoding method is presented based on improved maze algorithm and adaptive region strategy. Fuzzy set theory is employed to extract the best compromise pipeline from Pareto optimal solutions. Simulation test of branch pipe and design optimization of a fuel piping system were carried out to illustrate the design optimization procedure in detail and to verify the feasibility and effectiveness of the proposed methodology.

  2. Routing of Electric Vehicles: Case Study of City Distribution in Copenhagen

    DEFF Research Database (Denmark)

    Linde, Esben; Larsen, Allan; Nørrelund, Anders Vedsted

    freight magnitude and the distribution of goods in the old city centre. Based on the survey, analysis of possible UCC locations was carried out using simulation. Distribution from the UCC is assumed to be conducted with electric vehicles (EVs) as they are considered suitable for the overall aim. However...... a tour. Furthermore, intelligent location of these recharging points is considered. The objective is to find a least cost plan for routing and recharging the vehicles so that each customer is serviced by exactly one vehicle within its time windows and the vehicle capacity and driving range constraints...... are satisfied. The EVRPTW is a new problem that only has received little attention in the literature; see for example [2] and [3]. The costs are compared to distribution conducted by conventional vehicles. A heuristic method is developed and tested on the data generated on the basis of real-life collected data...

  3. Cone Algorithm of Spinning Vehicles under Dynamic Coning Environment

    Directory of Open Access Journals (Sweden)

    Shuang-biao Zhang

    2015-01-01

    Full Text Available Due to the fact that attitude error of vehicles has an intense trend of divergence when vehicles undergo worsening coning environment, in this paper, the model of dynamic coning environment is derived firstly. Then, through investigation of the effect on Euler attitude algorithm for the equivalency of traditional attitude algorithm, it is found that attitude error is actually the roll angle error including drifting error and oscillating error, which is induced directly by dynamic coning environment and further affects the pitch angle and yaw angle through transferring. Based on definition of the cone frame and cone attitude, a cone algorithm is proposed by rotation relationship to calculate cone attitude, and the relationship between cone attitude and Euler attitude of spinning vehicle is established. Through numerical simulations with different conditions of dynamic coning environment, it is shown that the induced error of Euler attitude fluctuates by the variation of precession and nutation, especially by that of nutation, and the oscillating frequency of roll angle error is twice that of pitch angle error and yaw angle error. In addition, the rotation angle is more competent to describe the spinning process of vehicles under coning environment than Euler angle gamma, and the real pitch angle and yaw angle are calculated finally.

  4. Application of the multi-objective cross-entropy method to the vehicle routing problem with soft time windows

    Directory of Open Access Journals (Sweden)

    C Hauman

    2014-06-01

    Full Text Available The vehicle routing problem with time windows is a widely studied problem with many real-world applications. The problem considered here entails the construction of routes that a number of identical vehicles travel to service different nodes within a certain time window. New benchmark problems with multi-objective features were recently suggested in the literature and the multi-objective optimisation cross-entropy method is applied to these problems to investigate the feasibility of the method and to determine and propose reference solutions for the benchmark problems. The application of the cross-entropy method to the multi-objective vehicle routing problem with soft time windows is investigated. The objectives that are evaluated include the minimisation of the total distance travelled, the number of vehicles and/or routes, the total waiting time and delay time of the vehicles and the makespan of a route.

  5. Research on Innovating, Applying Multiple Paths Routing Technique Based on Fuzzy Logic and Genetic Algorithm for Routing Messages in Service - Oriented Routing

    Directory of Open Access Journals (Sweden)

    Nguyen Thanh Long

    2015-02-01

    Full Text Available MANET (short for Mobile Ad-Hoc Network consists of a set of mobile network nodes, network configuration changes very fast. In content based routing, data is transferred from source node to request nodes is not based on destination addresses. Therefore, it is very flexible and reliable, because source node does not need to know destination nodes. If We can find multiple paths that satisfies bandwidth requirement, split the original message into multiple smaller messages to transmit concurrently on these paths. On destination nodes, combine separated messages into the original message. Hence it can utilize better network resources, causes data transfer rate to be higher, load balancing, failover. Service Oriented Routing is inherited from the model of content based routing (CBR, combined with several advanced techniques such as Multicast, multiple path routing, Genetic algorithm to increase the data rate, and data encryption to ensure information security. Fuzzy logic is a logical field study evaluating the accuracy of the results based on the approximation of the components involved, make decisions based on many factors relative accuracy based on experimental or mathematical proof. This article presents some techniques to support multiple path routing from one network node to a set of nodes with guaranteed quality of service. By using these techniques can decrease the network load, congestion, use network resources efficiently.

  6. Developing an eco-routing application.

    Science.gov (United States)

    2014-01-01

    The study develops eco-routing algorithms and investigates and quantifies the system-wide impacts of implementing an eco-routing system. Two eco-routing algorithms are developed: one based on vehicle sub-populations (ECO-Subpopulation Feedback Assign...

  7. Reserving Charging Decision-Making Model and Route Plan for Electric Vehicles Considering Information of Traffic and Charging Station

    Directory of Open Access Journals (Sweden)

    Haoming Liu

    2018-04-01

    Full Text Available With the advance of battery energy technology, electric vehicles (EV are catching more and more attention. One of the influencing factors of electric vehicles large-scale application is the availability of charging stations and convenience of charging. It is important to investigate how to make reserving charging strategies and ensure electric vehicles are charged with shorter time and lower charging expense whenever charging request is proposed. This paper proposes a reserving charging decision-making model for electric vehicles that move to certain destinations and need charging services in consideration of traffic conditions and available charging resources at the charging stations. Besides, the interactive mechanism is described to show how the reserving charging system works, as well as the rolling records-based credit mechanism where extra charges from EV is considered to hedge default behavior. With the objectives of minimizing driving time and minimizing charging expenses, an optimization model with two objective functions is formulated. Then the optimizations are solved by a K shortest paths algorithm based on a weighted directed graph, where the time and distance factors are respectively treated as weights of corresponding edges of transportation networks. Case studies show the effectiveness and validity of the proposed route plan and reserving charging decision-making model.

  8. A Mathematical Model and Algorithm for Routing Air Traffic Under Weather Uncertainty

    Science.gov (United States)

    Sadovsky, Alexander V.

    2016-01-01

    A central challenge in managing today's commercial en route air traffic is the task of routing the aircraft in the presence of adverse weather. Such weather can make regions of the airspace unusable, so all affected flights must be re-routed. Today this task is carried out by conference and negotiation between human air traffic controllers (ATC) responsible for the involved sectors of the airspace. One can argue that, in so doing, ATC try to solve an optimization problem without giving it a precise quantitative formulation. Such a formulation gives the mathematical machinery for constructing and verifying algorithms that are aimed at solving the problem. This paper contributes one such formulation and a corresponding algorithm. The algorithm addresses weather uncertainty and has closed form, which allows transparent analysis of correctness, realism, and computational costs.

  9. A proposal of multi-objective function for submarine rigid pipelines route optimization via evolutionary algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, D.H.; Medeiros, A.R. [Subsea7, Niteroi, RJ (Brazil); Jacob, B.P.; Lima, B.S.L.P.; Albrecht, C.H. [Universidade Federaldo Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Coordenacao de Programas de Pos-graduacao em Engenharia

    2009-07-01

    This work presents studies regarding the determination of optimal pipeline routes for offshore applications. The assembly of an objective function is presented; this function can be later associated with Evolutionary Algorithm to implement a computational tool for the automatic determination of the most advantageous pipeline route for a given scenario. This tool may reduce computational overheads, avoid mistakes with route interpretation, and minimize costs with respect to submarine pipeline design and installation. The following aspects can be considered in the assembly of the objective function: Geophysical and geotechnical data obtained from the bathymetry and sonography; the influence of the installation method, total pipeline length and number of free spans to be mitigated along the routes as well as vessel time for both cases. Case studies are presented to illustrate the use of the proposed objective function, including a sensitivity analysis intended to identify the relative influence of selected parameters in the evaluation of different routes. (author)

  10. Penerapan Algoritma Genetika Untuk Penyelesaian Vehicle Routing Problem With Delivery And Pick-Up (VRP-DP)

    OpenAIRE

    Simanullang, Herlin

    2013-01-01

    Vehicle Routing Problem (VRP) is a problem of combinatorial optimization complexeses that has essential role in management distribution system which is aimed to minimize the needed cost, the cost is determined in relationship with the distance of route which is taken by the distribution vehicle. The characteristic from VRP is the use of vehicle in certain capacity and its activity is centralized in one depot to serve the customer on certain locations with certain known demand. ...

  11. A human-machine cooperation route planning method based on improved A* algorithm

    Science.gov (United States)

    Zhang, Zhengsheng; Cai, Chao

    2011-12-01

    To avoid the limitation of common route planning method to blindly pursue higher Machine Intelligence and autoimmunization, this paper presents a human-machine cooperation route planning method. The proposed method includes a new A* path searing strategy based on dynamic heuristic searching and a human cooperated decision strategy to prune searching area. It can overcome the shortage of A* algorithm to fall into a local long term searching. Experiments showed that this method can quickly plan a feasible route to meet the macro-policy thinking.

  12. A Novel Spatial-Temporal Voronoi Diagram-Based Heuristic Approach for Large-Scale Vehicle Routing Optimization with Time Constraints

    Directory of Open Access Journals (Sweden)

    Wei Tu

    2015-10-01

    Full Text Available Vehicle routing optimization (VRO designs the best routes to reduce travel cost, energy consumption, and carbon emission. Due to non-deterministic polynomial-time hard (NP-hard complexity, many VROs involved in real-world applications require too much computing effort. Shortening computing time for VRO is a great challenge for state-of-the-art spatial optimization algorithms. From a spatial-temporal perspective, this paper presents a spatial-temporal Voronoi diagram-based heuristic approach for large-scale vehicle routing problems with time windows (VRPTW. Considering time constraints, a spatial-temporal Voronoi distance is derived from the spatial-temporal Voronoi diagram to find near neighbors in the space-time searching context. A Voronoi distance decay strategy that integrates a time warp operation is proposed to accelerate local search procedures. A spatial-temporal feature-guided search is developed to improve unpromising micro route structures. Experiments on VRPTW benchmarks and real-world instances are conducted to verify performance. The results demonstrate that the proposed approach is competitive with state-of-the-art heuristics and achieves high-quality solutions for large-scale instances of VRPTWs in a short time. This novel approach will contribute to spatial decision support community by developing an effective vehicle routing optimization method for large transportation applications in both public and private sectors.

  13. Energy Efficiency Performance Improvements for Ant-Based Routing Algorithm in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Adamu Murtala Zungeru

    2013-01-01

    Full Text Available The main problem for event gathering in wireless sensor networks (WSNs is the restricted communication range for each node. Due to the restricted communication range and high network density, event forwarding in WSNs is very challenging and requires multihop data forwarding. Currently, the energy-efficient ant based routing (EEABR algorithm, based on the ant colony optimization (ACO metaheuristic, is one of the state-of-the-art energy-aware routing protocols. In this paper, we propose three improvements to the EEABR algorithm to further improve its energy efficiency. The improvements to the original EEABR are based on the following: (1 a new scheme to intelligently initialize the routing tables giving priority to neighboring nodes that simultaneously could be the destination, (2 intelligent update of routing tables in case of a node or link failure, and (3 reducing the flooding ability of ants for congestion control. The energy efficiency improvements are significant particularly for dynamic routing environments. Experimental results using the RMASE simulation environment show that the proposed method increases the energy efficiency by up to 9% and 64% in converge-cast and target-tracking scenarios, respectively, over the original EEABR without incurring a significant increase in complexity. The method is also compared and found to also outperform other swarm-based routing protocols such as sensor-driven and cost-aware ant routing (SC and Beesensor.

  14. Using virtual environment for autonomous vehicle algorithm validation

    Science.gov (United States)

    Levinskis, Aleksandrs

    2018-04-01

    This paper describes possible use of modern game engine for validating and proving the concept of algorithm design. As the result simple visual odometry algorithm will be provided to show the concept and go over all workflow stages. Some of stages will involve using of Kalman filter in such a way that it will estimate optical flow velocity as well as position of moving camera located at vehicle body. In particular Unreal Engine 4 game engine will be used for generating optical flow patterns and ground truth path. For optical flow determination Horn and Schunck method will be applied. As the result, it will be shown that such method can estimate position of the camera attached to vehicle with certain displacement error respect to ground truth depending on optical flow pattern. For displacement rate RMS error is calculating between estimated and actual position.

  15. The Role of Spatial Ability in the Relationship Between Video Game Experience and Route Effectiveness Among Unmanned Vehicle Operators

    Science.gov (United States)

    2008-12-01

    Effective route planning is essential to the successful operation of unmanned vehicles. Video game experience has been shown to affect route planning...and execution, but why video game experience helps has not been addressed. One answer may be that spatial skills, necessary for route planning and...mediates the relationship between video game experience and route planning. Results indicated that this mediated relationship existed for the UGV

  16. Parallel algorithms for network routing problems and recurrences

    International Nuclear Information System (INIS)

    Wisniewski, J.A.; Sameh, A.H.

    1982-01-01

    In this paper, we consider the parallel solution of recurrences, and linear systems in the regular algebra of Carre. These problems are equivalent to solving the shortest path problem in graph theory, and they also arise in the analysis of Fortran programs. Our methods for solving linear systems in the regular algebra are analogues of well-known methods for solving systems of linear algebraic equations. A parallel version of Dijkstra's method, which has no linear algebraic analogue, is presented. Considerations for choosing an algorithm when the problem is large and sparse are also discussed

  17. A Novel Routing Algorithm for Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Raúl Aquino Santos

    2008-01-01

    Full Text Available Este trabajo examina la importancia de las redes inalámbricas ad hoc y el algoritmo de enrutamiento con inundación basada en grupos (LORA-CBF para la comunicación inter-vehicular con la finalidad de optimizar el flujo de tráfico e incrementar la seguridad en las autopistas. Se discute el algoritmo de enrutamiento LORA-CBF y se presentan los resultados de simulaciones realizadas en OPNET de una autopista con alta movilidad vehicular. Primero, el modelo de simulación propuesto se valida a pequeña escala con resultados experimentales. Posteriormente, se emplean simulaciones de nuestro modelo comparándolos con Ad Hoc On-Demand Distance Vector (AODV y Dynamic Source Routing (DSR. Finalmente, se emplea un modelo de tráfico microscópico desarrollado en OPNET para simular la movilidad de 250 vehículos en una autopista y se aplica el algoritmo de enrutamiento LORA-CBF en un escenario vehicular.

  18. An Enhanced Hybrid Social Based Routing Algorithm for MANET-DTN

    Directory of Open Access Journals (Sweden)

    Martin Matis

    2016-01-01

    Full Text Available A new routing algorithm for mobile ad hoc networks is proposed in this paper: an Enhanced Hybrid Social Based Routing (HSBR algorithm for MANET-DTN as optimal solution for well-connected multihop mobile networks (MANET and/or worse connected MANET with small density of the nodes and/or due to mobility fragmented MANET into two or more subnetworks or islands. This proposed HSBR algorithm is fully decentralized combining main features of both Dynamic Source Routing (DSR and Social Based Opportunistic Routing (SBOR algorithms. The proposed scheme is simulated and evaluated by replaying real life traces which exhibit this highly dynamic topology. Evaluation of new proposed HSBR algorithm was made by comparison with DSR and SBOR. All methods were simulated with different levels of velocity. The results show that HSBR has the highest success of packet delivery, but with higher delay in comparison with DSR, and much lower in comparison with SBOR. Simulation results indicate that HSBR approach can be applicable in networks, where MANET or DTN solutions are separately useless or ineffective. This method provides delivery of the message in every possible situation in areas without infrastructure and can be used as backup method for disaster situation when infrastructure is destroyed.

  19. The multi-depot electric vehicle location routing problem with time windows

    Directory of Open Access Journals (Sweden)

    Juan Camilo Paz

    2018-01-01

    Full Text Available In this paper, the Multi-Depot Electric Vehicle Location Routing Problem with Time Windows (MDVLRP is addressed. This problem is an extension of the MDVLRP, where electric vehicles are used instead of internal combustion engine vehicles. The recent development of this model is explained by the advantages of this technology, such as the diminution of carbon dioxide emissions, and the support that they can provide to the design of the logistic and energy-support structure of electric vehicle fleets. There are many models that extend the classical VRP model to take electric vehicles into consideration, but the multi-depot case for location-routing models has not been worked out yet. Moreover, we consider the availability of two energy supply technologies: the “Plug-in” Conventional Charge technology, and Battery Swapping Stations; options in which the recharging time is a function of the amount of energy to charge and a fixed time, respectively. Three models are proposed: one for each of the technologies mentioned above, and another in which both options are taken in consideration. The models were solved for small scale instances using C++ and Cplex 12.5. The results show that the models can be used to design logistic and energy-support structures, and compare the performance of the different options of energy supply, as well as measure the impact of these decisions on the overall distance traveled or other optimization objectives that could be worked on in the future.

  20. Energy Efficient Routing Algorithms in Dynamic Optical Core Networks with Dual Energy Sources

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2013-01-01

    This paper proposes new energy efficient routing algorithms in optical core networks, with the application of solar energy sources and bundled links. A comprehensive solar energy model is described in the proposed network scenarios. Network performance in energy savings, connection blocking...... probability, resource utilization and bundled link usage are evaluated with dynamic network simulations. Results show that algorithms proposed aiming for reducing the dynamic part of the energy consumption of the network may raise the fixed part of the energy consumption meanwhile....

  1. A Constraint-Based Model for Fast Post-Disaster Emergency Vehicle Routing

    Directory of Open Access Journals (Sweden)

    Roberto Amadini

    2013-12-01

    Full Text Available Disasters like terrorist attacks, earthquakes, hurricanes, and volcano eruptions are usually unpredictable events that affect a high number of people. We propose an approach that could be used as a decision support tool for a post-disaster response that allows the assignment of victims to hospitals and organizes their transportation via emergency vehicles. By exploiting the synergy between Mixed Integer Programming and Constraint Programming techniques, we are able to compute the routing of the vehicles so as to rescue much more victims than both heuristic based and complete approaches in a very reasonable time.

  2. The Edge Set Cost of the Vehicle Routing Problem with Time Windows

    DEFF Research Database (Denmark)

    Reinhardt, Line Blander; Jepsen, Mads Kehlet; Pisinger, David

    2016-01-01

    . The certifications and investments impose a cost for the company while they also give unlimited usage of a set of roads to all vehicles belonging to the company. This violates the traditional assumption that the path between two destinations is well defined and independent of other choices. Different versions......We consider an important generalization of the vehicle routing problem with time windows in which a fixed cost must be paid for accessing a set of edges. This fixed cost could reflect payment for toll roads, investment in new facilities, the need for certifications, and other costly investments...

  3. Design optimization of space launch vehicles using a genetic algorithm

    Science.gov (United States)

    Bayley, Douglas James

    The United States Air Force (USAF) continues to have a need for assured access to space. In addition to flexible and responsive spacelift, a reduction in the cost per launch of space launch vehicles is also desirable. For this purpose, an investigation of the design optimization of space launch vehicles has been conducted. Using a suite of custom codes, the performance aspects of an entire space launch vehicle were analyzed. A genetic algorithm (GA) was employed to optimize the design of the space launch vehicle. A cost model was incorporated into the optimization process with the goal of minimizing the overall vehicle cost. The other goals of the design optimization included obtaining the proper altitude and velocity to achieve a low-Earth orbit. Specific mission parameters that are particular to USAF space endeavors were specified at the start of the design optimization process. Solid propellant motors, liquid fueled rockets, and air-launched systems in various configurations provided the propulsion systems for two, three and four-stage launch vehicles. Mass properties models, an aerodynamics model, and a six-degree-of-freedom (6DOF) flight dynamics simulator were all used to model the system. The results show the feasibility of this method in designing launch vehicles that meet mission requirements. Comparisons to existing real world systems provide the validation for the physical system models. However, the ability to obtain a truly minimized cost was elusive. The cost model uses an industry standard approach, however, validation of this portion of the model was challenging due to the proprietary nature of cost figures and due to the dependence of many existing systems on surplus hardware.

  4. SINS/CNS Nonlinear Integrated Navigation Algorithm for Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Yong-jun Yu

    2015-01-01

    Full Text Available Celestial Navigation System (CNS has characteristics of accurate orientation and strong autonomy and has been widely used in Hypersonic Vehicle. Since the CNS location and orientation mainly depend upon the inertial reference that contains errors caused by gyro drifts and other error factors, traditional Strap-down Inertial Navigation System (SINS/CNS positioning algorithm setting the position error between SINS and CNS as measurement is not effective. The model of altitude azimuth, platform error angles, and horizontal position is designed, and the SINS/CNS tightly integrated algorithm is designed, in which CNS altitude azimuth is set as measurement information. GPF (Gaussian particle filter is introduced to solve the problem of nonlinear filtering. The results of simulation show that the precision of SINS/CNS algorithm which reaches 130 m using three stars is improved effectively.

  5. An Efficient Addressing Scheme and Its Routing Algorithm for a Large-Scale Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Choi Jeonghee

    2008-01-01

    Full Text Available Abstract So far, various addressing and routing algorithms have been extensively studied for wireless sensor networks (WSNs, but many of them were limited to cover less than hundreds of sensor nodes. It is largely due to stringent requirements for fully distributed coordination among sensor nodes, leading to the wasteful use of available address space. As there is a growing need for a large-scale WSN, it will be extremely challenging to support more than thousands of nodes, using existing standard bodies. Moreover, it is highly unlikely to change the existing standards, primarily due to backward compatibility issue. In response, we propose an elegant addressing scheme and its routing algorithm. While maintaining the existing address scheme, it tackles the wastage problem and achieves no additional memory storage during a routing. We also present an adaptive routing algorithm for location-aware applications, using our addressing scheme. Through a series of simulations, we prove that our approach can achieve two times lesser routing time than the existing standard in a ZigBee network.

  6. An Efficient Addressing Scheme and Its Routing Algorithm for a Large-Scale Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Yongwan Park

    2008-12-01

    Full Text Available So far, various addressing and routing algorithms have been extensively studied for wireless sensor networks (WSNs, but many of them were limited to cover less than hundreds of sensor nodes. It is largely due to stringent requirements for fully distributed coordination among sensor nodes, leading to the wasteful use of available address space. As there is a growing need for a large-scale WSN, it will be extremely challenging to support more than thousands of nodes, using existing standard bodies. Moreover, it is highly unlikely to change the existing standards, primarily due to backward compatibility issue. In response, we propose an elegant addressing scheme and its routing algorithm. While maintaining the existing address scheme, it tackles the wastage problem and achieves no additional memory storage during a routing. We also present an adaptive routing algorithm for location-aware applications, using our addressing scheme. Through a series of simulations, we prove that our approach can achieve two times lesser routing time than the existing standard in a ZigBee network.

  7. The vehicle routing game: An application of cost allocation in a gas and oil company

    Energy Technology Data Exchange (ETDEWEB)

    Engevall, Stefan; Goethe-Lundgren, Maud; Vaerbrand, Peter

    2000-12-01

    In this article we study a cost allocation problem that arises in a distribution planning situation at the Logistics department at Norsk Hydro Olje AB. The routes from one depot during one day are considered, for which the total distribution cost is to be divided among the customers that are visited. This cost allocation problem is formulated as a vehicle routing game, allowing the use of vehicles with different capacities. Cost allocation methods based on different concepts from cooperative game theory, such as the core and the nucleolus, are discussed. A procedure that can be used to investigate whether the core is empty or not is presented, as well as a procedure to compute the nucleolus. Computational results for the Norsk Hydro case are also presented and discussed.

  8. Vehicle routing for the eco-efficient collection of household plastic waste.

    Science.gov (United States)

    Bing, Xiaoyun; de Keizer, Marlies; Bloemhof-Ruwaard, Jacqueline M; van der Vorst, Jack G A J

    2014-04-01

    Plastic waste is a special category of municipal solid waste. Plastic waste collection is featured with various alternatives of collection methods (curbside/drop-off) and separation methods (source-/post-separation). In the Netherlands, the collection routes of plastic waste are the same as those of other waste, although plastic is different than other waste in terms of volume to weight ratio. This paper aims for redesigning the collection routes and compares the collection options of plastic waste using eco-efficiency as performance indicator. Eco-efficiency concerns the trade-off between environmental impacts, social issues and costs. The collection problem is modeled as a vehicle routing problem. A tabu search heuristic is used to improve the routes. Collection alternatives are compared by a scenario study approach. Real distances between locations are calculated with MapPoint. The scenario study is conducted based on real case data of the Dutch municipality Wageningen. Scenarios are designed according to the collection alternatives with different assumptions in collection method, vehicle type, collection frequency and collection points, etc. Results show that the current collection routes can be improved in terms of eco-efficiency performance by using our method. The source-separation drop-off collection scenario has the best performance for plastic collection assuming householders take the waste to the drop-off points in a sustainable manner. The model also shows to be an efficient decision support tool to investigate the impacts of future changes such as alternative vehicle type and different response rates. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  9. Branch-pipe-routing approach for ships using improved genetic algorithm

    Science.gov (United States)

    Sui, Haiteng; Niu, Wentie

    2016-09-01

    Branch-pipe routing plays fundamental and critical roles in ship-pipe design. The branch-pipe-routing problem is a complex combinatorial optimization problem and is thus difficult to solve when depending only on human experts. A modified genetic-algorithm-based approach is proposed in this paper to solve this problem. The simplified layout space is first divided into threedimensional (3D) grids to build its mathematical model. Branch pipes in layout space are regarded as a combination of several two-point pipes, and the pipe route between two connection points is generated using an improved maze algorithm. The coding of branch pipes is then defined, and the genetic operators are devised, especially the complete crossover strategy that greatly accelerates the convergence speed. Finally, simulation tests demonstrate the performance of proposed method.

