WorldWideScience

Sample records for vawt stochastic aerodynamic

  1. Effect of wind fluctuating on self-starting aerodynamics characteristics of VAWT

    Institute of Scientific and Technical Information of China (English)

    朱建阳; 蒋林; 赵慧

    2016-01-01

    The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the rotation of the turbine is determined by the dynamic interaction between the fluctuating wind and turbine. A weak coupling method is developed to simulate the dynamic interaction between the fluctuating wind and passive rotation turbine, and the results show that if the fluctuating wind with appropriate fluctuation amplitude and frequency, the self-starting aerodynamic characteristics of VAWT will be enhanced. It is also found that compared with the fluctuation amplitude, the fluctuation frequency of the variation in wind velocity is shown to have a minor effect on the performance of the turbine. The analysis will provide straightforward physical insight into the self-starting aerodynamic characteristics of VAWT under fluctuating wind.

  2. An aerodynamic study on flexed blades for VAWT applications

    Science.gov (United States)

    Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi

    2014-12-01

    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small.

  3. An aerodynamic study on flexed blades for VAWT applications

    International Nuclear Information System (INIS)

    Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi

    2014-01-01

    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small

  4. Analysis of VAWT aerodynamics and design using the Actuator Cylinder flow model

    International Nuclear Information System (INIS)

    Madsen, H Aa; Paulsen, U S; Vitae, L

    2014-01-01

    The actuator cylinder (AC) flow model is defined as the ideal VAWT rotor. Radial directed volume forces are applied on the circular path of the VAWT rotor airfoil and constitute an energy conversion in the flow. The power coefficient for the ideal as well as the real energy conversion is defined. The describing equations for the two-dimensional AC model are presented and a solution method splitting the final solution in a linear and non-linear part is briefly described. A family of loadforms approaching the uniform loading is used to study the ideal energy conversion indicating that the maximum power coefficient for the ideal energy conversion of a VAWT could exceed the Betz limit. The real energy conversion of the 5MW DeepWind rotor is simulated with the AC flow model in combination with the blade element analysis. Aerodynamic design aspects are discussed on this basis revealing that the maximum obtainable power coefficient for a fixed pitch VAWT is constrained by the fundamental cyclic variation of inflow angle and relative velocity leading to a loading that deviates considerably from the uniform loading

  5. Desirable airfoil features for smaller-capacity straight-bladed VAWT

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Mazharul; Ting, D.S.-K.; Fartaj, Amir

    2007-05-15

    In the small scale wind turbine market, the simple straight-bladed Darrieus type vertical axis wind turbine (SB-VAWT) is very attractive for its simple blade design. A detailed aerodynamic performance analysis was conducted on a smaller capacity fixed-pitch SB-VAWT. Brief analyses of the main aerodynamic challenges of this type of wind turbine were first discussed and subsequently the authors conducted further literature survey and computational analysis to shortlist aerodynamic characteristics of a desirable airfoil for a self-starting and better performing SB-VAWT. The required geometric features of the desirable airfoil to achieve the short listed characteristics were also discussed. It has been found out that conventionally used NACA symmetric airfoils are not suitable for smaller capacity SB-VAWT. Rather, it is advantageous to utilize a high-lift and low-drag asymmetric thick airfoil suitable for low speed operation typically encountered by SB-VAWT. (author)

  6. Operational modal analysis on a VAWT in a large wind tunnel using stereo vision technique

    International Nuclear Information System (INIS)

    Najafi, Nadia; Paulsen, Uwe Schmidt

    2017-01-01

    This paper is about development and use of a research based stereo vision system for vibration and operational modal analysis on a parked, 1-kW, 3-bladed vertical axis wind turbine (VAWT), tested in a wind tunnel at high wind. Vibrations were explored experimentally by tracking small deflections of the markers on the structure with two cameras, and also numerically, to study structural vibrations in an overall objective to investigate challenges and to prove the capability of using stereo vision. Two high speed cameras provided displacement measurements at no wind speed interference. The displacement time series were obtained using a robust image processing algorithm and analyzed with data-driven stochastic subspace identification (DD-SSI) method. In addition of exploring structural behaviour, the VAWT testing gave us the possibility to study aerodynamic effects at Reynolds number of approximately 2 × 10"5. VAWT dynamics were simulated using HAWC2. The stereo vision results and HAWC2 simulations agree within 4% except for mode 3 and 4. The high aerodynamic damping of one of the blades, in flatwise motion, would explain the gap between those two modes from simulation and stereo vision. A set of conventional sensors, such as accelerometers and strain gauges, are also measuring rotor vibration during the experiment. The spectral analysis of the output signals of the conventional sensors agrees the stereo vision results within 4% except for mode 4 which is due to the inaccuracy of spectral analysis in picking very closely spaced modes. Finally, the uncertainty of the 3D displacement measurement was evaluated by applying a generalized method based on the law of error propagation, for a linear camera model of the stereo vision system. - Highlights: • The stereo vision technique is used to track deflections on a VAWT in the wind tunnel. • OMA is applied on displacement time series to study the dynamic behaviour of the VAWT. • Stereo vision results enabled us to

  7. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    Science.gov (United States)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen; Moan, Torgeir

    2016-09-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT). In this study, the aerodynamic damping of floating VAWTs was studied in a fully coupled manner, and its influential factors and its effects on the motions, especially the pitch motion, were demonstrated. Three straight-bladed floating VAWTs with identical solidity and with a blade number varying from two to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover, the aerodynamic damping is almost independent of the rotor azimuth angle, and is to some extent sensitive to the blade number.

  8. Analysis of VAWT aerodynamics and design using the Actuator Cylinder flow model

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Schmidt Paulsen, Uwe; Vita, Luca

    2014-01-01

    The actuator cylinder (AC) flow model is defined as the ideal VAWT rotor. Radial directed volume forces are applied on the circular path of the VAWT rotor airfoil and constitute an energy conversion in the flow. The power coefficient for the ideal as well as the real energy conversion is defined....... obtainable power coefficient for a fixed pitch VAWT is constrained by the fundamental cyclic variation of inflow angle and relative velocity leading to a loading that deviates considerably from the uniform loading.......The actuator cylinder (AC) flow model is defined as the ideal VAWT rotor. Radial directed volume forces are applied on the circular path of the VAWT rotor airfoil and constitute an energy conversion in the flow. The power coefficient for the ideal as well as the real energy conversion is defined....... The describing equations for the two-dimensional AC model are presented and a solution method splitting the final solution in a linear and non-linear part is briefly described. A family of loadforms approaching the uniform loading is used to study the ideal energy conversion indicating that the maximum power...

  9. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen

    2016-01-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based...... on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT...... to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover...

  10. Analysis of VAWT aerodynamics and design using the Actuator Cylinder flow model

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Schmidt Paulsen, Uwe; Vita, Luca

    2012-01-01

    The actuator cylinder flow model is defined as the ideal VAWT rotor. Radial directed volume forces are applied on the circular path of the VAWT rotor airfoil and constitute an energy conversion in the flow. The power coefficient for the ideal as well as the real energy conversion is defined...

  11. Aerodynamics and Motion Performance of the H-Type Floating Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ying Guo

    2018-02-01

    Full Text Available Aerodynamics and motion performance of the floating vertical wind turbine (VAWT were studied in this paper, where the wind turbine was H-type and the floating foundation was truss spar type. Based on the double-multiple-stream-tube theory, the formulae were deduced to calculate the aerodynamic loads acting on the wind turbine considering the motions of the floating foundation. The surge-heave-pitch nonlinear coupling equations of the H-type floating VAWT were established. Aerodynamics and motion performance of a 5 MW H-type floating VAWT was studied, and the effect of the floating foundation motions on the aerodynamic loads was analyzed. It is shown that the motions of the floating foundation on the aerodynamics cannot be ignored. The motion of the H-type floating VAWT was also compared with that of the Φ-type floating VAWT: they have the same floating foundation, rated output power, mooring system and total displacement. The results show that the H-type floating VAWT has better motion performance, and the mean values of surge, heave and pitch of the H-type floating VAWT are much smaller comparing with the Φ-type floating VAWT.

  12. Inverse airfoil design method for low-speed straight-bladed Darrieus-type VAWT applications

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, F. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia); Paraschivoiu, I.; Trifu, O. [Ecole Polytechnique, Montreal, PQ (Canada); Hess, M.; Gabrys, C. [Mariah Power Inc., Reno, NV (United States)

    2008-07-01

    Inverse airfoil design of a low-speed straight-bladed Darrieus-type vertical axis wind turbine (VAWT) can help improve aerodynamic performance and power output by eliminating undesirable flow field characteristics at very low Reynolds number. This study used an interactive inverse airfoil design method (PROFOIL) that allows specification of velocity and boundary-layer characteristics over different segments of the airfoil subject to constraints on the geometry (closure) and the flow field (far field boundary). Additional constraints were also considered to address pitching moment coefficient, thickness and the power output for a given tip-speed ratio. Performance analyses of the airfoil and the VAWT were carried out using state-of-the-art analyses codes XFOIL and CARDAAV, respectively. XFOIL is a panel method with a coupled boundary-layer scheme and is used to obtain the aerodynamic characteristics of resulting airfoil shapes. The final airfoil geometry is obtained through a multi-dimensional Newton iteration. The study showed that the strength of the method lies in the inverse design methodology whereas its weaknesses is in reliably predicting aerodynamic characteristics of airfoils at low Reynolds numbers and high angles of attack. A 10-15 per cent increase in the relative performance of the VAWT was achieved with this method. Although the results of the study showed that the method has great application potential for VAWTs in general, there is much room for improvement in flow analysis capabilities for low Re flows in reliably predicting post-stall aerodynamic characteristics. In the absence of such analysis capabilities, the authors suggested that the results should be viewed qualitatively and not quantitatively. 36 refs., 1 tab., 4 figs.

  13. On the way to reliable aeroelastic load simulation on VAWT's

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Aagaard Madsen, Helge

    2013-01-01

    In this paper a method for an implementation of a 2D actuator cylinder flow model of an Vertical Axis Wind Turbine (VAWT) is presented. The model is implemented in a full aeroelastic code including consideration of structural dynamics, dynamic inflow, tower shadow and dynamic stall, which is needed...... for a full load analysis relating to eg. certification of a VAWT turbine. Further on, principal load cases according to the IEC61400-1 are simulated for a fictitious 5MW VAWT turbine in it’s simplest 2 bladed Darrieus configuration. The IEC61400-1 load cases, originally developed for Horizontal Axis Wind...... Turbines (HAWT’s), are discussed regarding the application to VAWT’s. Further on a small section regarding aerodynamic flow in curved motion is included....

  14. Simulating Dynamic Stall in a 2D VAWT: Modeling strategy, verification and validation with Particle Image Velocimetry data

    NARCIS (Netherlands)

    Ferreira, C.J.S.; Bijl, H.; Bussel, van G.J.W.; Kuik, van G.A.M.

    2007-01-01

    The implementation of wind energy conversion systems in the built environment renewed the interest and the research on Vertical Axis Wind Turbines (VAWT), which in this application present several advantages over Horizontal Axis Wind Turbines (HAWT). The VAWT has an inherent unsteady aerodynamic

  15. Simulating Dynamic Stall in a 2D VAWT: Modeling strategy, verification and validation with Particle Image Velocimetry data

    International Nuclear Information System (INIS)

    Ferreira, C J Simao; Bijl, H; Bussel, G van; Kuik, G van

    2007-01-01

    The implementation of wind energy conversion systems in the built environment renewed the interest and the research on Vertical Axis Wind Turbines (VAWT), which in this application present several advantages over Horizontal Axis Wind Turbines (HAWT). The VAWT has an inherent unsteady aerodynamic behavior due to the variation of angle of attack with the angle of rotation, perceived velocity and consequentially Reynolds number. The phenomenon of dynamic stall is then an intrinsic effect of the operation of a Vertical Axis Wind Turbine at low tip speed ratios, having a significant impact in both loads and power. The complexity of the unsteady aerodynamics of the VAWT makes it extremely attractive to be analyzed using Computational Fluid Dynamics (CFD) models, where an approximation of the continuity and momentum equations of the Navier-Stokes equations set is solved. The complexity of the problem and the need for new design approaches for VAWT for the built environment has driven the authors of this work to focus the research of CFD modeling of VAWT on: .comparing the results between commonly used turbulence models: URANS (Spalart-Allmaras and k-ε) and large eddy models (Large Eddy Simulation and Detached Eddy Simulation) .verifying the sensitivity of the model to its grid refinement (space and time), .evaluating the suitability of using Particle Image Velocimetry (PIV) experimental data for model validation. The 2D model created represents the middle section of a single bladed VAWT with infinite aspect ratio. The model simulates the experimental work of flow field measurement using Particle Image Velocimetry by Simao Ferreira et al for a single bladed VAWT. The results show the suitability of the PIV data for the validation of the model, the need for accurate simulation of the large eddies and the sensitivity of the model to grid refinement

  16. A retrospective of VAWT technology.

    Energy Technology Data Exchange (ETDEWEB)

    Ashwill, Thomas D.; Sutherland, Herbert J. (HJS Consulting, Albuquerque, NM); Berg, Dale E.

    2012-01-01

    The study of Vertical-Axis Wind Turbine (VAWT) technology at Sandia National Laboratories started in the 1970's and concluded in the 1990's. These studies concentrated on the Darrieus configurations because of their high inherent efficiency, but other configurations (e.g., the Savonius turbine) were also examined. The Sandia VAWT program culminated with the design of the 34-m 'Test Bed' Darrieus VAWT. This turbine was designed and built to test various VAWT design concepts and to provide the necessary databases to validate analytical design codes and algorithms. Using the Test Bed as their starting point, FloWind Corp. developed a commercial VAWT product line with composite blades and an extended height-to-diameter ratio. The purpose of this paper is to discuss the design process and results of the Sandia 34-m VAWT Test Bed program and the FloWind prototype development program with an eye toward future offshore designs. This paper is our retrospective of the design, analysis, testing and commercial process. Special emphasis is given to those lessons learned that will aid in the development of an off-shore VAWT.

  17. Recent Darrieus vertical axis wind turbine aerodynamical experiments at Sandia National Laboratories

    Science.gov (United States)

    Klimas, P. C.

    1981-01-01

    Experiments contributing to the understanding of the aerodynamics of airfoils operating in the vertical axis wind turbine (VAWT) environment are described. These experiments are ultimately intended to reduce VAWT cost of energy and increase system reliability. They include chordwise pressure surveys, circumferential blade acceleration surveys, effects of blade camber, pitch and offset, blade blowing, and use of sections designed specifically for VAWT application.

  18. Flow Curvature Effects for VAWT: a Review of Virtual Airfoil Transformations and Implementation in XFOIL

    DEFF Research Database (Denmark)

    van der Horst, Sander; van de Wiel, Jelmer E.; Ferreira, Carlos Simao

    2016-01-01

    Blades on a Vertical Axis Wind Turbine (VAWT) experience curved streamlines, caused by the rotation of the turbine. This phenomenon is known as flow curvature and has effects on the aerodynamic loading of the blades. Several authors have proposed methods to account for flow curvature, resulting...

  19. Aerodynamic Optimization of Vertical Axis Wind Turbine with Trailing Edge Flap

    DEFF Research Database (Denmark)

    Ertem, Sercan; Ferreira, Carlos Simao; Gaunaa, Mac

    2016-01-01

    Vertical Axis Wind Turbines (VAWT) are competitive concepts for very large scale (10-20 MW)floating ofshore applications. Rotor circulation control (loading control) opens a wide design space to enhance the aerodynamic and operational features of VAWT. The modied linear derivation of the Actuator...

  20. Variable Pitch Approach for Performance Improving of Straight-Bladed VAWT at Rated Tip Speed Ratio

    Directory of Open Access Journals (Sweden)

    Zhenzhou Zhao

    2018-06-01

    Full Text Available This paper presents a new variable pitch (VP approach to increase the peak power coefficient of the straight-bladed vertical-axis wind turbine (VAWT, by widening the azimuthal angle band of the blade with the highest aerodynamic torque, instead of increasing the highest torque. The new VP-approach provides a curve of pitch angle designed for the blade operating at the rated tip speed ratio (TSR corresponding to the peak power coefficient of the fixed pitch (FP-VAWT. The effects of the new approach are exploited by using the double multiple stream tubes (DMST model and Prandtl’s mathematics to evaluate the blade tip loss. The research describes the effects from six aspects, including the lift, drag, angle of attack (AoA, resultant velocity, torque, and power output, through a comparison between VP-VAWTs and FP-VAWTs working at four TSRs: 4, 4.5, 5, and 5.5. Compared with the FP-blade, the VP-blade has a wider azimuthal zone with the maximum AoA, lift, drag, and torque in the upwind half-cycle, and yields the two new larger maximum values in the downwind half-cycle. The power distribution in the swept area of the turbine changes from an arched shape of the FP-VAWT into the rectangular shape of the VP-VAWT. The new VP-approach markedly widens the highest-performance zone of the blade in a revolution, and ultimately achieves an 18.9% growth of the peak power coefficient of the VAWT at the optimum TSR. Besides achieving this growth, the new pitching method will enhance the performance at TSRs that are higher than current optimal values, and an increase of torque is also generated.

  1. Characteristics of future Vertical Axis Wind Turbines (VAWTs). [to generate utility grid electric power

    Science.gov (United States)

    Kadlec, E. G.

    1979-01-01

    The developing Darrieus VAWT technology whose ultimate objective is economically feasible, industry-produced, commercially marketed wind energy systems is reviewed. First-level aerodynamic, structural, and system analyses capabilities which support and evaluate the system designs are discussed. The characteristics of current technology designs are presented and their cost effectiveness is assessed. Potential improvements identified are also presented along with their cost benefits.

  2. Aerodynamic modeling of floating vertical axis wind turbines using the actuator cylinder flow method

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen

    2016-01-01

    Recently the interest in developing vertical axis wind turbines (VAWTs) for offshore application has been increasing. Among the aerodynamic models of VAWTs, double multi-streamtube (DMST) and actuator cylinder (AC) models are two favorable methods for fully coupled modeling and dynamic analysis...

