WorldWideScience

Sample records for vector valued function

  1. Boundary value problems of holomorphic vector functions in 1D QCs

    International Nuclear Information System (INIS)

    Gao Yang; Zhao Yingtao; Zhao Baosheng

    2007-01-01

    By means of the generalized Stroh formalism, two-dimensional (2D) problems of one-dimensional (1D) quasicrystals (QCs) elasticity are turned into the boundary value problems of holomorphic vector functions in a given region. If the conformal mapping from an ellipse to a circle is known, a general method for solving the boundary value problems of holomorphic vector functions can be presented. To illustrate its utility, by using the necessary and sufficient condition of boundary value problems of holomorphic vector functions, we consider two basic 2D problems in 1D QCs, that is, an elliptic hole and a rigid line inclusion subjected to uniform loading at infinity. For the crack problem, the intensity factors of phonon and phason fields are determined, and the physical sense of the results relative to phason and the difference between mechanical behaviors of the crack problem in crystals and QCs are figured out. Moreover, the same procedure can be used to deal with the elastic problems for 2D and three-dimensional (3D) QCs

  2. On the Stone-Weierstrass theorem for scalar and vector valued functions

    International Nuclear Information System (INIS)

    Khan, L.A.

    1991-09-01

    In this paper we discuss the formulation of the Stone-Weierstrass approximation theorem for vector-valued functions and then determine whether the classical Stone-Weierstrass theorem for scalar-valued functions can be deduced from the above one. We also state some open problems in this area. (author). 15 refs

  3. A study of biorthogonal multiple vector-valued wavelets

    International Nuclear Information System (INIS)

    Han Jincang; Cheng Zhengxing; Chen Qingjiang

    2009-01-01

    The notion of vector-valued multiresolution analysis is introduced and the concept of biorthogonal multiple vector-valued wavelets which are wavelets for vector fields, is introduced. It is proved that, like in the scalar and multiwavelet case, the existence of a pair of biorthogonal multiple vector-valued scaling functions guarantees the existence of a pair of biorthogonal multiple vector-valued wavelet functions. An algorithm for constructing a class of compactly supported biorthogonal multiple vector-valued wavelets is presented. Their properties are investigated by means of operator theory and algebra theory and time-frequency analysis method. Several biorthogonality formulas regarding these wavelet packets are obtained.

  4. Extensions of vector-valued functions with preservation of derivatives

    Czech Academy of Sciences Publication Activity Database

    Koc, M.; Kolář, Jan

    2017-01-01

    Roč. 449, č. 1 (2017), s. 343-367 ISSN 0022-247X R&D Projects: GA ČR(CZ) GA14-07880S Institutional support: RVO:67985840 Keywords : vector-valued differentiable functions * extensions * strict differentiability * partitions of unity Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.064, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022247X16307703

  5. A Riesz Representation Theorem for the Space of Henstock Integrable Vector-Valued Functions

    Directory of Open Access Journals (Sweden)

    Tomás Pérez Becerra

    2018-01-01

    Full Text Available Using a bounded bilinear operator, we define the Henstock-Stieltjes integral for vector-valued functions; we prove some integration by parts theorems for Henstock integral and a Riesz-type theorem which provides an alternative proof of the representation theorem for real functions proved by Alexiewicz.

  6. Mean value theorem in topological vector spaces

    International Nuclear Information System (INIS)

    Khan, L.A.

    1994-08-01

    The aim of this note is to give shorter proofs of the mean value theorem, the mean value inequality, and the mean value inclusion for the class of Gateaux differentiable functions having values in a topological vector space. (author). 6 refs

  7. Construction and decomposition of biorthogonal vector-valued wavelets with compact support

    International Nuclear Information System (INIS)

    Chen Qingjiang; Cao Huaixin; Shi Zhi

    2009-01-01

    In this article, we introduce vector-valued multiresolution analysis and the biorthogonal vector-valued wavelets with four-scale. The existence of a class of biorthogonal vector-valued wavelets with compact support associated with a pair of biorthogonal vector-valued scaling functions with compact support is discussed. A method for designing a class of biorthogonal compactly supported vector-valued wavelets with four-scale is proposed by virtue of multiresolution analysis and matrix theory. The biorthogonality properties concerning vector-valued wavelet packets are characterized with the aid of time-frequency analysis method and operator theory. Three biorthogonality formulas regarding them are presented.

  8. Extensions of vector-valued Baire one functions with preservation of points of continuity

    Czech Academy of Sciences Publication Activity Database

    Koc, M.; Kolář, Jan

    2016-01-01

    Roč. 442, č. 1 (2016), s. 138-148 ISSN 0022-247X R&D Projects: GA ČR(CZ) GA14-07880S Institutional support: RVO:67985840 Keywords : vector-valued Baire one functions * extensions * non-tangential limit * continuity points Subject RIV: BA - General Mathematics Impact factor: 1.064, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022247X1630097X

  9. Convolution of Distribution-Valued Functions. Applications.

    OpenAIRE

    BARGETZ, CHRISTIAN

    2011-01-01

    In this article we examine products and convolutions of vector-valued functions. For nuclear normal spaces of distributions Proposition 25 in [31,p. 120] yields a vector-valued product or convolution if there is a continuous product or convolution mapping in the range of the vector-valued functions. For specific spaces, we generalize this result to hypocontinuous bilinear maps at the expense of generality with respect to the function space. We consider holomorphic, meromorphic and differentia...

  10. Positive solutions for a nonlocal boundary-value problem with vector-valued response

    Directory of Open Access Journals (Sweden)

    Andrzej Nowakowski

    2002-05-01

    Full Text Available Using variational methods, we study the existence of positive solutions for a nonlocal boundary-value problem with vector-valued response. We develop duality and variational principles for this problem and present a numerical version which enables the approximation of solutions and gives a measure of a duality gap between primal and dual functional for approximate solutions for this problem.

  11. Theta vectors and quantum theta functions

    International Nuclear Information System (INIS)

    Chang-Young, Ee; Kim, Hoil

    2005-01-01

    In this paper, we clarify the relation between Manin's quantum theta function and Schwarz's theta vector. We do this in comparison with the relation between the kq representation, which is equivalent to the classical theta function, and the corresponding coordinate space wavefunction. We first explain the equivalence relation between the classical theta function and the kq representation in which the translation operators of the phase space are commuting. When the translation operators of the phase space are not commuting, then the kq representation is no longer meaningful. We explain why Manin's quantum theta function, obtained via algebra (quantum torus) valued inner product of the theta vector, is a natural choice for the quantum version of the classical theta function. We then show that this approach holds for a more general theta vector containing an extra linear term in the exponent obtained from a holomorphic connection of constant curvature than the simple Gaussian one used in Manin's construction

  12. An introduction to vectors, vector operators and vector analysis

    CERN Document Server

    Joag, Pramod S

    2016-01-01

    Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration.

  13. Vector optimization set-valued and variational analysis

    CERN Document Server

    Chen, Guang-ya; Yang, Xiaogi

    2005-01-01

    This book is devoted to vector or multiple criteria approaches in optimization. Topics covered include: vector optimization, vector variational inequalities, vector variational principles, vector minmax inequalities and vector equilibrium problems. In particular, problems with variable ordering relations and set-valued mappings are treated. The nonlinear scalarization method is extensively used throughout the book to deal with various vector-related problems. The results presented are original and should be interesting to researchers and graduates in applied mathematics and operations research

  14. Some New Lacunary Strong Convergent Vector-Valued Sequence Spaces

    OpenAIRE

    Mursaleen, M.; Alotaibi, A.; Sharma, Sunil K.

    2014-01-01

    We introduce some vector-valued sequence spaces defined by a Musielak-Orlicz function and the concepts of lacunary convergence and strong ( $A$ )-convergence, where $A=({a}_{ik})$ is an infinite matrix of complex numbers. We also make an effort to study some topological properties and some inclusion relations between these spaces.

  15. Some New Lacunary Strong Convergent Vector-Valued Sequence Spaces

    Directory of Open Access Journals (Sweden)

    M. Mursaleen

    2014-01-01

    Full Text Available We introduce some vector-valued sequence spaces defined by a Musielak-Orlicz function and the concepts of lacunary convergence and strong (A-convergence, where A=(aik is an infinite matrix of complex numbers. We also make an effort to study some topological properties and some inclusion relations between these spaces.

  16. Vector-valued measure and the necessary conditions for the optimal control problems of linear systems

    International Nuclear Information System (INIS)

    Xunjing, L.

    1981-12-01

    The vector-valued measure defined by the well-posed linear boundary value problems is discussed. The maximum principle of the optimal control problem with non-convex constraint is proved by using the vector-valued measure. Especially, the necessary conditions of the optimal control of elliptic systems is derived without the convexity of the control domain and the cost function. (author)

  17. Multiview vector-valued manifold regularization for multilabel image classification.

    Science.gov (United States)

    Luo, Yong; Tao, Dacheng; Xu, Chang; Xu, Chao; Liu, Hong; Wen, Yonggang

    2013-05-01

    In computer vision, image datasets used for classification are naturally associated with multiple labels and comprised of multiple views, because each image may contain several objects (e.g., pedestrian, bicycle, and tree) and is properly characterized by multiple visual features (e.g., color, texture, and shape). Currently, available tools ignore either the label relationship or the view complementarily. Motivated by the success of the vector-valued function that constructs matrix-valued kernels to explore the multilabel structure in the output space, we introduce multiview vector-valued manifold regularization (MV(3)MR) to integrate multiple features. MV(3)MR exploits the complementary property of different features and discovers the intrinsic local geometry of the compact support shared by different features under the theme of manifold regularization. We conduct extensive experiments on two challenging, but popular, datasets, PASCAL VOC' 07 and MIR Flickr, and validate the effectiveness of the proposed MV(3)MR for image classification.

  18. A representation result for hysteresis operators with vector valued inputs and its application to models for magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Olaf, E-mail: Olaf.Klein@wias-berlin.de

    2014-02-15

    In this work, hysteresis operators mapping continuous vector-valued input functions being piecewise monotaffine, i.e. being piecewise the composition of a monotone with an affine function, to vector-valued output functions are considered. It is shown that the operator can be generated by a unique defined function on the convexity triple free strings. A formulation of a congruence property for periodic inputs is presented and reformulated as a condition for the generating string function.

  19. Ax-Kochen-Ershov principles for valued and ordered vector spaces

    OpenAIRE

    Kuhlmann, Franz-Viktor; Kuhlmann, Salma

    1997-01-01

    We study extensions of valued vector spaces with variable base field, introducing the notion of disjointness and valuation disjointness in this setting. We apply the results to determine the model theoretic properties of valued vector spaces (with variable base field) relative to that of their skeletons. We study the model theory of the skeletons in special cases. We apply the results to ordered vector spaces with compatible valuation.

  20. Structuring Stokes correlation functions using vector-vortex beam

    Science.gov (United States)

    Kumar, Vijay; Anwar, Ali; Singh, R. P.

    2018-01-01

    Higher order statistical correlations of the optical vector speckle field, formed due to scattering of a vector-vortex beam, are explored. Here, we report on the experimental construction of the Stokes parameters covariance matrix, consisting of all possible spatial Stokes parameters correlation functions. We also propose and experimentally realize a new Stokes correlation functions called Stokes field auto correlation functions. It is observed that the Stokes correlation functions of the vector-vortex beam will be reflected in the respective Stokes correlation functions of the corresponding vector speckle field. The major advantage of proposing Stokes correlation functions is that the Stokes correlation function can be easily tuned by manipulating the polarization of vector-vortex beam used to generate vector speckle field and to get the phase information directly from the intensity measurements. Moreover, this approach leads to a complete experimental Stokes characterization of a broad range of random fields.

  1. The Effect of Macroeconomic Variables on Value-Added Agriculture: Approach of Vector Autoregresive Bayesian Model (BVAR

    Directory of Open Access Journals (Sweden)

    E. Pishbahar

    2015-05-01

    Full Text Available There are different ideas and opinions about the effects of macroeconomic variables on real and nominal variables. To answer the question of whether changes in macroeconomic variables as a political tool is useful over a business cycle, understanding the effect of macroeconomic variables on economic growth is important. In the present study, the Bayesian Vector autoregresive model and seasonality data for the years between 1991 and 2013 was used to determine the impact of monetary policy on value-added agriculture. Predicts of Vector autoregresive model are usually divertaed due to a lot of parameters in the model. Bayesian vector autoregresive model estimates more reliable predictions due to reducing the number of included parametrs and considering the former models. Compared to the Vector Autoregressive model, the coefficients are estimated more accurately. Based on the results of RMSE in this study, previous function Nrmal-Vyshart was identified as a suitable previous disteribution. According to the results of the impulse response function, the sudden effects of shocks in macroeconomic variables on the value added in agriculture and domestic venture capital are stable. The effects on the exchange rates, tax revenues and monetary will bemoderated after 7, 5 and 4periods. Monetary policy shocks ,in the first half of the year, increased the value added of agriculture, while in the second half of the year had a depressing effect on the value added.

  2. On set-valued functionals: Multivariate risk measures and Aumann integrals

    Science.gov (United States)

    Ararat, Cagin

    In this dissertation, multivariate risk measures for random vectors and Aumann integrals of set-valued functions are studied. Both are set-valued functionals with values in a complete lattice of subsets of Rm. Multivariate risk measures are considered in a general d-asset financial market with trading opportunities in discrete time. Specifically, the following features of the market are incorporated in the evaluation of multivariate risk: convex transaction costs modeled by solvency regions, intermediate trading constraints modeled by convex random sets, and the requirement of liquidation into the first m ≤ d of the assets. It is assumed that the investor has a "pure" multivariate risk measure R on the space of m-dimensional random vectors which represents her risk attitude towards the assets but does not take into account the frictions of the market. Then, the investor with a d-dimensional position minimizes the set-valued functional R over all m-dimensional positions that she can reach by trading in the market subject to the frictions described above. The resulting functional Rmar on the space of d-dimensional random vectors is another multivariate risk measure, called the market-extension of R. A dual representation for R mar that decomposes the effects of R and the frictions of the market is proved. Next, multivariate risk measures are studied in a utility-based framework. It is assumed that the investor has a complete risk preference towards each individual asset, which can be represented by a von Neumann-Morgenstern utility function. Then, an incomplete preference is considered for multivariate positions which is represented by the vector of the individual utility functions. Under this structure, multivariate shortfall and divergence risk measures are defined as the optimal values of set minimization problems. The dual relationship between the two classes of multivariate risk measures is constructed via a recent Lagrange duality for set optimization. In

  3. Limit theorems for functionals of Gaussian vectors

    Institute of Scientific and Technical Information of China (English)

    Hongshuai DAI; Guangjun SHEN; Lingtao KONG

    2017-01-01

    Operator self-similar processes,as an extension of self-similar processes,have been studied extensively.In this work,we study limit theorems for functionals of Gaussian vectors.Under some conditions,we determine that the limit of partial sums of functionals of a stationary Gaussian sequence of random vectors is an operator self-similar process.

  4. Supersymmetric localization for BPS black hole entropy: 1-loop partition function from vector multiplets

    International Nuclear Information System (INIS)

    Gupta, Rajesh Kumar; Ito, Yuto; Jeon, Imtak

    2015-01-01

    We use the techniques of supersymmetric localization to compute the BPS black hole entropy in N=2 supergravity. We focus on the n_v+1 vector multiplets on the black hole near horizon background which is AdS_2× S"2 space. We find the localizing saddle point of the vector multiplets by solving the localization equations, and compute the exact one-loop partition function on the saddle point. Furthermore, we propose the appropriate functional integration measure. Through this measure, the one-loop determinant is written in terms of the radius of the physical metric, which depends on the localizing saddle point value of the vector multiplets. The result for the one-loop determinant is consistent with the logarithmic corrections to the BPS black hole entropy from vector multiplets.

  5. On the uncertainty relations for vector-valued operators

    International Nuclear Information System (INIS)

    Chistyakov, A.L.

    1976-01-01

    In analogy with the expression for the Heisenberg incertainty principle in terms of dispersions by means of the Weyl inequality, in the case of one-dimensional quantum mechanical quantities, the principle for many-dimensional quantities can be expressed in terms of generalized dispersions and covariance matrices by means of inequalities similar to the Weyl unequality. The proofs of these inequalities are given in an abstract form, not only for the physical vector quantities, but also for arbitrary vector-valued operators with commuting self-adjoint components

  6. VECTOR INTEGRATION

    NARCIS (Netherlands)

    Thomas, E. G. F.

    2012-01-01

    This paper deals with the theory of integration of scalar functions with respect to a measure with values in a, not necessarily locally convex, topological vector space. It focuses on the extension of such integrals from bounded measurable functions to the class of integrable functions, proving

  7. Identification method for gas-liquid two-phase flow regime based on singular value decomposition and least square support vector machine

    International Nuclear Information System (INIS)

    Sun Bin; Zhou Yunlong; Zhao Peng; Guan Yuebo

    2007-01-01

    Aiming at the non-stationary characteristics of differential pressure fluctuation signals of gas-liquid two-phase flow, and the slow convergence of learning and liability of dropping into local minima for BP neural networks, flow regime identification method based on Singular Value Decomposition (SVD) and Least Square Support Vector Machine (LS-SVM) is presented. First of all, the Empirical Mode Decomposition (EMD) method is used to decompose the differential pressure fluctuation signals of gas-liquid two-phase flow into a number of stationary Intrinsic Mode Functions (IMFs) components from which the initial feature vector matrix is formed. By applying the singular vale decomposition technique to the initial feature vector matrixes, the singular values are obtained. Finally, the singular values serve as the flow regime characteristic vector to be LS-SVM classifier and flow regimes are identified by the output of the classifier. The identification result of four typical flow regimes of air-water two-phase flow in horizontal pipe has shown that this method achieves a higher identification rate. (authors)

  8. Vector Boolean Functions: applications in symmetric cryptography

    OpenAIRE

    Álvarez Cubero, José Antonio

    2015-01-01

    Esta tesis establece los fundamentos teóricos y diseña una colección abierta de clases C++ denominada VBF (Vector Boolean Functions) para analizar funciones booleanas vectoriales (funciones que asocian un vector booleano a otro vector booleano) desde una perspectiva criptográfica. Esta nueva implementación emplea la librería NTL de Victor Shoup, incorporando nuevos módulos que complementan a las funciones de NTL, adecuándolas para el análisis criptográfico. La clase fundamental que representa...

  9. On the approximative normal values of multivalued operators in topological vector space

    International Nuclear Information System (INIS)

    Nguyen Minh Chuong; Khuat van Ninh

    1989-09-01

    In this paper the problem of approximation of normal values of multivalued linear closed operators from topological vector Mackey space into E-space is considered. Existence of normal value and convergence of approximative values to normal value are proved. (author). 4 refs

  10. Comparison of four support-vector based function approximators

    NARCIS (Netherlands)

    de Kruif, B.J.; de Vries, Theodorus J.A.

    2004-01-01

    One of the uses of the support vector machine (SVM), as introduced in V.N. Vapnik (2000), is as a function approximator. The SVM and approximators based on it, approximate a relation in data by applying interpolation between so-called support vectors, being a limited number of samples that have been

  11. Vector Green's function algorithm for radiative transfer in plane-parallel atmosphere

    International Nuclear Information System (INIS)

    Qin Yi; Box, Michael A.

    2006-01-01

    Green's function is a widely used approach for boundary value problems. In problems related to radiative transfer, Green's function has been found to be useful in land, ocean and atmosphere remote sensing. It is also a key element in higher order perturbation theory. This paper presents an explicit expression of the Green's function, in terms of the source and radiation field variables, for a plane-parallel atmosphere with either vacuum boundaries or a reflecting (BRDF) surface. Full polarization state is considered but the algorithm has been developed in such way that it can be easily reduced to solve scalar radiative transfer problems, which makes it possible to implement a single set of code for computing both the scalar and the vector Green's function

  12. Some BMO estimates for vector-valued multilinear singular integral ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    the multilinear operator related to some singular integral operators is obtained. The main purpose of this paper is to establish the BMO end-point estimates for some vector-valued multilinear operators related to certain singular integral operators. First, let us introduce some notations [10,16]. Throughout this paper, Q = Q(x,r).

  13. Isometric multipliers of a vector valued Beurling algebra on a ...

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 127; Issue 1. Isometric multipliers of a vector valued Beurling algebra on a discrete semigroup. Research Article Volume 127 Issue 1 February 2017 pp 109- ... Keywords. Weighted semigroup; multipliers of a semigroup; Beurling algebra; isometric multipliers.

  14. Investigating Efficiency of Vector-Valued Intensity Measures in Seismic Demand Assessment of Concrete Dams

    Directory of Open Access Journals (Sweden)

    Mohammad Alembagheri

    2018-01-01

    Full Text Available The efficiency of vector-valued intensity measures for predicting the seismic demand in gravity dams is investigated. The Folsom gravity dam-reservoir coupled system is selected and numerically analyzed under a set of two-hundred actual ground motions. First, the well-defined scalar IMs are separately investigated, and then they are coupled to form two-parameter vector IMs. After that, IMs consisting of spectral acceleration at the first-mode natural period of the dam-reservoir system along with a measure of the spectral shape (the ratio of spectral acceleration at a second period to the first-mode spectral acceleration value are considered. It is attempted to determine the optimal second period by categorizing the spectral acceleration at the first-mode period of vibration. The efficiency of the proposed vector IMs is compared with scalar ones considering various structural responses as EDPs. Finally, the probabilistic seismic behavior of the dam is investigated by calculating its fragility curves employing scalar and vector IMs considering the effect of zero response values.

  15. Fractional Vector Calculus and Fractional Special Function

    OpenAIRE

    Li, Ming-Fan; Ren, Ji-Rong; Zhu, Tao

    2010-01-01

    Fractional vector calculus is discussed in the spherical coordinate framework. A variation of the Legendre equation and fractional Bessel equation are solved by series expansion and numerically. Finally, we generalize the hypergeometric functions.

  16. Vector continued fractions using a generalized inverse

    International Nuclear Information System (INIS)

    Haydock, Roger; Nex, C M M; Wexler, Geoffrey

    2004-01-01

    A real vector space combined with an inverse (involution) for vectors is sufficient to define a vector continued fraction whose parameters consist of vector shifts and changes of scale. The choice of sign for different components of the vector inverse permits construction of vector analogues of the Jacobi continued fraction. These vector Jacobi fractions are related to vector and scalar-valued polynomial functions of the vectors, which satisfy recurrence relations similar to those of orthogonal polynomials. The vector Jacobi fraction has strong convergence properties which are demonstrated analytically, and illustrated numerically

  17. On the existence of polynomial Lyapunov functions for rationally stable vector fields

    DEFF Research Database (Denmark)

    Leth, Tobias; Wisniewski, Rafal; Sloth, Christoffer

    2018-01-01

    This paper proves the existence of polynomial Lyapunov functions for rationally stable vector fields. For practical purposes the existence of polynomial Lyapunov functions plays a significant role since polynomial Lyapunov functions can be found algorithmically. The paper extents an existing result...... on exponentially stable vector fields to the case of rational stability. For asymptotically stable vector fields a known counter example is investigated to exhibit the mechanisms responsible for the inability to extend the result further....

  18. Topological Vector Space-Valued Cone Metric Spaces and Fixed Point Theorems

    Directory of Open Access Journals (Sweden)

    Radenović Stojan

    2010-01-01

    Full Text Available We develop the theory of topological vector space valued cone metric spaces with nonnormal cones. We prove three general fixed point results in these spaces and deduce as corollaries several extensions of theorems about fixed points and common fixed points, known from the theory of (normed-valued cone metric spaces. Examples are given to distinguish our results from the known ones.

  19. Method of dynamic fuzzy symptom vector in intelligent diagnosis

    International Nuclear Information System (INIS)

    Sun Hongyan; Jiang Xuefeng

    2010-01-01

    Aiming at the requirement of diagnostic symptom real-time updating brought from diagnostic knowledge accumulation and great gap in unit and value of diagnostic symptom in multi parameters intelligent diagnosis, the method of dynamic fuzzy symptom vector is proposed. The concept of dynamic fuzzy symptom vector is defined. Ontology is used to specify the vector elements, and the vector transmission method based on ontology is built. The changing law of symptom value is analyzed and fuzzy normalization method based on fuzzy membership functions is built. An instance proved method of dynamic fussy symptom vector is efficient to solve the problems of symptom updating and unify of symptom value and unit. (authors)

  20. Gamow state vectors as functionals over subspaces of the nuclear space

    International Nuclear Information System (INIS)

    Bohm, A.

    1979-12-01

    Exponentially decaying Gamow state vectors are obtained from S-matrix poles in the lower half of the second sheet, and are defined as functionals over a subspace of the nuclear space, PHI. Exponentially growing Gamow state vectors are obtained from S-matrix poles in the upper half of the second sheet, and are defined as functionals over another subspace of PHI. On functionals over these two subspaces the dynamical group of time development splits into two semigroups

  1. Generalized decompositions of dynamic systems and vector Lyapunov functions

    Science.gov (United States)

    Ikeda, M.; Siljak, D. D.

    1981-10-01

    The notion of decomposition is generalized to provide more freedom in constructing vector Lyapunov functions for stability analysis of nonlinear dynamic systems. A generalized decomposition is defined as a disjoint decomposition of a system which is obtained by expanding the state-space of a given system. An inclusion principle is formulated for the solutions of the expansion to include the solutions of the original system, so that stability of the expansion implies stability of the original system. Stability of the expansion can then be established by standard disjoint decompositions and vector Lyapunov functions. The applicability of the new approach is demonstrated using the Lotka-Volterra equations.

  2. Signed zeros of Gaussian vector fields - density, correlation functions and curvature

    CERN Document Server

    Foltin, G

    2003-01-01

    We calculate correlation functions of the (signed) density of zeros of Gaussian distributed vector fields. We are able to express correlation functions of arbitrary order through the curvature tensor of a certain abstract Riemann Cartan or Riemannian manifold. As an application, we discuss one- and two-point functions. The zeros of a two-dimensional Gaussian vector field model the distribution of topological defects in the high-temperature phase of two-dimensional systems with orientational degrees of freedom, such as superfluid films, thin superconductors and liquid crystals.

  3. Light scattering of rectangular slot antennas: parallel magnetic vector vs perpendicular electric vector

    Science.gov (United States)

    Lee, Dukhyung; Kim, Dai-Sik

    2016-01-01

    We study light scattering off rectangular slot nano antennas on a metal film varying incident polarization and incident angle, to examine which field vector of light is more important: electric vector perpendicular to, versus magnetic vector parallel to the long axis of the rectangle. While vector Babinet’s principle would prefer magnetic field along the long axis for optimizing slot antenna function, convention and intuition most often refer to the electric field perpendicular to it. Here, we demonstrate experimentally that in accordance with vector Babinet’s principle, the incident magnetic vector parallel to the long axis is the dominant component, with the perpendicular incident electric field making a small contribution of the factor of 1/|ε|, the reciprocal of the absolute value of the dielectric constant of the metal, owing to the non-perfectness of metals at optical frequencies.

  4. The Analysis of Two-Way Functional Data Using Two-Way Regularized Singular Value Decompositions

    KAUST Repository

    Huang, Jianhua Z.

    2009-12-01

    Two-way functional data consist of a data matrix whose row and column domains are both structured, for example, temporally or spatially, as when the data are time series collected at different locations in space. We extend one-way functional principal component analysis (PCA) to two-way functional data by introducing regularization of both left and right singular vectors in the singular value decomposition (SVD) of the data matrix. We focus on a penalization approach and solve the nontrivial problem of constructing proper two-way penalties from oneway regression penalties. We introduce conditional cross-validated smoothing parameter selection whereby left-singular vectors are cross- validated conditional on right-singular vectors, and vice versa. The concept can be realized as part of an alternating optimization algorithm. In addition to the penalization approach, we briefly consider two-way regularization with basis expansion. The proposed methods are illustrated with one simulated and two real data examples. Supplemental materials available online show that several "natural" approaches to penalized SVDs are flawed and explain why so. © 2009 American Statistical Association.

  5. Vector Green's function algorithm for radiative transfer in plane-parallel atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Qin Yi [School of Physics, University of New South Wales (Australia)]. E-mail: yi.qin@csiro.au; Box, Michael A. [School of Physics, University of New South Wales (Australia)

    2006-01-15

    Green's function is a widely used approach for boundary value problems. In problems related to radiative transfer, Green's function has been found to be useful in land, ocean and atmosphere remote sensing. It is also a key element in higher order perturbation theory. This paper presents an explicit expression of the Green's function, in terms of the source and radiation field variables, for a plane-parallel atmosphere with either vacuum boundaries or a reflecting (BRDF) surface. Full polarization state is considered but the algorithm has been developed in such way that it can be easily reduced to solve scalar radiative transfer problems, which makes it possible to implement a single set of code for computing both the scalar and the vector Green's function.

  6. Availability of thermodynamic system with multiple performance parameters based on vector-universal generating function

    International Nuclear Information System (INIS)

    Cai Qi; Shang Yanlong; Chen Lisheng; Zhao Yuguang

    2013-01-01

    Vector-universal generating function was presented to analyze the availability of thermodynamic system with multiple performance parameters. Vector-universal generating function of component's performance was defined, the arithmetic model based on vector-universal generating function was derived for the thermodynamic system, and the calculation method was given for state probability of multi-state component. With the stochastic simulation of the degeneration trend of the multiple factors, the system availability with multiple performance parameters was obtained under composite factors. It is shown by an example that the results of the availability obtained by the binary availability analysis method are somewhat conservative, and the results considering parameter failure based on vector-universal generating function reflect the operation characteristics of the thermodynamic system better. (authors)

  7. A Parallel Framework with Block Matrices of a Discrete Fourier Transform for Vector-Valued Discrete-Time Signals

    Directory of Open Access Journals (Sweden)

    Pablo Soto-Quiros

    2015-01-01

    Full Text Available This paper presents a parallel implementation of a kind of discrete Fourier transform (DFT: the vector-valued DFT. The vector-valued DFT is a novel tool to analyze the spectra of vector-valued discrete-time signals. This parallel implementation is developed in terms of a mathematical framework with a set of block matrix operations. These block matrix operations contribute to analysis, design, and implementation of parallel algorithms in multicore processors. In this work, an implementation and experimental investigation of the mathematical framework are performed using MATLAB with the Parallel Computing Toolbox. We found that there is advantage to use multicore processors and a parallel computing environment to minimize the high execution time. Additionally, speedup increases when the number of logical processors and length of the signal increase.

  8. On the vector meson dominate hypothesis and the RA = σLA/σTA value in electron-nucleus deep inelastic scattering

    International Nuclear Information System (INIS)

    Peng Hongan; Liu Lianshou

    1986-01-01

    It is argued that the longitudinal part of space-like photon in its Breit frame is unable to transform into vector meson. Starting from this argument and adding a small amount of diquark component into the nucleon structure functions in nuclei, the A dependence of the R A = σ L A /σ T A value observed in electron nucleus DIS by the SLAC Group is explained

  9. Measurement of the Strong Coupling Constant $\\alpha_s$ and the Vector and Axial-Vector Spectral Functions in Hadronic Tau Decays

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bobinski, M; Bock, P; Böhme, J; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; de Roeck, A; Desch, Klaus; Dienes, B; Dixit, M S; Doucet, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Evans, H G; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Höcker, Andreas; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Van Kooten, R; Vannerem, P; Verzocchi, M; Vikas, P; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1999-01-01

    The spectral functions of the vector current and the axial-vector current have been measured in hadronic tau decays using the OPAL detector at LEP. Within the framework of the Operator Product Expansion a simultaneous determination of the strong coupling constant alpha_s, the non-perturbative operators of dimension 6 and 8 and of the gluon condensate has been performed. Different perturbative descriptions have been compared to the data. The Contour Improved Fixed Order Perturbation Theory gives alpha_s(mtau**2) = 0.348 +- 0.009 +- 0.019 at the tau-mass scale and alpha_s(mz**2) = 0.1219 +- 0.0010 +- 0.0017 at the Z-mass scale. The values obtained for alpha_s(mz**2) using Fixed Order Perturbation Theory or Renormalon Chain Resummation are 2.3% and 4.1% smaller, respectively. The running of the strong coupling between s_0 ~1.3 GeV**2 and s_0 = mtau**2 has been tested from direct fits to the integrated differential hadronic decay rate R_tau. A test of the saturation of QCD sum rules at the tau-mass scale has been...

  10. Extending TF1: Argument parsing, function composition, and vectorization

    CERN Document Server

    Tsang Mang Kin, Arthur Leonard

    2017-01-01

    In this project, we extend the functionality of the TF1 function class in root. We add argument parsing, making it possible to freely pass variables and parameters into pre-defined and user-defined functions. We also introduce a syntax to use certain compositions of functions, namely normalized sums and convolutions, directly in TF1. Finally, we introduce some simple vectorization functionality to TF1 and demonstrate the potential to speed up parallelizable computations.

  11. Parameter Selection Method for Support Vector Regression Based on Adaptive Fusion of the Mixed Kernel Function

    Directory of Open Access Journals (Sweden)

    Hailun Wang

    2017-01-01

    Full Text Available Support vector regression algorithm is widely used in fault diagnosis of rolling bearing. A new model parameter selection method for support vector regression based on adaptive fusion of the mixed kernel function is proposed in this paper. We choose the mixed kernel function as the kernel function of support vector regression. The mixed kernel function of the fusion coefficients, kernel function parameters, and regression parameters are combined together as the parameters of the state vector. Thus, the model selection problem is transformed into a nonlinear system state estimation problem. We use a 5th-degree cubature Kalman filter to estimate the parameters. In this way, we realize the adaptive selection of mixed kernel function weighted coefficients and the kernel parameters, the regression parameters. Compared with a single kernel function, unscented Kalman filter (UKF support vector regression algorithms, and genetic algorithms, the decision regression function obtained by the proposed method has better generalization ability and higher prediction accuracy.

  12. Stokes vector and its relationship to Discrete Wigner Functions of multiqubit states

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, K., E-mail: sriniphysics@gmail.com; Raghavan, G.

    2016-07-29

    A Stokes vectors and Discrete Wigner Functions (DWF) provide two alternate ways of representing the state of multiqubit systems. A general relationship between the Stokes vector and the DWF is derived for arbitrary n-qubit states for all possible choices of quantum nets. The Stokes vector and the DWF are shown to be related through a Hadamard Matrix. Using these results, a relationship between the Stokes vector of a spin-flipped state and the DWF is derived. Finally, we also present a method to express the Minkowskian squared norm of the Stokes vector, corresponding to n-concurrence in terms of the DWF. - Highlights: • Relationship between Stokes vector (SV) and discrete Wigner function (DWF) for arbitrary multiqubit states is presented. • It is shown that SV and DWF are related to one another through Hadamard matrices. • We show that the Hadamard matrices depend on the choice of the quantum net. • Relationship between SV of the spin flipped state and the DWF is derived. • Expression to compute n-concurrence of the pure n-qubit systems purely in terms of DWF is given.

  13. Stokes vector and its relationship to Discrete Wigner Functions of multiqubit states

    International Nuclear Information System (INIS)

    Srinivasan, K.; Raghavan, G.

    2016-01-01

    A Stokes vectors and Discrete Wigner Functions (DWF) provide two alternate ways of representing the state of multiqubit systems. A general relationship between the Stokes vector and the DWF is derived for arbitrary n-qubit states for all possible choices of quantum nets. The Stokes vector and the DWF are shown to be related through a Hadamard Matrix. Using these results, a relationship between the Stokes vector of a spin-flipped state and the DWF is derived. Finally, we also present a method to express the Minkowskian squared norm of the Stokes vector, corresponding to n-concurrence in terms of the DWF. - Highlights: • Relationship between Stokes vector (SV) and discrete Wigner function (DWF) for arbitrary multiqubit states is presented. • It is shown that SV and DWF are related to one another through Hadamard matrices. • We show that the Hadamard matrices depend on the choice of the quantum net. • Relationship between SV of the spin flipped state and the DWF is derived. • Expression to compute n-concurrence of the pure n-qubit systems purely in terms of DWF is given.

  14. Application of support vector machine model for enhancing the diagnostic value of tumor markers in gastric cancer

    International Nuclear Information System (INIS)

    Wang Hui; Huang Gang

    2010-01-01

    Objective: To evaluate the early diagnostic value of tumor markers for gastric cancer using support vector machine (SVM) model. Methods: Subjects involved in the study consisted of 262 cases with gastric cancer, 156 cases with benign gastric diseases and 149 healthy controls. From those subjects, five tumor markers, carcinoembryonic antigen (CEA), carbohydrate (CA) 125, CA19-9, alphafetoprotein (AFP) and CA50, were assayed and collected to make the datasets. To modify SVM model to fit the diagnostic classifiers, radial basis function was adopted and kernel function was optimized and validated by grid search and cross validation. For comparative study, methods of combination tests of five markers, Logistic regression, and decision tree were also used. Results: For gastric cancer, the diagnostic accuracy of the combination tests, Logistic regression, decision tree and SVM model were 46.2%, 64.5%, 63.9% and 95.1% respectively. SVM model significantly elevated the diagnostic value comparing with other three methods. Conclusion: The application of SVM model is of high value in enhancing the tumor marker for the diagnosis of gastric cancer. (authors)

  15. Calculus with vectors

    CERN Document Server

    Treiman, Jay S

    2014-01-01

    Calculus with Vectors grew out of a strong need for a beginning calculus textbook for undergraduates who intend to pursue careers in STEM. fields. The approach introduces vector-valued functions from the start, emphasizing the connections between one-variable and multi-variable calculus. The text includes early vectors and early transcendentals and includes a rigorous but informal approach to vectors. Examples and focused applications are well presented along with an abundance of motivating exercises. All three-dimensional graphs have rotatable versions included as extra source materials and may be freely downloaded and manipulated with Maple Player; a free Maple Player App is available for the iPad on iTunes. The approaches taken to topics such as the derivation of the derivatives of sine and cosine, the approach to limits, and the use of "tables" of integration have been modified from the standards seen in other textbooks in order to maximize the ease with which students may comprehend the material. Additio...

  16. Melting spectral functions of the scalar and vector mesons in a holographic QCD model

    International Nuclear Information System (INIS)

    Fujita, Mitsutoshi; Kikuchi, Toru; Fukushima, Kenji; Misumi, Tatsuhiro; Murata, Masaki

    2010-01-01

    We investigate the finite-temperature spectral functions of heavy quarkonia by using the soft-wall anti-de Sitter/QCD model. We discuss the scalar, the pseudoscalar, the vector, and the axial-vector mesons and compare their qualitative features of the melting temperature and growing width. We find that the axial-vector meson melts earlier than the vector meson, while there appears only a slight difference between the scalar and pseudoscalar mesons, which also melt earlier than the vector meson.

  17. Purely Functional Compressed Bit Vectors with Applications and Implementations

    OpenAIRE

    Kaasinen, Joel

    2011-01-01

    The study of compressed data structures strives to represent information on a computer concisely — using as little space as possible. Compressed bit vectors are the simplest compressed data structure. They are used as a basis for more complex data structures with applications in, for example, computational biology. Functional programming is a programming paradigm that represents computation using functions without side-effects (such as mutation). Data structures that are representable in...

  18. Lipschitz estimates for convex functions with respect to vector fields

    Directory of Open Access Journals (Sweden)

    Valentino Magnani

    2012-12-01

    Full Text Available We present Lipschitz continuity estimates for a class of convex functions with respect to Hörmander vector fields. These results have been recently obtained in collaboration with M. Scienza, [22].

  19. Conical square function estimates in UMD Banach spaces and applications to H?-functional calculi

    NARCIS (Netherlands)

    Hytönen, T.; Van Neerven, J.; Portal, P.

    2008-01-01

    We study conical square function estimates for Banach-valued functions and introduce a vector-valued analogue of the Coifman-Meyer-Stein tent spaces. Following recent work of Auscher-M(c)Intosh-Russ, the tent spaces in turn are used to construct a scale of vector-valued Hardy spaces associated with

  20. An inverse boundary value problem for the Schroedinger operator with vector potentials in two dimensions

    International Nuclear Information System (INIS)

    Ziqi Sun

    1993-01-01

    During the past few years a considerable interest has been focused on the inverse boundary value problem for the Schroedinger operator with a scalar (electric) potential. The popularity gained by this subject seems to be due to its connection with the inverse scattering problem at fixed energy, the inverse conductivity problem and other important inverse problems. This paper deals with an inverse boundary value problem for the Schroedinger operator with vector (electric and magnetic) potentials. As in the case of the scalar potential, results of this study would have immediate consequences in the inverse scattering problem for magnetic field at fixed energy. On the other hand, inverse boundary value problems for elliptic operators are of independent interest. The study is partly devoted to the understanding of the inverse boundary value problem for a class of general elliptic operator of second order. Note that a self-adjoint elliptic operator of second order with Δ as its principal symbol can always be written as a Schroedinger operator with vector potentials

  1. The triad value function

    DEFF Research Database (Denmark)

    Vedel, Mette

    2016-01-01

    the triad value function. Next, the applicability and validity of the concept is examined in a case study of four closed vertical supply chain triads. Findings - The case study demonstrates that the triad value function facilitates the analysis and understanding of an apparent paradox; that distributors...... are not dis-intermediated in spite of their limited contribution to activities in the triads. The results indicate practical adequacy of the triad value function. Research limitations/implications - The triad value function is difficult to apply in the study of expanded networks as the number of connections...... expands exponentially with the number of ties in the network. Moreover, it must be applied in the study of service triads and open vertical supply chain triads to further verify the practical adequacy of the concept. Practical implications - The triad value function cannot be used normatively...

  2. 2013 CIME Course Vector-valued Partial Differential Equations and Applications

    CERN Document Server

    Marcellini, Paolo

    2017-01-01

    Collating different aspects of Vector-valued Partial Differential Equations and Applications, this volume is based on the 2013 CIME Course with the same name which took place at Cetraro, Italy, under the scientific direction of John Ball and Paolo Marcellini. It contains the following contributions: The pullback equation (Bernard Dacorogna), The stability of the isoperimetric inequality (Nicola Fusco), Mathematical problems in thin elastic sheets: scaling limits, packing, crumpling and singularities (Stefan Müller), and Aspects of PDEs related to fluid flows (Vladimir Sverák). These lectures are addressed to graduate students and researchers in the field.

  3. Wigner functions on non-standard symplectic vector spaces

    Science.gov (United States)

    Dias, Nuno Costa; Prata, João Nuno

    2018-01-01

    We consider the Weyl quantization on a flat non-standard symplectic vector space. We focus mainly on the properties of the Wigner functions defined therein. In particular we show that the sets of Wigner functions on distinct symplectic spaces are different but have non-empty intersections. This extends previous results to arbitrary dimension and arbitrary (constant) symplectic structure. As a by-product we introduce and prove several concepts and results on non-standard symplectic spaces which generalize those on the standard symplectic space, namely, the symplectic spectrum, Williamson's theorem, and Narcowich-Wigner spectra. We also show how Wigner functions on non-standard symplectic spaces behave under the action of an arbitrary linear coordinate transformation.

  4. The effect of vector meson decays on di-hadron fragmentation functions

    International Nuclear Information System (INIS)

    Matevosyan, H.H.; Thomas, A.W.; Bentz, W.

    2014-01-01

    Di-hadron Fragmentation Functions (DFF) provide a vast amount of information on the intricate details of the parton hadronization process. Moreover, they provide a unique access to the 'clean' extraction of nucleon transversity parton distribution functions in semi inclusive deep inelastic two hadron production process with a transversely polarised target. On the example of the u → π + π - we analyse the properties of unpolarized DFFs using their probabilistic interpretation. We use both the NJL-jet hadronization model and PYTHIA 8.1 event generator to explore the effect of the strong decays of the vector mesons produced in the quark hadronization process on the pseudoscalar DFFs. Our study shows that, even though it is less probable to produce vector mesons in the hadronization process than pseudo scalar mesons of the same charge, the products of their strong decays drastically affect the DFFs for pions because of the large combinatorial factors. Thus, an accurate description of both vector meson production and decays are crucial for theoretical understanding of DFFs. (authors)

  5. Vector species richness increases haemorrhagic disease prevalence through functional diversity modulating the duration of seasonal transmission.

    Science.gov (United States)

    Park, Andrew W; Cleveland, Christopher A; Dallas, Tad A; Corn, Joseph L

    2016-06-01

    Although many parasites are transmitted between hosts by a suite of arthropod vectors, the impact of vector biodiversity on parasite transmission is poorly understood. Positive relationships between host infection prevalence and vector species richness (SR) may operate through multiple mechanisms, including (i) increased vector abundance, (ii) a sampling effect in which species of high vectorial capacity are more likely to occur in species-rich communities, and (iii) functional diversity whereby communities comprised species with distinct phenologies may extend the duration of seasonal transmission. Teasing such mechanisms apart is impeded by a lack of appropriate data, yet could highlight a neglected role for functional diversity in parasite transmission. We used statistical modelling of extensive host, vector and microparasite data to test the hypothesis that functional diversity leading to longer seasonal transmission explained variable levels of disease in a wildlife population. We additionally developed a simple transmission model to guide our expectation of how an increased transmission season translates to infection prevalence. Our study demonstrates that vector SR is associated with increased levels of disease reporting, but not via increases in vector abundance or via a sampling effect. Rather, the relationship operates by extending the length of seasonal transmission, in line with theoretical predictions.

  6. Entropy-Based Video Steganalysis of Motion Vectors

    Directory of Open Access Journals (Sweden)

    Elaheh Sadat Sadat

    2018-04-01

    Full Text Available In this paper, a new method is proposed for motion vector steganalysis using the entropy value and its combination with the features of the optimized motion vector. In this method, the entropy of blocks is calculated to determine their texture and the precision of their motion vectors. Then, by using a fuzzy cluster, the blocks are clustered into the blocks with high and low texture, while the membership function of each block to a high texture class indicates the texture of that block. These membership functions are used to weight the effective features that are extracted by reconstructing the motion estimation equations. Characteristics of the results indicate that the use of entropy and the irregularity of each block increases the precision of the final video classification into cover and stego classes.

  7. Soft Sensing of Key State Variables in Fermentation Process Based on Relevance Vector Machine with Hybrid Kernel Function

    Directory of Open Access Journals (Sweden)

    Xianglin ZHU

    2014-06-01

    Full Text Available To resolve the online detection difficulty of some important state variables in fermentation process with traditional instruments, a soft sensing modeling method based on relevance vector machine (RVM with a hybrid kernel function is presented. Based on the characteristic analysis of two commonly-used kernel functions, that is, local Gaussian kernel function and global polynomial kernel function, a hybrid kernel function combing merits of Gaussian kernel function and polynomial kernel function is constructed. To design optimal parameters of this kernel function, the particle swarm optimization (PSO algorithm is applied. The proposed modeling method is used to predict the value of cell concentration in the Lysine fermentation process. Simulation results show that the presented hybrid-kernel RVM model has a better accuracy and performance than the single kernel RVM model.

  8. Characterizations of the random order values by Harsanyi payoff vectors

    NARCIS (Netherlands)

    Derks, J.; van der Laan, G.; Vasil'ev, V.

    2006-01-01

    A Harsanyi payoff vector (see Vasil'ev in Optimizacija Vyp 21:30-35, 1978) of a cooperative game with transferable utilities is obtained by some distribution of the Harsanyi dividends of all coalitions among its members. Examples of Harsanyi payoff vectors are the marginal contribution vectors. The

  9. Compactly Supported Basis Functions as Support Vector Kernels for Classification.

    Science.gov (United States)

    Wittek, Peter; Tan, Chew Lim

    2011-10-01

    Wavelet kernels have been introduced for both support vector regression and classification. Most of these wavelet kernels do not use the inner product of the embedding space, but use wavelets in a similar fashion to radial basis function kernels. Wavelet analysis is typically carried out on data with a temporal or spatial relation between consecutive data points. We argue that it is possible to order the features of a general data set so that consecutive features are statistically related to each other, thus enabling us to interpret the vector representation of an object as a series of equally or randomly spaced observations of a hypothetical continuous signal. By approximating the signal with compactly supported basis functions and employing the inner product of the embedding L2 space, we gain a new family of wavelet kernels. Empirical results show a clear advantage in favor of these kernels.

  10. Gear fault diagnosis under variable conditions with intrinsic time-scale decomposition-singular value decomposition and support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Zhanqiang; Qu, Jianfeng; Chai, Yi; Tang, Qiu; Zhou, Yuming [Chongqing University, Chongqing (China)

    2017-02-15

    The gear vibration signal is nonlinear and non-stationary, gear fault diagnosis under variable conditions has always been unsatisfactory. To solve this problem, an intelligent fault diagnosis method based on Intrinsic time-scale decomposition (ITD)-Singular value decomposition (SVD) and Support vector machine (SVM) is proposed in this paper. The ITD method is adopted to decompose the vibration signal of gearbox into several Proper rotation components (PRCs). Subsequently, the singular value decomposition is proposed to obtain the singular value vectors of the proper rotation components and improve the robustness of feature extraction under variable conditions. Finally, the Support vector machine is applied to classify the fault type of gear. According to the experimental results, the performance of ITD-SVD exceeds those of the time-frequency analysis methods with EMD and WPT combined with SVD for feature extraction, and the classifier of SVM outperforms those for K-nearest neighbors (K-NN) and Back propagation (BP). Moreover, the proposed approach can accurately diagnose and identify different fault types of gear under variable conditions.

  11. Realization of logical functions by vector programs

    Energy Technology Data Exchange (ETDEWEB)

    Lapkin, L Ya

    1983-03-01

    Recent computing and control applications often require program realization of finite automata in general and of an important particular class of memoryless automata specified by systems of Boolean functions. Logical control and computing machines which receive sequences of discrete signals on the input and convert them into sequences of discrete output signals using finite memory may be described by a finite automation model. However, in distinction from the circuit interpretation of finite automata, the automaton algorithm represents the structure of the automaton program and not the structure of the machine itself. Therefore, the complexity of the computer realization of an automaton is the complexity of the computer program, and not the complexity of the hardware. Two classes of programs currently used to evalute boolean functions are operator programs and binary programs. However, computing machines, including microcomputers, are equipped with additional possibilities for evaluation of Boolean functions, which are not utilized in programs of these two basic classes. In this article, we consider the design of vector programs for program realization of systems of Boolean functions. 3 references.

  12. A Hartman–Nagumo inequality for the vector ordinary -Laplacian and applications to nonlinear boundary value problems

    Directory of Open Access Journals (Sweden)

    Ureña Antonio J

    2002-01-01

    Full Text Available A generalization of the well-known Hartman–Nagumo inequality to the case of the vector ordinary -Laplacian and classical degree theory provide existence results for some associated nonlinear boundary value problems.

  13. Variable ordering structures in vector optimization

    CERN Document Server

    Eichfelder, Gabriele

    2014-01-01

    This book provides an introduction to vector optimization with variable ordering structures, i.e., to optimization problems with a vector-valued objective function where the elements in the objective space are compared based on a variable ordering structure: instead of a partial ordering defined by a convex cone, we see a whole family of convex cones, one attached to each element of the objective space. The book starts by presenting several applications that have recently sparked new interest in these optimization problems, and goes on to discuss fundamentals and important results on a wide ra

  14. An advanced complex analysis problem book topological vector spaces, functional analysis, and Hilbert spaces of analytic functions

    CERN Document Server

    Alpay, Daniel

    2015-01-01

    This is an exercises book at the beginning graduate level, whose aim is to illustrate some of the connections between functional analysis and the theory of functions of one variable. A key role is played by the notions of positive definite kernel and of reproducing kernel Hilbert space. A number of facts from functional analysis and topological vector spaces are surveyed. Then, various Hilbert spaces of analytic functions are studied.

  15. Probing deformed orbitals with vector A( vector e, e' N)B reactions

    International Nuclear Information System (INIS)

    Garrido, E.; Caballero, J.A.; Moya de Guerra, E.; Sarriguren, P.; Udias, J.M.

    1995-01-01

    We present results for response functions and asymmetries in the nuclear reactions 37 vector Ar( vector e, e' n) 36 Ar and 37 vector K( vector e,e' p) 36 Ar at quasifree kinematics. We compare PWIA results obtained using deformed HF wave functions with PWIA and DWIA results obtained assuming a spherical mean field. We show that the complex structure of the deformed orbitals can be probed by coincidence measurements with polarized beam and targets. ((orig.))

  16. Value function in economic growth model

    Science.gov (United States)

    Bagno, Alexander; Tarasyev, Alexandr A.; Tarasyev, Alexander M.

    2017-11-01

    Properties of the value function are examined in an infinite horizon optimal control problem with an unlimited integrand index appearing in the quality functional with a discount factor. Optimal control problems of such type describe solutions in models of economic growth. Necessary and sufficient conditions are derived to ensure that the value function satisfies the infinitesimal stability properties. It is proved that value function coincides with the minimax solution of the Hamilton-Jacobi equation. Description of the growth asymptotic behavior for the value function is provided for the logarithmic, power and exponential quality functionals and an example is given to illustrate construction of the value function in economic growth models.

  17. Whittaker Vector of Deformed Virasoro Algebra and Macdonald Symmetric Functions

    Science.gov (United States)

    Yanagida, Shintarou

    2016-03-01

    We give a proof of Awata and Yamada's conjecture for the explicit formula of Whittaker vector of the deformed Virasoro algebra realized in the Fock space. The formula is expressed as a summation over Macdonald symmetric functions with factored coefficients. In the proof, we fully use currents appearing in the Fock representation of Ding-Iohara-Miki quantum algebra.

  18. A multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors for functional gene analysis.

    Science.gov (United States)

    Weber, Kristoffer; Bartsch, Udo; Stocking, Carol; Fehse, Boris

    2008-04-01

    Functional gene analysis requires the possibility of overexpression, as well as downregulation of one, or ideally several, potentially interacting genes. Lentiviral vectors are well suited for this purpose as they ensure stable expression of complementary DNAs (cDNAs), as well as short-hairpin RNAs (shRNAs), and can efficiently transduce a wide spectrum of cell targets when packaged within the coat proteins of other viruses. Here we introduce a multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors designed according to the "building blocks" principle. Using a wide spectrum of different fluorescent markers, including drug-selectable enhanced green fluorescent protein (eGFP)- and dTomato-blasticidin-S resistance fusion proteins, LeGO vectors allow simultaneous analysis of multiple genes and shRNAs of interest within single, easily identifiable cells. Furthermore, each functional module is flanked by unique cloning sites, ensuring flexibility and individual optimization. The efficacy of these vectors for analyzing multiple genes in a single cell was demonstrated in several different cell types, including hematopoietic, endothelial, and neural stem and progenitor cells, as well as hepatocytes. LeGO vectors thus represent a valuable tool for investigating gene networks using conditional ectopic expression and knock-down approaches simultaneously.