  10. Optimal routes scheduling for municipal waste disposal garbage trucks using evolutionary algorithm and artificial immune system

    Directory of Open Access Journals (Sweden)

    Bogna MRÓWCZYŃSKA

    2011-01-01

    Full Text Available This paper describes an application of an evolutionary algorithm and an artificial immune systems to solve a problem of scheduling an optimal route for waste disposal garbage trucks in its daily operation. Problem of an optimisation is formulated and solved using both methods. The results are presented for an area in one of the Polish cities.

  11. An improved artificial bee colony algorithm based on balance-evolution strategy for unmanned combat aerial vehicle path planning.

    Science.gov (United States)

    Li, Bai; Gong, Li-gang; Yang, Wen-lun

    2014-01-01

    Unmanned combat aerial vehicles (UCAVs) have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC) algorithm improved by a balance-evolution strategy (BES) is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.

  12. An Improved Artificial Bee Colony Algorithm Based on Balance-Evolution Strategy for Unmanned Combat Aerial Vehicle Path Planning

    Directory of Open Access Journals (Sweden)

    Bai Li

    2014-01-01

    Full Text Available Unmanned combat aerial vehicles (UCAVs have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC algorithm improved by a balance-evolution strategy (BES is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.

  13. A Multi-Attribute Pheromone Ant Secure Routing Algorithm Based on Reputation Value for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2017-03-01

    Full Text Available With the development of wireless sensor networks, certain network problems have become more prominent, such as limited node resources, low data transmission security, and short network life cycles. To solve these problems effectively, it is important to design an efficient and trusted secure routing algorithm for wireless sensor networks. Traditional ant-colony optimization algorithms exhibit only local convergence, without considering the residual energy of the nodes and many other problems. This paper introduces a multi-attribute pheromone ant secure routing algorithm based on reputation value (MPASR. This algorithm can reduce the energy consumption of a network and improve the reliability of the nodes’ reputations by filtering nodes with higher coincidence rates and improving the method used to update the nodes’ communication behaviors. At the same time, the node reputation value, the residual node energy and the transmission delay are combined to formulate a synthetic pheromone that is used in the formula for calculating the random proportion rule in traditional ant-colony optimization to select the optimal data transmission path. Simulation results show that the improved algorithm can increase both the security of data transmission and the quality of routing service.

  14. A Multi-Attribute Pheromone Ant Secure Routing Algorithm Based on Reputation Value for Sensor Networks

    Science.gov (United States)

    Zhang, Lin; Yin, Na; Fu, Xiong; Lin, Qiaomin; Wang, Ruchuan

    2017-01-01

    With the development of wireless sensor networks, certain network problems have become more prominent, such as limited node resources, low data transmission security, and short network life cycles. To solve these problems effectively, it is important to design an efficient and trusted secure routing algorithm for wireless sensor networks. Traditional ant-colony optimization algorithms exhibit only local convergence, without considering the residual energy of the nodes and many other problems. This paper introduces a multi-attribute pheromone ant secure routing algorithm based on reputation value (MPASR). This algorithm can reduce the energy consumption of a network and improve the reliability of the nodes’ reputations by filtering nodes with higher coincidence rates and improving the method used to update the nodes’ communication behaviors. At the same time, the node reputation value, the residual node energy and the transmission delay are combined to formulate a synthetic pheromone that is used in the formula for calculating the random proportion rule in traditional ant-colony optimization to select the optimal data transmission path. Simulation results show that the improved algorithm can increase both the security of data transmission and the quality of routing service. PMID:28282894

  15. Energy Balance Routing Algorithm Based on Virtual MIMO Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jianpo Li

    2014-01-01

    Full Text Available Wireless sensor networks are usually energy limited and therefore an energy-efficient routing algorithm is desired for prolonging the network lifetime. In this paper, we propose a new energy balance routing algorithm which has the following three improvements over the conventional LEACH algorithm. Firstly, we propose a new cluster head selection scheme by taking into consideration the remaining energy and the most recent energy consumption of the nodes and the entire network. In this way, the sensor nodes with smaller remaining energy or larger energy consumption will be much less likely to be chosen as cluster heads. Secondly, according to the ratio of remaining energy to distance, cooperative nodes are selected to form virtual MIMO structures. It mitigates the uneven distribution of clusters and the unbalanced energy consumption of the whole network. Thirdly, we construct a comprehensive energy consumption model, which can reflect more realistically the practical energy consumption. Numerical simulations analyze the influences of cooperative node numbers and cluster head node numbers on the network lifetime. It is shown that the energy consumption of the proposed routing algorithm is lower than the conventional LEACH algorithm and for the simulation example the network lifetime is prolonged about 25%.

  16. Similarity-Based Prediction of Travel Times for Vehicles Traveling on Known Routes

    DEFF Research Database (Denmark)

    Tiesyte, Dalia; Jensen, Christian Søndergaard

    2008-01-01

    , historical data in combination with real-time data may be used to predict the future travel times of vehicles more accurately, thus improving the experience of the users who rely on such information. We propose a Nearest-Neighbor Trajectory (NNT) technique that identifies the historical trajectory......The use of centralized, real-time position tracking is proliferating in the areas of logistics and public transportation. Real-time positions can be used to provide up-to-date information to a variety of users, and they can also be accumulated for uses in subsequent data analyses. In particular...... of vehicles that travel along known routes. In empirical studies with real data from buses, we evaluate how well the proposed distance functions are capable of predicting future vehicle movements. Second, we propose a main-memory index structure that enables incremental similarity search and that is capable...

  17. A HYBRID HOPFIELD NEURAL NETWORK AND TABU SEARCH ALGORITHM TO SOLVE ROUTING PROBLEM IN COMMUNICATION NETWORK

    Directory of Open Access Journals (Sweden)

    MANAR Y. KASHMOLA

    2012-06-01

    Full Text Available The development of hybrid algorithms for solving complex optimization problems focuses on enhancing the strengths and compensating for the weakness of two or more complementary approaches. The goal is to intelligently combine the key elements of these approaches to find superior solutions to solve optimization problems. Optimal routing in communication network is considering a complex optimization problem. In this paper we propose a hybrid Hopfield Neural Network (HNN and Tabu Search (TS algorithm, this algorithm called hybrid HNN-TS algorithm. The paradigm of this hybridization is embedded. We embed the short-term memory and tabu restriction features from TS algorithm in the HNN model. The short-term memory and tabu restriction control the neuron selection process in the HNN model in order to get around the local minima problem and find an optimal solution using the HNN model to solve complex optimization problem. The proposed algorithm is intended to find the optimal path for packet transmission in the network which is fills in the field of routing problem. The optimal path that will be selected is depending on 4-tuples (delay, cost, reliability and capacity. Test results show that the propose algorithm can find path with optimal cost and a reasonable number of iterations. It also shows that the complexity of the network model won’t be a problem since the neuron selection is done heuristically.

  18. A Multi-Depot Two-Echelon Vehicle Routing Problem with Delivery Options Arising in the Last Mile Distribution

    NARCIS (Netherlands)

    Zhou, Lin; Baldacci, Roberto; Vigo, Daniele; Wang, Xu

    2018-01-01

    In this paper, we introduce a new city logistics problem arising in the last mile distribution of e-commerce. The problem involves two levels of routing problems. The first requires a design of the routes for a vehicle fleet located at the depots to transport the customer demands to a subset of the

  19. Experiences with serial and parallel algorithms for channel routing using simulated annealing

    Science.gov (United States)

    Brouwer, Randall Jay

    1988-01-01

    Two algorithms for channel routing using simulated annealing are presented. Simulated annealing is an optimization methodology which allows the solution process to back up out of local minima that may be encountered by inappropriate selections. By properly controlling the annealing process, it is very likely that the optimal solution to an NP-complete problem such as channel routing may be found. The algorithm presented proposes very relaxed restrictions on the types of allowable transformations, including overlapping nets. By freeing that restriction and controlling overlap situations with an appropriate cost function, the algorithm becomes very flexible and can be applied to many extensions of channel routing. The selection of the transformation utilizes a number of heuristics, still retaining the pseudorandom nature of simulated annealing. The algorithm was implemented as a serial program for a workstation, and a parallel program designed for a hypercube computer. The details of the serial implementation are presented, including many of the heuristics used and some of the resulting solutions.

  20. The Social Relationship Based Adaptive Multi-Spray-and-Wait Routing Algorithm for Disruption Tolerant Network

    Directory of Open Access Journals (Sweden)

    Jianfeng Guan

    2017-01-01

    Full Text Available The existing spray-based routing algorithms in DTN cannot dynamically adjust the number of message copies based on actual conditions, which results in a waste of resource and a reduction of the message delivery rate. Besides, the existing spray-based routing protocols may result in blind spots or dead end problems due to the limitation of various given metrics. Therefore, this paper proposes a social relationship based adaptive multiple spray-and-wait routing algorithm (called SRAMSW which retransmits the message copies based on their residence times in the node via buffer management and selects forwarders based on the social relationship. By these means, the proposed algorithm can remove the plight of the message congestion in the buffer and improve the probability of replicas to reach their destinations. The simulation results under different scenarios show that the SRAMSW algorithm can improve the message delivery rate and reduce the messages’ dwell time in the cache and further improve the buffer effectively.

  1. Improved Genetic Algorithm Optimization for Forward Vehicle Detection Problems

    Directory of Open Access Journals (Sweden)

    Longhui Gang

    2015-07-01

    Full Text Available Automated forward vehicle detection is an integral component of many advanced driver-assistance systems. The method based on multi-visual information fusion, with its exclusive advantages, has become one of the important topics in this research field. During the whole detection process, there are two key points that should to be resolved. One is to find the robust features for identification and the other is to apply an efficient algorithm for training the model designed with multi-information. This paper presents an adaptive SVM (Support Vector Machine model to detect vehicle with range estimation using an on-board camera. Due to the extrinsic factors such as shadows and illumination, we pay more attention to enhancing the system with several robust features extracted from a real driving environment. Then, with the introduction of an improved genetic algorithm, the features are fused efficiently by the proposed SVM model. In order to apply the model in the forward collision warning system, longitudinal distance information is provided simultaneously. The proposed method is successfully implemented on a test car and evaluation experimental results show reliability in terms of both the detection rate and potential effectiveness in a real-driving environment.

  2. DESIGNING DAILY PATROL ROUTES FOR POLICING BASED ON ANT COLONY ALGORITHM

    Directory of Open Access Journals (Sweden)

    H. Chen

    2015-07-01

    Full Text Available In this paper, we address the problem of planning police patrol routes to regularly cover street segments of high crime density (hotspots with limited police forces. A good patrolling strategy is required to minimise the average time lag between two consecutive visits to hotspots, as well as coordinating multiple patrollers and imparting unpredictability in patrol routes. Previous studies have designed different police patrol strategies for routing police patrol, but these strategies have difficulty in generalising to real patrolling and meeting various requirements. In this research we develop a new police patrolling strategy based on Bayesian method and ant colony algorithm. In this strategy, virtual marker (pheromone is laid to mark the visiting history of each crime hotspot, and patrollers continuously decide which hotspot to patrol next based on pheromone level and other variables. Simulation results using real data testifies the effective, scalable, unpredictable and extensible nature of this strategy.

  3. Vehicle Routing Problem for Fashion Supply Chains with Cross-Docking

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Hu

    2013-01-01

    Full Text Available Cross-docking, as a strategy to reduce lead time and enhance the efficiency of the fashion supply chain, has attracted substantial attention from both the academy and the industry. Cross-docking is a critical part of many fashion and textiles supply chains in practice because it can help to achieve many supply chain strategies such as postponement. We consider a model where there are multiple suppliers and customers in a single cross-docking center. With such a model setting, the issue concerning the coordinated routing between the inbound and outbound routes is much more complex than many traditional vehicle routing problems (VRPs. We formulate the optimal route selection problems from the suppliers to the cross-docking center and from the cross-docking center to the customers as the respective VRPs. Based on the relationships between the suppliers and the customers, we integrate the two VRP models to optimize the overall traveling time, distance, and waiting time at the cross-docking center. In addition, we propose a novel mixed 0/1 integer linear programming model by which the complexity of the problem can be reduced significantly. As demonstrated by the simulation analysis, our proposed model can be solved very efficiently by a commonly used optimization software package.

  4. Split delivery vehicle routing problem with time windows: a case study

    Science.gov (United States)

    Latiffianti, E.; Siswanto, N.; Firmandani, R. A.

    2018-04-01

    This paper aims to implement an extension of VRP so called split delivery vehicle routing problem (SDVRP) with time windows in a case study involving pickups and deliveries of workers from several points of origin and several destinations. Each origin represents a bus stop and the destination represents either site or office location. An integer linear programming of the SDVRP problem is presented. The solution was generated using three stages of defining the starting points, assigning busses, and solving the SDVRP with time windows using an exact method. Although the overall computational time was relatively lengthy, the results indicated that the produced solution was better than the existing routing and scheduling that the firm used. The produced solution was also capable of reducing fuel cost by 9% that was obtained from shorter total distance travelled by the shuttle buses.

  5. Dynamic route guidance algorithm based algorithm based on artificial immune system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To improve the performance of the K-shortest paths search in intelligent traffic guidance systems,this paper proposes an optimal search algorithm based on the intelligent optimization search theory and the memphor mechanism of vertebrate immune systems.This algorithm,applied to the urban traffic network model established by the node-expanding method,can expediently realize K-shortest paths search in the urban traffic guidance systems.Because of the immune memory and global parallel search ability from artificial immune systems,K shortest paths can be found without any repeat,which indicates evidently the superiority of the algorithm to the conventional ones.Not only does it perform a better parallelism,the algorithm also prevents premature phenomenon that often occurs in genetic algorithms.Thus,it is especially suitable for real-time requirement of the traffic guidance system and other engineering optimal applications.A case study verifies the efficiency and the practicability of the algorithm aforementioned.

  6. Research on consumable distribution mode of shipbuilder’s shop based on vehicle routing problem

    Directory of Open Access Journals (Sweden)

    Xiang Su

    2017-02-01

    Full Text Available A distribution vehicle optimization is established with considerations for the problem of long period of requisition and high shop costs due to the existing consumable requisition mode in shipbuilder’s shops for the requirements of shops for consumables. The shortest traveling distance of distribution vehicles are calculated with the genetic algorithm (GA. Explorations are made into a shop consumable distribution mode for shipbuilders to help them to effectively save their production logistics costs, enhance their internal material management level and provide reference for shipbuilder’s change in traditional ways and realization of just-in-time (JIT production.

  7. Heuristic algorithms for solving of the tool routing problem for CNC cutting machines

    Science.gov (United States)

    Chentsov, P. A.; Petunin, A. A.; Sesekin, A. N.; Shipacheva, E. N.; Sholohov, A. E.

    2015-11-01

    The article is devoted to the problem of minimizing the path of the cutting tool to shape cutting machines began. This problem can be interpreted as a generalized traveling salesman problem. Earlier version of the dynamic programming method to solve this problem was developed. Unfortunately, this method allows to process an amount not exceeding thirty circuits. In this regard, the task of constructing quasi-optimal route becomes relevant. In this paper we propose options for quasi-optimal greedy algorithms. Comparison of the results of exact and approximate algorithms is given.

  8. A stochastic time-dependent green capacitated vehicle routing and scheduling problem with time window, resiliency and reliability: a case study

    Directory of Open Access Journals (Sweden)

    Masoud Rabbani

    2018-09-01

    Full Text Available This paper presents a new multi-objective model for a vehicle routing problem under a stochastic uncertainty. It considers traffic point as an inflection point to deal with the arrival time of vehicles. It aims to minimize the total transportation cost, traffic pollution, customer dissatisfaction and maximizes the reliability of vehicles. Moreover, resiliency factors are included in the model to increase the flexibility of the system and decrease the possible losses that may impose on the system. Due to the NP-hardness of the presented model, a meta-heuristic algorithm, namely Simulated Annealing (SA is developed. Furthermore, a number of sensitivity analyses are provided to validate the effectiveness of the proposed model. Lastly, the foregoing meta-heuristic is compared with GAMS, in which the computational results demonstrate an acceptable performance of the proposed SA.

  9. Performance of multiobjective computational intelligence algorithms for the routing and wavelength assignment problem

    Directory of Open Access Journals (Sweden)

    Jorge Patiño

    2016-01-01

    Full Text Available This paper presents an evaluation performance of computational intelligence algorithms based on the multiobjective theory for the solution of the Routing and Wavelength Assignment problem (RWA in optical networks. The study evaluates the Firefly Algorithm, the Differential Evolutionary Algorithm, the Simulated Annealing Algorithm and two versions of the Particle Swarm Optimization algorithm. The paper provides a description of the multiobjective algorithms; then, an evaluation based on the performance provided by the multiobjective algorithms versus mono-objective approaches when dealing with different traffic loads, different numberof wavelengths and wavelength conversion process over the NSFNet topology is presented. Simulation results show that monoobjective algorithms properly solve the RWA problem for low values of data traffic and low number of wavelengths. However, the multiobjective approaches adapt better to online traffic when the number of wavelengths available in the network increases as well as when wavelength conversion is implemented in the nodes.

  10. Learning Mobility: Adaptive Control Algorithms for the Novel Unmanned Ground Vehicle (NUGV)

    National Research Council Canada - National Science Library

    Blackburn, Mike

    2003-01-01

    Mobility is a serious limiting factor in the usefulness of unmanned ground vehicles, This paper contains a description of our approach to develop control algorithms for the Novel Unmanned Ground Vehicle (NUGV...

  11. A Rich Vehicle Routing Problem with Multiple Trips and Driver Shifts

    OpenAIRE

    Arda, Yasemin; Crama, Yves; Kucukaydin, Hande; Talla Nobibon, Fabrice

    2012-01-01

    This study is concerned with a rich vehicle routing problem (RVRP) encountered at a Belgian transportation company in charge of servicing supermarkets and hypermarkets belonging to a franchise. The studied problem can be classified as a one-to-many-to-one pick-up and delivery problem, where there is a single depot from which all delivery customers are served and to which every pick-up demand must be carried back (Gutiérrez-Jarpa et al., 2010). The delivery and backhaul customers are considere...

  12. A Column Generation Approach to the Capacitated Vehicle Routing Problem with Stochastic Demands

    DEFF Research Database (Denmark)

    Christiansen, Christian Holk; Lysgaard, Jens

    . The CVRPSD can be formulated as a Set Partitioning Problem. We show that, under the above assumptions on demands, the associated column generation subproblem can be solved using a dynamic programming scheme which is similar to that used in the case of deterministic demands. To evaluate the potential of our......In this article we introduce a new exact solution approach to the Capacitated Vehicle Routing Problem with Stochastic Demands (CVRPSD). In particular, we consider the case where all customer demands are distributed independently and where each customer's demand follows a Poisson distribution...

  13. A new formulation for the 2-echelon capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Jepsen, Mads Kehlet; Røpke, Stefan; Spoorendonk, Simon

    The 2-echelon capacitated vehicle routing problem (2E-CVRP) is a transportation and distribution problem where goods are transported from a depot to a set of customers possible via optional satellite facilities. The 2E-CVRP is relevant in city-logistic applications where legal restrictions make...... it infeasible to use large trucks within the center of large cities. We propose a new mathematical formulation for the 2E-CVRP with much fewer variables than the previously proposed but with several constraint sets of exponential size. The strength of the model is implied by the facts that many cutting planes...

  14. DEHAR: a Distributed Energy Harvesting Aware Routing Algorithm for Ad-hoc Multi-hop Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Jakobsen, Mikkel Koefoed; Madsen, Jan; Hansen, Michael Reichhardt

    2010-01-01

    One of the key design goals in Wireless Sensor Networks is long lasting or even continuous operation. Continuous operation is made possible through energy harvesting. Keeping the network operational imposes a demand to prevent network segmentation and power loss in nodes. It is therefore important...... that the best energy-wise route is found for each data transfer from a source node to the sink node. We present a new adaptive and distributed routing algorithm for finding energy optimised routes in a wireless sensor network with energy harvesting. The algorithm finds an energy efficient route from each source...

  15. An Improved SIFT Algorithm for Unmanned Aerial Vehicle Imagery

    International Nuclear Information System (INIS)

    Li, J M; Yan, D M; Wang, G; Zhang, L

    2014-01-01

    The Unmanned Aerial Vehicle (UAV) platform has the benefits of low cost and convenience compared with satellites. Recently, UAVs have shown a wide range of applications such as land use change, mineral resources management and local topographic mapping. Because of the instability of the UAV air gesture, an image matching method is necessary to match different images of an object or scene. Scale Invariant Feature Transform (SIFT) features are invariant to image scaling, rotation and translation. However, the main drawback of a SIFT algorithm is its significant memory consumption and low computational speed, particularly in the case of high-resolution imagery. In this study, in order to overcome these drawbacks, we have analysed the construction of the scale-space in the SIFT algorithm and selected new parameters to construct the SIFT scale-space to improve the memory consumption and computational speed for the processing of UAV imagery. Here, we propose a restriction on the number of octaves and levels for Gaussian image pyramids. Our experiment shows that the proposed algorithm effectively reduces memory consumption and significantly improves the operational efficiency of the feature point extraction and matching under the premise of maintaining the precision of the extracted feature points

  16. A multilevel variable neighborhood search heuristic for a practical vehicle routing and driver scheduling problem

    DEFF Research Database (Denmark)

    Wen, Min; Krapper, Emil; Larsen, Jesper

    2011-01-01

    in their fresh meat supply logistics system. The problem consists of a 1‐week planning horizon, heterogeneous vehicles, and drivers with predefined work regulations. These regulations include, among other things, predefined workdays, fixed starting time, maximum weekly working duration, and a break rule......The world's second largest producer of pork, Danish Crown, also provides a fresh meat supply logistics system within Denmark. This is used by the majority of supermarkets in Denmark. This article addresses an integrated vehicle routing and driver scheduling problem arising at Danish Crown....... The objective is to minimize the total delivery cost that is a weighted sum of two kinds of delivery costs. A multilevel variable neighborhood search heuristic is proposed for the problem. In a preprocessing step, the problem size is reduced through an aggregation procedure. Thereafter, the aggregated weekly...

  17. ON THE USE OF LYTLE’S ALGORITHM FOR SOLVING TRAVELING SALESMAN PROBLEM AT DEVELOPING SUBURBAN ROUTE

    Directory of Open Access Journals (Sweden)

    S. Kantsedal

    2012-01-01

    Full Text Available Lytle’s algorithm is described as proposed for an accurate solution of the salesman Problem. Statistical characteristics of solution duration with lytle’s algorithm of some problems and of their modifications are specified. On the basis of the results obtained the limits for the algorithm practical specification in the preparation of the route network are given.

  18. An Improved Routing Optimization Algorithm Based on Travelling Salesman Problem for Social Networks

    Directory of Open Access Journals (Sweden)

    Naixue Xiong

    2017-06-01

    Full Text Available A social network is a social structure, which is organized by the relationships or interactions between individuals or groups. Humans link the physical network with social network, and the services in the social world are based on data and analysis, which directly influence decision making in the physical network. In this paper, we focus on a routing optimization algorithm, which solves a well-known and popular problem. Ant colony algorithm is proposed to solve this problem effectively, but random selection strategy of the traditional algorithm causes evolution speed to be slow. Meanwhile, positive feedback and distributed computing model make the algorithm quickly converge. Therefore, how to improve convergence speed and search ability of algorithm is the focus of the current research. The paper proposes the improved scheme. Considering the difficulty about searching for next better city, new parameters are introduced to improve probability of selection, and delay convergence speed of algorithm. To avoid the shortest path being submerged, and improve sensitive speed of finding the shortest path, it updates pheromone regulation formula. The results show that the improved algorithm can effectively improve convergence speed and search ability for achieving higher accuracy and optimal results.