  3. A stochastic aerodynamic model for stationary blades in unsteady 3D wind fields

    International Nuclear Information System (INIS)

    Fluck, Manuel; Crawford, Curran

    2016-01-01

    Dynamic loads play an important roll in the design of wind turbines, but establishing the life-time aerodynamic loads (e.g. extreme and fatigue loads) is a computationally expensive task. Conventional (deterministic) methods to analyze long term loads, which rely on the repeated analysis of multiple different wind samples, are usually too expensive to be included in optimization routines. We present a new stochastic approach, which solves the aerodynamic system equations (Lagrangian vortex model) in the stochastic space, and thus arrive directly at a stochastic description of the coupled loads along a turbine blade. This new approach removes the requirement of analyzing multiple different realizations. Instead, long term loads can be extracted from a single stochastic solution, a procedure that is obviously significantly faster. Despite the reduced analysis time, results obtained from the stochastic approach match deterministic result well for a simple test-case (a stationary blade). In future work, the stochastic method will be extended to rotating blades, thus opening up new avenues to include long term loads into turbine optimization. (paper)

  4. Performance prediction of asymmetrical bladed H-Darrieus VAWT rotors in low wind speed condition using CFD

    Science.gov (United States)

    Mazarbhuiya, Hussain Mahamed Sahed Mostafa; Biswas, Agnimitra; Sharma, Kaushal Kumar

    2018-04-01

    Wind energy is an essential and carbon free form of renewable energy resources. Energy can be easily extracted from wind with the use of Horizontal axis and Vertical axis wind turbine(VAWT). The performance of turbine depends on airfoil shape. The present work emphasizes the aerodynamics of different asymmetrical airfoils used in VAWT rotors. This investigation is conducted for the selection of efficient asymmetrical bladed H-Darrieus VAWT rotor. Five numbers of thick and cambered asymmetrical airfoil is considered for this investigation. A free stream velocity of 6.0 m/s is considered to simulate 2D CFD analysis using k-ɛ turbulence model. The power coefficient (Cp) of all H-Darrieus VAWT rotor increase with increase in TSR value to a certain limit and after it starts decrease with further increase of TSR. In the present investigation the Cp and TSR of NACA 63415 (RT-30%) are found to be higher among all considered asymmetrical airfoils. Moreover, Ct values of NACA 63415 (RT-30%) are also high corresponding to all TSR values. This is due to the long duration of attachment of flow with blade surroundings. Hence, NACA 63415 (RT- 30%) airfoil may be considered as an efficient airfoil among S818, GOE 561, GU25-5(11)8, and KENNEDY AND MARSDEN (kenmar) asymmetrical airfoils.

  5. Electric Circuit Model for the Aerodynamic Performance Analysis of a Three-Blade Darrieus-Type Vertical Axis Wind Turbine: The Tchakoua Model

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua

    2016-10-01

    Full Text Available The complex and unsteady aerodynamics of vertical axis wind turbines (VAWTs pose significant challenges for simulation tools. Recently, significant research efforts have focused on the development of new methods for analysing and optimising the aerodynamic performance of VAWTs. This paper presents an electric circuit model for Darrieus-type vertical axis wind turbine (DT-VAWT rotors. The novel Tchakoua model is based on the mechanical description given by the Paraschivoiu double-multiple streamtube model using a mechanical‑electrical analogy. Model simulations were conducted using MATLAB for a three-bladed rotor architecture, characterized by a NACA0012 profile, an average Reynolds number of 40,000 for the blade and a tip speed ratio of 5. The results obtained show strong agreement with findings from both aerodynamic and computational fluid dynamics (CFD models in the literature.

  6. Effect of moment of inertia to H type vertical axis wind turbine aerodynamic performance

    International Nuclear Information System (INIS)

    Yang, C X; Li, S T

    2013-01-01

    The main aerodynamic performances (out power out power coefficient torque torque coefficient and so on) of H type Vertical Axis wind Turbine (H-VAWT) which is rotating machinery will be impacted by moment of inertia. This article will use NACA0018 airfoil profile to analyze that moment of inertia through impact performance of H type VAWT by utilizing program of Matlab and theory of Double-Multiple Streamtube. The results showed that the max out power coefficient was barely impacted when moment of inertia is changed in a small area,but the lesser moment of inertia's VAWT needs a stronger wind velocity to obtain the max out power. The lesser moment of inertia's VAWT has a big out power coefficient, torque coefficient and out power before it gets to the point of max out power coefficient. Out power coefficient, torque and torque coefficient will obviously change with wind velocity increased for VAWT of the lesser moment of inertia

  7. Measurements of the Aerodynamic Normal Forces on a 12-kW Straight-Bladed Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Eduard Dyachuk

    2015-08-01

    Full Text Available The knowledge of unsteady forces is necessary when designing vertical axis wind turbines (VAWTs. Measurement data for turbines operating at an open site are still very limited. The data obtained from wind tunnels or towing tanks can be used, but have limited applicability when designing large-scale VAWTs. This study presents experimental data on the normal forces of a 12-kW straight-bladed VAWT operated at an open site north of Uppsala, Sweden. The normal forces are measured with four single-axis load cells. The data are obtained for a wide range of tip speed ratios: from 1.7 to 4.6. The behavior of the normal forces is analyzed. The presented data can be used in validations of aerodynamic models and the mechanical design for VAWTs.

  8. Characterization of aerodynamic performance of vertical axis wind turbines : impact of operational parameters

    NARCIS (Netherlands)

    Rezaeiha, Abdolrahim; Montazeri, Hamid; Blocken, Bert

    2018-01-01

    Vertical axis wind turbines (VAWTs) have received growing interest for off-shore application and in the urban environments mainly due to their omni-directional capability, scalability, robustness, low noise and costs. However, their aerodynamic performance is still not comparable with their

  9. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    Science.gov (United States)

    Panther, Chad C.

    Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambdaoperate outside of stall during over 70% of rotation. However, VAWTs offer many advantages such as omnidirectional operation, ground proximity of generator, lower sound emission, and non-cantilevered blades with longer life. Thus, mitigating dynamic stall and improving VAWT blade aerodynamics for competitive power efficiency has been a popular research topic in recent years and the directive of this study. Past research at WVU focused on the addition of circulation control (CC) technology to improve VAWT aerodynamics and expand the operational envelope. A novel blade design was generated from the augmentation of a NACA0018 airfoil to include CC capabilities. Static wind tunnel data was collected for a range of steady jet momentum coefficients (0.01≤ Cmu≤0.10) for analytical vortex model performance projections. Control strategies were developed to optimize CC jet conditions throughout rotation, resulting in improved power output for 2≤lambda≤5. However, the pumping power required to produce steady CC jets reduced net power gains of the augmented turbine by approximately 15%. The goal of this work was to investigate pulsed CC jet actuation to match steady jet performance with reduced mass flow requirements. To date, no experimental studies have been completed to analyze pulsed CC performance on a pitching airfoil. The research described herein details the first study on the impact of steady and pulsed jet CC on pitching VAWT blade aerodynamics. Both numerical and experimental studies were implemented, varying

  10. Stochastic modeling of lift and drag dynamics to obtain aerodynamic forces with local dynamics on rotor blade under unsteady wind inflow

    International Nuclear Information System (INIS)

    Luhur, M.R.

    2014-01-01

    This contribution provides the development of a stochastic lift and drag model for an airfoil FX 79-W-151A under unsteady wind inflow based on wind tunnel measurements. Here we present the integration of the stochastic model into a well-known standard BEM (Blade Element Momentum) model to obtain the corresponding aerodynamic forces on a rotating blade element. The stochastic model is integrated as an alternative to static tabulated data used by classical BEM. The results show that in comparison to classical BEM, the BEM with stochastic approach additionally reflects the local force dynamics and therefore provides more information on aerodynamic forces that can be used by wind turbine simulation codes. (author)

  11. Stochastic Modeling of Lift and Drag Dynamics to Obtain Aerodynamic Forces with Local Dynamics on Rotor Blade under Unsteady Wind Inflow

    Directory of Open Access Journals (Sweden)

    Muhammad Ramzan Luhur

    2014-01-01

    Full Text Available This contribution provides the development of a stochastic lift and drag model for an airfoil FX 79-W-151A under unsteady wind inflow based on wind tunnel measurements. Here we present the integration of the stochastic model into a well-known standard BEM (Blade Element Momentum model to obtain the corresponding aerodynamic forces on a rotating blade element. The stochastic model is integrated as an alternative to static tabulated data used by classical BEM. The results show that in comparison to classical BEM, the BEM with stochastic approach additionally reflects the local force dynamics and therefore provides more information on aerodynamic forces that can be used by wind turbine simulation codes

  12. Numerical Simulations of a VAWT in the Wake of a Moving Car

    Directory of Open Access Journals (Sweden)

    Wenlong Tian

    2017-04-01

    Full Text Available Wind energy generated from the wake of moving cars has a large energy potential that has not yet been utilized. In this study, a vertical axis wind turbine (VAWT was used to recover energy from the wakes of moving cars. The turbine was designed to be planted by the side of the car lane and driven by the wake produced by the car. Transient computational fluid dynamics (CFD simulations were performed to evaluate the performance of the VAWT. The influence of two main factors on the performance of the VAWT, the velocity of the car and the gap between the car and the rotor, were studied. The simulations confirmed the feasibility of this plan, and in the tested cases, the VAWT was able to generate a maximum energy output of 100.49 J from the wake of a car. The results also showed that the performance of the VAWT decreased with the velocity of the car, and the increased gap between the car and the VAWT.

  13. Aerodynamic calculational methods for curved-blade Darrieus VAWT WECS

    Science.gov (United States)

    Templin, R. J.

    1985-03-01

    Calculation of aerodynamic performance and load distributions for curved-blade wind turbines is discussed. Double multiple stream tube theory, and the uncertainties that remain in further developing adequate methods are considered. The lack of relevant airfoil data at high Reynolds numbers and high angles of attack, and doubts concerning the accuracy of models of dynamic stall are underlined. Wind tunnel tests of blade airbrake configurations are summarized.

  14. Effect of the shaft on the aerodynamic performance of urban vertical axis wind turbines

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.; Montazeri, H.; Blocken, B.J.E.

    2017-01-01

    The central shaft is an inseparable part of a vertical axis wind turbine (VAWT). For small turbines such as those typically used in urban environments, the shaft could operate in the subcritical regime, resulting in large drag and considerable aerodynamic power loss. The current study aims to (i)

  15. Overview of Vertical Axis Wind Turbine (VAWT)

    Science.gov (United States)

    Sullivan, W. N.

    1979-01-01

    A survey is presented of the practices which were applied for designing VAWT blades. An attempt is made to discuss strengths and weaknesses of the existing procedures. Discussion is provided on planned or suggested future work in developing improved design tools.

  16. Numerical simulation of VAWT on the effects of rotation cylinder

    Science.gov (United States)

    Xing, Shuda; Cao, Yang; Ren, Fuji

    2017-06-01

    Based on Finite Element Analysis Method, studying on Vertical Axis Wind Turbine (VAWT) which is added rotating cylinder in front of its air foils, especially focusing on the analysis of NACA6 series air foils about variation of lift to drag ratio. Choosing the most suitable blades with rotary cylinder added on leading edge. Analysis indicates that the front rotating cylinders on the VAWT is benefit to lift rise and drag fall. The most suitable air foil whose design lift coefficient is 0.8, the blades relative thickness is 20%, and the optimistic tip speed ratio is about 7.

  17. Analysis of Different Blade Architectures on small VAWT Performance

    Science.gov (United States)

    Battisti, L.; Brighenti, A.; Benini, E.; Raciti Castelli, M.

    2016-09-01

    The present paper aims at describing and comparing different small Vertical Axis Wind Turbine (VAWT) architectures, in terms of performance and loads. These characteristics can be highlighted by resorting to the Blade Element-Momentum (BE-M) model, commonly adopted for rotor pre-design and controller assessment. After validating the model with experimental data, the paper focuses on the analysis of VAWT loads depending on some relevant rotor features: blade number (2 and 3), airfoil camber line (comparing symmetrical and asymmetrical profiles) and blade inclination (straight versus helical blade). The effect of such characteristics on both power and thrusts (in the streamwise direction and in the crosswise one) as a function of both the blades azimuthal position and their Tip Speed Ratio (TSR) are presented and widely discussed.

  18. Effect of Blade Pitch Angle on the Aerodynamic Characteristics of a Straight-bladed Vertical Axis Wind Turbine Based on Experiments and Simulations

    Directory of Open Access Journals (Sweden)

    Yanzhao Yang

    2018-06-01

    Full Text Available The blade pitch angle has a significant influence on the aerodynamic characteristics of horizontal axis wind turbines. However, few research results have revealed its impact on the straight-bladed vertical axis wind turbine (Sb-VAWT. In this paper, wind tunnel experiments and CFD simulations were performed at the Sb-VAWT to investigate the effect of different blade pitch angles on the pressure distribution on the blade surface, the torque coefficient, and the power coefficient. In this study, the airfoil type was NACA0021 with two blades. The Sb-VAWT had a rotor radius of 1.0 m with a spanwise length of 1.2 m. The simulations were based on the k-ω Shear Stress Transport (SST turbulence model and the wind tunnel experiments were carried out using a high-speed multiport pressure device. As a result, it was found that the maximum pressure difference on the blade surface was obtained at the blade pitch angle of β = 6° in the upstream region. However, the maximum pressure coefficient was shown at the blade pitch angle of β = 8° in the downstream region. The torque coefficient acting on a single blade reached its maximum value at the blade pitch angle of β = 6°. As the tip speed ratio increased, the power coefficient became higher and reached the optimum level. Subsequently, further increase of the tip speed ratio only led to a quick reversion of the power coefficient. In addition, the results from CFD simulations had also a good agreement with the results from the wind tunnel experiments. As a result, the blade pitch angle did not have a significant influence on the aerodynamic characteristics of the Sb-VAWT.

  19. Reliability of numerical wind tunnels for VAWT simulation

    International Nuclear Information System (INIS)

    Castelli, M. Raciti; Masi, M.; Battisti, L.; Benini, E.; Brighenti, A.; Dossena, V.; Persico, G.

    2016-01-01

    Computational Fluid Dynamics (CFD) based on the Unsteady Reynolds Averaged Navier Stokes (URANS) equations have long been widely used to study vertical axis wind turbines (VAWTs). Following a comprehensive experimental survey on the wakes downwind of a troposkien-shaped rotor, a campaign of bi-dimensional simulations is presented here, with the aim of assessing its reliability in reproducing the main features of the flow, also identifying areas needing additional research. Starting from both a well consolidated turbulence model (k-ω SST) and an unstructured grid typology, the main simulation settings are here manipulated in a convenient form to tackle rotating grids reproducing a VAWT operating in an open jet wind tunnel. The dependence of the numerical predictions from the selected grid spacing is investigated, thus establishing the less refined grid size that is still capable of capturing some relevant flow features such as integral quantities (rotor torque) and local ones (wake velocities). (paper)

  20. Reliability of numerical wind tunnels for VAWT simulation

    Science.gov (United States)

    Raciti Castelli, M.; Masi, M.; Battisti, L.; Benini, E.; Brighenti, A.; Dossena, V.; Persico, G.

    2016-09-01

    Computational Fluid Dynamics (CFD) based on the Unsteady Reynolds Averaged Navier Stokes (URANS) equations have long been widely used to study vertical axis wind turbines (VAWTs). Following a comprehensive experimental survey on the wakes downwind of a troposkien-shaped rotor, a campaign of bi-dimensional simulations is presented here, with the aim of assessing its reliability in reproducing the main features of the flow, also identifying areas needing additional research. Starting from both a well consolidated turbulence model (k-ω SST) and an unstructured grid typology, the main simulation settings are here manipulated in a convenient form to tackle rotating grids reproducing a VAWT operating in an open jet wind tunnel. The dependence of the numerical predictions from the selected grid spacing is investigated, thus establishing the less refined grid size that is still capable of capturing some relevant flow features such as integral quantities (rotor torque) and local ones (wake velocities).

  1. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...

  2. On the relative importance of loads acting on a floating verticalaxis wind turbine system when evaluating the global system response

    DEFF Research Database (Denmark)

    Collu, Maurizio; Borg, Michael; Manuel, Lance

    2016-01-01

    of the VAWT aerodynamic forces, the platform hydrodynamic forces, and the mooring forces. The results help evaluate the relative importance of hydrodynamic with respect to aerodynamic forces, depending on the loading condition. A deeper insight into the aerodynamic forces is provided, which shows the impact...... their potential advantages. Due to the substantial differences between HAWT and VAWT systems, analysis procedures employed for a floating HAWT analyses cannot be extended to use for floating VAWT systems. Here, the main aim is to provide a systematic analysis and comparison of the forces acting on a reference...... by the OC4-Phase II semisubmersible. Using the coupled model of dynamics for VAWT "FloVAWT", the global response of the system is estimated for a set of load cases, allowing the assessment of the contributions of individual force components. In particular, the simulations allow us to assess the impact...

  3. Sparse grid-based polynomial chaos expansion for aerodynamics of an airfoil with uncertainties

    Directory of Open Access Journals (Sweden)

    Xiaojing WU

    2018-05-01

    Full Text Available The uncertainties can generate fluctuations with aerodynamic characteristics. Uncertainty Quantification (UQ is applied to compute its impact on the aerodynamic characteristics. In addition, the contribution of each uncertainty to aerodynamic characteristics should be computed by uncertainty sensitivity analysis. Non-Intrusive Polynomial Chaos (NIPC has been successfully applied to uncertainty quantification and uncertainty sensitivity analysis. However, the non-intrusive polynomial chaos method becomes inefficient as the number of random variables adopted to describe uncertainties increases. This deficiency becomes significant in stochastic aerodynamic analysis considering the geometric uncertainty because the description of geometric uncertainty generally needs many parameters. To solve the deficiency, a Sparse Grid-based Polynomial Chaos (SGPC expansion is used to do uncertainty quantification and sensitivity analysis for stochastic aerodynamic analysis considering geometric and operational uncertainties. It is proved that the method is more efficient than non-intrusive polynomial chaos and Monte Carlo Simulation (MSC method for the stochastic aerodynamic analysis. By uncertainty quantification, it can be learnt that the flow characteristics of shock wave and boundary layer separation are sensitive to the geometric uncertainty in transonic region. The uncertainty sensitivity analysis reveals the individual and coupled effects among the uncertainty parameters. Keywords: Non-intrusive polynomial chaos, Sparse grid, Stochastic aerodynamic analysis, Uncertainty sensitivity analysis, Uncertainty quantification

  4. Structural design of the Sandia 34-M Vertical Axis Wind Turbine

    Science.gov (United States)

    Berg, D. E.