  19. Measurement of K/sub NN/, K/sub LL/ in p vector d → n vector X and p vector 9Be → n vector X at 800 MeV

    International Nuclear Information System (INIS)

    Riley, P.J.; Hollas, C.L.; Newsom, C.R.

    1980-01-01

    The spin transfer parameters, K/sub NN/ and K/sub LL/, have been measured in p vector d → n vector X and p vector 9 Be → n vector X at 0 0 and 800 MeV. The rather large values of K/sub LL/ demonstrate that this transfer mechanism will provide a useful source of polarized neutrons at LAMPF energies

  20. JAKEF, Gradient or Jacobian Function from Objective Function or Vector Function

    International Nuclear Information System (INIS)

    Hillstrom, K.E.

    1988-01-01

    1 - Description of program or function: JAKEF is a language processor that accepts as input a single- or double-precision ANSI standard 1977 FORTRAN subroutine defining an objective function f(x), or a vector function F(x), and produces as output a single- or double- precision ANSI standard 1977 FORTRAN subroutine defining the gradient of f(x), or the Jacobian of F(x). 2 - Method of solution: JAKEF is a four-pass compiler consisting of a lexical preprocessor, a parser, a tree-building and flow analysis pass, and a differentiator and output construction pass. The lexical preprocessor reworks the input FORTRAN program to give it a recognizable lexical structure. The parser transforms the pre-processed input into a string of tokens in a post-fix representation of the program tree. The tree-building and flow analysis pass constructs a tree out of the post-fix token string. The differentiator identifies relevant assignment statements; then, if necessary, it analyzes them into component statements governed by a single differentiation rule and augments each of these statements with a call to a member of the run-time support package which implements the differentiation rule. After completing the construction of the main body of the routine, JAKEF inserts calls to support package routines that complete the differentiation. This results in a modified program tree in a form compatible with FORTRAN rules. 3 - Restrictions on the complexity of the problem: Statement functions and Equivalence's that involve the independent variables are not handled correctly. Variables, constants, or functions of type COMPLEX are not recognized. Character sub-string expressions and alternate returns are not permitted

  1. Reconstruction of the domain orientation distribution function of polycrystalline PZT ceramics using vector piezoresponse force microscopy.

    Science.gov (United States)

    Kratzer, Markus; Lasnik, Michael; Röhrig, Sören; Teichert, Christian; Deluca, Marco

    2018-01-11

    Lead zirconate titanate (PZT) is one of the prominent materials used in polycrystalline piezoelectric devices. Since the ferroelectric domain orientation is the most important parameter affecting the electromechanical performance, analyzing the domain orientation distribution is of great importance for the development and understanding of improved piezoceramic devices. Here, vector piezoresponse force microscopy (vector-PFM) has been applied in order to reconstruct the ferroelectric domain orientation distribution function of polished sections of device-ready polycrystalline lead zirconate titanate (PZT) material. A measurement procedure and a computer program based on the software Mathematica have been developed to automatically evaluate the vector-PFM data for reconstructing the domain orientation function. The method is tested on differently in-plane and out-of-plane poled PZT samples, and the results reveal the expected domain patterns and allow determination of the polarization orientation distribution function at high accuracy.

  2. When L1 of a vector measure is an AL-space

    OpenAIRE

    Curbera Costello, Guillermo

    1994-01-01

    We consider the space of real functions which are integrable with respect to a countably additive vector measure with values in a Banach space. In a previous paper we showed that this space can be any order continuous Banach lattice with weak order unit. We study a priori conditions on the vector measure in order to guarantee that the resulting L is order isomorphic to an AL-space. We prove that for separable measures with no atoms there exists a Co-valued measure that generates the same spac...

  3. Vector analysis

    CERN Document Server

    Brand, Louis

    2006-01-01

    The use of vectors not only simplifies treatments of differential geometry, mechanics, hydrodynamics, and electrodynamics, but also makes mathematical and physical concepts more tangible and easy to grasp. This text for undergraduates was designed as a short introductory course to give students the tools of vector algebra and calculus, as well as a brief glimpse into these subjects' manifold applications. The applications are developed to the extent that the uses of the potential function, both scalar and vector, are fully illustrated. Moreover, the basic postulates of vector analysis are brou

  4. Supergravity inspired vector curvaton

    International Nuclear Information System (INIS)

    Dimopoulos, Konstantinos

    2007-01-01

    It is investigated whether a massive Abelian vector field, whose gauge kinetic function is growing during inflation, can be responsible for the generation of the curvature perturbation in the Universe. Particle production is studied and it is shown that the vector field can obtain a scale-invariant superhorizon spectrum of perturbations with a reasonable choice of kinetic function. After inflation the vector field begins coherent oscillations, during which it corresponds to pressureless isotropic matter. When the vector field dominates the Universe, its perturbations give rise to the observed curvature perturbation following the curvaton scenario. It is found that this is possible if, after the end of inflation, the mass of the vector field increases at a phase transition at temperature of order 1 TeV or lower. Inhomogeneous reheating, whereby the vector field modulates the decay rate of the inflaton, is also studied

  5. A method of recovering the initial vectors of globally coupled map lattices based on symbolic dynamics

    International Nuclear Information System (INIS)

    Sun Li-Sha; Kang Xiao-Yun; Zhang Qiong; Lin Lan-Xin

    2011-01-01

    Based on symbolic dynamics, a novel computationally efficient algorithm is proposed to estimate the unknown initial vectors of globally coupled map lattices (CMLs). It is proved that not all inverse chaotic mapping functions are satisfied for contraction mapping. It is found that the values in phase space do not always converge on their initial values with respect to sufficient backward iteration of the symbolic vectors in terms of global convergence or divergence (CD). Both CD property and the coupling strength are directly related to the mapping function of the existing CML. Furthermore, the CD properties of Logistic, Bernoulli, and Tent chaotic mapping functions are investigated and compared. Various simulation results and the performances of the initial vector estimation with different signal-to-noise ratios (SNRs) are also provided to confirm the proposed algorithm. Finally, based on the spatiotemporal chaotic characteristics of the CML, the conditions of estimating the initial vectors using symbolic dynamics are discussed. The presented method provides both theoretical and experimental results for better understanding and characterizing the behaviours of spatiotemporal chaotic systems. (general)

  6. A method of recovering the initial vectors of globally coupled map lattices based on symbolic dynamics

    Science.gov (United States)

    Sun, Li-Sha; Kang, Xiao-Yun; Zhang, Qiong; Lin, Lan-Xin

    2011-12-01

    Based on symbolic dynamics, a novel computationally efficient algorithm is proposed to estimate the unknown initial vectors of globally coupled map lattices (CMLs). It is proved that not all inverse chaotic mapping functions are satisfied for contraction mapping. It is found that the values in phase space do not always converge on their initial values with respect to sufficient backward iteration of the symbolic vectors in terms of global convergence or divergence (CD). Both CD property and the coupling strength are directly related to the mapping function of the existing CML. Furthermore, the CD properties of Logistic, Bernoulli, and Tent chaotic mapping functions are investigated and compared. Various simulation results and the performances of the initial vector estimation with different signal-to-noise ratios (SNRs) are also provided to confirm the proposed algorithm. Finally, based on the spatiotemporal chaotic characteristics of the CML, the conditions of estimating the initial vectors using symbolic dynamics are discussed. The presented method provides both theoretical and experimental results for better understanding and characterizing the behaviours of spatiotemporal chaotic systems.

  7. Pipeline leakage recognition based on the projection singular value features and support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wei; Zhang, Laibin; Mingda, Wang; Jinqiu, Hu [College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing, (China)

    2010-07-01

    The negative wave pressure method is one of the processes used to detect leaks on oil pipelines. The development of new leakage recognition processes is difficult because it is practically impossible to collect leakage pressure samples. The method of leakage feature extraction and the selection of the recognition model are also important in pipeline leakage detection. This study investigated a new feature extraction approach Singular Value Projection (SVP). It projects the singular value to a standard basis. A new pipeline recognition model based on the multi-class Support Vector Machines was also developed. It was found that SVP is a clear and concise recognition feature of the negative pressure wave. Field experiments proved that the model provided a high recognition accuracy rate. This approach to pipeline leakage detection based on the SVP and SVM has a high application value.

  8. Validation of SplitVectors Encoding for Quantitative Visualization of Large-Magnitude-Range Vector Fields.

    Science.gov (United States)

    Henan Zhao; Bryant, Garnett W; Griffin, Wesley; Terrill, Judith E; Jian Chen

    2017-06-01

    We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks.

  9. Vector superconductivity in cosmic strings

    International Nuclear Information System (INIS)

    Dvali, G.R.; Mahajan, S.M.

    1992-03-01

    We argue that in most realistic cases, the usual Witten-type bosonic superconductivity of the cosmic string is automatically (independent of the existence of superconducting currents) accompanied by the condensation of charged gauge vector bosons in the core giving rise to a new vector type superconductivity. The value of the charged vector condensate is related with the charged scalar expectation value, and vanishes only if the latter goes to zero. The mechanism for the proposed vector superconductivity, differing fundamentally from those in the literature, is delineated using the simplest realistic example of the two Higgs doublet standard model interacting with the extra cosmic string. It is shown that for a wide range of parameters, for which the string becomes scalarly superconducting, W boson condensates (the sources of vector superconductivity) are necessarily excited. (author). 14 refs

  10. Vector regression introduced

    Directory of Open Access Journals (Sweden)

    Mok Tik

    2014-06-01

    Full Text Available This study formulates regression of vector data that will enable statistical analysis of various geodetic phenomena such as, polar motion, ocean currents, typhoon/hurricane tracking, crustal deformations, and precursory earthquake signals. The observed vector variable of an event (dependent vector variable is expressed as a function of a number of hypothesized phenomena realized also as vector variables (independent vector variables and/or scalar variables that are likely to impact the dependent vector variable. The proposed representation has the unique property of solving the coefficients of independent vector variables (explanatory variables also as vectors, hence it supersedes multivariate multiple regression models, in which the unknown coefficients are scalar quantities. For the solution, complex numbers are used to rep- resent vector information, and the method of least squares is deployed to estimate the vector model parameters after transforming the complex vector regression model into a real vector regression model through isomorphism. Various operational statistics for testing the predictive significance of the estimated vector parameter coefficients are also derived. A simple numerical example demonstrates the use of the proposed vector regression analysis in modeling typhoon paths.

  11. On Discrete Killing Vector Fields and Patterns on Surfaces

    KAUST Repository

    Ben-Chen, Mirela

    2010-09-21

    Symmetry is one of the most important properties of a shape, unifying form and function. It encodes semantic information on one hand, and affects the shape\\'s aesthetic value on the other. Symmetry comes in many flavors, amongst the most interesting being intrinsic symmetry, which is defined only in terms of the intrinsic geometry of the shape. Continuous intrinsic symmetries can be represented using infinitesimal rigid transformations, which are given as tangent vector fields on the surface - known as Killing Vector Fields. As exact symmetries are quite rare, especially when considering noisy sampled surfaces, we propose a method for relaxing the exact symmetry constraint to allow for approximate symmetries and approximate Killing Vector Fields, and show how to discretize these concepts for generating such vector fields on a triangulated mesh. We discuss the properties of approximate Killing Vector Fields, and propose an application to utilize them for texture and geometry synthesis. Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.

  12. Constraining vectors and axial-vectors in walking technicolour by a holographic principle

    DEFF Research Database (Denmark)

    D. Dietrich, Dennis; Kouvaris, Christoforos

    2008-01-01

    We use a holographic principle to study the low-energy spectrum of walking technicolour models. In particular, we predict the masses of the axial vectors as well as the decay constants of vectors and axial vectors as functions of the mass of the techni-rho. Given that there are very few...

  13. Vector valued logarithmic residues and the extraction of elementary factors

    NARCIS (Netherlands)

    H. Bart (Harm); T. Ehrhardt; B. Silbermann

    2007-01-01

    textabstractAn analysis is presented of the circumstances under which, by the extraction of elementary factors, an analytic Banach algebra valued function can be transformed into one taking invertible values only. Elementary factors are generalizations of the simple scalar expressions λ – α, the

  14. Complex Polynomial Vector Fields

    DEFF Research Database (Denmark)

    The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions...... or meromorphic (allowing poles as singularities) functions. There already exists a well-developed theory for iterative holomorphic dynamical systems, and successful relations found between iteration theory and flows of vector fields have been one of the main motivations for the recent interest in holomorphic...... vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...

  15. Likelihood inference for a fractionally cointegrated vector autoregressive model

    DEFF Research Database (Denmark)

    Johansen, Søren; Ørregård Nielsen, Morten

    2012-01-01

    such that the process X_{t} is fractional of order d and cofractional of order d-b; that is, there exist vectors ß for which ß'X_{t} is fractional of order d-b, and no other fractionality order is possible. We define the statistical model by 0inference when the true values satisfy b0¿1/2 and d0-b0......We consider model based inference in a fractionally cointegrated (or cofractional) vector autoregressive model with a restricted constant term, ¿, based on the Gaussian likelihood conditional on initial values. The model nests the I(d) VAR model. We give conditions on the parameters...... process in the parameters when errors are i.i.d. with suitable moment conditions and initial values are bounded. When the limit is deterministic this implies uniform convergence in probability of the conditional likelihood function. If the true value b0>1/2, we prove that the limit distribution of (ß...

  16. Evaluation of modulation transfer function of optical lens system by support vector regression methodologies - A comparative study

    Science.gov (United States)

    Petković, Dalibor; Shamshirband, Shahaboddin; Saboohi, Hadi; Ang, Tan Fong; Anuar, Nor Badrul; Rahman, Zulkanain Abdul; Pavlović, Nenad T.

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the polynomial and radial basis function (RBF) are applied as the kernel function of Support Vector Regression (SVR) to estimate and predict estimate MTF value of the actual optical system according to experimental tests. Instead of minimizing the observed training error, SVR_poly and SVR_rbf attempt to minimize the generalization error bound so as to achieve generalized performance. The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the SVR_rbf approach in compare to SVR_poly soft computing methodology.

  17. Determination of key parameters of vector multifractal vector fields

    Science.gov (United States)

    Schertzer, D. J. M.; Tchiguirinskaia, I.

    2017-12-01

    For too long time, multifractal analyses and simulations have been restricted to scalar-valued fields (Schertzer and Tchiguirinskaia, 2017a,b). For instance, the wind velocity multifractality has been mostly analysed in terms of scalar structure functions and with the scalar energy flux. This restriction has had the unfortunate consequences that multifractals were applicable to their full extent in geophysics, whereas it has inspired them. Indeed a key question in geophysics is the complexity of the interactions between various fields or they components. Nevertheless, sophisticated methods have been developed to determine the key parameters of scalar valued fields. In this communication, we first present the vector extensions of the universal multifractal analysis techniques to multifractals whose generator belong to a Levy-Clifford algebra (Schertzer and Tchiguirinskaia, 2015). We point out further extensions noting the increased complexity. For instance, the (scalar) index of multifractality becomes a matrice. Schertzer, D. and Tchiguirinskaia, I. (2015) `Multifractal vector fields and stochastic Clifford algebra', Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(12), p. 123127. doi: 10.1063/1.4937364. Schertzer, D. and Tchiguirinskaia, I. (2017) `An Introduction to Multifractals and Scale Symmetry Groups', in Ghanbarian, B. and Hunt, A. (eds) Fractals: Concepts and Applications in Geosciences. CRC Press, p. (in press). Schertzer, D. and Tchiguirinskaia, I. (2017b) `Pandora Box of Multifractals: Barely Open ?', in Tsonis, A. A. (ed.) 30 Years of Nonlinear Dynamics in Geophysics. Berlin: Springer, p. (in press).

  18. Mixed kernel function support vector regression for global sensitivity analysis

    Science.gov (United States)

    Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng

    2017-11-01

    Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.

  19. Nondiffraction photoproduction of vector mesons and the photon structure function

    International Nuclear Information System (INIS)

    Badalyan, R.G.; Gulkanyan, H.R.

    1988-01-01

    In the framework of the recombination model of hadron production a self-consistent description of the available data on the inclusive spectra of the nondiffraction photoproduction of vector mesons in the fragmentation region of photons at high energies is obtained. The parameters of parton distribution in the hadron component of a photon are estimated and its structure is compared with the measurements of the photon structure function in γγ-interactions at low Q 2 . 15 refs.; 2 figs.; 1 tab

  20. Adenovirus vector expressing keratinocyte growth factor using CAG promoter impairs pulmonary function of mice with elastase-induced emphysema.

    Science.gov (United States)

    Oki, Hiroshi; Yazawa, Takuya; Baba, Yasuko; Kanegae, Yumi; Sato, Hanako; Sakamoto, Seiko; Goto, Takahisa; Saito, Izumu; Kurahashi, Kiyoyasu

    2017-07-01

    Pulmonary emphysema impairs quality of life and increases mortality. It has previously been shown that administration of adenovirus vector expressing murine keratinocyte growth factor (KGF) before elastase instillation prevents pulmonary emphysema in mice. We therefore hypothesized that therapeutic administration of KGF would restore damage to lungs caused by elastase instillation and thus improve pulmonary function in an animal model. KGF expressing adenovirus vector, which prevented bleomycin-induced pulmonary fibrosis in a previous study, was constructed. Adenovirus vector (1.0 × 10 9 plaque-forming units) was administered intratracheally one week after administration of elastase into mouse lungs. One week after administration of KGF-vector, exercise tolerance testing and blood gas analysis were performed, after which the lungs were removed under deep anesthesia. KGF-positive pneumocytes were more numerous, surfactant protein secretion in the airspace greater and mean linear intercept of lungs shorter in animals that had received KGF than in control animals. Unexpectedly, however, arterial blood oxygenation was worse in the KGF group and maximum running speed, an indicator of exercise capacity, had not improved after KGF in mice with elastase-induced emphysema, indicating that KGF-expressing adenovirus vector impaired pulmonary function in these mice. Notably, vector lacking KGF-expression unit did not induce such impairment, implying that the KGF expression unit itself may cause the damage to alveolar cells. Possible involvement of the CAG promoter used for KGF expression in impairing pulmonary function is discussed. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  1. Improving functional value of meat products.

    Science.gov (United States)

    Zhang, Wangang; Xiao, Shan; Samaraweera, Himali; Lee, Eun Joo; Ahn, Dong U

    2010-09-01

    In recent years, much attention has been paid to develop meat and meat products with physiological functions to promote health conditions and prevent the risk of diseases. This review focuses on strategies to improve the functional value of meat and meat products. Value improvement can be realized by adding functional compounds including conjugated linoneleic acid, vitamin E, n3 fatty acids and selenium in animal diets to improve animal production, carcass composition and fresh meat quality. In addition, functional ingredients such as vegetable proteins, dietary fibers, herbs and spices, and lactic acid bacteria can be directly incorporated into meat products during processing to improve their functional value for consumers. Functional compounds, especially peptides, can also be generated from meat and meat products during processing such as fermentation, curing and aging, and enzymatic hydrolysis. This review further discusses the current status, consumer acceptance, and market for functional foods from the global viewpoints. Future prospects for functional meat and meat products are also discussed.

  2. Dispersion and betatron function correction in the Advanced Photon Source storage ring using singular value decomposition

    International Nuclear Information System (INIS)

    Emery, L.

    1999-01-01

    Magnet errors and off-center orbits through sextuples perturb the dispersion and beta functions in a storage ring (SR), which affects machine performance. In a large ring such as the Advanced Photon Source (APS), the magnet errors are difficult to determine with beam-based methods. Also the non-zero orbit through sextuples result from user requests for steering at light source points. For expediency, a singular value decomposition (SVD) matrix method analogous to orbit correction was adopted to make global corrections to these functions using strengths of several quadrupoles as correcting elements. The direct response matrix is calculated from the model of the perfect lattice. The inverse is calculated by SVD with a selected number of singular vectors. Resulting improvement in the lattice functions and machine performance will be presented

  3. Vector Fields on Product Manifolds

    OpenAIRE

    Kurz, Stefan

    2011-01-01

    This short report establishes some basic properties of smooth vector fields on product manifolds. The main results are: (i) On a product manifold there always exists a direct sum decomposition into horizontal and vertical vector fields. (ii) Horizontal and vertical vector fields are naturally isomorphic to smooth families of vector fields defined on the factors. Vector fields are regarded as derivations of the algebra of smooth functions.

  4. Multi-task Vector Field Learning.

    Science.gov (United States)

    Lin, Binbin; Yang, Sen; Zhang, Chiyuan; Ye, Jieping; He, Xiaofei

    2012-01-01

    Multi-task learning (MTL) aims to improve generalization performance by learning multiple related tasks simultaneously and identifying the shared information among tasks. Most of existing MTL methods focus on learning linear models under the supervised setting. We propose a novel semi-supervised and nonlinear approach for MTL using vector fields. A vector field is a smooth mapping from the manifold to the tangent spaces which can be viewed as a directional derivative of functions on the manifold. We argue that vector fields provide a natural way to exploit the geometric structure of data as well as the shared differential structure of tasks, both of which are crucial for semi-supervised multi-task learning. In this paper, we develop multi-task vector field learning (MTVFL) which learns the predictor functions and the vector fields simultaneously. MTVFL has the following key properties. (1) The vector fields MTVFL learns are close to the gradient fields of the predictor functions. (2) Within each task, the vector field is required to be as parallel as possible which is expected to span a low dimensional subspace. (3) The vector fields from all tasks share a low dimensional subspace. We formalize our idea in a regularization framework and also provide a convex relaxation method to solve the original non-convex problem. The experimental results on synthetic and real data demonstrate the effectiveness of our proposed approach.

  5. Short-term traffic flow prediction model using particle swarm optimization–based combined kernel function-least squares support vector machine combined with chaos theory

    Directory of Open Access Journals (Sweden)

    Qiang Shang

    2016-08-01

    Full Text Available Short-term traffic flow prediction is an important part of intelligent transportation systems research and applications. For further improving the accuracy of short-time traffic flow prediction, a novel hybrid prediction model (multivariate phase space reconstruction–combined kernel function-least squares support vector machine based on multivariate phase space reconstruction and combined kernel function-least squares support vector machine is proposed. The C-C method is used to determine the optimal time delay and the optimal embedding dimension of traffic variables’ (flow, speed, and occupancy time series for phase space reconstruction. The G-P method is selected to calculate the correlation dimension of attractor which is an important index for judging chaotic characteristics of the traffic variables’ series. The optimal input form of combined kernel function-least squares support vector machine model is determined by multivariate phase space reconstruction, and the model’s parameters are optimized by particle swarm optimization algorithm. Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. The experimental results suggest that the new proposed model yields better predictions compared with similar models (combined kernel function-least squares support vector machine, multivariate phase space reconstruction–generalized kernel function-least squares support vector machine, and phase space reconstruction–combined kernel function-least squares support vector machine, which indicates that the new proposed model exhibits stronger prediction ability and robustness.

  6. System for Automated Calibration of Vector Modulators

    Science.gov (United States)

    Lux, James; Boas, Amy; Li, Samuel

    2009-01-01

    Vector modulators are used to impose baseband modulation on RF signals, but non-ideal behavior limits the overall performance. The non-ideal behavior of the vector modulator is compensated using data collected with the use of an automated test system driven by a LabVIEW program that systematically applies thousands of control-signal values to the device under test and collects RF measurement data. The technology innovation automates several steps in the process. First, an automated test system, using computer controlled digital-to-analog converters (DACs) and a computer-controlled vector network analyzer (VNA) systematically can apply different I and Q signals (which represent the complex number by which the RF signal is multiplied) to the vector modulator under test (VMUT), while measuring the RF performance specifically, gain and phase. The automated test system uses the LabVIEW software to control the test equipment, collect the data, and write it to a file. The input to the Lab - VIEW program is either user-input for systematic variation, or is provided in a file containing specific test values that should be fed to the VMUT. The output file contains both the control signals and the measured data. The second step is to post-process the file to determine the correction functions as needed. The result of the entire process is a tabular representation, which allows translation of a desired I/Q value to the required analog control signals to produce a particular RF behavior. In some applications, corrected performance is needed only for a limited range. If the vector modulator is being used as a phase shifter, there is only a need to correct I and Q values that represent points on a circle, not the entire plane. This innovation has been used to calibrate 2-GHz MMIC (monolithic microwave integrated circuit) vector modulators in the High EIRP Cluster Array project (EIRP is high effective isotropic radiated power). These calibrations were then used to create

  7. Representations of Multiple-Valued Logic Functions

    CERN Document Server

    Stankovic, Radomir S

    2012-01-01

    Compared to binary switching functions, multiple-valued functions offer more compact representations of the information content of signals modeled by logic functions and, therefore, their use fits very well in the general settings of data compression attempts and approaches. The first task in dealing with such signals is to provide mathematical methods for their representation in a way that will make their application in practice feasible.Representation of Multiple-Valued Logic Functions is aimed at providing an accessible introduction to these mathematical techniques that are necessary for ap

  8. Towards all-order Laurent expansion of generalized hypergeometric functions around rational values of parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kalmykov, M.Yu.; Kniehl, B.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2008-07-15

    We prove the following theorems: 1) The Laurent expansions in {epsilon} of the Gauss hypergeometric functions {sub 2}F{sub 1}(I{sub 1}+a{epsilon},I{sub 2}+b{epsilon};I{sub 3}+(p)/(q)+c{epsilon};z), {sub 2}F{sub 1}(I{sub 1}+(p)/(q)+a{epsilon},I{sub 2}+(p/q)+b{epsilon};I{sub 3}+(p)/(q)+c{epsilon};z) and {sub 2}F{sub 1}(I{sub 1}+(p)/(q)+ a{epsilon},I{sub 2}+b{epsilon};I{sub 3}+(p)/(q)+c{epsilon};z), where I{sub 1},I{sub 2},I{sub 3},p,q are arbitrary integers, a,b,c are arbitrary numbers and {epsilon} is an infinitesimal parameter, are expressible in terms of multiple polylogarithms of q-roots of unity with coefficients that are ratios of polynomials; 2) The Laurent expansion of the Gauss hypergeometric function {sub 2}F{sub 1}(I{sub 1}+(p)/(q)+a{epsilon},I{sub 2}+b{epsilon};I{sub 3}+c{epsilon};z) is expressible in terms of multiple polylogarithms of q-roots of unity times powers of logarithm with coefficients that are ratios of polynomials; 3) The multiple inverse rational sums {sigma}{sup {infinity}}{sub j=1}({gamma}(j))/({gamma}(1+j-(p)/(q))) (z{sup j})/(j{sup c}) S{sub a{sub 1}}(j-1).. S{sub a{sub p}}(j-1) and the multiple rational sums {sigma}{sup {infinity}}{sub j=1} ({gamma}(j+(p)/(q)))/({gamma}(1+j)) (z{sup j})/(j{sup c}) S{sub a{sub 1}}(j-1).. S{sub a{sub p}}(j-1), where S{sub a}(j)={sigma}{sup j}{sub k=1}(1)/(k{sup a}) is a harmonic series and c is an arbitrary integer, are expressible in terms of multiple polylogarithms; 4) The generalized hypergeometric functions {sub p}F{sub p.1}((vector)A+(vector)a{epsilon};(vector)B+(vector)b{epsilon},(p)/(q)+B{sub p-1};z) and {sub p}F{sub p-1}((vector)A+(vector)a{epsilon},(p)/(q)+A{sub p};(vector)B+(vector)b{epsilon};z) are expressible in terms of multiple polylogarithms with coefficients that are ratios of polynomials. (orig.)

  9. A vector matching method for analysing logic Petri nets

    Science.gov (United States)

    Du, YuYue; Qi, Liang; Zhou, MengChu

    2011-11-01

    Batch processing function and passing value indeterminacy in cooperative systems can be described and analysed by logic Petri nets (LPNs). To directly analyse the properties of LPNs, the concept of transition enabling vector sets is presented and a vector matching method used to judge the enabling transitions is proposed in this article. The incidence matrix of LPNs is defined; an equation about marking change due to a transition's firing is given; and a reachable tree is constructed. The state space explosion is mitigated to a certain extent from directly analysing LPNs. Finally, the validity and reliability of the proposed method are illustrated by an example in electronic commerce.

  10. Clifford Fourier transform on vector fields.

    Science.gov (United States)

    Ebling, Julia; Scheuermann, Gerik

    2005-01-01

    Image processing and computer vision have robust methods for feature extraction and the computation of derivatives of scalar fields. Furthermore, interpolation and the effects of applying a filter can be analyzed in detail and can be advantages when applying these methods to vector fields to obtain a solid theoretical basis for feature extraction. We recently introduced the Clifford convolution, which is an extension of the classical convolution on scalar fields and provides a unified notation for the convolution of scalar and vector fields. It has attractive geometric properties that allow pattern matching on vector fields. In image processing, the convolution and the Fourier transform operators are closely related by the convolution theorem and, in this paper, we extend the Fourier transform to include general elements of Clifford Algebra, called multivectors, including scalars and vectors. The resulting convolution and derivative theorems are extensions of those for convolution and the Fourier transform on scalar fields. The Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vector-valued filters. In frequency space, vectors are transformed into general multivectors of the Clifford Algebra. Many basic vector-valued patterns, such as source, sink, saddle points, and potential vortices, can be described by a few multivectors in frequency space.

  11. Semilogarithmic Nonuniform Vector Quantization of Two-Dimensional Laplacean Source for Small Variance Dynamics

    Directory of Open Access Journals (Sweden)

    Z. Peric

    2012-04-01

    Full Text Available In this paper high dynamic range nonuniform two-dimensional vector quantization model for Laplacean source was provided. Semilogarithmic A-law compression characteristic was used as radial scalar compression characteristic of two-dimensional vector quantization. Optimal number value of concentric quantization domains (amplitude levels is expressed in the function of parameter A. Exact distortion analysis with obtained closed form expressions is provided. It has been shown that proposed model provides high SQNR values in wide range of variances, and overachieves quality obtained by scalar A-law quantization at same bit rate, so it can be used in various switching and adaptation implementations for realization of high quality signal compression.

  12. Quark-gluon plasma tomography by vector mesons

    International Nuclear Information System (INIS)

    Lovas, I.; Schram, Zs.; Csernai, L.P.; Hungarian Academy of Sciences, Budapest; Nyiri, A.

    2001-01-01

    The fireball formed in a heavy ion collision is characterized by the impact parameter vector b-vector, which can be determined from the multiplicity and the angular distribution of the reaction products. By appropriate rotations the b-vector vectors of each collision can be aligned into a fixed direction. Using the measured values of the momentum distributions independent integral equations can be formulated for the unknown emission densities (E M (r-vector)) and for the unknown absorption densities (Δμ(r-vector)) of the different vector mesons. (author)

  13. Value distribution and the Lemma of the logarithmic derivative on polydiscs

    Directory of Open Access Journals (Sweden)

    Wilhelm Stoll

    1983-01-01

    Full Text Available Value distribution is developed on polydiscs with the special emphasis that the value distribution function depend on a vector variable. A Lemma of the logarithmic derivative for meromorphic functions on polydiscs is derived. Here the Bergman boundary of the polydiscs is approached along cones of any dimension and exceptional sets for such an approach are defined.

  14. Decays of the vector glueball

    Science.gov (United States)

    Giacosa, Francesco; Sammet, Julia; Janowski, Stanislaus

    2017-06-01

    We calculate two- and three-body decays of the (lightest) vector glueball into (pseudo)scalar, (axial-)vector, as well as pseudovector and excited vector mesons in the framework of a model of QCD. While absolute values of widths cannot be predicted because the corresponding coupling constants are unknown, some interesting branching ratios can be evaluated by setting the mass of the yet hypothetical vector glueball to 3.8 GeV as predicted by quenched lattice QCD. We find that the decay mode ω π π should be one of the largest (both through the decay chain O →b1π →ω π π and through the direct coupling O →ω π π ). Similarly, the (direct and indirect) decay into π K K*(892 ) is sizable. Moreover, the decays into ρ π and K*(892 )K are, although subleading, possible and could play a role in explaining the ρ π puzzle of the charmonium state ψ (2 S ) thanks to a (small) mixing with the vector glueball. The vector glueball can be directly formed at the ongoing BESIII experiment as well as at the future PANDA experiment at the FAIR facility. If the width is sufficiently small (≲100 MeV ) it should not escape future detection. It should be stressed that the employed model is based on some inputs and simplifying assumptions: the value of glueball mass (at present, the quenched lattice value is used), the lack of mixing of the glueball with other quarkonium states, and the use of few interaction terms. It then represents a first step toward the identification of the main decay channels of the vector glueball, but shall be improved when corresponding experimental candidates and/or new lattice results will be available.

  15. Towards an ab initio evaluation of the wave - vector- and frequency-dependent dielectric response function for crystalline water

    Energy Technology Data Exchange (ETDEWEB)

    Zaider, M [Columbia Univ., New York, NY (USA). Radiological Research Labs.; Fry, J L; Orr, D E [Texas Univ., Arlington, TX (USA)

    1990-01-01

    We describe an ab initio calculation of the properties of energy loss by electrons in crystalline water using its dielectric response function, {epsilon}(q,{omega}), where q and {omega} are, respectively, the wave vector and frequency. The calculation was performed on a model system (cubic ice) in order to take advantage of its ordered structure (i.e. Block's theorem), but also because of evidence that liquid water in biological systems ('structured' water) contains residues with tetrahedral structure (i.e. ice) over time scales of at least 10{sup -11} s. The main features of the calculation are (a) {epsilon}(q,{omega}) is evaluated in the random phase approximation (we used the expression given by Ehrenreich and Cohen), (b) the crystal potential is expressed as a sum of water-molecule self-consistent potentials, and (c) wave functions are expanded using tight binding functions (ultimately employing a Gaussian base set). A total of seven states (bands), five occupied and two conduction, are considered. We report the band structure and the density of states of the crystal, as well as values of {epsilon}(q,{omega}) at selected values of q and {omega}. Results are compared with energy loss measurements and with absorption spectra (XPS, UPS, and VUV data). The possibility of using an empirical combination of molecular potentials as a phenomenological Hamiltonian is also examined. (author).

  16. Credit Scoring by Fuzzy Support Vector Machines with a Novel Membership Function

    Directory of Open Access Journals (Sweden)

    Jian Shi

    2016-11-01

    Full Text Available Due to the recent financial crisis and European debt crisis, credit risk evaluation has become an increasingly important issue for financial institutions. Reliable credit scoring models are crucial for commercial banks to evaluate the financial performance of clients and have been widely studied in the fields of statistics and machine learning. In this paper a novel fuzzy support vector machine (SVM credit scoring model is proposed for credit risk analysis, in which fuzzy membership is adopted to indicate different contribution of each input point to the learning of SVM classification hyperplane. Considering the methodological consistency, support vector data description (SVDD is introduced to construct the fuzzy membership function and to reduce the effect of outliers and noises. The SVDD-based fuzzy SVM model is tested against the traditional fuzzy SVM on two real-world datasets and the research results confirm the effectiveness of the presented method.

  17. Complex Polynomial Vector Fields

    DEFF Research Database (Denmark)

    Dias, Kealey

    vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...... of parameter spaces into structurally stable domains, and a description of the bifurcations. For this reason, the talk will focus on these questions for complex polynomial vector fields.......The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions...

  18. Semiclassical initial value approximation for Green's function.

    Science.gov (United States)

    Kay, Kenneth G

    2010-06-28

    A semiclassical initial value approximation is obtained for the energy-dependent Green's function. For a system with f degrees of freedom the Green's function expression has the form of a (2f-1)-dimensional integral over points on the energy surface and an integral over time along classical trajectories initiated from these points. This approximation is derived by requiring an integral ansatz for Green's function to reduce to Gutzwiller's semiclassical formula when the integrations are performed by the stationary phase method. A simpler approximation is also derived involving only an (f-1)-dimensional integral over momentum variables on a Poincare surface and an integral over time. The relationship between the present expressions and an earlier initial value approximation for energy eigenfunctions is explored. Numerical tests for two-dimensional systems indicate that good accuracy can be obtained from the initial value Green's function for calculations of autocorrelation spectra and time-independent wave functions. The relative advantages of initial value approximations for the energy-dependent Green's function and the time-dependent propagator are discussed.

  19. Vector-free and transgene-free human iPS cells differentiate into functional neurons and enhance functional recovery after ischemic stroke in mice.

    Directory of Open Access Journals (Sweden)

    Osama Mohamad

    Full Text Available Stroke is a leading cause of human death and disability in the adult population in the United States and around the world. While stroke treatment is limited, stem cell transplantation has emerged as a promising regenerative therapy to replace or repair damaged tissues and enhance functional recovery after stroke. Recently, the creation of induced pluripotent stem (iPS cells through reprogramming of somatic cells has revolutionized cell therapy by providing an unlimited source of autologous cells for transplantation. In addition, the creation of vector-free and transgene-free human iPS (hiPS cells provides a new generation of stem cells with a reduced risk of tumor formation that was associated with the random integration of viral vectors seen with previous techniques. However, the potential use of these cells in the treatment of ischemic stroke has not been explored. In the present investigation, we examined the neuronal differentiation of vector-free and transgene-free hiPS cells and the transplantation of hiPS cell-derived neural progenitor cells (hiPS-NPCs in an ischemic stroke model in mice. Vector-free hiPS cells were maintained in feeder-free and serum-free conditions and differentiated into functional neurons in vitro using a newly developed differentiation protocol. Twenty eight days after transplantation in stroke mice, hiPS-NPCs showed mature neuronal markers in vivo. No tumor formation was seen up to 12 months after transplantation. Transplantation of hiPS-NPCs restored neurovascular coupling, increased trophic support and promoted behavioral recovery after stroke. These data suggest that using vector-free and transgene-free hiPS cells in stem cell therapy are safe and efficacious in enhancing recovery after focal ischemic stroke in mice.

  20. Gaussian statistics for palaeomagnetic vectors

    Science.gov (United States)

    Love, J.J.; Constable, C.G.

    2003-01-01

    With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to

  1. Gaussian statistics for palaeomagnetic vectors

    Science.gov (United States)

    Love, J. J.; Constable, C. G.

    2003-03-01

    With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimodal) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to

  2. Vectorization of a penalty function algorithm for well scheduling

    Science.gov (United States)

    Absar, I.

    1984-01-01

    In petroleum engineering, the oil production profiles of a reservoir can be simulated by using a finite gridded model. This profile is affected by the number and choice of wells which in turn is a result of various production limits and constraints including, for example, the economic minimum well spacing, the number of drilling rigs available and the time required to drill and complete a well. After a well is available it may be shut in because of excessive water or gas productions. In order to optimize the field performance a penalty function algorithm was developed for scheduling wells. For an example with some 343 wells and 15 different constraints, the scheduling routine vectorized for the CYBER 205 averaged 560 times faster performance than the scalar version.

  3. Deep inelastic lepton-hadron processes in gauge models with massive vector gluons

    International Nuclear Information System (INIS)

    Morozov, P.T.; Stamenov, D.B.

    1978-01-01

    Considered is a class of strong interaction models in which the interactions between coloured quarks are mediated by massive neutral vector gluons. All the vector gluons acquire masses by the Higgs mechanism. These models are not asymptotically free. The effective gauge coupling constant anti α vanishes asymptotically, and the effective quartic coupling constant anti h tends to a finite asymptotic value. The behaviour of the moments of the deep inelastic lepton-hadron structure functions is analyzed. It is shown that the Bjorken scaling is violated by powers of logarithms

  4. Functional Upgrading and Value Capture of Multinational Subsidiaries

    DEFF Research Database (Denmark)

    Burger, Anže; Jindra, Björn; Marek, Philipp

    2018-01-01

    survey-based business function indicators with longitudinal accounting data for a representative sample of multinational subsidiaries located in six Central and Eastern European countries (CEECs), we assess the impact of functional upgrading on foreign subsidiaries' value capture. The results provide......This paper investigates the relationship between the value capture of multinational subsidiaries and functional upgrading, which is defined as a diversification of employment from primary business functions to higher value adding activities such as ICT, R&D, marketing or logistics. By combining...... robust evidence that the breadth as well as the scope of functional upgrading induces an upward shift of subsidiaries' value added. The effect of functional upgrading is stronger in the earlier phases after entry of the foreign investor, while the long-term growth trend remains unaffected....

  5. Calculating vibrational spectra with sum of product basis functions without storing full-dimensional vectors or matrices.

    Science.gov (United States)

    Leclerc, Arnaud; Carrington, Tucker

    2014-05-07

    We propose an iterative method for computing vibrational spectra that significantly reduces the memory cost of calculations. It uses a direct product primitive basis, but does not require storing vectors with as many components as there are product basis functions. Wavefunctions are represented in a basis each of whose functions is a sum of products (SOP) and the factorizable structure of the Hamiltonian is exploited. If the factors of the SOP basis functions are properly chosen, wavefunctions are linear combinations of a small number of SOP basis functions. The SOP basis functions are generated using a shifted block power method. The factors are refined with a rank reduction algorithm to cap the number of terms in a SOP basis function. The ideas are tested on a 20-D model Hamiltonian and a realistic CH3CN (12 dimensional) potential. For the 20-D problem, to use a standard direct product iterative approach one would need to store vectors with about 10(20) components and would hence require about 8 × 10(11) GB. With the approach of this paper only 1 GB of memory is necessary. Results for CH3CN agree well with those of a previous calculation on the same potential.

  6. Vectorization, parallelization and porting of nuclear codes. Vectorization and parallelization. Progress report fiscal 1999

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Masaaki; Ogasawara, Shinobu; Kume, Etsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishizuki, Shigeru; Nemoto, Toshiyuki; Kawasaki, Nobuo; Kawai, Wataru [Fujitsu Ltd., Tokyo (Japan); Yatake, Yo-ichi [Hitachi Ltd., Tokyo (Japan)

    2001-02-01

    Several computer codes in the nuclear field have been vectorized, parallelized and trans-ported on the FUJITSU VPP500 system, the AP3000 system, the SX-4 system and the Paragon system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. We dealt with 18 codes in fiscal 1999. These results are reported in 3 parts, i.e., the vectorization and the parallelization part on vector processors, the parallelization part on scalar processors and the porting part. In this report, we describe the vectorization and parallelization on vector processors. In this vectorization and parallelization on vector processors part, the vectorization of Relativistic Molecular Orbital Calculation code RSCAT, a microscopic transport code for high energy nuclear collisions code JAM, three-dimensional non-steady thermal-fluid analysis code STREAM, Relativistic Density Functional Theory code RDFT and High Speed Three-Dimensional Nodal Diffusion code MOSRA-Light on the VPP500 system and the SX-4 system are described. (author)

  7. Vectorized Monte Carlo

    International Nuclear Information System (INIS)

    Brown, F.B.

    1981-01-01

    Examination of the global algorithms and local kernels of conventional general-purpose Monte Carlo codes shows that multigroup Monte Carlo methods have sufficient structure to permit efficient vectorization. A structured multigroup Monte Carlo algorithm for vector computers is developed in which many particle events are treated at once on a cell-by-cell basis. Vectorization of kernels for tracking and variance reduction is described, and a new method for discrete sampling is developed to facilitate the vectorization of collision analysis. To demonstrate the potential of the new method, a vectorized Monte Carlo code for multigroup radiation transport analysis was developed. This code incorporates many features of conventional general-purpose production codes, including general geometry, splitting and Russian roulette, survival biasing, variance estimation via batching, a number of cutoffs, and generalized tallies of collision, tracklength, and surface crossing estimators with response functions. Predictions of vectorized performance characteristics for the CYBER-205 were made using emulated coding and a dynamic model of vector instruction timing. Computation rates were examined for a variety of test problems to determine sensitivities to batch size and vector lengths. Significant speedups are predicted for even a few hundred particles per batch, and asymptotic speedups by about 40 over equivalent Amdahl 470V/8 scalar codes arepredicted for a few thousand particles per batch. The principal conclusion is that vectorization of a general-purpose multigroup Monte Carlo code is well worth the significant effort required for stylized coding and major algorithmic changes

  8. Inflationary buildup of a vector field condensate and its cosmological consequences

    International Nuclear Information System (INIS)

    Sanchez, Juan C. Bueno; Dimopoulos, Konstantinos

    2014-01-01

    Light vector fields during inflation obtain a superhorizon perturbation spectrum when their conformal invariance is appropriately broken. Such perturbations, by means of some suitable mechanism (e.g. the vector curvaton mechanism), can contribute to the curvatue perturbation in the Universe and produce characteristic signals, such as statistical anisotropy, on the microwave sky, most recently surveyed by the Planck satellite mission. The magnitude of such characteristic features crucially depends on the magnitude of the vector condensate generated during inflation. However, in the vast majority of the literature the expectation value of this condensate has so-far been taken as a free parameter, lacking a definite prediction or a physically motivated estimate. In this paper, we study the stochastic evolution of the vector condensate and obtain an estimate for its magnitude. Our study is mainly focused in the supergravity inspired case when the kinetic function and mass of the vector boson is time-varying during inflation, but other cases are also explored such as a parity violating axial theory or a non-minimal coupling between the vector field and gravity. As an example, we apply our findings in the context of the vector curvaton mechanism and contrast our results with current observations

  9. Discrete-ordinate method with matrix exponential for a pseudo-spherical atmosphere: Vector case

    International Nuclear Information System (INIS)

    Doicu, A.; Trautmann, T.

    2009-01-01

    The paper is devoted to the extension of the matrix-exponential formalism for the scalar radiative transfer to the vector case. Using basic results of the theory of matrix-exponential functions we provide a compact and versatile formulation of the vector radiative transfer. As in the scalar case, we operate with the concept of the layer equation incorporating the level values of the Stokes vector. The matrix exponentials which enter in the expression of the layer equation are computed by using the matrix eigenvalue method and the Pade approximation. A discussion of the computational efficiency of the proposed method for both an aerosol-loaded atmosphere as well as a cloudy atmosphere is also provided

  10. Prediction of Spirometric Forced Expiratory Volume (FEV1) Data Using Support Vector Regression

    Science.gov (United States)

    Kavitha, A.; Sujatha, C. M.; Ramakrishnan, S.

    2010-01-01

    In this work, prediction of forced expiratory volume in 1 second (FEV1) in pulmonary function test is carried out using the spirometer and support vector regression analysis. Pulmonary function data are measured with flow volume spirometer from volunteers (N=175) using a standard data acquisition protocol. The acquired data are then used to predict FEV1. Support vector machines with polynomial kernel function with four different orders were employed to predict the values of FEV1. The performance is evaluated by computing the average prediction accuracy for normal and abnormal cases. Results show that support vector machines are capable of predicting FEV1 in both normal and abnormal cases and the average prediction accuracy for normal subjects was higher than that of abnormal subjects. Accuracy in prediction was found to be high for a regularization constant of C=10. Since FEV1 is the most significant parameter in the analysis of spirometric data, it appears that this method of assessment is useful in diagnosing the pulmonary abnormalities with incomplete data and data with poor recording.

  11. Normal thyroid function values in Ethiopians

    International Nuclear Information System (INIS)

    Wassie, Emnetu; Abdulkadir, Jemal

    1990-01-01

    Thyroid function values were determined in 56 healthy nongoitrous adult Ethiopians. The mean triiodothyronine (T3) values for 20 males and 36 females were 1.42+-0.32 nmol/L and 1.51+-0.25 nmol/L, and thyroxine (T4) values were 119 22 nmol/L and 116+21 nmol/L respectively. The mean thyrotropin (TSH) values for males and females were identical at 1.86+-0.94 mu/L. Radioactive iodine uptake (RAIU) at 2 hours was 8.6+-4.4% in males and 11.3+-4.3% in females, and at 24 hours 31.7+-11.7% and 38.9+-11.1% respectively. The difference between males and females were significant at both 2 and 24 hours (P<0.05). The ranges for the 3 hormones derived from the mean 2SD values are close to these supplied with the kits but the Ethiopian RAIU values are higher than the values currently applicable in developed countries, probably indicative of the lower level of dietary iodine available to the population here. The values obtained in this study are offered to serve as normal reference for the interpretation of thyroid function results in Ethiopian patients. A strategy for the rational utilization of the available in vitro tests is suggested

  12. Reference Function Based Spatiotemporal Fuzzy Logic Control Design Using Support Vector Regression Learning

    Directory of Open Access Journals (Sweden)

    Xian-Xia Zhang

    2013-01-01

    Full Text Available This paper presents a reference function based 3D FLC design methodology using support vector regression (SVR learning. The concept of reference function is introduced to 3D FLC for the generation of 3D membership functions (MF, which enhance the capability of the 3D FLC to cope with more kinds of MFs. The nonlinear mathematical expression of the reference function based 3D FLC is derived, and spatial fuzzy basis functions are defined. Via relating spatial fuzzy basis functions of a 3D FLC to kernel functions of an SVR, an equivalence relationship between a 3D FLC and an SVR is established. Therefore, a 3D FLC can be constructed using the learned results of an SVR. Furthermore, the universal approximation capability of the proposed 3D fuzzy system is proven in terms of the finite covering theorem. Finally, the proposed method is applied to a catalytic packed-bed reactor and simulation results have verified its effectiveness.

  13. Permutation entropy with vector embedding delays

    Science.gov (United States)

    Little, Douglas J.; Kane, Deb M.

    2017-12-01

    Permutation entropy (PE) is a statistic used widely for the detection of structure within a time series. Embedding delay times at which the PE is reduced are characteristic timescales for which such structure exists. Here, a generalized scheme is investigated where embedding delays are represented by vectors rather than scalars, permitting PE to be calculated over a (D -1 ) -dimensional space, where D is the embedding dimension. This scheme is applied to numerically generated noise, sine wave and logistic map series, and experimental data sets taken from a vertical-cavity surface emitting laser exhibiting temporally localized pulse structures within the round-trip time of the laser cavity. Results are visualized as PE maps as a function of embedding delay, with low PE values indicating combinations of embedding delays where correlation structure is present. It is demonstrated that vector embedding delays enable identification of structure that is ambiguous or masked, when the embedding delay is constrained to scalar form.

  14. 21 CFR 868.1890 - Predictive pulmonary-function value calculator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Predictive pulmonary-function value calculator... SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1890 Predictive pulmonary-function value calculator. (a) Identification. A predictive pulmonary-function value calculator is...

  15. Meromorphic Vector Fields and Circle Packings

    DEFF Research Database (Denmark)

    Dias, Kealey

    The objective of the Ph.D. project is to initiate a classification of bifurcations of meromorphic vector fields and to clarify their relation to circle packings. Technological applications are to image analysis and to effective grid generation using discrete conformal mappings. The two branches...... of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions or meromorphic (allowing poles...... as singularities) functions. There already exists a well-developed theory for iterative holomorphic dynamical systems, and successful relations found between iteration theory and flows of vector fields have been one of the main motivations for the recent interest in holomorphic vector fields. Restricting...

  16. Vectorization of three-dimensional neutron diffusion code CITATION

    International Nuclear Information System (INIS)

    Harada, Hiroo; Ishiguro, Misako

    1985-01-01

    Three-dimensional multi-group neutron diffusion code CITATION has been widely used for reactor criticality calculations. The code is expected to be run at a high speed by using recent vector supercomputers, when it is appropriately vectorized. In this paper, vectorization methods and their effects are described for the CITATION code. Especially, calculation algorithms suited for vectorization of the inner-outer iterative calculations which spend most of the computing time are discussed. The SLOR method, which is used in the original CITATION code, and the SOR method, which is adopted in the revised code, are vectorized by odd-even mesh ordering. The vectorized CITATION code is executed on the FACOM VP-100 and VP-200 computers, and is found to run over six times faster than the original code for a practical-scale problem. The initial value of the relaxation factor and the number of inner-iterations given as input data are also investigated since the computing time depends on these values. (author)

  17. Transversals of Complex Polynomial Vector Fields

    DEFF Research Database (Denmark)

    Dias, Kealey

    Vector fields in the complex plane are defined by assigning the vector determined by the value P(z) to each point z in the complex plane, where P is a polynomial of one complex variable. We consider special families of so-called rotated vector fields that are determined by a polynomial multiplied...... by rotational constants. Transversals are a certain class of curves for such a family of vector fields that represent the bifurcation states for this family of vector fields. More specifically, transversals are curves that coincide with a homoclinic separatrix for some rotation of the vector field. Given...... a concrete polynomial, it seems to take quite a bit of work to prove that it is generic, i.e. structurally stable. This has been done for a special class of degree d polynomial vector fields having simple equilibrium points at the d roots of unity, d odd. In proving that such vector fields are generic...

  18. The Lie Bracket of Adapted Vector Fields on Wiener Spaces

    International Nuclear Information System (INIS)

    Driver, B. K.

    1999-01-01

    Let W(M) be the based (at o element of M) path space of a compact Riemannian manifold M equipped with Wiener measure ν . This paper is devoted to considering vector fields on W(M) of the form X s h (σ )=P s (σ)h s (σ ) where P s (σ ) denotes stochastic parallel translation up to time s along a Wiener path σ element of W(M) and {h s } i sanelementof [0,1] is an adapted T o M -valued process on W(M). It is shown that there is a large class of processes h (called adapted vector fields) for which we may view X h as first-order differential operators acting on functions on W(M) . Moreover, if h and k are two such processes, then the commutator of X h with X k is again a vector field on W(M) of the same form

  19. On toroidal Green close-quote s functions

    International Nuclear Information System (INIS)

    Bates, J.W.

    1997-01-01

    Green close-quote s functions are valuable analytical tools for solving a myriad of boundary-value problems in mathematical physics. Here, Green close-quote s functions of the Laplacian and biharmonic operators are derived for a three-dimensional toroidal domain. In some sense, the former result may be regarded as open-quotes standard,close quotes but the latter is most certainly not. It is shown that both functions can be constructed to have zero value on a specified toroidal surface with a circular cross section. Additionally, the Green close-quote s function of the biharmonic operator may be chosen to have the property that its normal derivative also vanishes there. A open-quotes torsionalclose quotes Green close-quote s function is derived for each operator which is useful in solving some boundary-value problems involving axisymmetric vector equations. Using this approach, the magnetic vector potential of a wire loop is computed as a simple example. copyright 1997 American Institute of Physics

  20. GPU Accelerated Vector Median Filter

    Science.gov (United States)

    Aras, Rifat; Shen, Yuzhong

    2011-01-01

    Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .

  1. The position value for partition function form network games

    NARCIS (Netherlands)

    Nouweland, van den C.G.A.M.; Slikker, M.

    We use the axiomatization of the position value for network situations in van den Nouweland and Slikker (2012) to define a position value for partition function form network situations. We do this by generalizing the axioms to the partition function form value function setting as studied in Navarro

  2. DNBR Prediction Using a Support Vector Regression

    International Nuclear Information System (INIS)

    Yang, Heon Young; Na, Man Gyun

    2008-01-01

    PWRs (Pressurized Water Reactors) generally operate in the nucleate boiling state. However, the conversion of nucleate boiling into film boiling with conspicuously reduced heat transfer induces a boiling crisis that may cause the fuel clad melting in the long run. This type of boiling crisis is called Departure from Nucleate Boiling (DNB) phenomena. Because the prediction of minimum DNBR in a reactor core is very important to prevent the boiling crisis such as clad melting, a lot of research has been conducted to predict DNBR values. The object of this research is to predict minimum DNBR applying support vector regression (SVR) by using the measured signals of a reactor coolant system (RCS). The SVR has extensively and successfully been applied to nonlinear function approximation like the proposed problem for estimating DNBR values that will be a function of various input variables such as reactor power, reactor pressure, core mass flowrate, control rod positions and so on. The minimum DNBR in a reactor core is predicted using these various operating condition data as the inputs to the SVR. The minimum DBNR values predicted by the SVR confirm its correctness compared with COLSS values

  3. Descriptive Topology in Selected Topics of Functional Analysis

    CERN Document Server

    Kakol, J; Pellicer, Manuel Lopez

    2011-01-01

    "Descriptive Topology in Selected Topics of Functional Analysis" is a collection of recent developments in the field of descriptive topology, specifically focused on the classes of infinite-dimensional topological vector spaces that appear in functional analysis. Such spaces include Frechet spaces, (LF)-spaces and their duals, and the space of continuous real-valued functions C(X) on a completely regular Hausdorff space X, to name a few. These vector spaces appear in functional analysis in distribution theory, differential equations, complex analysis, and various other analytical set

  4. Poly-functional and long-lasting anticancer immune response elicited by a safe attenuated Pseudomonas aeruginosa vector for antigens delivery

    Directory of Open Access Journals (Sweden)

    Xavier Chauchet

    2016-01-01

    Full Text Available Live-attenuated bacterial vectors for antigens delivery have aroused growing interest in the field of cancer immunotherapy. Their potency to stimulate innate immunity and to promote intracellular antigen delivery into antigen-presenting cells could be exploited to elicit a strong and specific cellular immune response against tumor cells. We previously described genetically-modified and attenuated Pseudomonas aeruginosa vectors able to deliver in vivo protein antigens into antigen-presenting cells, through Type 3 secretion system of the bacteria. Using this approach, we managed to protect immunized mice against aggressive B16 melanoma development in both a prophylactic and therapeutic setting. In this study, we further investigated the antigen-specific CD8+ T cell response, in terms of phenotypic and functional aspects, obtained after immunizations with a killed but metabolically active P. aeruginosa attenuated vector. We demonstrated that P. aeruginosa vaccine induces a highly functional pool of antigen-specific CD8+ T cell able to infiltrate the tumor. Furthermore, multiple immunizations allowed the development of a long-lasting immune response, represented by a pool of predominantly effector memory cells which protected mice against late tumor challenge. Overall, killed but metabolically active P. aeruginosa vector is a safe and promising approach for active and specific antitumor immunotherapy.

  5. Measurement of the spectral functions of vector current hadronic $\\tau$ decays

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Miquel, R; Mir, L M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Becker, U; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1997-01-01

    A measurement of the spectral functions of non-strange tau vector current final states is presented, using 124,358 tau pairs recorded by the ALEPH detector at LEP during the years 1991 to 1994. The spectral functions of the dominant two- and four-pion tau decay channels are compared to published results of e+e- annihilation experiments via isospin rotation. A combined fit of the pion form factor from tau decays and e+e- data is performed using different parametrizations. The mass and the width of the charged and the neutral rho(770) are separately determined in order to extract possible isospin violating effects. The mass and width differences are measured to be M(rho^+/-(770)) - M(rho^0(770)) = (0.0 +/- 1.0) MeV/c^2 and Gamma(rho^+/-(770)) - Gamma(rho^0(770)) = (0.1 +/- 1.9) MeV/c^2.

  6. A nonlinear support vector machine model with hard penalty function based on glowworm swarm optimization for forecasting daily global solar radiation

    International Nuclear Information System (INIS)

    Jiang, He; Dong, Yao

    2016-01-01

    Highlights: • Eclat data mining algorithm is used to determine the possible predictors. • Support vector machine is converted into a ridge regularization problem. • Hard penalty selects the number of radial basis functions to simply the structure. • Glowworm swarm optimization is utilized to determine the optimal parameters. - Abstract: For a portion of the power which is generated by grid connected photovoltaic installations, an effective solar irradiation forecasting approach must be crucial to ensure the quality and the security of power grid. This paper develops and investigates a novel model to forecast 30 daily global solar radiation at four given locations of the United States. Eclat data mining algorithm is first presented to discover association rules between solar radiation and several meteorological factors laying a theoretical foundation for these correlative factors as input vectors. An effective and innovative intelligent optimization model based on nonlinear support vector machine and hard penalty function is proposed to forecast solar radiation by converting support vector machine into a regularization problem with ridge penalty, adding a hard penalty function to select the number of radial basis functions, and using glowworm swarm optimization algorithm to determine the optimal parameters of the model. In order to illustrate our validity of the proposed method, the datasets at four sites of the United States are split to into training data and test data, separately. The experiment results reveal that the proposed model delivers the best forecasting performances comparing with other competitors.

  7. Music Signal Processing Using Vector Product Neural Networks

    Science.gov (United States)

    Fan, Z. C.; Chan, T. S.; Yang, Y. H.; Jang, J. S. R.

    2017-05-01

    We propose a novel neural network model for music signal processing using vector product neurons and dimensionality transformations. Here, the inputs are first mapped from real values into three-dimensional vectors then fed into a three-dimensional vector product neural network where the inputs, outputs, and weights are all three-dimensional values. Next, the final outputs are mapped back to the reals. Two methods for dimensionality transformation are proposed, one via context windows and the other via spectral coloring. Experimental results on the iKala dataset for blind singing voice separation confirm the efficacy of our model.

  8. Vector manifestation and violation of vector dominance in hot matter

    International Nuclear Information System (INIS)

    Harada, Masayasu; Sasaki, Chihiro

    2004-01-01

    We show the details of the calculation of the hadronic thermal corrections to the two-point functions in the effective field theory of QCD for pions and vector mesons based on the hidden local symmetry (HLS) in hot matter using the background field gauge. We study the temperature dependence of the pion velocity in the low-temperature region determined from the hadronic thermal corrections, and show that, due to the presence of the dynamical vector meson, the pion velocity is smaller than the speed of the light already at one-loop level, in contrast to the result obtained in the ordinary chiral perturbation theory including only the pion at one-loop. Including the intrinsic temperature dependences of the parameters of the HLS Lagrangian determined from the underlying QCD through the Wilsonian matching, we show how the vector manifestation (VM), in which the massless vector meson becomes the chiral partner of pion, is realized at the critical temperature. We present a new prediction of the VM on the direct photon-π-π coupling which measures the validity of the vector dominance (VD) of the electromagnetic form factor of the pion: we find that the VD is largely violated at the critical temperature, which indicates that the assumption of the VD made in several analyses on the dilepton spectra in hot matter may need to be weakened for consistently including the effect of the dropping mass of the vector meson

  9. Vector Directional Distance Rational Hybrid Filters for Color Image Restoration

    Directory of Open Access Journals (Sweden)

    L. Khriji

    2005-12-01

    Full Text Available A new class of nonlinear filters, called vector-directional distance rational hybrid filters (VDDRHF for multispectral image processing, is introduced and applied to color image-filtering problems. These filters are based on rational functions (RF. The VDDRHF filter is a two-stage filter, which exploits the features of the vector directional distance filter (VDDF, the center weighted vector directional distance filter (CWVDDF and those of the rational operator. The filter output is a result of vector rational function (VRF operating on the output of three sub-functions. Two vector directional distance (VDDF filters and one center weighted vector directional distance filter (CWVDDF are proposed to be used in the first stage due to their desirable properties, such as, noise attenuation, chromaticity retention, and edges and details preservation. Experimental results show that the new VDDRHF outperforms a number of widely known nonlinear filters for multi-spectral image processing such as the vector median filter (VMF, the generalized vector directional filters (GVDF and distance directional filters (DDF with respect to all criteria used.

  10. Duality in vector optimization

    CERN Document Server

    Bot, Radu Ioan

    2009-01-01

    This book presents fundamentals and comprehensive results regarding duality for scalar, vector and set-valued optimization problems in a general setting. After a preliminary chapter dedicated to convex analysis and minimality notions of sets with respect to partial orderings induced by convex cones a chapter on scalar conjugate duality follows. Then investigations on vector duality based on scalar conjugacy are made. Weak, strong and converse duality statements are delivered and connections to classical results from the literature are emphasized. One chapter is exclusively consecrated to the s

  11. Integrals of operator-valued functions

    Directory of Open Access Journals (Sweden)

    Raimond A. Struble

    1988-01-01

    Full Text Available Mikusinski-type expansions of operator-valued functions are discussed in some detail. As a natural part of the development, a “kernel” concept for operators is proposed and an elaborate system of convolution quotients in one and two variables is obtained.

  12. Modeling and prediction of Turkey's electricity consumption using Support Vector Regression

    International Nuclear Information System (INIS)

    Kavaklioglu, Kadir

    2011-01-01

    Support Vector Regression (SVR) methodology is used to model and predict Turkey's electricity consumption. Among various SVR formalisms, ε-SVR method was used since the training pattern set was relatively small. Electricity consumption is modeled as a function of socio-economic indicators such as population, Gross National Product, imports and exports. In order to facilitate future predictions of electricity consumption, a separate SVR model was created for each of the input variables using their current and past values; and these models were combined to yield consumption prediction values. A grid search for the model parameters was performed to find the best ε-SVR model for each variable based on Root Mean Square Error. Electricity consumption of Turkey is predicted until 2026 using data from 1975 to 2006. The results show that electricity consumption can be modeled using Support Vector Regression and the models can be used to predict future electricity consumption. (author)

  13. In-medium behaviour of vector mesons and the longitudinal and transverse response functions in (e,e'p) reactions

    International Nuclear Information System (INIS)

    Soyeur, M.; Brown, G.E.; Rho, M.

    1991-01-01

    The electromagnetic form factors of nucleons appear dominated by vector mesons at momentum transfers small than ∼ 1 GeV/c. It is therefore expected that measurements of quantities involving the electromagnetic form factors of nucleons embedded in nuclei will be sensitive to changes in vector meson properties arising from their interaction with the medium. Longitudinal and transverse response functions measured in quasi-elastic (e,e'p) reactions provide such data for two very different operators, the charge and the current densities. We show that a decrease of vector meson masses in the medium, consistent with present expectations about chiral symmetry restoration in nuclei, produces the quenching observed in the longitudinal response of light systems ( 3 He, 4 He) and part of this quenching for heavier nuclei 40 Ca where nuclear correlations are expected to generate an additional suppression of the longitudinal response. The transverse response is almost unchanged, in agreement with the data. Difficulties in extrating very quantitative information on the in-medium behaviour of vector mesons from (e,e'p) data are pointed out

  14. On quasistability of a vector combinatorial problem with \\Sigma-MINMAX and \\Sigma-MINMIN partial criteria

    Directory of Open Access Journals (Sweden)

    Vladimir A. Emelichev

    2004-06-01

    Full Text Available We consider one type of stability (quasistability of a vector combinatorial problem of finding the Pareto set. Under quasistability we understand a discrete analogue of lower semicontinuity by Hausdorff of the many-valued mapping, which defines the Pareto choice function. A vector problem on a system of subsets of a finite set (trajectorial problem with non-linear partial criteria is in focus. Two necessary and sufficient conditions for stability of this problem are proved. Mathematics Subject Classification: 2000, 90C10, 90C05, 90C29, 90C31

  15. Cost of product functions using analysis of value

    Directory of Open Access Journals (Sweden)

    Luminita Parv

    2016-09-01

    Full Text Available The value of use is a specific notion but of a great generality that makes the product be regarded as a complex system that transforms itself in time, thus undergoing evolution. Therefore, the product is important not in itself, but for the sake of the requirements it satisfies and for the functions it provides. In the analysis of value there are connections of a technical nature that implicitly lead to connections of an economic nature. Thus, the method of the ”analysis of value” will actually examine the cost of product functions, the aim of the method being the balance of functions costs on the basis of their importance for the product. Identifying the functions represents one of the important stages of the analysis of value. The difficulty in fixing the functions derives from the fact that there are not any rules clear enough for this activity, but only principles

  16. Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials

    International Nuclear Information System (INIS)

    Ganz, T; Brehm, M; Von Ribbeck, H G; Keilmann, F; Van der Weide, D W

    2008-01-01

    We determine infrared transmission amplitude and phase spectra of metamaterial samples at well-defined incidence and polarization with a vector ('asymmetric') frequency-comb Fourier-transform spectrometer (c-FTS) that uses no moving elements. The metamaterials are free-standing metallic hole arrays; we study their resonances in the 7-13 μm and 100-1000 μm wavelength regions due both to interaction with bulk waves (Wood anomaly) and with leaky surface plasmon polaritons (near-unity transmittance, coupling features and dispersion). Such complex-valued transmission and reflection spectra could be used to compute a metamaterial's complex dielectric function directly, as well as its magnetic and magneto-optical permeability functions.

  17. Sequential Bethe vectors and the quantum Ernst system

    International Nuclear Information System (INIS)

    Niedermaier, M.; Samtleben, H.

    2000-01-01

    We give a brief review on the use of Bethe Ansatz techniques to construct solutions of recursive functional equations which emerged in a bootstrap approach to the quantum Ernst system. The construction involves two particular limits of a rational Bethe Ansatz system with complex inhomogeneities. First, we pinch two insertions to the critical value. This links Bethe systems with different number of insertions and leads to the concept of sequential Bethe vectors. Second, we study the semiclassical limit of the system in which the scale parameter of the insertions tends to infinity. (author)

  18. A new Preisach-type vector model of hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino, M. E-mail: mdaquino@unina.it; Serpico, C. E-mail: serpico@unina.it

    2004-05-01

    A new class of scalar hysteresis operators is obtained from the classical Preisach scalar model of hysteresis by introducing a transformation of variables dependent on a suitable function g. The operators of this class are defined by means of a new type of Play operator and are characterized by the property of having the same scalar input-output relationship. These operators are then extended to the isotropic vector case by using the vector extension of the scalar Play operator. It is shown that the function g, although does not affect the scalar behavior, it does affect the vector behaviour of the mathematical model. The influence of the function g is illustrated by reporting numerically computed rotational hysteresis losses curves for different choices of the function g.

  19. Vector-valued Lizorkin-Triebel spaces and sharp trace theory for functions in Sobolev spaces with mixed \\pmb{L_p}-norm for parabolic problems

    Science.gov (United States)

    Weidemaier, P.

    2005-06-01

    The trace problem on the hypersurface y_n=0 is investigated for a function u=u(y,t) \\in L_q(0,T;W_{\\underline p}^{\\underline m}(\\mathbb R_+^n)) with \\partial_t u \\in L_q(0,T; L_{\\underline p}(\\mathbb R_+^n)), that is, Sobolev spaces with mixed Lebesgue norm L_{\\underline p,q}(\\mathbb R^n_+\\times(0,T))=L_q(0,T;L_{\\underline p}(\\mathbb R_+^n)) are considered; here \\underline p=(p_1,\\dots,p_n) is a vector and \\mathbb R^n_+=\\mathbb R^{n-1} \\times (0,\\infty). Such function spaces are useful in the context of parabolic equations. They allow, in particular, different exponents of summability in space and time. It is shown that the sharp regularity of the trace in the time variable is characterized by the Lizorkin-Triebel space F_{q,p_n}^{1-1/(p_nm_n)}(0,T;L_{\\widetilde{\\underline p}}(\\mathbb R^{n-1})), \\underline p=(\\widetilde{\\underline p},p_n). A similar result is established for first order spatial derivatives of u. These results allow one to determine the exact spaces for the data in the inhomogeneous Dirichlet and Neumann problems for parabolic equations of the second order if the solution is in the space L_q(0,T; W_p^2(\\Omega)) \\cap W_q^1(0,T;L_p(\\Omega)) with p \\le q.

  20. Normative values for a functional capacity evaluation.

    Science.gov (United States)

    Soer, Remko; van der Schans, Cees P; Geertzen, Jan H; Groothoff, Johan W; Brouwer, Sandra; Dijkstra, Pieter U; Reneman, Michiel F

    2009-10-01

    Soer R, van der Schans CP, Geertzen JH, Groothoff JW, Brouwer S, Dijkstra PU, Reneman MF. Normative values for a functional capacity evaluation. To establish normative values for a functional capacity evaluation (FCE) of healthy working subjects. Descriptive. Rehabilitation center. Healthy working subjects (N=701; 448 men, 253 women) between 20 and 60 years of age, working in more than 180 occupations. Subjects performed a 2-hour FCE consisting of 12 work-related tests. Subjects were classified into categories based on physical demands according to the Dictionary of Occupational Titles. Means, ranges, SDs, and percentiles were provided for normative values of FCE, and a regression analysis for outcome of the 12 tests was performed. Normative FCE values were established for 4 physical demand categories. The normative values enable comparison of patients' performances to these values. If a patient's performance exceeds the lowest scores in his/her corresponding demand category, then the patient's capacity is very likely to be sufficient to meet the workload. Further, clinicians can make more precise return-to-work recommendations and set goals for rehabilitation programs. A comparison of the normative values can be useful to the fields of rehabilitation, occupational, and insurance medicine. Further research is needed to test the validity of the normative values with respect to workplace assessments and return-to-work recommendations.

  1. Ability of herpes simplex virus vectors to boost immune responses to DNA vectors and to protect against challenge by simian immunodeficiency virus

    International Nuclear Information System (INIS)

    Kaur, Amitinder; Sanford, Hannah B.; Garry, Deirdre; Lang, Sabine; Klumpp, Sherry A.; Watanabe, Daisuke; Bronson, Roderick T.; Lifson, Jeffrey D.; Rosati, Margherita; Pavlakis, George N.; Felber, Barbara K.; Knipe, David M.; Desrosiers, Ronald C.

    2007-01-01

    The immunogenicity and protective capacity of replication-defective herpes simplex virus (HSV) vector-based vaccines were examined in rhesus macaques. Three macaques were inoculated with recombinant HSV vectors expressing Gag, Env, and a Tat-Rev-Nef fusion protein of simian immunodeficiency virus (SIV). Three other macaques were primed with recombinant DNA vectors expressing Gag, Env, and a Pol-Tat-Nef-Vif fusion protein prior to boosting with the HSV vectors. Robust anti-Gag and anti-Env cellular responses were detected in all six macaques. Following intravenous challenge with wild-type, cloned SIV239, peak and 12-week plasma viremia levels were significantly lower in vaccinated compared to control macaques. Plasma SIV RNA in vaccinated macaques was inversely correlated with anti-Rev ELISPOT responses on the day of challenge (P value < 0.05), anti-Tat ELISPOT responses at 2 weeks post challenge (P value < 0.05) and peak neutralizing antibody titers pre-challenge (P value 0.06). These findings support continued study of recombinant herpesviruses as a vaccine approach for AIDS

  2. The charge form factor of the neutron from sup 2 H-vector, (e-vector, e' n)p

    CERN Document Server

    Passchier, I; Szczerba, D; Alarcon, R; Bauer, T S; Boersma, D J; Van der Brand, J F J; Bulten, H J; Ferro-Luzzi, M; Higinbotham, D W; Jager, C W D; Klous, S; Kolster, H; Lang, J; Nikolenko, D M; Nooren, G J; Norum, B E; Poolman, H R; Rachek, Igor A; Simani, M C; Six, E; Vries, H D; Wang, K; Zhou, Z L

    2000-01-01

    We report on the first measurement of spin-correlation parameters in quasifree electron scattering from vector-polarized deuterium. Polarized electrons were injected into an electron storage ring at a beam energy of 720 MeV. A Siberian snake was employed to preserve longitudinal polarization at the interaction point. Vector-polarized deuterium was produced by an atomic beam source and injected into an open-ended cylindrical cell, internal to the electron storage ring. The spin correlation parameter A sup V sub e sub d was measured for the reaction sup 2 H-vector, (e-vector, e'n)p at a four-momentum transfer squared of 0.21 (GeV/c) sup 2 from which a value for the charge form factor of the neutron was extracted.

  3. Renninger's Gedankenexperiment, the collapse of the wave function in a rigid quantum metamaterial and the reality of the quantum state vector.

    Science.gov (United States)

    Savel'ev, Sergey E; Zagoskin, Alexandre M

    2018-06-25

    A popular interpretation of the "collapse" of the wave function is as being the result of a local interaction ("measurement") of the quantum system with a macroscopic system ("detector"), with the ensuing loss of phase coherence between macroscopically distinct components of its quantum state vector. Nevetheless as early as in 1953 Renninger suggested a Gedankenexperiment, in which the collapse is triggered by non-observation of one of two mutually exclusive outcomes of the measurement, i.e., in the absence of interaction of the quantum system with the detector. This provided a powerful argument in favour of "physical reality" of (nonlocal) quantum state vector. In this paper we consider a possible version of Renninger's experiment using the light propagation through a birefringent quantum metamaterial. Its realization would provide a clear visualization of a wave function collapse produced by a "non-measurement", and make the concept of a physically real quantum state vector more acceptable.

  4. Selection vector filter framework

    Science.gov (United States)

    Lukac, Rastislav; Plataniotis, Konstantinos N.; Smolka, Bogdan; Venetsanopoulos, Anastasios N.

    2003-10-01

    We provide a unified framework of nonlinear vector techniques outputting the lowest ranked vector. The proposed framework constitutes a generalized filter class for multichannel signal processing. A new class of nonlinear selection filters are based on the robust order-statistic theory and the minimization of the weighted distance function to other input samples. The proposed method can be designed to perform a variety of filtering operations including previously developed filtering techniques such as vector median, basic vector directional filter, directional distance filter, weighted vector median filters and weighted directional filters. A wide range of filtering operations is guaranteed by the filter structure with two independent weight vectors for angular and distance domains of the vector space. In order to adapt the filter parameters to varying signal and noise statistics, we provide also the generalized optimization algorithms taking the advantage of the weighted median filters and the relationship between standard median filter and vector median filter. Thus, we can deal with both statistical and deterministic aspects of the filter design process. It will be shown that the proposed method holds the required properties such as the capability of modelling the underlying system in the application at hand, the robustness with respect to errors in the model of underlying system, the availability of the training procedure and finally, the simplicity of filter representation, analysis, design and implementation. Simulation studies also indicate that the new filters are computationally attractive and have excellent performance in environments corrupted by bit errors and impulsive noise.

  5. Actuarial values calculated using the incomplete Gamma function

    Directory of Open Access Journals (Sweden)

    Giovanni Mingari Scarpello

    2013-03-01

    Full Text Available The complete expectation-of-life for a person and the actuarial present value of continuous life annuities are defined by integrals. In all of them at least one of the factors is a survival function value ratio. If de Moivre’s law of mortality is chosen, such integrals can easily be evaluated; but if the Makeham survival function is adopted, they are used to be calculated numerically. For the above actuarial figures, closed form integrations are hereafter provided by means of the incomplete Gamma function.

  6. Axisymmetric thrust-vectoring nozzle performance prediction

    International Nuclear Information System (INIS)

    Wilson, E. A.; Adler, D.; Bar-Yoseph, P.Z

    1998-01-01

    Throat-hinged geometrically variable converging-diverging thrust-vectoring nozzles directly affect the jet flow geometry and rotation angle at the nozzle exit as a function of the nozzle geometry, the nozzle pressure ratio and flight velocity. The consideration of nozzle divergence in the effective-geometric nozzle relation is theoretically considered here for the first time. In this study, an explicit calculation procedure is presented as a function of nozzle geometry at constant nozzle pressure ratio, zero velocity and altitude, and compared with experimental results in a civil thrust-vectoring scenario. This procedure may be used in dynamic thrust-vectoring nozzle design performance predictions or analysis for civil and military nozzles as well as in the definition of initial jet flow conditions in future numerical VSTOL/TV jet performance studies

  7. Redshift-space distortions from vector perturbations

    Science.gov (United States)

    Bonvin, Camille; Durrer, Ruth; Khosravi, Nima; Kunz, Martin; Sawicki, Ignacy

    2018-02-01

    We compute a general expression for the contribution of vector perturbations to the redshift space distortion of galaxy surveys. We show that they contribute to the same multipoles of the correlation function as scalar perturbations and should thus in principle be taken into account in data analysis. We derive constraints for next-generation surveys on the amplitude of two sources of vector perturbations, namely non-linear clustering and topological defects. While topological defects leave a very small imprint on redshift space distortions, we show that the multipoles of the correlation function are sensitive to vorticity induced by non-linear clustering. Therefore future redshift surveys such as DESI or the SKA should be capable of measuring such vector modes, especially with the hexadecapole which appears to be the most sensitive to the presence of vorticity.

  8. Localization of periodic orbits of polynomial vector fields of even degree by linear functions

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, Konstantin E. [CITEDI-IPN, Av. del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)] e-mail: konst@citedi.mx

    2005-08-01

    This paper is concerned with the localization problem of periodic orbits of polynomial vector fields of even degree by using linear functions. Conditions of the localization of all periodic orbits in sets of a simple structure are obtained. Our results are based on the solution of the conditional extremum problem and the application of homogeneous polynomial forms of even degrees. As examples, the Lanford system, the jerky system with one quadratic monomial and a quartically perturbed harmonic oscillator are considered.

  9. Localization of periodic orbits of polynomial vector fields of even degree by linear functions

    International Nuclear Information System (INIS)

    Starkov, Konstantin E.

    2005-01-01

    This paper is concerned with the localization problem of periodic orbits of polynomial vector fields of even degree by using linear functions. Conditions of the localization of all periodic orbits in sets of a simple structure are obtained. Our results are based on the solution of the conditional extremum problem and the application of homogeneous polynomial forms of even degrees. As examples, the Lanford system, the jerky system with one quadratic monomial and a quartically perturbed harmonic oscillator are considered

  10. Multifractal vector fields and stochastic Clifford algebra.

    Science.gov (United States)

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  11. Multifractal vector fields and stochastic Clifford algebra

    Energy Technology Data Exchange (ETDEWEB)

    Schertzer, Daniel, E-mail: Daniel.Schertzer@enpc.fr; Tchiguirinskaia, Ioulia, E-mail: Ioulia.Tchiguirinskaia@enpc.fr [University Paris-Est, Ecole des Ponts ParisTech, Hydrology Meteorology and Complexity HM& Co, Marne-la-Vallée (France)

    2015-12-15

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  12. A locally convergent Jacobi iteration for the tensor singular value problem

    NARCIS (Netherlands)

    Shekhawat, Hanumant Singh; Weiland, Siep

    2018-01-01

    Multi-linear functionals or tensors are useful in study and analysis multi-dimensional signal and system. Tensor approximation, which has various applications in signal processing and system theory, can be achieved by generalizing the notion of singular values and singular vectors of matrices to

  13. Methods for optimizing over the efficient and weakly efficient sets of an affine fractional vector optimization program

    DEFF Research Database (Denmark)

    Le, T.H.A.; Pham, D. T.; Canh, Nam Nguyen

    2010-01-01

    Both the efficient and weakly efficient sets of an affine fractional vector optimization problem, in general, are neither convex nor given explicitly. Optimization problems over one of these sets are thus nonconvex. We propose two methods for optimizing a real-valued function over the efficient...... and weakly efficient sets of an affine fractional vector optimization problem. The first method is a local one. By using a regularization function, we reformulate the problem into a standard smooth mathematical programming problem that allows applying available methods for smooth programming. In case...... the objective function is linear, we have investigated a global algorithm based upon a branch-and-bound procedure. The algorithm uses Lagrangian bound coupling with a simplicial bisection in the criteria space. Preliminary computational results show that the global algorithm is promising....

  14. Nonlinear dynamics of a vectored thrust aircraft

    DEFF Research Database (Denmark)

    Sørensen, C.B; Mosekilde, Erik

    1996-01-01

    With realistic relations for the aerodynamic coefficients, numerical simulations are applied to study the longitudional dynamics of a thrust vectored aircraft. As function of the thrust magnitude and the thrust vectoring angle the equilibrium state exhibits two saddle-node bifurcations and three...

  15. Ratios of Vector and Pseudoscalar B Meson Decay Constants in the Light-Cone Quark Model

    Science.gov (United States)

    Dhiman, Nisha; Dahiya, Harleen

    2018-05-01

    We study the decay constants of pseudoscalar and vector B meson in the framework of light-cone quark model. We apply the variational method to the relativistic Hamiltonian with the Gaussian-type trial wave function to obtain the values of β (scale parameter). Then with the help of known values of constituent quark masses, we obtain the numerical results for the decay constants f_P and f_V, respectively. We compare our numerical results with the existing experimental data.

  16. Modulation transfer function (MTF) measurement method based on support vector machine (SVM)

    Science.gov (United States)

    Zhang, Zheng; Chen, Yueting; Feng, Huajun; Xu, Zhihai; Li, Qi

    2016-03-01

    An imaging system's spatial quality can be expressed by the system's modulation spread function (MTF) as a function of spatial frequency in terms of the linear response theory. Methods have been proposed to assess the MTF of an imaging system using point, slit or edge techniques. The edge method is widely used for the low requirement of targets. However, the traditional edge methods are limited by the edge angle. Besides, image noise will impair the measurement accuracy, making the measurement result unstable. In this paper, a novel measurement method based on the support vector machine (SVM) is proposed. Image patches with different edge angles and MTF levels are generated as the training set. Parameters related with MTF and image structure are extracted from the edge images. Trained with image parameters and the corresponding MTF, the SVM classifier can assess the MTF of any edge image. The result shows that the proposed method has an excellent performance on measuring accuracy and stability.

  17. A bovine papillomavirus-1 based vector restores the function of the low-density lipoprotein receptor in the receptor-deficient CHO-ldlA7 cell line

    Directory of Open Access Journals (Sweden)

    Ustav Mart

    2002-04-01

    Full Text Available Abstract Background The rationale of using bovine papillomavirus-1 (BPV-1 derived vectors in gene therapy protocols lies in their episomal maintenance at intermediate to high copy number, and stable, high-level expression of the gene products. We constructed the BPV-1 based vector harbouring the human low-density lipoprotein receptor (LDLR gene cDNA and tested its ability to restore the function of the LDLR in the receptor-deficient cell line CHO-ldlA7. Results The introduced vector p3.7LDL produced functionally active LDL receptors in the receptor-deficient cell line CHO-ldlA7 during the 32-week period of observation as determined by the internalisation assay with the labelled LDL particles. Conclusion Bovine papillomavirus type-1 (BPV-1-derived vectors could be suitable for gene therapy due to their episomal maintenance at intermediate to high copy number and stable, high-level expression of the gene products. The constructed BPV-1 based vector p3.7LDL produced functionally active LDL receptors in the LDLR-deficient cell line CHO-ldlA7 during the 32-week period of observation. In vivo experiments should reveal, whether 1–5% transfection efficiency obtained in the current work is sufficient to bring about detectable and clinically significant lowering of the amount of circulating LDL cholesterol particles.

  18. Sesquilinear uniform vector integral

    Indian Academy of Sciences (India)

    theory, together with his integral, dominate contemporary mathematics. ... directions belonging to Bartle and Dinculeanu (see [1], [6], [7] and [2]). ... in this manner, namely he integrated vector functions with respect to measures of bounded.

  19. Classification of subsurface objects using singular values derived from signal frames

    Science.gov (United States)

    Chambers, David H; Paglieroni, David W

    2014-05-06

    The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N.times.N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.

  20. Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems.

    Science.gov (United States)

    Cheng, Ching-An; Huang, Han-Pang

    2016-12-01

    We study the modeling of Lagrangian systems with multiple degrees of freedom. Based on system dynamics, canonical parametric models require ad hoc derivations and sometimes simplification for a computable solution; on the other hand, due to the lack of prior knowledge in the system's structure, modern nonparametric models in machine learning face the curse of dimensionality, especially in learning large systems. In this paper, we bridge this gap by unifying the theories of Lagrangian systems and vector-valued reproducing kernel Hilbert space. We reformulate Lagrangian systems with kernels that embed the governing Euler-Lagrange equation-the Lagrangian kernels-and show that these kernels span a subspace capturing the Lagrangian's projection as inverse dynamics. By such property, our model uses only inputs and outputs as in machine learning and inherits the structured form as in system dynamics, thereby removing the need for the mundane derivations for new systems as well as the generalization problem in learning from scratches. In effect, it learns the system's Lagrangian, a simpler task than directly learning the dynamics. To demonstrate, we applied the proposed kernel to identify the robot inverse dynamics in simulations and experiments. Our results present a competitive novel approach to identifying Lagrangian systems, despite using only inputs and outputs.

  1. Sums and Gaussian vectors

    CERN Document Server

    Yurinsky, Vadim Vladimirovich

    1995-01-01

    Surveys the methods currently applied to study sums of infinite-dimensional independent random vectors in situations where their distributions resemble Gaussian laws. Covers probabilities of large deviations, Chebyshev-type inequalities for seminorms of sums, a method of constructing Edgeworth-type expansions, estimates of characteristic functions for random vectors obtained by smooth mappings of infinite-dimensional sums to Euclidean spaces. A self-contained exposition of the modern research apparatus around CLT, the book is accessible to new graduate students, and can be a useful reference for researchers and teachers of the subject.

  2. Nonperturbative Aspects of Axial Vector Vertex

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; CHEN Xiang-Song; WANG Fan; CHANG Chao-Hsi; ZHAO En-Guang

    2002-01-01

    It is shown how the axial vector current of current quarks is related to that of constituent quarks within the framework of the global color symmetry model.Gluon dressing of the axial vector vertex and the quark self-energy functions are described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger Dyson equation in the rainbow approximation,respectively.

  3. The optical analogy for vector fields

    Science.gov (United States)

    Parker, E. N. (Editor)

    1991-01-01

    This paper develops the optical analogy for a general vector field. The optical analogy allows the examination of certain aspects of a vector field that are not otherwise readily accessible. In particular, in the cases of a stationary Eulerian flow v of an ideal fluid and a magnetostatic field B, the vectors v and B have surface loci in common with their curls. The intrinsic discontinuities around local maxima in absolute values of v and B take the form of vortex sheets and current sheets, respectively, the former playing a fundamental role in the development of hydrodyamic turbulence and the latter playing a major role in heating the X-ray coronas of stars and galaxies.

  4. Vector mesons in reactions with colliding electron-positron beams

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Gakh, G.I.

    1980-01-01

    Polarization phenomena in the processes of vector meson production in reactions with colliding electron-positron beams e + e - → V+X, where V is a vector meson, X is a nondetected set of particles are investigated. For the one-photon mechanism of the process, where V and X are hadrons, the mutually unambiguous correspondence between the structural functions is found. The dependence of the e + e - → VX differential cross section upon the electron and positron polarizations is calculated using the virtual photon density matrix in the helicity basis. This formalism permits to take explicitly into account the P-invariance consequences for the angular distribution of the V-meson decay products. For the processes e + e - → πA 1 , and e + e - → rho + rho - the structural functions are calculated in terms of the corresponding electromagnetic form factors. It is noted that six functions out ten real structural functions describing the e + e - → VX reaction can be determined by means of investigation of the angular distribution of the V-meson decay products which is produced in collisions of unpolarized leptons. To study the collision of polarized leptons one more structural function can be determined. The formation of the X system with definite values of parity and spin is characterized by seven structural functions, five of which can be found while studying the angular distribution of the V-meson decay products produced in e + e - collisions with unpolarized (polarized) particles. If the spin of the X state is 1, in experiments with polarized beams all structural functions can be determined while investigating the angular distribution of the V-meson decay products

  5. Value functions for certain class of Hamilton Jacobi equations

    Indian Academy of Sciences (India)

    in Rn × R+ and m > 1, with bounded, Lipschitz continuous initial data. We give a. Hopf-Lax type representation for the value function and also characterize the set of minimizing paths. It is shown that the minimizing paths in the representation of value function need not be straight lines. Then we consider HJE with ...

  6. Cosmological evolution in vector-tensor theories of gravity

    International Nuclear Information System (INIS)

    Beltran Jimenez, Jose; Maroto, Antonio L.

    2009-01-01

    We present a detailed study of the cosmological evolution in general vector-tensor theories of gravity without potential terms. We consider the evolution of the vector field throughout the expansion history of the Universe and carry out a classification of models according to the behavior of the vector field in each cosmological epoch. We also analyze the case in which the Universe is dominated by the vector field, performing a complete analysis of the system phase map and identifying those attracting solutions which give rise to accelerated expansion. Moreover, we consider the evolution in a universe filled with a pressureless fluid in addition to the vector field and study the existence of attractors in which we can have a transition from matter domination to vector domination with accelerated expansion so that the vector field may play the role of dark energy. We find that the existence of solutions with late-time accelerated expansion is a generic prediction of vector-tensor theories and that such solutions typically lead to the presence of future singularities. Finally, limits from local gravity tests are used to get constraints on the value of the vector field at small (Solar System) scales.

  7. Deep Support Vector Machines for Regression Problems

    NARCIS (Netherlands)

    Wiering, Marco; Schutten, Marten; Millea, Adrian; Meijster, Arnold; Schomaker, Lambertus

    2013-01-01

    In this paper we describe a novel extension of the support vector machine, called the deep support vector machine (DSVM). The original SVM has a single layer with kernel functions and is therefore a shallow model. The DSVM can use an arbitrary number of layers, in which lower-level layers contain

  8. A multi-label learning based kernel automatic recommendation method for support vector machine.

    Science.gov (United States)

    Zhang, Xueying; Song, Qinbao

    2015-01-01

    Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance.

  9. Charmless Hadronic B Decays into Vector, Axial Vector and Tensor Final States at BaBar

    International Nuclear Information System (INIS)

    Gandini, Paolo

    2012-01-01

    We present experimental measurements of branching fraction and longitudinal polarization fraction in charmless hadronic B decays into vector, axial vector and tensor final states with the final dataset of BABAR. Measurements of such kind of decays are a powerful tool both to test the Standard Model and search possible sources of new physics. In this document we present a short review of the last experimental results at BABAR concerning charmless quasi two-body decays in final states containing particles with spin 1 or spin 2 and different parities. This kind of decays has received considerable theoretical interest in the last few years and this particular attention has led to interesting experimental results at the current b-factories. In fact, the study of longitudinal polarization fraction f L in charmless B decays to vector vector (VV), vector axial-vector (VA) and axial-vector axial-vector (AA) mesons provides information on the underlying helicity structure of the decay mechanism. Naive helicity conservation arguments predict a dominant longitudinal polarization fraction f L ∼ 1 for both tree and penguin dominated decays and this pattern seems to be confirmed by tree-dominated B → ρρ and B + → (Omega)ρ + decays. Other penguin dominated decays, instead, show a different behavior: the measured value of f L ∼ 0.5 in B → φK* decays is in contrast with naive Standard Model (SM) calculations. Several solutions have been proposed such as the introduction of non-factorizable terms and penguin-annihilation amplitudes, while other explanations invoke new physics. New modes have been investigated to shed more light on the problem.

  10. EMMA: An Extensible Mammalian Modular Assembly Toolkit for the Rapid Design and Production of Diverse Expression Vectors.

    Science.gov (United States)

    Martella, Andrea; Matjusaitis, Mantas; Auxillos, Jamie; Pollard, Steven M; Cai, Yizhi

    2017-07-21

    Mammalian plasmid expression vectors are critical reagents underpinning many facets of research across biology, biomedical research, and the biotechnology industry. Traditional cloning methods often require laborious manual design and assembly of plasmids using tailored sequential cloning steps. This process can be protracted, complicated, expensive, and error-prone. New tools and strategies that facilitate the efficient design and production of bespoke vectors would help relieve a current bottleneck for researchers. To address this, we have developed an extensible mammalian modular assembly kit (EMMA). This enables rapid and efficient modular assembly of mammalian expression vectors in a one-tube, one-step golden-gate cloning reaction, using a standardized library of compatible genetic parts. The high modularity, flexibility, and extensibility of EMMA provide a simple method for the production of functionally diverse mammalian expression vectors. We demonstrate the value of this toolkit by constructing and validating a range of representative vectors, such as transient and stable expression vectors (transposon based vectors), targeting vectors, inducible systems, polycistronic expression cassettes, fusion proteins, and fluorescent reporters. The method also supports simple assembly combinatorial libraries and hierarchical assembly for production of larger multigenetic cargos. In summary, EMMA is compatible with automated production, and novel genetic parts can be easily incorporated, providing new opportunities for mammalian synthetic biology.

  11. Nature of protein family signatures: insights from singular value analysis of position-specific scoring matrices.

    Directory of Open Access Journals (Sweden)

    Akira R Kinjo

    Full Text Available Position-specific scoring matrices (PSSMs are useful for detecting weak homology in protein sequence analysis, and they are thought to contain some essential signatures of the protein families. In order to elucidate what kind of ingredients constitute such family-specific signatures, we apply singular value decomposition to a set of PSSMs and examine the properties of dominant right and left singular vectors. The first right singular vectors were correlated with various amino acid indices including relative mutability, amino acid composition in protein interior, hydropathy, or turn propensity, depending on proteins. A significant correlation between the first left singular vector and a measure of site conservation was observed. It is shown that the contribution of the first singular component to the PSSMs act to disfavor potentially but falsely functionally important residues at conserved sites. The second right singular vectors were highly correlated with hydrophobicity scales, and the corresponding left singular vectors with contact numbers of protein structures. It is suggested that sequence alignment with a PSSM is essentially equivalent to threading supplemented with functional information. In addition, singular vectors may be useful for analyzing and annotating the characteristics of conserved sites in protein families.

  12. SYNTHESIS METHODS OF ALGEBRAIC NORMAL FORM OF MANY-VALUED LOGIC FUNCTIONS

    Directory of Open Access Journals (Sweden)

    A. V. Sokolov

    2016-01-01

    Full Text Available The rapid development of methods of error-correcting coding, cryptography, and signal synthesis theory based on the principles of many-valued logic determines the need for a more detailed study of the forms of representation of functions of many-valued logic. In particular the algebraic normal form of Boolean functions, also known as Zhegalkin polynomial, that well describe many of the cryptographic properties of Boolean functions is widely used. In this article, we formalized the notion of algebraic normal form for many-valued logic functions. We developed a fast method of synthesis of algebraic normal form of 3-functions and 5-functions that work similarly to the Reed-Muller transform for Boolean functions: on the basis of recurrently synthesized transform matrices. We propose the hypothesis, which determines the rules of the synthesis of these matrices for the transformation from the truth table to the coefficients of the algebraic normal form and the inverse transform for any given number of variables of 3-functions or 5-functions. The article also introduces the definition of algebraic degree of nonlinearity of the functions of many-valued logic and the S-box, based on the principles of many-valued logic. Thus, the methods of synthesis of algebraic normal form of 3-functions applied to the known construction of recurrent synthesis of S-boxes of length N = 3k, whereby their algebraic degrees of nonlinearity are computed. The results could be the basis for further theoretical research and practical applications such as: the development of new cryptographic primitives, error-correcting codes, algorithms of data compression, signal structures, and algorithms of block and stream encryption, all based on the perspective principles of many-valued logic. In addition, the fast method of synthesis of algebraic normal form of many-valued logic functions is the basis for their software and hardware implementation.

  13. Scalar-vector bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Rejon-Barrera, Fernando [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, Postbus 94485, 1090 GL, Amsterdam (Netherlands); Robbins, Daniel [Department of Physics, Texas A& M University,TAMU 4242, College Station, TX 77843 (United States)

    2016-01-22

    We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.

  14. Online Support Vector Regression with Varying Parameters for Time-Dependent Data

    International Nuclear Information System (INIS)

    Omitaomu, Olufemi A.; Jeong, Myong K.; Badiru, Adedeji B.

    2011-01-01

    Support vector regression (SVR) is a machine learning technique that continues to receive interest in several domains including manufacturing, engineering, and medicine. In order to extend its application to problems in which datasets arrive constantly and in which batch processing of the datasets is infeasible or expensive, an accurate online support vector regression (AOSVR) technique was proposed. The AOSVR technique efficiently updates a trained SVR function whenever a sample is added to or removed from the training set without retraining the entire training data. However, the AOSVR technique assumes that the new samples and the training samples are of the same characteristics; hence, the same value of SVR parameters is used for training and prediction. This assumption is not applicable to data samples that are inherently noisy and non-stationary such as sensor data. As a result, we propose Accurate On-line Support Vector Regression with Varying Parameters (AOSVR-VP) that uses varying SVR parameters rather than fixed SVR parameters, and hence accounts for the variability that may exist in the samples. To accomplish this objective, we also propose a generalized weight function to automatically update the weights of SVR parameters in on-line monitoring applications. The proposed function allows for lower and upper bounds for SVR parameters. We tested our proposed approach and compared results with the conventional AOSVR approach using two benchmark time series data and sensor data from nuclear power plant. The results show that using varying SVR parameters is more applicable to time dependent data.

  15. Vector bileptons and the decays h→γγ,Zγ

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Chong-Xing, E-mail: cxyue@lnnu.edu.cn; Shi, Qiu-Yang; Hua, Tian

    2013-11-21

    Taking into account of the constraints on the relevant parameters from the muon anomalous magnetic moment, we consider the contributions of the vector bileptons V{sup ±} and U{sup ±±} predicted by the reduced minimal 331 model to the Higgs decay channels h→γγ and Zγ. Our numerical results show that the vector bileptons can enhance the partial width Γ(h→γγ), while reduce the partial width Γ(h→Zγ), which are anti-correlated. With reasonable values of the relevant free parameters, the vector bileptons can explain the LHC data for the γγ signal. If the CMS data persists, the values of the free parameters λ{sub 2} and λ{sub 3} should be severe constrained.

  16. Comparison Between Several Integrase-defective Lentiviral Vectors Reveals Increased Integration of an HIV Vector Bearing a D167H Mutant

    Directory of Open Access Journals (Sweden)

    Muhammad Qamar Saeed

    2014-01-01

    Full Text Available HIV-1 derived vectors are among the most efficient for gene transduction in mammalian tissues. As the parent virus, they carry out vector genome insertion into the host cell chromatin. Consequently, their preferential integration in transcribed genes raises several conceptual and safety issues. To address part of these questions, HIV-derived vectors have been engineered to be nonintegrating. This was mainly achieved by mutating HIV-1 integrase at functional hotspots of the enzyme enabling the development of streamlined nuclear DNA circles functional for transgene expression. Few integrase mutant vectors have been successfully tested so far for gene transfer. They are cleared with time in mitotic cells, but stable within nondividing retina cells or neurons. Here, we compared six HIV vectors carrying different integrases, either wild type or with different mutations (D64V, D167H, Q168A, K186Q+Q214L+Q216L, and RRK262-264AAH shown to modify integrase enzymatic activity, oligomerization, or interaction with key cellular cofactor of HIV DNA integration as LEDGF/p75 or TNPO3. We show that these mutations differently affect the transduction efficiency as well as rates and patterns of integration of HIV-derived vectors suggesting their different processing in the nucleus. Surprisingly and most interestingly, we report that an integrase carrying the D167H substitution improves vector transduction efficiency and integration in both HEK-293T and primary CD34+ cells.

  17. A new class of Preisach-type isotropic vector model of hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Serpico, C.; D' Aquino, M.; Visone, C.; Davino, D

    2004-01-01

    A new class of scalar hysteresis operators is obtained from the classical Preisach scalar model of hysteresis by introducing a transformation of variables dependent on a suitable function g. The operators of this class are defined by means of a new type of Play operator and are characterized by the property of having the same scalar input-output relationship. These operators are then extended to the isotropic vector case by using the appropriate vector extension of the scalar Play operators. It is shown that the function g, which does not affect the scalar input-output relationship, does affect the vector hysteresis curves. The influence of the function g on vector hysteresis is illustrated by reporting numerically computed rotational hysteresis losses curves.

  18. How Patent Function Integration with R&D Influence the Value of Patents

    DEFF Research Database (Denmark)

    Beukel, Karin; Valentin, Finn

    Patent strategies are endogenous to firm appropriability. However, to what extent does firm’s R&D teams’ engagement with patent experts influence the value of patents? We estimate the relationship between firm’s R&D use of patent functions on patent value in Biotech firms. Controlling...... for characteristics of scientific team, firm effects, and other patent value indicators, we find that having a firm specific (in-house) internal patent function is a driver of patent value. In addition, we find that the way in which patent functions create patent value differs dependent on whether the firm has...... internal patent function or not. In-house patent functions create value through narrow patents, whereas, firms with no in-house patent function create valuable patents by the use of broader scoped patents. Our results point to a strong effect of firm specific patent functions, but also explain how firms...

  19. Uncertainty of Monetary Valued Ecosystem Services - Value Transfer Functions for Global Mapping.

    Directory of Open Access Journals (Sweden)

    Stefan Schmidt

    Full Text Available Growing demand of resources increases pressure on ecosystem services (ES and biodiversity. Monetary valuation of ES is frequently seen as a decision-support tool by providing explicit values for unconsidered, non-market goods and services. Here we present global value transfer functions by using a meta-analytic framework for the synthesis of 194 case studies capturing 839 monetary values of ES. For 12 ES the variance of monetary values could be explained with a subset of 93 study- and site-specific variables by utilizing boosted regression trees. This provides the first global quantification of uncertainties and transferability of monetary valuations. Models explain from 18% (water provision to 44% (food provision of variance and provide statistically reliable extrapolations for 70% (water provision to 91% (food provision of the terrestrial earth surface. Although the application of different valuation methods is a source of uncertainty, we found evidence that assuming homogeneity of ecosystems is a major error in value transfer function models. Food provision is positively correlated with better life domains and variables indicating positive conditions for human well-being. Water provision and recreation service show that weak ownerships affect valuation of other common goods negatively (e.g. non-privately owned forests. Furthermore, we found support for the shifting baseline hypothesis in valuing climate regulation. Ecological conditions and societal vulnerability determine valuation of extreme event prevention. Valuation of habitat services is negatively correlated with indicators characterizing less favorable areas. Our analysis represents a stepping stone to establish a standardized integration of and reporting on uncertainties for reliable and valid benefit transfer as an important component for decision support.

  20. Dominance-based ranking functions for interval-valued intuitionistic fuzzy sets.

    Science.gov (United States)

    Chen, Liang-Hsuan; Tu, Chien-Cheng

    2014-08-01

    The ranking of interval-valued intuitionistic fuzzy sets (IvIFSs) is difficult since they include the interval values of membership and nonmembership. This paper proposes ranking functions for IvIFSs based on the dominance concept. The proposed ranking functions consider the degree to which an IvIFS dominates and is not dominated by other IvIFSs. Based on the bivariate framework and the dominance concept, the functions incorporate not only the boundary values of membership and nonmembership, but also the relative relations among IvIFSs in comparisons. The dominance-based ranking functions include bipolar evaluations with a parameter that allows the decision-maker to reflect his actual attitude in allocating the various kinds of dominance. The relationship for two IvIFSs that satisfy the dual couple is defined based on four proposed ranking functions. Importantly, the proposed ranking functions can achieve a full ranking for all IvIFSs. Two examples are used to demonstrate the applicability and distinctiveness of the proposed ranking functions.

  1. Computation of Value Functions in Nonlinear Differential Games with State Constraints

    KAUST Repository

    Botkin, Nikolai; Hoffmann, Karl-Heinz; Mayer, Natalie; Turova, Varvara

    2013-01-01

    Finite-difference schemes for the computation of value functions of nonlinear differential games with non-terminal payoff functional and state constraints are proposed. The solution method is based on the fact that the value function is a

  2. Compositions of nuclear maps with vector measures and ...

    African Journals Online (AJOL)

    The properties of the compositions of nuclear maps, between two locally convex spaces, with vector measures and measurable functions are investigated. The composition with a vector measure has improved variational properties and a precompact range. The measurability and integrability properties of the composition of ...

  3. A MultiSite GatewayTM vector set for the functional analysis of genes in the model Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Nagels Durand Astrid

    2012-09-01

    Full Text Available Abstract Background Recombinatorial cloning using the GatewayTM technology has been the method of choice for high-throughput omics projects, resulting in the availability of entire ORFeomes in GatewayTM compatible vectors. The MultiSite GatewayTM system allows combining multiple genetic fragments such as promoter, ORF and epitope tag in one single reaction. To date, this technology has not been accessible in the yeast Saccharomyces cerevisiae, one of the most widely used experimental systems in molecular biology, due to the lack of appropriate destination vectors. Results Here, we present a set of three-fragment MultiSite GatewayTM destination vectors that have been developed for gene expression in S. cerevisiae and that allow the assembly of any promoter, open reading frame, epitope tag arrangement in combination with any of four auxotrophic markers and three distinct replication mechanisms. As an example of its applicability, we used yeast three-hybrid to provide evidence for the assembly of a ternary complex of plant proteins involved in jasmonate signalling and consisting of the JAZ, NINJA and TOPLESS proteins. Conclusion Our vectors make MultiSite GatewayTM cloning accessible in S. cerevisiae and implement a fast and versatile cloning method for the high-throughput functional analysis of (heterologous proteins in one of the most widely used model organisms for molecular biology research.

  4. Involutive distributions of operator-valued evolutionary vector fields and their affine geometry

    NARCIS (Netherlands)

    Kiselev, A.V.; van de Leur, J.W.

    2010-01-01

    We generalize the notion of a Lie algebroid over infinite jet bundle by replacing the variational anchor with an N-tuple of differential operators whose images in the Lie algebra of evolutionary vector fields of the jet space are subject to collective commutation closure. The linear space of such

  5. Acoustic communication in insect disease vectors

    Directory of Open Access Journals (Sweden)

    Felipe de Mello Vigoder

    2013-01-01

    Full Text Available Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects.