  19. Application of Fuzzy Sets for the Improvement of Routing Optimization Heuristic Algorithms

    Directory of Open Access Journals (Sweden)

    Mattas Konstantinos

    2016-12-01

    Full Text Available The determination of the optimal circular path has become widely known for its difficulty in producing a solution and for the numerous applications in the scope of organization and management of passenger and freight transport. It is a mathematical combinatorial optimization problem for which several deterministic and heuristic models have been developed in recent years, applicable to route organization issues, passenger and freight transport, storage and distribution of goods, waste collection, supply and control of terminals, as well as human resource management. Scope of the present paper is the development, with the use of fuzzy sets, of a practical, comprehensible and speedy heuristic algorithm for the improvement of the ability of the classical deterministic algorithms to identify optimum, symmetrical or non-symmetrical, circular route. The proposed fuzzy heuristic algorithm is compared to the corresponding deterministic ones, with regard to the deviation of the proposed solution from the best known solution and the complexity of the calculations needed to obtain this solution. It is shown that the use of fuzzy sets reduced up to 35% the deviation of the solution identified by the classical deterministic algorithms from the best known solution.

  20. A guidance and control algorithm for scent tracking micro-robotic vehicle swarms

    International Nuclear Information System (INIS)

    Dohner, J.L.

    1998-03-01

    Cooperative micro-robotic scent tracking vehicles are designed to collectively sniff out locations of high scent concentrations in unknown, geometrically complex environments. These vehicles are programmed with guidance and control algorithms that allow inter cooperation among vehicles. In this paper a cooperative guidance and control algorithm for scent tracking micro-robotic vehicles is presented. This algorithm is comprised of a sensory compensation sub-algorithm using point source cancellation, a guidance sub-algorithm using gradient descent tracking, and a control sub-algorithm using proportional feedback. The concepts of social rank and point source cancellation are new concepts introduced within. Simulation results for cooperative vehicles swarms are given. Limitations are discussed

  1. A guidance and control algorithm for scent tracking micro-robotic vehicle swarms

    Energy Technology Data Exchange (ETDEWEB)

    Dohner, J.L. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics Dept.

    1998-03-01

    Cooperative micro-robotic scent tracking vehicles are designed to collectively sniff out locations of high scent concentrations in unknown, geometrically complex environments. These vehicles are programmed with guidance and control algorithms that allow inter cooperation among vehicles. In this paper a cooperative guidance and control algorithm for scent tracking micro-robotic vehicles is presented. This algorithm is comprised of a sensory compensation sub-algorithm using point source cancellation, a guidance sub-algorithm using gradient descent tracking, and a control sub-algorithm using proportional feedback. The concepts of social rank and point source cancellation are new concepts introduced within. Simulation results for cooperative vehicles swarms are given. Limitations are discussed.

  2. An energy efficient distance-aware routing algorithm with multiple mobile sinks for wireless sensor networks.

    Science.gov (United States)

    Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

    2014-08-18

    Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  3. An Energy Efficient Distance-Aware Routing Algorithm with Multiple Mobile Sinks for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2014-08-01

    Full Text Available Traffic patterns in wireless sensor networks (WSNs usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  4. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm

    Science.gov (United States)

    Villarubia, Gabriel; De Paz, Juan F.; Bajo, Javier

    2017-01-01

    The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route. PMID:29088087

  5. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm

    Directory of Open Access Journals (Sweden)

    Daniel H. De La Iglesia

    2017-10-01

    Full Text Available The use of electric bikes (e-bikes has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.

  6. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm.

    Science.gov (United States)

    De La Iglesia, Daniel H; Villarrubia, Gabriel; De Paz, Juan F; Bajo, Javier

    2017-10-31

    The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.

  7. An energy efficient multiple mobile sinks based routing algorithm for wireless sensor networks

    Science.gov (United States)

    Zhong, Peijun; Ruan, Feng

    2018-03-01

    With the fast development of wireless sensor networks (WSNs), more and more energy efficient routing algorithms have been proposed. However, one of the research challenges is how to alleviate the hot spot problem since nodes close to static sink (or base station) tend to die earlier than other sensors. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we mainly study the energy efficient routing method with multiple mobile sinks support. We divide the whole network into several clusters and study the influence of mobile sink number on network lifetime. Simulation results show that the best network performance appears when mobile sink number is about 3 under our simulation environment.

  8. Penerapan Konsep Vehicle Routing Problem dalam Kasus Pengangkutan Sampah di Perkotaan

    Directory of Open Access Journals (Sweden)

    Harun Al Rasyid Lubis

    2016-12-01

    Full Text Available Cities in developing countries still operate a traditional waste transport and handling where rubbish were collected at regular intervals by specialized trucks from curb-side collection or transfer point prior to transport them to a final dump site. The problem are worsening as some cities experience exhausted waste collection services because the system is inadequately managed, fiscal capacity to invest in adequate vehicle fleets is lacking and also due to uncontrolled dumpsites location. In this paper problem of waste collection and handling is formulated based on Capacitated Vehicle Routing Problem Time Window Multiple Depo Intermediete Facility (CVRPTWMDIF. Each vehicle was assigned to visit several intermediate transfer points, until the truck loading or volume capacity reached then waste are transported to final landfill or dump site. Finally all trucks will return to a depot at the end of daily operation. Initially the solution of CVRPTWMDIF problem was tested on a simple hypothetical waste handling before being implemented into a real case problem. Solutions found using CVRPTWMDIF compared with the practice of waste transport and handling in the city of Bandung. Based on a common hours of operation and the same number of transport fleets, it was found that CVRPTWMDIF can reduce the volume of waste that is not transported by almost half by the end of the daily operations.

  9. Hybrid Swarm Intelligence Energy Efficient Clustered Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-01-01

    Full Text Available Currently, wireless sensor networks (WSNs are used in many applications, namely, environment monitoring, disaster management, industrial automation, and medical electronics. Sensor nodes carry many limitations like low battery life, small memory space, and limited computing capability. To create a wireless sensor network more energy efficient, swarm intelligence technique has been applied to resolve many optimization issues in WSNs. In many existing clustering techniques an artificial bee colony (ABC algorithm is utilized to collect information from the field periodically. Nevertheless, in the event based applications, an ant colony optimization (ACO is a good solution to enhance the network lifespan. In this paper, we combine both algorithms (i.e., ABC and ACO and propose a new hybrid ABCACO algorithm to solve a Nondeterministic Polynomial (NP hard and finite problem of WSNs. ABCACO algorithm is divided into three main parts: (i selection of optimal number of subregions and further subregion parts, (ii cluster head selection using ABC algorithm, and (iii efficient data transmission using ACO algorithm. We use a hierarchical clustering technique for data transmission; the data is transmitted from member nodes to the subcluster heads and then from subcluster heads to the elected cluster heads based on some threshold value. Cluster heads use an ACO algorithm to discover the best route for data transmission to the base station (BS. The proposed approach is very useful in designing the framework for forest fire detection and monitoring. The simulation results show that the ABCACO algorithm enhances the stability period by 60% and also improves the goodput by 31% against LEACH and WSNCABC, respectively.

  10. Different Control Algorithms for a Platoon of Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Zoran Gacovski

    2014-05-01

    Full Text Available This paper presents a concept of platoon movement of autonomous vehicles (smart cars. These vehicles have Adaptive or Advanced cruise control (ACC system also called Intelligent cruise control (ICC or Adaptive Intelligent cruise control (AICC system. The vehicles are suitable to follow other vehicles on desired distance and to be organized in platoons. To perform a research on the control and stability of an AGV (Automated Guided Vehicles string, we have developed a car-following model. To do this, first a single vehicle is modeled and since all cars in the platoon have the same dynamics, the single vehicle model is copied ten times to form model of platoon (string with ten vehicles. To control this string, we have applied equal PID controllers to all vehicles, except the leading vehicle. These controllers try to keep the headway distance as constant as possible and the velocity error between subsequent vehicles - small. For control of vehicle with nonlinear dynamics combi­nation of feedforward control and feedback control approach is used. Feedforward control is based on the inverse model of nominal dynamics of the vehicle, and feedback PID control is designed based on the linearized model of the vehicle. For simulation and analysis of vehicle and platoon of vehicles – we have developed Matlab/Simulink models. Simulation results, discussions and conclusions are given at the end of the paper.

  11. An Adaptive Large Neighborhood Search-based Three-Stage Matheuristic for the Vehicle Routing Problem with Time Windows

    DEFF Research Database (Denmark)

    Christensen, Jonas Mark; Røpke, Stefan

    that serves all the customers. The second stage usesan Adaptive Large Neighborhood Search (ALNS) algorithm to minimise the travel distance, during the second phase all of the generated routes are considered by solving a set cover problem. The ALNS algorithm uses 4 destroy operators, 2 repair operators...

  12. Intelligence algorithms for autonomous navigation in a ground vehicle

    Science.gov (United States)

    Petkovsek, Steve; Shakya, Rahul; Shin, Young Ho; Gautam, Prasanna; Norton, Adam; Ahlgren, David J.

    2012-01-01

    This paper will discuss the approach to autonomous navigation used by "Q," an unmanned ground vehicle designed by the Trinity College Robot Study Team to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2011 competition, Q's intelligence was upgraded in several different areas, resulting in a more robust decision-making process and a more reliable system. In 2010-2011, the software of Q was modified to operate in a modular parallel manner, with all subtasks (including motor control, data acquisition from sensors, image processing, and intelligence) running simultaneously in separate software processes using the National Instruments (NI) LabVIEW programming language. This eliminated processor bottlenecks and increased flexibility in the software architecture. Though overall throughput was increased, the long runtime of the image processing process (150 ms) reduced the precision of Q's realtime decisions. Q had slow reaction times to obstacles detected only by its cameras, such as white lines, and was limited to slow speeds on the course. To address this issue, the image processing software was simplified and also pipelined to increase the image processing throughput and minimize the robot's reaction times. The vision software was also modified to detect differences in the texture of the ground, so that specific surfaces (such as ramps and sand pits) could be identified. While previous iterations of Q failed to detect white lines that were not on a grassy surface, this new software allowed Q to dynamically alter its image processing state so that appropriate thresholds could be applied to detect white lines in changing conditions. In order to maintain an acceptable target heading, a path history algorithm was used to deal with local obstacle fields and GPS waypoints were added to provide a global target heading. These modifications resulted in Q placing 5th in the autonomous challenge and 4th in the navigation challenge at IGVC.

  13. Hyperspectral Vehicle BRDF Learning: An Exploration of Vehicle Reflectance Variation and Optimal Measures of Spectral Similarity for Vehicle Reacquisition and Tracking Algorithms

    Science.gov (United States)

    Svejkosky, Joseph

    The spectral signatures of vehicles in hyperspectral imagery exhibit temporal variations due to the preponderance of surfaces with material properties that display non-Lambertian bi-directional reflectance distribution functions (BRDFs). These temporal variations are caused by changing illumination conditions, changing sun-target-sensor geometry, changing road surface properties, and changing vehicle orientations. To quantify these variations and determine their relative importance in a sub-pixel vehicle reacquisition and tracking scenario, a hyperspectral vehicle BRDF sampling experiment was conducted in which four vehicles were rotated at different orientations and imaged over a six-hour period. The hyperspectral imagery was calibrated using novel in-scene methods and converted to reflectance imagery. The resulting BRDF sampled time-series imagery showed a strong vehicle level BRDF dependence on vehicle shape in off-nadir imaging scenarios and a strong dependence on vehicle color in simulated nadir imaging scenarios. The imagery also exhibited spectral features characteristic of sampling the BRDF of non-Lambertian targets, which were subsequently verified with simulations. In addition, the imagery demonstrated that the illumination contribution from vehicle adjacent horizontal surfaces significantly altered the shape and magnitude of the vehicle reflectance spectrum. The results of the BRDF sampling experiment illustrate the need for a target vehicle BRDF model and detection scheme that incorporates non-Lambertian BRDFs. A new detection algorithm called Eigenvector Loading Regression (ELR) is proposed that learns a hyperspectral vehicle BRDF from a series of BRDF measurements using regression in a lower dimensional space and then applies the learned BRDF to make test spectrum predictions. In cases of non-Lambertian vehicle BRDF, this detection methodology performs favorably when compared to subspace detections algorithms and graph-based detection algorithms that

  14. Automated Escape Guidance Algorithms for An Escape Vehicle

    Science.gov (United States)

    Flanary, Ronald; Hammen, David; Ito, Daigoro; Rabalais, Bruce; Rishikof, Brian; Siebold, Karl

    2002-01-01

    An escape vehicle was designed to provide an emergency evacuation for crew members living on a space station. For maximum escape capability, the escape vehicle needs to have the ability to safely evacuate a station in a contingency scenario such as an uncontrolled (e.g., tumbling) station. This emergency escape sequence will typically be divided into three events: The fust separation event (SEP1), the navigation reconstruction event, and the second separation event (SEP2). SEP1 is responsible for taking the spacecraft from its docking port to a distance greater than the maximum radius of the rotating station. The navigation reconstruction event takes place prior to the SEP2 event and establishes the orbital state to within the tolerance limits necessary for SEP2. The SEP2 event calculates and performs an avoidance burn to prevent station recontact during the next several orbits. This paper presents the tools and results for the whole separation sequence with an emphasis on the two separation events. The fust challenge includes collision avoidance during the escape sequence while the station is in an uncontrolled rotational state, with rotation rates of up to 2 degrees per second. The task of avoiding a collision may require the use of the Vehicle's de-orbit propulsion system for maximum thrust and minimum dwell time within the vicinity of the station vicinity. The thrust of the propulsion system is in a single direction, and can be controlled only by the attitude of the spacecraft. Escape algorithms based on a look-up table or analytical guidance can be implemented since the rotation rate and the angular momentum vector can be sensed onboard and a-priori knowledge of the position and relative orientation are available. In addition, crew intervention has been provided for in the event of unforeseen obstacles in the escape path. The purpose of the SEP2 burn is to avoid re-contact with the station over an extended period of time. Performing this maneuver properly

  15. Real-Time Vehicle Routing for Repairing Damaged Infrastructures Due to Natural Disasters

    Directory of Open Access Journals (Sweden)

    Huey-Kuo Chen

    2011-01-01

    Full Text Available We address the task of repairing damaged infrastructures as a series of multidepot vehicle-routing problems with time windows in a time-rolling frame. The network size of the tackled problems changes from time to time, as new disaster nodes will be added to and serviced disaster nodes will be deleted from the current network. In addition, an inaccessible disaster node would become accessible when one of its adjacent disaster nodes has been repaired. By the “take-and-conquer” strategy, the repair sequence of the disaster nodes in the affected area can be suitably scheduled. Thirteen instances were tested with our proposed heuristic, that is, Chen et al.'s approach. For comparison, Hsueh et al.'s approach (2008 with necessary modification was also tested. The results show that Chen et al.'s approach performs slightly better for larger size networks in terms of objective value.

  16. Design of a Multi-layer Lane-Level Map for Vehicle Route Planning

    Directory of Open Access Journals (Sweden)

    Liu Chaoran

    2017-01-01

    Full Text Available With the development of intelligent transportation system, there occurs further demand for high precision localization and route planning, and simultaneously the traditional road-level map fails to meet with this requirement, by which this paper is motivated. In this paper, t he three-layer lane-level map architecture for vehicle path guidance is established, and the mathematical models of road-level layer, intermediate layer and lane-level layer are designed considering efficiency and precision. The geometric model of the lane-level layer of the map is characterized by Cubic Hermite Spline for continuity. A method of generating the lane geometry with fixed and variable control points is proposed, which can effectively ensure the accuracy with limited num ber of control points. In experimental part, a multi-layer map of an intersection is built to validate the map model, and an example of a local map was generated with the lane-level geometry.

  17. Improving Transportation Services for the University of the Thai Chamber of Commerce: A Case Study on Solving the Mixed-Fleet Vehicle Routing Problem with Split Deliveries

    Science.gov (United States)

    Suthikarnnarunai, N.; Olinick, E.

    2009-01-01

    We present a case study on the application of techniques for solving the Vehicle Routing Problem (VRP) to improve the transportation service provided by the University of The Thai Chamber of Commerce to its staff. The problem is modeled as VRP with time windows, split deliveries, and a mixed fleet. An exact algorithm and a heuristic solution procedure are developed to solve the problem and implemented in the AMPL modeling language and CPLEX Integer Programming solver. Empirical results indicate that the heuristic can find relatively good solutions in a small fraction of the time required by the exact method. We also perform sensitivity analysis and find that a savings in outsourcing cost can be achieved with a small increase in vehicle capacity.

  18. A Hybrid Genetic-Simulated Annealing Algorithm for the Location-Inventory-Routing Problem Considering Returns under E-Supply Chain Environment

    Directory of Open Access Journals (Sweden)

    Yanhui Li

    2013-01-01

    Full Text Available Facility location, inventory control, and vehicle routes scheduling are critical and highly related problems in the design of logistics system for e-business. Meanwhile, the return ratio in Internet sales was significantly higher than in the traditional business. Many of returned merchandise have no quality defects, which can reenter sales channels just after a simple repackaging process. Focusing on the existing problem in e-commerce logistics system, we formulate a location-inventory-routing problem model with no quality defects returns. To solve this NP-hard problem, an effective hybrid genetic simulated annealing algorithm (HGSAA is proposed. Results of numerical examples show that HGSAA outperforms GA on computing time, optimal solution, and computing stability. The proposed model is very useful to help managers make the right decisions under e-supply chain environment.

  19. A hybrid genetic-simulated annealing algorithm for the location-inventory-routing problem considering returns under e-supply chain environment.

    Science.gov (United States)

    Li, Yanhui; Guo, Hao; Wang, Lin; Fu, Jing

    2013-01-01

    Facility location, inventory control, and vehicle routes scheduling are critical and highly related problems in the design of logistics system for e-business. Meanwhile, the return ratio in Internet sales was significantly higher than in the traditional business. Many of returned merchandise have no quality defects, which can reenter sales channels just after a simple repackaging process. Focusing on the existing problem in e-commerce logistics system, we formulate a location-inventory-routing problem model with no quality defects returns. To solve this NP-hard problem, an effective hybrid genetic simulated annealing algorithm (HGSAA) is proposed. Results of numerical examples show that HGSAA outperforms GA on computing time, optimal solution, and computing stability. The proposed model is very useful to help managers make the right decisions under e-supply chain environment.

  20. A Hybrid Genetic-Simulated Annealing Algorithm for the Location-Inventory-Routing Problem Considering Returns under E-Supply Chain Environment

    Science.gov (United States)

    Guo, Hao; Fu, Jing

    2013-01-01

    Facility location, inventory control, and vehicle routes scheduling are critical and highly related problems in the design of logistics system for e-business. Meanwhile, the return ratio in Internet sales was significantly higher than in the traditional business. Many of returned merchandise have no quality defects, which can reenter sales channels just after a simple repackaging process. Focusing on the existing problem in e-commerce logistics system, we formulate a location-inventory-routing problem model with no quality defects returns. To solve this NP-hard problem, an effective hybrid genetic simulated annealing algorithm (HGSAA) is proposed. Results of numerical examples show that HGSAA outperforms GA on computing time, optimal solution, and computing stability. The proposed model is very useful to help managers make the right decisions under e-supply chain environment. PMID:24489489

  1. A Pseudo-Parallel Genetic Algorithm Integrating Simulated Annealing for Stochastic Location-Inventory-Routing Problem with Consideration of Returns in E-Commerce

    Directory of Open Access Journals (Sweden)

    Bailing Liu

    2015-01-01

    Full Text Available Facility location, inventory control, and vehicle routes scheduling are three key issues to be settled in the design of logistics system for e-commerce. Due to the online shopping features of e-commerce, customer returns are becoming much more than traditional commerce. This paper studies a three-phase supply chain distribution system consisting of one supplier, a set of retailers, and a single type of product with continuous review (Q, r inventory policy. We formulate a stochastic location-inventory-routing problem (LIRP model with no quality defects returns. To solve the NP-hand problem, a pseudo-parallel genetic algorithm integrating simulated annealing (PPGASA is proposed. The computational results show that PPGASA outperforms GA on optimal solution, computing time, and computing stability.

  2. Function-Oriented Networking and On-Demand Routing System in Network Using Ant Colony Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Young-Bo Sim

    2017-11-01

    Full Text Available In this paper, we proposed and developed Function-Oriented Networking (FON, a platform for network users. It has a different philosophy as opposed to technologies for network managers of Software-Defined Networking technology, OpenFlow. It is a technology that can immediately reflect the demands of the network users in the network, unlike the existing OpenFlow and Network Functions Virtualization (NFV, which do not reflect directly the needs of the network users. It allows the network user to determine the policy of the direct network, so it can be applied more precisely than the policy applied by the network manager. This is expected to increase the satisfaction of the service users when the network users try to provide new services. We developed FON function that performs on-demand routing for Low-Delay Required service. We analyzed the characteristics of the Ant Colony Optimization (ACO algorithm and found that the algorithm is suitable for low-delay required services. It was also the first in the world to implement the routing software using ACO Algorithm in the real Ethernet network. In order to improve the routing performance, several algorithms of the ACO Algorithm have been developed to enable faster path search-routing and path recovery. The relationship between the network performance index and the ACO routing parameters is derived, and the results are compared and analyzed. Through this, it was possible to develop the ACO algorithm.

  3. A Hybrid Ant Colony Optimization Algorithm for the Extended Capacitated Arc Routing Problem.

    Science.gov (United States)

    Li-Ning Xing; Rohlfshagen, P; Ying-Wu Chen; Xin Yao

    2011-08-01

    The capacitated arc routing problem (CARP) is representative of numerous practical applications, and in order to widen its scope, we consider an extended version of this problem that entails both total service time and fixed investment costs. We subsequently propose a hybrid ant colony optimization (ACO) algorithm (HACOA) to solve instances of the extended CARP. This approach is characterized by the exploitation of heuristic information, adaptive parameters, and local optimization techniques: Two kinds of heuristic information, arc cluster information and arc priority information, are obtained continuously from the solutions sampled to guide the subsequent optimization process. The adaptive parameters ease the burden of choosing initial values and facilitate improved and more robust results. Finally, local optimization, based on the two-opt heuristic, is employed to improve the overall performance of the proposed algorithm. The resulting HACOA is tested on four sets of benchmark problems containing a total of 87 instances with up to 140 nodes and 380 arcs. In order to evaluate the effectiveness of the proposed method, some existing capacitated arc routing heuristics are extended to cope with the extended version of this problem; the experimental results indicate that the proposed ACO method outperforms these heuristics.

  4. Fuzzy Weight Cluster-Based Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Teng Gao

    2015-01-01

    Full Text Available Cluster-based protocol is a kind of important routing in wireless sensor networks. However, due to the uneven distribution of cluster heads in classical clustering algorithm, some nodes may run out of energy too early, which is not suitable for large-scale wireless sensor networks. In this paper, a distributed clustering algorithm based on fuzzy weighted attributes is put forward to ensure both energy efficiency and extensibility. On the premise of a comprehensive consideration of all attributes, the corresponding weight of each parameter is assigned by using the direct method of fuzzy engineering theory. Then, each node works out property value. These property values will be mapped to the time axis and be triggered by a timer to broadcast cluster headers. At the same time, the radio coverage method is adopted, in order to avoid collisions and to ensure the symmetrical distribution of cluster heads. The aggregated data are forwarded to the sink node in the form of multihop. The simulation results demonstrate that clustering algorithm based on fuzzy weighted attributes has a longer life expectancy and better extensibility than LEACH-like algorithms.

  5. A multicast tree aggregation algorithm in wavelength-routed WDM networks

    Science.gov (United States)

    Cheng, Hsu-Chen; Kuo, Chin-Chun; Lin, Frank Y.

    2005-02-01

    Wavelength division multiplexing (WDM) has been considered a promising transmission technology in optical communication networks. With the continuous advance in optical technology, WDM network will play an important role in wide area backbone networks. Optical wavelength switching, compared with optical packet switching, is a more mature and more cost-effective choice for optical switching technologies. Besides, the technology of time division multiplexing in optical communication networks has been working smoothly for a long time. In the proposed research, the problem of multicast groups aggregation and multicast routing and wavelength assignment in wavelength-routed WDM network is studied. The optical cross connect switches in the problem are assumed to have limited optical multicast/splitting and TDM functionalities. Given the physical network topology and capacity, the objective is to maximize the total revenue by means of utmost merging multicast groups into larger macro-groups. The groups in the same macro-group will share a multicast tree to conduct data transmission. The problem is formulated as an optimization problem, where the objective function is to maximize the total revenue subject to capacity constraints of components in the optical network, wavelength continuity constraints, and tree topology constraints. The decision variables in the formulations include the merging results between groups, multicast tree routing assignment and wavelength assignment. The basic approach to the algorithm development for this model is Lagrangean relaxation in conjunction with a number of optimization techniques. In computational experiments, the proposed algorithms are evaluated on different network topologies and perform efficiently and effectively according to the experiment results.