    Sandia National Laboratories, as the lead DOE laboratory for Vertical Axis Wind Turbine (VAWT) development, is currently designing a 34-meter diameter Darrieus-type VAWT. This turbine will be a research test bed which provides a focus for advancing technology and validating design and fabrication techniques in a size range suitable for utility use. Structural data from this machine will allow structural modeling to be refined and verified for a turbine on which the gravity effects and stochastic wind loading are significant. Performance data from it will allow aerodynamic modeling to be refined and verified. The design effort incorporates Sandia's state-of-the-art analysis tools in the design of a complete machine. The analytic tools used in this design are discussed and the conceptual design procedure is described.

  5. Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine

    International Nuclear Information System (INIS)

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Furukawa, Kazuma; Yamamoto, Masayuki

    2015-01-01

    Small wind turbine performance and safety standard for straight-bladed Vertical Axis Wind Turbine (VAWT) have not been developed in the world because of the lack of fundament experimental data. This paper focuses on the evaluation of aerodynamic forces depending on several numbers of blades in wind tunnel experiment. In the present study, the test airfoil of blade is symmetry airfoil of NACA 0021 and the number of blades is from two to five. Pressure acting on the surface of rotor blade is measured during rotation by multiport pressure devices and transmitted to a stationary system through wireless LAN. And then, the aerodynamic forces (tangential force, normal force et al.) are discussed as a function of azimuth angle, achieving a quantitative analysis of the effect of numbers of blades. Finally, the loads are compared with the experimental data of six-component balance. As a result, it is clarified that the power coefficient decreases with the increase of numbers of blades. Furthermore, the power which is absorbed from wind by wind turbine mainly depends on upstream region of azimuth angle of θ = 0°∼180°. In this way, these results are very important for developing the simple design equations and applications for straight-bladed VAWT. - Highlights: • Aerodynamic forces are measured by not only torque meter but also six-component balance. • The pressure distribution on the surface of rotor blade is directly measured by multiport pressure devices. • The power coefficient decreases with the increase of numbers of blades. • The fluctuation amplitudes from six-component balance show larger value than the results of pressure distribution.

  6. Visualization by PIV of dynamic stall on a vertical axis wind turbine

    NARCIS (Netherlands)

    Ferreira, C.J.S.; Kuik, van G.A.M.; Bussel, van G.J.W.; Scarano, F.

    2009-01-01

    The aerodynamic behavior of a vertical axis wind turbine (VAWT) is analyzed by means of 2D particle image velocimetry (PIV), focusing on the development of dynamic stall at different tip speed ratios. The VAWT has an unsteady aerodynamic behavior due to the variation with the azimuth angle ¿ of the

  7. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    DEFF Research Database (Denmark)

    Ferreira, C. Simão; Aagaard Madsen, Helge; Barone, M.

    2014-01-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple...

  8. Aerodynamic performance of a small vertical axis wind turbine using an overset grid method

    Science.gov (United States)

    Bangga, Galih; Solichin, Mochammad; Daman, Aida; Sa'adiyah, Devy; Dessoky, Amgad; Lutz, Thorsten

    2017-08-01

    The present paper aims to asses the aerodynamic performance of a small vertical axis wind turbine operating at a small wind speed of 5 m/s for 6 different tip speed ratios (λ=2-7). The turbine consists of two blades constructed using the NACA 0015 airfoil. The study is carried out using computational fluid dynamics (CFD) methods employing an overset grid approach. The (URANS) SST k - ω is used as the turbulence model. For the preliminary study, simulations of the NACA 0015 under static conditions for a broad range of angle of attack and a rotating two-bladed VAWT are carried out. The results are compared with available measurement data and a good agreement is obtained. The simulations demonstrate that the maximum power coefficient attained is 0.45 for λ=4. The aerodynamic loads hysteresis are presented showing that the dynamic stall effect decreases with λ.

  9. A free wake vortex lattice model for vertical axis wind turbines: Modeling, verification and validation

    International Nuclear Information System (INIS)

    Meng, Fanzhong; Schwarze, Holger; Vorpahl, Fabian; Strobel, Michael

    2014-01-01

    Since the 1970s several research activities had been carried out on developing aerodynamic models for Vertical Axis Wind Turbines (VAWTs). In order to design large VAWTs of MW scale, more accurate aerodynamic calculation is required to predict their aero-elastic behaviours. In this paper, a 3D free wake vortex lattice model for VAWTs is developed, verified and validated. Comparisons to the experimental results show that the 3D free wake vortex lattice model developed is capable of making an accurate prediction of the general performance and the instantaneous aerodynamic forces on the blades. The comparison between momentum method and the vortex lattice model shows that free wake vortex models are needed for detailed loads calculation and for calculating highly loaded rotors

  10. Benchmarking (Code2Code) of the 1Hs 3-Bladed Onshore VAWT

    DEFF Research Database (Denmark)

    Galinos, Christos; Schmidt Paulsen, Uwe

    This study is part of the Inflow project. In this report the Nenuphar’s onshore 3-bladed Vertical Axis Wind Turbine (VAWT) prototype (1HS) is modelled in HAWC2 aeroelastic code. In the first part the model properties are summarized. Then the analysis is focused on the rotor performance and various...

  11. Innovative Design of a Darrieus Straight Bladed Vertical Axis Wind Turbine by using Multi Element Airfoil

    DEFF Research Database (Denmark)

    Chougle, Prasad Devendra

    . Mainly, there is the horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT). HAWTs are more popular than VAWTs due to failure of VAWT commercialization during the late of 1980s on a large scale. However, in recent research work it has been documented that VAWTs are more economical......, and the wind tunnel testing of double-element airfoil is performed. It is found that the aerodynamic characteristics of the airfoil increased considerably by delaying the angle of stall. These two facts are very suitable for vertical axis wind turbine since they operate in a larger range of angle of attack......, ±40_, compared to the horizontal axis wind turbines which operate in the range of attack, ±15_. A new design of vertical axis wind turbine is then proposed, and aerodynamic performance is evaluated based on double multiple stream tube methods. The performance parameters are almost doubled compared...

  12. Electric power from vertical-axis wind turbines

    Science.gov (United States)

    Touryan, K. J.; Strickland, J. H.; Berg, D. E.

    1987-12-01

    Significant advancements have occurred in vertical axis wind turbine (VAWT) technology for electrical power generation over the last decade; in particular, well-proven aerodynamic and structural analysis codes have been developed for Darrieus-principle wind turbines. Machines of this type have been built by at least three companies, and about 550 units of various designs are currently in service in California wind farms. Attention is presently given to the aerodynamic characteristics, structural dynamics, systems engineering, and energy market-penetration aspects of VAWTs.

  13. A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines.

    Science.gov (United States)

    Borg, M; Collu, M

    2015-02-28

    The need to further exploit offshore wind resources in deeper waters has led to a re-emerging interest in vertical axis wind turbines (VAWTs) for floating foundation applications. However, there has been little effort to systematically compare VAWTs to the more conventional horizontal axis wind turbine (HAWT). This article initiates this comparison based on prime principles, focusing on the turbine aerodynamic forces and their impact on the floating wind turbine static and dynamic responses. VAWTs generate substantially different aerodynamic forces on the support structure, in particular, a potentially lower inclining moment and a substantially higher torque than HAWTs. Considering the static stability requirements, the advantages of a lower inclining moment, a lower wind turbine mass and a lower centre of gravity are illustrated, all of which are exploitable to have a less costly support structure. Floating VAWTs experience increased motion in the frequency range surrounding the turbine [number of blades]×[rotational speed] frequency. For very large VAWTs with slower rotational speeds, this frequency range may significantly overlap with the range of wave excitation forces. Quantitative considerations are undertaken comparing the reference NREL 5 MW HAWT with the NOVA 5 MW VAWT. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Simulating dynamic stall in a two-dimensional vertical-axis wind turbine: Verification and validation with particle image velocimetry data

    NARCIS (Netherlands)

    Ferreira, C.J.S.; Zuijlen, van A.H.; Bijl, H.; Bussel, van G.J.W.; Kuik, van G.A.M.

    2010-01-01

    The implementation of wind energy conversion systems in the built environment has renewed the interest and the research on Vertical Axis Wind Turbines (VAWTs). The VAWT has an inherent unsteady aerodynamic behavior due to the variation of angle of attack and perceived velocity with azimuth angle.

  15. Investigation of the two-element airfoil with flap structure for the vertical axis wind turbine

    International Nuclear Information System (INIS)

    Wei, Y; Li, C

    2013-01-01

    The aerodynamic performance of Vertical axis wind turbine (VAWT) is not as simple as its structure because of the large changing range of angle of attack. We have designed a new kind of two-element airfoil for VAWT on the basis of NACA0012. CFD calculation has been confirmed to have high accuracy by comparison with the experiment data and Xfoil result. The aerodynamic parameter of two-element airfoil has been acquired by CFD calculation in using the Spalart-Allmaras (S-A) turbulence model and the Simple scheme. The relationship between changings of angle of attack and flap's tilt angle has been found and quantified. The analysis will lay the foundation for further research on the control method for VAWT

  16. Aerodynamic Interactions between Pairs of Vertical-Axis Wind Turbines

    Science.gov (United States)

    Brownstein, Ian; Dabiri, John

    2017-11-01

    Increased power production has been observed in downstream vertical-axis wind turbines (VAWTs) when positioned offset from the wake of upstream turbines. This effect was found to exist in both laboratory and field environments with pairs of co- and counter-rotating turbines. It is hypothesized that the observed power production enhancement is due to flow acceleration adjacent to the upstream turbine caused by bluff body blockage, which increases the incident freestream velocity on appropriately positioned downstream turbines. This type of flow acceleration has been observed in computational and laboratory studies of VAWTs and will be further investigated here using 3D-PTV measurements around pairs of laboratory-scale VAWTs. These measurements will be used to understand the mechanisms behind the performance enhancement effect and seek to determine optimal separation distances and angles between turbines based on turbine design parameters. These results will lead to recommendations for optimizing the power production of VAWT wind farms which utilize this effect.

  17. A 34-meter VAWT (Vertical Axis Wind Turbine) point design

    Science.gov (United States)

    Ashwill, T. D.; Berg, D. E.; Dodd, H. M.; Rumsey, M. A.; Sutherland, H. J.; Veers, P. S.

    The Wind Energy Division at Sandia National Laboratories recently completed a point design based on the 34-m Vertical Axis Wind Turbine (VAWT) Test Bed. The 34-m Test Bed research machine incorporates several innovations that improve Darrieus technology, including increased energy production, over previous machines. The point design differs minimally from the Test Bed; but by removing research-related items, its estimated cost is substantially reduced. The point design is a first step towards a Test-Bed-based commercial machine that would be competitive with conventional sources of power in the mid-1990s.

  18. A fully coupled method for numerical modeling and dynamic analysis of floating vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen

    2017-01-01

    Aerodynamic modeling of floating VAWTs is established using the Actuator Cylinder (AC) flow method.•A fully coupled aero-hydro-servo-elastic simulation tool, i.e. SIMO-RIFLEX-AC, is developed for floating VAWTs.•The developedsimulation tool is verified to be accurate by a series of code-to-code ...

  19. Blade pitch optimization methods for vertical-axis wind turbines

    Science.gov (United States)

    Kozak, Peter

    Vertical-axis wind turbines (VAWTs) offer an inherently simpler design than horizontal-axis machines, while their lower blade speed mitigates safety and noise concerns, potentially allowing for installation closer to populated and ecologically sensitive areas. While VAWTs do offer significant operational advantages, development has been hampered by the difficulty of modeling the aerodynamics involved, further complicated by their rotating geometry. This thesis presents results from a simulation of a baseline VAWT computed using Star-CCM+, a commercial finite-volume (FVM) code. VAWT aerodynamics are shown to be dominated at low tip-speed ratios by dynamic stall phenomena and at high tip-speed ratios by wake-blade interactions. Several optimization techniques have been developed for the adjustment of blade pitch based on finite-volume simulations and streamtube models. The effectiveness of the optimization procedure is evaluated and the basic architecture for a feedback control system is proposed. Implementation of variable blade pitch is shown to increase a baseline turbine's power output between 40%-100%, depending on the optimization technique, improving the turbine's competitiveness when compared with a commercially-available horizontal-axis turbine.

  20. A method of calculation on the airloading of vertical axis wind turbine

    Science.gov (United States)

    Azuma, A.; Kimura, S.

    A new method of analyzing the aerodynamic characteristics of the Darrieus Vertical-Axis Wind Turbine (VAWT) by applying the local circulation method is described. The validity of this method is confirmed by analyzing the air load acting on a curved blade. The azimuthwise variation of spanwise airloading, torque, and longitudinal forces are accurately calculated for a variety of operational conditions. The results are found to be in good agreement with experimental ones obtained elsewhere. It is concluded that the present approach can calculate the aerodynamic characteristics of the VAWT with much less computational time than that used by the free vortex model.

  1. Performance characteristics of a Vertical Axis Wind Turbine (VAWT) under transient conditions

    OpenAIRE

    Colley, Gareth; Mishra, Rakesh

    2011-01-01

    The present work investigates the performance characteristics of a novel Vertical Axis Wind Turbine (VAWT) for use in the urban environment. Here the performance of the wind turbine has been analyzed experimentally using a full scale prototype measuring 2.0m diameter and 1.0m in height. The turbine was located at the exit of a 0.6m x 0.6m wind tunnel section and was subjected to a jet flow. The performance output from the turbine has been obtained using a torque transducer unit which provides...

  2. Application of computational fluid dynamics (CFD) simulation in a vertical axis wind turbine (VAWT) system

    Science.gov (United States)

    Kao, Jui-Hsiang; Tseng, Po-Yuan

    2018-01-01

    The objective of this paper is to describe the application of CFD (Computational fluid dynamics) technology in the matching of turbine blades and generator to increase the efficiency of a vertical axis wind turbine (VAWT). A VAWT is treated as the study case here. The SST (Shear-Stress Transport) k-ω turbulence model with SIMPLE algorithm method in transient state is applied to solve the T (torque)-N (r/min) curves of the turbine blades at different wind speed. The T-N curves of the generator at different CV (constant voltage) model are measured. Thus, the T-N curves of the turbine blades at different wind speed can be matched by the T-N curves of the generator at different CV model to find the optimal CV model. As the optimal CV mode is selected, the characteristics of the operating points, such as tip speed ratio, revolutions per minute, blade torque, and efficiency, can be identified. The results show that, if the two systems are matched well, the final output power at a high wind speed of 9-10 m/s will be increased by 15%.

  3. Study on variable pitch strategy in H-type wind turbine considering effect of small angle of attack

    DEFF Research Database (Denmark)

    Zhao, Zhenzhou; Qian, Siyuan; Shen, Wenzhong

    2017-01-01

    Variable-pitch (VP) technology is an effective approach to upgrade the aerodynamics of the blade of an H-type vertical-axis wind turbine (VAWT). At present, most of the research efforts are focused on the performance improvement of the azimuth angle owing to the large angle of attack (Ao...... distribution in the swept area of turbine changes from an arched shape of the FP-VAWT into a rectangular shape of the VP-VAWT. At last, an 18.9% growth in power efficiency is achieved. All of the above results confirm that the new VP-technology can effectively improve VAWT performance and also widens...... the highest performance tip speed ratio zone which makes the turbines capable of running with high efficiency in wider zones....

  4. Computational analysis of vertical axis wind turbine arrays

    Science.gov (United States)

    Bremseth, J.; Duraisamy, K.

    2016-10-01

    Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.

  5. An LES study of vertical-axis wind turbine wakes aerodynamics

    Science.gov (United States)

    Abkar, Mahdi; Dabiri, John O.

    2016-11-01

    In this study, large-eddy simulation (LES) combined with a turbine model is used to investigate the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a recently developed minimum dissipation model is used to parameterize the subgrid-scale stress tensor, while the turbine-induced forces are modeled with an actuator-line technique. The LES framework is first tested in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel, and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit is well characterized by a two-dimensional elliptical Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine.

  6. Bifurcation Analysis with Aerodynamic-Structure Uncertainties by the Nonintrusive PCE Method

    Directory of Open Access Journals (Sweden)

    Linpeng Wang

    2017-01-01

    Full Text Available An aeroelastic model for airfoil with a third-order stiffness in both pitch and plunge degree of freedom (DOF and the modified Leishman–Beddoes (LB model were built and validated. The nonintrusive polynomial chaos expansion (PCE based on tensor product is applied to quantify the uncertainty of aerodynamic and structure parameters on the aerodynamic force and aeroelastic behavior. The uncertain limit cycle oscillation (LCO and bifurcation are simulated in the time domain with the stochastic PCE method. Bifurcation diagrams with uncertainties were quantified. The Monte Carlo simulation (MCS is also applied for comparison. From the current work, it can be concluded that the nonintrusive polynomial chaos expansion can give an acceptable accuracy and have a much higher calculation efficiency than MCS. For aerodynamic model, uncertainties of aerodynamic parameters affect the aerodynamic force significantly at the stage from separation to stall at upstroke and at the stage from stall to reattach at return. For aeroelastic model, both uncertainties of aerodynamic parameters and structure parameters impact bifurcation position. Structure uncertainty of parameters is more sensitive for bifurcation. When the nonlinear stall flutter and bifurcation are concerned, more attention should be paid to the separation process of aerodynamics and parameters about pitch DOF in structure.

  7. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Ferreira, C Simão; Madsen, H Aagaard; Barone, M; Roscher, B; Deglaire, P; Arduin, I

    2014-01-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple streamtube model, a double-multiple streamtube model, the actuator cylinder model, a 2D potential flow panel model, a 3D unsteady lifting line model, and a 2D conformal mapping unsteady vortex model. The comparison covers rotor configurations with two NACA0015 blades, for several tip speed ratios, rotor solidity and fixed pitch angle, included heavily loaded rotors, in inviscid flow. The results show that the streamtube models are inaccurate, and that correct predictions of rotor power and rotor thrust are an effect of error cancellation which only occurs at specific configurations. The other four models, which explicitly model the wake as a system of vorticity, show mostly differences due to the instantaneous or time averaged formulation of the loading and flow, for which further research is needed

  8. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    Science.gov (United States)

    Simão Ferreira, C.; Aagaard Madsen, H.; Barone, M.; Roscher, B.; Deglaire, P.; Arduin, I.