  6. Increasing the computational efficient of digital cross correlation by a vectorization method

    Science.gov (United States)

    Chang, Ching-Yuan; Ma, Chien-Ching

    2017-08-01

    This study presents a vectorization method for use in MATLAB programming aimed at increasing the computational efficiency of digital cross correlation in sound and images, resulting in a speedup of 6.387 and 36.044 times compared with performance values obtained from looped expression. This work bridges the gap between matrix operations and loop iteration, preserving flexibility and efficiency in program testing. This paper uses numerical simulation to verify the speedup of the proposed vectorization method as well as experiments to measure the quantitative transient displacement response subjected to dynamic impact loading. The experiment involved the use of a high speed camera as well as a fiber optic system to measure the transient displacement in a cantilever beam under impact from a steel ball. Experimental measurement data obtained from the two methods are in excellent agreement in both the time and frequency domain, with discrepancies of only 0.68%. Numerical and experiment results demonstrate the efficacy of the proposed vectorization method with regard to computational speed in signal processing and high precision in the correlation algorithm. We also present the source code with which to build MATLAB-executable functions on Windows as well as Linux platforms, and provide a series of examples to demonstrate the application of the proposed vectorization method.

  7. Electrical tensor Green functions for cylindrical waveguides

    International Nuclear Information System (INIS)

    Prijmenko, S.D.; Papkovich, V.G.; Khizhnyak, N.A.

    1988-01-01

    Formation of electrical tensor Green functions for cylindrical waveguides is considered. Behaviour of these functions in the source region is studied. Cases of electrical tensor Green functions for vector potential G E (r-vector, r'-vector) and electric field G e (r-vector, r'-vector) are analysed. When forming G E (r-vector, r'-vector), its dependence on lateral coordinates is taken into account by means of two-dimensional fundamental vector Hansen functions, several methods are used to take into account the dependence on transverse coordinate. When forming G e (r-vector, r'-vector) we use the fact that G E (r-vector, r'-vector) and G e (r-vector, r'-vector) are the generalized functions. It is shown that G e (r-vector, r'-vector) behaviour in the source region is defined by a singular term, which properties are described by the delta-function. Two variants of solving the problem of defining singular and regular sides of tensor function G E (r-vector, r'-vector) are presented. 23 refs

  8. Recommended values of clean metal surface work functions

    International Nuclear Information System (INIS)

    Derry, Gregory N.; Kern, Megan E.; Worth, Eli H.

    2015-01-01

    A critical review of the experimental literature for measurements of the work functions of clean metal surfaces of single-crystals is presented. The tables presented include all results found for low-index crystal faces except cases that were known to be contaminated surfaces. These results are used to construct a recommended value of the work function for each surface examined, along with an uncertainty estimate for that value. The uncertainties are based in part on the error distribution for all measured work functions in the literature, which is included here. The metals included in this review are silver (Ag), aluminum (Al), gold (Au), copper (Cu), iron (Fe), iridium (Ir), molybdenum (Mo), niobium (Nb), nickel (Ni), palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium (Ru), tantalum (Ta), and tungsten (W)

  9. Recommended values of clean metal surface work functions

    Energy Technology Data Exchange (ETDEWEB)

    Derry, Gregory N., E-mail: gderry@loyola.edu; Kern, Megan E.; Worth, Eli H. [Department of Physics, Loyola University Maryland, 4501 N. Charles St., Baltimore, Maryland 21210 (United States)

    2015-11-15

    A critical review of the experimental literature for measurements of the work functions of clean metal surfaces of single-crystals is presented. The tables presented include all results found for low-index crystal faces except cases that were known to be contaminated surfaces. These results are used to construct a recommended value of the work function for each surface examined, along with an uncertainty estimate for that value. The uncertainties are based in part on the error distribution for all measured work functions in the literature, which is included here. The metals included in this review are silver (Ag), aluminum (Al), gold (Au), copper (Cu), iron (Fe), iridium (Ir), molybdenum (Mo), niobium (Nb), nickel (Ni), palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium (Ru), tantalum (Ta), and tungsten (W)

  10. Optimal construction and delivery of dual-functioning lentiviral vectors for type I collagen-suppressed chondrogenesis in synovium-derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Feng; Yao, Yongchang; Zhou, Ruijie; Su, Kai; Citra, Fudiman; Wang, Dong-An

    2011-06-01

    This study aims to deliver both transforming growth factor β3 (TGF-β3) and shRNA targeting type I collagen (Col I) by optimal construction and application of various dual-functioning lentiviral vectors to induce Col I-suppressed chondrogenesis in synovium-derived mesenchymal stem cells (SMSCs). We constructed four lentiviral vectors (LV-1, LV-2, LV-3 and LV-4) with various arrangements of the two expression cassettes in different positions and orientations. Col I inhibition efficiency and chondrogenic markers were assessed with qPCR, ELISA and staining techniques. Among the four vectors, LV-1 has two distant and reversely oriented cassettes, LV-2 has two distant and same-oriented cassettes, LV-3 has two proximal and reversely oriented cassettes, and LV-4 has two proximal and same-oriented cassettes. Col I and chondrogenic markers, including type II collagen (Col II), aggrecan and glycosaminoglycan (GAG), were examined in SMSCs cultured in 3-D alginate hydrogel. All of the four vectors showed distinct effects in Col I level as well as diverse inductive efficiencies in upregulation of the cartilaginous markers. Based on real-time PCR results, LV-1 was optimal towards Col I-suppressed chondrogenesis. LV-1 vector is competent to promote Col I-suppressed chondrogenesis in SMSCs.

  11. Mouse Mammary Tumor Virus Promoter-Containing Retroviral Promoter Conversion Vectors for Gene-Directed Enzyme Prodrug Therapy are Functional in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Reinhard Klein

    2008-01-01

    Full Text Available Gene directed-enzyme prodrug therapy (GDEPT is an approach for sensitization of tumor cells to an enzymatically activated, otherwise nontoxic, prodrug. Cytochrome P450 2B1 (CYP2B1 metabolizes the prodrugs cyclophosphamide (CPA and ifosfamide (IFA to produce the cytotoxic substances phosphoramide mustard and isophosphoramide mustard as well as the byproduct acrolein. We have constructed a retroviral promoter conversion (ProCon vector for breast cancer GDEPT. The vector allows expression of CYP2B1 from the mouse mammary tumor virus (MMTV promoter known to be active in the mammary glands of transgenic animals. It is anticipated to be used for the generation of encapsulated viral vector producing cells which, when placed inside or close to a tumor, will act as suppliers of the therapeutic CYP2B1 protein as well as of the therapeutic vector itself. The generated vector was effectively packaged by virus producing cells and allowed the production of high levels of enzymatically active CYP2B1 in infected cells which sensitized them to killing upon treatment with both IFA and CPA. Determination of the respective IC50 values demonstrated that the effective IFA dose was reduced by sixteen folds. Infection efficiencies in vivo were determined using a reporter gene-bearing vector in a mammary cancer cell-derived xenograft tumor mouse model.

  12. Novel non-viral vectors for gene delivery: synthesis of a second-generation library of mono-functionalized poly-(guanidinium)amines and their introduction into cationic lipids.

    Science.gov (United States)

    Byk, G; Soto, J; Mattler, C; Frederic, M; Scherman, D

    1998-01-01

    The development of new gene delivery technologies is a prerequisite towards gene therapy clinical trials. Because gene delivery mediated by viral vectors remains of limited scope due to immunological and propagation risks, the development of new non-viral gene delivery systems is of crucial importance. We have synthesized a secondary library of mono-functionalized poly-(guanidinium)amines generated from a library of mono-functionalized polyamines applying the concept of "libraries from libraries." The method allows a quick and easy access to mono-functionalized geometrically varied poly-(guanidinium)amines. The new building blocks were introduced into cationic lipids to obtain novel poly-(guanidinium)amine lipids, which are potential DNA vectors for gene delivery. Copyright 1998 John Wiley & Sons, Inc.

  13. Logarithmic bred vectors in spatiotemporal chaos: structure and growth.

    Science.gov (United States)

    Hallerberg, Sarah; Pazó, Diego; López, Juan M; Rodríguez, Miguel A

    2010-06-01

    Bred vectors are a type of finite perturbation used in prediction studies of atmospheric models that exhibit spatially extended chaos. We study the structure, spatial correlations, and the growth rates of logarithmic bred vectors (which are constructed by using a given norm). We find that, after a suitable transformation, logarithmic bred vectors are roughly piecewise copies of the leading Lyapunov vector. This fact allows us to deduce a scaling law for the bred vector growth rate as a function of its amplitude. In addition, we relate growth rates with the spectrum of Lyapunov exponents corresponding to the most expanding directions. We illustrate our results with simulations of the Lorenz 1996 model.

  14. Relativistic amplitudes in terms of wave functions

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1978-01-01

    In the framework of the invariant diagram technique which arises at the formulation of the fueld theory on the light front the question about conditions at which the relativistic amplitudes may be expressed through the wave functions is investigated. The amplitudes obtained depend on four-vector ω, determining the light front surface. The way is shown to find such values of the four-vector ω, at which the contribution of diagrams not expressed through wave functions is minimal. The investigation carried out is equivalent to the study of the dependence of amplitudes of the old-fashioned perturbation theory in the in the infinite momentum frame on direction of the infinite momentum

  15. Emerging Vector-Borne Diseases - Incidence through Vectors.

    Science.gov (United States)

    Savić, Sara; Vidić, Branka; Grgić, Zivoslav; Potkonjak, Aleksandar; Spasojevic, Ljubica

    2014-01-01

    Vector-borne diseases use to be a major public health concern only in tropical and subtropical areas, but today they are an emerging threat for the continental and developed countries also. Nowadays, in intercontinental countries, there is a struggle with emerging diseases, which have found their way to appear through vectors. Vector-borne zoonotic diseases occur when vectors, animal hosts, climate conditions, pathogens, and susceptible human population exist at the same time, at the same place. Global climate change is predicted to lead to an increase in vector-borne infectious diseases and disease outbreaks. It could affect the range and population of pathogens, host and vectors, transmission season, etc. Reliable surveillance for diseases that are most likely to emerge is required. Canine vector-borne diseases represent a complex group of diseases including anaplasmosis, babesiosis, bartonellosis, borreliosis, dirofilariosis, ehrlichiosis, and leishmaniosis. Some of these diseases cause serious clinical symptoms in dogs and some of them have a zoonotic potential with an effect to public health. It is expected from veterinarians in coordination with medical doctors to play a fundamental role at primarily prevention and then treatment of vector-borne diseases in dogs. The One Health concept has to be integrated into the struggle against emerging diseases. During a 4-year period, from 2009 to 2013, a total number of 551 dog samples were analyzed for vector-borne diseases (borreliosis, babesiosis, ehrlichiosis, anaplasmosis, dirofilariosis, and leishmaniasis) in routine laboratory work. The analysis was done by serological tests - ELISA for borreliosis, dirofilariosis, and leishmaniasis, modified Knott test for dirofilariosis, and blood smear for babesiosis, ehrlichiosis, and anaplasmosis. This number of samples represented 75% of total number of samples that were sent for analysis for different diseases in dogs. Annually, on average more then half of the samples

  16. Wigner functions of s waves

    International Nuclear Information System (INIS)

    Dahl, J. P.; Varro, S.; Wolf, A.; Schleich, W. P.

    2007-01-01

    We derive explicit expressions for the Wigner function of wave functions in D dimensions which depend on the hyperradius--that is, of s waves. They are based either on the position or the momentum representation of the s wave. The corresponding Wigner function depends on three variables: the absolute value of the D-dimensional position and momentum vectors and the angle between them. We illustrate these expressions by calculating and discussing the Wigner functions of an elementary s wave and the energy eigenfunction of a free particle

  17. Wigner functions of s waves

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Varro, S.; Wolf, A.

    2007-01-01

    We derive explicit expressions for the Wigner function of wave functions in D dimensions which depend on the hyperradius-that is, of s waves. They are based either on the position or the momentum representation of the s wave. The corresponding Wigner function depends on three variables......: the absolute value of the D-dimensional position and momentum vectors and the angle between them. We illustrate these expressions by calculating and discussing the Wigner functions of an elementary s wave and the energy eigenfunction of a free particle....

  18. Stability of Vector Functional Differential Equations: A Survey | Gil ...

    African Journals Online (AJOL)

    This paper is a survey of the recent results of the author on the stability of linear and nonlinear vector differential equations with delay. Explicit conditions for the exponential and absolute stabilities are derived. Moreover, solution estimates for the considered equations are established. They provide the bounds for the regions ...

  19. Vector analysis

    CERN Document Server

    Newell, Homer E

    2006-01-01

    When employed with skill and understanding, vector analysis can be a practical and powerful tool. This text develops the algebra and calculus of vectors in a manner useful to physicists and engineers. Numerous exercises (with answers) not only provide practice in manipulation but also help establish students' physical and geometric intuition in regard to vectors and vector concepts.Part I, the basic portion of the text, consists of a thorough treatment of vector algebra and the vector calculus. Part II presents the illustrative matter, demonstrating applications to kinematics, mechanics, and e

  20. Multi-Valued Logic Gates, Continuous Sensitivity, Reversibility, and Threshold Functions

    OpenAIRE

    İlhan, Aslı Güçlükan; Ünlü, Özgün

    2016-01-01

    We define an invariant of a multi-valued logic gate by considering the number of certain threshold functions associated with the gate. We call this invariant the continuous sensitivity of the gate. We discuss a method for analysing continuous sensitivity of a multi-valued logic gate by using experimental data about the gate. In particular, we will show that this invariant provides a lower bound for the sensitivity of a boolean function considered as a multi-valued logic gate. We also discuss ...

  1. Euclidean fields: vector mesons and photons

    International Nuclear Information System (INIS)

    Loffelholz, J.

    1979-01-01

    Free transverse vector fields of mass >= 0 are studied. The model is related to the usual free vector meson and electromagnetic quantum field theories by extension of the field operators from transverse to arbitrary test functions. The one-particle states in transverse gauge and their localization are described. Reflexion positivity is proved and derived are free Feynman-Kac-Nelson formulas. An Euclidean approach to a photon field in a spherical world using dilatation covariance and inversions is given

  2. Conservative rigid body dynamics by convected base vectors with implicit constraints

    DEFF Research Database (Denmark)

    Krenk, Steen; Nielsen, Martin Bjerre

    2014-01-01

    of differential equations without additional algebraic constraints on the base vectors. A discretized form of the equations of motion is obtained by starting from a finite time increment of the Hamiltonian, and retracing the steps of the continuous formulation in discrete form in terms of increments and mean...... of the base vectors. Orthogonality and unit length of the base vectors are imposed by constraining the equivalent Green strain components, and the kinetic energy is represented corresponding to rigid body motion. The equations of motion are obtained via Hamilton’s equations including the zero...... values over each integration time increment. In this discrete form the Lagrange multipliers are given in terms of a representative value within the integration time interval, and the equations of motion are recast into a conservative mean-value and finite difference format. The Lagrange multipliers...

  3. Developing rapid methods for analyzing upland riparian functions and values.

    Science.gov (United States)

    Hruby, Thomas

    2009-06-01

    Regulators protecting riparian areas need to understand the integrity, health, beneficial uses, functions, and values of this resource. Up to now most methods providing information about riparian areas are based on analyzing condition or integrity. These methods, however, provide little information about functions and values. Different methods are needed that specifically address this aspect of riparian areas. In addition to information on functions and values, regulators have very specific needs that include: an analysis at the site scale, low cost, usability, and inclusion of policy interpretations. To meet these needs a rapid method has been developed that uses a multi-criteria decision matrix to categorize riparian areas in Washington State, USA. Indicators are used to identify the potential of the site to provide a function, the potential of the landscape to support the function, and the value the function provides to society. To meet legal needs fixed boundaries for assessment units are established based on geomorphology, the distance from "Ordinary High Water Mark" and different categories of land uses. Assessment units are first classified based on ecoregions, geomorphic characteristics, and land uses. This simplifies the data that need to be collected at a site, but it requires developing and calibrating a separate model for each "class." The approach to developing methods is adaptable to other locations as its basic structure is not dependent on local conditions.

  4. Vector-Tensor and Vector-Vector Decay Amplitude Analysis of B0→φK*0

    International Nuclear Information System (INIS)

    Aubert, B.; Bona, M.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Ofte, I.; Stugu, B.; Abrams, G. S.

    2007-01-01

    We perform an amplitude analysis of the decays B 0 →φK 2 * (1430) 0 , φK * (892) 0 , and φ(Kπ) S-wave 0 with a sample of about 384x10 6 BB pairs recorded with the BABAR detector. The fractions of longitudinal polarization f L of the vector-tensor and vector-vector decay modes are measured to be 0.853 -0.069 +0.061 ±0.036 and 0.506±0.040±0.015, respectively. Overall, twelve parameters are measured for the vector-vector decay and seven parameters for the vector-tensor decay, including the branching fractions and parameters sensitive to CP violation

  5. The zero-dimensional O(N) vector model as a benchmark for perturbation theory, the large-N expansion and the functional renormalization group

    International Nuclear Information System (INIS)

    Keitel, Jan; Bartosch, Lorenz

    2012-01-01

    We consider the zero-dimensional O(N) vector model as a simple example to calculate n-point correlation functions using perturbation theory, the large-N expansion and the functional renormalization group (FRG). Comparing our findings with exact results, we show that perturbation theory breaks down for moderate interactions for all N, as one should expect. While the interaction-induced shift of the free energy and the self-energy are well described by the large-N expansion even for small N, this is not the case for higher order correlation functions. However, using the FRG in its one-particle irreducible formalism, we see that very few running couplings suffice to get accurate results for arbitrary N in the strong coupling regime, outperforming the large-N expansion for small N. We further remark on how the derivative expansion, a well-known approximation strategy for the FRG, reduces to an exact method for the zero-dimensional O(N) vector model. (paper)

  6. An optimal strategy for functional mapping of dynamic trait loci.

    Science.gov (United States)

    Jin, Tianbo; Li, Jiahan; Guo, Ying; Zhou, Xiaojing; Yang, Runqing; Wu, Rongling

    2010-02-01

    As an emerging powerful approach for mapping quantitative trait loci (QTLs) responsible for dynamic traits, functional mapping models the time-dependent mean vector with biologically meaningful equations and are likely to generate biologically relevant and interpretable results. Given the autocorrelation nature of a dynamic trait, functional mapping needs the implementation of the models for the structure of the covariance matrix. In this article, we have provided a comprehensive set of approaches for modelling the covariance structure and incorporated each of these approaches into the framework of functional mapping. The Bayesian information criterion (BIC) values are used as a model selection criterion to choose the optimal combination of the submodels for the mean vector and covariance structure. In an example for leaf age growth from a rice molecular genetic project, the best submodel combination was found between the Gaussian model for the correlation structure, power equation of order 1 for the variance and the power curve for the mean vector. Under this combination, several significant QTLs for leaf age growth trajectories were detected on different chromosomes. Our model can be well used to study the genetic architecture of dynamic traits of agricultural values.

  7. Non-linear HVAC computations using least square support vector machines

    International Nuclear Information System (INIS)

    Kumar, Mahendra; Kar, I.N.

    2009-01-01

    This paper aims to demonstrate application of least square support vector machines (LS-SVM) to model two complex heating, ventilating and air-conditioning (HVAC) relationships. The two applications considered are the estimation of the predicted mean vote (PMV) for thermal comfort and the generation of psychrometric chart. LS-SVM has the potential for quick, exact representations and also possesses a structure that facilitates hardware implementation. The results show very good agreement between function values computed from conventional model and LS-SVM model in real time. The robustness of LS-SVM models against input noises has also been analyzed.

  8. Vector domain decomposition schemes for parabolic equations

    Science.gov (United States)

    Vabishchevich, P. N.

    2017-09-01

    A new class of domain decomposition schemes for finding approximate solutions of timedependent problems for partial differential equations is proposed and studied. A boundary value problem for a second-order parabolic equation is used as a model problem. The general approach to the construction of domain decomposition schemes is based on partition of unity. Specifically, a vector problem is set up for solving problems in individual subdomains. Stability conditions for vector regionally additive schemes of first- and second-order accuracy are obtained.

  9. About vectors

    CERN Document Server

    Hoffmann, Banesh

    1975-01-01

    From his unusual beginning in ""Defining a vector"" to his final comments on ""What then is a vector?"" author Banesh Hoffmann has written a book that is provocative and unconventional. In his emphasis on the unresolved issue of defining a vector, Hoffmann mixes pure and applied mathematics without using calculus. The result is a treatment that can serve as a supplement and corrective to textbooks, as well as collateral reading in all courses that deal with vectors. Major topics include vectors and the parallelogram law; algebraic notation and basic ideas; vector algebra; scalars and scalar p

  10. Normative Values for a Functional Capacity Evaluation

    NARCIS (Netherlands)

    Soer, Remko; van der Schans, Cees P.; Geertzen, Jan H.; Groothoff, Johan W.; Brouwer, Sandra; Dijkstra, Pieter U.; Reneman, Michiel F.

    2009-01-01

    Objective: To establish normative values for a functional capacity evaluation (FCE) of healthy working subjects. Design: Descriptive. Setting: Rehabilitation center. Participants: Healthy working subjects (N=701; 448 men, 253 women) between 20 and 60 years of age, working in more than 180

  11. Estimation of Nonlinear Functions of State Vector for Linear Systems with Time-Delays and Uncertainties

    Directory of Open Access Journals (Sweden)

    Il Young Song

    2015-01-01

    Full Text Available This paper focuses on estimation of a nonlinear function of state vector (NFS in discrete-time linear systems with time-delays and model uncertainties. The NFS represents a multivariate nonlinear function of state variables, which can indicate useful information of a target system for control. The optimal nonlinear estimator of an NFS (in mean square sense represents a function of the receding horizon estimate and its error covariance. The proposed receding horizon filter represents the standard Kalman filter with time-delays and special initial horizon conditions described by the Lyapunov-like equations. In general case to calculate an optimal estimator of an NFS we propose using the unscented transformation. Important class of polynomial NFS is considered in detail. In the case of polynomial NFS an optimal estimator has a closed-form computational procedure. The subsequent application of the proposed receding horizon filter and nonlinear estimator to a linear stochastic system with time-delays and uncertainties demonstrates their effectiveness.

  12. Uncertainty of Monetary Valued Ecosystem Services – Value Transfer Functions for Global Mapping

    Science.gov (United States)

    Schmidt, Stefan; Manceur, Ameur M.; Seppelt, Ralf

    2016-01-01

    Growing demand of resources increases pressure on ecosystem services (ES) and biodiversity. Monetary valuation of ES is frequently seen as a decision-support tool by providing explicit values for unconsidered, non-market goods and services. Here we present global value transfer functions by using a meta-analytic framework for the synthesis of 194 case studies capturing 839 monetary values of ES. For 12 ES the variance of monetary values could be explained with a subset of 93 study- and site-specific variables by utilizing boosted regression trees. This provides the first global quantification of uncertainties and transferability of monetary valuations. Models explain from 18% (water provision) to 44% (food provision) of variance and provide statistically reliable extrapolations for 70% (water provision) to 91% (food provision) of the terrestrial earth surface. Although the application of different valuation methods is a source of uncertainty, we found evidence that assuming homogeneity of ecosystems is a major error in value transfer function models. Food provision is positively correlated with better life domains and variables indicating positive conditions for human well-being. Water provision and recreation service show that weak ownerships affect valuation of other common goods negatively (e.g. non-privately owned forests). Furthermore, we found support for the shifting baseline hypothesis in valuing climate regulation. Ecological conditions and societal vulnerability determine valuation of extreme event prevention. Valuation of habitat services is negatively correlated with indicators characterizing less favorable areas. Our analysis represents a stepping stone to establish a standardized integration of and reporting on uncertainties for reliable and valid benefit transfer as an important component for decision support. PMID:26938447

  13. Results and future prospects of exclusive vector meson production with pPb collisions at CMS

    CERN Document Server

    Chudasama, Ruchi

    2017-01-01

    Exclusive photoproduction of vector mesons (Upsilon and Rho0) is studied with the large photon flux available in ultra-peripheral pPb collisions at sqrt(sNN) =5.02 TeV with CMS experiment. It provides a clean probe of the gluon distribution at small values of parton fractional momenta $x$ at centralrapidities ($y < 2.5$). The cross sections are measured as a function of the photon-proton centre-of-mass energy, extending the energy range explored by H1 and ZEUS Experiments at HERA. In addition, the differential cross sections (dsigma/dt), where $\\abs{t} \\approx p^2_T$ is the squared transverse momentum of produced vector mesons, are measured and the slope parameters are obtained. The results are compared to previous measurements and to theoretical predictions. Finally, prospect for further measurements of vector meson production that can be performed using the 2016 pPb collision data at 8 TeV to be collected at the end of the year are presented.

  14. Vector and Axial-Vector Correlators in AN Instanton-Like Quark Model

    Science.gov (United States)

    Dorokhov, Alexander E.

    The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instanton-like quark-quark interaction. This function describes the transition between the high energy asymptotically free region of almost massless current quarks to the low energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic τ lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, aμ hvp(1), is estimated.

  15. Single vector leptoquark production in e+e- and γe colliders

    International Nuclear Information System (INIS)

    Aliev, T.M.; Iltan, E.; Pak, N.K.

    1996-01-01

    We consider the single vector leptoquark (LQ) production at e + e - and γe colliders for two values of the center-of-mass energy √s=500GeV and √s=1000 GeV, in a model-independent framework. We find that the cross sections for the single gauge and nongauge vector LQ productions are almost equal. The discovery limit for a single vector LQ production is obtained for both cases. It is shown that in e + e - collisions the single vector LQ production is more favorable than the vector LQ pair production, if the Yukawa coupling constant is κ∼1. copyright 1996 The American Physical Society

  16. [Construction and Function Verification of a Novel Shuttle Vector Containing a Marker Gene Self-deletion System].

    Science.gov (United States)

    Li, Lili; Wang, Zhan; Zhou, Yubai; Zhang, Fang; Shen, Sisi; Li, Zelin; Zeng, Yi

    2015-09-01

    For rapid and accurate screening of recombinant modified vaccinia virus Ankara (rMVA) that satisfied the quality standards of clinical trials, a novel shuttle vector that can delete the marker gene automatically during virus propagation was construted: pZL-EGFP. To construct the pZL-EGFP, the original shuttle vector pSC11 was modified by replacing the LacZ marker gene with enhanced green fluorescent protein (EGFP) and then inserting homologous sequences of TKL into the flank regions of EGFP. Baby hamster kidney (BHK)-21 cells were cotransfected with pZL-EGFP and MVA, and underwent ten passages and one plaque screening to obtain the EGFP-free rMVA carrying the exogenous gene. Resulting rMVA was tested by polymerase chain reaction and western blotting to verify pZL-EGFP function. A novel shuttle vector pZL-EGFP containing an EGFP marker gene which could be deleted automatically was constructed. This gene deletion had no effect on the activities of rMVA, and the exogenous gene could be expressed stably. These results suggest that rMVA can be packaged efficiently by homologous recombination between pZL-EGFP and MVA in BHK-21 cells, and that the carried EGFP gene can be removed automatically by intramolecular homologous recombination during virus passage. Meanwhile, the gene deletion had no influence on the activities of rMVA and the expression of exogenous target gene. This study lays a solid foundation for the future research.

  17. Vectors

    DEFF Research Database (Denmark)

    Boeriis, Morten; van Leeuwen, Theo

    2017-01-01

    should be taken into account in discussing ‘reactions’, which Kress and van Leeuwen link only to eyeline vectors. Finally, the question can be raised as to whether actions are always realized by vectors. Drawing on a re-reading of Rudolf Arnheim’s account of vectors, these issues are outlined......This article revisits the concept of vectors, which, in Kress and van Leeuwen’s Reading Images (2006), plays a crucial role in distinguishing between ‘narrative’, action-oriented processes and ‘conceptual’, state-oriented processes. The use of this concept in image analysis has usually focused...

  18. Quantum nonlinear lattices and coherent state vectors

    DEFF Research Database (Denmark)

    Ellinas, Demosthenes; Johansson, M.; Christiansen, Peter Leth

    1999-01-01

    for the state vectors invokes the study of the Riemannian and symplectic geometry of the CSV manifolds as generalized phase spaces. Next, we investigate analytically and numerically the behavior of mean values and uncertainties of some physically interesting observables as well as the modifications...... (FP) model. Based on the respective dynamical symmetries of the models, a method is put forward which by use of the associated boson and spin coherent state vectors (CSV) and a factorization ansatz for the solution of the Schrodinger equation, leads to quasiclassical Hamiltonian equations of motion...... state vectors, and accounts for the quantum correlations of the lattice sites that develop during the time evolution of the systems. (C) 1999 Elsevier Science B.V. All rights reserved....

  19. DC Algorithm for Extended Robust Support Vector Machine.

    Science.gov (United States)

    Fujiwara, Shuhei; Takeda, Akiko; Kanamori, Takafumi

    2017-05-01

    Nonconvex variants of support vector machines (SVMs) have been developed for various purposes. For example, robust SVMs attain robustness to outliers by using a nonconvex loss function, while extended [Formula: see text]-SVM (E[Formula: see text]-SVM) extends the range of the hyperparameter by introducing a nonconvex constraint. Here, we consider an extended robust support vector machine (ER-SVM), a robust variant of E[Formula: see text]-SVM. ER-SVM combines two types of nonconvexity from robust SVMs and E[Formula: see text]-SVM. Because of the two nonconvexities, the existing algorithm we proposed needs to be divided into two parts depending on whether the hyperparameter value is in the extended range or not. The algorithm also heuristically solves the nonconvex problem in the extended range. In this letter, we propose a new, efficient algorithm for ER-SVM. The algorithm deals with two types of nonconvexity while never entailing more computations than either E[Formula: see text]-SVM or robust SVM, and it finds a critical point of ER-SVM. Furthermore, we show that ER-SVM includes the existing robust SVMs as special cases. Numerical experiments confirm the effectiveness of integrating the two nonconvexities.

  20. Avoiding ergodicity and turbulence in R3 vector fields

    International Nuclear Information System (INIS)

    Ancochea, J.M.; Campoamor-Stursberg, R.; Gonzalez-Gascon, F.

    2003-01-01

    We show that analytic R 3 vector fields having the property of being transversal to either analytic functions or foliations F 2 , or parallel to a foliation, are free from ergodicity and turbulence. The absence of turbulence and ergodicity via induced vector fields is also proven

  1. Boundary values as Hamiltonian variables. II. Graded structures

    International Nuclear Information System (INIS)

    Soloviev, Vladimir O.

    2002-01-01

    It is shown that the new formula for the field theory Poisson brackets arises naturally in the proposed extension of the formal variational calculus incorporating divergences. The linear spaces of local functionals, evolutionary vector fields, functional forms, multi-vectors and differential operators become graded with respect to divergences. The bilinear operations, such as the action of vector fields onto functionals, the commutator of vector fields, the interior product of forms and vectors and the Schouten-Nijenhuis bracket are compatible with the grading. A definition of the adjoint graded operator is proposed and antisymmetric operators are constructed with the help of boundary terms. The fulfilment of the Jacobi identity for the new Poisson brackets is shown to be equivalent to vanishing of the Schouten-Nijenhuis bracket of the Poisson bivector with itself

  2. Internal and external potential-field estimation from regional vector data at varying satellite altitude

    Science.gov (United States)

    Plattner, Alain; Simons, Frederik J.

    2017-10-01

    . Their construction is not altogether very computationally demanding when the concentration domains (the regions of spatial concentration) have circular symmetry, for example, on spherical caps or rings—even when the spherical-harmonic bandwidth is large. Data inversion proceeds by solving for the expansion coefficients of truncated function sequences, by least-squares analysis in a reduced-dimensional space. Hence, our method brings high-resolution regional potential-field modelling from incomplete and noisy vector-valued satellite data within reach of contemporary desktop machines.

  3. The quantum state vector in phase space and Gabor's windowed Fourier transform

    International Nuclear Information System (INIS)

    Bracken, A J; Watson, P

    2010-01-01

    Representations of quantum state vectors by complex phase space amplitudes, complementing the description of the density operator by the Wigner function, have been defined by applying the Weyl-Wigner transform to dyadic operators, linear in the state vector and anti-linear in a fixed 'window state vector'. Here aspects of this construction are explored, and a connection is established with Gabor's 'windowed Fourier transform'. The amplitudes that arise for simple quantum states from various choices of windows are presented as illustrations. Generalized Bargmann representations of the state vector appear as special cases, associated with Gaussian windows. For every choice of window, amplitudes lie in a corresponding linear subspace of square-integrable functions on phase space. A generalized Born interpretation of amplitudes is described, with both the Wigner function and a generalized Husimi function appearing as quantities linear in an amplitude and anti-linear in its complex conjugate. Schroedinger's time-dependent and time-independent equations are represented on phase space amplitudes, and their solutions described in simple cases.

  4. Support of the extremal measure in a vector equilibrium problem

    International Nuclear Information System (INIS)

    Lapik, M A

    2006-01-01

    A generalization of the Mhaskar-Saff functional is obtained for a vector equilibrium problem with an external field. As an application, the supports of the equilibrium measures are found in a special vector equilibrium problem with Nikishin matrix.

  5. Lefschetz thimbles in fermionic effective models with repulsive vector-field

    Science.gov (United States)

    Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira

    2018-06-01

    We discuss two problems in complexified auxiliary fields in fermionic effective models, the auxiliary sign problem associated with the repulsive vector-field and the choice of the cut for the scalar field appearing from the logarithmic function. In the fermionic effective models with attractive scalar and repulsive vector-type interaction, the auxiliary scalar and vector fields appear in the path integral after the bosonization of fermion bilinears. When we make the path integral well-defined by the Wick rotation of the vector field, the oscillating Boltzmann weight appears in the partition function. This "auxiliary" sign problem can be solved by using the Lefschetz-thimble path-integral method, where the integration path is constructed in the complex plane. Another serious obstacle in the numerical construction of Lefschetz thimbles is caused by singular points and cuts induced by multivalued functions of the complexified scalar field in the momentum integration. We propose a new prescription which fixes gradient flow trajectories on the same Riemann sheet in the flow evolution by performing the momentum integration in the complex domain.

  6. Kochen-Specker vectors

    International Nuclear Information System (INIS)

    Pavicic, Mladen; Merlet, Jean-Pierre; McKay, Brendan; Megill, Norman D

    2005-01-01

    We give a constructive and exhaustive definition of Kochen-Specker (KS) vectors in a Hilbert space of any dimension as well as of all the remaining vectors of the space. KS vectors are elements of any set of orthonormal states, i.e., vectors in an n-dimensional Hilbert space, H n , n≥3, to which it is impossible to assign 1s and 0s in such a way that no two mutually orthogonal vectors from the set are both assigned 1 and that not all mutually orthogonal vectors are assigned 0. Our constructive definition of such KS vectors is based on algorithms that generate MMP diagrams corresponding to blocks of orthogonal vectors in R n , on algorithms that single out those diagrams on which algebraic (0)-(1) states cannot be defined, and on algorithms that solve nonlinear equations describing the orthogonalities of the vectors by means of statistically polynomially complex interval analysis and self-teaching programs. The algorithms are limited neither by the number of dimensions nor by the number of vectors. To demonstrate the power of the algorithms, all four-dimensional KS vector systems containing up to 24 vectors were generated and described, all three-dimensional vector systems containing up to 30 vectors were scanned, and several general properties of KS vectors were found

  7. Prediction of Machine Tool Condition Using Support Vector Machine

    International Nuclear Information System (INIS)

    Wang Peigong; Meng Qingfeng; Zhao Jian; Li Junjie; Wang Xiufeng

    2011-01-01

    Condition monitoring and predicting of CNC machine tools are investigated in this paper. Considering the CNC machine tools are often small numbers of samples, a condition predicting method for CNC machine tools based on support vector machines (SVMs) is proposed, then one-step and multi-step condition prediction models are constructed. The support vector machines prediction models are used to predict the trends of working condition of a certain type of CNC worm wheel and gear grinding machine by applying sequence data of vibration signal, which is collected during machine processing. And the relationship between different eigenvalue in CNC vibration signal and machining quality is discussed. The test result shows that the trend of vibration signal Peak-to-peak value in surface normal direction is most relevant to the trend of surface roughness value. In trends prediction of working condition, support vector machine has higher prediction accuracy both in the short term ('One-step') and long term (multi-step) prediction compared to autoregressive (AR) model and the RBF neural network. Experimental results show that it is feasible to apply support vector machine to CNC machine tool condition prediction.

  8. Coal demand prediction based on a support vector machine model

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Cun-liang; Wu, Hai-shan; Gong, Dun-wei [China University of Mining & Technology, Xuzhou (China). School of Information and Electronic Engineering

    2007-01-15

    A forecasting model for coal demand of China using a support vector regression was constructed. With the selected embedding dimension, the output vectors and input vectors were constructed based on the coal demand of China from 1980 to 2002. After compared with lineal kernel and Sigmoid kernel, a radial basis function(RBF) was adopted as the kernel function. By analyzing the relationship between the error margin of prediction and the model parameters, the proper parameters were chosen. The support vector machines (SVM) model with multi-input and single output was proposed. Compared the predictor based on RBF neural networks with test datasets, the results show that the SVM predictor has higher precision and greater generalization ability. In the end, the coal demand from 2003 to 2006 is accurately forecasted. l0 refs., 2 figs., 4 tabs.

  9. Holographic vector superconductor in Gauss–Bonnet gravity

    Directory of Open Access Journals (Sweden)

    Jun-Wang Lu

    2016-02-01

    Full Text Available In the probe limit, we numerically study the holographic p-wave superconductor phase transitions in the higher curvature theory. Concretely, we study the influences of Gauss–Bonnet parameter α on the Maxwell complex vector model (MCV in the five-dimensional Gauss–Bonnet–AdS black hole and soliton backgrounds, respectively. In the two backgrounds, the improving Gauss–Bonnet parameter α and dimension of the vector operator Δ inhibit the vector condensate. In the black hole, the condensate quickly saturates a stable value at lower temperature. Moreover, both the stable value of condensate and the ratio ωg/Tc increase with α. In the soliton, the location of the second pole of the imaginary part increases with α, which implies that the energy of the quasiparticle excitation increases with the improving higher curvature correction. In addition, the influences of the Gauss–Bonnet correction on the MCV model are similar to the ones on the SU(2 p-wave model, which confirms that the MCV model is a generalization of the SU(2 Yang–Mills model even without the applied magnetic field to some extent.

  10. Approximation Of Multi-Valued Inverse Functions Using Clustering And Sugeno Fuzzy Inference

    Science.gov (United States)

    Walden, Maria A.; Bikdash, Marwan; Homaifar, Abdollah

    1998-01-01

    Finding the inverse of a continuous function can be challenging and computationally expensive when the inverse function is multi-valued. Difficulties may be compounded when the function itself is difficult to evaluate. We show that we can use fuzzy-logic approximators such as Sugeno inference systems to compute the inverse on-line. To do so, a fuzzy clustering algorithm can be used in conjunction with a discriminating function to split the function data into branches for the different values of the forward function. These data sets are then fed into a recursive least-squares learning algorithm that finds the proper coefficients of the Sugeno approximators; each Sugeno approximator finds one value of the inverse function. Discussions about the accuracy of the approximation will be included.

  11. Weaving Knotted Vector Fields with Tunable Helicity.

    Science.gov (United States)

    Kedia, Hridesh; Foster, David; Dennis, Mark R; Irvine, William T M

    2016-12-30

    We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.

  12. Elementary vectors

    CERN Document Server

    Wolstenholme, E Œ

    1978-01-01

    Elementary Vectors, Third Edition serves as an introductory course in vector analysis and is intended to present the theoretical and application aspects of vectors. The book covers topics that rigorously explain and provide definitions, principles, equations, and methods in vector analysis. Applications of vector methods to simple kinematical and dynamical problems; central forces and orbits; and solutions to geometrical problems are discussed as well. This edition of the text also provides an appendix, intended for students, which the author hopes to bridge the gap between theory and appl

  13. Adjusting the IP $\\beta$ Functions in RHIC

    CERN Document Server

    Wittmer, W; Pilat, F; Ptitsyn, V; Van Zeijts, J

    2004-01-01

    The beta functions at the IP can be adjusted without perturbation of other optics functions via several approaches. In this paper we describe a scheme based on a vector knob, which assigns fixed values to the different tuning quadrupoles and scales them by a common multiplier. The values for the knob vector were calculated for a lattice without any errors using MADX. Previous studies for the LHC [1] have shown that this approach can meet the design goals. A specific feature of the RHIC lattice is the nested power supply system. To cope with the resulting problems a detailed response matrix analysis has been carried out and different sets of knobs were calculated and compared. The knobs were tested at RHIC during the 2004 run and preliminary results are discussed. Simultaneously a new approach to measure the beam sizes of both colliding beams at the IP, based on the tunability provided by the knobs, was developed and tested.

  14. Integral-Value Models for Outcomes over Continuous Time

    DEFF Research Database (Denmark)

    Harvey, Charles M.; Østerdal, Lars Peter

    Models of preferences between outcomes over continuous time are important for individual, corporate, and social decision making, e.g., medical treatment, infrastructure development, and environmental regulation. This paper presents a foundation for such models. It shows that conditions on prefere...... on preferences between real- or vector-valued outcomes over continuous time are satisfied if and only if the preferences are represented by a value function having an integral form......Models of preferences between outcomes over continuous time are important for individual, corporate, and social decision making, e.g., medical treatment, infrastructure development, and environmental regulation. This paper presents a foundation for such models. It shows that conditions...

  15. Vector for IS element entrapment and functional characterization based on turning on expression of distal promoterless genes.

    Science.gov (United States)

    Szeverényi, I; Hodel, A; Arber, W; Olasz, F

    1996-09-26

    We constructed and characterized a novel trap vector for rapid isolation of insertion sequences. The strategy used for the isolation of IS elements is based on the ability of many IS elements to turn on the expression of otherwise silent genes distal to some sites of insertion. The simple transposition of an IS element can sometimes cause the constitutive expression of promoterless antibiotic resistance genes resulting in selectable phenotypes. The trap vector pAW1326 is based on a pBR322 replicon, it carries ampicillin and streptomycin resistance genes, and also silenced genes that confer chloramphenicol and kanamycin resistance once activated. The trap vector pAW1326 proved to be efficient and 85 percent of all isolated mutations were insertions. The majority of IS elements resident in the studied Escherichia coli strains tested became trapped, namely IS2, IS3, IS5, IS150, IS186 and Tn1000. We also encountered an insertion sequence, called IS10L/R-2, which is a hybrid of the two IS variants IS10L and IS10R. IS10L/R-2 is absent from most E. coli strains, but it is detectable in some strains such as JM109 which had been submitted to Tn10 mutagenesis. The distribution of the insertion sequences within the trap region was not random. Rather, the integration of chromosomal mobile genetic elements into the offered target sequence occurred in element-specific clusters. This is explained both by the target specificity and by the specific requirements for the activation of gene transcription by the DNA rearrangement. The employed trap vector pAW1326 proved to be useful for the isolation of mobile genetic elements, for a demonstration of their transposition activity as well as for the further characterization of some of the functional parameters of transposition.

  16. Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae).

    Science.gov (United States)

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Vincent, Savariar

    2012-02-01

    The leaf extract of Acalypha alnifolia with different solvents - hexane, chloroform, ethyl acetate, acetone and methanol - were tested for larvicidal activity against three important mosquitoes such as malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus. The medicinal plants were collected from the area around Kallar Hills near the Western Ghats, Coimbatore, India. A. alnifolia plant was washed with tap water and shade dried at room temperature. The dried leaves were powdered mechanically using commercial electrical stainless steel blender. The powder 800 g of the leaf material was extract with 2.5 litre of various each organic solvents such as hexane, chloroform, ethyl acetate, acetone, methanol for 8 h using Soxhlet apparatus, and filtered. The crude plant extracts were evaporated to dryness in a rotary vacuum evaporator. The yield of extracts was hexane (8.64 g), chloroform (10.74 g), ethyl acetate (9.14 g), acetone (10.02 g), and methanol (11.43 g). One gram of the each plant residue was dissolved separately in 100 ml of acetone (stock solution) from which different concentrations, i.e., 50, 150, 250, 350 and 450 ppm, was prepared. The hexane, chloroform, ethyl acetate, acetone was moderate considerable mortality; however, the highest larval mortality was methanolic extract observed in three mosquito vectors. The larval mortality was observed after 24 h exposure. No mortality was observed in the control. The early fourth-instar larvae of A. stephensi had values of LC(50) = 197.37, 178.75, 164.34, 149.90 and 125.73 ppm and LC(90) = 477.60, 459.21, 435.07, 416.20 and 395.50 ppm, respectively. The A. aegypti had values of LC(50) = 202.15, 182.58, 160.35, 146.07 and 128.55 ppm and LC(90) = 476.57, 460.83, 440.78, 415.38 and 381.67 ppm, respectively. The C. quinquefasciatus had values of LC(50) = 198.79, 172.48, 151.06, 140.69 and 127.98 ppm and LC(90) = 458.73, 430

  17. Localized bound states of fermions interacting via massive vector bosons

    International Nuclear Information System (INIS)

    Ionescu, D.C.; Reinhardt, J.; Mueller, B.; Greiner, W.; Soff, G.

    1988-11-01

    A model for composite consisting of fermions with internal degrees of freedom interacting via intermediate vector bosons (IVB) is constructed. We find highly localized, low-mass bound states in the Hartree-Fock approximation. We investigate the dependence of these states as function of the coupling constant and vector boson mass. In the limit of infinite vector boson mass the interaction is described by Fermi-type contact forces. (orig.)

  18. Unsupervised learning of binary vectors: A Gaussian scenario

    International Nuclear Information System (INIS)

    Copelli, Mauro; Van den Broeck, Christian

    2000-01-01

    We study a model of unsupervised learning where the real-valued data vectors are isotropically distributed, except for a single symmetry-breaking binary direction B(set-membership sign){-1,+1} N , onto which the projections have a Gaussian distribution. We show that a candidate vector J undergoing Gibbs learning in this discrete space, approaches the perfect match J=B exponentially. In addition to the second-order ''retarded learning'' phase transition for unbiased distributions, we show that first-order transitions can also occur. Extending the known result that the center of mass of the Gibbs ensemble has Bayes-optimal performance, we show that taking the sign of the components of this vector (clipping) leads to the vector with optimal performance in the binary space. These upper bounds are shown generally not to be saturated with the technique of transforming the components of a special continuous vector, except in asymptotic limits and in a special linear case. Simulations are presented which are in excellent agreement with the theoretical results. (c) 2000 The American Physical Society

  19. Vector-matrix-quaternion, array and arithmetic packages: All HAL/S functions implemented in Ada

    Science.gov (United States)

    Klumpp, Allan R.; Kwong, David D.

    1986-01-01

    The HAL/S avionics programmers have enjoyed a variety of tools built into a language tailored to their special requirements. Ada is designed for a broader group of applications. Rather than providing built-in tools, Ada provides the elements with which users can build their own. Standard avionic packages remain to be developed. These must enable programmers to code in Ada as they have coded in HAL/S. The packages under development at JPL will provide all of the vector-matrix, array, and arithmetic functions described in the HAL/S manuals. In addition, the linear algebra package will provide all of the quaternion functions used in Shuttle steering and Galileo attitude control. Furthermore, using Ada's extensibility, many quaternion functions are being implemented as infix operations; equivalent capabilities were never implemented in HAL/S because doing so would entail modifying the compiler and expanding the language. With these packages, many HAL/S expressions will compile and execute in Ada, unchanged. Others can be converted simply by replacing the implicit HAL/S multiply operator with the Ada *. Errors will be trapped and identified. Input/output will be convenient and readable.

  20. Application of Vector Triggering Random Decrement

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Ibrahim, S. R.; Brincker, Rune

    result is a Random Decrement function from each measurement. In traditional Random Decrement estimation the triggering condition is a scalar condition, which should only be fulfilled in a single measurement. In vector triggering Random Decrement the triggering condition is a vector condition......This paper deals with applications of the vector triggering Random Decrement technique. This technique is new and developed with the aim of minimizing estimation time and identification errors. The theory behind the technique is discussed in an accompanying paper. The results presented...... in this paper should be regarded as a further documentation of the technique. The key point in Random Decrement estimation is the formulation of a triggering condition. If the triggering condition is fulfilled a time segment from each measurement is picked out and averaged with previous time segments. The final...

  1. Application of Vector Triggering Random Decrement

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Ibrahim, S. R.; Brincker, Rune

    1997-01-01

    result is a Random Decrement function from each measurement. In traditional Random Decrement estimation the triggering condition is a scalar condition, which should only be fulfilled in a single measurement. In vector triggering Random Decrement the triggering condition is a vector condition......This paper deals with applications of the vector triggering Random Decrement technique. This technique is new and developed with the aim of minimizing estimation time and identification errors. The theory behind the technique is discussed in an accompanying paper. The results presented...... in this paper should be regarded as a further documentation of the technique. The key point in Random Decrement estimation is the formulation of a triggering condition. If the triggering condition is fulfilled a time segment from each measurement is picked out and averaged with previous time segments. The final...

  2. Genetics and evolution of function-valued traits: understanding environmentally responsive phenotypes.

    Science.gov (United States)

    Stinchcombe, John R; Kirkpatrick, Mark

    2012-11-01

    Many central questions in ecology and evolutionary biology require characterizing phenotypes that change with time and environmental conditions. Such traits are inherently functions, and new 'function-valued' methods use the order, spacing, and functional nature of the data typically ignored by traditional univariate and multivariate analyses. These rapidly developing methods account for the continuous change in traits of interest in response to other variables, and are superior to traditional summary-based analyses for growth trajectories, morphological shapes, and environmentally sensitive phenotypes. Here, we explain how function-valued methods make flexible use of data and lead to new biological insights. These approaches frequently offer enhanced statistical power, a natural basis of interpretation, and are applicable to many existing data sets. We also illustrate applications of function-valued methods to address ecological, evolutionary, and behavioral hypotheses, and highlight future directions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Research on establishing the rank and quotient of functions in product value analysisengineering

    Directory of Open Access Journals (Sweden)

    Gheorghe Burz

    2011-12-01

    Full Text Available The constructive conception of a product results from uniting subsystems with basic usage values. These basic usage values make up the functions of the product. The notion of product function is the basic notion that product value analysis/value engineering(VA/VE operates with, and function analysis together with creative thinking constitutes „the oxygen of value engineering”. The present paper defines the notion of rank of a product function, establishes the formula for calculating its value and it reviews some ways of Determining the levels of importance of product functions, with the aim of proposing a new distribution of the importance of these Functions within the total usage value. Establishing the rank of a function can be reduced to the issue of comparing product functions by experts, consumers, team members for VA/VE. Subsequently, the ensuing results are subjected to adequate mathematical operations in order to determin the levels of importance and the quotients of each function within the product ussage value, as well as the distribution of these quotients. Due to the fact that the quota or quotient of a function within the product usage value plays an important role in conceiving and designing products, more precisely, in the economical shaping of functions, the distribution law to which this parametre is subjected is also very important. A critical study of the methods currently used to determine function quotients shows that these methods conduct to a linear distribution of these quotients, and, under these Circumstances, the ratio between the highest level of importance and the lowest level of importance is equal to the number of functions – number that is very high indeed for complex products. On the other hand, it is rightly assumed that there is a considerable number of products for which the functions do not follow a linear distribution. The Zipf distribution or its generalised form, the Pareto

  4. BSDES IN GAMES, COUPLED WITH THE VALUE FUNCTIONS.ASSOCIATED NONLOCAL BELLMAN-ISAACS EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Tao HAO; Juan LI

    2017-01-01

    We establish a new type of backward stochastic differential equations (BSDEs) connected with stochastic differential games (SDGs),namely,BSDEs strongly coupled with the lower and the upper value functions of SDGs,where the lower and the upper value functions are defined through this BSDE.The existence and the uniqueness theorem and comparison theorem are proved for such equations with the help of an iteration method.We also show that the lower and the upper value functions satisfy the dynamic programming principle.Moreover,we study the associated Hamilton-Jacobi-Bellman-Isaacs (HJB-Isaacs) equations,which are nonlocal,and strongly coupled with the lower and the upper value functions.Using a new method,we characterize the pair (W,U) consisting of the lower and the upper value functions as the unique viscosity solution of our nonlocal HJB-Isaacs equation.Furthermore,the game has a value under the Isaacs' condition.

  5. RNA Interference in Insect Vectors for Plant Viruses

    Directory of Open Access Journals (Sweden)

    Surapathrudu Kanakala

    2016-12-01

    Full Text Available Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.

  6. Engineering BioBrick vectors from BioBrick parts

    Directory of Open Access Journals (Sweden)

    Knight Thomas F

    2008-04-01

    Full Text Available Abstract Background The underlying goal of synthetic biology is to make the process of engineering biological systems easier. Recent work has focused on defining and developing standard biological parts. The technical standard that has gained the most traction in the synthetic biology community is the BioBrick standard for physical composition of genetic parts. Parts that conform to the BioBrick assembly standard are BioBrick standard biological parts. To date, over 2,000 BioBrick parts have been contributed to, and are available from, the Registry of Standard Biological Parts. Results Here we extended the same advantages of BioBrick standard biological parts to the plasmid-based vectors that are used to provide and propagate BioBrick parts. We developed a process for engineering BioBrick vectors from BioBrick parts. We designed a new set of BioBrick parts that encode many useful vector functions. We combined the new parts to make a BioBrick base vector that facilitates BioBrick vector construction. We demonstrated the utility of the process by constructing seven new BioBrick vectors. We also successfully used the resulting vectors to assemble and propagate other BioBrick standard biological parts. Conclusion We extended the principles of part reuse and standardization to BioBrick vectors. As a result, myriad new BioBrick vectors can be readily produced from all existing and newly designed BioBrick parts. We invite the synthetic biology community to (1 use the process to make and share new BioBrick vectors; (2 expand the current collection of BioBrick vector parts; and (3 characterize and improve the available collection of BioBrick vector parts.