  6. Navigation API Route Fuel Saving Opportunity Assessment on Large-Scale Real-World Travel Data for Conventional Vehicles and Hybrid Electric Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Holden, Jacob [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gonder, Jeffrey D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-06

    The green routing strategy instructing a vehicle to select a fuel-efficient route benefits the current transportation system with fuel-saving opportunities. This paper introduces a navigation API route fuel-saving evaluation framework for estimating fuel advantages of alternative API routes based on large-scale, real-world travel data for conventional vehicles (CVs) and hybrid electric vehicles (HEVs). The navigation APIs, such Google Directions API, integrate traffic conditions and provide feasible alternative routes for origin-destination pairs. This paper develops two link-based fuel-consumption models stratified by link-level speed, road grade, and functional class (local/non-local), one for CVs and the other for HEVs. The link-based fuel-consumption models are built by assigning travel from a large number of GPS driving traces to the links in TomTom MultiNet as the underlying road network layer and road grade data from a U.S. Geological Survey elevation data set. Fuel consumption on a link is calculated by the proposed fuel consumption model. This paper envisions two kinds of applications: 1) identifying alternate routes that save fuel, and 2) quantifying the potential fuel savings for large amounts of travel. An experiment based on a large-scale California Household Travel Survey GPS trajectory data set is conducted. The fuel consumption and savings of CVs and HEVs are investigated. At the same time, the trade-off between fuel saving and time saving for choosing different routes is also examined for both powertrains.

  7. Semi-Empiric Algorithm for Assessment of the Vehicle Mobility

    Directory of Open Access Journals (Sweden)

    Ticusor CIOBOTARU

    2009-12-01

    Full Text Available The mobility of military vehicles plays a key role in operation. The ability to reach the desired area in war theatre represents the most important condition for a successful accomplishment of the mission for military vehicles. The off-road vehicles face a broad spectrum of terrains to cross. These terrains differ by geometry and the soil characteristics.NATO References Mobility Model (NRMM software is based on empirical relationship between the terrain characteristics, running conditions and vehicles design. The paper presents the main results of a comparative mobility analysis for M1 and HMMWV vehicles obtained using NRMM.

  8. A well-scalable metaheuristic for the fleet size and mix vehicle routing problem with time windows

    NARCIS (Netherlands)

    Bräysy, Olli; Porkka, Pasi P.; Dullaert, Wout; Repoussis, Panagiotis P.; Tarantilis, Christos D.

    This paper presents an efficient and well-scalable metaheuristic for fleet size and mix vehicle routing with time windows. The suggested solution method combines the strengths of well-known threshold accepting and guided local search metaheuristics to guide a set of four local search heuristics. The

  9. Exact and Heuristic Algorithms for Routing AGV on Path with Precedence Constraints

    Directory of Open Access Journals (Sweden)

    Liang Xu

    2016-01-01

    Full Text Available A new problem arises when an automated guided vehicle (AGV is dispatched to visit a set of customers, which are usually located along a fixed wire transmitting signal to navigate the AGV. An optimal visiting sequence is desired with the objective of minimizing the total travelling distance (or time. When precedence constraints are restricted on customers, the problem is referred to as traveling salesman problem on path with precedence constraints (TSPP-PC. Whether or not it is NP-complete has no answer in the literature. In this paper, we design dynamic programming for the TSPP-PC, which is the first polynomial-time exact algorithm when the number of precedence constraints is a constant. For the problem with number of precedence constraints, part of the input can be arbitrarily large, so we provide an efficient heuristic based on the exact algorithm.

  10. Series Hybrid Electric Vehicle Power System Optimization Based on Genetic Algorithm

    Science.gov (United States)

    Zhu, Tianjun; Li, Bin; Zong, Changfu; Wu, Yang

    2017-09-01

    Hybrid electric vehicles (HEV), compared with conventional vehicles, have complex structures and more component parameters. If variables optimization designs are carried on all these parameters, it will increase the difficulty and the convergence of algorithm program, so this paper chooses the parameters which has a major influence on the vehicle fuel consumption to make it all work at maximum efficiency. First, HEV powertrain components modelling are built. Second, taking a tandem hybrid structure as an example, genetic algorithm is used in this paper to optimize fuel consumption and emissions. Simulation results in ADVISOR verify the feasibility of the proposed genetic optimization algorithm.

  11. An Energy Efficient Stable Election-Based Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Weiwei Yuan

    2013-10-01

    Full Text Available Sensor nodes usually have limited energy supply and they are impractical to recharge. How to balance traffic load in sensors in order to increase network lifetime is a very challenging research issue. Many clustering algorithms have been proposed recently for wireless sensor networks (WSNs. However, sensor networks with one fixed sink node often suffer from a hot spots problem since nodes near sinks have more traffic burden to forward during a multi-hop transmission process. The use of mobile sinks has been shown to be an effective technique to enhance network performance features such as latency, energy efficiency, network lifetime, etc. In this paper, a modified Stable Election Protocol (SEP, which employs a mobile sink, has been proposed for WSNs with non-uniform node distribution. The decision of selecting cluster heads by the sink is based on the minimization of the associated additional energy and residual energy at each node. Besides, the cluster head selects the shortest path to reach the sink between the direct approach and the indirect approach with the use of the nearest cluster head. Simulation results demonstrate that our algorithm has better performance than traditional routing algorithms, such as LEACH and SEP.

  12. Identifying vital edges in Chinese air route network via memetic algorithm

    Directory of Open Access Journals (Sweden)

    Wenbo Du

    2017-02-01

    Full Text Available Due to rapid development in the past decade, air transportation system has attracted considerable research attention from diverse communities. While most of the previous studies focused on airline networks, here we systematically explore the robustness of the Chinese air route network, and identify the vital edges which form the backbone of Chinese air transportation system. Specifically, we employ a memetic algorithm to minimize the network robustness after removing certain edges, and hence the solution of this model is the set of vital edges. Counterintuitively, our results show that the most vital edges are not necessarily the edges of the highest topological importance, for which we provide an extensive explanation from the microscope view. Our findings also offer new insights to understanding and optimizing other real-world network systems.

  13. A heuristic algorithm for a multi-product four-layer capacitated location-routing problem

    Directory of Open Access Journals (Sweden)

    Mohsen Hamidi

    2014-01-01

    Full Text Available The purpose of this study is to solve a complex multi-product four-layer capacitated location-routing problem (LRP in which two specific constraints are taken into account: 1 plants have limited production capacity, and 2 central depots have limited capacity for storing and transshipping products. The LRP represents a multi-product four-layer distribution network that consists of plants, central depots, regional depots, and customers. A heuristic algorithm is developed to solve the four-layer LRP. The heuristic uses GRASP (Greedy Randomized Adaptive Search Procedure and two probabilistic tabu search strategies of intensification and diversification to tackle the problem. Results show that the heuristic solves the problem effectively.

  14. A social activity and physical contact-based routing algorithm in mobile opportunistic networks for emergency response to sudden disasters

    Science.gov (United States)

    Wang, Xiaoming; Lin, Yaguang; Zhang, Shanshan; Cai, Zhipeng

    2017-05-01

    Sudden disasters such as earthquake, flood and hurricane necessitate the employment of communication networks to carry out emergency response activities. Routing has a significant impact on the functionality, performance and flexibility of communication networks. In this article, the routing problem is studied considering the delivery ratio of messages, the overhead ratio of messages and the average delay of messages in mobile opportunistic networks (MONs) for enterprise-level emergency response communications in sudden disaster scenarios. Unlike the traditional routing methods for MONS, this article presents a new two-stage spreading and forwarding dynamic routing algorithm based on the proposed social activity degree and physical contact factor for mobile customers. A new modelling method for describing a dynamic evolving process of the topology structure of a MON is first proposed. Then a multi-copy spreading strategy based on the social activity degree of nodes and a single-copy forwarding strategy based on the physical contact factor between nodes are designed. Compared with the most relevant routing algorithms such as Epidemic, Prophet, Labelled-sim, Dlife-comm and Distribute-sim, the proposed routing algorithm can significantly increase the delivery ratio of messages, and decrease the overhead ratio and average delay of messages.

  15. A Fully-Distributed Heuristic Algorithm for Control of Autonomous Vehicle Movements at Isolated Intersections

    Directory of Open Access Journals (Sweden)

    Abdallah A. Hassan

    2014-12-01

    Full Text Available Optimizing autonomous vehicle movements through roadway intersections is a challenging problem. It has been demonstrated in the literature that traditional traffic control, such as traffic signal and stop sign control are not optimal especially for heavy traffic demand levels. Alternatively, centralized autonomous vehicle control strategies are costly and not scalable given that the ability of a central controller to track and schedule the movement of hundreds of vehicles in real-time is questionable. Consequently, in this paper a fully distributed algorithm is proposed where vehicles in the vicinity of an intersection continuously cooperate with each other to develop a schedule that allows them to safely proceed through the intersection while incurring minimum delay. Unlike other distributed approaches described in the literature, the wireless communication constraints are considered in the design of the control algorithm. Specifically, the proposed algorithm requires vehicles heading to an intersection to communicate only with neighboring vehicles, while the lead vehicles on each approach lane share information to develop a complete intersection utilization schedule. The scheduling rotates between vehicles to identify higher traffic volumes and favor vehicles coming from heavier lanes to minimize the overall intersection delay. The simulated experiments show significant reductions in the average delay using the proposed approach compared to other methods reported in the literature and reduction in the maximum delay experienced by a vehicle especially in cases of heavy traffic demand levels.

  16. Case Study on Optimal Routing in Logistics Network by Priority-based Genetic Algorithm

    Science.gov (United States)

    Wang, Xiaoguang; Lin, Lin; Gen, Mitsuo; Shiota, Mitsushige

    Recently, research on logistics caught more and more attention. One of the important issues on logistics system is to find optimal delivery routes with the least cost for products delivery. Numerous models have been developed for that reason. However, due to the diversity and complexity of practical problem, the existing models are usually not very satisfying to find the solution efficiently and convinently. In this paper, we treat a real-world logistics case with a company named ABC Co. ltd., in Kitakyusyu Japan. Firstly, based on the natures of this conveyance routing problem, as an extension of transportation problem (TP) and fixed charge transportation problem (fcTP) we formulate the problem as a minimum cost flow (MCF) model. Due to the complexity of fcTP, we proposed a priority-based genetic algorithm (pGA) approach to find the most acceptable solution to this problem. In this pGA approach, a two-stage path decoding method is adopted to develop delivery paths from a chromosome. We also apply the pGA approach to this problem, and compare our results with the current logistics network situation, and calculate the improvement of logistics cost to help the management to make decisions. Finally, in order to check the effectiveness of the proposed method, the results acquired are compared with those come from the two methods/ software, such as LINDO and CPLEX.

  17. Decision Support from Genetic Algorithms for Ship Collision Avoidance Route Planning and Alerts

    Science.gov (United States)

    Tsou, Ming-Cheng; Kao, Sheng-Long; Su, Chien-Min

    When an officer of the watch (OOW) faces complicated marine traffic, a suitable decision support tool could be employed in support of collision avoidance decisions, to reduce the burden and greatly improve the safety of marine traffic. Decisions on routes to avoid collisions could also consider economy as well as safety. Through simulating the biological evolution model, this research adopts the genetic algorithm used in artificial intelligence to find a theoretically safety-critical recommendation for the shortest route of collision avoidance from an economic viewpoint, combining the international regulations for preventing collisions at sea (COLREGS) and the safety domain of a ship. Based on this recommendation, an optimal safe avoidance turning angle, navigation restoration time and navigational restoration angle will also be provided. A Geographic Information System (GIS) will be used as the platform for display and operation. In order to achieve advance notice of alerts and due preparation for collision avoidance, a Vessel Traffic Services (VTS) operator and the OOW can use this system as a reference to assess collision avoidance at present location.

  18. Night-Time Vehicle Detection Algorithm Based on Visual Saliency and Deep Learning

    Directory of Open Access Journals (Sweden)

    Yingfeng Cai

    2016-01-01

    Full Text Available Night vision systems get more and more attention in the field of automotive active safety field. In this area, a number of researchers have proposed far-infrared sensor based night-time vehicle detection algorithm. However, existing algorithms have low performance in some indicators such as the detection rate and processing time. To solve this problem, we propose a far-infrared image vehicle detection algorithm based on visual saliency and deep learning. Firstly, most of the nonvehicle pixels will be removed with visual saliency computation. Then, vehicle candidate will be generated by using prior information such as camera parameters and vehicle size. Finally, classifier trained with deep belief networks will be applied to verify the candidates generated in last step. The proposed algorithm is tested in around 6000 images and achieves detection rate of 92.3% and processing time of 25 Hz which is better than existing methods.

  19. Capacitated vehicle routing problem for PSS uses based on ubiquitous computing: An emerging markets approach

    Directory of Open Access Journals (Sweden)

    Alberto Ochoa-Ortíz

    2015-01-01

    Full Text Available El problema de ruteo de vehículos bajo las limitaciones de capacidad y basado en computación ubicua desde una perspectiva relacionada con PSS (Producto-Servicio de Sistemas para desarrollar configuraciones para el transporte urbano de mercancías es abordado. Éste trabajo considera las especificidades de la logística urbana bajo un contexto de mercados emergentes. En este caso, involucra: i bajas competencias logísticas de los tomadores de decisiones; ii la limitada disponibilidad de datos; y iii restringido acceso a tecnología de alto desempeño para calcular rutas de transporte óptimas. Por lo tanto, se propone el uso de un software libre que proporciona soluciones de bajo costo (en tiempo y recursos. El artículo muestra la aplicación de los resultados de una herramienta de software basado en la Teoría de Grafos utilizado para analizar y resolver un CVRP (Capacitated Vehicle Routing Problem. Se utilizó el caso de una empresa local de distribución de alimentos situada en una gran ciudad de México. Sobre la base de una flora de vehículos pequeños, todos con las mismas especificaciones técnicas y una capacidad de carga comparable.

  20. DATA-ORIENTED ALGORITHM FOR ROUTE CHOICE SET GENERATION IN A METROPOLITAN AREA WITH MOBILE PHONE GPS DATA

    Directory of Open Access Journals (Sweden)

    T. Nakamura

    2012-07-01

    Full Text Available Nowadays, for the estimation of traffic demand or people flow, modelling route choice activity in road networks is an important task and many algorithms have been developed to generate route choice sets. However, developing an algorithm based on a small amount of data that can be applied generally within a metropolitan area is difficult. This is because the characteristics of road networks vary widely. On the other hand, recently, the collection of people movement data has lately become much easier, especially through mobile phones. Lately, most mobile phones include GPS functionality. Given this background, we propose a data-oriented algorithm to generate route choice sets using mobile phone GPS data. GPS data contain a number of measurement errors; hence, they must be adjusted to account for these errors before use in advanced people movement analysis. However, this is time-consuming and expensive, because an enormous amount of daily data can be obtained. Hence, the objective of this study is to develop an algorithm that can easily manage GPS data. Specifically, at first movement data from all GPS data are selected by calculating the speed. Next, the nearest roads in the road network are selected from the GPS location and count such data for each road. Then An algorithm based on the GSP (Gateway Shortest Path algorithm is proposed, which searches the shortest path through a given gateway. In the proposed algorithm, the road for which the utilization volume calculated by GPS data is large is selected as the gateway. Thus, route choice sets that are based on trends in real GPS data are generated. To evaluate the proposed method, GPS data from 0.7 million people a year in Japan and DRM (Digital Road Map as the road network are used. DRM is one of the most detailed road networks in Japan. Route choice sets using the proposed algorithm are generated and the cover rate of the utilization volume of each road under evaluation is calculated. As a

  1. Rigorous Progress on Algorithms Based Routing and Wavelength Assignment in Trans-Egypt Network (TEGYNET) Management

    OpenAIRE

    Abd El–Naser A. Mohammed; Ahmed Nabih Zaki Rashed; Osama S. Fragallah; Mohamed G. El-Abyad

    2013-01-01

    In simple wavelength-division multiplexed (WDM) networks, a connection must be established along a route using a common wavelength on all of the links along the route. The introduction of wavelength converters into WDM cross connects increases the hardware cost and complexity. Given a set of connection requests, the routing and wavelength assignment problem involves finding a route (routing) and assigning a wavelength to each request. This paper has presented the WDM technology is being exten...

  2. The spectral positioning algorithm of new spectrum vehicle based on convex programming in wireless sensor network

    Science.gov (United States)

    Zhang, Yongjun; Lu, Zhixin

    2017-10-01

    Spectrum resources are very precious, so it is increasingly important to locate interference signals rapidly. Convex programming algorithms in wireless sensor networks are often used as localization algorithms. But in view of the traditional convex programming algorithm is too much overlap of wireless sensor nodes that bring low positioning accuracy, the paper proposed a new algorithm. Which is mainly based on the traditional convex programming algorithm, the spectrum car sends unmanned aerial vehicles (uses) that can be used to record data periodically along different trajectories. According to the probability density distribution, the positioning area is segmented to further reduce the location area. Because the algorithm only increases the communication process of the power value of the unknown node and the sensor node, the advantages of the convex programming algorithm are basically preserved to realize the simple and real-time performance. The experimental results show that the improved algorithm has a better positioning accuracy than the original convex programming algorithm.

  3. An Immune Cooperative Particle Swarm Optimization Algorithm for Fault-Tolerant Routing Optimization in Heterogeneous Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yifan Hu

    2012-01-01

    Full Text Available The fault-tolerant routing problem is important consideration in the design of heterogeneous wireless sensor networks (H-WSNs applications, and has recently been attracting growing research interests. In order to maintain k disjoint communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which multiple paths are calculated and maintained in advance, and alternate paths are created once the previous routing is broken. Then, we propose an immune cooperative particle swarm optimization algorithm (ICPSOA in the model to provide the fast routing recovery and reconstruct the network topology for path failure in H-WSNs. In the ICPSOA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by immune mechanism, which can enhance the capacity of global search and improve the converging rate of the algorithm. Then we validate this theoretical model with simulation results. The results indicate that the ICPSOA-based fault-tolerant routing protocol outperforms several other protocols due to its capability of fast routing recovery mechanism, reliable communications, and prolonging the lifetime of WSNs.

  4. Ecodriver. D23.2: Simulation and analysis document for on-line vehicle algorithms

    NARCIS (Netherlands)

    Seewald, P.; Orfila, O.; Saintpierre, G.

    2014-01-01

    This deliverable reports on the simulations and analysis of the on-line vehicle algorithms as well as the ecoDriver Android application. The simulation and field test results give an impression of how the algorithms will perform in the real world trials in SP3. Thus, it is possible to apply

  5. An Extension of the Lin-Kernighan-Helsgaun TSP Solver for Constrained Traveling Salesman and Vehicle Routing Problems

    DEFF Research Database (Denmark)

    Helsgaun, Keld

    This report describes the implementation of an extension of the Lin-Kernighan-Helsgaun TSP solver for solving constrained traveling salesman and vehicle routing problems. The extension, which is called LKH-3, is able to solve a variety of well-known problems, including the sequential ordering...... problem (SOP), the traveling repairman problem (TRP), variants of the multiple travel-ing salesman problem (mTSP), as well as vehicle routing problems (VRPs) with capacity, time windows, pickup-and-delivery and distance constraints. The implementation of LKH-3 builds on the idea of transforming...... the problems into standard symmetric traveling salesman problems and handling constraints by means of penalty functions. Extensive testing on benchmark instances from the literature has shown that LKH-3 is effective. Best known solutions are often obtained, and in some cases, new best solutions are found...

  6. Exact method for the vehicle routing problem with mixed linehaul and backhaul customers, heterogeneous fleet, time window and manufacturing capacity

    OpenAIRE

    Oesterle, Jonathan; Bauernhansl, Thomas

    2016-01-01

    Due to concerns over food safety, quality, and transparency, the food industry has been challenged to deal with an increased complexity in its logistics and production planning. This complexity is mostly associated to the task of optimally exploring a highly constrained solution space. This paper addresses the problem of designing a set of vehicle routes satisfying the delivery and the collection requirements of a set of geographically scattered linehaul and backhaul customers. Each customer ...

  7. DESIGN OF ENERGY EFFICIENT ROUTING ALGORITHM FOR WIRELESS SENSOR NETWORK (WSN) USING PASCAL GRAPH

    OpenAIRE

    Deepali Panwar; Subhrendu Guha Neogi

    2013-01-01

    Development of energy efficient Wireless Sensor Network (WSN) routing protocol is nowadays main area of interest amongst researchers. This research is an effort in designing energy efficient Wireless Sensor Network (WSN) routing protocol under certain parameters consideration. Research report discusses various existing WSN routing protocols and propose a new WSN energy efficient routing protocol. Results show a significant improvement in life cycle of the nodes and enhancement ...

  8. An optimized routing algorithm for the automated assembly of standard multimode ribbon fibers in a full-mesh optical backplane

    Science.gov (United States)

    Basile, Vito; Guadagno, Gianluca; Ferrario, Maddalena; Fassi, Irene

    2018-03-01

    In this paper a parametric, modular and scalable algorithm allowing a fully automated assembly of a backplane fiber-optic interconnection circuit is presented. This approach guarantees the optimization of the optical fiber routing inside the backplane with respect to specific criteria (i.e. bending power losses), addressing both transmission performance and overall costs issues. Graph theory has been exploited to simplify the complexity of the NxN full-mesh backplane interconnection topology, firstly, into N independent sub-circuits and then, recursively, into a limited number of loops easier to be generated. Afterwards, the proposed algorithm selects a set of geometrical and architectural parameters whose optimization allows to identify the optimal fiber optic routing for each sub-circuit of the backplane. The topological and numerical information provided by the algorithm are then exploited to control a robot which performs the automated assembly of the backplane sub-circuits. The proposed routing algorithm can be extended to any array architecture and number of connections thanks to its modularity and scalability. Finally, the algorithm has been exploited for the automated assembly of an 8x8 optical backplane realized with standard multimode (MM) 12-fiber ribbons.

  9. An IPv6 routing lookup algorithm using weight-balanced tree based on prefix value for virtual router

    Science.gov (United States)

    Chen, Lingjiang; Zhou, Shuguang; Zhang, Qiaoduo; Li, Fenghua

    2016-10-01

    Virtual router enables the coexistence of different networks on the same physical facility and has lately attracted a great deal of attention from researchers. As the number of IPv6 addresses is rapidly increasing in virtual routers, designing an efficient IPv6 routing lookup algorithm is of great importance. In this paper, we present an IPv6 lookup algorithm called weight-balanced tree (WBT). WBT merges Forwarding Information Bases (FIBs) of virtual routers into one spanning tree, and compresses the space cost. WBT's average time complexity and the worst case time complexity of lookup and update process are both O(logN) and space complexity is O(cN) where N is the size of routing table and c is a constant. Experiments show that WBT helps reduce more than 80% Static Random Access Memory (SRAM) cost in comparison to those separation schemes. WBT also achieves the least average search depth comparing with other homogeneous algorithms.

  10. Efficient routing of service vehicles. Publication No. 95-82, and Publication No. 1010

    Energy Technology Data Exchange (ETDEWEB)

    Gendreau, M.; Laporte, G.; Yelle, S.Y.

    1995-12-31

    GeoRoute is an arc routing software package that includes a route optimization module based on the GENIUS traveling salesman problem heuristic. The territory under study is represented by a directed graph in which arcs correspond to streets. The system also introduces artificial arcs to account for street crossings, street changes, and turns. In many applications of the package, penalties should be assigned to take into account such constraints as prohibited turns and minimization of deadheading. This report describes experiments performed using GeoRoute to determine optimal routes for garbage collection and for snow plowing operations on 30 street networks. The experiments tested various values of penalties in order to arrive at convenient packages of penalties for use in various situations. The results help GeoRoute users select sets of penalties without having to ponder a large set of possible parameters.

  11. A Region Tracking-Based Vehicle Detection Algorithm in Nighttime Traffic Scenes

    Directory of Open Access Journals (Sweden)

    Jianqiang Wang

    2013-12-01

    Full Text Available The preceding vehicles detection technique in nighttime traffic scenes is an important part of the advanced driver assistance system (ADAS. This paper proposes a region tracking-based vehicle detection algorithm via the image processing technique. First, the brightness of the taillights during nighttime is used as the typical feature, and we use the existing global detection algorithm to detect and pair the taillights. When the vehicle is detected, a time series analysis model is introduced to predict vehicle positions and the possible region (PR of the vehicle in the next frame. Then, the vehicle is only detected in the PR. This could reduce the detection time and avoid the false pairing between the bright spots in the PR and the bright spots out of the PR. Additionally, we present a thresholds updating method to make the thresholds adaptive. Finally, experimental studies are provided to demonstrate the application and substantiate the superiority of the proposed algorithm. The results show that the proposed algorithm can simultaneously reduce both the false negative detection rate and the false positive detection rate.

  12. Electric vehicle charging algorithms for coordination of the grid and distribution transformer levels

    International Nuclear Information System (INIS)

    Ramos Muñoz, Edgar; Razeghi, Ghazal; Zhang, Li; Jabbari, Faryar

    2016-01-01

    The need to reduce greenhouse gas emissions and fossil fuel consumption has increased the popularity of plug-in electric vehicles. However, a large penetration of plug-in electric vehicles can pose challenges at the grid and local distribution levels. Various charging strategies have been proposed to address such challenges, often separately. In this paper, it is shown that, with uncoordinated charging, distribution transformers and the grid can operate under highly undesirable conditions. Next, several strategies that require modest communication efforts are proposed to mitigate the burden created by high concentrations of plug-in electric vehicles, at the grid and local levels. Existing transformer and battery electric vehicle characteristics are used along with the National Household Travel Survey to simulate various charging strategies. It is shown through the analysis of hot spot temperature and equivalent aging factor that the coordinated strategies proposed here reduce the chances of transformer failure with the addition of plug-in electric vehicle loads, even for an under-designed transformer while uncontrolled and uncoordinated plug-in electric vehicle charging results in increased risk of transformer failure. - Highlights: • Charging algorithm for battery electric vehicles, for high penetration levels. • Algorithm reduces transformer overloading, for grid level valley filling. • Computation and communication requirements are minimal. • The distributed algorithm is implemented without large scale iterations. • Hot spot temperature and loss of life for transformers are evaluated.