    2014-06-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple streamtube model, a double-multiple streamtube model, the actuator cylinder model, a 2D potential flow panel model, a 3D unsteady lifting line model, and a 2D conformal mapping unsteady vortex model. The comparison covers rotor configurations with two NACA0015 blades, for several tip speed ratios, rotor solidity and fixed pitch angle, included heavily loaded rotors, in inviscid flow. The results show that the streamtube models are inaccurate, and that correct predictions of rotor power and rotor thrust are an effect of error cancellation which only occurs at specific configurations. The other four models, which explicitly model the wake as a system of vorticity, show mostly differences due to the instantaneous or time averaged formulation of the loading and flow, for which further research is needed.

  9. Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, Rimple [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada); Poirel, Dominique [Department of Mechanical and Aerospace Engineering, Royal Military College of Canada, Kingston, Ontario (Canada); Pettit, Chris [Department of Aerospace Engineering, United States Naval Academy, Annapolis, MD (United States); Khalil, Mohammad [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada); Sarkar, Abhijit, E-mail: abhijit.sarkar@carleton.ca [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada)

    2016-07-01

    A Bayesian model selection and parameter estimation algorithm is applied to investigate the influence of nonlinear and unsteady aerodynamic loads on the limit cycle oscillation (LCO) of a pitching airfoil in the transitional Reynolds number regime. At small angles of attack, laminar boundary layer trailing edge separation causes negative aerodynamic damping leading to the LCO. The fluid–structure interaction of the rigid, but elastically mounted, airfoil and nonlinear unsteady aerodynamics is represented by two coupled nonlinear stochastic ordinary differential equations containing uncertain parameters and model approximation errors. Several plausible aerodynamic models with increasing complexity are proposed to describe the aeroelastic system leading to LCO. The likelihood in the posterior parameter probability density function (pdf) is available semi-analytically using the extended Kalman filter for the state estimation of the coupled nonlinear structural and unsteady aerodynamic model. The posterior parameter pdf is sampled using a parallel and adaptive Markov Chain Monte Carlo (MCMC) algorithm. The posterior probability of each model is estimated using the Chib–Jeliazkov method that directly uses the posterior MCMC samples for evidence (marginal likelihood) computation. The Bayesian algorithm is validated through a numerical study and then applied to model the nonlinear unsteady aerodynamic loads using wind-tunnel test data at various Reynolds numbers.

  10. Effects of aerodynamic particle interaction in turbulent non-dilute particle-laden flow

    DEFF Research Database (Denmark)

    Salewski, Mirko; Fuchs, Laszlo

    2008-01-01

    Aerodynamic four-way coupling models are necessary to handle two-phase flows with a dispersed phase in regimes in which the particles are neither dilute enough to neglect particle interaction nor dense enough to bring the mixture to equilibrium. We include an aerodynamic particle interaction model...... levels in the flow then decrease. The impact of the stochastic particle description on the four-way coupling model is shown to be relatively small. If particles are also allowed to break up according to a wave breakup model, the particles become polydisperse. An ad hoc model for handling polydisperse...

  11. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  12. A short review of recent research activities for characterization of aerodynamic optimization of vertical axis wind turbines

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.; Blocken, B.J.E.

    2017-01-01

    There is a growing interest in wind energy harvesting in the built environment. Vertical axis wind turbines (VAWT) seem to represent an ideal candidate for this purpose due to their omni-directional operation. However, as a result of a comparatively small amount of research on VAWTs during the last

  13. On the relative importance of loads acting on a floating vertical axis wind turbine system when evaluating the global system response

    DEFF Research Database (Denmark)

    Collu, Maurizio; Borg, Michael; Manuel, Lance

    2016-01-01

    Interest in offshore floating wind turbines has been growing over the last decade. While a number of studies have been conducted to model the dynamics of offshore floating HAWT systems (e.g. OC3-Phase IV, OC4-Phase II), relatively few studies have been conducted on floating VAWT systems, despite...... offshore floating VAWT, considering a turbulent wind field and stochastically generated waves, to assess the more critical loads and distinguish them from those with negligible effect, when estimating the global system response. The floating VAWT system considered is comprised of a 5MW rotor supported...

  14. Aerodynamic characteristics of an oscillating airfoil. [For Vertical Axis Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Wickens, R H

    1986-03-01

    Results are reported from wind tunnel tests to study the effects of dynamic aerodynamics on the efficiency of a NACA 0018 airfoil used on a Darreius vertical axis wind turbine (VAWT). The topic is of interest because of uncontrolled pitching which occurs during operation and which produces stall, turbulence and separation effects that reduce efficiency. Present stream-tube theory and axial momentum models are not applicable in the unstable regimes. The wind tunnel tests were conducted with a 45 m/sec flow with an Re of 1.5 million. The situation mimicked typical wind turbine operational conditions. The airfoil was mounted on a hydraulic actuator to allow it to rotate about its quarter-chord location and to control the extent and frequency of oscillations. Data were also gathered on the performance in a steady flow for comparative purposes. Summary data are provided on the static and total pressures over a complete cycle of oscillation, and related to the angles of attack, time of onset of stall, and the lift and drag coefficients. The limitations of the study with regard to the absence of consideration of the flow acceleration experienced by an advancing blade are noted. 13 references.

  15. Operational modal analysis on a VAWT in a large wind tunnel using stereo vision technique

    DEFF Research Database (Denmark)

    Najafi, Nadia; Schmidt Paulsen, Uwe

    2017-01-01

    This paper is about development and use of a research based stereo vision system for vibration and operational modal analysis on a parked, 1-kW, 3-bladed vertical axis wind turbine (VAWT), tested in a wind tunnel at high wind. Vibrations were explored experimentally by tracking small deflections...... of the markers on the structure with two cameras, and also numerically, to study structural vibrations in an overall objective to investigate challenges and to prove the capability of using stereo vision. Two high speed cameras provided displacement measurements at no wind speed interference. The displacement...

  16. Vertical axis wind turbines : past initiatives and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.; Fartaj, A.; Ting, D. [Windsor Univ., ON (Canada). Dept. of Mechanical, Automotive and Materials Engineering

    2003-08-01

    Horizontal Axis Wind Turbines (HAWT) and Vertical Axis Wind Turbines (VAWT) are the two categories of modern wind turbines used for producing electricity and pumping water. While their popularity declined in the 1970s and 1980s to more economical fossil fuel resources, many countries have expressed a renewed interest in wind power in response to environmental concerns and energy security. Renewable energy sources supply more than 14 per cent of the total global energy demand, and wind energy plays the biggest role. In 2002, more than $7 billion was invested in wind technology. Canada has been a leader in VAWT technology. In 1966, Engineers at the Low Speed Aerodynamics Laboratory of the National Research Council devised a VAWT configuration with non-adjustable hoop-shaped airfoils that had greater efficiency that conventional high-solidity VAWT. In the early 1980s, a multi-megawatt VAWT was built in Quebec under the auspices of the EOLE project. The EOLE is the largest VAWT in the world. In 1980, Canada's national Atlantic Wind Test Site was developed for the purpose of testing and developing wind technology. Research at this facility has focused on dynamically soft Darrieus rotors, a concept which can reduce structural loads. Early development has shown that although VAWT is slightly less efficient than HAWT, it can be built larger and more cost effectively. This paper presents the outstanding features of VAWT products including the Solwind SW 10/4800 series VAWT, the Chinook 2000 wind turbine, the Ropatec Windrotor, the Windside Turbine, the VAWTEX, the Windstar VAWT, and Windtec. 19 refs., 13 figs.

  17. Numerical Validation of a Vortex Model against ExperimentalData on a Straight-Bladed Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Eduard Dyachuk

    2015-10-01

    Full Text Available Cyclic blade motion during operation of vertical axis wind turbines (VAWTs imposes challenges on the simulations models of the aerodynamics of VAWTs. A two-dimensional vortex model is validated against the new experimental data on a 12-kW straight-bladed VAWT, which is operated at an open site. The results on the normal force on one blade are analyzed. The model is assessed against the measured data in the wide range of tip speed ratios: from 1.8 to 4.6. The predicted results within one revolution have a similar shape and magnitude as the measured data, though the model does not reproduce every detail of the experimental data. The present model can be used when dimensioning the turbine for maximum loads.

  18. Vertical-axis wind turbine development in Canada

    Science.gov (United States)

    Templin, R. J.; Rangi, R. S.

    1983-12-01

    Recent Canadian progress in the development of the curved-blade Darrieus vertical-axis wind turbine (VAWT) is described. Cooperation between government, industry and power utilities in the conduct of field trials, over several years, has demonstrated improved performance and reliability of grid-coupled turbines of this type. The rated power of the VAWTs currently under test ranges from 30 kW, in a wind/diesel powerplant, to 230 kW, in an installation on an island in the Gulf of St. Lawrence. Progress has also been made in understanding the basic aerodynamic behavior of the VAWT and theoretical methods for performance and load prediction have correspondingly improved. A brief description is given of 'Project EOLE', a cooperative project between the federal government and the utility Hydro-Quebec to develop and test, during the next two to three years, a 4 MW VAWT prototype, which will be coupled to the power grid at a location on the south shore of the St. Lawrence River.

  19. Vertical axis wind turbine power regulation through centrifugally pumped lift spoiling

    Science.gov (United States)

    Klimas, P. C.; Sladky, J. F., Jr.

    This paper describes an approach for lowering the rated windspeeds of Darrieus-type vertical axis wind turbines (VAWTs) whose blades are hollow aluminum extrusions. The blades, which when rotating act as centrifugal pumps, are fitted with a series of small perforations distributed along a portion of the blades' span. By valving the ends of the hollow blades, flow into the blade ends and out of the perforations may be controlled. This flow can induce premature aerodynamic stall on the blade elements, thereby reducing both the rated power of the turbine and its cost-of-energy. The concept has been proven on the Sandia National Laboratories 5-m diameter research VAWT and force balance and flow visualization wind tunnel tests have been conducted using a blade section designed for the VAWT application.

  20. A stochastic model for the simulation of wind turbine blades in static stall

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Rasmussen, Flemming; Sørensen, Niels N.

    2010-01-01

    The aim of this work is to improve aeroelastic simulation codes by accounting for the unsteady aerodynamic forces that a blade experiences in static stall. A model based on a spectral representation of the aerodynamic lift force is defined. The drag and pitching moment are derived using...... a conditional simulation technique for stochastic processes. The input data for the model can be collected either from measurements or from numerical results from a Computational Fluid Dynamics code for airfoil sections at constant angles of attack. An analysis of such data is provided, which helps to determine...

  1. Developing stochastic model of thrust and flight dynamics for small UAVs

    Science.gov (United States)

    Tjhai, Chandra

    This thesis presents a stochastic thrust model and aerodynamic model for small propeller driven UAVs whose power plant is a small electric motor. First a model which relates thrust generated by a small propeller driven electric motor as a function of throttle setting and commanded engine RPM is developed. A perturbation of this model is then used to relate the uncertainty in throttle and engine RPM commanded to the error in the predicted thrust. Such a stochastic model is indispensable in the design of state estimation and control systems for UAVs where the performance requirements of the systems are specied in stochastic terms. It is shown that thrust prediction models for small UAVs are not a simple, explicit functions relating throttle input and RPM command to thrust generated. Rather they are non-linear, iterative procedures which depend on a geometric description of the propeller and mathematical model of the motor. A detailed derivation of the iterative procedure is presented and the impact of errors which arise from inaccurate propeller and motor descriptions are discussed. Validation results from a series of wind tunnel tests are presented. The results show a favorable statistical agreement between the thrust uncertainty predicted by the model and the errors measured in the wind tunnel. The uncertainty model of aircraft aerodynamic coefficients developed based on wind tunnel experiment will be discussed at the end of this thesis.

  2. An implementation of an aeroacoustic prediction model for broadband noise from a vertical axis wind turbine using a CFD informed methodology

    Science.gov (United States)

    Botha, J. D. M.; Shahroki, A.; Rice, H.

    2017-12-01

    This paper presents an enhanced method for predicting aerodynamically generated broadband noise produced by a Vertical Axis Wind Turbine (VAWT). The method improves on existing work for VAWT noise prediction and incorporates recently developed airfoil noise prediction models. Inflow-turbulence and airfoil self-noise mechanisms are both considered. Airfoil noise predictions are dependent on aerodynamic input data and time dependent Computational Fluid Dynamics (CFD) calculations are carried out to solve for the aerodynamic solution. Analytical flow methods are also benchmarked against the CFD informed noise prediction results to quantify errors in the former approach. Comparisons to experimental noise measurements for an existing turbine are encouraging. A parameter study is performed and shows the sensitivity of overall noise levels to changes in inflow velocity and inflow turbulence. Noise sources are characterised and the location and mechanism of the primary sources is determined, inflow-turbulence noise is seen to be the dominant source. The use of CFD calculations is seen to improve the accuracy of noise predictions when compared to the analytic flow solution as well as showing that, for inflow-turbulence noise sources, blade generated turbulence dominates the atmospheric inflow turbulence.

  3. Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU

    Energy Technology Data Exchange (ETDEWEB)

    Aissa, Mohamed Hasanine; Verstraete, Tom [Von Karman Institute for Fluid Dynamics (VKI) 1640 Sint-Genesius-Rode (Belgium); Vuik, Cornelis [Delft University of Technology 2628 CD Delft (Netherlands)

    2016-06-08

    Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20x to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.

  4. Innovative Design of Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad

    2013-01-01

    , it is well known that the VAWT is advantages over a HAWT in terms of a cost and the simplicity (Paraschivoiu 2002). In this PhD project a simple blade design is incorporated by using the two-element airofoil technology for a three straight-bladed VAWT. The design considerations of a two airfoil are given......, and its aerodynamic characteristics are obtained by an experimental method. A new design is called D2퐴 − 푉퐴푊푇 and a test ring is made to validate the numerical results. A double multiple stream tube method (DMSTM) and blade element method (BEM) are used to determine the numerical performance of a proposed...

  5. Aerodynamic potpourri

    Science.gov (United States)

    Wilson, R. E.

    1981-01-01

    Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.

  6. Wake Flow Simulation of a Vertical Axis Wind Turbine Under the Influence of Wind Shear

    Science.gov (United States)

    Mendoza, Victor; Goude, Anders

    2017-05-01

    The current trend of the wind energy industry aims for large scale turbines installed in wind farms. This brings a renewed interest in vertical axis wind turbines (VAWTs) since they have several advantages over the traditional Horizontal Axis Wind Tubines (HAWTs) for mitigating the new challenges. However, operating VAWTs are characterized by complex aerodynamics phenomena, presenting considerable challenges for modeling tools. An accurate and reliable simulation tool for predicting the interaction between the obtained wake of an operating VAWT and the flow in atmospheric open sites is fundamental for optimizing the design and location of wind energy facility projects. The present work studies the wake produced by a VAWT and how it is affected by the surface roughness of the terrain, without considering the effects of the ambient turbulence intensity. This study was carried out using an actuator line model (ALM), and it was implemented using the open-source CFD library OpenFOAM to solve the governing equations and to compute the resulting flow fields. An operational H-shaped VAWT model was tested, for which experimental activity has been performed at an open site north of Uppsala-Sweden. Different terrains with similar inflow velocities have been evaluated. Simulated velocity and vorticity of representative sections have been analyzed. Numerical results were validated using normal forces measurements, showing reasonable agreement.

  7. A perspective of the Malaysian highway energy consumption and future power supply

    International Nuclear Information System (INIS)

    Saqr, Khalid M.; Musa, Md. Nor

    2011-01-01

    In this short communication, we discuss the energy consumption trends in the Malaysian road transport sector, with a special emphasis on the energy losses due to vehicle aerodynamic drag on highways. The recent trends of energy consumption in the Malaysian road transport sector are reviewed. It is evidently shown that the aerodynamic losses represented exceed 1.2 MTOE annually since 2002. A novel concept of vertical-axis wind turbine (VAWT) farms for harvesting aerodynamic energy losses on Malaysian highways is preliminarily proposed. The novel concept aims at providing a sustainable and green energy source for the lighting of the highway network in the country.

  8. Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database

    Science.gov (United States)

    Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.

    2011-01-01

    Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.

  9. Strain gauge validation experiments for the Sandia 34-meter VAWT (Vertical Axis Wind Turbine) test bed

    Science.gov (United States)

    Sutherland, Herbert J.

    1988-08-01

    Sandia National Laboratories has erected a research oriented, 34- meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas. This machine, designated the Sandia 34-m VAWT Test Bed, is equipped with a large array of strain gauges that have been placed at critical positions about the blades. This manuscript details a series of four-point bend experiments that were conducted to validate the output of the blade strain gauge circuits. The output of a particular gauge circuit is validated by comparing its output to equivalent gauge circuits (in this stress state) and to theoretical predictions. With only a few exceptions, the difference between measured and predicted strain values for a gauge circuit was found to be of the order of the estimated repeatability for the measurement system.

  10. Vertical axis wind turbine turbulent response model. Part 2: Response of Sandia National laboratories' 34-meter VAWT with aeroelastic effects

    Science.gov (United States)

    1990-01-01

    The dynamic response of Sandia National Laboratories' 34-m Darrieus rotor wind turbine at Bushland, Texas, is presented. The formulation used a double-multiple streamtube aerodynamic model with a turbulent airflow and included the effects of linear aeroelastic forces. The structural analysis used established procedures with the program MSC/NASTRAN. The effects of aeroelastic forces on the damping of natural modes agree well with previous results at operating rotor speeds, but show some discrepancies at very high rotor speeds. A number of alternative expressions for the spectrum of turbulent wind were investigated. The model loading represented by each does not differ significantly; a more significant difference is caused by imposing a full lateral coherence of the turbulent flow. Spectra of the predicted stresses at various locations show that without aeroelastic forces, very severe resonance is likely to occur at certain natural frequencies. Inclusion of aeroelastic effects greatly attenuates this stochastic response, especially in modes involving in-plane blade bending.