  7. A simple method of equine limb force vector analysis and its potential applications

    Directory of Open Access Journals (Sweden)

    Sarah Jane Hobbs

    2018-02-01

    Full Text Available Background Ground reaction forces (GRF measured during equine gait analysis are typically evaluated by analyzing discrete values obtained from continuous force-time data for the vertical, longitudinal and transverse GRF components. This paper describes a simple, temporo-spatial method of displaying and analyzing sagittal plane GRF vectors. In addition, the application of statistical parametric mapping (SPM is introduced to analyse differences between contra-lateral fore and hindlimb force-time curves throughout the stance phase. The overall aim of the study was to demonstrate alternative methods of evaluating functional (asymmetry within horses. Methods GRF and kinematic data were collected from 10 horses trotting over a series of four force plates (120 Hz. The kinematic data were used to determine clean hoof contacts. The stance phase of each hoof was determined using a 50 N threshold. Vertical and longitudinal GRF for each stance phase were plotted both as force-time curves and as force vector diagrams in which vectors originating at the centre of pressure on the force plate were drawn at intervals of 8.3 ms for the duration of stance. Visual evaluation was facilitated by overlay of the vector diagrams for different limbs. Summary vectors representing the magnitude (VecMag and direction (VecAng of the mean force over the entire stance phase were superimposed on the force vector diagram. Typical measurements extracted from the force-time curves (peak forces, impulses were compared with VecMag and VecAng using partial correlation (controlling for speed. Paired samples t-tests (left v. right diagonal pair comparison and high v. low vertical force diagonal pair comparison were performed on discrete and vector variables using traditional methods and Hotelling’s T2 tests on normalized stance phase data using SPM. Results Evidence from traditional statistical tests suggested that VecMag is more influenced by the vertical force and impulse, whereas

  8. Input vector optimization of feed-forward neural networks for fitting ab initio potential-energy databases

    Science.gov (United States)

    Malshe, M.; Raff, L. M.; Hagan, M.; Bukkapatnam, S.; Komanduri, R.

    2010-05-01

    The variation in the fitting accuracy of neural networks (NNs) when used to fit databases comprising potential energies obtained from ab initio electronic structure calculations is investigated as a function of the number and nature of the elements employed in the input vector to the NN. Ab initio databases for H2O2, HONO, Si5, and H2CCHBr were employed in the investigations. These systems were chosen so as to include four-, five-, and six-body systems containing first, second, third, and fourth row elements with a wide variety of chemical bonding and whose conformations cover a wide range of structures that occur under high-energy machining conditions and in chemical reactions involving cis-trans isomerizations, six different types of two-center bond ruptures, and two different three-center dissociation reactions. The ab initio databases for these systems were obtained using density functional theory/B3LYP, MP2, and MP4 methods with extended basis sets. A total of 31 input vectors were investigated. In each case, the elements of the input vector were chosen from interatomic distances, inverse powers of the interatomic distance, three-body angles, and dihedral angles. Both redundant and nonredundant input vectors were investigated. The results show that among all the input vectors investigated, the set employed in the Z-matrix specification of the molecular configurations in the electronic structure calculations gave the lowest NN fitting accuracy for both Si5 and vinyl bromide. The underlying reason for this result appears to be the discontinuity present in the dihedral angle for planar geometries. The use of trigometric functions of the angles as input elements produced significantly improved fitting accuracy as this choice eliminates the discontinuity. The most accurate fitting was obtained when the elements of the input vector were taken to have the form Rij-n, where the Rij are the interatomic distances. When the Levenberg-Marquardt procedure was modified

  9. vector bilinear autoregressive time series model and its superiority

    African Journals Online (AJOL)

    KEYWORDS: Linear time series, Autoregressive process, Autocorrelation function, Partial autocorrelation function,. Vector time .... important result on matrix algebra with respect to the spectral ..... application to covariance analysis of super-.

  10. Gauge Theories of Vector Particles

    Science.gov (United States)

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  11. Singular value correlation functions for products of Wishart random matrices

    International Nuclear Information System (INIS)

    Akemann, Gernot; Kieburg, Mario; Wei, Lu

    2013-01-01

    We consider the product of M quadratic random matrices with complex elements and no further symmetry, where all matrix elements of each factor have a Gaussian distribution. This generalizes the classical Wishart–Laguerre Gaussian unitary ensemble with M = 1. In this paper, we first compute the joint probability distribution for the singular values of the product matrix when the matrix size N and the number M are fixed but arbitrary. This leads to a determinantal point process which can be realized in two different ways. First, it can be written as a one-matrix singular value model with a non-standard Jacobian, or second, for M ⩾ 2, as a two-matrix singular value model with a set of auxiliary singular values and a weight proportional to the Meijer G-function. For both formulations, we determine all singular value correlation functions in terms of the kernels of biorthogonal polynomials which we explicitly construct. They are given in terms of the hypergeometric and Meijer G-functions, generalizing the Laguerre polynomials for M = 1. Our investigation was motivated from applications in telecommunication of multi-layered scattering multiple-input and multiple-output channels. We present the ergodic mutual information for finite-N for such a channel model with M − 1 layers of scatterers as an example. (paper)

  12. Genetic manipulation of endosymbionts to control vector and vector borne diseases

    Directory of Open Access Journals (Sweden)

    Jay Prakash Gupta

    Full Text Available Vector borne diseases (VBD are on the rise because of failure of the existing methods of control of vector and vector borne diseases and the climate change. A steep rise of VBDs are due to several factors like selection of insecticide resistant vector population, drug resistant parasite population and lack of effective vaccines against the VBDs. Environmental pollution, public health hazard and insecticide resistant vector population indicate that the insecticides are no longer a sustainable control method of vector and vector-borne diseases. Amongst the various alternative control strategies, symbiont based approach utilizing endosymbionts of arthropod vectors could be explored to control the vector and vector borne diseases. The endosymbiont population of arthropod vectors could be exploited in different ways viz., as a chemotherapeutic target, vaccine target for the control of vectors. Expression of molecules with antiparasitic activity by genetically transformed symbiotic bacteria of disease-transmitting arthropods may serve as a powerful approach to control certain arthropod-borne diseases. Genetic transformation of symbiotic bacteria of the arthropod vector to alter the vector’s ability to transmit pathogen is an alternative means of blocking the transmission of VBDs. In Indian scenario, where dengue, chikungunya, malaria and filariosis are prevalent, paratransgenic based approach can be used effectively. [Vet World 2012; 5(9.000: 571-576

  13. Vector bilinear autoregressive time series model and its superiority ...

    African Journals Online (AJOL)

    In this research, a vector bilinear autoregressive time series model was proposed and used to model three revenue series (X1, X2, X3) . The “orders” of the three series were identified on the basis of the distribution of autocorrelation and partial autocorrelation functions and were used to construct the vector bilinear models.

  14. Modified montmorillonite as vector for gene delivery.

    Science.gov (United States)

    Lin, Feng-Huei; Chen, Chia-Hao; Cheng, Winston T K; Kuo, Tzang-Fu

    2006-06-01

    Currently, gene delivery systems can be divided into two parts: viral or non-viral vectors. In general, viral vectors have a higher efficiency on gene delivery. However, they may sometimes provoke mutagenesis and carcinogenesis once re-activating in human body. Lots of non-viral vectors have been developed that tried to solve the problems happened on viral vectors. Unfortunately, most of non-viral vectors showed relatively lower transfection rate. The aim of this study is to develop a non-viral vector for gene delivery system. Montmorillonite (MMT) is one of clay minerals that consist of hydrated aluminum with Si-O tetrahedrons on the bottom of the layer and Al-O(OH)2 octahedrons on the top. The inter-layer space is about 12 A. The room is not enough to accommodate DNA for gene delivery. In the study, the cationic hexadecyltrimethylammonium (HDTMA) will be intercalated into the interlayer of MMT as a layer expander to expand the layer space for DNA accommodation. The optimal condition for the preparation of DNA-HDTMA-MMT is as follows: 1 mg of 1.5CEC HDTMA-MMT was prepared under pH value of 10.7 and with soaking time for 2 h. The DNA molecules can be protected from nuclease degradation, which can be proven by the electrophoresis analysis. DNA was successfully transfected into the nucleus of human dermal fibroblast and expressed enhanced green fluorescent protein (EGFP) gene with green fluorescence emission. The HDTMA-MMT has a great potential as a vector for gene delivery in the future.

  15. Emerging vector borne diseases – incidence through vectors

    Directory of Open Access Journals (Sweden)

    Sara eSavic

    2014-12-01

    Full Text Available Vector borne diseases use to be a major public health concern only in tropical and subtropical areas, but today they are an emerging threat for the continental and developed countries also. Nowdays, in intercontinetal countries, there is a struggle with emerging diseases which have found their way to appear through vectors. Vector borne zoonotic diseases occur when vectors, animal hosts, climate conditions, pathogens and susceptible human population exist at the same time, at the same place. Global climate change is predicted to lead to an increase in vector borne infectious diseases and disease outbreaks. It could affect the range and popultion of pathogens, host and vectors, transmission season, etc. Reliable surveilance for diseases that are most likely to emerge is required. Canine vector borne diseases represent a complex group of diseases including anaplasmosis, babesiosis, bartonellosis, borreliosis, dirofilariosis, erlichiosis, leishmaniosis. Some of these diseases cause serious clinical symptoms in dogs and some of them have a zoonotic potential with an effect to public health. It is expected from veterinarians in coordination with medical doctors to play a fudamental role at primeraly prevention and then treatment of vector borne diseases in dogs. The One Health concept has to be integrated into the struggle against emerging diseases.During a four year period, from 2009-2013, a total number of 551 dog samples were analysed for vector borne diseases (borreliosis, babesiosis, erlichiosis, anaplasmosis, dirofilariosis and leishmaniasis in routine laboratory work. The analysis were done by serological tests – ELISA for borreliosis, dirofilariosis and leishmaniasis, modified Knott test for dirofilariosis and blood smear for babesiosis, erlichiosis and anaplasmosis. This number of samples represented 75% of total number of samples that were sent for analysis for different diseases in dogs. Annually, on avarege more then half of the samples

  16. Vector mesons in dense matter and dilepton production in heavy ion collisions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Elvira

    2008-02-15

    The vector meson spectral functions are calculated to the first order in the nuclear matter density assuming the dominant contribution comes from the couplings of the vector mesons to nucleons and nucleon resonances. An attempt is made to reproduce the HADES dilepton production data with the in-medium spectral functions of the vector mesons using the Relativistic Quantum Molecular Dynamics (RQMD) transport model developed earlier for modelling heavy-ion collisions. The results are sensitive to the in-medium broadening of nucleon resonances. A generally good agreement with the HADES data is achieved for selfconsistent treatment of the nucleon resonance broadening and the vector meson spectral functions. (orig.)

  17. Vector mesons in dense matter and dilepton production in heavy ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Santini, Elvira

    2008-01-01

    The vector meson spectral functions are calculated to the first order in the nuclear matter density assuming the dominant contribution comes from the couplings of the vector mesons to nucleons and nucleon resonances. An attempt is made to reproduce the HADES dilepton production data with the in-medium spectral functions of the vector mesons using the Relativistic Quantum Molecular Dynamics (RQMD) transport model developed earlier for modelling heavy-ion collisions. The results are sensitive to the in-medium broadening of nucleon resonances. A generally good agreement with the HADES data is achieved for selfconsistent treatment of the nucleon resonance broadening and the vector meson spectral functions. (orig.)

  18. Predictive value and construct validity of the work functioning screener-healthcare (WFS-H).

    Science.gov (United States)

    Boezeman, Edwin J; Nieuwenhuijsen, Karen; Sluiter, Judith K

    2016-05-25

    To test the predictive value and convergent construct validity of a 6-item work functioning screener (WFS-H). Healthcare workers (249 nurses) completed a questionnaire containing the work functioning screener (WFS-H) and a work functioning instrument (NWFQ) measuring the following: cognitive aspects of task execution and general incidents, avoidance behavior, conflicts and irritation with colleagues, impaired contact with patients and their family, and level of energy and motivation. Productivity and mental health were also measured. Negative and positive predictive values, AUC values, and sensitivity and specificity were calculated to examine the predictive value of the screener. Correlation analysis was used to examine the construct validity. The screener had good predictive value, since the results showed that a negative screener score is a strong indicator of work functioning not hindered by mental health problems (negative predictive values: 94%-98%; positive predictive values: 21%-36%; AUC:.64-.82; sensitivity: 42%-76%; and specificity 85%-87%). The screener has good construct validity due to moderate, but significant (ppredictive value and good construct validity. Its score offers occupational health professionals a helpful preliminary insight into the work functioning of healthcare workers.

  19. Computation and analysis of the transverse current autocorrelation function, Ct(k,t), for small wave vectors: A molecular-dynamics study for a Lennard-Jones fluid

    Science.gov (United States)

    Vogelsang, R.; Hoheisel, C.

    1987-02-01

    Molecular-dynamics (MD) calculations are reported for three thermodynamic states of a Lennard-Jones fluid. Systems of 2048 particles and 105 integration steps were used. The transverse current autocorrelation function, Ct(k,t), has been determined for wave vectors of the range 0.5viscosities which showed a systematic behavior as a function of k. Extrapolation to the hydrodynamic region at k=0 gave shear viscosity coefficients in good agreement with direct Green-Kubo results obtained in previous work. The two-exponential model fit for the memory function proposed by other authors does not provide a reasonable description of the MD results, as the fit parameters show no systematic wave-vector dependence, although the Ct(k,t) functions are somewhat better fitted. Similarly, the semiempirical interpolation formula for the decay time based on the viscoelastic concept proposed by Akcasu and Daniels fails to reproduce the correct k dependence for the wavelength range investigated herein.

  20. MHD thrust vectoring of a rocket engine

    Science.gov (United States)

    Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic

    2016-09-01

    In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.

  1. Vector-vector production in photon-photon interactions

    International Nuclear Information System (INIS)

    Ronan, M.T.

    1988-01-01

    Measurements of exclusive untagged /rho/ 0 /rho/ 0 , /rho//phi/, K/sup *//bar K//sup */, and /rho/ω production and tagged /rho/ 0 /rho/ 0 production in photon-photon interactions by the TPC/Two-Gamma experiment are reviewed. Comparisons to the results of other experiments and to models of vector-vector production are made. Fits to the data following a four quark model prescription for vector meson pair production are also presented. 10 refs., 9 figs

  2. Relevance of normative values for functional capacity evaluation

    NARCIS (Netherlands)

    Soer, R.; Van Der Schans, C.; Geertzen, J.; Groothoff, J.; Brouwer, Sandra; Dijkstra, P.; Reneman, M.

    2009-01-01

    Background: Functional Capacity Evaluations (FCEs) are evaluations designed to measure capacity to perform activities and are used to make recommendations for participation in work. Normative values of healthy working subjects' performances are unavailable, thus patients' performances cannot be

  3. Link-Based Similarity Measures Using Reachability Vectors

    Directory of Open Access Journals (Sweden)

    Seok-Ho Yoon

    2014-01-01

    Full Text Available We present a novel approach for computing link-based similarities among objects accurately by utilizing the link information pertaining to the objects involved. We discuss the problems with previous link-based similarity measures and propose a novel approach for computing link based similarities that does not suffer from these problems. In the proposed approach each target object is represented by a vector. Each element of the vector corresponds to all the objects in the given data, and the value of each element denotes the weight for the corresponding object. As for this weight value, we propose to utilize the probability of reaching from the target object to the specific object, computed using the “Random Walk with Restart” strategy. Then, we define the similarity between two objects as the cosine similarity of the two vectors. In this paper, we provide examples to show that our approach does not suffer from the aforementioned problems. We also evaluate the performance of the proposed methods in comparison with existing link-based measures, qualitatively and quantitatively, with respect to two kinds of data sets, scientific papers and Web documents. Our experimental results indicate that the proposed methods significantly outperform the existing measures.

  4. Modeling a ground-coupled heat pump system by a support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2008-08-15

    This paper reports on a modeling study of ground coupled heat pump (GCHP) system performance (COP) by using a support vector machine (SVM) method. A GCHP system is a multi-variable system that is hard to model by conventional methods. As regards the SVM, it has a superior capability for generalization, and this capability is independent of the dimensionality of the input data. In this study, a SVM based method was intended to adopt GCHP system for efficient modeling. The Lin-kernel SVM method was quite efficient in modeling purposes and did not require a pre-knowledge about the system. The performance of the proposed methodology was evaluated by using several statistical validation parameters. It is found that the root-mean squared (RMS) value is 0.002722, the coefficient of multiple determinations (R{sup 2}) value is 0.999999, coefficient of variation (cov) value is 0.077295, and mean error function (MEF) value is 0.507437 for the proposed Lin-kernel SVM method. The optimum parameters of the SVM method were determined by using a greedy search algorithm. This search algorithm was effective for obtaining the optimum parameters. The simulation results show that the SVM is a good method for prediction of the COP of the GCHP system. The computation of SVM model is faster compared with other machine learning techniques (artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS)); because there are fewer free parameters and only support vectors (only a fraction of all data) are used in the generalization process. (author)

  5. Semiclassical initial value treatment of wave functions

    International Nuclear Information System (INIS)

    Kay, Kenneth G.

    2010-01-01

    A semiclassical initial value approximation for time-independent wave functions, previously derived for integrable systems, is rederived in a form which allows it to be applied to more general systems. The wave function is expressed as an integral over a Lagrangian manifold that is constructed by propagating trajectories from an initial manifold formed on a Poincare surface. Even in the case of bound, integrable systems, it is unnecessary to identify action-angle variables or construct quantizing tori. The approximation is numerically tested for separable and highly chaotic two-dimensional quartic oscillator systems. For the separable (but highly anharmonic) system, the accuracy of the approximation is found to be excellent: overlaps of the semiclassical wave functions with the corresponding quantum wave functions exceed 0.999. For the chaotic system, semiclassical-quantum overlaps are found to range from 0.989 to 0.994, indicating accuracy that is still very good, despite the short classical trajectories used in the calculations.

  6. Models for discrete-time self-similar vector processes with application to network traffic

    Science.gov (United States)

    Lee, Seungsin; Rao, Raghuveer M.; Narasimha, Rajesh

    2003-07-01

    The paper defines self-similarity for vector processes by employing the discrete-time continuous-dilation operation which has successfully been used previously by the authors to define 1-D discrete-time stochastic self-similar processes. To define self-similarity of vector processes, it is required to consider the cross-correlation functions between different 1-D processes as well as the autocorrelation function of each constituent 1-D process in it. System models to synthesize self-similar vector processes are constructed based on the definition. With these systems, it is possible to generate self-similar vector processes from white noise inputs. An important aspect of the proposed models is that they can be used to synthesize various types of self-similar vector processes by choosing proper parameters. Additionally, the paper presents evidence of vector self-similarity in two-channel wireless LAN data and applies the aforementioned systems to simulate the corresponding network traffic traces.

  7. Rare Hadronic B Decays to Vector, Axial-Vector and Tensors

    International Nuclear Information System (INIS)

    Gao, Y.Y.

    2011-01-01

    The authors review BABAR measurements of several rare B decays, including vector-axial-vector decays B ± → φK 1 ± (1270), B ± → φ K 1 ± (1400) and B ± → b 1 # -+ρ# ± , vector-vector decays B ± → φK* ± (1410), B 0 → K* 0 (bar K)* 0 , B 0 → K*0K*0 and B 0 → K*+K*-, vector-tensor decays B ± → φK* 2 (1430) ± and φK 2 (1770)/ ± (1820), and vector-scalar decays B ± → φK* 0 (1430) ± . Understanding the observed polarization pattern requires amplitude contributions from an uncertain source.

  8. Normal mammogram detection based on local probability difference transforms and support vector machines

    International Nuclear Information System (INIS)

    Chiracharit, W.; Kumhom, P.; Chamnongthai, K.; Sun, Y.; Delp, E.J.; Babbs, C.F

    2007-01-01

    Automatic detection of normal mammograms, as a ''first look'' for breast cancer, is a new approach to computer-aided diagnosis. This approach may be limited, however, by two main causes. The first problem is the presence of poorly separable ''crossed-distributions'' in which the correct classification depends upon the value of each feature. The second problem is overlap of the feature distributions that are extracted from digitized mammograms of normal and abnormal patients. Here we introduce a new Support Vector Machine (SVM) based method utilizing with the proposed uncrossing mapping and Local Probability Difference (LPD). Crossed-distribution feature pairs are identified and mapped into a new features that can be separated by a zero-hyperplane of the new axis. The probability density functions of the features of normal and abnormal mammograms are then sampled and the local probability difference functions are estimated to enhance the features. From 1,000 ground-truth-known mammograms, 250 normal and 250 abnormal cases, including spiculated lesions, circumscribed masses or microcalcifications, are used for training a support vector machine. The classification results tested with another 250 normal and 250 abnormal sets show improved testing performances with 90% sensitivity and 89% specificity. (author)

  9. Predictive value and construct validity of the work functioning screener-healthcare (WFS-H)

    Science.gov (United States)

    Boezeman, Edwin J.; Nieuwenhuijsen, Karen; Sluiter, Judith K.

    2016-01-01

    Objectives: To test the predictive value and convergent construct validity of a 6-item work functioning screener (WFS-H). Methods: Healthcare workers (249 nurses) completed a questionnaire containing the work functioning screener (WFS-H) and a work functioning instrument (NWFQ) measuring the following: cognitive aspects of task execution and general incidents, avoidance behavior, conflicts and irritation with colleagues, impaired contact with patients and their family, and level of energy and motivation. Productivity and mental health were also measured. Negative and positive predictive values, AUC values, and sensitivity and specificity were calculated to examine the predictive value of the screener. Correlation analysis was used to examine the construct validity. Results: The screener had good predictive value, since the results showed that a negative screener score is a strong indicator of work functioning not hindered by mental health problems (negative predictive values: 94%-98%; positive predictive values: 21%-36%; AUC:.64-.82; sensitivity: 42%-76%; and specificity 85%-87%). The screener has good construct validity due to moderate, but significant (pvalue and good construct validity. Its score offers occupational health professionals a helpful preliminary insight into the work functioning of healthcare workers. PMID:27010085

  10. Time-varying vector fields and their flows

    CERN Document Server

    Jafarpour, Saber

    2014-01-01

    This short book provides a comprehensive and unified treatment of time-varying vector fields under a variety of regularity hypotheses, namely finitely differentiable, Lipschitz, smooth, holomorphic, and real analytic. The presentation of this material in the real analytic setting is new, as is the manner in which the various hypotheses are unified using functional analysis. Indeed, a major contribution of the book is the coherent development of locally convex topologies for the space of real analytic sections of a vector bundle, and the development of this in a manner that relates easily to classically known topologies in, for example, the finitely differentiable and smooth cases. The tools used in this development will be of use to researchers in the area of geometric functional analysis.

  11. Controllability of linear vector fields on Lie groups

    International Nuclear Information System (INIS)

    Ayala, V.; Tirao, J.

    1994-11-01

    In this paper, we shall deal with a linear control system Σ defined on a Lie group G with Lie algebra g. The dynamic of Σ is determined by the drift vector field which is an element in the normalizer of g in the Lie algebra of all smooth vector field on G and by the control vectors which are elements in g considered as left-invariant vector fields. We characterize the normalizer of g identifying vector fields on G with C ∞ -functions defined on G into g. For this class of control systems we study algebraic conditions for the controllability problem. Indeed, we prove that if the drift vector field has a singularity then the Lie algebra rank condition is necessary for the controllability property, but in general this condition does not determine this property. On the other hand, we show that the rank (ad-rank) condition is sufficient for the controllability of Σ. In particular, we extend the fundamental Kalman's theorem when G is an Abelian connected Lie group. Our work is related with a paper of L. Markus and we also improve his results. (author). 7 refs

  12. Fast multi-output relevance vector regression

    OpenAIRE

    Ha, Youngmin

    2017-01-01

    This paper aims to decrease the time complexity of multi-output relevance vector regression from O(VM^3) to O(V^3+M^3), where V is the number of output dimensions, M is the number of basis functions, and V

  13. Derivatives, forms and vector fields on the κ-deformed Euclidean space

    International Nuclear Information System (INIS)

    Dimitrijevic, Marija; Moeller, Lutz; Tsouchnika, Efrossini

    2004-01-01

    The model of κ-deformed space is an interesting example of a noncommutative space, since it allows a deformed symmetry. In this paper, we present new results concerning different sets of derivatives on the coordinate algebra of κ-deformed Euclidean space. We introduce a differential calculus with two interesting sets of one-forms and higher-order forms. The transformation law of vector fields is constructed in accordance with the transformation behaviour of derivatives. The crucial property of the different derivatives, forms and vector fields is that in an n-dimensional spacetime there are always n of them. This is the key difference with respect to conventional approaches, in which the differential calculus is (n + 1)-dimensional. This work shows that derivative-valued quantities such as derivative-valued vector fields appear in a generic way on noncommutative spaces

  14. Vectors and Rotations in 3-Dimensions: Vector Algebra for the C++ Programmer

    Science.gov (United States)

    2016-12-01

    release; distribution is unlimited. 1. Introduction This report describes 2 C++ classes: a Vector class for performing vector algebra in 3-dimensional...ARL-TR-7894•DEC 2016 US Army Research Laboratory Vectors and Rotations in 3-Dimensions:Vector Algebra for the C++ Programmer by Richard Saucier...Army Research Laboratory Vectors and Rotations in 3-Dimensions:Vector Algebra for the C++ Programmer by Richard Saucier Survivability/Lethality

  15. Scalar-vector unitarity mixing in ξ gauge

    International Nuclear Information System (INIS)

    Kaloshin, A.E.; Radzhabov, A.E.

    2003-01-01

    The effect of unitary mixing of scalar and vector fields in general ξ gauge is studied. This effect takes place for nonconserved vector currents and ξ gauge generates some additional problems with unphysical scalar field. Solutions of Dyson-Schwinger equations and performed the renormalization of full propagators are obtained. The key feature of renormalization is the usage of Ward identity which relates some different Green functions. It is found that using of Ward identity leads to disappearing of ξ dependence in renormalization matrix element [ru

  16. Lentiviral Vector Gene Transfer to Porcine Airways

    Directory of Open Access Journals (Sweden)

    Patrick L Sinn

    2012-01-01

    Full Text Available In this study, we investigated lentiviral vector development and transduction efficiencies in well-differentiated primary cultures of pig airway epithelia (PAE and wild-type pigs in vivo. We noted gene transfer efficiencies similar to that observed for human airway epithelia (HAE. Interestingly, feline immunodeficiency virus (FIV-based vectors transduced immortalized pig cells as well as pig primary cells more efficiently than HIV-1–based vectors. PAE express TRIM5α, a well-characterized species-specific lentiviral restriction factor. We contrasted the restrictive properties of porcine TRIM5α against FIV- and HIV-based vectors using gain and loss of function approaches. We observed no effect on HIV-1 or FIV conferred transgene expression in response to porcine TRIM5α overexpression or knockdown. To evaluate the ability of GP64-FIV to transduce porcine airways in vivo, we delivered vector expressing mCherry to the tracheal lobe of the lung and the ethmoid sinus of 4-week-old pigs. One week later, epithelial cells expressing mCherry were readily detected. Our findings indicate that pseudotyped FIV vectors confer similar tropisms in porcine epithelia as observed in human HAE and provide further support for the selection of GP64 as an appropriate envelope pseudotype for future preclinical gene therapy studies in the porcine model of cystic fibrosis (CF.

  17. Expression of relativistic amplitudes in terms of wave functions

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1978-01-01

    The conditions under which relativistic amplitudes may be expressed in terms of the wave functions are analyzed within the framework of the invariant diagram technique which appears on formulation of field theory on the light front. The amplitudes depend on the 4-vector ω which defines the surface of the light front. A rule is formulated for the determination of those values of the 4-vector ω for which the diagram contribution, which cannot be expressed in terms of the wave functions, is minimum. The present investigation is equivalent to a study of the dependence of the amplitudes of the old fashioned perburbation theory in the infinite momentum depending on the direction of the infinite momentum

  18. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology.

    Science.gov (United States)

    Sizemore, Rachel J; Seeger-Armbruster, Sonja; Hughes, Stephanie M; Parr-Brownlie, Louise C

    2016-04-01

    Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients. Copyright © 2016 the American Physiological Society.

  19. Positive definite functions and dual pairs of locally convex spaces

    Directory of Open Access Journals (Sweden)

    Daniel Alpay

    2018-01-01

    Full Text Available Using pairs of locally convex topological vector spaces in duality and topologies defined by directed families of sets bounded with respect to the duality, we prove general factorization theorems and general dilation theorems for operator-valued positive definite functions.

  20. Multiscale Distance Coherence Vector Algorithm for Content-Based Image Retrieval

    Science.gov (United States)

    Jiexian, Zeng; Xiupeng, Liu

    2014-01-01

    Multiscale distance coherence vector algorithm for content-based image retrieval (CBIR) is proposed due to the same descriptor with different shapes and the shortcomings of antinoise performance of the distance coherence vector algorithm. By this algorithm, the image contour curve is evolved by Gaussian function first, and then the distance coherence vector is, respectively, extracted from the contour of the original image and evolved images. Multiscale distance coherence vector was obtained by reasonable weight distribution of the distance coherence vectors of evolved images contour. This algorithm not only is invariable to translation, rotation, and scaling transformation but also has good performance of antinoise. The experiment results show us that the algorithm has a higher recall rate and precision rate for the retrieval of images polluted by noise. PMID:24883416

  1. Polarization speckles and generalized Stokes vector wave: a review [invited

    DEFF Research Database (Denmark)

    Takeda, Mitsuo; Wang, Wei; Hanson, Steen Grüner

    2010-01-01

    We review some of the statistical properties of polarization-related speckle phenomena, with an introduction of a less known concept of polarization speckles and their spatial degree of polarization. As a useful means to characterize twopoint vector field correlations, we review the generalized...... Stokes parameters proposed by Korotkova and Wolf, and introduce its time-domain representation to describe the space-time evolution of the correlation between random electric vector fields at two different space-time points. This time-domain generalized Stokes vector, with components similar to those...... of the beam coherence polarization matrix proposed by Gori, is shown to obey the wave equation in exact analogy to a coherence function of scalar fields. Because of this wave nature, the time-domain generalized Stokes vector is referred to as generalized Stokes vector wave in this paper....

  2. Measurement of Charmless B to Vector-Vector decays at BaBar

    International Nuclear Information System (INIS)

    Olaiya, Emmanuel

    2011-01-01

    The authors present results of B → vector-vector (VV) and B → vector-axial vector (VA) decays B 0 → φX(X = φ,ρ + or ρ 0 ), B + → φK (*)+ , B 0 → K*K*, B 0 → ρ + b 1 - and B + → K* 0 α 1 + . The largest dataset used for these results is based on 465 x 10 6 Υ(4S) → B(bar B) decays, collected with the BABAR detector at the PEP-II B meson factory located at the Stanford Linear Accelerator Center (SLAC). Using larger datasets, the BABAR experiment has provided more precise B → VV measurements, further supporting the smaller than expected longitudinal polarization fraction of B → φK*. Additional B meson to vector-vector and vector-axial vector decays have also been studied with a view to shedding light on the polarization anomaly. Taking into account the available errors, we find no disagreement between theory and experiment for these additional decays.

  3. Fuzzy-based multi-kernel spherical support vector machine for ...

    Indian Academy of Sciences (India)

    In the proposed classifier, we design a new multi-kernel function based on the fuzzy triangular membership function. Finally, a newly developed multi-kernel function is incorporated into the spherical support vector machine to enhance the performance significantly. The experimental results are evaluated and performance is ...

  4. The value of the abdominal radiograph in children with functional gastrointestinal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Bongers, Marloes E.J. [Department of Pediatric Gastroenterology and Nutrition, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands)]. E-mail: mbongers@uva.amc.nl; Voskuijl, Wieger P. [Department of Pediatric Gastroenterology and Nutrition, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Rijn, Rick R. van [Department of Pediatric Radiology, Emma Children' s Hospital/Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Benninga, Marc A. [Department of Pediatric Gastroenterology and Nutrition, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands)

    2006-07-15

    Functional gastrointestinal disorder is a common problem in childhood. The symptoms vary from a relative mild gastrointestinal problem such as abdominal pain or infrequent defecation to severe problems with fecal impaction and fecal incontinence. The aim of this review is to describe and evaluate the value of the different existing methods to assess fecal loading on an abdominal radiograph with or without the use of radio-opaque markers in the diagnosis of functional abdominal pain, functional constipation and functional non-retentive fecal incontinence. In our opinion, the abdominal radiograph has limited value in the diagnostic work-up of children with functional gastrointestinal disorders.

  5. The value of the abdominal radiograph in children with functional gastrointestinal disorders

    International Nuclear Information System (INIS)

    Bongers, Marloes E.J.; Voskuijl, Wieger P.; Rijn, Rick R. van; Benninga, Marc A.

    2006-01-01

    Functional gastrointestinal disorder is a common problem in childhood. The symptoms vary from a relative mild gastrointestinal problem such as abdominal pain or infrequent defecation to severe problems with fecal impaction and fecal incontinence. The aim of this review is to describe and evaluate the value of the different existing methods to assess fecal loading on an abdominal radiograph with or without the use of radio-opaque markers in the diagnosis of functional abdominal pain, functional constipation and functional non-retentive fecal incontinence. In our opinion, the abdominal radiograph has limited value in the diagnostic work-up of children with functional gastrointestinal disorders

  6. Taser X26 discharges in swine: ventricular rhythm capture is dependent on discharge vector.

    Science.gov (United States)

    Valentino, Daniel J; Walter, Robert J; Dennis, Andrew J; Margeta, Bosko; Starr, Frederic; Nagy, Kimberly K; Bokhari, Faran; Wiley, Dorion E; Joseph, Kimberly T; Roberts, Roxanne R

    2008-12-01

    Data from our previous studies indicate that Taser X26 stun devices can acutely alter cardiac function in swine. We hypothesized that most transcardiac discharge vectors would capture ventricular rhythm, but that other vectors, not traversing the heart, would fail to capture the ventricular rhythm. Using an Institutional Animal Care and Use Committee (IACUC) approved protocol, four Yorkshire pigs (25-36 kg) were anesthetized, paralyzed with succinylcholine (2 mg/kg), and then exposed to 10 second discharges from a police-issue Taser X26. For most discharges, the barbed darts were pushed manually into the skin to their full depth (12 mm) and were arranged in either transcardiac (such that a straight line connecting the darts would cross the region of the heart) or non-transcardiac vectors. A total of 11 different vectors and 22 discharge conditions were studied. For each vector, by simply rotating the cartridge 180-degrees in the gun, the primary current-emitting dart was changed and the direction of current flow during the discharge was reversed without physically moving the darts. Echocardiography and electrocardiograms (ECGs) were performed before, during, and after all discharges. p values captured immediately in 52.5% (31 of 59) of the discharges on the ventral surface of the animal. In each of these cases, capture of the ventricular rhythm with rapid ventricular contractions consistent with ventricular tachycardia (VT) or flutter was seen throughout the discharge. A total of 27 discharges were administered with transcardiac vectors and ventricular capture occurred in 23 of these discharges (85.2% capture rate). A total of 32 non-transcardiac discharges were administered ventrally and capture was seen in only eight of these (25% capture rate). Ventricular fibrillation (VF) was seen with two vectors, both of which were transcardiac. In the remaining animals, VT occurred postdischarge until sinus rhythm was regained spontaneously. For most transcardiac vectors

  7. Computation of Value Functions in Nonlinear Differential Games with State Constraints

    KAUST Repository

    Botkin, Nikolai

    2013-01-01

    Finite-difference schemes for the computation of value functions of nonlinear differential games with non-terminal payoff functional and state constraints are proposed. The solution method is based on the fact that the value function is a generalized viscosity solution of the corresponding Hamilton-Jacobi-Bellman-Isaacs equation. Such a viscosity solution is defined as a function satisfying differential inequalities introduced by M. G. Crandall and P. L. Lions. The difference with the classical case is that these inequalities hold on an unknown in advance subset of the state space. The convergence rate of the numerical schemes is given. Numerical solution to a non-trivial three-dimensional example is presented. © 2013 IFIP International Federation for Information Processing.

  8. Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature

    International Nuclear Information System (INIS)

    Himmetoglu, Burak; Peloso, Marco; Contaldi, Carlo R.

    2009-01-01

    We prove that many cosmological models characterized by vectors nonminimally coupled to the curvature (such as the Turner-Widrow mechanism for the production of magnetic fields during inflation, and models of vector inflation or vector curvaton) contain ghosts. The ghosts are associated with the longitudinal vector polarization present in these models and are found from studying the sign of the eigenvalues of the kinetic matrix for the physical perturbations. Ghosts introduce two main problems: (1) they make the theories ill defined at the quantum level in the high energy/subhorizon regime (and create serious problems for finding a well-behaved UV completion), and (2) they create an instability already at the linearized level. This happens because the eigenvalue corresponding to the ghost crosses zero during the cosmological evolution. At this point the linearized equations for the perturbations become singular (we show that this happens for all the models mentioned above). We explicitly solve the equations in the simplest cases of a vector without a vacuum expectation value in a Friedmann-Robertson-Walker geometry, and of a vector with a vacuum expectation value plus a cosmological constant, and we show that indeed the solutions of the linearized equations diverge when these equations become singular.

  9. Quark-gluon plasma tomography by vector mesons

    International Nuclear Information System (INIS)

    Lovas, I.

    2001-01-01

    Full text: The most important aim of relativistic heavy ion experiments is the observation f the quark-gluon plasma formation. In order to detect the transition into the plasma state it is desirable to map the density profile of the fireball formed in the collision. Here we investigate the possibility of this mapping by tomography. The fireball is characterized by the impact parameter vector b, which can be determined from the multiplicity and the angular distribution of the reaction products. By appropriate rotations the b vectors of each collision can be aligned into a fixed direction. Using the measured values of the momentum distributions independent integral equations can be formulated for the unknown emission densities (EM(r) and for the unknown absorption densities (Δ μ M (r)) of the different vector mesons M(≡ ω 0 , ρ 0 , φ 0 , ψ 0 , ψ 0' , Υ). At a fixed value of M and b the number of detected mesons N M (p,b) with momentum p, can be expressed by the following formula: N M (p,b) = ∫ V(b) dr EM(r) exp[-μ M (p)L(r,p o )] V(b) R(r, po)] exp[- ∫ from r until R(r,p 0 ) dl ' Δ μ M (r ' ,p)], where the average value of the absorption coefficient having no r dependence is denoted by μ(p), while Δ μM is defined as Δ μM = μ M - μ- M . The meson arrives to the surface of the fireball at R(r, p 0 ). The length of the path between r and R is denoted by L(r, po). The equation given above can be considered as an integral equation. Unfortunately it can not be transformed into an exact system of linear equations. However an iterative procedure can be constructed in such a way that in every iterative step a linear system of equations must be solved. N M (p,b) = ∫ V(b) dr exp[- μ M (p) L(r,p o )] [E M n (r) Σ from k=O until (n-1) (1/k !) (- ∫ from r until R (r, p 0 ) dl ' Δ μM n-1 (r ' , p) k + E M n-1 (r) (1/n !) (- ∫ from r until R(r, p 0 ) dl ' Δ μM n-1 (r ' , p)) (n-1) (- ∫ from r until R(r, p 0 ) dl ' Δ μM (n) (r ' , p))]. Since

  10. Wiener-Hopf factorization of piecewise meromorphic matrix-valued functions

    International Nuclear Information System (INIS)

    Adukov, Victor M

    2009-01-01

    Let D + be a multiply connected domain bounded by a contour Γ, let D - be the complement of D + union Γ in C-bar=C union {∞}, and a(t) be a continuous invertible matrix-valued function on Γ which can be meromorphically extended into the open disconnected set D - (as a piecewise meromorphic matrix-valued function). An explicit solution of the Wiener-Hopf factorization problem for a(t) is obtained and the partial factorization indices of a(t) are calculated. Here an explicit solution of a factorization problem is meant in the sense of reducing it to the investigation of finitely many systems of linear algebraic equations with matrices expressed in closed form, that is, in quadratures. Bibliography: 15 titles.

  11. Renormalization of the axial-vector current in QCD

    International Nuclear Information System (INIS)

    Chiu, C.B.; Pasupathy, J.; Wilson, S.L.

    1985-01-01

    Following the method of Ioffe and Smilga, the propagation of the baryon current in an external constant axial-vector field is considered. The close similarity of the operator-product expansion with and without an external field is shown to arise from the chiral invariance of gauge interactions in perturbation theory. Several sum rules corresponding to various invariants both for the nucleon and the hyperons are derived. The analysis of the sum rules is carried out by two independent methods, one called the ratio method and the other called the continuum method, paying special attention to the nondiagonal transitions induced by the external field between the ground state and excited states. Up to operators of dimension six, two new external-field-induced vacuum expectation values enter the calculations. Previous work determining these expectation values from PCAC (partial conservation of axial-vector current) are utilized. Our determination from the sum rules of the nucleon axial-vector renormalization constant G/sub A/, as well as the Cabibbo coupling constants in the SU 3 -symmetric limit (m/sub s/ = 0), is in reasonable accord with the experimental values. Uncertainties in the analysis are pointed out. The case of broken flavor SU 3 symmetry is also considered. While in the ratio method, the results are stable for variation of the fiducial interval of the Borel mass parameter over which the left-hand side and the right-hand side of the sum rules are matched, in the continuum method the results are less stable. Another set of sum rules determines the value of the linear combination 7F-5D to be roughly-equal0, or D/(F+D)roughly-equal(7/12). .AE

  12. Switching non-local vector median filter

    Science.gov (United States)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2016-04-01

    This paper describes a novel image filtering method that removes random-valued impulse noise superimposed on a natural color image. In impulse noise removal, it is essential to employ a switching-type filtering method, as used in the well-known switching median filter, to preserve the detail of an original image with good quality. In color image filtering, it is generally preferable to deal with the red (R), green (G), and blue (B) components of each pixel of a color image as elements of a vectorized signal, as in the well-known vector median filter, rather than as component-wise signals to prevent a color shift after filtering. By taking these fundamentals into consideration, we propose a switching-type vector median filter with non-local processing that mainly consists of a noise detector and a noise removal filter. Concretely, we propose a noise detector that proactively detects noise-corrupted pixels by focusing attention on the isolation tendencies of pixels of interest not in an input image but in difference images between RGB components. Furthermore, as the noise removal filter, we propose an extended version of the non-local median filter, we proposed previously for grayscale image processing, named the non-local vector median filter, which is designed for color image processing. The proposed method realizes a superior balance between the preservation of detail and impulse noise removal by proactive noise detection and non-local switching vector median filtering, respectively. The effectiveness and validity of the proposed method are verified in a series of experiments using natural color images.

  13. Lentiviral vector mediated modification of mesenchymal stem cells & enhanced survival in an in vitro model of ischaemia.

    LENUS (Irish Health Repository)

    McGinley, Lisa

    2012-01-31

    INTRODUCTION: A combination of gene and cell therapies has the potential to significantly enhance the therapeutic value of mesenchymal stem cells (MSCs). The development of efficient gene delivery methods is essential if MSCs are to be of benefit using such an approach. Achieving high levels of transgene expression for the required period of time, without adversely affecting cell viability and differentiation capacity, is crucial. In the present study, we investigate lentiviral vector-mediated genetic modification of rat bone-marrow derived MSCs and examine any functional effect of such genetic modification in an in vitro model of ischaemia. METHODS: Transduction efficiency and transgene persistence of second and third generation rHIV-1 based lentiviral vectors were tested using reporter gene constructs. Use of the rHIV-pWPT-EF1-alpha-GFP-W vector was optimised in terms of dose, toxicity, cell species, and storage. The in vivo condition of ischaemia was modelled in vitro by separation into its associated constituent parts i.e. hypoxia, serum and glucose deprivation, in which the effect of therapeutic gene over-expression on MSC survival was investigated. RESULTS: The second generation lentiviral vector rHIV-pWPT-EF1-alpha-GFP-W, was the most efficient and provided the most durable transgene expression of the vectors tested. Transduction with this vector did not adversely affect MSC morphology, viability or differentiation potential, and transgene expression levels were unaffected by cryopreservation of transduced cells. Over-expression of HSP70 resulted in enhanced MSC survival and increased resistance to apoptosis in conditions of hypoxia and ischaemia. MSC differentiation capacity was significantly reduced after oxygen deprivation, but was preserved with HSP70 over-expression. CONCLUSIONS: Collectively, these data validate the use of lentiviral vectors for efficient in vitro gene delivery to MSCs and suggest that lentiviral vector transduction can facilitate

  14. Lentiviral vector mediated modification of mesenchymal stem cells & enhanced survival in an in vitro model of ischaemia

    LENUS (Irish Health Repository)

    McGinley, Lisa

    2011-03-07

    Abstract Introduction A combination of gene and cell therapies has the potential to significantly enhance the therapeutic value of mesenchymal stem cells (MSCs). The development of efficient gene delivery methods is essential if MSCs are to be of benefit using such an approach. Achieving high levels of transgene expression for the required period of time, without adversely affecting cell viability and differentiation capacity, is crucial. In the present study, we investigate lentiviral vector-mediated genetic modification of rat bone-marrow derived MSCs and examine any functional effect of such genetic modification in an in vitro model of ischaemia. Methods Transduction efficiency and transgene persistence of second and third generation rHIV-1 based lentiviral vectors were tested using reporter gene constructs. Use of the rHIV-pWPT-EF1-α-GFP-W vector was optimised in terms of dose, toxicity, cell species, and storage. The in vivo condition of ischaemia was modelled in vitro by separation into its associated constituent parts i.e. hypoxia, serum and glucose deprivation, in which the effect of therapeutic gene over-expression on MSC survival was investigated. Results The second generation lentiviral vector rHIV-pWPT-EF1-α-GFP-W, was the most efficient and provided the most durable transgene expression of the vectors tested. Transduction with this vector did not adversely affect MSC morphology, viability or differentiation potential, and transgene expression levels were unaffected by cryopreservation of transduced cells. Over-expression of HSP70 resulted in enhanced MSC survival and increased resistance to apoptosis in conditions of hypoxia and ischaemia. MSC differentiation capacity was significantly reduced after oxygen deprivation, but was preserved with HSP70 over-expression. Conclusions Collectively, these data validate the use of lentiviral vectors for efficient in vitro gene delivery to MSCs and suggest that lentiviral vector transduction can facilitate

  15. Insulated piggyBac vectors for insect transgenesis

    Directory of Open Access Journals (Sweden)

    Horn Carsten

    2006-06-01

    Full Text Available Abstract Background Germ-line transformation of insects is now a widely used method for analyzing gene function and for the development of genetically modified strains suitable for pest control programs. The most widely used transposable element for the germ-line transformation of insects is piggyBac. The site of integration of the transgene can influence gene expression due to the effects of nearby transcription enhancers or silent heterochromatic regions. Position effects can be minimized by flanking a transgene with insulator elements. The scs/scs' and gypsy insulators from Drosophila melanogaster as well as the chicken β-globin HS4 insulator function in both Drosophila and mammalian cells. Results To minimize position effects we have created a set of piggyBac transformation vectors that contain either the scs/scs', gypsy or chicken β-globin HS4 insulators. The vectors contain either fluorescent protein or eye color marker genes and have been successfully used for germ-line transformation of Drosophila melanogaster. A set of the scs/scs' vectors contains the coral reef fluorescent protein marker genes AmCyan, ZsGreen and DsRed that have not been optimized for translation in human cells. These marker genes are controlled by a combined GMR-3xP3 enhancer/promoter that gives particularly strong expression in the eyes. This is also the first report of the use of the ZsGreen and AmCyan reef fluorescent proteins as transformation markers in insects. Conclusion The insulated piggyBac vectors should protect transgenes against position effects and thus facilitate fine control of gene expression in a wide spectrum of insect species. These vectors may also be used for transgenesis in other invertebrate species.

  16. Arithmetical Fourier and Limit values of elliptic modular functions

    Indian Academy of Sciences (India)

    2

    In order to remove singularities, Riemann used a well-known device of taking the odd part (3.2) or an alternate sum (3.3) to be stated in §3. In §2 of this note we shall reveal that the limit values of elliptic modular functions in Riemann's fragment II evaluated by the differences of polyloga- rithm function l1(x) of order 1 (cf.

  17. Vectorization of KENO IV code and an estimate of vector-parallel processing

    International Nuclear Information System (INIS)

    Asai, Kiyoshi; Higuchi, Kenji; Katakura, Jun-ichi; Kurita, Yutaka.

    1986-10-01

    The multi-group criticality safety code KENO IV has been vectorized and tested on FACOM VP-100 vector processor. At first the vectorized KENO IV on a scalar processor became slower than the original one by a factor of 1.4 because of the overhead introduced by the vectorization. Making modifications of algorithms and techniques for vectorization, the vectorized version has become faster than the original one by a factor of 1.4 and 3.0 on the vector processor for sample problems of complex and simple geometries, respectively. For further speedup of the code, some improvements on compiler and hardware, especially on addition of Monte Carlo pipelines to the vector processor, are discussed. Finally a pipelined parallel processor system is proposed and its performance is estimated. (author)

  18. An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host factor gene.

    Science.gov (United States)

    Cui, Hongguang; Wang, Aiming

    2017-03-01

    RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus-induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile period and are recalcitrant to genetic transformation. Here, we report the development of a viral vector derived from Prunus necrotic ringspot virus (PNRSV), a widespread fruit tree virus that is endemic in all Prunus fruit production countries and regions in the world. We show that the modified PNRSV vector, harbouring the sense-orientated target gene sequence of 100-200 bp in length in genomic RNA3, could efficiently trigger the silencing of a transgene or an endogenous gene in the model plant Nicotiana benthamiana. We further demonstrate that the PNRSV-based vector could be manipulated to silence endogenous genes in peach such as eukaryotic translation initiation factor 4E isoform (eIF(iso)4E), a host factor of many potyviruses including Plum pox virus (PPV). Moreover, the eIF(iso)4E-knocked down peach plants were resistant to PPV. This work opens a potential avenue for the control of virus diseases in perennial trees via viral vector-mediated silencing of host factors, and the PNRSV vector may serve as a powerful molecular tool for functional genomic studies of Prunus fruit trees. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. A Novel Approach to Asynchronous MVP Data Interpretation Based on Elliptical-Vectors

    Science.gov (United States)

    Kruglyakov, M.; Trofimov, I.; Korotaev, S.; Shneyer, V.; Popova, I.; Orekhova, D.; Scshors, Y.; Zhdanov, M. S.

    2014-12-01

    We suggest a novel approach to asynchronous magnetic-variation profiling (MVP) data interpretation. Standard method in MVP is based on the interpretation of the coefficients of linear relation between vertical and horizontal components of the measured magnetic field.From mathematical point of view this pair of linear coefficients is not a vector which leads to significant difficulties in asynchronous data interpretation. Our approach allows us to actually treat such a pair of complex numbers as a special vector called an ellipse-vector (EV). By choosing the particular definitions of complex length and direction, the basic relation of MVP can be considered as the dot product. This considerably simplifies the interpretation of asynchronous data. The EV is described by four real numbers: the values of major and minor semiaxes, the angular direction of the major semiaxis and the phase. The notation choice is motivated by historical reasons. It is important that different EV's components have different sensitivity with respect to the field sources and the local heterogeneities. Namely, the value of major semiaxis and the angular direction are mostly determined by the field source and the normal cross-section. On the other hand, the value of minor semiaxis and the phase are responsive to local heterogeneities. Since the EV is the general form of complex vector, the traditional Schmucker vectors can be explicitly expressed through its components.The proposed approach was successfully applied to interpretation the results of asynchronous measurements that had been obtained in the Arctic Ocean at the drift stations "North Pole" in 1962-1976.

  20. Production ratio of pseudoscalar to vector mesons

    International Nuclear Information System (INIS)

    Chliapnikov, P.V.; Uvarov, V.A.

    1990-01-01

    The P/V ratio of directly produced pseudoscalar (P) to vector (V) mesons is analysed using the data on the K S 0 and K * (892) total inclusive cross sections in pp, π + p and K ± p reactions. The indication for a change of P/V from a value of about 1 at low energies, where the fragmentation processes dominate, to a value of 1/3, suggested by spin-statistics, at high energies is discussed. (orig.)

  1. Generalized vector calculus on convex domain

    Science.gov (United States)

    Agrawal, Om P.; Xu, Yufeng

    2015-06-01

    In this paper, we apply recently proposed generalized integral and differential operators to develop generalized vector calculus and generalized variational calculus for problems defined over a convex domain. In particular, we present some generalization of Green's and Gauss divergence theorems involving some new operators, and apply these theorems to generalized variational calculus. For fractional power kernels, the formulation leads to fractional vector calculus and fractional variational calculus for problems defined over a convex domain. In special cases, when certain parameters take integer values, we obtain formulations for integer order problems. Two examples are presented to demonstrate applications of the generalized variational calculus which utilize the generalized vector calculus developed in the paper. The first example leads to a generalized partial differential equation and the second example leads to a generalized eigenvalue problem, both in two dimensional convex domains. We solve the generalized partial differential equation by using polynomial approximation. A special case of the second example is a generalized isoperimetric problem. We find an approximate solution to this problem. Many physical problems containing integer order integrals and derivatives are defined over arbitrary domains. We speculate that future problems containing fractional and generalized integrals and derivatives in fractional mechanics will be defined over arbitrary domains, and therefore, a general variational calculus incorporating a general vector calculus will be needed for these problems. This research is our first attempt in that direction.

  2. A Generalized Analytic Operator-Valued Function Space Integral and a Related Integral Equation

    International Nuclear Information System (INIS)

    Chang, K.S.; Kim, B.S.; Park, C.H.; Ryu, K.S.

    2003-01-01

    We introduce a generalized Wiener measure associated with a Gaussian Markov process and define a generalized analytic operator-valued function space integral as a bounded linear operator from L p into L p-ci r cumflexprime (1< p ≤ 2) by the analytic continuation of the generalized Wiener integral. We prove the existence of the integral for certain functionals which involve some Borel measures. Also we show that the generalized analytic operator-valued function space integral satisfies an integral equation related to the generalized Schroedinger equation. The resulting theorems extend the theory of operator-valued function space integrals substantially and previous theorems about these integrals are generalized by our results

  3. Fractional Snow Cover Mapping by Artificial Neural Networks and Support Vector Machines

    Science.gov (United States)

    Çiftçi, B. B.; Kuter, S.; Akyürek, Z.; Weber, G.-W.

    2017-11-01

    Snow is an important land cover whose distribution over space and time plays a significant role in various environmental processes. Hence, snow cover mapping with high accuracy is necessary to have a real understanding for present and future climate, water cycle, and ecological changes. This study aims to investigate and compare the design and use of artificial neural networks (ANNs) and support vector machines (SVMs) algorithms for fractional snow cover (FSC) mapping from satellite data. ANN and SVM models with different model building settings are trained by using Moderate Resolution Imaging Spectroradiometer surface reflectance values of bands 1-7, normalized difference snow index and normalized difference vegetation index as predictor variables. Reference FSC maps are generated from higher spatial resolution Landsat ETM+ binary snow cover maps. Results on the independent test data set indicate that the developed ANN model with hyperbolic tangent transfer function in the output layer and the SVM model with radial basis function kernel produce high FSC mapping accuracies with the corresponding values of R = 0.93 and R = 0.92, respectively.