  13. Location, Allocation and Routing of Temporary Health Centers in Rural Areas in Crisis, Solved by Improved Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Mahdi Alinaghian

    2017-01-01

    Full Text Available In this paper, an uncertain integrated model for simultaneously locating temporary health centers in the affected areas, allocating affected areas to these centers, and routing to transport their required good is considered. Health centers can be settled in one of the affected areas or in a place out of them; therefore, the proposed model offers the best relief operation policy when it is possible to supply the goods of affected areas (which are customers of goods directly or under coverage. Due to that the problem is NP-Hard, to solve the problem in large-scale, a meta-heuristic algorithm based on harmony search algorithm is presented and its performance has been compared with basic harmony search algorithm and neighborhood search algorithm in small and large scale test problems. The results show that the proposed harmony search algorithm has a suitable efficiency.

  14. Vehicle-class Specific Route-guidance of Freeway Traffic by Model-predictive Control

    NARCIS (Netherlands)

    Schreiter, T.; Landman, R.L.; Van Lint, J.W.C.; Hegyi, A.; Hoogendoorn, S.P.

    2012-01-01

    Few Active Traffic Management measures proposed in the past consider the distinction of different vehicle classes. Examples of vehicle-class specific measures are truck lanes and high-occupancy/toll (HOT) lanes. We propose that the distinction of different vehicle classes, with different flow

  15. Multi-Objective Emergency Material Vehicle Dispatching and Routing under Dynamic Constraints in an Earthquake Disaster Environment

    Directory of Open Access Journals (Sweden)

    Jincheng Jiang

    2017-05-01

    Full Text Available Emergency material vehicle dispatching and routing (EMVDR is an important task in emergency relief after large-scale earthquake disasters. However, EMVDR is subject to dynamic disaster environment, with uncertainty surrounding elements such as the transportation network and relief materials. Accurate and dynamic emergency material dispatching and routing is difficult. This paper proposes an effective and efficient multi-objective multi-dynamic-constraint emergency material vehicle dispatching and routing model. Considering travel time, road capacity, and material supply and demand, the proposed EMVDR model is to deliver emergency materials from multiple emergency material depositories to multiple disaster points while satisfying the objectives of maximizing transport efficiency and minimizing the difference of material urgency degrees among multiple disaster points at any one time. Furthermore, a continuous-time dynamic network flow method is developed to solve this complicated model. The collected data from Ludian earthquake were used to conduct our experiments in the post-quake and the results demonstrate that: (1 the EMVDR model adapts to the dynamic disaster environment very well; (2 considering the difference of material urgency degree, the material loss ratio is −10.7%, but the variance of urgency degree decreases from 2.39 to 0.37; (3 the EMVDR model shows good performance in time and space, which allows for decisions to be made nearly in real time. This paper can provide spatial decision-making support for emergency material relief in large-scale earthquake disasters.

  16. A Path Tracking Algorithm Using Future Prediction Control with Spike Detection for an Autonomous Vehicle Robot

    Directory of Open Access Journals (Sweden)

    Muhammad Aizzat Zakaria

    2013-08-01

    Full Text Available Trajectory tracking is an important aspect of autonomous vehicles. The idea behind trajectory tracking is the ability of the vehicle to follow a predefined path with zero steady state error. The difficulty arises due to the nonlinearity of vehicle dynamics. Therefore, this paper proposes a stable tracking control for an autonomous vehicle. An approach that consists of steering wheel control and lateral control is introduced. This control algorithm is used for a non-holonomic navigation problem, namely tracking a reference trajectory in a closed loop form. A proposed future prediction point control algorithm is used to calculate the vehicle's lateral error in order to improve the performance of the trajectory tracking. A feedback sensor signal from the steering wheel angle and yaw rate sensor is used as feedback information for the controller. The controller consists of a relationship between the future point lateral error, the linear velocity, the heading error and the reference yaw rate. This paper also introduces a spike detection algorithm to track the spike error that occurs during GPS reading. The proposed idea is to take the advantage of the derivative of the steering rate. This paper aims to tackle the lateral error problem by applying the steering control law to the vehicle, and proposes a new path tracking control method by considering the future coordinate of the vehicle and the future estimated lateral error. The effectiveness of the proposed controller is demonstrated by a simulation and a GPS experiment with noisy data. The approach used in this paper is not limited to autonomous vehicles alone since the concept of autonomous vehicle tracking can be used in mobile robot platforms, as the kinematic model of these two platforms is similar.

  17. Wheeled mobility device transportation safety in fixed route and demand-responsive public transit vehicles within the United States.

    Science.gov (United States)

    Frost, Karen L; van Roosmalen, Linda; Bertocci, Gina; Cross, Douglas J

    2012-01-01

    An overview of the current status of wheelchair transportation safety in fixed route and demand-responsive, non-rail, public transportation vehicles within the US is presented. A description of each mode of transportation is provided, followed by a discussion of the primary issues affecting safety, accessibility, and usability. Technologies such as lifts, ramps, securement systems, and occupant restraint systems, along with regulations and voluntary industry standards have been implemented with the intent of improving safety and accessibility for individuals who travel while seated in their wheeled mobility device (e.g., wheelchair or scooter). However, across both fixed route and demand-responsive transit systems a myriad of factors such as nonuse and misuse of safety systems, oversized wheeled mobility devices, vehicle space constraints, and inadequate vehicle operator training may place wheeled mobility device (WhMD) users at risk of injury even under non-impact driving conditions. Since WhMD-related incidents also often occur during the boarding and alighting process, the frequency of these events, along with factors associated with these events are described for each transit mode. Recommendations for improving WhMD transportation are discussed given the current state of

  18. A feature matching and fusion-based positive obstacle detection algorithm for field autonomous land vehicles

    Directory of Open Access Journals (Sweden)

    Tao Wu

    2017-03-01

    Full Text Available Positive obstacles will cause damage to field robotics during traveling in field. Field autonomous land vehicle is a typical field robotic. This article presents a feature matching and fusion-based algorithm to detect obstacles using LiDARs for field autonomous land vehicles. There are three main contributions: (1 A novel setup method of compact LiDAR is introduced. This method improved the LiDAR data density and reduced the blind region of the LiDAR sensor. (2 A mathematical model is deduced under this new setup method. The ideal scan line is generated by using the deduced mathematical model. (3 Based on the proposed mathematical model, a feature matching and fusion (FMAF-based algorithm is presented in this article, which is employed to detect obstacles. Experimental results show that the performance of the proposed algorithm is robust and stable, and the computing time is reduced by an order of two magnitudes by comparing with other exited algorithms. This algorithm has been perfectly applied to our autonomous land vehicle, which has won the champion in the challenge of Chinese “Overcome Danger 2014” ground unmanned vehicle.

  19. Genetic algorithm with small population size for search feasible control parameters for parallel hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Yu-Huei Cheng

    2017-11-01

    Full Text Available The control strategy is a major unit in hybrid electric vehicles (HEVs. In order to provide suitable control parameters for reducing fuel consumptions and engine emissions while maintaining vehicle performance requirements, the genetic algorithm (GA with small population size is applied to search for feasible control parameters in parallel HEVs. The electric assist control strategy (EACS is used as the fundamental control strategy of parallel HEVs. The dynamic performance requirements stipulated in the Partnership for a New Generation of Vehicles (PNGV is considered to maintain the vehicle performance. The known ADvanced VehIcle SimulatOR (ADVISOR is used to simulate a specific parallel HEV with urban dynamometer driving schedule (UDDS. Five population sets with size 5, 10, 15, 20, and 25 are used in the GA. The experimental results show that the GA with population size of 25 is the best for selecting feasible control parameters in parallel HEVs.

  20. Solving the Traveling Salesman Problem Based on The Genetic Reactive Bone Route Algorithm whit Ant Colony System

    Directory of Open Access Journals (Sweden)

    Majid Yousefikhoshbakht

    2016-07-01

    Full Text Available The TSP is considered one of the most well-known combinatorial optimization tasks and researchers have paid so much attention to the TSP for many years. In this problem, a salesman starts to move from an arbitrary place called depot and after visits all of the nodes, finally comes back to the depot. The objective is to minimize the total distance traveled by the salesman.  Because this problem is a non-deterministic polynomial (NP-hard problem in nature, a hybrid meta-heuristic algorithm called REACSGA is used for solving the TSP. In REACSGA, a reactive bone route algorithm that uses the ant colony system (ACS for generating initial diversified solutions and the genetic algorithm (GA as an improved procedure are applied. Since the performance of the Metaheuristic algorithms is significantly influenced by their parameters, Taguchi Method is used to set the parameters of the proposed algorithm. The proposed algorithm is tested on several standard instances involving 24 to 318 nodes from the literature. The computational result shows that the results of the proposed algorithm are competitive with other metaheuristic algorithms for solving the TSP in terms of better quality of solution and computational time respectively. In addition, the proposed REACSGA is significantly efficient and finds closely the best known solutions for most of the instances in which thirteen best known solutions are also found.

  1. Solving Arc Routing Problems Using the Lin-Kernighan-Helsgaun Algorithm

    DEFF Research Database (Denmark)

    Helsgaun, Keld

    It is well known that many arc routing problems can be transformed into the Equality Generalized Traveling Salesman Problem (E-GTSP), which in turn can be transformed into a standard Asymmetric Traveling Salesman Problem (TSP). This opens up the possibility of solving arc routing problems using...

  2. Quality of Service Routing in the Internet. Theory, Complexity and Algorithms

    NARCIS (Netherlands)

    Kuipers, F.A.

    2004-01-01

    The Internet consists of many network elements that direct packets on the correct path leading towards the destination. This process of finding and following a path to the destination is called routing. Routing is not infallible and packets may get lost: the current Internet cannot give any quality

  3. An analysis of generalised heuristics for vehicle routing and personnel rostering problems

    OpenAIRE

    Mustafa Misir; Pieter Smet; Greet Vanden Berghe

    2015-01-01

    The present study investigates the performance of heuristics while solving problems with routing and rostering characteristics. The target problems include scheduling and routing home care, security and maintenance personnel. In analysing the behaviour of the heuristics and determining the requirements for solving the aforementioned problems, the winning hyper-heuristic from the first International Cross-domain Heuristic Search Challenge (CHeSC 2011) is employed. The completely new applicatio...

  4. Design and Implementation of a Combinatorial Optimization Multi-population Meta-heuristic for Solving Vehicle Routing Problems

    Directory of Open Access Journals (Sweden)

    Eneko Osaba

    2016-12-01

    Full Text Available This paper aims to give a presentation of the PhD defended by Eneko Osaba on November 16th, 2015, at the University of Deusto. The thesis can be placed in the field of artificial intelligence. Specifically, it is related with multi- population meta-heuristics for solving vehicle routing problems. The dissertation was held in the main auditorium of the University, in a publicly open presentation. After the presentation, Eneko was awarded with the highest grade (cum laude. Additionally, Eneko obtained the PhD obtaining award granted by the Basque Government through.

  5. Exact Solutions to the Symmetric and Asymmetric Vehicle Routing Problem with Simultaneous Delivery and Pick-Up

    Directory of Open Access Journals (Sweden)

    Julia Rieck

    2013-05-01

    Full Text Available In reverse logistics networks, products (e.g., bottles or containers have to be transported from a depot to customer locations and, after use, from customer locations back to the depot. In order to operate economically beneficial, companies prefer a simultaneous delivery and pick-up service. The resulting Vehicle Routing Problem with Simultaneous Delivery and Pick-up (VRPSDP is an operational problem, which has to be solved daily by many companies. We present two mixed-integer linear model formulations for the VRPSDP, namely a vehicle-flow and a commodity-flow model. In order to strengthen the models, domain-reducing preprocessing techniques, and effective cutting planes are outlined. Symmetric benchmark instances known from the literature as well as new asymmetric instances derived from real-world problems are solved to optimality using CPLEX 12.1.

  6. Integrated planning of electric vehicles routing and charging stations location considering transportation networks and power distribution systems

    Directory of Open Access Journals (Sweden)

    Andrés Arias

    2018-09-01

    Full Text Available Electric Vehicles (EVs represent a significant option that contributes to improve the mobility and reduce the pollution, leaving a future expectation in the merchandise transportation sector, which has been demonstrated with pilot projects of companies operating EVs for products delivering. In this work a new approach of EVs for merchandise transportation considering the location of Electric Vehicle Charging Stations (EVCSs and the impact on the Power Distribution System (PDS is addressed. This integrated planning is formulated through a mixed integer non-linear mathematical model. Test systems of different sizes are designed to evaluate the model performance, considering the transportation network and PDS. The results show a trade-off between EVs routing, PDS energy losses and EVCSs location.

  7. Advanced Emergency Braking Control Based on a Nonlinear Model Predictive Algorithm for Intelligent Vehicles

    Directory of Open Access Journals (Sweden)

    Ronghui Zhang

    2017-05-01

    Full Text Available Focusing on safety, comfort and with an overall aim of the comprehensive improvement of a vision-based intelligent vehicle, a novel Advanced Emergency Braking System (AEBS is proposed based on Nonlinear Model Predictive Algorithm. Considering the nonlinearities of vehicle dynamics, a vision-based longitudinal vehicle dynamics model is established. On account of the nonlinear coupling characteristics of the driver, surroundings, and vehicle itself, a hierarchical control structure is proposed to decouple and coordinate the system. To avoid or reduce the collision risk between the intelligent vehicle and collision objects, a coordinated cost function of tracking safety, comfort, and fuel economy is formulated. Based on the terminal constraints of stable tracking, a multi-objective optimization controller is proposed using the theory of non-linear model predictive control. To quickly and precisely track control target in a finite time, an electronic brake controller for AEBS is designed based on the Nonsingular Fast Terminal Sliding Mode (NFTSM control theory. To validate the performance and advantages of the proposed algorithm, simulations are implemented. According to the simulation results, the proposed algorithm has better integrated performance in reducing the collision risk and improving the driving comfort and fuel economy of the smart car compared with the existing single AEBS.

  8. PSO-Based Algorithm Applied to Quadcopter Micro Air Vehicle Controller Design

    Directory of Open Access Journals (Sweden)

    Huu-Khoa Tran

    2016-09-01

    Full Text Available Due to the rapid development of science and technology in recent times, many effective controllers are designed and applied successfully to complicated systems. The significant task of controller design is to determine optimized control gains in a short period of time. With this purpose in mind, a combination of the particle swarm optimization (PSO-based algorithm and the evolutionary programming (EP algorithm is introduced in this article. The benefit of this integration algorithm is the creation of new best-parameters for control design schemes. The proposed controller designs are then demonstrated to have the best performance for nonlinear micro air vehicle models.

  9. An Evolutionary Mobility Aware Multi-Objective Hybrid Routing Algorithm for Heterogeneous Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Kulkarni, Nandkumar P.; Prasad, Neeli R.; Prasad, Ramjee

    deliberation. To tackle these two problems, Mobile Wireless Sensor Networks (MWSNs) is a better choice. In MWSN, Sensor nodes move freely to a target area without the need for any special infrastructure. Due to mobility, the routing process in MWSN has become more complicated as connections in the network can...... such as Average Energy consumption, Control Overhead, Reaction Time, LQI, and HOP Count. The authors study the influence of energy heterogeneity and mobility of sensor nodes on the performance of EMRP. The Performance of EMRP compared with Simple Hybrid Routing Protocol (SHRP) and Dynamic Multi-Objective Routing...

  10. Natural gas application in light- and heavy-duty vehicles in Brazil: panorama, technological routes and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Guilherme Bastos, Cordeiro de Melo, Tadeu Cavalcante; Leao, Raphael Riemke de Campos Cesar; Iaccarino, Fernando Aniello; Figueiredo Moreira, Marcia

    2007-07-01

    The Brazilian CNG light-duty vehicle fleet has currently reached more than 1,300,000 units. This growth increased in the late 1990's, when CNG was approved for use in passenger cars. In 2001, the IBAMA (Brazilian Institute for Environment and Natural Renewable Resources), concerned with this uncontrolled growth, published CONAMA (National Environmental Council, controlled by IBAMA) resolution 291, which establishes rules for CNG conversion kit environmental certification.This paper discusses the technological challenges for CNG-converted vehicles to comply with PROCONVE (Brazilian Program for Automotive Air Pollution Control) emission limits. In the 1980's, because of the oil crisis, Natural Gas (NG) emerged as a fuel with great potential to replace Diesel in heavy-duty vehicles. Some experiences were conducted for partial conversions from Diesel to NG (Diesel-gas). Other experiences using NG Otto Cycle buses were conducted in some cities, but have not expanded. Another technological route called 'Ottolization' (Diesel to Otto cycle convertion) appeared recently. Population increase and the great growth in vehicle fleet promote a constant concern with automotive emissions. More restrictive emission limits, high international oil prices, and the strategic interest in replacing Diesel imports, altogether form an interesting scenario for CNG propagation to public transportation in the main Brazilian metropolises.

  11. Improved Ant Colony Optimization for Seafood Product Delivery Routing Problem

    Directory of Open Access Journals (Sweden)

    Baozhen Yao

    2014-02-01

    Full Text Available This paper deals with a real-life vehicle delivery routing problem, which is a seafood product delivery routing problem. Considering the features of the seafood product delivery routing problem, this paper formulated this problem as a multi-depot open vehicle routing problem. Since the multi-depot open vehicle routing problem is a very complex problem, a method is used to reduce the complexity of the problem by changing the multi-depot open vehicle routing problem into an open vehicle routing problem with a dummy central depot in this paper. Then, ant colony optimization is used to solve the problem. To improve the performance of the algorithm, crossover operation and some adaptive strategies are used. Finally, the computational results for the benchmark problems of the multi-depot vehicle routing problem indicate that the proposed ant colony optimization is an effective method to solve the multi-depot vehicle routing problem. Furthermore, the computation results of the seafood product delivery problem from Dalian, China also suggest that the proposed ant colony optimization is feasible to solve the seafood product delivery routing problem.

  12. Network Provisioning for High Speed Vehicles Moving along Predictable Routes - Part 1: Spiderman Handover

    OpenAIRE

    Maureira , Juan-Carlos; Dujovne , Diego; Dalle , Olivier

    2009-01-01

    This report presents our on-going work on a new system designed to provide a continuous network connectivity to communicating devices located on-board a vehicle moving at ”high speed” with a predictable trajectory such as trains, subways or buses. The devices on-board the vehicle form a sub-network called the ”in-motion network”. This system we propose is composed of two parts. The mobile part, called Spiderman Device (SD), installed on the roof of the vehicle, and the fixed part is composed ...

  13. Ecodriver. D23.1: Report on test scenarios for val-idation of on-line vehicle algorithms

    NARCIS (Netherlands)

    Seewald, P.; Ivens, T.W.T.; Spronkmans, S.

    2014-01-01

    This deliverable provides a description of test scenarios that will be used for validation of WP22’s on-line vehicle algorithms. These algorithms consist of the two modules VE³ (Vehicle Energy and Environment Estimator) and RSG (Reference Signal Genera-tor) and will be tested using the

  14. Shockwave-Based Automated Vehicle Longitudinal Control Algorithm for Nonrecurrent Congestion Mitigation

    Directory of Open Access Journals (Sweden)

    Liuhui Zhao

    2017-01-01

    Full Text Available A shockwave-based speed harmonization algorithm for the longitudinal movement of automated vehicles is presented in this paper. In the advent of Connected/Automated Vehicle (C/AV environment, the proposed algorithm can be applied to capture instantaneous shockwaves constructed from vehicular speed profiles shared by individual equipped vehicles. With a continuous wavelet transform (CWT method, the algorithm detects abnormal speed drops in real-time and optimizes speed to prevent the shockwave propagating to the upstream traffic. A traffic simulation model is calibrated to evaluate the applicability and efficiency of the proposed algorithm. Based on 100% C/AV market penetration, the simulation results show that the CWT-based algorithm accurately detects abnormal speed drops. With the improved accuracy of abnormal speed drop detection, the simulation results also demonstrate that the congestion can be mitigated by reducing travel time and delay up to approximately 9% and 18%, respectively. It is also found that the shockwave caused by nonrecurrent congestion is quickly dissipated even with low market penetration.

  15. Adaptive MANET Multipath Routing Algorithm Based on the Simulated Annealing Approach

    Directory of Open Access Journals (Sweden)

    Sungwook Kim

    2014-01-01

    Full Text Available Mobile ad hoc network represents a system of wireless mobile nodes that can freely and dynamically self-organize network topologies without any preexisting communication infrastructure. Due to characteristics like temporary topology and absence of centralized authority, routing is one of the major issues in ad hoc networks. In this paper, a new multipath routing scheme is proposed by employing simulated annealing approach. The proposed metaheuristic approach can achieve greater and reciprocal advantages in a hostile dynamic real world network situation. Therefore, the proposed routing scheme is a powerful method for finding an effective solution into the conflict mobile ad hoc network routing problem. Simulation results indicate that the proposed paradigm adapts best to the variation of dynamic network situations. The average remaining energy, network throughput, packet loss probability, and traffic load distribution are improved by about 10%, 10%, 5%, and 10%, respectively, more than the existing schemes.

  16. A Real-Time Reaction Obstacle Avoidance Algorithm for Autonomous Underwater Vehicles in Unknown Environments.

    Science.gov (United States)

    Yan, Zheping; Li, Jiyun; Zhang, Gengshi; Wu, Yi

    2018-02-02

    A novel real-time reaction obstacle avoidance algorithm (RRA) is proposed for autonomous underwater vehicles (AUVs) that must adapt to unknown complex terrains, based on forward looking sonar (FLS). To accomplish this algorithm, obstacle avoidance rules are planned, and the RRA processes are split into five steps Introduction only lists 4 so AUVs can rapidly respond to various environment obstacles. The largest polar angle algorithm (LPAA) is designed to change detected obstacle's irregular outline into a convex polygon, which simplifies the obstacle avoidance process. A solution is designed to solve the trapping problem existing in U-shape obstacle avoidance by an outline memory algorithm. Finally, simulations in three unknown obstacle scenes are carried out to demonstrate the performance of this algorithm, where the obtained obstacle avoidance trajectories are safety, smooth and near-optimal.

  17. Fuzzy C-Means Algorithm for Segmentation of Aerial Photography Data Obtained Using Unmanned Aerial Vehicle

    Science.gov (United States)

    Akinin, M. V.; Akinina, N. V.; Klochkov, A. Y.; Nikiforov, M. B.; Sokolova, A. V.

    2015-05-01

    The report reviewed the algorithm fuzzy c-means, performs image segmentation, give an estimate of the quality of his work on the criterion of Xie-Beni, contain the results of experimental studies of the algorithm in the context of solving the problem of drawing up detailed two-dimensional maps with the use of unmanned aerial vehicles. According to the results of the experiment concluded that the possibility of applying the algorithm in problems of decoding images obtained as a result of aerial photography. The considered algorithm can significantly break the original image into a plurality of segments (clusters) in a relatively short period of time, which is achieved by modification of the original k-means algorithm to work in a fuzzy task.

  18. Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm

    DEFF Research Database (Denmark)

    Awasthi, Abhishek; Venkitusamy, Karthikeyan; Padmanaban, Sanjeevikumar

    2017-01-01

    India's ever increasing population has made it necessary to develop alternative modes of transportation with electric vehicles being the most preferred option. The major obstacle is the deteriorating impact on the utility distribution system brought about by improper setup of these charging...... stations. This paper deals with the optimal planning (siting and sizing) of charging station infrastructure in the city of Allahabad, India. This city is one of the upcoming smart cities, where electric vehicle transportation pilot project is going on under Government of India initiative. In this context......, a hybrid algorithm based on genetic algorithm and improved version of conventional particle swarm optimization is utilized for finding optimal placement of charging station in the Allahabad distribution system. The particle swarm optimization algorithm re-optimizes the received sub-optimal solution (site...

  19. Measuring Algorithm for the Distance to a Preceding Vehicle on Curve Road Using On-Board Monocular Camera

    Science.gov (United States)

    Yu, Guizhen; Zhou, Bin; Wang, Yunpeng; Wun, Xinkai; Wang, Pengcheng

    2015-12-01

    Due to more severe challenges of traffic safety problems, the Advanced Driver Assistance Systems (ADAS) has received widespread attention. Measuring the distance to a preceding vehicle is important for ADAS. However, the existing algorithm focuses more on straight road sections than on curve measurements. In this paper, we present a novel measuring algorithm for the distance to a preceding vehicle on a curve road using on-board monocular camera. Firstly, the characteristics of driving on the curve road is analyzed and the recognition of the preceding vehicle road area is proposed. Then, the vehicle detection and distance measuring algorithms are investigated. We have verified these algorithms on real road driving. The experimental results show that this method proposed in the paper can detect the preceding vehicle on curve roads and accurately calculate the longitudinal distance and horizontal distance to the preceding vehicle.