  11. PREFACE: Aerodynamic sound Aerodynamic sound

    Science.gov (United States)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  12. Enveloping Aerodynamic Decelerator

    Science.gov (United States)

    Nock, Kerry T. (Inventor); Aaron, Kim M. (Inventor); McRonald, Angus D. (Inventor); Gates, Kristin L. (Inventor)

    2018-01-01

    An inflatable aerodynamic deceleration method and system is provided for use with an atmospheric entry payload. The inflatable aerodynamic decelerator includes an inflatable envelope and an inflatant, wherein the inflatant is configured to fill the inflatable envelope to an inflated state such that the inflatable envelope surrounds the atmospheric entry payload, causing aerodynamic forces to decelerate the atmospheric entry payload.

  13. Engineering models in wind energy aerodynamics : Development, implementation and analysis using dedicated aerodynamic measurements

    NARCIS (Netherlands)

    Schepers, J.G.

    2012-01-01

    The subject of aerodynamics is of major importance for the successful deployment of wind energy. As a matter of fact there are two aerodynamic areas in the wind energy technology: Rotor aerodynamics and wind farm aerodynamics. The first subject considers the flow around the rotor and the second

  14. Stochastic volatility and stochastic leverage

    DEFF Research Database (Denmark)

    Veraart, Almut; Veraart, Luitgard A. M.

    This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic...... treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility...... models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new...

  15. Review of design optimization methods for turbomachinery aerodynamics

    Science.gov (United States)

    Li, Zhihui; Zheng, Xinqian

    2017-08-01

    In today's competitive environment, new turbomachinery designs need to be not only more efficient, quieter, and ;greener; but also need to be developed at on much shorter time scales and at lower costs. A number of advanced optimization strategies have been developed to achieve these requirements. This paper reviews recent progress in turbomachinery design optimization to solve real-world aerodynamic problems, especially for compressors and turbines. This review covers the following topics that are important for optimizing turbomachinery designs. (1) optimization methods, (2) stochastic optimization combined with blade parameterization methods and the design of experiment methods, (3) gradient-based optimization methods for compressors and turbines and (4) data mining techniques for Pareto Fronts. We also present our own insights regarding the current research trends and the future optimization of turbomachinery designs.

  16. Tactical missile aerodynamics

    Science.gov (United States)

    Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)

    1986-01-01

    The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.

  17. A combined stochastic feedforward and feedback control design methodology with application to autoland design

    Science.gov (United States)

    Halyo, Nesim

    1987-01-01

    A combined stochastic feedforward and feedback control design methodology was developed. The objective of the feedforward control law is to track the commanded trajectory, whereas the feedback control law tries to maintain the plant state near the desired trajectory in the presence of disturbances and uncertainties about the plant. The feedforward control law design is formulated as a stochastic optimization problem and is embedded into the stochastic output feedback problem where the plant contains unstable and uncontrollable modes. An algorithm to compute the optimal feedforward is developed. In this approach, the use of error integral feedback, dynamic compensation, control rate command structures are an integral part of the methodology. An incremental implementation is recommended. Results on the eigenvalues of the implemented versus designed control laws are presented. The stochastic feedforward/feedback control methodology is used to design a digital automatic landing system for the ATOPS Research Vehicle, a Boeing 737-100 aircraft. The system control modes include localizer and glideslope capture and track, and flare to touchdown. Results of a detailed nonlinear simulation of the digital control laws, actuator systems, and aircraft aerodynamics are presented.

  18. Simulating Dynamic Stall Effects for Vertical Axis Wind Turbines Applying a Double Multiple Streamtube Model

    Directory of Open Access Journals (Sweden)

    Eduard Dyachuk

    2015-02-01

    Full Text Available The complex unsteady aerodynamics of vertical axis wind turbines (VAWT poses significant challenges to the simulation tools. Dynamic stall is one of the phenomena associated with the unsteady conditions for VAWTs, and it is in the focus of the study. Two dynamic stall models are compared: the widely-used Gormont model and a Leishman–Beddoes-type model. The models are included in a double multiple streamtube model. The effects of flow curvature and flow expansion are also considered. The model results are assessed against the measured data on a Darrieus turbine with curved blades. To study the dynamic stall effects, the comparison of force coefficients between the simulations and experiments is done at low tip speed ratios. Simulations show that the Leishman–Beddoes model outperforms the Gormont model for all tested conditions.

  19. Comparison of Theodorsen's Unsteady Aerodynamic Forces with Doublet Lattice Generalized Aerodynamic Forces

    Science.gov (United States)

    Perry, Boyd, III

    2017-01-01

    This paper identifies the unsteady aerodynamic forces and moments for a typical section contained in the NACA Report No. 496, "General Theory of Aerodynamic Instability and the Mechanism of Flutter," by Theodore Theodorsen. These quantities are named Theodorsen's aerodynamic forces (TAFs). The TAFs are compared to the generalized aerodynamic forces (GAFs) for a very high aspect ratio wing (AR = 20) at zero Mach number computed by the doublet lattice method. Agreement between TAFs and GAFs is very-good-to-excellent. The paper also reveals that simple proportionality relationships that are known to exist between the real parts of some GAFs and the imaginary parts of others also hold for the real and imaginary parts of the corresponding TAFs.

  20. Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.; Blocken, B.J.E.

    2017-01-01

    Due to growing interest in wind energy harvesting offshore as well as in the urban environment, vertical axis wind turbines (VAWTs) have recently received renewed interest. Their omni-directional capability makes them a very interesting option for use with the frequently varying wind directions

  1. Numerical Analysis of the Influence of Tip Devices on the Power Coefficient of a VAWT

    OpenAIRE

    Federico Amato; Gabriele Bedon; Marco Raciti Castelli; Ernesto Benini

    2013-01-01

    The aerodynamic performances of vertical axis wind turbines are highly affected by tip vortexes. In the present work, different tip devices are considered and simulated against a baseline rotor configuration, with the aim of identifying the best tip architecture. Three different configurations are tested: winglets, an elliptic termination and an aerodynamic bulkhead. A comparative analysis on the most promising architectures is conducted, focusing also on blade torque evo...

  2. 3D wake dynamics of the VAWT : Experimental and numerical investigation

    NARCIS (Netherlands)

    Ferreira, C.; Hofemann, C.; Dixon, K.; Van Kuik, G.A.M.; Van Bussel, G.J.W.

    2010-01-01

    The Vertical Axis Wind Turbine, in its 2D form, is characterized by a complex unsteady aerodynamic flow, including dynamic stall and blade vortex interaction. Adding to this complexity, the 3D flow causes spanwise effects and the presence of trailing vorticity and tip vortices. The objective of the

  3. Double-multiple streamtube model for studying vertical-axis wind turbines

    Science.gov (United States)

    Paraschivoiu, Ion

    1988-08-01

    This work describes the present state-of-the-art in double-multiple streamtube method for modeling the Darrieus-type vertical-axis wind turbine (VAWT). Comparisons of the analytical results with the other predictions and available experimental data show a good agreement. This method, which incorporates dynamic-stall and secondary effects, can be used for generating a suitable aerodynamic-load model for structural design analysis of the Darrieus rotor.

  4. Distributed Aerodynamic Sensing and Processing Toolbox

    Science.gov (United States)

    Brenner, Martin; Jutte, Christine; Mangalam, Arun

    2011-01-01

    A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.

  5. Stochastic Averaging and Stochastic Extremum Seeking

    CERN Document Server

    Liu, Shu-Jun

    2012-01-01

    Stochastic Averaging and Stochastic Extremum Seeking develops methods of mathematical analysis inspired by the interest in reverse engineering  and analysis of bacterial  convergence by chemotaxis and to apply similar stochastic optimization techniques in other environments. The first half of the text presents significant advances in stochastic averaging theory, necessitated by the fact that existing theorems are restricted to systems with linear growth, globally exponentially stable average models, vanishing stochastic perturbations, and prevent analysis over infinite time horizon. The second half of the text introduces stochastic extremum seeking algorithms for model-free optimization of systems in real time using stochastic perturbations for estimation of their gradients. Both gradient- and Newton-based algorithms are presented, offering the user the choice between the simplicity of implementation (gradient) and the ability to achieve a known, arbitrary convergence rate (Newton). The design of algorithms...

  6. An Investigation into the Aerodynamics Surrounding Vertical-Axis Wind Turbines

    Science.gov (United States)

    Parker, Colin M.

    The flow surrounding a scaled model vertical-axis wind turbine (VAWT) at realistic operating conditions was studied. The model closely matches geometric and dynamic properties--tip-speed ratio and Reynolds number--of a full-size turbine. The flowfield is measured using particle imaging velocimetry (PIV) in the mid-plane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Ensemble-averaged results revealed an asymmetric wake behind the turbine, regardless of tip-speed ratio, with a larger velocity deficit for a higher tip-speed ratio. For the higher tip-speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04Uinfinity. Phase-averaged vorticity fields--achieved by syncing the PIV system with the rotation of the turbine--show distinct structures form from each turbine blade. There are distinct differences in the structures that are shed into the wake for tip-speed ratios of 0.9, 1.3 and 2.2--switching from two pairs to a single pair of shed vortices--and how they convect into the wake--the middle tip-speed ratio vortices convect downstream inside the wake, while the high tip-speed ratio pair is shed into the shear layer of the wake. The wake structure is found to be much more sensitive to changes in tip-speed ratio than to changes in Reynolds number. The geometry of a turbine can influence tip-speed ratio, but the precise relationship among VAWT geometric parameters and VAWT wake characteristics remains unknown. Next, we characterize the wakes of three VAWTs that are geometrically similar except for the ratio of the turbine diameter (D), to blade chord (c), which was chosen to be D/c = 3, 6, and 9, for a fixed freestream Reynolds number based on the blade chord of Rec =16,000. In addition to two-component PIV and single-component constant temperature anemometer measurements are made at the horizontal mid-plane in the wake of each turbine. Hot

  7. Low Reynolds Number Vehicles

    Science.gov (United States)

    1985-02-01

    of the blade. The Darrieus VAWT has more complex aerodynamics. This type of wind turbine produces power as a result of the tangential thrust as...Horizontal Axis Propeller-Type b) Verticle Axis Darrieus -Type Figure 78. Wind Turbine Configurations 0 6 Q K [_ 2 -, C 4 UJ UJ...Sailplanes 23 5.2 Wind Turbines 23 6. CONCLUDING REMARKS 24 7. RECOMMENDATIONS FOR FUTURE RESEARCH 24 REFERENCES 25 FIGURES 32 yv/ LOW REYNOLDS NUMBER

  8. Ground effect aerodynamics of racing cars

    OpenAIRE

    Zhang, Xin; Toet, Willem; Zerihan, Jonathan

    2006-01-01

    We review the progress made during the last thirty years on ground effect aerodynamics associated with race cars, in particular open wheel race cars. Ground effect aerodynamics of race cars is concerned with generating downforce, principally via low pressure on the surfaces nearest to the ground. The “ground effected” parts of an open wheeled car's aerodynamics are the most aerodynamically efficient and contribute less drag than that associated with, for example, an upper rear wing. Whilst dr...

  9. Study of the Unsteady Aerodynamics associated with a Cycloidally Rotating Blade

    Science.gov (United States)

    Agarwal, Nishant

    Cycloidal Rotors have been studied for over 100 years, with a focus on applications for vertical axis wind turbines (VAWTs) for energy production and vertical-take-off-and-landing (VTOL) vehicles. Although, numerous experimental and analytical studies have demonstrated their potential competency compared to conventional horizontal-axis rotors, it is not until recently that the focus of these studies has shifted towards understanding the fundamental science behind how these complex systems function. The present study extends the existing fundamental knowledge about cycloidal rotors by particularly focusing on the unsteady aerodynamic phenomena associated with a single-fixed NACA 0012 blade cycloidal rotor as the system translates across an advance ratio (mu = Uinfinity/oR ) of 1. This phenomena was studied both experimentally, making use of particle image velocimetry (PIV) measurements on the system, and computationally, making use of both simple analytical tools and two-dimensional Unsteady Reynolds-Averaged Navier Stokes computational fluid dynamics (URANS-CFD) simulations. It is important to study the transition of the system through mu = 1 in order to better understand the incapability of VAWTs to self-start, and also the progression of VTOL vehicles into forward flight. When the advance ratio is less than one the blade cuts through its own wake. As it approaches one the local airspeed of the flow over the airfoil approaches zero during the retreating portion of the cycle. Finally, as the advance ratio increases beyond one the airfoil will experience reversed flow relative to its direction of rotation. The analysis of the PIV results show that the flow just downstream of the rotor is similar for cases at the same advance ratios, and that the wake structures do not depend upon the Reynolds number, within the range investigated. The phase-history velocity contour plots of the wake structure show a distinct cycloidal pattern for the advance ratio of mu = 1.25, a

  10. Aerodynamic Aspects of Wind Energy Conversion

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2011-01-01

    This article reviews the most important aerodynamic research topics in the field of wind energy. Wind turbine aerodynamics concerns the modeling and prediction of aerodynamic forces, such as performance predictions of wind farms, and the design of specific parts of wind turbines, such as rotor...

  11. Aerodynamic design on high-speed trains

    Science.gov (United States)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  12. Aerodynamic Noise Generated by Shinkansen Cars

    Science.gov (United States)

    KITAGAWA, T.; NAGAKURA, K.

    2000-03-01

    The noise value (A -weighted sound pressure level, SLOW) generated by Shinkansen trains, now running at 220-300 km/h, should be less than 75 dB(A) at the trackside. Shinkansen noise, such as rolling noise, concrete support structure noise, and aerodynamic noise are generated by various parts of Shinkansen trains. Among these aerodynamic noise is important because it is the major contribution to the noise generated by the coaches running at high speed. In order to reduce the aerodynamic noise, a number of improvements to coaches have been made. As a result, the aerodynamic noise has been reduced, but it still remains significant. In addition, some aerodynamic noise generated from the lower parts of cars remains. In order to investigate the contributions of these noises, a method of analyzing Shinkansen noise has been developed and applied to the measured data of Shinkansen noise at speeds between 120 and 315 km/h. As a result, the following conclusions have been drawn: (1) Aerodynamic noise generated from the upper parts of cars was reduced considerably by smoothing car surfaces. (2) Aerodynamic noise generated from the lower parts of cars has a major influence upon the wayside noise.

  13. ROTOR DESIGN FOR VERTICAL AXIS WIND TURBINES, SUITABLE FOR URBAN SEASHORE ENVIRONMENT OR NAVAL INDUSTRY IMPLEMENTATION (NUMERICAL METHODS AND ANALYTHICAL CALCULUS

    Directory of Open Access Journals (Sweden)

    IONESCU Raluca Dora

    2014-09-01

    Full Text Available In this paper it is investigated the best solution for a new Vertical Axis Wind Turbine (VAWT design that has as objective the augmentation of power with minimum changes and without movable parts. It is investigated a classical Darrieus rotor with SANDIA shape, to which are studied both the influence of different aspect ratios as well as the influence of aerodynamic profile. Hence are used a NACA0012 and NACA0018 blade profile, aiming to improve the rotor characteristics. It is concluded that both the aspect ratio as well as the aerodynamic profile have a substantial importance on the power curve and thus, it encourages the further studies regarding their effect on the turbine performance.

  14. Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pope, K.; Dincer, I.; Naterer, G.F. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2010-09-15

    In this paper, an energy and exergy analysis is performed on four different wind power systems, including both horizontal and vertical axis wind turbines. Significant variability in turbine designs and operating parameters are encompassed through the selection of systems. In particular, two airfoils (NACA 63(2)-215 and FX 63-137) commonly used in horizontal axis wind turbines are compared with two vertical axis wind turbines (VAWTs). A Savonius design and Zephyr VAWT benefit from operational attributes in wind conditions that are unsuitable for airfoil type designs. This paper analyzes each system with respect to both the first and second laws of thermodynamics. The aerodynamic performance of each system is numerically analyzed by computational fluid dynamics software, FLUENT. A difference in first and second law efficiencies of between 50 and 53% is predicted for the airfoil systems, whereas 44-55% differences are predicted for the VAWT systems. Key design variables are analyzed and the predicted results are discussed. The exergetic efficiency of each wind turbine is studied for different geometries, design parameters and operating conditions. It is shown that the second law provides unique insight beyond a first law analysis, thereby providing a useful design tool for wind power development. (author)

  15. Management and minimisation of uncertainties and errors in numerical aerodynamics results of the German collaborative project MUNA

    CERN Document Server

    Barnewitz, Holger; Fritz, Willy; Thiele, Frank

    2013-01-01

    This volume reports results from the German research initiative MUNA (Management and Minimization of Errors and Uncertainties in Numerical Aerodynamics), which combined development activities of the German Aerospace Center (DLR), German universities and German aircraft industry. The main objective of this five year project was the development of methods and procedures aiming at reducing various types of uncertainties that are typical of numerical flow simulations. The activities were focused on methods for grid manipulation, techniques for increasing the simulation accuracy, sensors for turbulence modelling, methods for handling uncertainties of the geometry and grid deformation as well as stochastic methods for quantifying aleatoric uncertainties.

  16. Effect of static shape deformation on aerodynamics and aerothermodynamics of hypersonic inflatable aerodynamic decelerator

    Science.gov (United States)

    Guo, Jinghui; Lin, Guiping; Bu, Xueqin; Fu, Shiming; Chao, Yanmeng

    2017-07-01

    The inflatable aerodynamic decelerator (IAD), which allows heavier and larger payloads and offers flexibility in landing site selection at higher altitudes, possesses potential superiority in next generation space transport system. However, due to the flexibilities of material and structure assembly, IAD inevitably experiences surface deformation during atmospheric entry, which in turn alters the flowfield around the vehicle and leads to the variations of aerodynamics and aerothermodynamics. In the current study, the effect of the static shape deformation on the hypersonic aerodynamics and aerothermodynamics of a stacked tori Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is demonstrated and analyzed in detail by solving compressible Navier-Stokes equations with Menter's shear stress transport (SST) turbulence model. The deformed shape is obtained by structural modeling in the presence of maximum aerodynamic pressure during entry. The numerical results show that the undulating shape deformation makes significant difference to flow structure. In particular, the more curved outboard forebody surface results in local flow separations and reattachments in valleys, which consequently yields remarkable fluctuations of surface conditions with pressure rising in valleys yet dropping on crests while shear stress and heat flux falling in valleys yet rising on crests. Accordingly, compared with the initial (undeformed) shape, the corresponding differences of surface conditions get more striking outboard, with maximum augmentations of 379 pa, 2224 pa, and 19.0 W/cm2, i.e., 9.8%, 305.9%, and 101.6% for the pressure, shear stress and heat flux respectively. Moreover, it is found that, with the increase of angle of attack, the aerodynamic characters and surface heating vary and the aeroheating disparities are evident between the deformed and initial shape. For the deformable HIAD model investigated in this study, the more intense surface conditions and changed flight

  17. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.