  4. Versatile generation of optical vector fields and vector beams using a non-interferometric approach.

    Science.gov (United States)

    Tripathi, Santosh; Toussaint, Kimani C

    2012-05-07

    We present a versatile, non-interferometric method for generating vector fields and vector beams which can produce all the states of polarization represented on a higher-order Poincaré sphere. The versatility and non-interferometric nature of this method is expected to enable exploration of various exotic properties of vector fields and vector beams. To illustrate this, we study the propagation properties of some vector fields and find that, in general, propagation alters both their intensity and polarization distribution, and more interestingly, converts some vector fields into vector beams. In the article, we also suggest a modified Jones vector formalism to represent vector fields and vector beams.

  5. A late time accelerated FRW model with scalar and vector fields via Noether symmetry

    Directory of Open Access Journals (Sweden)

    Babak Vakili

    2014-11-01

    Full Text Available We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann–Robertson–Walker (FRW model, a scalar field with potential function V(ϕ with which the gravity part of the action is minimally coupled and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(ϕ. Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current, we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology is an accelerated expansion universe for which its expansion is due to the presence of the vector field in the early times, while the scalar field is responsible of its late time expansion. Keywords: Noether symmetry, Scalar field cosmology, Vector field cosmology

  6. Vector theory of gravity: Universe without black holes and solution of dark energy problem

    Science.gov (United States)

    Svidzinsky, Anatoly A.

    2017-12-01

    We propose an alternative theory of gravity which assumes that background geometry of the Universe is fixed four dimensional Euclidean space and gravity is a vector field A k in this space which breaks the Euclidean symmetry. Direction of A k gives the time coordinate, while perpendicular directions are spatial coordinates. Vector gravitational field is coupled to matter universally and minimally through the equivalent metric f ik which is a functional of A k . We show that such assumptions yield a unique theory of gravity, it is free of black holes and, to the best of our knowledge, passes all available tests. For cosmology our theory predicts the same evolution of the Universe as general relativity with cosmological constant and zero spatial curvature. However, the present theory provides explanation of the dark energy as energy of longitudinal gravitational field induced by the Universe expansion and yields, with no free parameters, the value of {{{Ω }}}{{Λ }}=2/3≈ 0.67 which is consistent with the recent Planck result {{{Ω }}}{{Λ }}=0.686+/- 0.02. Such close agreement with cosmological data indicates that gravity has a vector, rather than tensor, origin. We demonstrate that gravitational wave signals measured by LIGO are compatible with vector gravity. They are produced by orbital inspiral of massive neutron stars which can exist in the present theory. We also quantize gravitational field and show that quantum vector gravity is equivalent to QED. Vector gravity can be tested by making more accurate measurement of the time delay of radar signal traveling near the Sun; by improving accuracy of the light deflection experiments; or by measuring propagation direction of gravitational waves relative to laser interferometer arms. Resolving the supermassive object at the center of our Galaxy with VLBA could provide another test of gravity and also shed light on the nature of dark matter.

  7. Hobo-like transposable elements as non-drosophilid gene vectors

    International Nuclear Information System (INIS)

    O'Brochta, D.A.; Warren, W.D.; Saville, K.J.; Whyard, S.; Mende, H.A.; Pinkerton, A.C.; Coates, C.J.; Atkinson, P.W.

    1998-01-01

    Using genetic and physical methods we discovered short-inverted repeat type transposable elements in non-drosophilid insects including, Bactorcera tryoni, Musca domestica, Musca vetustissima and Lucilia cuprina. These elements are related to hobo, Ac and Tam3. The Hermes element from M domestica is 2749 bp in length and has terminal inverted repeats and a transposase coding region very similar to those in hobo. Hermes is functional in M Domestic and can act as a gene vector in this species. When Hermes is introduced into D. melanogaster it is hyperactive, relative to existing vector systems used in this species. Hermes will be useful as a gene vector. (author)

  8. Genome content analysis yields new insights into the relationship between the human malaria parasite Plasmodium falciparum and its anopheline vectors.

    Science.gov (United States)

    Oppenheim, Sara J; Rosenfeld, Jeffrey A; DeSalle, Rob

    2017-02-27

    The persistent and growing gap between the availability of sequenced genomes and the ability to assign functions to sequenced genes led us to explore ways to maximize the information content of automated annotation for studies of anopheline mosquitos. Specifically, we use genome content analysis of a large number of previously sequenced anopheline mosquitos to follow the loss and gain of protein families over the evolutionary history of this group. The importance of this endeavor lies in the potential for comparative genomic studies between Anopheles and closely related non-vector species to reveal ancestral genome content dynamics involved in vector competence. In addition, comparisons within Anopheles could identify genome content changes responsible for variation in the vectorial capacity of this family of important parasite vectors. The competence and capacity of P. falciparum vectors do not appear to be phylogenetically constrained within the Anophelinae. Instead, using ancestral reconstruction methods, we suggest that a previously unexamined component of vector biology, anopheline nucleotide metabolism, may contribute to the unique status of anophelines as P. falciparum vectors. While the fitness effects of nucleotide co-option by P. falciparum parasites on their anopheline hosts are not yet known, our results suggest that anopheline genome content may be responding to selection pressure from P. falciparum. Whether this response is defensive, in an attempt to redress improper nucleotide balance resulting from P. falciparum infection, or perhaps symbiotic, resulting from an as-yet-unknown mutualism between anophelines and P. falciparum, is an open question that deserves further study. Clearly, there is a wealth of functional information to be gained from detailed manual genome annotation, yet the rapid increase in the number of available sequences means that most researchers will not have the time or resources to manually annotate all the sequence data they

  9. Calculation of excited vector meson electron widths using QCD sum rules

    International Nuclear Information System (INIS)

    Geshkenbein, B.V.

    1984-01-01

    The sum rules are suggested which allow one to calculate the electron widths of excited vector mesons of the PSI, UPSILON, rho meson family assuming the values of their masses to be known. The calculated values of the electron widths agree with experiment

  10. Pair- ${v}$ -SVR: A Novel and Efficient Pairing nu-Support Vector Regression Algorithm.

    Science.gov (United States)

    Hao, Pei-Yi

    This paper proposes a novel and efficient pairing nu-support vector regression (pair--SVR) algorithm that combines successfully the superior advantages of twin support vector regression (TSVR) and classical -SVR algorithms. In spirit of TSVR, the proposed pair--SVR solves two quadratic programming problems (QPPs) of smaller size rather than a single larger QPP, and thus has faster learning speed than classical -SVR. The significant advantage of our pair--SVR over TSVR is the improvement in the prediction speed and generalization ability by introducing the concepts of the insensitive zone and the regularization term that embodies the essence of statistical learning theory. Moreover, pair--SVR has additional advantage of using parameter for controlling the bounds on fractions of SVs and errors. Furthermore, the upper bound and lower bound functions of the regression model estimated by pair--SVR capture well the characteristics of data distributions, thus facilitating automatic estimation of the conditional mean and predictive variance simultaneously. This may be useful in many cases, especially when the noise is heteroscedastic and depends strongly on the input values. The experimental results validate the superiority of our pair--SVR in both training/prediction speed and generalization ability.This paper proposes a novel and efficient pairing nu-support vector regression (pair--SVR) algorithm that combines successfully the superior advantages of twin support vector regression (TSVR) and classical -SVR algorithms. In spirit of TSVR, the proposed pair--SVR solves two quadratic programming problems (QPPs) of smaller size rather than a single larger QPP, and thus has faster learning speed than classical -SVR. The significant advantage of our pair--SVR over TSVR is the improvement in the prediction speed and generalization ability by introducing the concepts of the insensitive zone and the regularization term that embodies the essence of statistical learning theory

  11. On Approximation of Hyper-geometric Function Values of a Special Class

    Directory of Open Access Journals (Sweden)

    P. L. Ivankov

    2017-01-01

    Full Text Available Investigations of arithmetic properties of the hyper-geometric function values make it possible to single out two trends, namely, Siegel’s method and methods based on the effective construction of a linear approximating form. There are also methods combining both approaches mentioned.  The Siegel’s method allows obtaining the most general results concerning the abovementioned problems. In many cases it was used to establish the algebraic independence of the values of corresponding functions. Although the effective methods do not allow obtaining propositions of such generality they have nevertheless some advantages. Among these advantages one can distinguish at least two: a higher precision of the quantitative results obtained by effective methods and a possibility to study the hyper-geometric functions with irrational parameters.In this paper we apply the effective construction to estimate a measure of the linear independence of the hyper-geometric function values over the imaginary quadratic field. The functions themselves were chosen by a special way so that it could be possible to demonstrate a new approach to the effective construction of a linear approximating form. This approach makes it possible also to extend the well-known effective construction methods of the linear approximating forms for poly-logarithms to the functions of more general type.To obtain the arithmetic result we had to establish a linear independence of the functions under consideration over the field of rational functions. It is apparently impossible to apply directly known theorems containing sufficient (and in some cases needful and sufficient conditions for the system of functions appearing in the theorems mentioned. For this reason, a special technique has been developed to solve this problem.The paper presents the obtained arithmetic results concerning the values of integral functions, but, with appropriate alterations, the theorems proved can be adapted to

  12. Generation of a vector system facilitating cloning of DMBT1 variants and recombinant expression of functional full-length DMBT1

    DEFF Research Database (Denmark)

    End, Caroline; Lyer, Stefan; Renner, Marcus

    2005-01-01

    of a vector system that facilitates cloning of DMBT1 variants. We demonstrate applicability of the vector system by expression of the largest DMBT1 variant in a tetracycline-inducible mammalian expression system using the Chinese hamster ovary cell line. Yields up to 30 mg rDMBT1 per litre of cell culture......Deleted in malignant brain tumours 1 (DMBT1) codes for a approximately 340kDa glycoprotein with highly repetitive scavenger receptor cysteine-rich (SRCR) domains. DMBT1 was implicated in cancer, defence against viral and bacterial infections, and differentiation of epithelial cells. Recombinant...... yields, and protein preparations which may substantially vary due to differential processing and genetic polymorphism, all of which impedes functional research on DMBT1. Cloning of DMBT1 cDNAs is hampered because of the size and the 13 highly homologous SRCR exons. In this study, we report on the setup...

  13. Bioelectrical impedance vector distribution in the first year of life.

    Science.gov (United States)

    Savino, Francesco; Grasso, Giulia; Cresi, Francesco; Oggero, Roberto; Silvestro, Leandra

    2003-06-01

    We assessed the bioelectrical impedance vector distribution in a sample of healthy infants in the first year of life, which is not available in literature. The study was conducted as a cross-sectional study in 153 healthy Caucasian infants (90 male and 63 female) younger than 1 y, born at full term, adequate for gestational age, free from chronic diseases or growth problems, and not feverish. Z scores for weight, length, cranial circumference, and body mass index for the study population were within the range of +/-1.5 standard deviations according to the Euro-Growth Study references. Concurrent anthropometrics (weight, length, and cranial circumference), body mass index, and bioelectrical impedance (resistance and reactance) measurements were made by the same operator. Whole-body (hand to foot) tetrapolar measurements were performed with a single-frequency (50 kHz), phase-sensitive impedance analyzer. The study population was subdivided into three classes of age for statistical analysis: 0 to 3.99 mo, 4 to 7.99 mo, and 8 to 11.99 mo. Using the bivariate normal distribution of resistance and reactance components standardized by the infant's length, the bivariate 95% confidence limits for the mean impedance vector separated by sex and age groups were calculated and plotted. Further, the bivariate 95%, 75%, and 50% tolerance intervals for individual vector measurements in the first year of life were plotted. Resistance and reactance values often fluctuated during the first year of life, particularly as raw measurements (without normalization by subject's length). However, 95% confidence ellipses of mean vectors from the three age groups overlapped each other, as did confidence ellipses by sex for each age class, indicating no significant vector migration during the first year of life. We obtained an estimate of mean impedance vector in a sample of healthy infants in the first year of life and calculated the bivariate values for an individual vector (95%, 75%, and 50

  14. Vector Network Coding

    OpenAIRE

    Ebrahimi, Javad; Fragouli, Christina

    2010-01-01

    We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L X L coding matrices that play a similar role as coding coefficients in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector co...

  15. Mining protein function from text using term-based support vector machines

    Science.gov (United States)

    Rice, Simon B; Nenadic, Goran; Stapley, Benjamin J

    2005-01-01

    Background Text mining has spurred huge interest in the domain of biology. The goal of the BioCreAtIvE exercise was to evaluate the performance of current text mining systems. We participated in Task 2, which addressed assigning Gene Ontology terms to human proteins and selecting relevant evidence from full-text documents. We approached it as a modified form of the document classification task. We used a supervised machine-learning approach (based on support vector machines) to assign protein function and select passages that support the assignments. As classification features, we used a protein's co-occurring terms that were automatically extracted from documents. Results The results evaluated by curators were modest, and quite variable for different problems: in many cases we have relatively good assignment of GO terms to proteins, but the selected supporting text was typically non-relevant (precision spanning from 3% to 50%). The method appears to work best when a substantial set of relevant documents is obtained, while it works poorly on single documents and/or short passages. The initial results suggest that our approach can also mine annotations from text even when an explicit statement relating a protein to a GO term is absent. Conclusion A machine learning approach to mining protein function predictions from text can yield good performance only if sufficient training data is available, and significant amount of supporting data is used for prediction. The most promising results are for combined document retrieval and GO term assignment, which calls for the integration of methods developed in BioCreAtIvE Task 1 and Task 2. PMID:15960835

  16. Vector wind and vector wind shear models 0 to 27 km altitude for Cape Kennedy, Florida, and Vandenberg AFB, California

    Science.gov (United States)

    Smith, O. E.

    1976-01-01

    The techniques are presented to derive several statistical wind models. The techniques are from the properties of the multivariate normal probability function. Assuming that the winds can be considered as bivariate normally distributed, then (1) the wind components and conditional wind components are univariate normally distributed, (2) the wind speed is Rayleigh distributed, (3) the conditional distribution of wind speed given a wind direction is Rayleigh distributed, and (4) the frequency of wind direction can be derived. All of these distributions are derived from the 5-sample parameter of wind for the bivariate normal distribution. By further assuming that the winds at two altitudes are quadravariate normally distributed, then the vector wind shear is bivariate normally distributed and the modulus of the vector wind shear is Rayleigh distributed. The conditional probability of wind component shears given a wind component is normally distributed. Examples of these and other properties of the multivariate normal probability distribution function as applied to Cape Kennedy, Florida, and Vandenberg AFB, California, wind data samples are given. A technique to develop a synthetic vector wind profile model of interest to aerospace vehicle applications is presented.

  17. AAVPG: A vigilant vector where transgene expression is induced by p53

    Energy Technology Data Exchange (ETDEWEB)

    Bajgelman, Marcio C.; Medrano, Ruan F.V.; Carvalho, Anna Carolina P.V.; Strauss, Bryan E., E-mail: bstrauss@usp.br

    2013-12-15

    Using p53 to drive transgene expression from viral vectors may provide on demand expression in response to physiologic stress, such as hypoxia or DNA damage. Here we introduce AAVPG, an adeno-associated viral (AAV) vector where a p53-responsive promoter, termed PG, is used to control transgene expression. In vitro assays show that expression from the AAVPG-luc vector was induced specifically in the presence of functional p53 (1038±202 fold increase, p<0.001). The AAVPG-luc vector was an effective biosensor of p53 activation in response to hypoxia (4.48±0.6 fold increase in the presence of 250 µM CoCl{sub 2}, p<0.001) and biomechanical stress (2.53±0.4 fold increase with stretching, p<0.05). In vivo, the vigilant nature of the AAVPG-luc vector was revealed after treatment of tumor-bearing mice with doxorubicin (pre-treatment, 3.4×10{sup 5}±0.43×10{sup 5} photons/s; post-treatment, 6.6×10{sup 5}±2.1×10{sup 5} photons/s, p<0.05). These results indicate that the AAVPG vector is an interesting option for detecting p53 activity both in vitro and in vivo. - Highlights: • AAV vector where transgene expression is controlled by the tumor suppressor p53. • The new vector, AAVPG, shown to function as a biosensor of p53 activity, in vitro and in vivo. • The p53 activity monitored by the AAVPG vector is relevant to cancer and other diseases. • AAVPG reporter gene expression was activated upon DNA damage, hypoxia and mechanical stress.

  18. Effects of Vector Backbone and Pseudotype on Lentiviral Vector-mediated Gene Transfer: Studies in Infant ADA-Deficient Mice and Rhesus Monkeys

    Science.gov (United States)

    Carbonaro Sarracino, Denise; Tarantal, Alice F; Lee, C Chang I.; Martinez, Michele; Jin, Xiangyang; Wang, Xiaoyan; Hardee, Cinnamon L; Geiger, Sabine; Kahl, Christoph A; Kohn, Donald B

    2014-01-01

    Systemic delivery of a lentiviral vector carrying a therapeutic gene represents a new treatment for monogenic disease. Previously, we have shown that transfer of the adenosine deaminase (ADA) cDNA in vivo rescues the lethal phenotype and reconstitutes immune function in ADA-deficient mice. In order to translate this approach to ADA-deficient severe combined immune deficiency patients, neonatal ADA-deficient mice and newborn rhesus monkeys were treated with species-matched and mismatched vectors and pseudotypes. We compared gene delivery by the HIV-1-based vector to murine γ-retroviral vectors pseudotyped with vesicular stomatitis virus-glycoprotein or murine retroviral envelopes in ADA-deficient mice. The vesicular stomatitis virus-glycoprotein pseudotyped lentiviral vectors had the highest titer and resulted in the highest vector copy number in multiple tissues, particularly liver and lung. In monkeys, HIV-1 or simian immunodeficiency virus vectors resulted in similar biodistribution in most tissues including bone marrow, spleen, liver, and lung. Simian immunodeficiency virus pseudotyped with the gibbon ape leukemia virus envelope produced 10- to 30-fold lower titers than the vesicular stomatitis virus-glycoprotein pseudotype, but had a similar tissue biodistribution and similar copy number in blood cells. The relative copy numbers achieved in mice and monkeys were similar when adjusted to the administered dose per kg. These results suggest that this approach can be scaled-up to clinical levels for treatment of ADA-deficient severe combined immune deficiency subjects with suboptimal hematopoietic stem cell transplantation options. PMID:24925206

  19. Effects of vector backbone and pseudotype on lentiviral vector-mediated gene transfer: studies in infant ADA-deficient mice and rhesus monkeys.

    Science.gov (United States)

    Carbonaro Sarracino, Denise; Tarantal, Alice F; Lee, C Chang I; Martinez, Michele; Jin, Xiangyang; Wang, Xiaoyan; Hardee, Cinnamon L; Geiger, Sabine; Kahl, Christoph A; Kohn, Donald B

    2014-10-01

    Systemic delivery of a lentiviral vector carrying a therapeutic gene represents a new treatment for monogenic disease. Previously, we have shown that transfer of the adenosine deaminase (ADA) cDNA in vivo rescues the lethal phenotype and reconstitutes immune function in ADA-deficient mice. In order to translate this approach to ADA-deficient severe combined immune deficiency patients, neonatal ADA-deficient mice and newborn rhesus monkeys were treated with species-matched and mismatched vectors and pseudotypes. We compared gene delivery by the HIV-1-based vector to murine γ-retroviral vectors pseudotyped with vesicular stomatitis virus-glycoprotein or murine retroviral envelopes in ADA-deficient mice. The vesicular stomatitis virus-glycoprotein pseudotyped lentiviral vectors had the highest titer and resulted in the highest vector copy number in multiple tissues, particularly liver and lung. In monkeys, HIV-1 or simian immunodeficiency virus vectors resulted in similar biodistribution in most tissues including bone marrow, spleen, liver, and lung. Simian immunodeficiency virus pseudotyped with the gibbon ape leukemia virus envelope produced 10- to 30-fold lower titers than the vesicular stomatitis virus-glycoprotein pseudotype, but had a similar tissue biodistribution and similar copy number in blood cells. The relative copy numbers achieved in mice and monkeys were similar when adjusted to the administered dose per kg. These results suggest that this approach can be scaled-up to clinical levels for treatment of ADA-deficient severe combined immune deficiency subjects with suboptimal hematopoietic stem cell transplantation options.

  20. The Dedekind completion of C ( X ): an interval-valued functions ...

    African Journals Online (AJOL)

    In his paper [1] R. Anguelov described the construction of the Dedekind order completion of C(X) the set of all real-valued continuous functions defined on a completely regular topological space X; using Hausdorff continuous real intervalvalued functions. The aim of this paper is to show that Anguelov's construction can be ...

  1. Vector independent transmission of the vector-borne bluetongue virus.

    Science.gov (United States)

    van der Sluijs, Mirjam Tineke Willemijn; de Smit, Abraham J; Moormann, Rob J M

    2016-01-01

    Bluetongue is an economically important disease of ruminants. The causative agent, Bluetongue virus (BTV), is mainly transmitted by insect vectors. This review focuses on vector-free BTV transmission, and its epizootic and economic consequences. Vector-free transmission can either be vertical, from dam to fetus, or horizontal via direct contract. For several BTV-serotypes, vertical (transplacental) transmission has been described, resulting in severe congenital malformations. Transplacental transmission had been mainly associated with live vaccine strains. Yet, the European BTV-8 strain demonstrated a high incidence of transplacental transmission in natural circumstances. The relevance of transplacental transmission for the epizootiology is considered limited, especially in enzootic areas. However, transplacental transmission can have a substantial economic impact due to the loss of progeny. Inactivated vaccines have demonstrated to prevent transplacental transmission. Vector-free horizontal transmission has also been demonstrated. Since direct horizontal transmission requires close contact of animals, it is considered only relevant for within-farm spreading of BTV. The genetic determinants which enable vector-free transmission are present in virus strains circulating in the field. More research into the genetic changes which enable vector-free transmission is essential to better evaluate the risks associated with outbreaks of new BTV serotypes and to design more appropriate control measures.

  2. VECTOR THEORY AND OPTIMAL CHOICE OF ANTIMICROBIAL DRUG FOR LOCAL WOUND TREATMENT

    Directory of Open Access Journals (Sweden)

    Boyko N. N

    2016-12-01

    japonica, Povidone-Iodine liniment, Methyluracilum cum Myramistino ointment, Laevosinum ointment, Tincture of calendula, Ranostop ointment 10%, Myramistinum-Darnitsa ointment, and Decasanum water solution 0.02 %. Conclusions. In this paper we have shown the possibility of vector theory use for optimal choice of antimicrobial drugs for wound treatment among analogs by taking into account several criteria at the same time. This mathematical method together with desirability theory gives us a possibility to determine low values of desirability function (weak points for the drug and to predict its rating when we change values of original parameters.

  3. Biclustering via Sparse Singular Value Decomposition

    KAUST Repository

    Lee, Mihee

    2010-02-16

    Sparse singular value decomposition (SSVD) is proposed as a new exploratory analysis tool for biclustering or identifying interpretable row-column associations within high-dimensional data matrices. SSVD seeks a low-rank, checkerboard structured matrix approximation to data matrices. The desired checkerboard structure is achieved by forcing both the left- and right-singular vectors to be sparse, that is, having many zero entries. By interpreting singular vectors as regression coefficient vectors for certain linear regressions, sparsity-inducing regularization penalties are imposed to the least squares regression to produce sparse singular vectors. An efficient iterative algorithm is proposed for computing the sparse singular vectors, along with some discussion of penalty parameter selection. A lung cancer microarray dataset and a food nutrition dataset are used to illustrate SSVD as a biclustering method. SSVD is also compared with some existing biclustering methods using simulated datasets. © 2010, The International Biometric Society.

  4. Vehicle Based Vector Sensor

    Science.gov (United States)

    2015-09-28

    buoyant underwater vehicle with an interior space in which a length of said underwater vehicle is equal to one tenth of the acoustic wavelength...underwater vehicle with an interior space in which a length of said underwater vehicle is equal to one tenth of the acoustic wavelength; an...unmanned underwater vehicle that can function as an acoustic vector sensor. (2) Description of the Prior Art [0004] It is known that a propagating

  5. Abstract interpolation in vector-valued de Branges-Rovnyak spaces

    NARCIS (Netherlands)

    Ball, J.A.; Bolotnikov, V.; ter Horst, S.

    2011-01-01

    Following ideas from the Abstract Interpolation Problem of Katsnelson et al. (Operators in spaces of functions and problems in function theory, vol 146, pp 83–96, Naukova Dumka, Kiev, 1987) for Schur class functions, we study a general metric constrained interpolation problem for functions from a

  6. Parallel and vector implementation of APROS simulator code

    International Nuclear Information System (INIS)

    Niemi, J.; Tommiska, J.

    1990-01-01

    In this paper the vector and parallel processing implementation of a general purpose simulator code is discussed. In this code the utilization of vector processing is straightforward. In addition to the loop level parallel processing, the functional decomposition and the domain decomposition have been considered. Results represented for a PWR-plant simulation illustrate the potential speed-up factors of the alternatives. It turns out that the loop level parallelism and the domain decomposition are the most promising alternative to employ the parallel processing. (author)

  7. Equivalence of the O( n) vector ferromagnetic and antiferromagnetic models

    Science.gov (United States)

    Sousa, J. Ricardo de

    The effective-field renormalization group (EFRG) approach is used to find the Néel temperature ( TN) of the O( n) vector model with antiferromagnetic (AF) interaction. The EFRG method is illustrated by employing approximations in which clusters with one ( N‧=1) and two ( N=2) spins are used. The critical temperature TN is obtained as a function of component ( n) and coordination ( z) numbers. For all values of n and z we show that TN= Tc, where Tc is the Curie temperature for the ferromagnetic (F) case. As a comparison, the results of the quantum Heisenberg model ( n=3) with F and AF interactions are also presented, and we find that TN> Tc, which is different from the classical result Tc= TN.

  8. Photoproduction of vector messons off nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kossov, M.

    1994-04-01

    Vector mesons play an important role in photonuclear reactions because they carry the same quantum numbers as the incident photon. It has recently been suggested by G.E. Brown and M. Rho that the mass of vector mesons could decrease with increasing baryon density. This phenomenon would provide a physical observable for chiral symmetry ({xi}{sup S}) restoration at high baryon density, an essential non-perturbative phenomenon associated with the structure of quantum chromodynamics (QCD). According to the constituent quark model the difference between the mass of the valence quark m{sub v} and the mass of the current quark m{sub c} is expected to be proportional to the mean vacuum value of the quark condensate: m{sub v}-m{sub c} {proportional_to} ({psi}{psi}){sub v}. The mass difference appears because of chiral symmetry breaking {xi}{sup SB}. QCD sum rule calculations show that the value of this difference is about 300 MeV for all quarks. If the mean vacuum value differs from that for the hadron density in nuclei, then the constituent quark mass should be renormalized as follows: m{sub v}{sup l}=m{sub c} + ({psi}{psi})n/({psi}{psi})v {center_dot}300MeV, where the indices n correspond to nuclear matter and v to vacuum. The same conclusion was reached in a nuclear matter model based on quark degrees of freedom. Using the symmetry properties of QCD in an effective Lagrangian theory, Brown and Rho have found a scaling law for the vector meson masses at finite baryon density: M{sub N}{sup n}/M{sub N}{sup v}=M{sub V}{sup n}/M{sub V}{sup v}=f{sub {pi}}{sup n}/f{sub {pi}}{sup v}, where f{sub {pi}} is the {pi} {r_arrow}{mu}{nu} decay constant playing the role of an order parameter for the chiral symmetry restoration. At nuclear density the value of f{sub {pi}} was found to be 15-20% smaller than in vacuum. In contrast to the constituent quark model, it was found that M{sup n}/M=({sub n}/{sub v}){sup 1/3}.

  9. Vector mesons in strongly interacting matter

    Indian Academy of Sciences (India)

    Results on the light vector mesons ρ, , and , are summarized and compared. Almost all experiments report a softening of the spectral functions with increases in width depending on the density and temperature of the hadronic environment. No evidence for mass shifts is found in majority of the experiments. Remaining ...

  10. VectorBase

    Data.gov (United States)

    U.S. Department of Health & Human Services — VectorBase is a Bioinformatics Resource Center for invertebrate vectors. It is one of four Bioinformatics Resource Centers funded by NIAID to provide web-based...

  11. Custodial vector model

    DEFF Research Database (Denmark)

    Becciolini, Diego; Franzosi, Diogo Buarque; Foadi, Roshan

    2015-01-01

    We analyze the Large Hadron Collider (LHC) phenomenology of heavy vector resonances with a $SU(2)_L\\times SU(2)_R$ spectral global symmetry. This symmetry partially protects the electroweak S-parameter from large contributions of the vector resonances. The resulting custodial vector model spectrum...

  12. Practical auxiliary basis implementation of Rung 3.5 functionals

    International Nuclear Information System (INIS)

    Janesko, Benjamin G.; Scalmani, Giovanni; Frisch, Michael J.

    2014-01-01

    Approximate exchange-correlation functionals for Kohn-Sham density functional theory often benefit from incorporating exact exchange. Exact exchange is constructed from the noninteracting reference system's nonlocal one-particle density matrix γ(r -vector ,r -vector ′). Rung 3.5 functionals attempt to balance the strengths and limitations of exact exchange using a new ingredient, a projection of γ(r -vector ,r -vector ′) onto a semilocal model density matrix γ SL (ρ(r -vector ),∇ρ(r -vector ),r -vector −r -vector ′). γ SL depends on the electron density ρ(r -vector ) at reference point r -vector , and is closely related to semilocal model exchange holes. We present a practical implementation of Rung 3.5 functionals, expanding the r -vector −r -vector ′ dependence of γ SL in an auxiliary basis set. Energies and energy derivatives are obtained from 3D numerical integration as in standard semilocal functionals. We also present numerical tests of a range of properties, including molecular thermochemistry and kinetics, geometries and vibrational frequencies, and bandgaps and excitation energies. Rung 3.5 functionals typically provide accuracy intermediate between semilocal and hybrid approximations. Nonlocal potential contributions from γ SL yield interesting successes and failures for band structures and excitation energies. The results enable and motivate continued exploration of Rung 3.5 functional forms

  13. Prevalence of rheumatoid cachexia assessed by bioelectrical impedance vector analysis and its relation with physical function.

    Science.gov (United States)

    Santillán-Díaz, Cira; Ramírez-Sánchez, Noemi; Espinosa-Morales, Rolando; Orea-Tejeda, Arturo; Llorente, Luis; Rodríguez-Guevara, Gerardo; Castillo-Martínez, Lilia

    2018-03-01

    Rheumatoid arthritis (RA) patients frequently have changes in their body composition, with a decrease in muscle mass and an increase in fat mass, a syndrome that is termed rheumatoid cachexia (RC). The prevalence of this nutritional alteration is not well known; there is as yet no consensus, seeing as it depends on the methods, techniques, and cutoff points that are used for its diagnosis. The main aim of this study was to identify RC through assessment by bioelectrical impedance vector analysis (BIVA) and its association with metabolic causes, physical function, and the main disease status, among others. The prevalence of RC was identified in those subjects who fell outside the right lower quadrant of the reference curve of RXc graph of BIVA. Clinical, anthropometric, biochemical and physical activity, emotional status, and diet markers were also evaluated. Ninety-four patients were included (92.55% women). The prevalence of RC assessed by BIVA was 21.28%. BIVA-cachexia patients had a lesser value of handgrip strength vs. patients without BIVA-cachexia 10.2 kg (7.2-13.4) vs. 14.7 kg (9.6-19), p = 0.0062. Disability and folic acid with methotrexate consumption are related to BIVA-cachexia ((OR 4.69, 95% CI 1.33, 16.54, p = 0.016) and (OR 0.19, 95%CI 0.058, 0.651, p = 0.008), respectively). BIVA could represent a valuable tool to assess presence of RC. It is important that RA patients have physical therapy to improve their nutritional status.

  14. Experimental demonstration of vector E x vector B plasma divertor

    International Nuclear Information System (INIS)

    Strait, E.J.; Kerst, D.W.; Sprott, J.C.

    1977-01-01

    The vector E x vector B drift due to an applied radial electric field in a tokamak with poloidal divertor can speed the flow of plasma out of the scrape-off region, and provide a means of externally controlling the flow rate and thus the width of the density fall-off. An experiment in the Wisconsin levitated toroidal octupole, using vector E x vector B drifts alone, demonstrates divertor-like behavior, including 70% reduction of plasma density near the wall and 40% reduction of plasma flux to the wall, with no adverse effects on confinement of the main plasma

  15. Inverse electronic scattering by Green's functions and singular values decomposition

    International Nuclear Information System (INIS)

    Mayer, A.; Vigneron, J.-P.

    2000-01-01

    An inverse scattering technique is developed to enable a sample reconstruction from the diffraction figures obtained by electronic projection microscopy. In its Green's functions formulation, this technique takes account of all orders of diffraction by performing an iterative reconstruction of the wave function on the observation screen. This scattered wave function is then backpropagated to the sample to determine the potential-energy distribution, which is assumed real valued. The method relies on the use of singular values decomposition techniques, thus providing the best least-squares solutions and enabling a reduction of noise. The technique is applied to the analysis of a two-dimensional nanometric sample that is observed in Fresnel conditions with an electronic energy of 25 eV. The algorithm turns out to provide results with a mean relative error of the order of 5% and to be very stable against random noise

  16. Particular case of operator calculus for generalized functions with supports in cone

    Directory of Open Access Journals (Sweden)

    A. V. Solomko

    2009-06-01

    Full Text Available In this work the construction of functional calculus for strongly continuous semigroups of operators in Schwartz distribution algebra on some cone is generalized. The partial case of vector valued calculus on the base of modification operator Fourier transformation is researched.

  17. Use of a mixture statistical model in studying malaria vectors density.

    Directory of Open Access Journals (Sweden)

    Olayidé Boussari

    Full Text Available Vector control is a major step in the process of malaria control and elimination. This requires vector counts and appropriate statistical analyses of these counts. However, vector counts are often overdispersed. A non-parametric mixture of Poisson model (NPMP is proposed to allow for overdispersion and better describe vector distribution. Mosquito collections using the Human Landing Catches as well as collection of environmental and climatic data were carried out from January to December 2009 in 28 villages in Southern Benin. A NPMP regression model with "village" as random effect is used to test statistical correlations between malaria vectors density and environmental and climatic factors. Furthermore, the villages were ranked using the latent classes derived from the NPMP model. Based on this classification of the villages, the impacts of four vector control strategies implemented in the villages were compared. Vector counts were highly variable and overdispersed with important proportion of zeros (75%. The NPMP model had a good aptitude to predict the observed values and showed that: i proximity to freshwater body, market gardening, and high levels of rain were associated with high vector density; ii water conveyance, cattle breeding, vegetation index were associated with low vector density. The 28 villages could then be ranked according to the mean vector number as estimated by the random part of the model after adjustment on all covariates. The NPMP model made it possible to describe the distribution of the vector across the study area. The villages were ranked according to the mean vector density after taking into account the most important covariates. This study demonstrates the necessity and possibility of adapting methods of vector counting and sampling to each setting.

  18. Dual vector multiplet coupled to dual N=1 supergravity in 10D

    International Nuclear Information System (INIS)

    Nishino, Hitoshi; Rajpoot, Subhash

    2005-01-01

    We couple in superspace a dual vector multiplet (C m 1 ...m 7 ,λ α ) to the dual version of N=1 supergravity (e m a ,ψ m α ,M m 1 ...m 6 ,χ α ,Φ) in ten dimensions. The 7-form field C has its 8-form field strength H dual to the 2-form field strength F of the conventional vector multiplet. To simplify the computation, we use so-called beta-function-favored superspace constraints for dual supergravity developed for β-function computations. As in a more conventional constraint set, the H-Bianchi identity must have the form N and F, where N is the 7-form field strength in dual supergravity. The potential anomaly for the dual vector multiplet can be cancelled for the particular gauge group U(1) 496 by the Green-Schwarz mechanism. As a by-product, we also give the globally supersymmetric Abelian Dirac-Born-Infeld interactions for the dual vector multiplet for the first time

  19. A unified development of several techniques for the representation of random vectors and data sets

    Science.gov (United States)

    Bundick, W. T.

    1973-01-01

    Linear vector space theory is used to develop a general representation of a set of data vectors or random vectors by linear combinations of orthonormal vectors such that the mean squared error of the representation is minimized. The orthonormal vectors are shown to be the eigenvectors of an operator. The general representation is applied to several specific problems involving the use of the Karhunen-Loeve expansion, principal component analysis, and empirical orthogonal functions; and the common properties of these representations are developed.

  20. Rotations with Rodrigues' vector

    International Nuclear Information System (INIS)

    Pina, E

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears to be a fundamental matrix that is used to express the components of the angular velocity, the rotation matrix and the angular momentum vector. The Hamiltonian formalism of rotational dynamics in terms of this vector uses the same matrix. The quantization of the rotational dynamics is performed with simple rules if one uses Rodrigues' vector and similar formal expressions for the quantum operators that mimic the Hamiltonian classical dynamics.

  1. Support-Vector-based Least Squares for learning non-linear dynamics

    NARCIS (Netherlands)

    de Kruif, B.J.; de Vries, Theodorus J.A.

    2002-01-01

    A function approximator is introduced that is based on least squares support vector machines (LSSVM) and on least squares (LS). The potential indicators for the LS method are chosen as the kernel functions of all the training samples similar to LSSVM. By selecting these as indicator functions the

  2. Screw-vector bond graphs for kinetic-static modelling and analysis of mechanisms

    International Nuclear Information System (INIS)

    Bidard, Catherine

    1994-01-01

    This dissertation deals with the kinetic-static modelling and analysis of spatial mechanisms used in robotics systems. A framework is proposed, which embodies a geometrical and a network approach for kinetic-static modelling. For this purpose we use screw theory and bond graphs. A new form of bond graphs is introduced: the screw-vector bond graph, whose power variables are defined to be wrenches and twists expressed as intrinsic screw-vectors. The mechanism is then identified as a network, whose components are kinematic pairs and whose topology is described by a directed graph. A screw-vector Simple Junction Structure represents the topological constraints. Kinematic pairs are represented by one-port elements, defined by two reciprocal screw-vector spaces. Using dual bases of screw-vectors, a generic decomposition of kinematic pair elements is given. The reduction of kinetic-static models of series and parallel kinematic chains is used in order to derive kinetic-static functional models in geometric form. Thereupon, the computational causality assignment is adapted for the graphical analysis of the mobility and the functioning of spatial mechanisms, based on completely or incompletely specified models. (author) [fr

  3. Robust Template Decomposition without Weight Restriction for Cellular Neural Networks Implementing Arbitrary Boolean Functions Using Support Vector Classifiers

    Directory of Open Access Journals (Sweden)

    Yih-Lon Lin

    2013-01-01

    Full Text Available If the given Boolean function is linearly separable, a robust uncoupled cellular neural network can be designed as a maximal margin classifier. On the other hand, if the given Boolean function is linearly separable but has a small geometric margin or it is not linearly separable, a popular approach is to find a sequence of robust uncoupled cellular neural networks implementing the given Boolean function. In the past research works using this approach, the control template parameters and thresholds are restricted to assume only a given finite set of integers, and this is certainly unnecessary for the template design. In this study, we try to remove this restriction. Minterm- and maxterm-based decomposition algorithms utilizing the soft margin and maximal margin support vector classifiers are proposed to design a sequence of robust templates implementing an arbitrary Boolean function. Several illustrative examples are simulated to demonstrate the efficiency of the proposed method by comparing our results with those produced by other decomposition methods with restricted weights.

  4. Production of recombinant AAV vectors encoding insulin-like growth factor I is enhanced by interaction among AAV rep regulatory sequences

    Directory of Open Access Journals (Sweden)

    Dilley Robert

    2009-01-01

    Full Text Available Abstract Background Adeno-associated virus (AAV vectors are promising tools for gene therapy. Currently, their potential is limited by difficulties in producing high vector yields with which to generate transgene protein product. AAV vector production depends in part upon the replication (Rep proteins required for viral replication. We tested the hypothesis that mutations in the start codon and upstream regulatory elements of Rep78/68 in AAV helper plasmids can regulate recombinant AAV (rAAV vector production. We further tested whether the resulting rAAV vector preparation augments the production of the potentially therapeutic transgene, insulin-like growth factor I (IGF-I. Results We constructed a series of AAV helper plasmids containing different Rep78/68 start codon in combination with different gene regulatory sequences. rAAV vectors carrying the human IGF-I gene were prepared with these vectors and the vector preparations used to transduce HT1080 target cells. We found that the substitution of ATG by ACG in the Rep78/68 start codon in an AAV helper plasmid (pAAV-RC eliminated Rep78/68 translation, rAAV and IGF-I production. Replacement of the heterologous sequence upstream of Rep78/68 in pAAV-RC with the AAV2 endogenous p5 promoter restored translational activity to the ACG mutant, and restored rAAV and IGF-I production. Insertion of the AAV2 p19 promoter sequence into pAAV-RC in front of the heterologous sequence also enabled ACG to function as a start codon for Rep78/68 translation. The data further indicate that the function of the AAV helper construct (pAAV-RC, that is in current widespread use for rAAV production, may be improved by replacement of its AAV2 unrelated heterologous sequence with the native AAV2 p5 promoter. Conclusion Taken together, the data demonstrate an interplay between the start codon and upstream regulatory sequences in the regulation of Rep78/68 and indicate that selective mutations in Rep78/68 regulatory elements

  5. Violation of vector dominance in the vector manifestation

    International Nuclear Information System (INIS)

    Sasaki, Chihiro

    2003-01-01

    The vector manifestation (VM) is a new pattern for realizing the chiral symmetry in QCD. In the VM, the massless vector meson becomes the chiral partner of pion at the critical point, in contrast with the restoration based on the linear sigma model. Including the intrinsic temperature dependences of the parameters of the hidden local symmetry (HLS) Lagrangian determined from the underlying QCD through the Wilsonian matching together with the hadronic thermal corrections, we present a new prediction of the VM on the direct photon-π-π coupling which measures the validity of the vector dominance (VD) of the electromagnetic form factor of the pion. We find that the VD is largely violated at the critical temperature, which indicates that the assumption of the VD made in several analysis on the dilepton spectra in hot matter may need to be weakened for consistently including the effect of the dropping mass of the vector meson. (author)

  6. Improving Vector Evaluated Particle Swarm Optimisation by incorporating nondominated solutions.

    Science.gov (United States)

    Lim, Kian Sheng; Ibrahim, Zuwairie; Buyamin, Salinda; Ahmad, Anita; Naim, Faradila; Ghazali, Kamarul Hawari; Mokhtar, Norrima

    2013-01-01

    The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with the conventional Vector Evaluated Particle Swarm Optimisation algorithm.

  7. Computing the Kummer function $U(a,b,z)$ for small values of the arguments

    NARCIS (Netherlands)

    A. Gil (Amparo); J. Segura (Javier); N.M. Temme (Nico)

    2015-01-01

    textabstractWe describe methods for computing the Kummer function $U(a,b,z)$ for small values of $z$, with special attention to small values of $b$. For these values of $b$ the connection formula that represents $U(a,b,z)$ as a linear combination of two ${}_1F_1$-functions needs a limiting

  8. The value of identity: olfactory notes on orbitofrontal cortex function.

    Science.gov (United States)

    Gottfried, Jay A; Zelano, Christina

    2011-12-01

    Neuroscientific research has emphatically promoted the idea that the key function of the orbitofrontal cortex (OFC) is to encode value. Associative learning studies indicate that OFC representations of stimulus cues reflect the predictive value of expected outcomes. Neuroeconomic studies suggest that the OFC distills abstract representations of value from discrete commodities to optimize choice. Although value-based models provide good explanatory power for many different findings, these models are typically disconnected from the very stimuli and commodities giving rise to those value representations. Little provision is made, either theoretically or empirically, for the necessary cooperative role of object identity, without which value becomes orphaned from its source. As a step toward remediating the value of identity, this review provides a focused olfactory survey of OFC research, including new work from our lab, to highlight the elemental involvement of this region in stimulus-specific predictive coding of both perceptual outcomes and expected values. © 2011 New York Academy of Sciences.

  9. Product Quality Modelling Based on Incremental Support Vector Machine

    International Nuclear Information System (INIS)

    Wang, J; Zhang, W; Qin, B; Shi, W

    2012-01-01

    Incremental Support vector machine (ISVM) is a new learning method developed in recent years based on the foundations of statistical learning theory. It is suitable for the problem of sequentially arriving field data and has been widely used for product quality prediction and production process optimization. However, the traditional ISVM learning does not consider the quality of the incremental data which may contain noise and redundant data; it will affect the learning speed and accuracy to a great extent. In order to improve SVM training speed and accuracy, a modified incremental support vector machine (MISVM) is proposed in this paper. Firstly, the margin vectors are extracted according to the Karush-Kuhn-Tucker (KKT) condition; then the distance from the margin vectors to the final decision hyperplane is calculated to evaluate the importance of margin vectors, where the margin vectors are removed while their distance exceed the specified value; finally, the original SVs and remaining margin vectors are used to update the SVM. The proposed MISVM can not only eliminate the unimportant samples such as noise samples, but also can preserve the important samples. The MISVM has been experimented on two public data and one field data of zinc coating weight in strip hot-dip galvanizing, and the results shows that the proposed method can improve the prediction accuracy and the training speed effectively. Furthermore, it can provide the necessary decision supports and analysis tools for auto control of product quality, and also can extend to other process industries, such as chemical process and manufacturing process.

  10. Flight-Determined Subsonic Longitudinal Stability and Control Derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) with Thrust Vectoring

    Science.gov (United States)

    Iliff, Kenneth W.; Wang, Kon-Sheng Charles

    1997-01-01

    The subsonic longitudinal stability and control derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) are extracted from dynamic flight data using a maximum likelihood parameter identification technique. The technique uses the linearized aircraft equations of motion in their continuous/discrete form and accounts for state and measurement noise as well as thrust-vectoring effects. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics over the aircraft, particularly at high angles of attack. Thrust vectoring was implemented using electrohydraulically-actuated nozzle postexit vanes and a specialized research flight control system. During maneuvers, a control system feature provided independent aerodynamic control surface inputs and independent thrust-vectoring vane inputs, thereby eliminating correlations between the aircraft states and controls. Substantial variations in control excitation and dynamic response were exhibited for maneuvers conducted at different angles of attack. Opposing vane interactions caused most thrust-vectoring inputs to experience some exhaust plume interference and thus reduced effectiveness. The estimated stability and control derivatives are plotted, and a discussion relates them to predicted values and maneuver quality.

  11. On the inclusive reaction e+e- → VX with regard for polarization states of generated vector meson

    International Nuclear Information System (INIS)

    Khachtryan, G.N.; Shakhnazaryan, Yu.G.

    1977-01-01

    The e + e - →VX inclusive process has been considered with allowance made for polarization states of a vector meson. The tensor that describes the vortex of the γ→VX transition has also been considered. In the general case the tensor contains eight structural functions. The elements of the vector meson density matrix have been calculated in the spiral representation. These elements are expressed in terms of the given structural functions and polarization vectors of annihilating particles. It is shown that the structural functions can be determined from the study of angular distribution of products of the meson vector decay on pseudoscalar particles (p→2π, ω→3π, phi→2K) and on a lepton-antilepton pair (PSI, PSI'→e + e - )

  12. Raster images vectorization system

    OpenAIRE

    Genytė, Jurgita

    2006-01-01

    The problem of raster images vectorization was analyzed and researched in this work. Existing vectorization systems are quite expensive, the results are inaccurate, and the manual vectorization of a large number of drafts is impossible. That‘s why our goal was to design and develop a new raster images vectorization system using our suggested automatic vectorization algorithm and the way to record results in a new universal vectorial file format. The work consists of these main parts: analysis...

  13. Vectorization of phase space Monte Carlo code in FACOM vector processor VP-200

    International Nuclear Information System (INIS)

    Miura, Kenichi

    1986-01-01

    This paper describes the vectorization techniques for Monte Carlo codes in Fujitsu's Vector Processor System. The phase space Monte Carlo code FOWL is selected as a benchmark, and scalar and vector performances are compared. The vectorized kernel Monte Carlo routine which contains heavily nested IF tests runs up to 7.9 times faster in vector mode than in scalar mode. The overall performance improvement of the vectorized FOWL code over the original scalar code reaches 3.3. The results of this study strongly indicate that supercomputer can be a powerful tool for Monte Carlo simulations in high energy physics. (Auth.)

  14. Monitoring by Use of Clusters of Sensor-Data Vectors

    Science.gov (United States)

    Iverson, David L.

    2007-01-01

    distance) and "sufficiently close" signifies lying at a distance less than a specified threshold value. It must be emphasized that although the IMS is intended to detect off-nominal or abnormal performance or health, it is not necessarily capable of performing a thorough or detailed diagnosis. Limited diagnostic information may be available under some circumstances. For example, the distance of a vector of incoming sensor data from the nearest cluster could serve as an indication of the severity of a malfunction. The identity of the nearest cluster may be a clue as to the identity of the malfunctioning component or subsystem. It is possible to decrease the IMS computation time by use of a combination of cluster-indexing and -retrieval methods. For example, in one method, the distances between each cluster and two or more reference vectors can be used for the purpose of indexing and retrieval. The clusters are sorted into a list according to these distance values, typically in ascending order of distance. When a set of input data arrives and is to be tested, the data are first arranged as an ordered set (that is, a vector). The distances from the input vector to the reference points are computed. The search of clusters from the list can then be limited to those clusters lying within a certain distance range from the input vector; the computation time is reduced by not searching the clusters at a greater distance.

  15. An Interval-Valued Intuitionistic Fuzzy TOPSIS Method Based on an Improved Score Function

    Directory of Open Access Journals (Sweden)

    Zhi-yong Bai

    2013-01-01

    Full Text Available This paper proposes an improved score function for the effective ranking order of interval-valued intuitionistic fuzzy sets (IVIFSs and an interval-valued intuitionistic fuzzy TOPSIS method based on the score function to solve multicriteria decision-making problems in which all the preference information provided by decision-makers is expressed as interval-valued intuitionistic fuzzy decision matrices where each of the elements is characterized by IVIFS value and the information about criterion weights is known. We apply the proposed score function to calculate the separation measures of each alternative from the positive and negative ideal solutions to determine the relative closeness coefficients. According to the values of the closeness coefficients, the alternatives can be ranked and the most desirable one(s can be selected in the decision-making process. Finally, two illustrative examples for multicriteria fuzzy decision-making problems of alternatives are used as a demonstration of the applications and the effectiveness of the proposed decision-making method.

  16. Multi-point boundary value problems for linear functional-differential equations

    Czech Academy of Sciences Publication Activity Database

    Domoshnitsky, A.; Hakl, Robert; Půža, Bedřich

    2017-01-01

    Roč. 24, č. 2 (2017), s. 193-206 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : boundary value problems * linear functional-differential equations * functional-differential inequalities Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0076/gmj-2016-0076. xml

  17. Multi-point boundary value problems for linear functional-differential equations

    Czech Academy of Sciences Publication Activity Database

    Domoshnitsky, A.; Hakl, Robert; Půža, Bedřich

    2017-01-01

    Roč. 24, č. 2 (2017), s. 193-206 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : boundary value problems * linear functional- differential equations * functional- differential inequalities Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0076/gmj-2016-0076.xml

  18. Relativistic bound states: a mass formula for vector mesons

    International Nuclear Information System (INIS)

    Richard, J.L.; Sorba, P.

    1975-07-01

    In the framework of a relativistic description of two particles bound states, a mass formula for vector mesons considered as quark-antiquark systems bound by harmonic oscillator like forces is proposed. Results in good agreement with experimental values are obtained [fr

  19. Heterologous protein secretion in Lactobacilli with modified pSIP vectors.

    Directory of Open Access Journals (Sweden)

    Ingrid Lea Karlskås

    Full Text Available We describe new variants of the modular pSIP-vectors for inducible gene expression and protein secretion in lactobacilli. The basic functionality of the pSIP system was tested in Lactobacillus strains representing 14 species using pSIP411, which harbors the broad-host-range Lactococcus lactis SH71rep replicon and a β-glucuronidase encoding reporter gene. In 10 species, the inducible gene expression system was functional. Based on these results, three pSIP vectors with different signal peptides were modified by replacing their narrow-host-range L. plantarum 256rep replicon with SH71rep and transformed into strains of five different species of Lactobacillus. All recombinant strains secreted the target protein NucA, albeit with varying production levels and secretion efficiencies. The Lp_3050 derived signal peptide generally resulted in the highest levels of secreted NucA. These modified pSIP vectors are useful tools for engineering a wide variety of Lactobacillus species.

  20. Statistics of a parallel Poynting vector in the auroral zone as a function of altitude using Polar EFI and MFE data and Astrid-2 EMMA data

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2005-07-01

    Full Text Available We study the wave-related (AC and static (DC parallel Poynting vector (Poynting energy flux as a function of altitude in auroral field lines using Polar EFI and MFE data. The study is statistical and contains 5 years of data in the altitude range 5000–30000 km. We verify the low altitude part of the results by comparison with earlier Astrid-2 EMMA Poynting vector statistics at 1000 km altitude. The EMMA data are also used to statistically compensate the Polar results for the missing zonal electric field component. We compare the Poynting vector with previous statistical DMSP satellite data concerning the electron precipitation power. We find that the AC Poynting vector (Alfvén-wave related Poynting vector is statistically not sufficient to power auroral electron precipitation, although it may, for Kp>2, power 25–50% of it. The statistical AC Poynting vector also has a stepwise transition at R=4 RE, so that its amplitude increases with increasing altitude. We suggest that this corresponds to Alfvén waves being in Landau resonance with electrons, so that wave-induced electron acceleration takes place at this altitude range, which was earlier named the Alfvén Resonosphere (ARS. The DC Poynting vector is ~3 times larger than electron precipitation and corresponds mainly to ionospheric Joule heating. In the morning sector (02:00–06:00 MLT we find that the DC Poynting vector has a nontrivial altitude profile such that it decreases by a factor of ~2 when moving upward from 3 to 4 RE radial distance. In other nightside MLT sectors the altitude profile is more uniform. The morning sector nontrivial altitude profile may be due to divergence of the perpendicular Poynting vector field at R=3–4 RE.