  20. The impact of short term traffic forecasting on the effectiveness of vehicles routes planning in urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Kubek, D.

    2016-07-01

    An impossibility to foresee in advance the accurate traffic parameters in face of dynamism phenomena in complex transportation system is a one of the major source of uncertainty. The paper presents an approach to robust optimization of logistics vehicle routes in urban areas on the basis of estimated short-term traffic time forecasts in a selected area of the urban road network. The forecast values of optimization parameters have been determined using the spectral analysis model, taking into account the forecast uncertainty degree. The robust counterparts approach of uncertain bi-criteria shortest path problem formulation is used to determining the robust routes for logistics vehicles in the urban network. The uncertainty set is created on the basis of forecast travel times in chosen sections, estimated by means of spectral analysis. The advantages and the characteristics are exemplified in the actual Krakow road network. The obtained data have been compared with classic approach wherein it is assumed that the optimization parameters are certain and accurate. The results obtained in the simulation example indicate that use of forecasting techniques with robust optimization models has a positive impact on the quality of final solutions. (Author)

  1. An Alternative Route to Teaching Fraction Division: Abstraction of Common Denominator Algorithm

    Science.gov (United States)

    Zembat, Ismail Özgür

    2015-01-01

    From a curricular stand point, the traditional invert and multiply algorithm for division of fractions provides few affordances for linking to a rich understanding of fractions. On the other hand, an alternative algorithm, called common denominator algorithm, has many such affordances. The current study serves as an argument for shifting…

  2. Vehicle routing for the eco-efficient collection of household plastic waste

    NARCIS (Netherlands)

    Bing, X.; Keizer, de M.; Bloemhof, J.M.; Vorst, van der J.G.A.J.

    2014-01-01

    Plastic waste is a special category of municipal solid waste. Plastic waste collection is featured with various alternatives of collection methods (curbside/drop-off) and separation methods (source-/post-separation). In the Netherlands, the collection routes of plastic waste are the same as those of

  3. Robust Branch-and-Cut-and-Price for the Capacitated Vehicle Routing Problem

    DEFF Research Database (Denmark)

    Fukasawa, R.; Longo, H.; Lysgaard, Jens

    2006-01-01

    with a traditional Lagrangean relaxation over q-routes, the other defined by bound, degree and capacity constraints. This is equivalent to a linear program with exponentially many variables and constraints that can lead to lower bounds that are superior to those given by previous methods. The resulting branch-and-cut-and-price...

  4. A Cost-Effective Tracking Algorithm for Hypersonic Glide Vehicle Maneuver Based on Modified Aerodynamic Model

    Directory of Open Access Journals (Sweden)

    Yu Fan

    2016-10-01

    Full Text Available In order to defend the hypersonic glide vehicle (HGV, a cost-effective single-model tracking algorithm using Cubature Kalman filter (CKF is proposed in this paper based on modified aerodynamic model (MAM as process equation and radar measurement model as measurement equation. In the existing aerodynamic model, the two control variables attack angle and bank angle cannot be measured by the existing radar equipment and their control laws cannot be known by defenders. To establish the process equation, the MAM for HGV tracking is proposed by using additive white noise to model the rates of change of the two control variables. For the ease of comparison several multiple model algorithms based on CKF are presented, including interacting multiple model (IMM algorithm, adaptive grid interacting multiple model (AGIMM algorithm and hybrid grid multiple model (HGMM algorithm. The performances of these algorithms are compared and analyzed according to the simulation results. The simulation results indicate that the proposed tracking algorithm based on modified aerodynamic model has the best tracking performance with the best accuracy and least computational cost among all tracking algorithms in this paper. The proposed algorithm is cost-effective for HGV tracking.

  5. A semi-active suspension control algorithm for vehicle comprehensive vertical dynamics performance

    Science.gov (United States)

    Nie, Shida; Zhuang, Ye; Liu, Weiping; Chen, Fan

    2017-08-01

    Comprehensive performance of the vehicle, including ride qualities and road-holding, is essentially of great value in practice. Many up-to-date semi-active control algorithms improve vehicle dynamics performance effectively. However, it is hard to improve comprehensive performance for the conflict between ride qualities and road-holding around the second-order resonance. Hence, a new control algorithm is proposed to achieve a good trade-off between ride qualities and road-holding. In this paper, the properties of the invariant points are analysed, which gives an insight into the performance conflicting around the second-order resonance. Based on it, a new control algorithm is proposed. The algorithm employs a novel frequency selector to balance suspension ride and handling performance by adopting a medium damping around the second-order resonance. The results of this study show that the proposed control algorithm could improve the performance of ride qualities and suspension working space up to 18.3% and 8.2%, respectively, with little loss of road-holding compared to the passive suspension. Consequently, the comprehensive performance can be improved by 6.6%. Hence, the proposed algorithm is of great potential to be implemented in practice.

  6. Torque Distribution Algorithm for an Independently Driven Electric Vehicle Using a Fuzzy Control Method

    Directory of Open Access Journals (Sweden)

    Jinhyun Park

    2015-08-01

    Full Text Available The in-wheel electric vehicle is expected to be a popular next-generation vehicle because an in-wheel system can simplify the powertrain and improve driving performance. In addition, it also has an advantage in that it maximizes driving efficiency through independent torque control considering the motor efficiency. However, there is an instability problem if only the driving torque is controlled in consideration of only the motor efficiency. In this paper, integrated torque distribution strategies are proposed to overcome these problems. The control algorithm consists of various strategies for optimizing driving efficiency, satisfying driver demands, and considering tire slip and vehicle cornering. Fuzzy logic is used to determine the appropriate timing of intervention for each distribution strategy. A performance simulator for in-wheel electric vehicles was developed by using MATLAB/Simulink and CarSim to validate the control strategies. From simulation results under complex driving conditions, the proposed algorithm was verified to improve both the driving stability and fuel economy of the in-wheel vehicle.

  7. Modified Pagerank Algorithm Based Real-Time Metropolitan Vehicular Traffic Routing Using GPS Crowdsourcing Data

    Directory of Open Access Journals (Sweden)

    Adithya Guru Vaishnav.S

    2015-08-01

    Full Text Available This paper aims at providing a theoretical framework to find an optimized route from any source to destination considering the real-time traffic congestion issues. The distance of various possible routes from the source and destination are calculated and a PathRank is allocated in the descending order of distance to each possible path. Each intermediate locations are considered as nodes of a graph and the edges are represented by real-time traffic flow monitored using GoogleMaps GPS crowdsourcing data. The Page Rank is calculated for each intermediate node. From the values of PageRank and PathRank the minimum sum term is used to find an optimized route with minimal trade-off between shortest path and real-time traffic.

  8. An efficient routing algorithm for event based monitoring in a plant using virtual sink nodes in a wireless sensor network

    International Nuclear Information System (INIS)

    Jain, Sanjay Kumar; Vietla, Srinivas; Roy, D.A.; Biswas, B.B.; Pithawa, C.K.

    2010-01-01

    A Wireless Sensor Network is a collection of wireless sensor nodes arranged in a self-forming network without aid of any infrastructure or administration. The individual nodes have limited resources and hence efficient communication mechanisms between the nodes have to be devised for continued operation of the network in a plant environment. In wireless sensor networks a sink node or base station at one end acts as the recipient of information gathered by all other sensor nodes in the network and the information arrives at the sink through multiple hops across the nodes of the network. A routing algorithm has been developed in which a virtual sink node is generated whenever hop count of an ordinary node crosses a certain specified value. The virtual sink node acts as a recipient node for data of all neighboring nodes. This virtual sink helps in reducing routing overhead, especially when the sensor network is scaled to a larger network. The advantages with this scheme are less energy consumption, reduced congestion in the network and longevity of the network. The above algorithm is suitable for event based or interval based monitoring systems in nuclear plants. This paper describes the working of the proposed algorithm and provides its implementation details. (author)

  9. Energy Management of Dual-Source Propelled Electric Vehicle using Fuzzy Controller Optimized via Genetic Algorithm

    DEFF Research Database (Denmark)

    Khoobi, Saeed; Halvaei, Abolfazl; Hajizadeh, Amin

    2016-01-01

    Energy and power distribution between multiple energy sources of electric vehicles (EVs) is the main challenge to achieve optimum performance from EV. Fuzzy inference systems are powerful tools due to nonlinearity and uncertainties of EV system. Design of fuzzy controllers for energy management...... of EV relies too much on the expert experience and it may lead to sub-optimal performance. This paper develops an optimized fuzzy controller using genetic algorithm (GA) for an electric vehicle equipped with two power bank including battery and super-capacitor. The model of EV and optimized fuzzy...

  10. Towards use of Dijkstra Algorithm for Optimal Navigation of an Unmanned Surface Vehicle in a Real-Time Marine Environment with results from Artificial Potential Field

    Directory of Open Access Journals (Sweden)

    Yogang Singh

    2018-03-01

    Full Text Available The growing need of ocean surveying and exploration for scientific and industrial application has led to the requirement of routing strategies for ocean vehicles which are optimal in nature. Most of the op-timal path planning for marine vehicles had been conducted offline in a self-made environment. This paper takes into account a practical marine environment, i.e. Portsmouth Harbour, for finding an optimal path in terms of computational time between source and end points on a real time map for an USV. The current study makes use of a grid map generated from original and uses a Dijkstra algorithm to find the shortest path for a single USV. In order to benchmark the study, a path planning study using a well-known local path planning method artificial path planning (APF has been conducted in a real time marine environment and effectiveness is measured in terms of path length and computational time.

  11. An Alternative Route to Teaching Fraction Division: Abstraction of Common Denominator Algorithm

    Directory of Open Access Journals (Sweden)

    İsmail Özgür ZEMBAT

    2015-06-01

    Full Text Available From a curricular stand point, the traditional invert and multiply algorithm for division of fractions provides few affordances for linking to a rich understanding of fractions. On the other hand, an alternative algorithm, called common denominator algorithm, has many such affordances. The current study serves as an argument for shifting curriculum for fraction division from use of invert and multiply algorithm as a basis to the use of common denominator algorithm as a basis. This was accomplished with the analysis of learning of two prospective elementary teachers being an illustration of how to realize those conceptual affordances. In doing so, the article proposes an instructional sequence and details it by referring to both the (mathematical and pedagogical advantages and the disadvantages. As a result, this algorithm has a conceptual basis depending on basic operations of partitioning, unitizing, and counting, which make it accessible to learners. Also, when participants are encouraged to construct this algorithm based on their work with diagrams, common denominator algorithm formalizes the work that they do with diagrams.

  12. An alternative route to teaching fraction division: Abstraction of common denominator algorithm

    Directory of Open Access Journals (Sweden)

    İsmail Özgür Zembat

    2015-07-01

    Full Text Available From a curricular stand point, the traditional invert and multiply algorithm for division of fractions provides few affordances for linking to a rich understanding of fractions. On the other hand, an alternative algorithm, called common denominator algorithm, has many such affordances. The current study serves as an argument for shifting curriculum for fraction division from use of invert and multiply algorithm as a basis to the use of common denominator algorithm as a basis. This was accomplished with the analysis of learning of two prospective elementary teachers being an illustration of how to realize those conceptual affordances. In doing so, the article proposes an instructional sequence and details it by referring to both the (mathematical and pedagogical advantages and the disadvantages. As a result, this algorithm has a conceptual basis depending on basic operations of partitioning, unitizing, and counting, which make it accessible to learners. Also, when participants are encouraged to construct this algorithm based on their work with diagrams, common denominator algorithm formalizes the work that they do with diagrams.

  13. Optimization model of conventional missile maneuvering route based on improved Floyd algorithm

    Science.gov (United States)

    Wu, Runping; Liu, Weidong

    2018-04-01

    Missile combat plays a crucial role in the victory of war under high-tech conditions. According to the characteristics of maneuver tasks of conventional missile units in combat operations, the factors influencing road maneuvering are analyzed. Based on road distance, road conflicts, launching device speed, position requirements, launch device deployment, Concealment and so on. The shortest time optimization model was built to discuss the situation of road conflict and the strategy of conflict resolution. The results suggest that in the process of solving road conflict, the effect of node waiting is better than detour to another way. In this study, we analyzed the deficiency of the traditional Floyd algorithm which may limit the optimal way of solving road conflict, and put forward the improved Floyd algorithm, meanwhile, we designed the algorithm flow which would be better than traditional Floyd algorithm. Finally, throgh a numerical example, the model and the algorithm were proved to be reliable and effective.

  14. Hierarchical Control Strategy for Active Hydropneumatic Suspension Vehicles Based on Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Jinzhi Feng

    2015-02-01

    Full Text Available A new hierarchical control strategy for active hydropneumatic suspension systems is proposed. This strategy considers the dynamic characteristics of the actuator. The top hierarchy controller uses a combined control scheme: a genetic algorithm- (GA- based self-tuning proportional-integral-derivative controller and a fuzzy logic controller. For practical implementations of the proposed control scheme, a GA-based self-learning process is initiated only when the defined performance index of vehicle dynamics exceeds a certain debounce time threshold. The designed control algorithm is implemented on a virtual prototype and cosimulations are performed with different road disturbance inputs. Cosimulation results show that the active hydropneumatic suspension system designed in this study significantly improves riding comfort characteristics of vehicles. The robustness and adaptability of the proposed controller are also examined when the control system is subjected to extremely rough road conditions.

  15. Disjunctive cuts in a branch-and-price algorithm for the capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Røpke, Stefan

    This talk presents computational results that show the usefulness of the general-purpose valid inequalities disjunctive cuts when applied to the CVRP. Results indicate that the disjunctive cuts are able to reduce the gap between lower bound and upper bound more than state-of-the-art problem...... specific inequalities. Results also indicate that introducing the cuts leads to a smaller branch and bound tree and faster solution times overall....

  16. A branch-and-cut algorithm for the capacitated open vehicle routing problem

    DEFF Research Database (Denmark)

    Letchford, A.N.; Lysgaard, Jens; Eglese, R.W.

    2007-01-01

    -and-cut. We show that, even though the open CVRP initially looks like a minor variation of the standard CVRP, the integer programming formulation and cutting planes need to be modified in subtle ways. Computational results are given for several standard test instances, which enables us for the first time...... to assess the quality of existing heuristic methods, and to compare the relative difficulty of open and closed versions of the same problem....

  17. A Branch-and-Cut Algorithm for the Capacitated Open Vehicle Routing Problem

    DEFF Research Database (Denmark)

    Letchford, Adam N.; Lysgaard, Jens; Eglese, Richard W.

    -and-cut. We show that, even though the open CVRP initially looks like a minor variation of the standard CVRP, the integer programming formulation and cutting planes need to be modified in subtle ways. Computational results are given for several standard test instances, which enables us for the first time...... to assess the quality of existing heuristic methods, and to compare the relative difficulty of open and closed versions of the same problem....

  18. Multi-sources model and control algorithm of an energy management system for light electric vehicles

    International Nuclear Information System (INIS)

    Hannan, M.A.; Azidin, F.A.; Mohamed, A.

    2012-01-01

    Highlights: ► An energy management system (EMS) is developed for a scooter under normal and heavy power load conditions. ► The battery, FC, SC, EMS, DC machine and vehicle dynamics are modeled and designed for the system. ► State-based logic control algorithms provide an efficient and feasible multi-source EMS for light electric vehicles. ► Vehicle’s speed and power are closely matched with the ECE-47 driving cycle under normal and heavy load conditions. ► Sources of energy changeover occurred at 50% of the battery state of charge level in heavy load conditions. - Abstract: This paper presents the multi-sources energy models and ruled based feedback control algorithm of an energy management system (EMS) for light electric vehicle (LEV), i.e., scooters. The multiple sources of energy, such as a battery, fuel cell (FC) and super-capacitor (SC), EMS and power controller, DC machine and vehicle dynamics are designed and modeled using MATLAB/SIMULINK. The developed control strategies continuously support the EMS of the multiple sources of energy for a scooter under normal and heavy power load conditions. The performance of the proposed system is analyzed and compared with that of the ECE-47 test drive cycle in terms of vehicle speed and load power. The results show that the designed vehicle’s speed and load power closely match those of the ECE-47 test driving cycle under normal and heavy load conditions. This study’s results suggest that the proposed control algorithm provides an efficient and feasible EMS for LEV.

  19. Design of the smart home system based on the optimal routing algorithm and ZigBee network.

    Directory of Open Access Journals (Sweden)

    Dengying Jiang

    Full Text Available To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.

  20. Design of the smart home system based on the optimal routing algorithm and ZigBee network.

    Science.gov (United States)

    Jiang, Dengying; Yu, Ling; Wang, Fei; Xie, Xiaoxia; Yu, Yongsheng

    2017-01-01

    To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.

  1. POWER ELECTRONIC SYSTEM FOR POWER ELECTRIC VEHICLES WITH ALGORITHMS OF SYNCHRONOUS MODULATION

    OpenAIRE

    Oleschuk V.; Ermuratskii V.

    2014-01-01

    Schemes of synchronous space-vector modulation have been adapted for control of split-phase drive for electric vehicle with open-end windings of induction motor, supplied by several voltage source inverters. MATLAB-based simulation of processes in this system has been executed. It has been shown, that the use of algorithms of synchronous modulation provides symmetry of phase voltage waveforms for any ratio between the switching frequency and fundamental frequency, and for any voltage magnitud...

  2. Clique inequalities applied to the vehicle routing problem with time windows

    DEFF Research Database (Denmark)

    Spoorendonk, Simon; Desaulniers, Guy

    2010-01-01

    criterion applied in the pricing algorithm, which is a labeling algorithm for solving resource-constrained elementary shortest path problems. The idea of using cutting planes defined on the master problem variables for the VRPTW has been recently developed: Chva´tal-Gomory rank-1 cuts were applied. However......, to our knowledge, this is a first attempt at incorporating for the VRPTW a set of valid inequalities specialized for the set partitioning polytope. Computational results show that the use of clique inequalities improves the lower bound at the root node of the search tree and reduces the number of nodes...

  3. Incorporating a Wheeled Vehicle Model in a New Monocular Visual Odometry Algorithm for Dynamic Outdoor Environments

    Science.gov (United States)

    Jiang, Yanhua; Xiong, Guangming; Chen, Huiyan; Lee, Dah-Jye

    2014-01-01

    This paper presents a monocular visual odometry algorithm that incorporates a wheeled vehicle model for ground vehicles. The main innovation of this algorithm is to use the single-track bicycle model to interpret the relationship between the yaw rate and side slip angle, which are the two most important parameters that describe the motion of a wheeled vehicle. Additionally, the pitch angle is also considered since the planar-motion hypothesis often fails due to the dynamic characteristics of wheel suspensions and tires in real-world environments. Linearization is used to calculate a closed-form solution of the motion parameters that works as a hypothesis generator in a RAndom SAmple Consensus (RANSAC) scheme to reduce the complexity in solving equations involving trigonometric. All inliers found are used to refine the winner solution through minimizing the reprojection error. Finally, the algorithm is applied to real-time on-board visual localization applications. Its performance is evaluated by comparing against the state-of-the-art monocular visual odometry methods using both synthetic data and publicly available datasets over several kilometers in dynamic outdoor environments. PMID:25256109

  4. Incorporating a Wheeled Vehicle Model in a New Monocular Visual Odometry Algorithm for Dynamic Outdoor Environments

    Directory of Open Access Journals (Sweden)

    Yanhua Jiang

    2014-09-01

    Full Text Available This paper presents a monocular visual odometry algorithm that incorporates a wheeled vehicle model for ground vehicles. The main innovation of this algorithm is to use the single-track bicycle model to interpret the relationship between the yaw rate and side slip angle, which are the two most important parameters that describe the motion of a wheeled vehicle. Additionally, the pitch angle is also considered since the planar-motion hypothesis often fails due to the dynamic characteristics of wheel suspensions and tires in real-world environments. Linearization is used to calculate a closed-form solution of the motion parameters that works as a hypothesis generator in a RAndom SAmple Consensus (RANSAC scheme to reduce the complexity in solving equations involving trigonometric. All inliers found are used to refine the winner solution through minimizing the reprojection error. Finally, the algorithm is applied to real-time on-board visual localization applications. Its performance is evaluated by comparing against the state-of-the-art monocular visual odometry methods using both synthetic data and publicly available datasets over several kilometers in dynamic outdoor environments.

  5. A Time-Slotted On-Demand Routing Protocol for Mobile Ad Hoc Unmanned Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hope Forsmann; Robert Hiromoto; John Svoboda

    2007-04-01

    The popularity of UAVs has increased dramatically because of their successful deployment in military operations, their ability to preserve human life, and the continual improvements in wireless communication that serves to increase their capabilities. We believe the usefulness of UAVs would be dramatically increased if formation flight were added to the list of capabilities. Currently, sustained formation flight with a cluster of UAVs has only been achieved with two nodes by the Multi-UAV Testbed at the Massachusetts Institute of Technology. (Park, 2004) Formation flight is a complex operation requiring the ability to adjust the flight patterns on the fly and correct for wind gusts, terrain, and differences in node equipment. All of which increases the amount of inner node communication. Since one of the problems with MANET communication is network congestion, we believe a first step towards formation flight can be made through improved inner node communication. We have investigated current communication routing protocols and developed an altered hybrid routing protocol in order to provide communication with less network congestion.

  6. Evaluation of odometry algorithm performances using a railway vehicle dynamic model

    Science.gov (United States)

    Allotta, B.; Pugi, L.; Ridolfi, A.; Malvezzi, M.; Vettori, G.; Rindi, A.

    2012-05-01

    In modern railway Automatic Train Protection and Automatic Train Control systems, odometry is a safety relevant on-board subsystem which estimates the instantaneous speed and the travelled distance of the train; a high reliability of the odometry estimate is fundamental, since an error on the train position may lead to a potentially dangerous overestimation of the distance available for braking. To improve the odometry estimate accuracy, data fusion of different inputs coming from a redundant sensor layout may be used. Simplified two-dimensional models of railway vehicles have been usually used for Hardware in the Loop test rig testing of conventional odometry algorithms and of on-board safety relevant subsystems (like the Wheel Slide Protection braking system) in which the train speed is estimated from the measures of the wheel angular speed. Two-dimensional models are not suitable to develop solutions like the inertial type localisation algorithms (using 3D accelerometers and 3D gyroscopes) and the introduction of Global Positioning System (or similar) or the magnetometer. In order to test these algorithms correctly and increase odometry performances, a three-dimensional multibody model of a railway vehicle has been developed, using Matlab-Simulink™, including an efficient contact model which can simulate degraded adhesion conditions (the development and prototyping of odometry algorithms involve the simulation of realistic environmental conditions). In this paper, the authors show how a 3D railway vehicle model, able to simulate the complex interactions arising between different on-board subsystems, can be useful to evaluate the odometry algorithm and safety relevant to on-board subsystem performances.

  7. An algorithm for routing optimization in DiffServ-aware MPLS networks

    OpenAIRE

    Luigi Atzori; Fabio D'Andreagiovanni; Carlo Mannino; Tatiana Onali

    2010-01-01

    This paper addresses the constrained-based routing problem in DiffServaware MPLS networks. We consider a dynamic context in which new requests appear over time, asking for reconfigurations of the previous allocation. In the classical approach, a multi-phase heuristic procedure is adopted: the new requests are evaluated considering available bandwidth; if the bandwidth is not sufficient, preemption and rerouting of one or more connections are performed in sequence. As an alternative, we propos...

  8. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Jisheng Zhang

    2015-06-01

    Full Text Available It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs’ route planning for small and medium-scale networks.

  9. Diesel supply planning for offshore platforms by a mathematical model based on the vehicle routing problem with replenishment

    Energy Technology Data Exchange (ETDEWEB)

    Fiorot Astoures, H.; Alvarenga Rosa, R. de; Silva Rosa, A.

    2016-07-01

    Oil exploration in Brazil is mainly held by offshore platforms which require the supply of several products, including diesel to maintain its engines. One strategy to supply diesel to the platforms is to keep a vessel filled with diesel nearby the exploration basin. An empty boat leaves the port and goes directly to this vessel, then it is loaded with diesel. After that, it makes a trip to supply the platforms and when the boat is empty, it returns to the vessel to be reloaded with more diesel going to another trip. Based on this description, this paper proposes a mathematical model based on the Vehicle Routing Problem with Intermediate Replenishment Facilities (VRPIRF) to solve the problem. The purpose of the model is to plan the routes for the boats to meet the diesel requests of the platform. Given the fact that in the literature, papers about the VRPIRF are scarce and papers about the VRPIRF applied to offshore platforms were not found in the published papers, this paper is important to contribute with the evolution of this class of problem, bringing also a solution for a real application that is very important for the oil and gas business. The mathematical model was tested using the CPLEX 12.6. In order to assess the mathematical model, tests were done with data from the major Brazilian oil and gas company and several strategies were tested. (Author)

  10. Agent Performance in Vehicle Routing when the Only Thing Certain is Uncertainty (extended abstract)

    NARCIS (Netherlands)

    Mahr, T.; Srour, J.; De Weerdt, M.M.; Zuidwijk, R.