    Science.gov (United States)

    Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers

    2015-03-06

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing.

  18. Wind Turbine Aerodynamics from an Aerospace Perspective

    NARCIS (Netherlands)

    van Garrel, Arne; ten Pas, Sebastiaan; Venner, Cornelis H.; van Muijden, Jaap

    2018-01-01

    The current challenges in wind turbine aerodynamics simulations share a number of similarities with the challenges that the aerospace industry has faced in the past. Some of the current challenges in the aerospace aerodynamics community are also relevant for today’s wind turbine aerodynamics

  19. NASA Iced Aerodynamics and Controls Current Research

    Science.gov (United States)

    Addy, Gene

    2009-01-01

    This slide presentation reviews the state of current research in the area of aerodynamics and aircraft control with ice conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including icing. The Aircraft icing modeling efforts includes the Ice-Contaminated Aerodynamics Modeling, which examines the effects of ice contamination on aircraft aerodynamics, and CFD modeling of ice-contaminated aircraft aerodynamics, and Advanced Ice Accretion Process Modeling which examines the physics of ice accretion, and works on computational modeling of ice accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of icing on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of icing physics and ice accretion for airframes, advanced 3D ice accretion prediction codes, CFD methods for iced aerodynamics and better understanding of aircraft iced aerodynamics and its effects on control surface effectiveness.

  20. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan

    , and to determine aerodynamic forces and the corresponding flutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefficients found from the current version......The meshless and remeshed Discrete Vortex Method (DVM) has been widely used in academia and by the industry to model two-dimensional flow around bluff bodies. The implementation “DVMFLOW” [1] is used by the bridge design company COWI to determine and visualise the flow field around bridge sections...

  1. Model tests of wind turbine with a vertical axis of rotation type Lenz 2

    Directory of Open Access Journals (Sweden)

    Zwierzchowski Jaroslaw

    2017-01-01

    Full Text Available A building design of vertical axis wind turbines (VAWT was presented in the article. The construction and operating principle of a wind turbine were described therein. Two VAWT turbine models were compared, i.a. Darrieus and Lenz2, taking their strengths and weaknesses into consideration. 3D solid models of turbine components were presented with the use of SolidWorks software. Using CFD methods, the air flow on two aerodynamic fins, symmetrical and asymmetrical, at different angles of attack were tested. On the basis of flow simulation conducted in FlowSimulation, an asymmetrical fin was chosen as the one showing greater load bearing capacities. Due to the uncertainty of trouble-free operation of Darrieus turbine on construction elements creating the basis thereof, a 3D model of Lenz2 turbine was constructed, which is more reliable and makes turbine self-start possible. On the basis of the research, components were designed and technical docu mentation was compiled.

  2. Model tests of wind turbine with a vertical axis of rotation type Lenz 2

    Science.gov (United States)

    Zwierzchowski, Jaroslaw; Laski, Pawel Andrzej; Blasiak, Slawomir; Takosoglu, Jakub Emanuel; Pietrala, Dawid Sebastian; Bracha, Gabriel Filip; Nowakowski, Lukasz

    A building design of vertical axis wind turbines (VAWT) was presented in the article. The construction and operating principle of a wind turbine were described therein. Two VAWT turbine models were compared, i.a. Darrieus and Lenz2, taking their strengths and weaknesses into consideration. 3D solid models of turbine components were presented with the use of SolidWorks software. Using CFD methods, the air flow on two aerodynamic fins, symmetrical and asymmetrical, at different angles of attack were tested. On the basis of flow simulation conducted in FlowSimulation, an asymmetrical fin was chosen as the one showing greater load bearing capacities. Due to the uncertainty of trouble-free operation of Darrieus turbine on construction elements creating the basis thereof, a 3D model of Lenz2 turbine was constructed, which is more reliable and makes turbine self-start possible. On the basis of the research, components were designed and technical docu mentation was compiled.

  3. Aerodynamic drag on intermodal railcars

    Science.gov (United States)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  4. Unsteady Aerodynamics of Deformable Thin Airfoils

    OpenAIRE

    Walker, William Paul

    2009-01-01

    Unsteady aerodynamic theories are essential in the analysis of bird and insect flight. The study of these types of locomotion is vital in the development of flapping wing aircraft. This paper uses potential flow aerodynamics to extend the unsteady aerodynamic theory of Theodorsen and Garrick (which is restricted to rigid airfoil motion) to deformable thin airfoils. Frequency-domain lift, pitching moment and thrust expressions are derived for an airfoil undergoing harmonic oscillations and def...

  5. Stochastic Analysis 2010

    CERN Document Server

    Crisan, Dan

    2011-01-01

    "Stochastic Analysis" aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume "Stochastic Analysis 2010" provides a sa

  6. Aerodynamics of Race Cars

    Science.gov (United States)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  7. A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines

    International Nuclear Information System (INIS)

    Ghasemian, Masoud; Ashrafi, Z. Najafian; Sedaghat, Ahmad

    2017-01-01

    Highlights: • A review on CFD simulation technique for Darrieus wind turbines is provided. • Recommendations and guidelines toward reliable and accurate simulations are presented. • Different progresses in CFD simulation of Darrieus wind turbines are addressed. - Abstract: The global warming threats, the presence of policies on support of renewable energies, and the desire for clean smart cities are the major drives for most recent researches on developing small wind turbines in urban environments. VAWTs (vertical axis wind turbines) are most appealing for energy harvesting in the urban environment. This is attributed due to structural simplicity, wind direction independency, no yaw mechanism required, withstand high turbulence winds, cost effectiveness, easier maintenance, and lower noise emission of VAWTs. This paper reviews recent published works on CFD (computational fluid dynamic) simulations of Darrieus VAWTs. Recommendations and guidelines are presented for turbulence modeling, spatial and temporal discretization, numerical schemes and algorithms, and computational domain size. The operating and geometrical parameters such as tip speed ratio, wind speed, solidity, blade number and blade shapes are fully investigated. The purpose is to address different progresses in simulations areas such as blade profile modification and optimization, wind turbine performance augmentation using guide vanes, wind turbine wake interaction in wind farms, wind turbine aerodynamic noise reduction, dynamic stall control, self-starting characteristics, and effects of unsteady and skewed wind conditions.

  8. Small Vertical Axis Wind Turbines: aerodynamics and starting behavior

    Directory of Open Access Journals (Sweden)

    Horia DUMITRESCU

    2013-12-01

    Full Text Available In urban areas the wind is very turbulent and unstable with fast changes in direction andvelocity. In these environments, the use of small vertical axis wind turbines (VAWT becomesincreasingly attractive due to several advantages over horizontal axis wind turbines (HAWT.However, such designs have received much less attention than the more common propeller-typedesigns and the understanding of same aspects of their operation remains, to this day, incomplete.This is particularly true of their starting characteristics. Indeed, same authors heuristically maintainthat they cannot start without external assistance. This paper reviews the cause of the inability of thelow solidity fixed pitch vertical axis wind turbines to self-start, and investigates the way ofovercoming this draw back.

  9. Aerodynamic analysis of Pegasus - Computations vs reality

    Science.gov (United States)

    Mendenhall, Michael R.; Lesieutre, Daniel J.; Whittaker, C. H.; Curry, Robert E.; Moulton, Bryan

    1993-01-01

    Pegasus, a three-stage, air-launched, winged space booster was developed to provide fast and efficient commercial launch services for small satellites. The aerodynamic design and analysis of Pegasus was conducted without benefit of wind tunnel tests using only computational aerodynamic and fluid dynamic methods. Flight test data from the first two operational flights of Pegasus are now available, and they provide an opportunity to validate the accuracy of the predicted pre-flight aerodynamic characteristics. Comparisons of measured and predicted flight characteristics are presented and discussed. Results show that the computational methods provide reasonable aerodynamic design information with acceptable margins. Post-flight analyses illustrate certain areas in which improvements are desired.

  10. Stochastic and non-stochastic effects - a conceptual analysis

    International Nuclear Information System (INIS)

    Karhausen, L.R.

    1980-01-01

    The attempt to divide radiation effects into stochastic and non-stochastic effects is discussed. It is argued that radiation or toxicological effects are contingently related to radiation or chemical exposure. Biological effects in general can be described by general laws but these laws never represent a necessary connection. Actually stochastic effects express contingent, or empirical, connections while non-stochastic effects represent semantic and non-factual connections. These two expressions stem from two different levels of discourse. The consequence of this analysis for radiation biology and radiation protection is discussed. (author)

  11. A large-scale computer facility for computational aerodynamics

    International Nuclear Information System (INIS)

    Bailey, F.R.; Balhaus, W.F.

    1985-01-01

    The combination of computer system technology and numerical modeling have advanced to the point that computational aerodynamics has emerged as an essential element in aerospace vehicle design methodology. To provide for further advances in modeling of aerodynamic flow fields, NASA has initiated at the Ames Research Center the Numerical Aerodynamic Simulation (NAS) Program. The objective of the Program is to develop a leading-edge, large-scale computer facility, and make it available to NASA, DoD, other Government agencies, industry and universities as a necessary element in ensuring continuing leadership in computational aerodynamics and related disciplines. The Program will establish an initial operational capability in 1986 and systematically enhance that capability by incorporating evolving improvements in state-of-the-art computer system technologies as required to maintain a leadership role. This paper briefly reviews the present and future requirements for computational aerodynamics and discusses the Numerical Aerodynamic Simulation Program objectives, computational goals, and implementation plans

  12. Aerodynamics of wind turbines emerging topics

    CERN Document Server

    Amano, R S

    2014-01-01

    Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.

  13. Unsteady Aerodynamic Force Sensing from Measured Strain

    Science.gov (United States)

    Pak, Chan-Gi

    2016-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection

  14. Review paper on wind turbine aerodynamics

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Aagaard Madsen, Helge

    2011-01-01

    The paper describes the development and description of the aerodynamic models used to estimate the aerodynamic loads on wind turbine constructions. This includes a status of the capabilities of computation fluid dynamics and the need for reliable airfoil data for the simpler engineering models...

  15. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2016-01-01

    In this book, the author introduces the concept of unsteady aerodynamics and its underlying principles. He provides the readers with a comprehensive review of the fundamental physics of free and forced unsteadiness, the terminology and basic equations of aerodynamics ranging from incompressible flow to hypersonics. The book also covers modern topics related to the developments made in recent years, especially in relation to wing flapping for propulsion. The book is written for graduate and senior year undergraduate students in aerodynamics and also serves as a reference for experienced researchers. Each chapter includes ample examples, questions, problems and relevant references.   The treatment of these modern topics has been completely revised end expanded for the new edition. It now includes new numerical examples, a section on the ground effect, and state-space representation.

  16. Dynamic soaring: aerodynamics for albatrosses

    International Nuclear Information System (INIS)

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio L/D, albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant L/D. Analytic solutions to the simplified equations provide an instructive and appealing example of fixed-wing aerodynamics suitable for undergraduate demonstration

  17. Test-retest reliability for aerodynamic measures of voice.

    Science.gov (United States)

    Awan, Shaheen N; Novaleski, Carolyn K; Yingling, Julie R

    2013-11-01

    The purpose of this study was to investigate the intrasubject reliability of aerodynamic characteristics of the voice within typical/normal speakers across testing sessions using the Phonatory Aerodynamic System (PAS 6600; KayPENTAX, Montvale, NJ). Participants were 60 healthy young adults (30 males and 30 females) between the ages 18 and 31 years with perceptually typical voice. Participants were tested using the PAS 6600 (Phonatory Aerodynamic System) on two separate days with approximately 1 week between each session at approximately the same time of day. Four PAS protocols were conducted (vital capacity, maximum sustained phonation, comfortable sustained phonation, and voicing efficiency) and measures of expiratory volume, maximum phonation time, mean expiratory airflow (during vowel production) and target airflow (obtained via syllable repetition), peak air pressure, aerodynamic power, aerodynamic resistance, and aerodynamic efficiency were obtained during each testing session. Associated acoustic measures of vocal intensity and frequency were also collected. All phonations were elicited at comfortable pitch and loudness. All aerodynamic and associated variables evaluated in this study showed useable test-retest reliability (ie, intraclass correlation coefficients [ICCs] ≥ 0.60). A high degree of mean test-retest reliability was found across all subjects for aerodynamic and associated acoustic measurements of vital capacity, maximum sustained phonation, glottal resistance, and vocal intensity (all with ICCs > 0.75). Although strong ICCs were observed for measures of glottal power and mean expiratory airflow in males, weaker overall results for these measures (ICC range: 0.60-0.67) were observed in females subjects and sizable coefficients of variation were observed for measures of power, resistance, and efficiency in both men and women. Differences in degree of reliability from measure to measure were revealed in greater detail using methods such as ICCs and

  18. Take-off aerodynamics in ski jumping.

    Science.gov (United States)

    Virmavirta, M; Kivekäs, J; Komi, P V

    2001-04-01

    The effect of aerodynamic forces on the force-time characteristics of the simulated ski jumping take-off was examined in a wind tunnel. Vertical and horizontal ground reaction forces were recorded with a force plate installed under the wind tunnel floor. The jumpers performed take-offs in non-wind conditions and in various wind conditions (21-33 m s(-1)). EMGs of the important take-off muscles were recorded from one jumper. The dramatic decrease in take-off time found in all jumpers can be considered as the result of the influence of aerodynamic lift. The loss in impulse due to the shorter force production time with the same take-off force is compensated with the increase in lift force, resulting in a higher vertical velocity (V(v)) than is expected from the conventional calculation of V(v) from the force impulse. The wind conditions emphasized the explosiveness of the ski jumping take-off. The aerodynamic lift and drag forces which characterize the aerodynamic quality of the initial take-off position (static in-run position) varied widely even between the examined elite ski jumpers. According to the computer simulation these differences can decisively affect jumping distance. The proper utilization of the prevailing aerodynamic forces before and during take-off is a very important prerequisite for achieving a good flight position.

  19. Noncausal stochastic calculus

    CERN Document Server

    Ogawa, Shigeyoshi

    2017-01-01

    This book presents an elementary introduction to the theory of noncausal stochastic calculus that arises as a natural alternative to the standard theory of stochastic calculus founded in 1944 by Professor Kiyoshi Itô. As is generally known, Itô Calculus is essentially based on the "hypothesis of causality", asking random functions to be adapted to a natural filtration generated by Brownian motion or more generally by square integrable martingale. The intention in this book is to establish a stochastic calculus that is free from this "hypothesis of causality". To be more precise, a noncausal theory of stochastic calculus is developed in this book, based on the noncausal integral introduced by the author in 1979. After studying basic properties of the noncausal stochastic integral, various concrete problems of noncausal nature are considered, mostly concerning stochastic functional equations such as SDE, SIE, SPDE, and others, to show not only the necessity of such theory of noncausal stochastic calculus but ...

  20. Aerodynamics and Control of Quadrotors

    Science.gov (United States)

    Bangura, Moses

    Quadrotors are aerial vehicles with a four motor-rotor assembly for generating lift and controllability. Their light weight, ease of design and simple dynamics have increased their use in aerial robotics research. There are many quadrotors that are commercially available or under development. Commercial off-the-shelf quadrotors usually lack the ability to be reprogrammed and are unsuitable for use as research platforms. The open-source code developed in this thesis differs from other open-source systems by focusing on the key performance road blocks in implementing high performance experimental quadrotor platforms for research: motor-rotor control for thrust regulation, velocity and attitude estimation, and control for position regulation and trajectory tracking. In all three of these fundamental subsystems, code sub modules for implementation on commonly available hardware are provided. In addition, the thesis provides guidance on scoping and commissioning open-source hardware components to build a custom quadrotor. A key contribution of the thesis is then a design methodology for the development of experimental quadrotor platforms from open-source or commercial off-the-shelf software and hardware components that have active community support. Quadrotors built following the methodology allows the user access to the operation of the subsystems and, in particular, the user can tune the gains of the observers and controllers in order to push the overall system to its performance limits. This enables the quadrotor framework to be used for a variety of applications such as heavy lifting and high performance aggressive manoeuvres by both the hobby and academic communities. To address the question of thrust control, momentum and blade element theories are used to develop aerodynamic models for rotor blades specific to quadrotors. With the aerodynamic models, a novel thrust estimation and control scheme that improves on existing RPM (revolutions per minute) control of

  1. Switchable and Tunable Aerodynamic Drag on Cylinders

    Science.gov (United States)

    Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  2. Future Computer Requirements for Computational Aerodynamics

    Science.gov (United States)

    1978-01-01

    Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.

  3. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  4. Aerodynamical calculation of turbomachinery bladings

    International Nuclear Information System (INIS)

    Fruehauf, H.H.

    1978-01-01

    Various flow models are presented in comparison to one another, these flow models being obtained from the basic equations of turbomachinery aerodynamics by means of a series of simplifying assumptions on the spatial distribution of the flow quantities. The simplifying assumptions are analysed precisely. With their knowledge it is possible to construct more accurate simplified flow models, which are necessary for the efficient aerodynamical development of highperformance turbomachinery bladings by means of numerical methods. (orig.) 891 HP [de

  5. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  6. Aerodynamic-structural model of offwind yacht sails

    Science.gov (United States)

    Mairs, Christopher M.