    Keywords. Magnetospheric physics (Auroral phenomena; Magnetosphere-ionosphere interactions – Space plasma physics (Wave-particle interactions

  1. Statistics of a parallel Poynting vector in the auroral zone as a function of altitude using Polar EFI and MFE data and Astrid-2 EMMA data

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2005-07-01

    Full Text Available We study the wave-related (AC and static (DC parallel Poynting vector (Poynting energy flux as a function of altitude in auroral field lines using Polar EFI and MFE data. The study is statistical and contains 5 years of data in the altitude range 5000–30000 km. We verify the low altitude part of the results by comparison with earlier Astrid-2 EMMA Poynting vector statistics at 1000 km altitude. The EMMA data are also used to statistically compensate the Polar results for the missing zonal electric field component. We compare the Poynting vector with previous statistical DMSP satellite data concerning the electron precipitation power. We find that the AC Poynting vector (Alfvén-wave related Poynting vector is statistically not sufficient to power auroral electron precipitation, although it may, for Kp>2, power 25–50% of it. The statistical AC Poynting vector also has a stepwise transition at R=4 RE, so that its amplitude increases with increasing altitude. We suggest that this corresponds to Alfvén waves being in Landau resonance with electrons, so that wave-induced electron acceleration takes place at this altitude range, which was earlier named the Alfvén Resonosphere (ARS. The DC Poynting vector is ~3 times larger than electron precipitation and corresponds mainly to ionospheric Joule heating. In the morning sector (02:00–06:00 MLT we find that the DC Poynting vector has a nontrivial altitude profile such that it decreases by a factor of ~2 when moving upward from 3 to 4 RE radial distance. In other nightside MLT sectors the altitude profile is more uniform. The morning sector nontrivial altitude profile may be due to divergence of the perpendicular Poynting vector field at R=3–4 RE. Keywords. Magnetospheric physics (Auroral phenomena; Magnetosphere-ionosphere interactions – Space plasma physics (Wave-particle interactions

  2. Topological characteristics of multi-valued maps and Lipschitzian functionals

    International Nuclear Information System (INIS)

    Klimov, V S

    2008-01-01

    This paper deals with the operator inclusion O element of F(x)+N Q (x), where F is a multi-valued map of monotonic type from a reflexive space V to its conjugate V * and N Q is the cone normal to the closed set Q, which, generally speaking, is not convex. To estimate the number of solutions of this inclusion we introduce topological characteristics of multi-valued maps and Lipschitzian functionals that have the properties of additivity and homotopy invariance. We prove some infinite-dimensional versions of the Poincare-Hopf theorem

  3. Price vector effects in choice experiments: an empirical test

    International Nuclear Information System (INIS)

    Hanley, Nick; Wright, Robert E.; Adamowicz, Wiktor

    2005-01-01

    This paper investigates whether the preference and willingness-to-pay estimates obtained from the choice experiment method of estimating non-market values are sensitive to the vector of prices used in the experimental design. We undertake this test in the context of water quality improvements under the European Union's new Water Framework Directive. Using a mixed logit model, which allows for differing scale between the two samples, we find no significant impact of changing the price vector on estimates of preferences or willingness-to-pay. (author) (Choice modelling; Non-market valuation; Design effects; Water Framework Directive)

  4. Some properties of generalized biregular functions with values in a Clifford algebra

    International Nuclear Information System (INIS)

    Le Hung Son; Tran Quyet Thang.

    1992-09-01

    In this paper some properties of holomorphic functions such as the Identity Theorem, the Maximum Modulus Principle, the Hartogs Extension Theorem are proved for a class of more general functions taking values in a Clifford algebra than the regular and biregular functions. (author). 7 refs

  5. Application of Bred Vectors To Data Assimilation

    Science.gov (United States)

    Corazza, M.; Kalnay, E.; Patil, Dj

    We introduced a statistic, the BV-dimension, to measure the effective local finite-time dimensionality of the atmosphere. We show that this dimension is often quite low, and suggest that this finding has important implications for data assimilation and the accuracy of weather forecasting (Patil et al, 2001). The original database for this study was the forecasts of the NCEP global ensemble forecasting system. The initial differences between the control forecast and the per- turbed forecasts are called bred vectors. The control and perturbed initial conditions valid at time t=n(t are evolved using the forecast model until time t=(n+1) (t. The differences between the perturbed and the control forecasts are scaled down to their initial amplitude, and constitute the bred vectors valid at (n+1) (t. Their growth rate is typically about 1.5/day. The bred vectors are similar by construction to leading Lya- punov vectors except that they have small but finite amplitude, and they are valid at finite times. The original NCEP ensemble data set has 5 independent bred vectors. We define a local bred vector at each grid point by choosing the 5 by 5 grid points centered at the grid point (a region of about 1100km by 1100km), and using the north-south and east- west velocity components at 500mb pressure level to form a 50 dimensional column vector. Since we have k=5 global bred vectors, we also have k local bred vectors at each grid point. We estimate the effective dimensionality of the subspace spanned by the local bred vectors by performing a singular value decomposition (EOF analysis). The k local bred vector columns form a 50xk matrix M. The singular values s(i) of M measure the extent to which the k column unit vectors making up the matrix M point in the direction of v(i). We define the bred vector dimension as BVDIM={Sum[s(i)]}^2/{Sum[s(i)]^2} For example, if 4 out of the 5 vectors lie along v, and one lies along v, the BV- dimension would be BVDIM[sqrt(4), 1, 0

  6. Use of insecticide-treated house screens to reduce infestations of dengue virus vectors, Mexico.

    Science.gov (United States)

    Manrique-Saide, Pablo; Che-Mendoza, Azael; Barrera-Perez, Mario; Guillermo-May, Guillermo; Herrera-Bojorquez, Josue; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Lenhart, Audrey; Vazquez-Prokopec, Gonzalo; Sommerfeld, Johannes; McCall, Philip J; Kroeger, Axel; Arredondo-Jimenez, Juan I

    2015-02-01

    Dengue prevention efforts rely on control of virus vectors. We investigated use of insecticide-treated screens permanently affixed to windows and doors in Mexico and found that the screens significantly reduced infestations of Aedes aegypti mosquitoes in treated houses. Our findings demonstrate the value of this method for dengue virus vector control.

  7. Multi-Valued Associative Memory Neural Network

    Institute of Scientific and Technical Information of China (English)

    修春波; 刘向东; 张宇河

    2003-01-01

    A novel learning method for multi-valued associative memory network is introduced, which is based on Hebb rule, but utilizes more information. According to the current probe vector, the connection weights matrix could be chosen dynamically. Double-valued and multi-valued associative memory are all realized in our simulation experiment. The experimental results show that the method could enhance the associative success rate.

  8. Non-Gaussianity and statistical anisotropy from vector field populated inflationary models

    CERN Document Server

    Dimastrogiovanni, Emanuela; Matarrese, Sabino; Riotto, Antonio

    2010-01-01

    We present a review of vector field models of inflation and, in particular, of the statistical anisotropy and non-Gaussianity predictions of models with SU(2) vector multiplets. Non-Abelian gauge groups introduce a richer amount of predictions compared to the Abelian ones, mostly because of the presence of vector fields self-interactions. Primordial vector fields can violate isotropy leaving their imprint in the comoving curvature fluctuations zeta at late times. We provide the analytic expressions of the correlation functions of zeta up to fourth order and an analysis of their amplitudes and shapes. The statistical anisotropy signatures expected in these models are important and, potentially, the anisotropic contributions to the bispectrum and the trispectrum can overcome the isotropic parts.

  9. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize.

    Science.gov (United States)

    Mei, Yu; Zhang, Chunquan; Kernodle, Bliss M; Hill, John H; Whitham, Steven A

    2016-06-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. © 2016 American Society of Plant Biologists. All Rights Reserved.

  10. Anomalous vector-boson self-interactions

    International Nuclear Information System (INIS)

    Nir, Y.

    1988-03-01

    We study the possibility that vector-boson self-couplings may differ from their standard model values. We find that known constraints from loop-effects and from unitarity already imply that such deviations are of order 10 -2 or less. Consequently, even if the correct model differs from the standard model and even if the energy scale of new physics is as low as 1 TeV, a direct observation of anomalous couplings is very improbable in the LEP-200 and Tevatron experiments. (author)

  11. Vector grammars and PN machines

    Institute of Scientific and Technical Information of China (English)

    蒋昌俊

    1996-01-01

    The concept of vector grammars under the string semantic is introduced.The dass of vector grammars is given,which is similar to the dass of Chomsky grammars.The regular vector grammar is divided further.The strong and weak relation between the vector grammar and scalar grammar is discussed,so the spectrum system graph of scalar and vector grammars is made.The equivalent relation between the regular vector grammar and Petri nets (also called PN machine) is pointed.The hybrid PN machine is introduced,and its language is proved equivalent to the language of the context-free vector grammar.So the perfect relation structure between vector grammars and PN machines is formed.

  12. Vector velocimeter

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to a compact, reliable and low-cost vector velocimeter for example for determining velocities of particles suspended in a gas or fluid flow, or for determining velocity, displacement, rotation, or vibration of a solid surface, the vector velocimeter comprising a laser...

  13. Cloning vector

    Science.gov (United States)

    Guilfoyle, Richard A.; Smith, Lloyd M.

    1994-01-01

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.

  14. Cloning vector

    Science.gov (United States)

    Guilfoyle, R.A.; Smith, L.M.

    1994-12-27

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.

  15. Doob's decomposition of set-valued submartingales via ordered ...

    African Journals Online (AJOL)

    We use ideas from measure-free martingale theory and R˚adstr¨om' completion of a near vector space to derive a Doob decomposition of submartingales in ordered near vector spaces. As a special cases thereof, we obtain the Doob decomposition of set-valued submartingales, as noted by Daures, Ni and Zhang, and an ...

  16. Function of One Regular Separable Relation Set Decided for the Minimal Covering in Multiple Valued Logic

    Directory of Open Access Journals (Sweden)

    Liu Yu Zhen

    2016-01-01

    Full Text Available Multiple-valued logic is an important branch of the computer science and technology. Multiple-valued logic studies the theory, multiple-valued circuit & multiple-valued system, and the applications of multiple-valued logic included.In the theory of multiple-valued logic, one primary and important problem is the completeness of function sets, which can be solved depending on the decision for all the precomplete sets(also called maximal closed sets of K-valued function sets noted by PK*, and another is the decision for Sheffer function, which can be totally solved by picking out all of the minimal covering of the precomplete sets. In the function structure theory of multi-logic, decision on Sheffer function is an important role. It contains structure and decision of full multi-logic and partial multi-logic. Its decision is closely related to decision of completeness of function which can be done by deciding the minimal covering of full multi-logic and partial-logic. By theory of completeness of partial multi-logic, we prove that function of one regular separable relation is not minimal covering of PK* under the condition of m = 2, σ = e.

  17. On the non-Gaussian correlation of the primordial curvature perturbation with vector fields

    DEFF Research Database (Denmark)

    Kumar Jain, Rajeev; Sloth, Martin Snoager

    2013-01-01

    We compute the three-point cross-correlation function of the primordial curvature perturbation generated during inflation with two powers of a vector field in a model where conformal invariance is broken by a direct coupling of the vector field with the inflaton. If the vector field is identified...... with the electromagnetic field, this correlation would be a non-Gaussian signature of primordial magnetic fields generated during inflation. We find that the signal is maximized for the flattened configuration where the wave number of the curvature perturbation is twice that of the vector field and in this limit...

  18. Lovelock vacua with a recurrent null vector field

    Science.gov (United States)

    Ortaggio, Marcello

    2018-02-01

    Vacuum solutions of Lovelock gravity in the presence of a recurrent null vector field (a subset of Kundt spacetimes) are studied. We first discuss the general field equations, which constrain both the base space and the profile functions. While choosing a "generic" base space puts stronger constraints on the profile, in special cases there also exist solutions containing arbitrary functions (at least for certain values of the coupling constants). These and other properties (such as the p p - waves subclass and the overlap with VSI, CSI and universal spacetimes) are subsequently analyzed in more detail in lower dimensions n =5 , 6 as well as for particular choices of the base manifold. The obtained solutions describe various classes of nonexpanding gravitational waves propagating, e.g., in Nariai-like backgrounds M2×Σn -2. An Appendix contains some results about general (i.e., not necessarily Kundt) Lovelock vacua of Riemann type III/N and of Weyl and traceless-Ricci type III/N. For example, it is pointed out that for theories admitting a triply degenerate maximally symmetric vacuum, all the (reduced) field equations are satisfied identically, giving rise to large classes of exact solutions.

  19. Parameterized Post-Newtonian Expansion of Scalar-Vector-Tensor Theory of Gravity

    International Nuclear Information System (INIS)

    Arianto; Zen, Freddy P.; Gunara, Bobby E.; Hartanto, Andreas

    2010-01-01

    We investigate the weak-field, post-Newtonian expansion to the solution of the field equations in scalar-vector-tensor theory of gravity. In the calculation we restrict ourselves to the first post Newtonian. The parameterized post Newtonian (PPN) parameters are determined by expanding the modified field equations in the metric perturbation. Then, we compare the solution to the PPN formalism in first PN approximation proposed by Will and Nordtvedt and read of the coefficients (the PPN parameters) of post Newtonian potentials of the theory. We find that the values of γ PPN and β PPN are the same as in General Relativity but the coupling functions β 1 , β 2 , and β 3 are the effect of the preferred frame.

  20. Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment

    Science.gov (United States)

    Diao, Y. L.; Sun, W. N.; He, Y. Q.; Leung, S. W.; Siu, Y. M.

    2017-10-01

    In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort—the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.

  1. Vector 33: A reduce program for vector algebra and calculus in orthogonal curvilinear coordinates

    Science.gov (United States)

    Harper, David

    1989-06-01

    This paper describes a package with enables REDUCE 3.3 to perform algebra and calculus operations upon vectors. Basic algebraic operations between vectors and between scalars and vectors are provided, including scalar (dot) product and vector (cross) product. The vector differential operators curl, divergence, gradient and Laplacian are also defined, and are valid in any orthogonal curvilinear coordinate system. The package is written in RLISP to allow algebra and calculus to be performed using notation identical to that for operations. Scalars and vectors can be mixed quite freely in the same expression. The package will be of interest to mathematicians, engineers and scientists who need to perform vector calculations in orthogonal curvilinear coordinates.

  2. Reference values for paediatric pulmonary function testing: The Utrecht dataset.

    Science.gov (United States)

    Koopman, Marije; Zanen, Pieter; Kruitwagen, Cas L J J; van der Ent, Cornelis K; Arets, Hubertus G M

    2011-01-01

    Since populations evolve, measurement protocols and equipment improve and analysis techniques progress, there is an ongoing need to reassess reference data for pulmonary function tests. Furthermore, reference values for total lung capacity and carbon monoxide diffusion capacity are scarcely available in children. We aimed to provide updated reference equations for most commonly used pulmonary function indices in Caucasian children. In the 'Utrecht Pulmonary Function Reference Data Study' we collected data in Caucasian children aged 2-18 years. We analyzed them using the 'Generalized Additive Models for Location Scale and Shape' (GAMLSS) statistical method. Measurements of interrupter resistance (R(int)) (n = 877), spirometry (n = 1042), body plethysmography (n = 723) and carbon monoxide diffusion/helium dilution (n = 543) were obtained in healthy children. Height (or the natural logarithm of height) and age (or the natural logarithm of age) were both significantly related to most outcome measures. Also sex was a significant determinant, except for RV, RV/TLC, FRC(pleth), Raw(0,5), Raw(tot), R(int) and FEF values. The application of previously published reference equations on the study population resulted in misinterpretation of pulmonary function. These new paediatric reference equations provide accurate estimates of the range of normality for most commonly used pulmonary function indices, resulting in less underdiagnosis and overdiagnosis of pulmonary diseases. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Support vector machine classification and characterization of age-related reorganization of functional brain networks.

    Science.gov (United States)

    Meier, Timothy B; Desphande, Alok S; Vergun, Svyatoslav; Nair, Veena A; Song, Jie; Biswal, Bharat B; Meyerand, Mary E; Birn, Rasmus M; Prabhakaran, Vivek

    2012-03-01

    Most of what is known about the reorganization of functional brain networks that accompanies normal aging is based on neuroimaging studies in which participants perform specific tasks. In these studies, reorganization is defined by the differences in task activation between young and old adults. However, task activation differences could be the result of differences in task performance, strategy, or motivation, and not necessarily reflect reorganization. Resting-state fMRI provides a method of investigating functional brain networks without such confounds. Here, a support vector machine (SVM) classifier was used in an attempt to differentiate older adults from younger adults based on their resting-state functional connectivity. In addition, the information used by the SVM was investigated to see what functional connections best differentiated younger adult brains from older adult brains. Three separate resting-state scans from 26 younger adults (18-35 yrs) and 26 older adults (55-85) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available in the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 100 seed-regions from four functional networks with 5mm(3) radius were defined based on a recent study using machine learning classifiers on adolescent brains. Time-series for every seed-region were averaged and three matrices of z-transformed correlation coefficients were created for each subject corresponding to each individual's three resting-state scans. SVM was then applied using leave-one-out cross-validation. The SVM classifier was 84% accurate in classifying older and younger adult brains. The majority of the connections used by the classifier to distinguish subjects by age came from seed-regions belonging to the sensorimotor and cingulo-opercular networks. These results suggest that age-related decreases in positive correlations within the cingulo-opercular and default networks, and decreases in

  4. On McShane integrability of Banach space-valued functions

    Czech Academy of Sciences Publication Activity Database

    Kurzweil, Jaroslav; Schwabik, Štefan

    2004-01-01

    Roč. 29, č. 2 (2004), s. 763-780 ISSN 0147-1937 R&D Projects: GA ČR GA201/01/1199 Institutional research plan: CEZ:AV0Z1019905 Keywords : McShane integral * vector integration Subject RIV: BA - General Mathematics

  5. Chiral and color-superconducting phase transitions with vector interaction in a simple model

    International Nuclear Information System (INIS)

    Kitazawa, Masakiyo; Koide, Tomoi; Kunihiro, Teiji; Nemoto, Yukio

    2002-01-01

    We investigate effects of the vector interaction on chiral and color superconducting (CSC) phase transitions at finite density and temperature in a simple Nambu-Jona-Lasinio model. It is shown that the repulsive density-density interaction coming from the vector term, which is present in the effective chiral models but has been omitted, enhances the competition between the chiral symmetry breaking (χSB) and CSC phase transition, and thereby makes the thermodynamic potential have a shallow minimum over a wide range of values of the correlated chiral and CSC order parameters. We find that when the vector coupling is increased, the first order transition between the χSB and CSC phases becomes weaker, and the coexisting phase in which both the chiral and color-gauge symmetry are dynamically broken comes to exist over a wider range of the density and temperature. We also show that there can exist two endpoints, which are tricritical points in the chiral limit, along the critical line of the first order transition in some range of values of the vector coupling. Although our analysis is based on a simple model, the nontrivial interplay between the χSB and CSC phases induced by the vector interaction is expected to be a universal phenomenon and might give a clue to understanding results obtained with two-color QCD on the lattice. (author)

  6. Effect of phyto-synthesized silver nanoparticles on developmental stages of malaria vector, Anopheles stephensi and dengue vector, Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Madanagopal Nalini

    2017-09-01

    Full Text Available Rapidly synthesized phyto-mediated silver nanoparticles (Ag NPs using Artemisia nilagirica aqueous leaf filtrate has been confirmed through UV–visible spectrophotometer. The synthesized Ag NPs were further characterized using Fourier transform infra-red (FTIR, X-ray diffraction analysis (XRD to determine the present of functional groups and average particle size (6.723 nm with cubic nature, respectively. Spherical shape (≤30 nm of Ag NPs was confirmed by scanning electron microscopy (SEM. Bio-efficacy of these nanoparticles showed larvicidal and pupicidal properties than the aqueous leaf extract treatment alone against developmental stages (I–IV instars and pupa of malaria vector Anopheles stephensi and dengue vector Aedes aegypti at 0.25% concentration level. The LC50 (LCL:UCL at 95% confidence limit values of I–IV instar and pupa of An. stephensi were recorded at 0.343 (0.261:0.405, 0.169 (0.025:0.263, 0.198 (0.105:0.265, 0.141 (0.045:0.205 and 0.050 (0.606:0.224 % respectively and for Ae. aegypti (I–IV instar and pupa 0.460 (0.364:0.537, 0.352 (0.239:0.432, 0.331 (0.833:0.549, 0.217 (0.228:0.378 and 0.161 (0.630:0.356 % were observed, after 24 h exposure. The first report of present investigation revealed that the rapid biological synthesis of silver nanoparticles using A. nilagirica leaf filtrate would be an effective potential alternative green larvicide for the control of mosquitoes at the developmental stages with eco-friendly approach.

  7. Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures

    Science.gov (United States)

    Liu, Zhangjun; Liu, Zenghui

    2018-06-01

    This paper develops a hybrid approach of spectral representation and random function for simulating stationary stochastic vector processes. In the proposed approach, the high-dimensional random variables, included in the original spectral representation (OSR) formula, could be effectively reduced to only two elementary random variables by introducing the random functions that serve as random constraints. Based on this, a satisfactory simulation accuracy can be guaranteed by selecting a small representative point set of the elementary random variables. The probability information of the stochastic excitations can be fully emerged through just several hundred of sample functions generated by the proposed approach. Therefore, combined with the probability density evolution method (PDEM), it could be able to implement dynamic response analysis and reliability assessment of engineering structures. For illustrative purposes, a stochastic turbulence wind velocity field acting on a frame-shear-wall structure is simulated by constructing three types of random functions to demonstrate the accuracy and efficiency of the proposed approach. Careful and in-depth studies concerning the probability density evolution analysis of the wind-induced structure have been conducted so as to better illustrate the application prospects of the proposed approach. Numerical examples also show that the proposed approach possesses a good robustness.

  8. Recent Advances in Non-viral Vectors for Gene Delivery

    Science.gov (United States)

    Guo, Xia; Huang, Leaf

    2011-01-01

    membrane/core nanoparticles for nucleic acid delivery and ultrasound-responsive nucleic acid vectors. The systemic delivery studies are highlighted. Finally, we bring forward the prospect for nucleic acid delivery. We think a better understandings of the fate of the nanoparticles inside the cell and of the interactions between the parts of hybrid particles will lead to a delivery system suitable for clinical use. We also underscore the value of sustained release of nucleic acid and presume making vectors targeted to cells with sustained release in vivo should be an interesting research challenge. PMID:21870813

  9. The functional value of Caribbean coral reef, seagrass and mangrove habitats to ecosystem processes.

    Science.gov (United States)

    Harborne, Alastair R; Mumby, Peter J; Micheli, Fiorenza; Perry, Christopher T; Dahlgren, Craig P; Holmes, Katherine E; Brumbaugh, Daniel R

    2006-01-01

    Caribbean coral reef habitats, seagrass beds and mangroves provide important goods and services both individually and through functional linkages. A range of anthropogenic factors are threatening the ecological and economic importance of these habitats and it is vital to understand how ecosystem processes vary across seascapes. A greater understanding of processes will facilitate further insight into the effects of disturbances and assist with assessing management options. Despite the need to study processes across whole seascapes, few spatially explicit ecosystem-scale assessments exist. We review the empirical literature to examine the role of different habitat types for a range of processes. The importance of each of 10 generic habitats to each process is defined as its "functional value" (none, low, medium or high), quantitatively derived from published data wherever possible and summarised in a single figure. This summary represents the first time the importance of habitats across an entire Caribbean seascape has been assessed for a range of processes. Furthermore, we review the susceptibility of each habitat to disturbances to investigate spatial patterns that might affect functional values. Habitat types are considered at the scale discriminated by remotely-sensed imagery and we envisage that functional values can be combined with habitat maps to provide spatially explicit information on processes across ecosystems. We provide examples of mapping the functional values of habitats for populations of three commercially important species. The resulting data layers were then used to generate seascape-scale assessments of "hot spots" of functional value that might be considered priorities for conservation. We also provide an example of how the literature reviewed here can be used to parameterise a habitat-specific model investigating reef resilience under different scenarios of herbivory. Finally, we use multidimensional scaling to provide a basic analysis of the

  10. Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor

    Directory of Open Access Journals (Sweden)

    Jonathan Sheu

    Full Text Available Lentiviral vectors are widely used in the field of gene therapy as an effective method for permanent gene delivery. While current methods of producing small scale vector batches for research purposes depend largely on culture flasks, the emergence and popularity of lentiviral vectors in translational, preclinical and clinical research has demanded their production on a much larger scale, a task that can be difficult to manage with the numbers of producer cell culture flasks required for large volumes of vector. To generate a large scale, partially closed system method for the manufacturing of clinical grade lentiviral vector suitable for the generation of induced pluripotent stem cells (iPSCs, we developed a method employing a hollow fiber bioreactor traditionally used for cell expansion. We have demonstrated the growth, transfection, and vector-producing capability of 293T producer cells in this system. Vector particle RNA titers after subsequent vector concentration yielded values comparable to lentiviral iPSC induction vector batches produced using traditional culture methods in 225 cm2 flasks (T225s and in 10-layer cell factories (CF10s, while yielding a volume nearly 145 times larger than the yield from a T225 flask and nearly three times larger than the yield from a CF10. Employing a closed system hollow fiber bioreactor for vector production offers the possibility of manufacturing large quantities of gene therapy vector while minimizing reagent usage, equipment footprint, and open system manipulation.

  11. Improving Vector Evaluated Particle Swarm Optimisation by Incorporating Nondominated Solutions

    Directory of Open Access Journals (Sweden)

    Kian Sheng Lim

    2013-01-01

    Full Text Available The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with the conventional Vector Evaluated Particle Swarm Optimisation algorithm.

  12. A stable RNA virus-based vector for citrus trees

    International Nuclear Information System (INIS)

    Folimonov, Alexey S.; Folimonova, Svetlana Y.; Bar-Joseph, Moshe; Dawson, William O.

    2007-01-01

    Virus-based vectors are important tools in plant molecular biology and plant genomics. A number of vectors based on viruses that infect herbaceous plants are in use for expression or silencing of genes in plants as well as screening unknown sequences for function. Yet there is a need for useful virus-based vectors for woody plants, which demand much greater stability because of the longer time required for systemic infection and analysis. We examined several strategies to develop a Citrus tristeza virus (CTV)-based vector for transient expression of foreign genes in citrus trees using a green fluorescent protein (GFP) as a reporter. These strategies included substitution of the p13 open reading frame (ORF) by the ORF of GFP, construction of a self-processing fusion of GFP in-frame with the major coat protein (CP), or expression of the GFP ORF as an extra gene from a subgenomic (sg) mRNA controlled either by a duplicated CTV CP sgRNA controller element (CE) or an introduced heterologous CE of Beet yellows virus. Engineered vector constructs were examined for replication, encapsidation, GFP expression during multiple passages in protoplasts, and for their ability to infect, move, express GFP, and be maintained in citrus plants. The most successful vectors based on the 'add-a-gene' strategy have been unusually stable, continuing to produce GFP fluorescence after more than 4 years in citrus trees

  13. Testing resonating vector strength: Auditory system, electric fish, and noise

    Science.gov (United States)

    Leo van Hemmen, J.; Longtin, André; Vollmayr, Andreas N.

    2011-12-01

    Quite often a response to some input with a specific frequency ν○ can be described through a sequence of discrete events. Here, we study the synchrony vector, whose length stands for the vector strength, and in doing so focus on neuronal response in terms of spike times. The latter are supposed to be given by experiment. Instead of singling out the stimulus frequency ν○ we study the synchrony vector as a function of the real frequency variable ν. Its length turns out to be a resonating vector strength in that it shows clear maxima in the neighborhood of ν○ and multiples thereof, hence, allowing an easy way of determining response frequencies. We study this "resonating" vector strength for two concrete but rather different cases, viz., a specific midbrain neuron in the auditory system of cat and a primary detector neuron belonging to the electric sense of the wave-type electric fish Apteronotus leptorhynchus. We show that the resonating vector strength always performs a clear resonance correlated with the phase locking that it quantifies. We analyze the influence of noise and demonstrate how well the resonance associated with maximal vector strength indicates the dominant stimulus frequency. Furthermore, we exhibit how one can obtain a specific phase associated with, for instance, a delay in auditory analysis.

  14. Extreme values, regular variation and point processes

    CERN Document Server

    Resnick, Sidney I

    1987-01-01

    Extremes Values, Regular Variation and Point Processes is a readable and efficient account of the fundamental mathematical and stochastic process techniques needed to study the behavior of extreme values of phenomena based on independent and identically distributed random variables and vectors It presents a coherent treatment of the distributional and sample path fundamental properties of extremes and records It emphasizes the core primacy of three topics necessary for understanding extremes the analytical theory of regularly varying functions; the probabilistic theory of point processes and random measures; and the link to asymptotic distribution approximations provided by the theory of weak convergence of probability measures in metric spaces The book is self-contained and requires an introductory measure-theoretic course in probability as a prerequisite Almost all sections have an extensive list of exercises which extend developments in the text, offer alternate approaches, test mastery and provide for enj...

  15. Multi-perspective views of students’ difficulties with one-dimensional vector and two-dimensional vector

    Science.gov (United States)

    Fauzi, Ahmad; Ratna Kawuri, Kunthi; Pratiwi, Retno

    2017-01-01

    Researchers of students’ conceptual change usually collects data from written tests and interviews. Moreover, reports of conceptual change often simply refer to changes in concepts, such as on a test, without any identification of the learning processes that have taken place. Research has shown that students have difficulties with vectors in university introductory physics courses and high school physics courses. In this study, we intended to explore students’ understanding of one-dimensional and two-dimensional vector in multi perspective views. In this research, we explore students’ understanding through test perspective and interviews perspective. Our research study adopted the mixed-methodology design. The participants of this research were sixty students of third semester of physics education department. The data of this research were collected by testand interviews. In this study, we divided the students’ understanding of one-dimensional vector and two-dimensional vector in two categories, namely vector skills of the addition of one-dimensionaland two-dimensional vector and the relation between vector skills and conceptual understanding. From the investigation, only 44% of students provided correct answer for vector skills of the addition of one-dimensional and two-dimensional vector and only 27% students provided correct answer for the relation between vector skills and conceptual understanding.

  16. Spectral functions in quantum chromodynamics and applications

    International Nuclear Information System (INIS)

    Tran, M.D.

    1981-01-01

    The longitudinal and transverse spectral functions for arbitrary conserved and non-conserved vector and axial vector currents of massive quarks are calculated to first order in α/sub s/ and exact analytical expressions are given. As an intermediate step the form factors to the same order in α/sub s/ are determined. A remarkably simple result for the combination of the spectral functions corresponding to the Weinberg's first sum rule is derived. It behaves asymptotically like α/sub s/s 2 thus ensuring the convergence of the sum rule. The Weinberg's second sum rule is shown to fail to hold, a new sum rule is then proposed to replace the original one. The current algebra calculation of the pion electromagnetic mass difference is reexamined in the light of quantum chromodynamics. The old analysis cannot be upheld because of the failure of the Weinberg's second sum rule. After a modification based on Dashen's theorem, the proposed sum rule then can be used to obtain a mass difference close to experimental value. Using the derived QCD corrected spectral functions on finite Q 2 sum rules, the current couplings of the five low-lying mesons π, rho, K, K*, A 1 are computed. For values of quark masses m/sub u/ = m/sub d/ = 0.25 GeV, m/sub s/ = 0.4 GeV and of the QCD scale parameter Λ = 0.5 GeV, a striking agreement with experiment is obtained. We investigate decay properties of the intermediate vector bosons Z, W. Gluonic corrections to hadronic decay modes are calculated with the account of quark mass effect. Implications of the results for decay widths, branching ratios are examined. The ratio R of reaction e + e - → hadrons is calculated to first order in α/sub s/, the quark mass effect is shown to be important

  17. Interference in Exclusive Vector Meson Production in Heavy-Ion Collisions

    International Nuclear Information System (INIS)

    Klein, Spencer R.; Nystrand, Joakim

    2000-01-01

    Vector mesons are produced copiously in peripheral relativistic heavy-ion collisions. Virtual photons from one ion can fluctuate into quark-antiquark pairs and scatter from the second ion, emerging as vector mesons. The emitter and target are indistinguishable, so emission from the two ions will interfere. Vector mesons have negative parity so the interference is destructive, reducing the production of mesons with small transverse momentum. The mesons are short lived, and decay before emission from the two ions can overlap. However, the decay-product wave functions overlap and interfere since they are produced in an entangled state, providing an example of the Einstein-Podolsky-Rosen paradox. (c) 2000 The American Physical Society

  18. Wavelet transform-vector quantization compression of supercomputer ocean model simulation output

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J N; Brislawn, C M

    1992-11-12

    We describe a new procedure for efficient compression of digital information for storage and transmission purposes. The algorithm involves a discrete wavelet transform subband decomposition of the data set, followed by vector quantization of the wavelet transform coefficients using application-specific vector quantizers. The new vector quantizer design procedure optimizes the assignment of both memory resources and vector dimensions to the transform subbands by minimizing an exponential rate-distortion functional subject to constraints on both overall bit-rate and encoder complexity. The wavelet-vector quantization method, which originates in digital image compression. is applicable to the compression of other multidimensional data sets possessing some degree of smoothness. In this paper we discuss the use of this technique for compressing the output of supercomputer simulations of global climate models. The data presented here comes from Semtner-Chervin global ocean models run at the National Center for Atmospheric Research and at the Los Alamos Advanced Computing Laboratory.

  19. Graphene materials as 2D non-viral gene transfer vector platforms.

    Science.gov (United States)

    Vincent, M; de Lázaro, I; Kostarelos, K

    2017-03-01

    Advances in genomics and gene therapy could offer solutions to many diseases that remain incurable today, however, one of the critical reasons halting clinical progress is due to the difficulty in designing efficient and safe delivery vectors for the appropriate genetic cargo. Safety and large-scale production concerns counter-balance the high gene transfer efficiency achieved with viral vectors, while non-viral strategies have yet to become sufficiently efficient. The extraordinary physicochemical, optical and photothermal properties of graphene-based materials (GBMs) could offer two-dimensional components for the design of nucleic acid carrier systems. We discuss here such properties and their implications for the optimization of gene delivery. While the design of such vectors is still in its infancy, we provide here an exhaustive and up-to-date analysis of the studies that have explored GBMs as gene transfer vectors, focusing on the functionalization strategies followed to improve vector performance and on the biological effects attained.

  20. Custodial vector model

    Science.gov (United States)

    Becciolini, Diego; Franzosi, Diogo Buarque; Foadi, Roshan; Frandsen, Mads T.; Hapola, Tuomas; Sannino, Francesco

    2015-07-01

    We analyze the Large Hadron Collider (LHC) phenomenology of heavy vector resonances with a S U (2 )L×S U (2 )R spectral global symmetry. This symmetry partially protects the electroweak S parameter from large contributions of the vector resonances. The resulting custodial vector model spectrum and interactions with the standard model fields lead to distinct signatures at the LHC in the diboson, dilepton, and associated Higgs channels.

  1. Vector Differential Calculus

    OpenAIRE

    HITZER, Eckhard MS

    2002-01-01

    This paper treats the fundamentals of the vector differential calculus part of universal geometric calculus. Geometric calculus simplifies and unifies the structure and notation of mathematics for all of science and engineering, and for technological applications. In order to make the treatment self-contained, I first compile all important geometric algebra relationships,which are necesssary for vector differential calculus. Then differentiation by vectors is introduced and a host of major ve...

  2. Elliptic-symmetry vector optical fields.

    Science.gov (United States)

    Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian

    2014-08-11

    We present in principle and demonstrate experimentally a new kind of vector fields: elliptic-symmetry vector optical fields. This is a significant development in vector fields, as this breaks the cylindrical symmetry and enriches the family of vector fields. Due to the presence of an additional degrees of freedom, which is the interval between the foci in the elliptic coordinate system, the elliptic-symmetry vector fields are more flexible than the cylindrical vector fields for controlling the spatial structure of polarization and for engineering the focusing fields. The elliptic-symmetry vector fields can find many specific applications from optical trapping to optical machining and so on.

  3. Islamic Values in Spatial Function of Javanese Traditional Architecture

    Directory of Open Access Journals (Sweden)

    Supriyanta Supriyanta

    2016-01-01

    Full Text Available Learn from the past is important thing as based for the next step. Learn past architecture to gain positive values can be used as guidelines to design better architectural works. Javanese traditional architecture is one of local architecture from the past which has positive values, even if it is done deeper study; it has Islamic values which can be used as principles in the process of Islamic architectural design. To achieve Islamic values in spatial pattern Javanese traditional architecture can be done through exploration and reviewing Javanese traditional architectural space afterward it is associated with Islamic values which are relevant with Al Qur’an and sunnah prophet. In fact is the spatial pattern in Javanese traditional architecture arrayed with beauty and also has Islamic valuable function. Those Islamic values are 1 high esteem guest (pendopo through providing wide and comfortable living room; 2 create divider (pringgitan which separate between living room and main room so that the privation can be kept; 3 separation the bed room (gandok kiwo and gandok tengen between parents and their children who are going mature and also between boys and girls; 4 provide praying room (senthong tengah to pray as family education and also as a place to pray to the God.

  4. Chikungunya Virus–Vector Interactions

    Directory of Open Access Journals (Sweden)

    Lark L. Coffey

    2014-11-01

    Full Text Available Chikungunya virus (CHIKV is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed.

  5. Extended vector-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Rampei; Naruko, Atsushi; Yoshida, Daisuke, E-mail: rampei@th.phys.titech.ac.jp, E-mail: naruko@th.phys.titech.ac.jp, E-mail: yoshida@th.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2017-01-01

    Recently, several extensions of massive vector theory in curved space-time have been proposed in many literatures. In this paper, we consider the most general vector-tensor theories that contain up to two derivatives with respect to metric and vector field. By imposing a degeneracy condition of the Lagrangian in the context of ADM decomposition of space-time to eliminate an unwanted mode, we construct a new class of massive vector theories where five degrees of freedom can propagate, corresponding to three for massive vector modes and two for massless tensor modes. We find that the generalized Proca and the beyond generalized Proca theories up to the quartic Lagrangian, which should be included in this formulation, are degenerate theories even in curved space-time. Finally, introducing new metric and vector field transformations, we investigate the properties of thus obtained theories under such transformations.

  6. Hyperbolic-symmetry vector fields.

    Science.gov (United States)

    Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2015-12-14

    We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.

  7. Vectors expressing chimeric Japanese encephalitis dengue 2 viruses.

    Science.gov (United States)

    Wei, Y; Wang, S; Wang, X

    2014-01-01

    Vectors based on self-replicating RNAs (replicons) of flaviviruses are becoming powerful tool for expression of heterologous genes in mammalian cells and development of novel antiviral and anticancer vaccines. We constructed two vectors expressing chimeric viruses consisting of attenuated SA14-14-2 strain of Japanese encephalitis virus (JEV) in which the PrM/M-E genes were replaced fully or partially with those of dengue 2 virus (DENV-2). These vectors, named pJED2 and pJED2-1770 were transfected to BHK-21 cells and produced chimeric viruses JED2V and JED2-1770V, respectively. The chimeric viruses could be passaged in C6/36 but not BHK-21 cells. The chimeric viruses produced in C6/36 cells CPE 4-5 days after infection and RT-PCR, sequencing, immunofluorescence assay (IFA) and Western blot analysis confirmed the chimeric nature of produced viruses. The immunogenicity of chimeric viruses in mice was proved by detecting DENV-2 E protein-specific serum IgG antibodies with neutralization titer of 10. Successful preparation of infectious clones of chimeric JEV-DENV-2 viruses showed that JEV-based expression vectors are fully functional.

  8. Modeling Malaria Vector Distribution under Climate Change Scenarios in Kenya

    Science.gov (United States)

    Ngaina, J. N.

    2017-12-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control strategies for sustaining elimination and preventing reintroduction of malaria. However, in Kenya, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of future climate change on locally dominant Anopheles vectors including Anopheles gambiae, Anopheles arabiensis, Anopheles merus, Anopheles funestus, Anopheles pharoensis and Anopheles nili. Environmental data (Climate, Land cover and elevation) and primary empirical geo-located species-presence data were identified. The principle of maximum entropy (Maxent) was used to model the species' potential distribution area under paleoclimate, current and future climates. The Maxent model was highly accurate with a statistically significant AUC value. Simulation-based estimates suggest that the environmentally suitable area (ESA) for Anopheles gambiae, An. arabiensis, An. funestus and An. pharoensis would increase under all two scenarios for mid-century (2016-2045), but decrease for end century (2071-2100). An increase in ESA of An. Funestus was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios for mid-century. Our findings can be applied in various ways such as the identification of additional localities where Anopheles malaria vectors may already exist, but has not yet been detected and the recognition of localities where it is likely to spread to. Moreover, it will help guide future sampling location decisions, help with the planning of vector control suites nationally and encourage broader research inquiry into vector species niche modeling

  9. Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions

    Directory of Open Access Journals (Sweden)

    Kenta Kobayashi

    2017-08-01

    Full Text Available Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1 with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G and vesicular stomatitis virus glycoprotein (VSV-G enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E, which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E–pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson’s disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E–pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson’s disease.

  10. Perturbative determination of mass-dependent renormalization and improvement coefficients for the heavy-light vector and axial-vector currents with relativistic heavy and domain-wall light quarks

    International Nuclear Information System (INIS)

    Yamada, Norikazu; Aoki, Sinya; Kuramashi, Yoshinobu

    2005-01-01

    We determine the mass-dependent renormalization as well as improvement coefficients for the heavy-light vector and axial-vector currents consisting of the relativistic heavy and the domain-wall light quarks through the standard matching procedure. The calculation is carried out perturbatively at the one-loop level to remove the systematic error of O(α s (am Q ) n ap) as well as O(α s (am Q ) n ) (n>=0), where p is a typical momentum scale in the heavy-light system. We point out that renormalization and improvement coefficients of the heavy-light vector current agree with those of the axial-vector current, thanks to the exact chiral symmetry for the light quark. The results obtained with three different gauge actions, plaquette, Iwasaki and DBW2, are presented as a function of heavy quark mass and domain-wall height

  11. Recommendation on vectors and vector-transmitted diseases

    OpenAIRE

    Netherlands Food and Consumer Product Safety Authority

    2009-01-01

    In view of their increasing risk of introduction and their possible implications in causing major disease outbreaks, vectors, as well as vector-transmitted diseases like dengue, West Nile disease, Lyme disease and bluetongue need to be recognised as a threat to public and animal health and to the economy, also in the Netherlands. There has been an increase in the incidence of these diseases in the past two to three decades. Climate changes and changes in the use of land, water managemen...

  12. Strange quark content in the nucleon and the strange quark vector current form factors

    International Nuclear Information System (INIS)

    Dubnicka, S.; Dubnickova, A.Z.

    1996-12-01

    A behaviour of the form factors of the nucleon matrix element of the strange quark vector current in the momentum range of the planned measurements in MIT/Bates and CEBAF is predicted theoretically without using any of the experimental information on the nucleon electromagnetic structure. The corresponding leading nonvanishing moments of the nucleon vector strangeness distribution are comparable with the values obtained by other authors in the framework of the method based on the vector meson pole fit of the isoscalar electromagnetic form factors of the nucleon. (author). 16 refs, 2 figs

  13. Gauge anomaly with vector and axial-vector fields in 6D curved space

    Science.gov (United States)

    Yajima, Satoshi; Eguchi, Kohei; Fukuda, Makoto; Oka, Tomonori

    2018-03-01

    Imposing the conservation equation of the vector current for a fermion of spin 1/2 at the quantum level, a gauge anomaly for the fermion coupling with non-Abelian vector and axial-vector fields in 6D curved space is expressed in tensorial form. The anomaly consists of terms that resemble the chiral U(1) anomaly and the commutator terms that disappear if the axial-vector field is Abelian.

  14. Body composition of chronic renal patients: anthropometry and bioimpedance vector analysis

    Directory of Open Access Journals (Sweden)

    Viviane Soares

    2013-12-01

    Full Text Available OBJECTIVE: to compare the body composition of patients undergoing hemodialysis with that of healthy individuals using different methods. METHOD: cross-sectional study assessing male individuals using anthropometric markers, electrical bioimpedance and vector analysis. RESULTS: the healthy individuals presented larger triceps skinfold and arm circumference (p<0.001. The bioimpedance variables also presented significant higher values in this group. Significant difference was found in the confidence interval of the vector analysis performed for both the patients and healthy individuals (p<0.0001. The tolerance intervals showed that 55.20% of the patients were dehydrated, 10.30% presented visible edema, and 34.50% were within normal levels of hydration. Bioimpedance and vector analysis revealed that 52% of the patients presented decreased cell mass while 14.00% presented increased cell mass. CONCLUSIONS: the differences in the body composition of patients and healthy individuals were revealed through bioimpedance and vector analysis but not through their measures of arm circumference and arm muscle area.

  15. Application of extreme value distribution function in the determination of standard meteorological parameters for nuclear power plants

    International Nuclear Information System (INIS)

    Jiang Haimei; Liu Xinjian; Qiu Lin; Li Fengju

    2014-01-01

    Based on the meteorological data from weather stations around several domestic nuclear power plants, the statistical results of extreme minimum temperatures, minimum. central pressures of tropical cyclones and some other parameters are calculated using extreme value I distribution function (EV- I), generalized extreme value distribution function (GEV) and generalized Pareto distribution function (GP), respectively. The influence of different distribution functions and parameter solution methods on the statistical results of extreme values is investigated. Results indicate that generalized extreme value function has better applicability than the other two distribution functions in the determination of standard meteorological parameters for nuclear power plants. (authors)

  16. Scale solutions and coupling constant in electrodynamics of vector particles

    International Nuclear Information System (INIS)

    Arbuzov, B.A.; Boos, E.E.; Kurennoy, S.S.

    1980-01-01

    A new approach in nonrenormalizable gauge theories is studied, the electrodynamics of vector particles being taken as an example. One and two-loop approximations in Schwinger-Dyson set of equations are considered with account for conditions imposed by gauge invariance. It is shown, that solutions with scale asymptotics can occur in this case but only for a particular value of coupling constant. This value in solutions obtained is close to the value of the fine structure constant α=1/137

  17. Heavy Scalar, Vector, and Axial-Vector Mesons in Hot and Dense Nuclear Medium

    Directory of Open Access Journals (Sweden)

    Arvind Kumar

    2014-01-01

    Full Text Available In this work we shall investigate the mass modifications of scalar mesons (D0; B0, vector mesons (D*; B*, and axial-vector mesons (D1; B1 at finite density and temperature of the nuclear medium. The above mesons are modified in the nuclear medium through the modification of quark and gluon condensates. We will find the medium modification of quark and gluon condensates within chiral SU(3 model through the medium modification of scalar-isoscalar fields σ and ζ at finite density and temperature. These medium modified quark and gluon condensates will further be used through QCD sum rules for the evaluation of in-medium properties of the above mentioned scalar, vector, and axial vector mesons. We will also discuss the effects of density and temperature of the nuclear medium on the scattering lengths of the above scalar, vector, and axial-vector mesons. The study of the medium modifications of the above mesons may be helpful for understanding their production rates in heavy-ion collision experiments. The results of present investigations of medium modifications of scalar, vector, and axial-vector mesons at finite density and temperature can be verified in the compressed baryonic matter (CBM experiment of FAIR facility at GSI, Germany.

  18. Functional connectivity with ventromedial prefrontal cortex reflects subjective value for social rewards.

    Science.gov (United States)

    Smith, David V; Clithero, John A; Boltuck, Sarah E; Huettel, Scott A

    2014-12-01

    According to many studies, the ventromedial prefrontal cortex (VMPFC) encodes the subjective value of disparate rewards on a common scale. Yet, a host of other reward factors-likely represented outside of VMPFC-must be integrated to construct such signals for valuation. Using functional magnetic resonance imaging (fMRI), we tested whether the interactions between posterior VMPFC and functionally connected brain regions predict subjective value. During fMRI scanning, participants rated the attractiveness of unfamiliar faces. We found that activation in dorsal anterior cingulate cortex, anterior VMPFC and caudate increased with higher attractiveness ratings. Using data from a post-scan task in which participants spent money to view attractive faces, we quantified each individual's subjective value for attractiveness. We found that connectivity between posterior VMPFC and regions frequently modulated by social information-including the temporal-parietal junction (TPJ) and middle temporal gyrus-was correlated with individual differences in subjective value. Crucially, these additional regions explained unique variation in subjective value beyond that extracted from value regions alone. These findings indicate not only that posterior VMPFC interacts with additional brain regions during valuation, but also that these additional regions carry information employed to construct the subjective value for social reward. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Generalization of concurrence vectors

    International Nuclear Information System (INIS)

    Yu Changshui; Song Heshan

    2004-01-01

    In this Letter, based on the generalization of concurrence vectors for bipartite pure state with respect to employing tensor product of generators of the corresponding rotation groups, we generalize concurrence vectors to the case of mixed states; a new criterion of separability of multipartite pure states is given out, for which we define a concurrence vector; we generalize the vector to the case of multipartite mixed state and give out a good measure of free entanglement

  20. Vector Network Coding Algorithms

    OpenAIRE

    Ebrahimi, Javad; Fragouli, Christina

    2010-01-01

    We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L x L coding matrices that play a similar role as coding c in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector coding, our algori...

  1. The divergence theorem for unbounded vector fields

    OpenAIRE

    De Pauw, Thierry; Pfeffer, Washek F.

    2007-01-01

    In the context of Lebesgue integration, we derive the divergence theorem for unbounded vector. elds that can have singularities at every point of a compact set whose Minkowski content of codimension greater than two is. nite. The resulting integration by parts theorem is applied to removable sets of holomorphic and harmonic functions.

  2. Linearization of germs of hyperbolic vector fields

    NARCIS (Netherlands)

    Bonckaert, P; Naudot, [No Value; Yang, JZ

    2003-01-01

    We develop a normal form to express asymptotically a conjugacy between a germ of resonant vector field and its linear part. We show that such an asymptotic expression can be written in terms of functions of the Logarithmic Mourtada type. To cite this article: P Bonckaert et al., C. R. Acad. Sci.

  3. ESTIMATING ELECTRIC FIELDS FROM VECTOR MAGNETOGRAM SEQUENCES

    International Nuclear Information System (INIS)

    Fisher, G. H.; Welsch, B. T.; Abbett, W. P.; Bercik, D. J.

    2010-01-01

    Determining the electric field distribution on the Sun's photosphere is essential for quantitative studies of how energy flows from the Sun's photosphere, through the corona, and into the heliosphere. This electric field also provides valuable input for data-driven models of the solar atmosphere and the Sun-Earth system. We show how observed vector magnetogram time series can be used to estimate the photospheric electric field. Our method uses a 'poloidal-toroidal decomposition' (PTD) of the time derivative of the vector magnetic field. These solutions provide an electric field whose curl obeys all three components of Faraday's Law. The PTD solutions are not unique; the gradient of a scalar potential can be added to the PTD electric field without affecting consistency with Faraday's Law. We then present an iterative technique to determine a potential function consistent with ideal MHD evolution; but this field is also not a unique solution to Faraday's Law. Finally, we explore a variational approach that minimizes an energy functional to determine a unique electric field, a generalization of Longcope's 'Minimum Energy Fit'. The PTD technique, the iterative technique, and the variational technique are used to estimate electric fields from a pair of synthetic vector magnetograms taken from an MHD simulation; and these fields are compared with the simulation's known electric fields. The PTD and iteration techniques compare favorably to results from existing velocity inversion techniques. These three techniques are then applied to a pair of vector magnetograms of solar active region NOAA AR8210, to demonstrate the methods with real data. Careful examination of the results from all three methods indicates that evolution of the magnetic vector by itself does not provide enough information to determine the true electric field in the photosphere. Either more information from other measurements, or physical constraints other than those considered here are necessary to find

  4. Vacuum spacetimes with a spacelike, hypersurface-orthogonal Killing vector: reduced equations in a canonical frame

    International Nuclear Information System (INIS)

    Bonanos, S

    2003-01-01

    The Newman-Penrose equations for spacetimes having one spacelike Killing vector are reduced-in a geometrically defined 'canonical frame' - to a minimal set, and its differential structure is studied. Expressions for the frame vectors in an arbitrary coordinate basis are given, and coordinate-independent choices of the metric functions are suggested which make the components of the Ricci tensor in the direction of the Killing vector vanish

  5. A Wavelet Support Vector Machine Combination Model for Singapore Tourist Arrival to Malaysia

    Science.gov (United States)

    Rafidah, A.; Shabri, Ani; Nurulhuda, A.; Suhaila, Y.

    2017-08-01

    In this study, wavelet support vector machine model (WSVM) is proposed and applied for monthly data Singapore tourist time series prediction. The WSVM model is combination between wavelet analysis and support vector machine (SVM). In this study, we have two parts, first part we compare between the kernel function and second part we compare between the developed models with single model, SVM. The result showed that kernel function linear better than RBF while WSVM outperform with single model SVM to forecast monthly Singapore tourist arrival to Malaysia.

  6. Variational principles for the spectral radius of functional operators

    International Nuclear Information System (INIS)

    Antonevich, A B; Zajkowski, K

    2006-01-01

    The spectral radius of a functional operator with positive coefficients generated by a set of maps (a dynamical system) is shown to be a logarithmically convex functional of the logarithms of the coefficients. This yields the following variational principle: the logarithm of the spectral radius is the Legendre transform of a convex functional T defined on a set of vector-valued probability measures and depending only on the original dynamical system. A combinatorial construction of the functional T by means of the random walk process corresponding to the dynamical system is presented in the subexponential case. Examples of the explicit calculation of the functional T and the spectral radius are presented.

  7. Spectrum-generating SU(4) in particle physics. II. Electromagnetic decays of vector mesons

    International Nuclear Information System (INIS)

    Bohm, A.; Teese, R.B.