    2008-01-01

    In this paper we investigate whether a distributed agent-based planning approach indeed suffers less from job arrival uncertainty than a centralized optimization-based approach. In order to compare the two different approaches, we use the best available algorithms for both sides.

  11. The design and results of an algorithm for intelligent ground vehicles

    Science.gov (United States)

    Duncan, Matthew; Milam, Justin; Tote, Caleb; Riggins, Robert N.

    2010-01-01

    This paper addresses the design, design method, test platform, and test results of an algorithm used in autonomous navigation for intelligent vehicles. The Bluefield State College (BSC) team created this algorithm for its 2009 Intelligent Ground Vehicle Competition (IGVC) robot called Anassa V. The BSC robotics team is comprised of undergraduate computer science, engineering technology, marketing students, and one robotics faculty advisor. The team has participated in IGVC since the year 2000. A major part of the design process that the BSC team uses each year for IGVC is a fully documented "Post-IGVC Analysis." Over the nine years since 2000, the lessons the students learned from these analyses have resulted in an ever-improving, highly successful autonomous algorithm. The algorithm employed in Anassa V is a culmination of past successes and new ideas, resulting in Anassa V earning several excellent IGVC 2009 performance awards, including third place overall. The paper will discuss all aspects of the design of this autonomous robotic system, beginning with the design process and ending with test results for both simulation and real environments.

  12. A new memetic algorithm for mitigating tandem automated guided vehicle system partitioning problem

    Science.gov (United States)

    Pourrahimian, Parinaz

    2017-11-01

    Automated Guided Vehicle System (AGVS) provides the flexibility and automation demanded by Flexible Manufacturing System (FMS). However, with the growing concern on responsible management of resource use, it is crucial to manage these vehicles in an efficient way in order reduces travel time and controls conflicts and congestions. This paper presents the development process of a new Memetic Algorithm (MA) for optimizing partitioning problem of tandem AGVS. MAs employ a Genetic Algorithm (GA), as a global search, and apply a local search to bring the solutions to a local optimum point. A new Tabu Search (TS) has been developed and combined with a GA to refine the newly generated individuals by GA. The aim of the proposed algorithm is to minimize the maximum workload of the system. After all, the performance of the proposed algorithm is evaluated using Matlab. This study also compared the objective function of the proposed MA with GA. The results showed that the TS, as a local search, significantly improves the objective function of the GA for different system sizes with large and small numbers of zone by 1.26 in average.

  13. Low Speed Longitudinal Control Algorithms for Automated Vehicles in Simulation and Real Platforms

    Directory of Open Access Journals (Sweden)

    Mauricio Marcano

    2018-01-01

    Full Text Available Advanced Driver Assistance Systems (ADAS acting over throttle and brake are already available in level 2 automated vehicles. In order to increase the level of automation new systems need to be tested in an extensive set of complex scenarios, ensuring safety under all circumstances. Validation of these systems using real vehicles presents important drawbacks: the time needed to drive millions of kilometers, the risk associated with some situations, and the high cost involved. Simulation platforms emerge as a feasible solution. Therefore, robust and reliable virtual environments to test automated driving maneuvers and control techniques are needed. In that sense, this paper presents a use case where three longitudinal low speed control techniques are designed, tuned, and validated using an in-house simulation framework and later applied in a real vehicle. Control algorithms include a classical PID, an adaptive network fuzzy inference system (ANFIS, and a Model Predictive Control (MPC. The simulated dynamics are calculated using a multibody vehicle model. In addition, longitudinal actuators of a Renault Twizy are characterized through empirical tests. A comparative analysis of results between simulated and real platform shows the effectiveness of the proposed framework for designing and validating longitudinal controllers for real automated vehicles.

  14. Team Cooperation in a Network of Multi-Vehicle Unmanned Systems Synthesis of Consensus Algorithms

    CERN Document Server

    Semsar-Kazerooni, Elham

    2013-01-01

    Team Cooperation in a Network of Multi-Vehicle Unmanned Systems develops a framework for modeling and control of a network of multi-agent unmanned systems in a cooperative manner and with consideration of non-ideal and practical considerations. The main focus of this book is the development of “synthesis-based” algorithms rather than on conventional “analysis-based” approaches to the team cooperation, specifically the team consensus problems. The authors provide a set of modified “design-based” consensus algorithms whose optimality is verified through introduction of performance indices. This book also: Provides synthesis-based methodology for team cooperation Introduces a consensus-protocol optimized performance index  Offers comparisons for use of proper indices in measuring team performance Analyzes and predicts  performance of  previously designed consensus algorithms Analyses and predicts team behavior in the presence of non-ideal considerations such as actuator anomalies and faults as wel...

  15. Branch and price for the time-dependent vehicle routing problem with time windows

    DEFF Research Database (Denmark)

    Dabia, Said; Dabia, Said; Van Woensel, Tom

    2013-01-01

    of column generation, and a tailored labeling algorithm is used to solve the pricing problem. We introduce new dominance criteria that allow more label dominance. For our numerical results, we modified Solomon's data sets by adding time dependency. Our algorithm is able to solve about 63% of the instances...... solution methods to the DM-TDVRPTW are based on (meta-)heuristics. The decomposition of an arc-based formulation leads to a setpartitioning problem as the master problem, and a time-dependent shortest path problem with resource constraints as the pricing problem. The master problem is solved by means...... with 25 customers, 38% of the instances with 50 customers, and 15% of the instances with 100 customers. © 2013 INFORMS....

  16. A New Algorithm for ABS/GPS Integration Based on Fuzzy-Logic in Vehicle Navigation System

    Directory of Open Access Journals (Sweden)

    Ali Amin Zadeh

    2011-10-01

    Full Text Available GPS based vehicle navigation systems have difficulties in tracking vehicles in urban canyons due to poor satellite availability. ABS (Antilock Brake System Navigation System consists of self-contained optical encoders mounted on vehicle wheels that can continuously provide accurate short-term positioning information. In this paper, a new concept regarding GPS/ABS integration, based on Fuzzy Logic is presented. The proposed algorithm is used to identify GPS position accuracy based on environment and vehicle dynamic knowledge. The GPS is used as reference during the time it is in a good condition and replaced by ABS positioning system when GPS information is unreliable. We compare our proposed algorithm with other common algorithm in real environment. Our results show that the proposed algorithm can significantly improve the stability and reliability of ABS/GPS navigation system.

  17. An Efficient Genetic Algorithm for Routing Multiple UAVs under Flight Range and Service Time Window Constraints

    OpenAIRE

    KARAKAYA, Murat; SEVİNÇ, Ender

    2017-01-01

    Recently using Unmanned Aerial Vehicles (UAVs) either for military or civilian purposes is getting popularity. However, UAVs have their own limitations which require adopted approaches to satisfy the Quality of Service (QoS) promised by the applications depending on effective use of UAVs. One of the important limitations of the UAVs encounter is the flight range. Most of the time, UAVs have very scarce energy resources and, thus, they have relatively short flight ranges. Besides, for the appl...

  18. A QoS-Guaranteed Coverage Precedence Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jiun-Chuan Lin

    2011-03-01

    Full Text Available For mission-critical applications of wireless sensor networks (WSNs involving extensive battlefield surveillance, medical healthcare, etc., it is crucial to have low-power, new protocols, methodologies and structures for transferring data and information in a network with full sensing coverage capability for an extended working period. The upmost mission is to ensure that the network is fully functional providing reliable transmission of the sensed data without the risk of data loss. WSNs have been applied to various types of mission-critical applications. Coverage preservation is one of the most essential functions to guarantee quality of service (QoS in WSNs. However, a tradeoff exists between sensing coverage and network lifetime due to the limited energy supplies of sensor nodes. In this study, we propose a routing protocol to accommodate both energy-balance and coverage-preservation for sensor nodes in WSNs. The energy consumption for radio transmissions and the residual energy over the network are taken into account when the proposed protocol determines an energy-efficient route for a packet. The simulation results demonstrate that the proposed protocol is able to increase the duration of the on-duty network and provide up to 98.3% and 85.7% of extra service time with 100% sensing coverage ratio comparing with LEACH and the LEACH-Coverage-U protocols, respectively.

  19. MANETS and Internet of Things: The Development of a Data Routing Algorithm

    Directory of Open Access Journals (Sweden)

    I. A. Alameri

    2018-02-01

    Full Text Available Internet of things (IoT, is an innovative technology which allows the connection of physical things with the digital world through the use of heterogeneous networks and communication technologies. IoT in smart environments interacts with wireless sensor network (WSN and mobile ad‐hoc network (MANET, becoming even more attractive and economically successful. Interaction between wireless sensor and mobile ad‐hoc networks with the internet of things allows the creation of a new MANET‐IoT systems and IT‐based networks. Such systems give the user greater mobility and reduce costs. At the same time new challenging issues are opened in networking aspects. In this work, author proposed a routing solution for the IoT system using a combination of MANET protocols and WSN routing principles. The presented results of solution's investigation provide an effective approach to efficient energy consumption in the global MANET‐IoT system. That is a step forward to a reliable provision of services over global future internet infrastructure.

  20. DEVELOPMENT OF THE UNIVERSAL ALGORITHM FOR THE AIRSPACE CONFLICTS RESOLUTION WITH AN AIRPLANE EN-ROUTE

    Directory of Open Access Journals (Sweden)

    N. A. Petrov

    2014-01-01

    Full Text Available The paper outlines the formulation and solution of the problem of an airplane trajectory control within dynamically changing flight conditions. Physical and mathematical formulation of the problem was justified and algorithms were proposed to solve it using modern automated technologies.

  1. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles

    Science.gov (United States)

    Jeon, Namju; Lee, Hyeongcheol

    2016-01-01

    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed. PMID:27973431

  2. Study on the Noise Reduction of Vehicle Exhaust NOX Spectra Based on Adaptive EEMD Algorithm

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    2017-01-01

    Full Text Available It becomes a key technology to measure the concentration of the vehicle exhaust components with the transmission spectra. But in the conventional methods for noise reduction and baseline correction, such as wavelet transform, derivative, interpolation, polynomial fitting, and so forth, the basic functions of these algorithms, the number of decomposition layers, and the way to reconstruct the signal have to be adjusted according to the characteristics of different components in the transmission spectra. The parameter settings of the algorithms above are not transcendental, so with them, it is difficult to achieve the best noise reduction effect for the vehicle exhaust spectra which are sharp and drastic in the waveform. In this paper, an adaptive ensemble empirical mode decomposition (EEMD denoising model based on a special normalized index optimization is proposed and used in the spectral noise reduction of vehicle exhaust NOX. It is shown with the experimental results that the method can effectively improve the accuracy of the spectral noise reduction and simplify the denoising process and its operation difficulty.

  3. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles.

    Science.gov (United States)

    Jeon, Namju; Lee, Hyeongcheol

    2016-12-12

    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.

  4. Optimal solutions for routing problems with profits

    NARCIS (Netherlands)

    Archetti, C.; Bianchessi, N.; Speranza, M. G.

    2013-01-01

    In this paper, we present a branch-and-price algorithm to solve two well-known vehicle routing problems with profits, the Capacitated Team Orienteering Problem and the Capacitated Profitable Tour Problem. A restricted master heuristic is applied at each node of the branch-and-bound tree in order to

  5. Liveness-Based RRT Algorithm for Autonomous Underwater Vehicles Motion Planning

    Directory of Open Access Journals (Sweden)

    Yang Li

    2017-01-01

    Full Text Available Motion planning is a crucial, basic issue in robotics, which aims at driving vehicles or robots towards to a given destination with various constraints, such as obstacles and limited resource. This paper presents a new version of rapidly exploring random trees (RRT, that is, liveness-based RRT (Li-RRT, to address autonomous underwater vehicles (AUVs motion problem. Different from typical RRT, we define an index of each node in the random searching tree, called “liveness” in this paper, to describe the potential effectiveness during the expanding process. We show that Li-RRT is provably probabilistic completeness as original RRT. In addition, the expected time of returning a valid path with Li-RRT is obviously reduced. To verify the efficiency of our algorithm, numerical experiments are carried out in this paper.

  6. POWER ELECTRONIC SYSTEM FOR POWER ELECTRIC VEHICLES WITH ALGORITHMS OF SYNCHRONOUS MODULATION

    Directory of Open Access Journals (Sweden)

    Oleschuk V.

    2014-04-01

    Full Text Available Schemes of synchronous space-vector modulation have been adapted for control of split-phase drive for electric vehicle with open-end windings of induction motor, supplied by several voltage source inverters. MATLAB-based simulation of processes in this system has been executed. It has been shown, that the use of algorithms of synchronous modulation provides symmetry of phase voltage waveforms for any ratio between the switching frequency and fundamental frequency, and for any voltage magnitudes of dc-sources. Spectra of the phase voltage of system do not contain even harmonics and subharmonics (of the fundamental frequency, which is especially important for drives for the medium-power and high-power electric vehicles.

  7. FORMATION ALGORITHM OF DYNAMIC TURN FOR UNMANNED AERIAL VEHICLES ON APPROACH

    Directory of Open Access Journals (Sweden)

    Igor A. Chekhov

    2017-01-01

    Full Text Available Great interest in using unmanned aerial vehicles has recently been shown, both from economic entities, and from national security, defense and law enforcement agencies. However, for using UAV for the civil purposes there is now a number of problems which are connected with the use of airspace and without solving them it is impossible to use the UAV fully. It should be noted that the level of flight safety, both for regular aircraft, and for the UAV, has the primary value. It is necessary to use modern methods of data processing and to have an opportunity to quickly and effectively control the current flight safety level. For this purpose the fullest information on the current movement of aircraft and unmanned aerial vehicles, and also on the structure of the used airspace has to be used. The problem of procedures and maneuvers development that resolve potential traffic conflict including the UAV, is extremely important for air traffic safety especially in the vicinity of the destination or landing aerodrome. The possibility of creation of an algorithm of dynamic turn formation and the choice of a trajectory on approach of unmanned aerial vehicles is considered in this article. The technology of automatic dependent surveillance broadcast was used when collecting statistical data. Implementation of the landing algorithm is executed based on the criteria of ensuring efficiency and flight safety. The developed software provides the use only of open data on the aircraft movement in terminal airspace. The suggested algorithm can be adapted for air traffic management of the UAV in any selected airspace.

  8. AR-RBFS: Aware-Routing Protocol Based on Recursive Best-First Search Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Farzad Kiani

    2016-01-01

    Full Text Available Energy issue is one of the most important problems in wireless sensor networks. They consist of low-power sensor nodes and a few base station nodes. They must be adaptive and efficient in data transmission to sink in various areas. This paper proposes an aware-routing protocol based on clustering and recursive search approaches. The paper focuses on the energy efficiency issue with various measures such as prolonging network lifetime along with reducing energy consumption in the sensor nodes and increasing the system reliability. Our proposed protocol consists of two phases. In the first phase (network development phase, the sensors are placed into virtual layers. The second phase (data transmission is related to routes discovery and data transferring so it is based on virtual-based Classic-RBFS algorithm in the lake of energy problem environments but, in the nonchargeable environments, all nodes in each layer can be modeled as a random graph and then begin to be managed by the duty cycle method. Additionally, the protocol uses new topology control, data aggregation, and sleep/wake-up schemas for energy saving in the network. The simulation results show that the proposed protocol is optimal in the network lifetime and packet delivery parameters according to the present protocols.

  9. DESIGNING APPLICATION OF ANT COLONY SYSTEM ALGORITHM FOR THE SHORTEST ROUTE OF BANDA ACEH CITY AND ACEH BESAR REGENCY TOURISM BY USING GRAPHICAL USER INTERFACE MATLAB

    Directory of Open Access Journals (Sweden)

    Durisman Durisman

    2017-09-01

    Full Text Available Banda Aceh city and Aceh Besar Regency are two of the leading tourism areas located in the province of Aceh. For travelling, there are some important things to be considered, such as determining schedule and distance of tourism. Every tourist certainly chooses the shortest route to reach the destination since it can save time, energy, and money. The purpose of this reserach is to develop a method that can be used in calculating the shortest route and applied to the tourism of Banda Aceh city and Aceh Besar regency. In this reserach, Ant Colony Optimization algorithm is used to determine the shortest route to tourism of Banda Aceh city and Aceh Besar regency. From the analysis made by using both manual calculation and  GUI MATLAB program application test, the shortest route can be obtained with a minimum distance of 120.85 km in one travel. Based on the test result, the application for tourism (in Banda Aceh city and Aceh Besar regency shortest route searching built by utilizing the Ant Colony Optimization algorithm can find optimal route.  Keyword: tourism, the shortest route, Ant Colony Optimization

  10. Onboard assessment of XRF spectra using genetic algorithms for decision making on an autonomous underwater vehicle

    International Nuclear Information System (INIS)

    Breen, Jeremy; Souza, P. de; Timms, G.P.; Ollington, R.

    2011-01-01

    In order to optimise use of the limited resources (time, power) of an autonomous underwater vehicle (AUV) with a miniaturised X-ray fluorescence (XRF) spectrometer on board to carry out in situ autonomous chemical mapping of the surface of sediments with desired resolution, a genetic algorithm for rapid curve fitting is reported in this paper. This method quickly converges and provides an accurate in situ assessment of metals present, which helps the control system of the AUV to decide on future sampling locations. More thorough analysis of the available data could be performed once the AUV has returned to the base (laboratory).

  11. Comparisons of feature extraction algorithm based on unmanned aerial vehicle image

    Directory of Open Access Journals (Sweden)

    Xi Wenfei

    2017-07-01

    Full Text Available Feature point extraction technology has become a research hotspot in the photogrammetry and computer vision. The commonly used point feature extraction operators are SIFT operator, Forstner operator, Harris operator and Moravec operator, etc. With the high spatial resolution characteristics, UAV image is different from the traditional aviation image. Based on these characteristics of the unmanned aerial vehicle (UAV, this paper uses several operators referred above to extract feature points from the building images, grassland images, shrubbery images, and vegetable greenhouses images. Through the practical case analysis, the performance, advantages, disadvantages and adaptability of each algorithm are compared and analyzed by considering their speed and accuracy. Finally, the suggestions of how to adapt different algorithms in diverse environment are proposed.

  12. A hybrid multi-objective imperialist competitive algorithm and Monte Carlo method for robust safety design of a rail vehicle

    Science.gov (United States)

    Nejlaoui, Mohamed; Houidi, Ajmi; Affi, Zouhaier; Romdhane, Lotfi

    2017-10-01

    This paper deals with the robust safety design optimization of a rail vehicle system moving in short radius curved tracks. A combined multi-objective imperialist competitive algorithm and Monte Carlo method is developed and used for the robust multi-objective optimization of the rail vehicle system. This robust optimization of rail vehicle safety considers simultaneously the derailment angle and its standard deviation where the design parameters uncertainties are considered. The obtained results showed that the robust design reduces significantly the sensitivity of the rail vehicle safety to the design parameters uncertainties compared to the determinist one and to the literature results.

  13. Economic and Environmental Evaluation of a Brick Delivery System Based on Multi-Trip Vehicle Loader Routing Problem for Small Construction Sites

    Directory of Open Access Journals (Sweden)

    Heungjo An

    2018-05-01

    Full Text Available While large construction sites have on-site loaders to handle heavy and large packages of bricks, small brick manufacturers employ a truck-mounted loader or sometimes deploy a loader truck to accompany normal brick delivery trucks to small construction sites lacking on-site loaders. It may be very challenging for small contractors to manage a sustainable delivery system that is both cost-effective and environmentally friendly. To address this issue, this paper proposes to solve a multi-trip vehicle loader routing problem by uniquely planning routes and schedules of several types of vehicles considering their synchronized operations at customer sites and multi trips. This paper also evaluates the sustainability of the developed model from both economic and environmental perspectives. Case studies based on small construction sites in the Middle East demonstrate applications of the proposed model to make the most economical plans for delivering bricks. Compared to the single-trip vehicle loader routing problem, the proposed model reduces, on average, 18.7% of the total delivery cost while increasing CO2 emission negligibly. The economic benefit is mainly achieved by reducing the required number of vehicles. Brick plant managers can use the proposed mathematical model to plan the most cost-effective delivery schedules sustainably while minimizing negative environmental effects.

  14. Implementation of an IMU Aided Image Stacking Algorithm in a Digital Camera for Unmanned Aerial Vehicles.

    Science.gov (United States)

    Audi, Ahmad; Pierrot-Deseilligny, Marc; Meynard, Christophe; Thom, Christian

    2017-07-18

    Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles) exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l'information géographique) camera, which has an IMU (Inertial Measurement Unit) sensor and an SoC (System on Chip)/FPGA (Field-Programmable Gate Array). To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N -th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test) detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work.

  15. Implementation of an IMU Aided Image Stacking Algorithm in a Digital Camera for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Ahmad Audi

    2017-07-01

    Full Text Available Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l’information géographique camera, which has an IMU (Inertial Measurement Unit sensor and an SoC (System on Chip/FPGA (Field-Programmable Gate Array. To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N-th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work.

  16. Real-time immune-inspired optimum state-of-charge trajectory estimation using upcoming route information preview and neural networks for plug-in hybrid electric vehicles fuel economy

    Science.gov (United States)

    Mozaffari, Ahmad; Vajedi, Mahyar; Azad, Nasser L.

    2015-06-01

    The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug-in hybrid electric vehicles (PHEVs). The estimated SOC trajectory can be then employed for an intelligent power management to significantly improve the fuel economy of the vehicle. The devised intelligent SOC trajectory builder takes advantage of the upcoming route information preview to achieve the lowest possible total cost of electricity and fossil fuel. To reduce the complexity of real-time optimization, the authors propose an immune system-based clustering approach which allows categorizing the route information into a predefined number of segments. The intelligent real-time optimizer is also inspired on the basis of interactions in biological immune systems, and is called artificial immune algorithm (AIA). The objective function of the optimizer is derived from a computationally efficient artificial neural network (ANN) which is trained by a database obtained from a high-fidelity model of the vehicle built in the Autonomie software. The simulation results demonstrate that the integration of immune inspired clustering tool, AIA and ANN, will result in a powerful framework which can generate a near global optimum SOC trajectory for the baseline vehicle, that is, the Toyota Prius PHEV. The outcomes of the current investigation prove that by taking advantage of intelligent approaches, it is possible to design a computationally efficient and powerful SOC trajectory builder for the intelligent power management of PHEVs.

  17. A Routing Algorithm for WiFi-Based Wireless Sensor Network and the Application in Automatic Meter Reading

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-01-01

    Full Text Available The Automatic Meter Reading (AMR network for the next generation Smart Grid is required to possess many essential functions, such as data reading and writing, intelligent power transmission, and line damage detection. However, the traditional AMR network cannot meet the previous requirement. With the development of the WiFi sensor node in the low power cost, a new kind of wireless sensor network based on the WiFi technology can be used in application. In this paper, we have designed a new architecture of WiFi-based wireless sensor network, which is suitable for the next generation AMR system. We have also proposed a new routing algorithm called Energy Saving-Based Hybrid Wireless Mesh Protocol (E-HWMP on the premise of current algorithm, which can improve the energy saving of the HWMP and be suitable for the WiFi-based wireless sensor network. The simulation results show that the life cycle of network is extended.

  18. Multi-objective decoupling algorithm for active distance control of intelligent hybrid electric vehicle

    Science.gov (United States)

    Luo, Yugong; Chen, Tao; Li, Keqiang

    2015-12-01

    The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.

  19. Optimization of Key Parameters of Energy Management Strategy for Hybrid Electric Vehicle Using DIRECT Algorithm

    Directory of Open Access Journals (Sweden)

    Jingxian Hao

    2016-11-01

    Full Text Available The rule-based logic threshold control strategy has been frequently used in energy management strategies for hybrid electric vehicles (HEVs owing to its convenience in adjusting parameters, real-time performance, stability, and robustness. However, the logic threshold control parameters cannot usually ensure the best vehicle performance at different driving cycles and conditions. For this reason, the optimization of key parameters is important to improve the fuel economy, dynamic performance, and drivability. In principle, this is a multiparameter nonlinear optimization problem. The logic threshold energy management strategy for an all-wheel-drive HEV is comprehensively analyzed and developed in this study. Seven key parameters to be optimized are extracted. The optimization model of key parameters is proposed from the perspective of fuel economy. The global optimization method, DIRECT algorithm, which has good real-time performance, low computational burden, rapid convergence, is selected to optimize the extracted key parameters globally. The results show that with the optimized parameters, the engine operates more at the high efficiency range resulting into a fuel savings of 7% compared with non-optimized parameters. The proposed method can provide guidance for calibrating the parameters of the vehicle energy management strategy from the perspective of fuel economy.