    An aerodynamic-structural model of offwind yacht sails was created that is useful in predicting sail forces. Two sails were examined experimentally and computationally at several wind angles to explore a variety of flow regimes. The accuracy of the numerical solutions was measured by comparing to experimental results. The two sails examined were a Code 0 and a reaching asymmetric spinnaker. During experiment, balance, wake, and sail shape data were recorded for both sails in various configurations. Two computational steps were used to evaluate the computational model. First, an aerodynamic flow model that includes viscosity effects was used to examine the experimental flying shapes that were recorded. Second, the aerodynamic model was combined with a nonlinear, structural, finite element analysis (FEA) model. The aerodynamic and structural models were used iteratively to predict final flying shapes of offwind sails, starting with the design shapes. The Code 0 has relatively low camber and is used at small angles of attack. It was examined experimentally and computationally at a single angle of attack in two trim configurations, a baseline and overtrimmed setting. Experimentally, the Code 0 was stable and maintained large flow attachment regions. The digitized flying shapes from experiment were examined in the aerodynamic model. Force area predictions matched experimental results well. When the aerodynamic-structural tool was employed, the predictive capability was slightly worse. The reaching asymmetric spinnaker has higher camber and operates at higher angles of attack than the Code 0. Experimentally and computationally, it was examined at two angles of attack. Like the Code 0, at each wind angle, baseline and overtrimmed settings were examined. Experimentally, sail oscillations and large flow detachment regions were encountered. The computational analysis began by examining the experimental flying shapes in the aerodynamic model. In the baseline setting, the

  7. Urban Aerodynamic Roughness Length Mapping Using Multitemporal SAR Data

    Directory of Open Access Journals (Sweden)

    Fengli Zhang

    2017-01-01

    Full Text Available Aerodynamic roughness is very important to urban meteorological and climate studies. Radar remote sensing is considered to be an effective means for aerodynamic roughness retrieval because radar backscattering is sensitive to the surface roughness and geometric structure of a given target. In this paper, a methodology for aerodynamic roughness length estimation using SAR data in urban areas is introduced. The scale and orientation characteristics of backscattering of various targets in urban areas were firstly extracted and analyzed, which showed great potential of SAR data for urban roughness elements characterization. Then the ground truth aerodynamic roughness was calculated from wind gradient data acquired by the meteorological tower using fitting and iterative method. And then the optimal dimension of the upwind sector for the aerodynamic roughness calculation was determined through a correlation analysis between backscattering extracted from SAR data at various upwind sector areas and the aerodynamic roughness calculated from the meteorological tower data. Finally a quantitative relationship was set up to retrieve the aerodynamic roughness length from SAR data. Experiments based on ALOS PALSAR and COSMO-SkyMed data from 2006 to 2011 prove that the proposed methodology can provide accurate roughness length estimations for the spatial and temporal analysis of urban surface.

  8. aerodynamics and heat transfer

    Directory of Open Access Journals (Sweden)

    J. N. Rajadas

    1998-01-01

    Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.

  9. Application Program Interface for the Orion Aerodynamics Database

    Science.gov (United States)

    Robinson, Philip E.; Thompson, James

    2013-01-01

    The Application Programming Interface (API) for the Crew Exploration Vehicle (CEV) Aerodynamic Database has been developed to provide the developers of software an easily implemented, fully self-contained method of accessing the CEV Aerodynamic Database for use in their analysis and simulation tools. The API is programmed in C and provides a series of functions to interact with the database, such as initialization, selecting various options, and calculating the aerodynamic data. No special functions (file read/write, table lookup) are required on the host system other than those included with a standard ANSI C installation. It reads one or more files of aero data tables. Previous releases of aerodynamic databases for space vehicles have only included data tables and a document of the algorithm and equations to combine them for the total aerodynamic forces and moments. This process required each software tool to have a unique implementation of the database code. Errors or omissions in the documentation, or errors in the implementation, led to a lengthy and burdensome process of having to debug each instance of the code. Additionally, input file formats differ for each space vehicle simulation tool, requiring the aero database tables to be reformatted to meet the tool s input file structure requirements. Finally, the capabilities for built-in table lookup routines vary for each simulation tool. Implementation of a new database may require an update to and verification of the table lookup routines. This may be required if the number of dimensions of a data table exceeds the capability of the simulation tools built-in lookup routines. A single software solution was created to provide an aerodynamics software model that could be integrated into other simulation and analysis tools. The highly complex Orion aerodynamics model can then be quickly included in a wide variety of tools. The API code is written in ANSI C for ease of portability to a wide variety of systems. The

  10. Aerodynamic Flight-Test Results for the Adaptive Compliant Trailing Edge

    Science.gov (United States)

    Cumming, Stephen B.; Smith, Mark S.; Ali, Aliyah N.; Bui, Trong T.; Ellsworth, Joel C.; Garcia, Christian A.

    2016-01-01

    The aerodynamic effects of compliant flaps installed onto a modified Gulfstream III airplane were investigated. Analyses were performed prior to flight to predict the aerodynamic effects of the flap installation. Flight tests were conducted to gather both structural and aerodynamic data. The airplane was instrumented to collect vehicle aerodynamic data and wing pressure data. A leading-edge stagnation detection system was also installed. The data from these flights were analyzed and compared with predictions. The predictive tools compared well with flight data for small flap deflections, but differences between predictions and flight estimates were greater at larger deflections. This paper describes the methods used to examine the aerodynamics data from the flight tests and provides a discussion of the flight-test results in the areas of vehicle aerodynamics, wing sectional pressure coefficient profiles, and air data.

  11. Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration

    OpenAIRE

    Sasaki, Daisuke; Nakahashi, Kazuhiro

    2011-01-01

    An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achiev...

  12. STOCHASTIC FLOWS OF MAPPINGS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, the stochastic flow of mappings generated by a Feller convolution semigroup on a compact metric space is studied. This kind of flow is the generalization of superprocesses of stochastic flows and stochastic diffeomorphism induced by the strong solutions of stochastic differential equations.

  13. Evaluation of aerodynamic derivatives from a magnetic balance system

    Science.gov (United States)

    Raghunath, B. S.; Parker, H. M.

    1972-01-01

    The dynamic testing of a model in the University of Virginia cold magnetic balance wind-tunnel facility is expected to consist of measurements of the balance forces and moments, and the observation of the essentially six degree of freedom motion of the model. The aerodynamic derivatives of the model are to be evaluated from these observations. The basic feasibility of extracting aerodynamic information from the observation of a model which is executing transient, complex, multi-degree of freedom motion is demonstrated. It is considered significant that, though the problem treated here involves only linear aerodynamics, the methods used are capable of handling a very large class of aerodynamic nonlinearities. The basic considerations include the effect of noise in the data on the accuracy of the extracted information. Relationships between noise level and the accuracy of the evaluated aerodynamic derivatives are presented.

  14. Maximum power tracking in WECS (Wind energy conversion systems) via numerical and stochastic approaches

    International Nuclear Information System (INIS)

    Elnaggar, M.; Abdel Fattah, H.A.; Elshafei, A.L.

    2014-01-01

    This paper presents a complete design of a two-level control system to capture maximum power in wind energy conversion systems. The upper level of the proposed control system adopts a modified line search optimization algorithm to determine a setpoint for the wind turbine speed. The calculated speed setpoint corresponds to the maximum power point at given operating conditions. The speed setpoint is fed to a generalized predictive controller at the lower level of the control system. A different formulation, that treats the aerodynamic torque as a disturbance, is postulated to derive the control law. The objective is to accurately track the setpoint while keeping the control action free from unacceptably fast or frequent variations. Simulation results based on a realistic model of a 1.5 MW wind turbine confirm the superiority of the proposed control scheme to the conventional ones. - Highlights: • The structure of a MPPT (maximum power point tracking) scheme is presented. • The scheme is divided into the optimization algorithm and the tracking controller. • The optimization algorithm is based on an online line search numerical algorithm. • The tracking controller is treating the aerodynamics torque as a loop disturbance. • The control technique is simulated with stochastic wind speed by Simulink and FAST

  15. Research status and trend of wind turbine aerodynamic noise?

    Institute of Scientific and Technical Information of China (English)

    Xiaodong LI; Baohong BAI; Yingbo XU; Min JIANG

    2016-01-01

    The main components of the wind turbine aerodynamic noise are introduced. A detailed review is given on the theoretical prediction, experimental measurement, and numerical simulation methods of wind turbine noise, with speci?c attention to appli-cations. Furthermore, suppression techniques of wind turbine aerodynamic noise are discussed. The perspective of future research on the wind turbine aerodynamic noise is presented.

  16. New Look at Nonlinear Aerodynamics in Analysis of Hypersonic Panel Flutter

    Directory of Open Access Journals (Sweden)

    Dan Xie

    2017-01-01

    Full Text Available A simply supported plate fluttering in hypersonic flow is investigated considering both the airflow and structural nonlinearities. Third-order piston theory is used for nonlinear aerodynamic loading, and von Karman plate theory is used for modeling the nonlinear strain-displacement relation. The Galerkin method is applied to project the partial differential governing equations (PDEs into a set of ordinary differential equations (ODEs in time, which is then solved by numerical integration method. In observation of limit cycle oscillations (LCO and evolution of dynamic behaviors, nonlinear aerodynamic loading produces a smaller positive deflection peak and more complex bifurcation diagrams compared with linear aerodynamics. Moreover, a LCO obtained with the linear aerodynamics is mostly a nonsimple harmonic motion but when the aerodynamic nonlinearity is considered more complex motions are obtained, which is important in the evaluation of fatigue life. The parameters of Mach number, dynamic pressure, and in-plane thermal stresses all affect the aerodynamic nonlinearity. For a specific Mach number, there is a critical dynamic pressure beyond which the aerodynamic nonlinearity has to be considered. For a higher temperature, a lower critical dynamic pressure is required. Each nonlinear aerodynamic term in the full third-order piston theory is evaluated, based on which the nonlinear aerodynamic formulation has been simplified.

  17. Stochastic processes

    CERN Document Server

    Parzen, Emanuel

    1962-01-01

    Well-written and accessible, this classic introduction to stochastic processes and related mathematics is appropriate for advanced undergraduate students of mathematics with a knowledge of calculus and continuous probability theory. The treatment offers examples of the wide variety of empirical phenomena for which stochastic processes provide mathematical models, and it develops the methods of probability model-building.Chapter 1 presents precise definitions of the notions of a random variable and a stochastic process and introduces the Wiener and Poisson processes. Subsequent chapters examine

  18. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  19. An Aerodynamic Investigation of a Forward Swept Wing

    Science.gov (United States)

    1977-12-01

    attached flow at higher angles of attack. 59 -. - . -- ~II The use of winglets should-also be considered to determine their effect on the aerodynamic ...INVSTGAIO OF A" ’/7AI/A/A7D1 ¾~nnt ¾ý’i ~~~)a al -A ApprovedYA~I forSIATO OFli Aees;dsrbuinulmtd AFIT/GAE/AA/77D -4 .1 AN AERODYNAMIC INVESTIGATION OF A...this study was to experimentally and analytically determine certain aerodynamic characteristics of a recently proposed high subsonic, forward swept wing

  20. [Role of aerodynamic parameters in voice function assessment].

    Science.gov (United States)

    Guo, Yong-qing; Lin, Sheng-zhi; Xu, Xin-lin; Zhou, Li; Zhuang, Pei-yun; Jiang, Jack J

    2012-10-01

    To investigate the application and significance of aerodynamic parameters in voice function assessment. The phonatory aerodynamic system (PAS) was used to collect aerodynamic parameters from subjects with normal voice, vocal fold polyp, vocal fold cyst, and vocal fold immobility. Multivariate statistical analysis was used to compare measurements across groups. Phonation threshold flow (PTF), mean flow rate (MFR), maximum phonation time (MPT), and glottal resistance (GR) in one hundred normal subjects were significantly affected by sex (P efficiency (VE) were not (P > 0.05). PTP, PTF, MFR, SGP, and MPT were significantly different between normal voice and voice disorders (P 0.05). Receiver operating characteristic (ROC) analysis found that PTP, PTF, SGP, MFR, MPT, and VE in one hundred thirteen voice dis orders had similar diagnostic utility (P aerodynamic parameters of the three degrees of voice dysfunction due to vocal cord polyps were compared and found to have no significant differences (P > 0.05). PTP, PTF, MFR, SGP and MPT in forty one patients with vocal polyps were significantly different after surgical resection of vocal cord polyps (P aerodynamic parameters can objectively and effectively evaluate the variations of vocal function, and have good auxiliary diagnostic value.

  1. Theoretical and applied aerodynamics and related numerical methods

    CERN Document Server

    Chattot, J J

    2015-01-01

    This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and h...

  2. Application of porous material to reduce aerodynamic sound from bluff bodies

    International Nuclear Information System (INIS)

    Sueki, Takeshi; Takaishi, Takehisa; Ikeda, Mitsuru; Arai, Norio

    2010-01-01

    Aerodynamic sound derived from bluff bodies can be considerably reduced by flow control. In this paper, the authors propose a new method in which porous material covers a body surface as one of the flow control methods. From wind tunnel tests on flows around a bare cylinder and a cylinder with porous material, it has been clarified that the application of porous materials is effective in reducing aerodynamic sound. Correlation between aerodynamic sound and aerodynamic force fluctuation, and a surface pressure distribution of cylinders are measured to investigate a mechanism of aerodynamic sound reduction. As a result, the correlation between aerodynamic sound and aerodynamic force fluctuation exists in the flow around the bare cylinder and disappears in the flow around the cylinder with porous material. Moreover, the aerodynamic force fluctuation of the cylinder with porous material is less than that of the bare cylinder. The surface pressure distribution of the cylinder with porous material is quite different from that of the bare cylinder. These facts indicate that aerodynamic sound is reduced by suppressing the motion of vortices because aerodynamic sound is induced by the unstable motion of vortices. In addition, an instantaneous flow field in the wake of the cylinder is measured by application of the PIV technique. Vortices that are shed alternately from the bare cylinder disappear by application of porous material, and the region of zero velocity spreads widely behind the cylinder with porous material. Shear layers between the stationary region and the uniform flow become thin and stable. These results suggest that porous material mainly affects the flow field adjacent to bluff bodies and reduces aerodynamic sound by depriving momentum of the wake and suppressing the unsteady motion of vortices. (invited paper)

  3. Aerodynamics and Optimal Design of Biplane Wind Turbine Blades

    Science.gov (United States)

    Chiu, Phillip

    In order to improve energy capture and reduce the cost of wind energy, in the past few decades wind turbines have grown significantly larger. As their blades get longer, the design of the inboard region (near the blade root) becomes a trade-off between competing structural and aerodynamic requirements. State-of-the-art blades require thick airfoils near the root to efficiently support large loads inboard, but those thick airfoils have inherently poor aerodynamic performance. New designs are required to circumvent this design compromise. One such design is the "biplane blade", in which the thick airfoils in the inboard region are replaced with thinner airfoils in a biplane configuration. This design was shown previously to have significantly increased structural performance over conventional blades. In addition, the biplane airfoils can provide increased lift and aerodynamic efficiency compared to thick monoplane inboard airfoils, indicating a potential for increased power extraction. This work investigates the fundamental aerodynamic aspects, aerodynamic design and performance, and optimal structural design of the biplane blade. First, the two-dimensional aerodynamics of biplanes with relatively thick airfoils are investigated, showing unique phenomena which arise as a result of airfoil thickness. Next, the aerodynamic design of the full biplane blade is considered. Two biplane blades are designed for optimal aerodynamic loading, and their aerodynamic performance quantified. Considering blades with practical chord distributions and including the drag of the mid-blade joint, it is shown that biplane blades have comparable power output to conventional monoplane designs. The results of this analysis also show that the biplane blades can be designed with significantly less chord than conventional designs, a characteristic which enables larger blade designs. The aerodynamic loads on the biplane blades are shown to be increased in gust conditions and decreased under

  4. The aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels

    2013-01-01

    In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines....

  5. Pricing long-dated insurance contracts with stochastic interest rates and stochastic volatility

    NARCIS (Netherlands)

    van Haastrecht, A.; Lord, R.; Pelsser, A.; Schrager, D.

    2009-01-01

    We consider the pricing of long-dated insurance contracts under stochastic interest rates and stochastic volatility. In particular, we focus on the valuation of insurance options with long-term equity or foreign exchange exposures. Our modeling framework extends the stochastic volatility model of

  6. The Aerodynamic Performance of the 24 Inch Houck Configuration

    Science.gov (United States)

    2007-03-01

    Winglets “ Winglets are aerodynamic components, placed at the tip of a wing to improve its efficiency during cruise” (6). The purpose of the winglet ... winglets have, by and large, been accepted as effective fuel-saving aerodynamic devices by both small and large aircraft manufacturers. 12 2.6... Winglet Airfoil for Low-Speed Aircraft.” AIAA 19th Applied Aerodynamics Conference, 11-14 June, 2001. AIAA Paper 2001-2406. 22. Mock, R. M. “The

  7. The Aerodynamic Performance of the Houck Configuration Flow Guides

    Science.gov (United States)

    2007-06-01

    efficiency factor (e = 1 for elliptical wing). 2.5 Winglets A winglet is best described by Jean Chattot’s quote: “ Winglets are aerodynamic components...spite of all the disadvantages, many aviation manufacturers have accepted winglets as a proven fuel- saving aerodynamic device (4). A study...conducted by Smith and Campbell in 1996 showed the effect of winglets on aerodynamic efficiency of a low-aspect-ratio model with respect to lift-to-drag

  8. Aerodynamics of magnetic levitation (MAGLEV) trains

    Science.gov (United States)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  9. Future requirements and roles of computers in aerodynamics

    Science.gov (United States)

    Gregory, T. J.

    1978-01-01

    While faster computers will be needed to make solution of the Navier-Stokes equations practical and useful, most all of the other aerodynamic solution techniques can benefit from faster computers. There is a wide variety of computational and measurement techniques, the prospect of more powerful computers permits extension and an enhancement across all aerodynamic methods, including wind-tunnel measurement. It is expected that, as in the past, a blend of methods will be used to predict aircraft aerodynamics in the future. These will include methods based on solution of the Navier-Stokes equations and the potential flow equations as well as those based on empirical and measured results. The primary flows of interest in aircraft aerodynamics are identified, the predictive methods currently in use and/or under development are reviewed and two of these methods are analyzed in terms of the computational resources needed to improve their usefulness and practicality.