    1977-09-01

    The decay rates for the electromagnetic decays of vector mesons are derived within the spectrum-generating SU(4) approach. Radiative as well as leptonic decays of vector mesons can be derived from one theoretical assumption and given in terms of three reduced matrix elements. The implication of the experimental value GAMMA(rho → πγ) = (35 +- 10) keV for the form of the electromagnetic current operator is discussed

  8. Is Vector Control Sufficient to Limit Pathogen Spread in Vineyards?

    Science.gov (United States)

    Daugherty, M P; O'Neill, S; Byrne, F; Zeilinger, A

    2015-06-01

    Vector control is widely viewed as an integral part of disease management. Yet epidemiological theory suggests that the effectiveness of control programs at limiting pathogen spread depends on a variety of intrinsic and extrinsic aspects of a pathosystem. Moreover, control programs rarely evaluate whether reductions in vector density or activity translate into reduced disease prevalence. In areas of California invaded by the glassy-winged sharpshooter (Homalodisca vitripennis Germar), Pierce's disease management relies heavily on chemical control of this vector, primarily via systemic conventional insecticides (i.e., imidacloprid). But, data are lacking that attribute reduced vector pressure and pathogen spread to sharpshooter control. We surveyed 34 vineyards over successive years to assess the epidemiological value of within-vineyard chemical control. The results showed that imidacloprid reduced vector pressure without clear nontarget effects or secondary pest outbreaks. Effects on disease prevalence were more nuanced. Treatment history over the preceding 5 yr affected disease prevalence, with significantly more diseased vines in untreated compared with regularly or intermittently treated vineyards. Yet, the change in disease prevalence between years was low, with no significant effects of insecticide treatment or vector abundance. Collectively, the results suggest that within-vineyard applications of imidacloprid can reduce pathogen spread, but with benefits that may take multiple seasons to become apparent. The relatively modest effect of vector control on disease prevalence in this system may be attributable in part to the currently low regional sharpshooter population densities stemming from area-wide control, without which the need for within-vineyard vector control would be more pronounced. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Green's function in the color field of a large nucleus

    International Nuclear Information System (INIS)

    McLerran, L.; Venugopalan, R.

    1994-01-01

    We compute the Green's function for scalars, fermions, and vectors in the color field associated with the infinite momentum frame wave function of a large nucleus. Expectation values of this wave function can be computed by integrating over random orientations of the valence quark charge density. This relates the Green's functions to correlation functions of a two-dimensional, ultraviolet finite, field theory. We show how one can compute the sea quark distribution functions and explicitly compute them in the kinematic range of transverse momenta, α s 2 μ 2 much-lt k t 2 much-lt μ 2 , where μ 2 is the average color charge squared per unit area. When m quark 2 much-lt μ 2 ∼A 1/3 , the sea quark contribution to the infinite momentum frame wave function saturates at a value that is the same as that for massless sea quarks

  10. Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector

    DEFF Research Database (Denmark)

    Fuerstenberg, S; Beug, H; Introna, M

    1990-01-01

    into protein. Using the Escherichia coli beta-galactosidase gene cloned into the vector as a test construct, expression of enzyme activity could be detected in 90 to 95% of transfected target cells and in 80 to 85% of subsequently infected cells. In addition, a cDNA encoding the avian erythrocyte band 3 anion...... exchange protein has been expressed from the vector in both chicken embryo fibroblasts and QT6 cells and appears to function as an active, plasma membrane-based anion transporter. The ectopic expression of band 3 protein provides a visual marker for vector function in these cells....

  11. Vectorization, parallelization and porting of nuclear codes (vectorization and parallelization). Progress report fiscal 1998

    International Nuclear Information System (INIS)

    Ishizuki, Shigeru; Kawai, Wataru; Nemoto, Toshiyuki; Ogasawara, Shinobu; Kume, Etsuo; Adachi, Masaaki; Kawasaki, Nobuo; Yatake, Yo-ichi

    2000-03-01

    Several computer codes in the nuclear field have been vectorized, parallelized and transported on the FUJITSU VPP500 system, the AP3000 system and the Paragon system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. We dealt with 12 codes in fiscal 1998. These results are reported in 3 parts, i.e., the vectorization and parallelization on vector processors part, the parallelization on scalar processors part and the porting part. In this report, we describe the vectorization and parallelization on vector processors. In this vectorization and parallelization on vector processors part, the vectorization of General Tokamak Circuit Simulation Program code GTCSP, the vectorization and parallelization of Molecular Dynamics NTV (n-particle, Temperature and Velocity) Simulation code MSP2, Eddy Current Analysis code EDDYCAL, Thermal Analysis Code for Test of Passive Cooling System by HENDEL T2 code THANPACST2 and MHD Equilibrium code SELENEJ on the VPP500 are described. In the parallelization on scalar processors part, the parallelization of Monte Carlo N-Particle Transport code MCNP4B2, Plasma Hydrodynamics code using Cubic Interpolated Propagation Method PHCIP and Vectorized Monte Carlo code (continuous energy model / multi-group model) MVP/GMVP on the Paragon are described. In the porting part, the porting of Monte Carlo N-Particle Transport code MCNP4B2 and Reactor Safety Analysis code RELAP5 on the AP3000 are described. (author)

  12. [Epidemiology of arbovirus diseases: use and value of physiologic age determination of female mosquito vectors].

    Science.gov (United States)

    Mondet, B

    1996-01-01

    The physiological age of Yellow Fever Aedes females in Africa was studied during four years, from 1988 to 1992. We used a method, according to Polovodova's method, which looks for the "yellow body" under natural light. Those yellow bodies exist in the old females, the "parous" ones, and not in the young females, the "nulliparous" ones. We present some results to illustrate the interest of studying the physiological age of mosquitoes in the epidemiology of the arboviral diseases. The transmission risk, in relation with abundance and parity rate was illustrated, in particular for Aedes africanus and Aedes luteocephalus, which is useful to compare species, or with a given species, to compare periods. The parity rate of Aedes furcifer females was studied on 6 points along a transect between a forest and a village. The rate and the abundance of the females caught on human bates are inversely proportional. The parity rate is minimum in the canopy forest (about 50%) and maximum inside a house (100%). The rains have different consequences on the species, according to the period of fall. At the beginning of the dry season, they bring about hatching, but not at the end of the dry season. Massive hatching, will occur just at the beginning of the rainy season, some weeks later. Studying the physiological age of Ae. africanus females, the number of nulliparous is not related to the rain. That means a possibility of "natural" hatching for part of the eggs. Among the female of the dry season, young females are found, which is important for the transmission capacity. The method, described herein, to determine the physiological age is perfectly applicable to the Yellow Fever vector Haemagogus janthinomys in Southern America. But for the Dengue vectors Aedes aegypti and probably Aedes albopictus, the Detinova's method seems better. Actually, it seems important to study the physiological age of the vectors Ae. aegypti and Ae. albopictus, as well as the evolution of the physiological

  13. Analytic calculation of finite-population reproductive numbers for direct- and vector-transmitted diseases with homogeneous mixing.

    Science.gov (United States)

    Keegan, Lindsay; Dushoff, Jonathan

    2014-05-01

    The basic reproductive number, R0, provides a foundation for evaluating how various factors affect the incidence of infectious diseases. Recently, it has been suggested that, particularly for vector-transmitted diseases, R0 should be modified to account for the effects of finite host population within a single disease transmission generation. Here, we use a transmission factor approach to calculate such "finite-population reproductive numbers," under the assumption of homogeneous mixing, for both vector-borne and directly transmitted diseases. In the case of vector-borne diseases, we estimate finite-population reproductive numbers for both host-to-host and vector-to-vector generations, assuming that the vector population is effectively infinite. We find simple, interpretable formulas for all three of these quantities. In the direct case, we find that finite-population reproductive numbers diverge from R0 before R0 reaches half of the population size. In the vector-transmitted case, we find that the host-to-host number diverges at even lower values of R0, while the vector-to-vector number diverges very little over realistic parameter ranges.

  14. Classification of Kantowski-Sachs and Bianchi Type III Space-Times According to Their Killing Vector Fields in Teleparallel Theory of Gravitation

    International Nuclear Information System (INIS)

    Shabbir, Ghulam; Khan, Suhail

    2010-01-01

    In this paper we classify Kantowski-Sachs and Bianchi type III space-times according to their teleparallel Killing vector fields using direct integration technique. It turns out that the dimension of the teleparallel Killing vector fields are 4 or 6, which are the same in numbers as in general relativity. In case of 4 the teleparallel Killing vector fields are multiple of the corresponding Killing vector fields in general relativity by some function of t. In the case of 6 Killing vector fields the metric functions become constants and the Killing vector fields in this case are exactly the same as in general relativity. Here we also discuss the Lie algebra in each case. (general)

  15. Elements of mathematics topological vector spaces

    CERN Document Server

    Bourbaki, Nicolas

    2003-01-01

    This is a softcover reprint of the English translation of 1987 of the second edition of Bourbaki's Espaces Vectoriels Topologiques (1981). This second edition is a brand new book and completely supersedes the original version of nearly 30 years ago. But a lot of the material has been rearranged, rewritten, or replaced by a more up-to-date exposition, and a good deal of new material has been incorporated in this book, all reflecting the progress made in the field during the last three decades. Table of Contents. Chapter I: Topological vector spaces over a valued field. Chapter II: Convex sets and locally convex spaces. Chapter III: Spaces of continuous linear mappings. Chapter IV: Duality in topological vector spaces. Chapter V: Hilbert spaces (elementary theory). Finally, there are the usual "historical note", bibliography, index of notation, index of terminology, and a list of some important properties of Banach spaces. (Based on Math Reviews, 1983).

  16. Deep neural mapping support vector machines.

    Science.gov (United States)

    Li, Yujian; Zhang, Ting

    2017-09-01

    The choice of kernel has an important effect on the performance of a support vector machine (SVM). The effect could be reduced by NEUROSVM, an architecture using multilayer perceptron for feature extraction and SVM for classification. In binary classification, a general linear kernel NEUROSVM can be theoretically simplified as an input layer, many hidden layers, and an SVM output layer. As a feature extractor, the sub-network composed of the input and hidden layers is first trained together with a virtual ordinary output layer by backpropagation, then with the output of its last hidden layer taken as input of the SVM classifier for further training separately. By taking the sub-network as a kernel mapping from the original input space into a feature space, we present a novel model, called deep neural mapping support vector machine (DNMSVM), from the viewpoint of deep learning. This model is also a new and general kernel learning method, where the kernel mapping is indeed an explicit function expressed as a sub-network, different from an implicit function induced by a kernel function traditionally. Moreover, we exploit a two-stage procedure of contrastive divergence learning and gradient descent for DNMSVM to jointly training an adaptive kernel mapping instead of a kernel function, without requirement of kernel tricks. As a whole of the sub-network and the SVM classifier, the joint training of DNMSVM is done by using gradient descent to optimize the objective function with the sub-network layer-wise pre-trained via contrastive divergence learning of restricted Boltzmann machines. Compared to the separate training of NEUROSVM, the joint training is a new algorithm for DNMSVM to have advantages over NEUROSVM. Experimental results show that DNMSVM can outperform NEUROSVM and RBFSVM (i.e., SVM with the kernel of radial basis function), demonstrating its effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Holographic picture of heavy vector meson melting

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Nelson R.F.; Diles, Saulo [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil); Martin Contreras, Miguel Angel [Universidad de los Andes, High Energy Group, Department of Physics, Bogota (Colombia)

    2016-11-15

    The fraction of heavy vector mesons produced in a heavy ion collision, as compared to a proton-proton collision, serves as an important indication of the formation of a thermal medium, the quark-gluon plasma. This sort of analysis strongly depends on understanding the thermal effects of a medium like the plasma on the states of heavy mesons. In particular, it is crucial to know the temperature ranges where they undergo a thermal dissociation, or melting. AdS/QCD models are know to provide an important tool for the calculation of hadronic masses, but in general are not consistent with the observation that decay constants of heavy vector mesons decrease with excitation level. It has recently been shown that this problem can be overcome using a soft wall background and introducing an extra energy parameter, through the calculation of correlation functions at a finite position of anti-de Sitter space. This approach leads to the evaluation of masses and decay constants of S wave quarkonium states with just one flavor dependent and one flavor independent parameter. Here we extend this more realistic model to finite temperatures and analyze the thermal behavior of the states 1S, 2S and 3S of bottomonium and charmonium. The corresponding spectral function exhibits a consistent picture for the melting of the states where, for each flavor, the higher excitations melt at lower temperatures. We estimate for these six states the energy ranges in which the heavy vector mesons undergo a transition from a well-defined peak in the spectral function to complete melting in the thermal medium. A very clear distinction between the heavy flavors emerges, with the bottomonium state Υ(1S) surviving a deconfinement transition at temperatures much larger than the critical deconfinement temperature of the medium. (orig.)

  18. Bioengineering a non-genotoxic vector for genetic modification of mesenchymal stem cells.

    Science.gov (United States)

    Chen, Xuguang; Nomani, Alireza; Patel, Niket; Nouri, Faranak S; Hatefi, Arash

    2018-01-01

    Vectors used for stem cell transfection must be non-genotoxic, in addition to possessing high efficiency, because they could potentially transform normal stem cells into cancer-initiating cells. The objective of this research was to bioengineer an efficient vector that can be used for genetic modification of stem cells without any negative somatic or genetic impact. Two types of multifunctional vectors, namely targeted and non-targeted were genetically engineered and purified from E. coli. The targeted vectors were designed to enter stem cells via overexpressed receptors. The non-targeted vectors were equipped with MPG and Pep1 cell penetrating peptides. A series of commercial synthetic non-viral vectors and an adenoviral vector were used as controls. All vectors were evaluated for their efficiency and impact on metabolic activity, cell membrane integrity, chromosomal aberrations (micronuclei formation), gene dysregulation, and differentiation ability of stem cells. The results of this study showed that the bioengineered vector utilizing VEGFR-1 receptors for cellular entry could transfect mesenchymal stem cells with high efficiency without inducing genotoxicity, negative impact on gene function, or ability to differentiate. Overall, the vectors that utilized receptors as ports for cellular entry (viral and non-viral) showed considerably better somato- and genosafety profiles in comparison to those that entered through electrostatic interaction with cellular membrane. The genetically engineered vector in this study demonstrated that it can be safely and efficiently used to genetically modify stem cells with potential applications in tissue engineering and cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fluidic Vectoring of a Planar Incompressible Jet Flow

    Science.gov (United States)

    Mendez, Miguel Alfonso; Scelzo, Maria Teresa; Enache, Adriana; Buchlin, Jean-Marie

    2018-06-01

    This paper presents an experimental, a numerical and a theoretical analysis of the performances of a fluidic vectoring device for controlling the direction of a turbulent, bi-dimensional and low Mach number (incompressible) jet flow. The investigated design is the co-flow secondary injection with Coanda surface, which allows for vectoring angles up to 25° with no need of moving mechanical parts. A simple empirical model of the vectoring process is presented and validated via experimental and numerical data. The experiments consist of flow visualization and image processing for the automatic detection of the jet centerline; the numerical simulations are carried out solving the Unsteady Reynolds Average Navier- Stokes (URANS) closed with the k - ω SST turbulence model, using the PisoFoam solver from OpenFOAM. The experimental validation on three different geometrical configurations has shown that the model is capable of providing a fast and reliable evaluation of the device performance as a function of the operating conditions.

  20. Equivalent Vectors

    Science.gov (United States)

    Levine, Robert

    2004-01-01

    The cross-product is a mathematical operation that is performed between two 3-dimensional vectors. The result is a vector that is orthogonal or perpendicular to both of them. Learning about this for the first time while taking Calculus-III, the class was taught that if AxB = AxC, it does not necessarily follow that B = C. This seemed baffling. The…

  1. Speculative dynamic vectorization to assist static vectorization in a HW/SW co-designed environment

    OpenAIRE

    Kumar, R.; Martinez, A.; Gonzalez, A.

    2013-01-01

    Compiler based static vectorization is used widely to extract data level parallelism from computation intensive applications. Static vectorization is very effective in vectorizing traditional array based applications. However, compilers inability to reorder ambiguous memory references severely limits vectorization opportunities, especially in pointer rich applications. HW/SW co-designed processors provide an excellent opportunity to optimize the applications at runtime. The availability of dy...

  2. Double scaling limit in O(N) vector models in D dimensions

    International Nuclear Information System (INIS)

    Di Vecchia, P.; Kato, M.; Ohta, N.

    1991-03-01

    Using the standard 1/N expansion, we study O(N) vector models in D dimensions with an arbitrary potential. We limit ourselves to renormalizable theories. We show that there exists a value of the coupling constant corresponding to a critical point and that a double scaling limit can be performed as in D=0 and in the case of matrix models in D=0,1. For D=1 the theory is renormalizable with an arbitrary potential and we find in general a hierarchy of critical theories labelled by an integer k. The universal partition function obtained in the double scaling limit is constructed. Finally we show that the critical behaviour of those models is the same as a branched polymer model recently constructed by Ambjoern, Durhuus and Jonsson. (orig.)

  3. The Role of RNA Interference (RNAi in Arbovirus-Vector Interactions

    Directory of Open Access Journals (Sweden)

    Carol D. Blair

    2015-02-01

    Full Text Available RNA interference (RNAi was shown over 18 years ago to be a mechanism by which arbovirus replication and transmission could be controlled in arthropod vectors. During the intervening period, research on RNAi has defined many of the components and mechanisms of this antiviral pathway in arthropods, yet a number of unexplored questions remain. RNAi refers to RNA-mediated regulation of gene expression. Originally, the term described silencing of endogenous genes by introduction of exogenous double-stranded (dsRNA with the same sequence as the gene to be silenced. Further research has shown that RNAi comprises three gene regulation pathways that are mediated by small RNAs: the small interfering (siRNA, micro (miRNA, and Piwi-interacting (piRNA pathways. The exogenous (exo-siRNA pathway is now recognized as a major antiviral innate immune response of arthropods. More recent studies suggest that the piRNA and miRNA pathways might also have important roles in arbovirus-vector interactions. This review will focus on current knowledge of the role of the exo-siRNA pathway as an arthropod vector antiviral response and on emerging research into vector piRNA and miRNA pathway modulation of arbovirus-vector interactions. Although it is assumed that arboviruses must evade the vector’s antiviral RNAi response in order to maintain their natural transmission cycles, the strategies by which this is accomplished are not well defined. RNAi is also an important tool for arthropod gene knock-down in functional genomics studies and in development of arbovirus-resistant mosquito populations. Possible arbovirus strategies for evasion of RNAi and applications of RNAi in functional genomics analysis and arbovirus transmission control will also be reviewed.

  4. Support vector machine for automatic pain recognition

    Science.gov (United States)

    Monwar, Md Maruf; Rezaei, Siamak

    2009-02-01

    Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.

  5. Gateway-assisted vector construction to facilitate expression of foreign proteins in the chloroplast of single celled algae.

    Directory of Open Access Journals (Sweden)

    Melanie Oey

    Full Text Available With a rising world population, demand will increase for food, energy and high value products. Renewable production systems, including photosynthetic microalgal biotechnologies, can produce biomass for foods, fuels and chemical feedstocks and in parallel allow the production of high value protein products, including recombinant proteins. Such high value recombinant proteins offer important economic benefits during startup of industrial scale algal biomass and biofuel production systems, but the limited markets for individual recombinant proteins will require a high throughput pipeline for cloning and expression in microalgae, which is currently lacking, since genetic engineering of microalgae is currently complex and laborious. We have introduced the recombination based Gateway® system into the construction process of chloroplast transformation vectors for microalgae. This simplifies the vector construction and allows easy, fast and flexible vector design for the high efficiency protein production in microalgae, a key step in developing such expression pipelines.

  6. Vectorization at the KENO-IV code

    International Nuclear Information System (INIS)

    Asai, K.; Higuchi, K.; Katakura, J.

    1986-01-01

    The multigroup criticality safety code KENO-IV has been vectorized and tested on the FACOM VP-100 vector processor. At first, the vectorized KENO-IV on a scalar processor was slower than the original one by a factor of 1.4 because of the overhead introduced by vectorization. Making modifications of algorithms and techniques for vectorization, the vectorized version has become faster than the original one by a factor of 1.4 on the vector processor. For further speedup of the code, some improvements on compiler and hardware, especially on addition of Monte Carlo pipelines to the vector processor, are discussed

  7. Flat structure and potential vector fields related with algebraic solutions to Painlevé VI equation

    Directory of Open Access Journals (Sweden)

    Mitsuo Kato

    2018-01-01

    Full Text Available A potential vector field is a solution of an extended WDVV equation which is a generalization of a WDVV equation. It is expected that potential vector fields corresponding to algebraic solutions of Painlevé VI equation can be written by using polynomials or algebraic functions explicitly. The purpose of this paper is to construct potential vector fields corresponding to more than thirty non-equivalent algebraic solutions.

  8. Linear Matrix Inequalities for Analysis and Control of Linear Vector Second-Order Systems

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2015-01-01

    the Lyapunov matrix and the system matrices by introducing matrix multipliers, which potentially reduce conservativeness in hard control problems. Multipliers facilitate the usage of parameter-dependent Lyapunov functions as certificates of stability of uncertain and time-varying vector second-order systems......SUMMARY Many dynamical systems are modeled as vector second-order differential equations. This paper presents analysis and synthesis conditions in terms of LMI with explicit dependence in the coefficient matrices of vector second-order systems. These conditions benefit from the separation between....... The conditions introduced in this work have the potential to increase the practice of analyzing and controlling systems directly in vector second-order form. Copyright © 2014 John Wiley & Sons, Ltd....

  9. Reciprocity relationships in vector acoustics and their application to vector field calculations.

    Science.gov (United States)

    Deal, Thomas J; Smith, Kevin B

    2017-08-01

    The reciprocity equation commonly stated in underwater acoustics relates pressure fields and monopole sources. It is often used to predict the pressure measured by a hydrophone for multiple source locations by placing a source at the hydrophone location and calculating the field everywhere for that source. A similar equation that governs the orthogonal components of the particle velocity field is needed to enable this computational method to be used for acoustic vector sensors. This paper derives a general reciprocity equation that accounts for both monopole and dipole sources. This vector-scalar reciprocity equation can be used to calculate individual components of the received vector field by altering the source type used in the propagation calculation. This enables a propagation model to calculate the received vector field components for an arbitrary number of source locations with a single model run for each vector field component instead of requiring one model run for each source location. Application of the vector-scalar reciprocity principle is demonstrated with analytic solutions for a range-independent environment and with numerical solutions for a range-dependent environment using a parabolic equation model.

  10. Vectors and their applications

    CERN Document Server

    Pettofrezzo, Anthony J

    2005-01-01

    Geared toward undergraduate students, this text illustrates the use of vectors as a mathematical tool in plane synthetic geometry, plane and spherical trigonometry, and analytic geometry of two- and three-dimensional space. Its rigorous development includes a complete treatment of the algebra of vectors in the first two chapters.Among the text's outstanding features are numbered definitions and theorems in the development of vector algebra, which appear in italics for easy reference. Most of the theorems include proofs, and coordinate position vectors receive an in-depth treatment. Key concept

  11. Proteomic Analysis of Interaction between a Plant Virus and Its Vector Insect Reveals New Functions of Hemipteran Cuticular Protein.

    Science.gov (United States)

    Liu, Wenwen; Gray, Stewart; Huo, Yan; Li, Li; Wei, Taiyun; Wang, Xifeng

    2015-08-01

    Numerous viruses can be transmitted by their corresponding vector insects; however, the molecular mechanisms enabling virus transmission by vector insects have been poorly understood, especially the identity of vector components interacting with the virus. Here, we used the yeast two-hybrid system to study proteomic interactions of a plant virus (Rice stripe virus, RSV, genus Tenuivirus) with its vector insect, small brown planthopper (Laodelphax striatellus). Sixty-six proteins of L. striatellus that interacted with the nucleocapsid protein (pc3) of RSV were identified. A virus-insect interaction network, constructed for pc3 and 29 protein homologs of Drosophila melanogaster, suggested that nine proteins might directly interact with pc3. Of the 66 proteins, five (atlasin, a novel cuticular protein, jagunal, NAC domain protein, and vitellogenin) were most likely to be involved in viral movement, replication, and transovarial transmission. This work also provides evidence that the novel cuticular protein, CPR1, from L. striatellus is essential for RSV transmission by its vector insect. CPR1 binds the nucleocapsid protein (pc3) of RSV both in vivo and in vitro and colocalizes with RSV in the hemocytes of L. striatellus. Knockdown of CPR1 transcription using RNA interference resulted in a decrease in the concentration of RSV in the hemolymph, salivary glands and in viral transmission efficiency. These data suggest that CPR1 binds RSV in the insect and stabilizes the viral concentration in the hemolymph, perhaps to protect the virus or to help move the virus to the salivary tissues. Our studies provide direct experimental evidence that viruses can use existing vector proteins to aid their survival in the hemolymph. Identifying these putative vector molecules should lead to a better understanding of the interactions between viruses and vector insects. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Convexity and Marginal Vectors

    NARCIS (Netherlands)

    van Velzen, S.; Hamers, H.J.M.; Norde, H.W.

    2002-01-01

    In this paper we construct sets of marginal vectors of a TU game with the property that if the marginal vectors from these sets are core elements, then the game is convex.This approach leads to new upperbounds on the number of marginal vectors needed to characterize convexity.An other result is that

  13. Integrating Transgenic Vector Manipulation with Clinical Interventions to Manage Vector-Borne Diseases.

    Directory of Open Access Journals (Sweden)

    Kenichi W Okamoto

    2016-03-01

    Full Text Available Many vector-borne diseases lack effective vaccines and medications, and the limitations of traditional vector control have inspired novel approaches based on using genetic engineering to manipulate vector populations and thereby reduce transmission. Yet both the short- and long-term epidemiological effects of these transgenic strategies are highly uncertain. If neither vaccines, medications, nor transgenic strategies can by themselves suffice for managing vector-borne diseases, integrating these approaches becomes key. Here we develop a framework to evaluate how clinical interventions (i.e., vaccination and medication can be integrated with transgenic vector manipulation strategies to prevent disease invasion and reduce disease incidence. We show that the ability of clinical interventions to accelerate disease suppression can depend on the nature of the transgenic manipulation deployed (e.g., whether vector population reduction or replacement is attempted. We find that making a specific, individual strategy highly effective may not be necessary for attaining public-health objectives, provided suitable combinations can be adopted. However, we show how combining only partially effective antimicrobial drugs or vaccination with transgenic vector manipulations that merely temporarily lower vector competence can amplify disease resurgence following transient suppression. Thus, transgenic vector manipulation that cannot be sustained can have adverse consequences-consequences which ineffective clinical interventions can at best only mitigate, and at worst temporarily exacerbate. This result, which arises from differences between the time scale on which the interventions affect disease dynamics and the time scale of host population dynamics, highlights the importance of accounting for the potential delay in the effects of deploying public health strategies on long-term disease incidence. We find that for systems at the disease-endemic equilibrium, even

  14. Vector calculus in non-integer dimensional space and its applications to fractal media

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-02-01

    We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.

  15. Vectors of subsurface stormflow in a layered hillslope during runoff initiation

    Directory of Open Access Journals (Sweden)

    M. Retter

    2006-01-01

    Full Text Available The focus is the experimental assessment of in-situ flow vectors in a hillslope soil. We selected a 100 m2 trenched hillslope study site. During prescribed sprinkling an obliquely installed TDR wave-guide provides for the velocity of the wetting front in its direction. A triplet of wave-guides mounted along the sides of an hypothetical tetrahedron, with its peak pointing down, produces a three-dimensional vector of the wetting front. The method is based on the passing of wetting fronts. We analysed 34 vectors along the hillslope at distributed locations and at soil depths from 11 cm (representing top soil to 40 cm (close to bedrock interface. The mean values resulted as follows vx=16.1 mm min-1, vy=-0.2 mm min-1, and vz=11.9 mm min-1. The velocity vectors of the wetting fronts were generally gravity dominated and downslope orientated. Downslope direction (x-axis dominated close to bedrock, whereas no preference between vertical and downslope direction was found in vectors close to the surface. The velocities along the contours (y-axis varied widely. The Kruskal-Wallis tests indicated that the different upslope sprinkling areas had no influence on the orientation of the vectors. Vectors of volume flux density were also calculated for each triplet. The lateral velocities of the vector approach are compared with subsurface stromflow collected at the downhill end of the slope. Velocities were 25-140 times slower than lateral saturated tracer movements on top of the bedrock. Beside other points, we conclude that this method is restricted to non-complex substrate (skeleton or portion of big stones.

  16. An algorithm for constructing Lyapunov functions

    Directory of Open Access Journals (Sweden)

    Sigurdur Freyr Hafstein

    2007-08-01

    Full Text Available In this monograph we develop an algorithm for constructing Lyapunov functions for arbitrary switched dynamical systems $dot{mathbf{x}} = mathbf{f}_sigma(t,mathbf{x}$, possessing a uniformly asymptotically stable equilibrium. Let $dot{mathbf{x}}=mathbf{f}_p(t,mathbf{x}$, $pinmathcal{P}$, be the collection of the ODEs, to which the switched system corresponds. The number of the vector fields $mathbf{f}_p$ on the right-hand side of the differential equation is assumed to be finite and we assume that their components $f_{p,i}$ are $mathcal{C}^2$ functions and that we can give some bounds, not necessarily close, on their second-order partial derivatives. The inputs of the algorithm are solely a finite number of the function values of the vector fields $mathbf{f}_p$ and these bounds. The domain of the Lyapunov function constructed by the algorithm is only limited by the size of the equilibrium's region of attraction. Note, that the concept of a Lyapunov function for the arbitrary switched system $dot{mathbf{x}} = mathbf{f}_sigma(t,mathbf{x}$ is equivalent to the concept of a common Lyapunov function for the systems $dot{mathbf{x}}=mathbf{f}_p(t,mathbf{x}$, $pinmathcal{P}$, and that if $mathcal{P}$ contains exactly one element, then the switched system is just a usual ODE $dot{mathbf{x}}=mathbf{f}(t,mathbf{x}$. We give numerous examples of Lyapunov functions constructed by our method at the end of this monograph.

  17. Vector financial rogue waves

    International Nuclear Information System (INIS)

    Yan, Zhenya

    2011-01-01

    The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black–Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields. -- Highlights: ► We investigate the coupled nonlinear volatility and option pricing model. ► We analytically present vector financial rogue waves. ► The vector financial rogue waves may be used to describe the extreme events in financial markets. ► This results may excite the relative researches and potential applications of vector rogue waves.

  18. Video Vectorization via Tetrahedral Remeshing.

    Science.gov (United States)

    Wang, Chuan; Zhu, Jie; Guo, Yanwen; Wang, Wenping

    2017-02-09

    We present a video vectorization method that generates a video in vector representation from an input video in raster representation. A vector-based video representation offers the benefits of vector graphics, such as compactness and scalability. The vector video we generate is represented by a simplified tetrahedral control mesh over the spatial-temporal video volume, with color attributes defined at the mesh vertices. We present novel techniques for simplification and subdivision of a tetrahedral mesh to achieve high simplification ratio while preserving features and ensuring color fidelity. From an input raster video, our method is capable of generating a compact video in vector representation that allows a faithful reconstruction with low reconstruction errors.

  19. The value function as a criterion of analysis in separation technologies

    International Nuclear Information System (INIS)

    Peculea, Marius

    2005-01-01

    Production costs of heavy water are described by two functions: φ(ε), the energy function which represents the variable costs and φ(τ), the technologic function which represents the stable costs. The Dirac value function related to the circulation in the separation cascade allows calculating φ(ε) and consequently the technologic function may be represented in relation to the specific separation process. This representation allows the qualitative analysis of different separation processes or, for a given process, provides the analysis of different technological solutions which were worked out. An example is given referring to the analysis of heavy water technologies of separation through the dual temperature process of H 2 O-H 2 S isotopic exchange

  20. A new generation of pPRIG-based retroviral vectors

    Directory of Open Access Journals (Sweden)

    Boulukos Kim E

    2007-11-01

    Full Text Available Abstract Background Retroviral vectors are valuable tools for gene transfer. Particularly convenient are IRES-containing retroviral vectors expressing both the protein of interest and a marker protein from a single bicistronic mRNA. This coupled expression increases the relevance of tracking and/or selection of transduced cells based on the detection of a marker protein. pAP2 is a retroviral vector containing eGFP downstream of a modified IRES element of EMCV origin, and a CMV enhancer-promoter instead of the U3 region of the 5'LTR, which increases its efficiency in transient transfection. However, pAP2 contains a limited multicloning site (MCS and shows weak eGFP expression, which previously led us to engineer an improved version, termed pPRIG, harboring: i the wild-type ECMV IRES sequence, thereby restoring its full activity; ii an optimized MCS flanked by T7 and SP6 sequences; and iii a HA tag encoding sequence 5' of the MCS (pPRIG HAa/b/c. Results The convenience of pPRIG makes it a good basic vector to generate additional derivatives for an extended range of use. Here we present several novel pPRIG-based vectors (collectively referred to as PRIGs in which : i the HA tag sequence was inserted in the three reading frames 3' of the MCS (3'HA PRIGs; ii a functional domain (ER, VP16 or KRAB was inserted either 5' or 3' of the MCS (« modular » PRIGs; iii eGFP was replaced by either eCFP, eYFP, mCherry or puro-R (« single color/resistance » PRIGs; and iv mCherry, eYFP or eGFP was inserted 5' of the MCS of the IRES-eGFP, IRES-eCFP or IRES-Puro-R containing PRIGs, respectively (« dual color/selection » PRIGs. Additionally, some of these PRIGs were also constructed in a pMigR MSCV background which has been widely used in pluripotent cells. Conclusion These novel vectors allow for straightforward detection of any expressed protein (3'HA PRIGs, for functional studies of chimeric proteins (« modular » PRIGs, for multiple transductions and

  1. Electronic diffraction tomography by Green's functions and singular values decompositions

    International Nuclear Information System (INIS)

    Mayer, A.

    2001-01-01

    An inverse scattering technique is developed to enable a three-dimensional sample reconstruction from the diffraction figures obtained for different sample orientations by electronic projection microscopy, thus performing a diffraction tomography. In its Green's-functions formulation, this technique takes account of all orders of diffraction by performing an iterative reconstruction of the wave function on the observation screen and in the sample. In a final step, these quantities enable a reconstruction of the potential-energy distribution, which is assumed real valued. The method relies on the use of singular values decomposition techniques, thus providing the best least-squares solutions and enabling a reduction of noise. The technique is applied to the analysis of a three-dimensional nanometric sample that is observed in Fresnel conditions with an electron energy of 40 eV. The algorithm turns out to provide results with a mean relative error around 3% and to be stable against random noise

  2. Molecular dynamics simulation of a nanofluidic energy absorption system: effects of the chiral vector of carbon nanotubes.

    Science.gov (United States)

    Ganjiani, Sayed Hossein; Hossein Nezhad, Alireza

    2018-02-14

    A Nanofluidic Energy Absorption System (NEAS) is a novel nanofluidic system with a small volume and weight. In this system, the input mechanical energy is converted to surface tension energy during liquid infiltration in the nanotube. The NEAS is made of a mixture of nanoporous material particles in a functional liquid. In this work, the effects of the chiral vector of a carbon nanotube (CNT) on the performance characteristics of the NEAS are investigated by using molecular dynamics simulation. For this purpose, six CNTs with different diameters for each type of armchair, zigzag and chiral, and several chiral CNTs with different chiral vectors (different values of indices (m,n)) are selected and studied. The results show that in the chiral CNTs, the contact angle shows the hydrophobicity of the CNT, and infiltration pressure is reduced by increasing the values of m and n (increasing the CNT diameter). Contact angle and infiltration pressure are decreased by almost 1.4% and 9% at all diameters, as the type of CNT is changed from chiral to zigzag and then to armchair. Absorbed energy density and efficiency are also decreased by increasing m and n and by changing the type of CNT from chiral to zigzag and then to armchair.

  3. A magnetic vector potential corresponding to a centrally conservative current element force

    International Nuclear Information System (INIS)

    Minteer, Timothy M

    2015-01-01

    The magnetic vector potential (Coulomb gauge) is commonly introduced in magnetostatic chapters of electromagnetism textbooks. However, what is not typically presented are the infinite subsets of the Coulomb gauge associated with differential current elements. This work provides a comparison of various differential magnetic vector potentials, differential magnetostatic potential energies, as well as differential current element forces as a collective work not available elsewhere. The differential magnetic vector potential highlighted in this work is the Coulomb–Ampère gauge corresponding to the centrally conservative Ampère current element force. The centrally conservative force is modeled as a mean valued continual exchange of energy carrier mediators accounting for both the differential magnetostatic potential energy and Ampère current element force of two differential current elements. (paper)

  4. Symbolic computer vector analysis

    Science.gov (United States)

    Stoutemyer, D. R.

    1977-01-01

    A MACSYMA program is described which performs symbolic vector algebra and vector calculus. The program can combine and simplify symbolic expressions including dot products and cross products, together with the gradient, divergence, curl, and Laplacian operators. The distribution of these operators over sums or products is under user control, as are various other expansions, including expansion into components in any specific orthogonal coordinate system. There is also a capability for deriving the scalar or vector potential of a vector field. Examples include derivation of the partial differential equations describing fluid flow and magnetohydrodynamics, for 12 different classic orthogonal curvilinear coordinate systems.

  5. IntelliGO: a new vector-based semantic similarity measure including annotation origin

    Directory of Open Access Journals (Sweden)

    Devignes Marie-Dominique

    2010-12-01

    Full Text Available Abstract Background The Gene Ontology (GO is a well known controlled vocabulary describing the biological process, molecular function and cellular component aspects of gene annotation. It has become a widely used knowledge source in bioinformatics for annotating genes and measuring their semantic similarity. These measures generally involve the GO graph structure, the information content of GO aspects, or a combination of both. However, only a few of the semantic similarity measures described so far can handle GO annotations differently according to their origin (i.e. their evidence codes. Results We present here a new semantic similarity measure called IntelliGO which integrates several complementary properties in a novel vector space model. The coefficients associated with each GO term that annotates a given gene or protein include its information content as well as a customized value for each type of GO evidence code. The generalized cosine similarity measure, used for calculating the dot product between two vectors, has been rigorously adapted to the context of the GO graph. The IntelliGO similarity measure is tested on two benchmark datasets consisting of KEGG pathways and Pfam domains grouped as clans, considering the GO biological process and molecular function terms, respectively, for a total of 683 yeast and human genes and involving more than 67,900 pair-wise comparisons. The ability of the IntelliGO similarity measure to express the biological cohesion of sets of genes compares favourably to four existing similarity measures. For inter-set comparison, it consistently discriminates between distinct sets of genes. Furthermore, the IntelliGO similarity measure allows the influence of weights assigned to evidence codes to be checked. Finally, the results obtained with a complementary reference technique give intermediate but correct correlation values with the sequence similarity, Pfam, and Enzyme classifications when compared to

  6. Exploring genetic variation in haplotypes of the filariasis vector Culex quinquefasciatus (Diptera: Culicidae) through DNA barcoding.

    Science.gov (United States)

    Vadivalagan, Chithravel; Karthika, Pushparaj; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Del Serrone, Paola; Benelli, Giovanni

    2017-05-01

    Culex quinquefasciatus (Diptera: Culicidae) is a vector of many pathogens and parasites of humans, as well as domestic and wild animals. In urban and semi-urban Asian countries, Cx. quinquefasciatus is a main vector of nematodes causing lymphatic filariasis. In the African region, it vectors the Rift Valley fever virus, while in the USA it transmits West Nile, St. Louis encephalitis and Western equine encephalitis virus. In this study, DNA barcoding was used to explore the genetic variation of Cx. quinquefasciatus populations from 88 geographical regions. We presented a comprehensive approach analyzing the effectiveness of two gene markers, i.e. CO1 and 16S rRNA. The high threshold genetic divergence of CO1 (0.47%) gene was reported as an ideal marker for molecular identification of this mosquito vector. Furthermore, null substitutions were lower in CO1 if compared to 16S rRNA, which influenced its differentiating potential among Indian haplotypes. NJ tree was well supported with high branch values for CO1 gene than 16S rRNA, indicating ideal genetic differentiation among haplotypes. TCS haplotype network revealed 14 distinct clusters. The intra- and inter-population polymorphism were calculated among the global and Indian Cx. quinquefasciatus lineages. The genetic diversity index Tajima' D showed negative values for all the 4 intra-population clusters (G2-4, G10). Fu's FS showed negative value for G10 cluster, which was significant and indicated recent population expansion. However, the G2-G4 (i.e. Indian lineages) had positive values, suggesting a bottleneck effect. Overall, our research firstly shed light on the genetic differences among the haplotypes of Cx. quinquefasciatus species complex, adding basic knowledge to the molecular ecology of this important mosquito vector. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A simple method of equine limb force vector analysis and its potential applications.

    Science.gov (United States)

    Hobbs, Sarah Jane; Robinson, Mark A; Clayton, Hilary M

    2018-01-01

    Ground reaction forces (GRF) measured during equine gait analysis are typically evaluated by analyzing discrete values obtained from continuous force-time data for the vertical, longitudinal and transverse GRF components. This paper describes a simple, temporo-spatial method of displaying and analyzing sagittal plane GRF vectors. In addition, the application of statistical parametric mapping (SPM) is introduced to analyse differences between contra-lateral fore and hindlimb force-time curves throughout the stance phase. The overall aim of the study was to demonstrate alternative methods of evaluating functional (a)symmetry within horses. GRF and kinematic data were collected from 10 horses trotting over a series of four force plates (120 Hz). The kinematic data were used to determine clean hoof contacts. The stance phase of each hoof was determined using a 50 N threshold. Vertical and longitudinal GRF for each stance phase were plotted both as force-time curves and as force vector diagrams in which vectors originating at the centre of pressure on the force plate were drawn at intervals of 8.3 ms for the duration of stance. Visual evaluation was facilitated by overlay of the vector diagrams for different limbs. Summary vectors representing the magnitude (VecMag) and direction (VecAng) of the mean force over the entire stance phase were superimposed on the force vector diagram. Typical measurements extracted from the force-time curves (peak forces, impulses) were compared with VecMag and VecAng using partial correlation (controlling for speed). Paired samples t -tests (left v. right diagonal pair comparison and high v. low vertical force diagonal pair comparison) were performed on discrete and vector variables using traditional methods and Hotelling's T 2 tests on normalized stance phase data using SPM. Evidence from traditional statistical tests suggested that VecMag is more influenced by the vertical force and impulse, whereas VecAng is more influenced by the

  8. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG.

    Science.gov (United States)

    Povysheva, Tatyana; Shmarov, Maksim; Logunov, Denis; Naroditsky, Boris; Shulman, Ilya; Ogurcov, Sergey; Kolesnikov, Pavel; Islamov, Rustem; Chelyshev, Yuri

    2017-07-01

    OBJECTIVE The most actively explored therapeutic strategy for overcoming spinal cord injury (SCI) is the delivery of genes encoding molecules that stimulate regeneration. In a mouse model of amyotrophic lateral sclerosis and in preliminary clinical trials in patients with amyotrophic lateral sclerosis, the combined administration of recombinant adenoviral vectors (Ad5-VEGF+Ad5-ANG) encoding the neurotrophic/angiogenic factors vascular endothelial growth factor ( VEGF) and angiogenin ( ANG) was found to slow the development of neurological deficits. These results suggest that there may be positive effects of this combination of genes in posttraumatic spinal cord regeneration. The objective of the present study was to determine the effects of Ad5-VEGF+Ad5-ANG combination therapy on motor function recovery and reactivity of astrocytes in a rat model of SCI. METHODS Spinal cord injury was induced in adult Wistar rats by the weight-drop method. Rats (n = 51) were divided into 2 groups: the experimental group (Ad5-VEGF+Ad5-ANG) and the control group (Ad5-GFP [green fluorescent protein]). Recovery of motor function was assessed using the Basso, Beattie, and Bresnahan scale. The duration and intensity of infectivity and gene expression from the injected vectors were assessed by immunofluorescent detection of GFP. Reactivity of glial cells was assessed by changes in the number of immunopositive cells expressing glial fibrillary acidic protein (GFAP), S100β, aquaporin 4 (AQP4), oligodendrocyte transcription factor 2, and chondroitin sulfate proteoglycan 4. The level of S100β mRNA expression in the spinal cord was estimated by real-time polymerase chain reaction. RESULTS Partial recovery of motor function was observed 30 days after surgery in both groups. However, Basso, Beattie, and Bresnahan scores were 35.9% higher in the Ad5-VEGF+Ad5-ANG group compared with the control group. Specific GFP signal was observed at distances of up to 5 mm in the rostral and caudal

  9. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize1[OPEN

    Science.gov (United States)

    Mei, Yu; Kernodle, Bliss M.; Hill, John H.

    2016-01-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. PMID:27208311

  10. Fusion rule estimation using vector space methods

    International Nuclear Information System (INIS)

    Rao, N.S.V.

    1997-01-01

    In a system of N sensors, the sensor S j , j = 1, 2 .... N, outputs Y (j) element-of Re, according to an unknown probability distribution P (Y(j) /X) , corresponding to input X element-of [0, 1]. A training n-sample (X 1 , Y 1 ), (X 2 , Y 2 ), ..., (X n , Y n ) is given where Y i = (Y i (1) , Y i (2) , . . . , Y i N ) such that Y i (j) is the output of S j in response to input X i . The problem is to estimate a fusion rule f : Re N → [0, 1], based on the sample, such that the expected square error is minimized over a family of functions Y that constitute a vector space. The function f* that minimizes the expected error cannot be computed since the underlying densities are unknown, and only an approximation f to f* is feasible. We estimate the sample size sufficient to ensure that f provides a close approximation to f* with a high probability. The advantages of vector space methods are two-fold: (a) the sample size estimate is a simple function of the dimensionality of F, and (b) the estimate f can be easily computed by well-known least square methods in polynomial time. The results are applicable to the classical potential function methods and also (to a recently proposed) special class of sigmoidal feedforward neural networks

  11. The Cross Product of Two Vectors Is Not Just Another Vector--A Major Misconception Being Perpetuated in Calculus and Vector Analysis Textbooks.

    Science.gov (United States)

    Elk, Seymour B.

    1997-01-01

    Suggests that the cross product of two vectors can be more easily and accurately explained by starting from the perspective of dyadics because then the concept of vector multiplication has a simple geometrical picture that encompasses both the dot and cross products in any number of dimensions in terms of orthogonal unit vector components. (AIM)

  12. Fermi interaction. Conservation of vector current and modified perturbation theory

    International Nuclear Information System (INIS)

    Rochev, V.E.

    1983-01-01

    The Fermi interaction (anti psi ysub(n) psi)sup(2) is investigated with the method of auxilary field. The analogues of the Ward-Takahashi electrodynamical identities and the gauge transformations of Green functions, that are the consequence of the conservation of vector current, have been obtained. The gauge function for the spinor propagator is the exponential superpropagator. The arguments are given in favour of the existence of a modified perturbation theory, which is finite in every order and non-analytical over its coupling constant, for the four-fermion interaction. The non-analytical part is defined unambiguously, and the analytical part contains a set of finite dimensionless constants to define which non-perturbative information is needed. The simplest model (the chain approximation) for the non-stable vector bound state is considered

  13. Wronskian type solutions for the vector k-constrained KP hierarchy

    International Nuclear Information System (INIS)

    Zhang Youjin.

    1995-07-01

    Motivated by a relation of the 1-constrained Kadomtsev-Petviashvili (KP) hierarchy with the 2 component KP hierarchy, the tau-conditions of the vector k-constrained KP hierarchy are constructed by using an analogue of the Baker-Akhiezer (m + 1)-point function. These tau functions are expressed in terms of Wronskian type determinants. (author). 20 refs

  14. Major vectors and vector-borne diseases in small ruminants in Ethiopia: A systematic review.

    Science.gov (United States)

    Asmare, Kassahun; Abayneh, Takele; Sibhat, Berhanu; Shiferaw, Dessie; Szonyi, Barbara; Krontveit, Randi I; Skjerve, Eystein; Wieland, Barbara

    2017-06-01

    Vector-borne diseases are among major health constraints of small ruminant in Ethiopia. While various studies on single vector-borne diseases or presence of vectors have been conducted, no summarized evidence is available on the occurrence of these diseases and the related vectors. This systematic literature review provides a comprehensive summary on major vectors and vector-borne diseases in small ruminants in Ethiopia. Search for published and unpublished literature was conducted between 8th of January and 25th of June 2015. The search was both manual and electronic. The databases used in electronic search were PubMed, Web of Science, CAB Direct and AJOL. For most of the vector-borne diseases, the summary was limited to narrative synthesis due to lack of sufficient data. Meta-analysis was computed for trypanosomosis and dermatophilosis while meta-regression and sensitivity analysis was done only for trypanososmosis due to lack of sufficient reports on dermatophilosis. Owing emphasis to their vector role, ticks and flies were summarized narratively at genera/species level. In line with inclusion criteria, out of 106 initially identified research reports 43 peer-reviewed articles passed the quality assessment. Data on 7 vector-borne diseases were extracted at species and region level from each source. Accordingly, the pooled prevalence estimate of trypanosomosis was 3.7% with 95% confidence interval (CI) 2.8, 4.9), while that of dermatophilosis was 3.1% (95% CI: 1.6, 6.0). The in-between study variance noted for trypanosomosis was statistically significant (pparasitic presence in blood was documented for babesiosis (3.7% in goats); and anaplasmosis (3.9% in sheep). Serological evidence was retrieved for bluetongue ranging from 34.1% to 46.67% in sheep, and coxiellosis was 10.4% in goats. There was also molecular evidence on the presence of theileriosis in sheep (93%, n=160) and goats (1.9%, n=265). Regarding vectors of veterinary importance, 14 species of ticks in

  15. ALGORITHM OF SAR SATELLITE ATTITUDE MEASUREMENT USING GPS AIDED BY KINEMATIC VECTOR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, in order to improve the accuracy of the Synthetic Aperture Radar (SAR)satellite attitude using Global Positioning System (GPS) wide-band carrier phase, the SAR satellite attitude kinematic vector and Kalman filter are introduced. Introducing the state variable function of GPS attitude determination algorithm in SAR satellite by means of kinematic vector and describing the observation function by the GPS wide-band carrier phase, the paper uses the Kalman filter algorithm to obtian the attitude variables of SAR satellite. Compared the simulation results of Kalman filter algorithm with the least square algorithm and explicit solution, it is indicated that the Kalman filter algorithm is the best.

  16. Computing Coherence Vectors and Correlation Matrices with Application to Quantum Discord Quantification

    Directory of Open Access Journals (Sweden)

    Jonas Maziero

    2016-01-01

    Full Text Available Coherence vectors and correlation matrices are important functions frequently used in physics. The numerical calculation of these functions directly from their definitions, which involves Kronecker products and matrix multiplications, may seem to be a reasonable option. Notwithstanding, as we demonstrate in this paper, some algebraic manipulations before programming can reduce considerably their computational complexity. Besides, we provide Fortran code to generate generalized Gell-Mann matrices and to compute the optimized and unoptimized versions of associated Bloch’s vectors and correlation matrix in the case of bipartite quantum systems. As a code test and application example, we consider the calculation of Hilbert-Schmidt quantum discords.

  17. Prospect theory does not describe the feedback-related negativity value function.

    Science.gov (United States)

    Sambrook, Thomas D; Roser, Matthew; Goslin, Jeremy

    2012-12-01

    Humans handle uncertainty poorly. Prospect theory accounts for this with a value function in which possible losses are overweighted compared to possible gains, and the marginal utility of rewards decreases with size. fMRI studies have explored the neural basis of this value function. A separate body of research claims that prediction errors are calculated by midbrain dopamine neurons. We investigated whether the prospect theoretic effects shown in behavioral and fMRI studies were present in midbrain prediction error coding by using the feedback-related negativity, an ERP component believed to reflect midbrain prediction errors. Participants' stated satisfaction with outcomes followed prospect theory but their feedback-related negativity did not, instead showing no effect of marginal utility and greater sensitivity to potential gains than losses. Copyright © 2012 Society for Psychophysiological Research.

  18. Countable Fuzzy Topological Space and Countable Fuzzy Topological Vector Space

    Directory of Open Access Journals (Sweden)

    Apu Kumar Saha

    2015-06-01

    Full Text Available This paper deals with countable fuzzy topological spaces, a generalization of the notion of fuzzy topological spaces. A collection of fuzzy sets F on a universe X forms a countable fuzzy topology if in the definition of a fuzzy topology, the condition of arbitrary supremum is relaxed to countable supremum. In this generalized fuzzy structure, the continuity of fuzzy functions and some other related properties are studied. Also the class of countable fuzzy topological vector spaces as a generalization of the class of fuzzy topological vector spaces has been introduced and investigated.

  19. Fast computation of the characteristics method on vector computers

    International Nuclear Information System (INIS)

    Kugo, Teruhiko

    2001-11-01

    Fast computation of the characteristics method to solve the neutron transport equation in a heterogeneous geometry has been studied. Two vector computation algorithms; an odd-even sweep (OES) method and an independent sequential sweep (ISS) method have been developed and their efficiency to a typical fuel assembly calculation has been investigated. For both methods, a vector computation is 15 times faster than a scalar computation. From a viewpoint of comparison between the OES and ISS methods, the followings are found: 1) there is a small difference in a computation speed, 2) the ISS method shows a faster convergence and 3) the ISS method saves about 80% of computer memory size compared with the OES method. It is, therefore, concluded that the ISS method is superior to the OES method as a vectorization method. In the vector computation, a table-look-up method to reduce computation time of an exponential function saves only 20% of a whole computation time. Both the coarse mesh rebalance method and the Aitken acceleration method are effective as acceleration methods for the characteristics method, a combination of them saves 70-80% of outer iterations compared with a free iteration. (author)

  20. Using support vector regression to predict PM10 and PM2.5

    International Nuclear Information System (INIS)

    Weizhen, Hou; Zhengqiang, Li; Yuhuan, Zhang; Hua, Xu; Ying, Zhang; Kaitao, Li; Donghui, Li; Peng, Wei; Yan, Ma

    2014-01-01

    Support vector machine (SVM), as a novel and powerful machine learning tool, can be used for the prediction of PM 10 and PM 2.5 (particulate matter less or equal than 10 and 2.5 micrometer) in the atmosphere. This paper describes the development of a successive over relaxation support vector regress (SOR-SVR) model for the PM 10 and PM 2.5 prediction, based on the daily average aerosol optical depth (AOD) and meteorological parameters (atmospheric pressure, relative humidity, air temperature, wind speed), which were all measured in Beijing during the year of 2010–2012. The Gaussian kernel function, as well as the k-fold crosses validation and grid search method, are used in SVR model to obtain the optimal parameters to get a better generalization capability. The result shows that predicted values by the SOR-SVR model agree well with the actual data and have a good generalization ability to predict PM 10 and PM 2.5 . In addition, AOD plays an important role in predicting particulate matter with SVR model, which should be included in the prediction model. If only considering the meteorological parameters and eliminating AOD from the SVR model, the prediction results of predict particulate matter will be not satisfying