  20. Creep force modelling for rail traction vehicles based on the Fastsim algorithm

    Science.gov (United States)

    Spiryagin, Maksym; Polach, Oldrich; Cole, Colin

    2013-11-01

    The evaluation of creep forces is a complex task and their calculation is a time-consuming process for multibody simulation (MBS). A methodology of creep forces modelling at large traction creepages has been proposed by Polach [Creep forces in simulations of traction vehicles running on adhesion limit. Wear. 2005;258:992-1000; Influence of locomotive tractive effort on the forces between wheel and rail. Veh Syst Dyn. 2001(Suppl);35:7-22] adapting his previously published algorithm [Polach O. A fast wheel-rail forces calculation computer code. Veh Syst Dyn. 1999(Suppl);33:728-739]. The most common method for creep force modelling used by software packages for MBS of running dynamics is the Fastsim algorithm by Kalker [A fast algorithm for the simplified theory of rolling contact. Veh Syst Dyn. 1982;11:1-13]. However, the Fastsim code has some limitations which do not allow modelling the creep force - creep characteristic in agreement with measurements for locomotives and other high-power traction vehicles, mainly for large traction creep at low-adhesion conditions. This paper describes a newly developed methodology based on a variable contact flexibility increasing with the ratio of the slip area to the area of adhesion. This variable contact flexibility is introduced in a modification of Kalker's code Fastsim by replacing the constant Kalker's reduction factor, widely used in MBS, by a variable reduction factor together with a slip-velocity-dependent friction coefficient decreasing with increasing global creepage. The proposed methodology is presented in this work and compared with measurements for different locomotives. The modification allows use of the well recognised Fastsim code for simulation of creep forces at large creepages in agreement with measurements without modifying the proven modelling methodology at small creepages.

  1. OPTIMASI OLSR ROUTING PROTOCOL PADA JARINGAN WIRELESS MESH DENGAN ADAPTIVE REFRESHING TIME INTERVAL DAN ENHANCE MULTI POINT RELAY SELECTING ALGORITHM

    Directory of Open Access Journals (Sweden)

    Faosan Mapa

    2014-01-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Wireless Mesh Network (WMN adalah suatu konektivitas jaringan yang self-organized, self-configured dan multi-hop. Tujuan dari WMN adalah menawarkan pengguna suatu bentuk jaringan nirkabel yang dapat dengan mudah berkomunikasi dengan jaringan konvensional dengan kecepatan tinggi dan dengan cakupan yang lebih luas serta biaya awal yang minimal. Diperlukan suatu desain protokol routing yang efisien untuk WMN yang secara adaptif dapat mendukung mesh routers dan mesh clients. Dalam tulisan ini, diusulkan untuk mengoptimalkan protokol OLSR, yang merupakan protokol routing proaktif. Digunakan heuristik yang meningkatkan protokol OLSR melalui adaptive refreshing time interval dan memperbaiki metode MPR selecting algorithm. Suatu analisa dalam meningkatkan protokol OLSR melalui adaptive refreshing time interval dan memperbaiki algoritma pemilihan MPR menunjukkan kinerja yang signifikan dalam hal throughput jika dibandingkan dengan protokol OLSR yang asli. Akan tetapi, terdapat kenaikan dalam hal delay. Pada simulasi yang dilakukan dapat disimpulkan bahwa OLSR dapat dioptimalkan dengan memodifikasi pemilihan node MPR berdasarkan cost effective dan penyesuaian waktu interval refreshing hello message sesuai dengan keadaan

  2. GPS navigation algorithms for Autonomous Airborne Refueling of Unmanned Air Vehicles

    Science.gov (United States)

    Khanafseh, Samer Mahmoud

    Unmanned Air Vehicles (UAVs) have recently generated great interest because of their potential to perform hazardous missions without risking loss of life. If autonomous airborne refueling is possible for UAVs, mission range and endurance will be greatly enhanced. However, concerns about UAV-tanker proximity, dynamic mobility and safety demand that the relative navigation system meets stringent requirements on accuracy, integrity, and continuity. In response, this research focuses on developing high-performance GPS-based navigation architectures for Autonomous Airborne Refueling (AAR) of UAVs. The AAR mission is unique because of the potentially severe sky blockage introduced by the tanker. To address this issue, a high-fidelity dynamic sky blockage model was developed and experimentally validated. In addition, robust carrier phase differential GPS navigation algorithms were derived, including a new method for high-integrity reacquisition of carrier cycle ambiguities for recently-blocked satellites. In order to evaluate navigation performance, world-wide global availability and sensitivity covariance analyses were conducted. The new navigation algorithms were shown to be sufficient for turn-free scenarios, but improvement in performance was necessary to meet the difficult requirements for a general refueling mission with banked turns. Therefore, several innovative methods were pursued to enhance navigation performance. First, a new theoretical approach was developed to quantify the position-domain integrity risk in cycle ambiguity resolution problems. A mechanism to implement this method with partially-fixed cycle ambiguity vectors was derived, and it was used to define tight upper bounds on AAR navigation integrity risk. A second method, where a new algorithm for optimal fusion of measurements from multiple antennas was developed, was used to improve satellite coverage in poor visibility environments such as in AAR. Finally, methods for using data-link extracted

  3. Polar Cooperative Navigation Algorithm for Multi-Unmanned Underwater Vehicles Considering Communication Delays

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2018-03-01

    Full Text Available To solve the navigation accuracy problems of multi-Unmanned Underwater Vehicles (multi-UUVs in the polar region, a polar cooperative navigation algorithm for multi-UUVs considering communication delays is proposed in this paper. UUVs are important pieces of equipment in ocean engineering for marine development. For UUVs to complete missions, precise navigation is necessary. It is difficult for UUVs to establish true headings because of the rapid convergence of Earth meridians and the severe polar environment. Based on the polar grid navigation algorithm, UUV navigation in the polar region can be accomplished with the Strapdown Inertial Navigation System (SINS in the grid frame. To save costs, a leader-follower type of system is introduced in this paper. The leader UUV helps the follower UUVs to achieve high navigation accuracy. Follower UUVs correct their own states based on the information sent by the leader UUV and the relative position measured by ultra-short baseline (USBL acoustic positioning. The underwater acoustic communication delay is quantized by the model. In this paper, considering underwater acoustic communication delay, the conventional adaptive Kalman filter (AKF is modified to adapt to polar cooperative navigation. The results demonstrate that the polar cooperative navigation algorithm for multi-UUVs that considers communication delays can effectively navigate the sailing of multi-UUVs in the polar region.

  4. Geomagnetic Navigation of Autonomous Underwater Vehicle Based on Multi-objective Evolutionary Algorithm.

    Science.gov (United States)

    Li, Hong; Liu, Mingyong; Zhang, Feihu

    2017-01-01

    This paper presents a multi-objective evolutionary algorithm of bio-inspired geomagnetic navigation for Autonomous Underwater Vehicle (AUV). Inspired by the biological navigation behavior, the solution was proposed without using a priori information, simply by magnetotaxis searching. However, the existence of the geomagnetic anomalies has significant influence on the geomagnetic navigation system, which often disrupts the distribution of the geomagnetic field. An extreme value region may easily appear in abnormal regions, which makes AUV lost in the navigation phase. This paper proposes an improved bio-inspired algorithm with behavior constraints, for sake of making AUV escape from the abnormal region. First, the navigation problem is considered as the optimization problem. Second, the environmental monitoring operator is introduced, to determine whether the algorithm falls into the geomagnetic anomaly region. Then, the behavior constraint operator is employed to get out of the abnormal region. Finally, the termination condition is triggered. Compared to the state-of- the-art, the proposed approach effectively overcomes the disturbance of the geomagnetic abnormal. The simulation result demonstrates the reliability and feasibility of the proposed approach in complex environments.

  5. Modelo matemático Two-echelon Capacitated Vehicle Routing Problem para a logística de distribuição de encomendas

    Directory of Open Access Journals (Sweden)

    Karina Pedrini Fraga

    2016-12-01

    Full Text Available Many cities are facing difficulties in urban mobility and therefore are imposing restrictions on the movement of larger trucks. Thus, logistics companies developed a two level logistics strategy based on Urban Distribution Centers (CDU that receives larger trucks and split the cargo to put in small trucks to distribute to customers. To support this type of logistics planning, this paper presents an adaptation of a mathematical model based on the Two-echelon capacitated Vehicle Routing Problem (2E-CVRP to plan the routes from the central depot to the satelites and from these to the clients. The model was applied to the logistics of Correios in the metropolitan area of the Espírito Santo, Brazil, and instances with up to 4 CDU and 25 clients were tested using CPLEX solver 12.6 obtaining routes for deliveries at both levels.

  6. Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming

    Science.gov (United States)

    Chen, Zheng; Mi, Chris Chunting; Xiong, Rui; Xu, Jun; You, Chenwen

    2014-02-01

    This paper introduces an online and intelligent energy management controller to improve the fuel economy of a power-split plug-in hybrid electric vehicle (PHEV). Based on analytic analysis between fuel-rate and battery current at different driveline power and vehicle speed, quadratic equations are applied to simulate the relationship between battery current and vehicle fuel-rate. The power threshold at which engine is turned on is optimized by genetic algorithm (GA) based on vehicle fuel-rate, battery state of charge (SOC) and driveline power demand. The optimal battery current when the engine is on is calculated using quadratic programming (QP) method. The proposed algorithm can control the battery current effectively, which makes the engine work more efficiently and thus reduce the fuel-consumption. Moreover, the controller is still applicable when the battery is unhealthy. Numerical simulations validated the feasibility of the proposed controller.

  7. Grid Frequency Support by Single-Phase Electric Vehicles: Fast Primary Control Enhanced by a Stabilizer Algorithm

    DEFF Research Database (Denmark)

    Zecchino, Antonio; Rezkalla, Michel M.N.; Marinelli, Mattia

    2016-01-01

    Electric vehicles are growing in popularity as a zero emission and efficient mode of transport against traditional internal combustion engine-based vehicles. Considerable as flexible distributed energy storage systems, by adjusting the battery charging process they can potentially provide different...... ancillary services for supporting the power grid. This paper presents modeling and analysis of the benefits of primary frequency regulation by electric vehicles in a microgrid. An innovative control logic algorithm is introduced, with the purpose of curtailing the number of current set-point variations...

  8. Novel control algorithm of braking energy regeneration system for an electric vehicle during safety–critical driving maneuvers

    International Nuclear Information System (INIS)

    Lv, Chen; Zhang, Junzhi; Li, Yutong; Yuan, Ye

    2015-01-01

    Highlights: • Models of an electric vehicle with regenerative braking system (RBS) are built. • Control algorithm of RBS under safety–critical driving maneuvers is proposed. • Simulations and HIL tests of the proposed strategy are conducted. • Performance improvement of vehicle’s mean deceleration is up to 13.89%. • Test results verify the feasibility and effectiveness of the proposed method. - Abstract: This paper mainly focuses on control algorithm of the braking energy regeneration system of an electric bus under safety–critical driving situations. With the aims of guaranteeing vehicle stability in various types of tyre–road adhesion conditions, based on the characteristics of electrified powertrain, a novel control algorithm of regenerative braking system is proposed for electric vehicles during anti-lock braking procedures. First, the models of vehicle dynamics and main components including braking energy regenerative system of the case-study electric bus are built in MATLAB/Simulink. Then, based on the phase-plane method, the optimal brake torque is calculated for ABS control of vehicle. Next, a novel allocation strategy, wherein the target optimal brake torque is divided into two parts that are handled separately by the regenerative and friction brakes, is developed. Simulations of the proposed control strategy are conducted based on system models built using MATLAB/Simulink. The simulation results demonstrate that the developed strategy enables improved control in terms of vehicle stability and braking performance under different emergency driving conditions. To further verify the synthesized control algorithm, hardware-in-the-loop tests are also performed. The experimental results validate the simulation data and verify the feasibility and effectiveness of the developed control algorithm.

  9. A source-initiated on-demand routing algorithm based on the Thorup-Zwick theory for mobile wireless sensor networks.

    Science.gov (United States)

    Mao, Yuxin; Zhu, Ping

    2013-01-01

    The unreliability and dynamics of mobile wireless sensor networks make it hard to perform end-to-end communications. This paper presents a novel source-initiated on-demand routing mechanism for efficient data transmission in mobile wireless sensor networks. It explores the Thorup-Zwick theory to achieve source-initiated on-demand routing with time efficiency. It is able to find out shortest routing path between source and target in a network and transfer data in linear time. The algorithm is easy to be implemented and performed in resource-constrained mobile wireless sensor networks. We also evaluate the approach by analyzing its cost in detail. It can be seen that the approach is efficient to support data transmission in mobile wireless sensor networks.

  10. Self-tuning control algorithm design for vehicle adaptive cruise control system through real-time estimation of vehicle parameters and road grade

    Science.gov (United States)

    Marzbanrad, Javad; Tahbaz-zadeh Moghaddam, Iman

    2016-09-01

    The main purpose of this paper is to design a self-tuning control algorithm for an adaptive cruise control (ACC) system that can adapt its behaviour to variations of vehicle dynamics and uncertain road grade. To this aim, short-time linear quadratic form (STLQF) estimation technique is developed so as to track simultaneously the trend of the time-varying parameters of vehicle longitudinal dynamics with a small delay. These parameters are vehicle mass, road grade and aerodynamic drag-area coefficient. Next, the values of estimated parameters are used to tune the throttle and brake control inputs and to regulate the throttle/brake switching logic that governs the throttle and brake switching. The performance of the designed STLQF-based self-tuning control (STLQF-STC) algorithm for ACC system is compared with the conventional method based on fixed control structure regarding the speed/distance tracking control modes. Simulation results show that the proposed control algorithm improves the performance of throttle and brake controllers, providing more comfort while travelling, enhancing driving safety and giving a satisfactory performance in the presence of different payloads and road grade variations.

  11. A proposal to improve e-waste collection efficiency in urban mining: Container loading and vehicle routing problems - A case study of Poland.

    Science.gov (United States)

    Nowakowski, Piotr

    2017-02-01

    Waste electrical and electronic equipment (WEEE), also known as e-waste, is one of the most important waste streams with high recycling potential. Materials used in these products are valuable, but some of them are hazardous. The urban mining approach attempts to recycle as many materials as possible, so efficiency in collection is vital. There are two main methods used to collect WEEE: stationary and mobile, each with different variants. The responsibility of WEEE organizations and waste collection companies is to assure all resources required for these activities - bins, containers, collection vehicles and staff - are available, taking into account cost minimization. Therefore, it is necessary to correctly determine the capacity of containers and number of collection vehicles for an area where WEEE need to be collected. There are two main problems encountered in collection, storage and transportation of WEEE: container loading problems and vehicle routing problems. In this study, an adaptation of these two models for packing and collecting WEEE is proposed, along with a practical implementation plan designed to be useful for collection companies' guidelines for container loading and route optimization. The solutions are presented in the case studies of real-world conditions for WEEE collection companies in Poland. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Food Delivery System with the Utilization of Vehicle Using Geographical Information System (GIS) and A Star Algorithm

    Science.gov (United States)

    Siregar, B.; Gunawan, D.; Andayani, U.; Sari Lubis, Elita; Fahmi, F.

    2017-01-01

    Food delivery system is one kind of geographical information systems (GIS) that can be applied through digitation process. The main case in food delivery system is the way to determine the shortest path and food delivery vehicle movement tracking. Therefore, to make sure that the digitation process of food delivery system can be applied efficiently, it is needed to add shortest path determination facility and food delivery vehicle tracking. This research uses A Star (A*) algorithm for determining shortest path and location-based system (LBS) programming for moving food delivery vehicle object tracking. According to this research, it is generated the integrated system that can be used by food delivery driver, customer, and administrator in terms of simplifying the food delivery system. Through the application of shortest path and the tracking of moving vehicle, thus the application of food delivery system in the scope of geographical information system (GIS) can be executed.

  13. Solving a Closed-Loop Location-Inventory-Routing Problem with Mixed Quality Defects Returns in E-Commerce by Hybrid Ant Colony Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Shuai Deng

    2016-01-01

    Full Text Available This paper presents a closed-loop location-inventory-routing problem model considering both quality defect returns and nondefect returns in e-commerce supply chain system. The objective is to minimize the total cost produced in both forward and reverse logistics networks. We propose a combined optimization algorithm named hybrid ant colony optimization algorithm (HACO to address this model that is an NP-hard problem. Our experimental results show that the proposed HACO is considerably efficient and effective in solving this model.

  14. Automated guidance algorithms for a space station-based crew escape vehicle.

    Science.gov (United States)

    Flanary, R; Hammen, D G; Ito, D; Rabalais, B W; Rishikof, B H; Siebold, K H

    2003-04-01

    An escape vehicle was designed to provide an emergency evacuation for crew members living on a space station. For maximum escape capability, the escape vehicle needs to have the ability to safely evacuate a station in a contingency scenario such as an uncontrolled (e.g., tumbling) station. This emergency escape sequence will typically be divided into three events: The first separation event (SEP1), the navigation reconstruction event, and the second separation event (SEP2). SEP1 is responsible for taking the spacecraft from its docking port to a distance greater than the maximum radius of the rotating station. The navigation reconstruction event takes place prior to the SEP2 event and establishes the orbital state to within the tolerance limits necessary for SEP2. The SEP2 event calculates and performs an avoidance burn to prevent station recontact during the next several orbits. This paper presents the tools and results for the whole separation sequence with an emphasis on the two separation events. The first challenge includes collision avoidance during the escape sequence while the station is in an uncontrolled rotational state, with rotation rates of up to 2 degrees per second. The task of avoiding a collision may require the use of the Vehicle's de-orbit propulsion system for maximum thrust and minimum dwell time within the vicinity of the station vicinity. The thrust of the propulsion system is in a single direction, and can be controlled only by the attitude of the spacecraft. Escape algorithms based on a look-up table or analytical guidance can be implemented since the rotation rate and the angular momentum vector can be sensed onboard and a-priori knowledge of the position and relative orientation are available. In addition, crew intervention has been provided for in the event of unforeseen obstacles in the escape path. The purpose of the SEP2 burn is to avoid re-contact with the station over an extended period of time. Performing this maneuver requires

  15. Solving multi-product inventory ship routing with a heterogeneous fleet model using a hybrid cross entropy-genetic algorithm: a case study in Indonesia

    Directory of Open Access Journals (Sweden)

    Budi Santosa

    2016-01-01

    Full Text Available This paper presents a model and an algorithm for an inventory ship routing problem (ISRP. It consists of two main parts: a model development of the ship routing problem in a multi-product inventory with a heterogeneous fleet and an algorithm development to solve the problem. The problem is referred to as ISRP. ISRP considers several parameters including the deadweight tonnage (DWT, product compatibility, port setup, and compartment washing costs. Considering these parameters, the objective function is to minimize the total cost, which consists of traveling, port setup, ship charter, and compartment washing costs. From the resulting model, there are two major steps used to solve the problem. The first is to select the ships in order to satisfy the constraint that restricts the mooring rule. The second is to find the best route, product allocation, and shipped quantity. ISRP is an Non Polynomial-hard problem. Finding the solution of such problem needs a high computation time. A new hybrid metaheuristics, namely the cross entropy-genetic algorithm (CEGA, was proposed to solve ISRP. The results were then compared with those resulted from a hybrid Tabu Search to measure the hybrid CEGA performance. The results showed that CEGA provided better solutions than those produced by the hybrid Tabu Search.

  16. Design Optimization of Steering Mechanisms for Articulated Off-Road Vehicles Based on Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Chen Zhou

    2018-02-01

    Full Text Available Two cylinders arranged symmetrically on a frame have become a major form of steering mechanism for articulated off-road vehicles (AORVs. However, the differences of stroke and arm lead to pressure fluctuation, vibration noise, and a waste of torque. In this paper, the differences of stroke and arm are reduced based on a genetic algorithm (GA. First, the mathematical model of the steering mechanism is put forward. Then, the difference of stroke and arm are optimized using a GA. Finally, a FW50GLwheel loader is used as an example to demonstrate the proposed GA-based optimization method, and its effectiveness is verified by means of automatic dynamic analysis of mechanical systems (ADAMS. The stroke difference of the steering hydraulic cylinders was reduced by 92% and the arm difference reached a decrease of 78% through GA optimization, in comparison with unoptimized structures. The simulation result shows that the steering mechanism optimized by GA behaved better than by previous methods.

  17. Supervised machine learning algorithms to diagnose stress for vehicle drivers based on physiological sensor signals.

    Science.gov (United States)

    Barua, Shaibal; Begum, Shahina; Ahmed, Mobyen Uddin

    2015-01-01

    Machine learning algorithms play an important role in computer science research. Recent advancement in sensor data collection in clinical sciences lead to a complex, heterogeneous data processing, and analysis for patient diagnosis and prognosis. Diagnosis and treatment of patients based on manual analysis of these sensor data are difficult and time consuming. Therefore, development of Knowledge-based systems to support clinicians in decision-making is important. However, it is necessary to perform experimental work to compare performances of different machine learning methods to help to select appropriate method for a specific characteristic of data sets. This paper compares classification performance of three popular machine learning methods i.e., case-based reasoning, neutral networks and support vector machine to diagnose stress of vehicle drivers using finger temperature and heart rate variability. The experimental results show that case-based reasoning outperforms other two methods in terms of classification accuracy. Case-based reasoning has achieved 80% and 86% accuracy to classify stress using finger temperature and heart rate variability. On contrary, both neural network and support vector machine have achieved less than 80% accuracy by using both physiological signals.

  18. Study on the Control Algorithm of Two-Stage DC-DC Converter for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Changhao Piao

    2014-01-01

    Full Text Available The fast response, high efficiency, and good reliability are very important characteristics to electric vehicles (EVs dc/dc converters. Two-stage dc-dc converter is a kind of dc-dc topologies that can offer those characteristics to EVs. Presently, nonlinear control is an active area of research in the field of the control algorithm of dc-dc converters. However, very few papers research on two-stage converter for EVs. In this paper, a fixed switching frequency sliding mode (FSFSM controller and double-integral sliding mode (DISM controller for two-stage dc-dc converter are proposed. And a conventional linear control (lag is chosen as the comparison. The performances of the proposed FSFSM controller are compared with those obtained by the lag controller. In consequence, the satisfactory simulation and experiment results show that the FSFSM controller is capable of offering good large-signal operations with fast dynamical responses to the converter. At last, some other simulation results are presented to prove that the DISM controller is a promising method for the converter to eliminate the steady-state error.

  19. Multiple Attribute Decision Making Based Relay Vehicle Selection for Electric Vehicle Communication

    Directory of Open Access Journals (Sweden)

    Zhao Qiang

    2015-01-01

    Full Text Available Large-scale electric vehicle integration into power grid and charging randomly will cause serious impacts on the normal operation of power grid. Therefore, it is necessary to control the charging behavior of electric vehicle, while information transmission for electric vehicle is significant. Due to the highly mobile characteristics of vehicle, transferring information to power grid directly might be inaccessible. Relay vehicle (RV can be used for supporting multi-hop connection between SV and power grid. This paper proposes a multiple attribute decision making (MADM-based RV selection algorithm, which considers multiple attribute, including data transfer rate, delay, route duration. It takes the characteristics of electric vehicle communication into account, which can provide protection for the communication services of electric vehicle charging and discharging. Numerical results demonstrate that compared to previous algorithm, the proposed algorithm offer better performance in terms of throughput, transmission delay.

  20. The Effect of Route, Vehicle, and Divided Doses on the Pharmacokinetics of Chlorpyrifos and its Metabolite Trichloropyridinol in Neonatal Sprague-Dawley Rats

    Energy Technology Data Exchange (ETDEWEB)

    Marty, M. S.; Domoradzki, J. Y.; Hansen, S. C.; Timchalk, Chuck; Bartels, M. J.; Mattsson, Joel L.

    2007-12-01

    There is a paucity of data on neonatal systemic exposure using different dosing paradigms. Male CD (Sprague-Dawley derived) rats at postnatal day (PND) 5 were dosed with chlorpyrifos (CPF, 1 mg/kg) using different routes of exposure, vehicles, and single vs. divided doses. Blood concentrations of CPF and its primary metabolite, trichloropyridinol (TCP), were measured at multiple times through 24 h. Groups included: single gavage bolus vs. divided gavage doses in corn oil (1 vs 3 times in 24 h), single gavage bolus vs. divided gavage doses in rat milk, and subcutaneous administration in DMSO. These data were compared with lactational exposure of PND 5 pups from dams exposed to CPF in the diet at 5 mg/kg/day for four weeks or published data from dams exposed to daily gavage with CPF at 5 mg/kg/day. Maternal blood CPF levels were an order of magnitude lower from dietary exposure than gavage (1.1 vs 14.8 ng/g), and blood CPF levels in PND 5 pups that nursed dietary-exposed or gavage-exposed dams were below the limit of detection. Single gavage doses of 1 mg/kg CPF in corn oil vehicle in pups resulted in CPF blood levels of 49 ng/g, and in milk vehicle about 9 ng/g. Divided doses led to lower peak CPF levels. A bolus dose of 1 mg/kg CPF in DMSO administered sc appeared to have substantially altered pharmacokinetics from orally administered chlorpyrifos. To be meaningful for risk assessment, neonatal studies require attention to the exposure scenario, since route, vehicle, dose and frequency of administration result in different systemic exposure to the test chemical and its metabolites.