  10. The interpolation method of stochastic functions and the stochastic variational principle

    International Nuclear Information System (INIS)

    Liu Xianbin; Chen Qiu

    1993-01-01

    Uncertainties have been attaching more importance to increasingly in modern engineering structural design. Viewed on an appropriate scale, the inherent physical attributes (material properties) of many structural systems always exhibit some patterns of random variation in space and time, generally the random variation shows a small parameter fluctuation. For a linear mechanical system, the random variation is modeled as a random one of a linear partial differential operator and, in stochastic finite element method, a random variation of a stiffness matrix. Besides the stochasticity of the structural physical properties, the influences of random loads which always represent themselves as the random boundary conditions bring about much more complexities in structural analysis. Now the stochastic finite element method or the probabilistic finite element method is used to study the structural systems with random physical parameters, whether or not the loads are random. Differing from the general finite element theory, the main difficulty which the stochastic finite element method faces is the inverse operation of stochastic operators and stochastic matrices, since the inverse operators and the inverse matrices are statistically correlated to the random parameters and random loads. So far, many efforts have been made to obtain the reasonably approximate expressions of the inverse operators and inverse matrices, such as Perturbation Method, Neumann Expansion Method, Galerkin Method (in appropriate Hilbert Spaces defined for random functions), Orthogonal Expansion Method. Among these methods, Perturbation Method appear to be the most available. The advantage of these methods is that the fairly accurate response statistics can be obtained under the condition of the finite information of the input. However, the second-order statistics obtained by use of Perturbation Method and Neumann Expansion Method are not always the appropriate ones, because the relevant second

  11. The impact of aerodynamics on fuel consumption in railway applications

    Directory of Open Access Journals (Sweden)

    Bogdan TARUS

    2012-03-01

    Full Text Available The main consequence of on air flow surrounding a moving train resides in the aerodynamic drag and a certain pressure distribution on the frontal and lateral surfaces of the vehicle. The actual value of the aerodynamic drag (if pre-determined may lead to a more accurate design of the whole locomotive power transmission. The aerodynamic drag may be estimated by using two specific experiments: the traction method and the free launch method. While the first one uses highly complex equipment, the second is easier to use due to the relative low number of devices required. The present work’s main goal is to illustrate the importance of aerodynamic design of the railway vehicles, as their performances are influenced by the aerodynamic drag. In order to illustrate the influence of the aerodynamic shape of o locomotive body, we have chosen the latest diesel model available on the local market, the Class 621 EGM locomotives, currently in service at the national passenger railway operator, CFR Călători SA.

  12. Experimental investigations on the aerodynamics and aeromechanics of wind turbines for floating offshore applications

    Science.gov (United States)

    Khosravi, Morteza

    -locked'' PIV measurements were also performed to elucidate further details about evolution of the unsteady vortex structures in the wake flow in relation to the position of the rotating turbine blades. The effects of the surge, heave, and pitch motions of the wind turbine base on the wake flow characteristics were examined in great details based on the PIV measurements. The findings derived from the present study can be used to improve the understanding of the underlying physics for optimal mechanical design of floating offshore wind turbines, as well as the layout optimization of floating offshore wind farms. Although, the mean power measurement results show little difference between the oscillating turbine and the bottom fixed turbine, but the excessive fluctuations in the power output of the oscillating turbine is anticipated to greatly reduce the power quality of such floating turbines. The load measurements also show substantial amount of difference both in terms of mean and the fluctuating components. The results of the wake study reveal that the wake of a wind turbine subjected to base motions, is highly dependent on which direction the turbine is oscillating. In the case of the moving turbine, the wake accelerates as the turbine is moving with the flow, hence, reducing the power extraction by the turbine. A decrease in Reynolds shear stress and the turbulent kinetic energy production was noted as the turbine was oscillating with the flow. However, as the turbine was moving into the flow, these effects reverse, and causes a deceleration in the wake of the moving turbine, hence increases the power production by the turbine, and increase the Reynolds shear stress and the turbulent kinetic energy. Finally, The wake flow field (x/D Darrieus type VAWT were also carried out by using a high-resolution PIV system, and the results obtained at two different horizontal (x-y) planes, at the equator height (H/2) and above the equator height (3H/4), for four different tip speed

  13. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  14. Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis

    Science.gov (United States)

    Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.

    2013-01-01

    The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.

  15. Aerodynamical study of a photovoltaic solar tracker

    OpenAIRE

    Gutiérrez Castillo, José Leonardo

    2016-01-01

    Investigate the aerodynamic features of ground-mounted solar trackers under atmospheric boundary layer flows. Study and identify the aerodynamical interactions of solar trackers when they are displayed as an array. State of the art. Literature review about CFD applied to solar panels. Analytic approach of the problem. Application of CFD analysis. Validation of the results. Discussion of the results. Improvements proposal.

  16. Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator

    Science.gov (United States)

    Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.

    2013-01-01

    In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.

  17. Physics of badminton shuttlecocks. Part 1 : aerodynamics

    Science.gov (United States)

    Cohen, Caroline; Darbois Texier, Baptiste; Quéré, David; Clanet, Christophe

    2011-11-01

    We study experimentally shuttlecocks dynamics. In this part we show that shuttlecock trajectory is highly different from classical parabola. When one takes into account the aerodynamic drag, the flight of the shuttlecock quickly curves downwards and almost reaches a vertical asymptote. We solve the equation of motion with gravity and drag at high Reynolds number and find an analytical expression of the reach. At high velocity, this reach does not depend on velocity anymore. Even if you develop your muscles you will not manage to launch the shuttlecock very far because of the ``aerodynamic wall.'' As a consequence you can predict the length of the field. We then discuss the extend of the aerodynamic wall to other projectiles like sports balls and its importance.

  18. Portfolio Optimization with Stochastic Dividends and Stochastic Volatility

    Science.gov (United States)

    Varga, Katherine Yvonne

    2015-01-01

    We consider an optimal investment-consumption portfolio optimization model in which an investor receives stochastic dividends. As a first problem, we allow the drift of stock price to be a bounded function. Next, we consider a stochastic volatility model. In each problem, we use the dynamic programming method to derive the Hamilton-Jacobi-Bellman…

  19. Experimental study of canard UAV aerodynamics

    Directory of Open Access Journals (Sweden)

    Panayotov Hristian

    2017-01-01

    Full Text Available The present paper presents the aerodynamic characteristics of a canard fixed-wing unmanned aircraft TERES-02. A wind tunnel experiment is conducted using a specially designed model of the aircraft. The model is produced through the methods of rapid prototyping using a FDM 3D printer. Aerodynamic corrections are made and thorough analysis and discussion of the results is carried out. The obtained results can be used to determine the accuracy of numerical methods for analysis of aircraft performance.

  20. Influence of Different Diffuser Angle on Sedan's Aerodynamic Characteristics

    Science.gov (United States)

    Hu, Xingjun; Zhang, Rui; Ye, Jian; Yan, Xu; Zhao, Zhiming

    The aerodynamic characteristics have a great influence on the fuel economics and the steering stability of a high speed vehicle. The underbody rear diffuser is one of important aerodynamic add-on devices. The parameters of the diffuser, including the diffuser angle, the number and the shape of separators, the shape of the end plate and etc, will affect the underbody flow and the wake. Here, just the influence of the diffuser angle was investigated without separator and the end plate. The method of Computational Fluid Dynamics was adopted to study the aerodynamic characteristics of a simplified sedan with a different diffuser angle respectively. The diffuser angle was set to 0°, 3°, 6°, 9.8° and 12° respectively. The diffuser angle of the original model is 9.8°. The conclusions were drawn that when the diffuser angle increases, the underbody flow and especially the wake change greatly and the pressure change correspondingly; as a result, the total aerodynamic drag coefficients of car first decrease and then increases, while the total aerodynamic lift coefficients decrease.

  1. The influence of aerodynamic coefficients on the elements of classic projectile paths

    Directory of Open Access Journals (Sweden)

    Damir D. Jerković

    2011-04-01

    Full Text Available The article deals with the results of the research on the influence of aerodynamic coefficient values on the trajectory elements and the stability parameters of classic axisymmetric projectiles. It presents the characteristic functions of aerodynamic coefficients with regard to aerodynamic parameters and the projectile body shape. The trajectory elements of the model of classic axisymmetric projectiles and the analyses of their changes were presented with respect to the aerodynamic coefficient values. Introduction Classic axisymmetric projectiles fly through atmosphere using muzzle velocity as initial energy resource, so the aerodynamic force and moment have the most significant influence on the motion of projectiles. The aerodynamic force and moment components represented as aerodynamic coefficients depend on motion velocity i. e. flow velocity, the flow features produced by projectile shape and position in the flow, and angular velocity (rate of the body. The functional dependence of aerodynamic coefficients on certain influential parameters, such as angle of attack and angular velocity components is expressed by the derivative of aerodynamic coefficients. The determination of aerodynamic coefficients and derivatives enables complete definition of the aerodynamic force and moment acting on the classic projectile. The projectile motion problem is considered in relation to defining the projectile stability parameters and the conditions under which the stability occurs. The comparative analyses of aerodynamic coefficient values obtained by numerical methods, semi empirical calculations and experimental research give preliminary evaluation of the quality of the determined values. The flight simulation of the motion of a classic axisymetric projectile, which has the shape defined by the aerodynamic coefficient values, enables the comparative analyses of the trajectory elements and stability characteristics. The model of the classic projectile

  2. Aerodynamic analysis of an isolated vehicle wheel

    Science.gov (United States)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.

    2014-08-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  3. Aerodynamic analysis of an isolated vehicle wheel

    International Nuclear Information System (INIS)

    Leśniewicz, P; Kulak, M; Karczewski, M

    2014-01-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  4. Aerodynamics and flow characterisation of multistage rockets

    Science.gov (United States)

    Srinivas, G.; Prakash, M. V. S.

    2017-05-01

    The main objective of this paper is to conduct a systematic flow analysis on single, double and multistage rockets using ANSYS software. Today non-air breathing propulsion is increasing dramatically for the enhancement of space exploration. The rocket propulsion is playing vital role in carrying the payload to the destination. Day to day rocket aerodynamic performance and flow characterization analysis has becoming challenging task to the researchers. Taking this task as motivation a systematic literature is conducted to achieve better aerodynamic and flow characterization on various rocket models. The analyses on rocket models are very little especially in numerical side and experimental area. Each rocket stage analysis conducted for different Mach numbers and having different flow varying angle of attacks for finding the critical efficiency performance parameters like pressure, density and velocity. After successful completion of the analysis the research reveals that flow around the rocket body for Mach number 4 and 5 best suitable for designed payload. Another major objective of this paper is to bring best aerodynamics flow characterizations in both aero and mechanical features. This paper also brings feature prospectus of rocket stage technology in the field of aerodynamic design.

  5. Research on the Aerodynamic Resistance of Trickle Biofilter

    Directory of Open Access Journals (Sweden)

    Alvydas Zagorskis

    2011-12-01

    Full Text Available A four – section trickle biofilter was constructed for experimental research. The filter was filled with the packing material of artificial origin. The material consists of plastic balls having a large surface area. The dependence of biofilter aerodynamic resistance on supply air flow rate and the number of filter sections was determined. The aerodynamic resistance of the biofilter was measured in two cases. In the first case, the packing material of the filter was dry, whereas in the second case it was wet. The experimental research determined that an increase in the air flow rate from 0.043 m/s to 0.076 m/s causes an increase in biofilter aerodynamic resistance from 30.5 to 62.5 Pa after measuring four layers of dry packing material. In case of wet packing material, biofilter aerodynamic resistance after measuring four layers of plastic balls increases from 42.1 to 90.4 Pa.Article in Lithuanian

  6. Quasi-steady state aerodynamics of the cheetah tail

    Directory of Open Access Journals (Sweden)

    Amir Patel

    2016-08-01

    Full Text Available During high-speed pursuit of prey, the cheetah (Acinonyx jubatus has been observed to swing its tail while manoeuvring (e.g. turning or braking but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities.

  7. Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods

    KAUST Repository

    Loizou, Nicolas

    2017-12-27

    In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.

  8. Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods

    KAUST Repository

    Loizou, Nicolas; Richtarik, Peter

    2017-01-01

    In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.

  9. Stochastic neuron models

    CERN Document Server

    Greenwood, Priscilla E

    2016-01-01

    This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain...

  10. Aerodynamics Research Revolutionizes Truck Design

    Science.gov (United States)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  11. CALCULATION OF ROCKET NOSE FAIRING SHELLS AERODYNAMIC CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Vladimir T. Kalugin

    2018-01-01

    Full Text Available The aerodynamic characteristics of the detachable elements of transport systems are introduced, they allow to calculate the trajectories of these elements after their separation and determine the size of elements impact areas. Special consideration is given to head fairing shells, containing cylindrical, conical and spherical sections. Head fairing shells have high lift-to-drag ratio and the widest impact areas. Aerodynamics of bodies of such configurations has been insufficiently studied. The paper presents the numerical results of modeling the flow around a typical head fairing shell in free flight. Open source OpenFOAM package is used for numerical simulation. The aerodynamic characteristics at trans- and supersonic velocities are obtained, flow pattern transformation with the change of the angle of attack and Mach number is analyzed. The possibility of OpenFOAM package for aerodynamic calculations of thin shells is shown. The analysis of the obtained results demonstrate that there are many complex shock waves interacting with each other at flow supersonic speeds, at subsonic speeds vast regions of flow separations are observed. The authors identify intervals of angles of attack, where different types of flow structures are realized, both for trans- and supersonic flow speeds. The flow pattern change affects the aerodynamic characteristics, the aerodynamic coefficients significantly change with increase of the angle of attack. There are two trim angles of attack at all examined flow velocities. The results obtained can be used to develop a passive stabilization system for fairing shell that will balance the body at the angle of attack with minimum lift-to-drag ratio and will reduce random deviations.

  12. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2014-01-01

    In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient s...... software. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence was established in 2010 in order to create a world-leading cross-disciplinary flow center that covers all relevant disciplines within wind farm meteorology and aerodynamics.......In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient...

  13. Quasi steady-state aerodynamic model development for race vehicle simulations

    Science.gov (United States)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-01-01

    Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.

  14. Stochastic tools in turbulence

    CERN Document Server

    Lumey, John L

    2012-01-01

    Stochastic Tools in Turbulence discusses the available mathematical tools to describe stochastic vector fields to solve problems related to these fields. The book deals with the needs of turbulence in relation to stochastic vector fields, particularly, on three-dimensional aspects, linear problems, and stochastic model building. The text describes probability distributions and densities, including Lebesgue integration, conditional probabilities, conditional expectations, statistical independence, lack of correlation. The book also explains the significance of the moments, the properties of the

  15. Study of Swept Angle Effects on Grid Fins Aerodynamics Performance

    Science.gov (United States)

    Faza, G. A.; Fadillah, H.; Silitonga, F. Y.; Agoes Moelyadi, Mochamad

    2018-04-01

    Grid fin is an aerodynamic control surface that usually used on missiles and rockets. In the recent several years many researches have conducted to develop a more efficient grid fins. There are many possibilities of geometric combination could be done to improve aerodynamics characteristic of a grid fin. This paper will only discuss about the aerodynamics characteristics of grid fins compared by another grid fins with different swept angle. The methodology that used to compare the aerodynamics is Computational Fluid Dynamics (CFD). The result of this paper might be used for future studies to answer our former question or as a reference for related studies.

  16. Influence of Unsteady Aerodynamics on Driving Dynamics of Passenger Cars

    OpenAIRE

    Huemer, J.; Stickel, T.; Sagan, E.; Schwarz, M.; Wall, W.A.

    2015-01-01

    Recent approaches towards numerical investigations with CFD-Methods on unsteady aerodynamic loads of passenger cars identified major differences compared to steady state aerodynamic excitations. Furthermore innovative vehicle concepts like electric-vehicles or hybrid drives further challenge the basic layout of passenger cars. Therefore the relevance of unsteady aerodynamic loads on cross-wind stability of changing basic vehicle architectures should be analysed. In order to assure and improve...

  17. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

    Science.gov (United States)

    Nakata, Toshiyuki; Liu, Hao

    2012-02-22

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.

  18. Unsteady Aerodynamics of Flapping Wing of a Bird

    Directory of Open Access Journals (Sweden)

    M. Agoes Moelyadi

    2013-04-01

    Full Text Available The unsteady flow behavior and time-dependent aerodynamic characteristics of the flapping motion of a bird’s wing were investigated using a computational method. During flapping, aerodynamic interactions between bird wing surfaces and surrounding flow may occur, generating local time-dependent flow changes in the flow field and aerodynamic load of birds. To study the effect of flapping speed on unsteady aerodynamic load, two kinds of computational simulations were carried out, namely a quasi-steady and an unsteady simulation. To mimic the movement of the down-stroke and the upstroke of a bird, the flapping path accorded to a sinus function, with the wing attitude changing in dihedral angle and time. The computations of time-dependent viscous flow were based on the solution of the Reynolds Averaged Navier-Stokes equations by applying the k-e turbulence model. In addition, the discretization for the computational domain around the model used multi-block structured grid to provide more accuracy in capturing viscous flow, especially in the vicinity of the wing and body surfaces, to obtain a proper wing-body geometry model. For this research, the seagull bird was chosen, which has high aspect ratio wings with pointed wing-tips and a high camber wing section. The results include mesh movement, velocity contours as well as aerodynamic coefficients of the flapping motion of the bird at various flapping frequencies.

  19. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  20. Stochastic pump effect and geometric phases in dissipative and stochastic systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinitsyn, Nikolai [Los Alamos National Laboratory

    2008-01-01

    The success of Berry phases in quantum mechanics stimulated the study of similar phenomena in other areas of physics, including the theory of living cell locomotion and motion of patterns in nonlinear media. More recently, geometric phases have been applied to systems operating in a strongly stochastic environment, such as molecular motors. We discuss such geometric effects in purely classical dissipative stochastic systems and their role in the theory of the stochastic pump effect (SPE).

  1. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  2. Research on aerodynamic means of isotope enrichment

    International Nuclear Information System (INIS)

    Cattolica, R.J.; Gallagher, R.J.; Talbot, L.; Willis, D.R.; Hurlbut, F.C.; Fiszdon, W.; Anderson, J.B.

    1978-03-01

    The results of a research program directed toward the understanding of the fundamental gas dynamics involved in aerodynamic isotope enrichment are summarized. The specific aerodynamic isotope enrichment method which was examined in this research is based on a velocity slip phenomenon which occurs in the rarefied hypersonic expansion of a heavy molecular weight gas and a light carrier gas in a nozzle or free jet. This particular aerodynamic method was chosen for study because it contains the fundamental molecular physics of other more complex techniques within the context of a one-dimensional flow without boundary effects. From both an experimental and theoretical modeling perspective this provides an excellent basis for testing the experimental and numerical tools with which to investigate more complex aerodynamic isotope enrichment processes. This report consists of three separate parts. Part I contains a theoretical analysis of the velocity slip effect in free jet expansions of binary and ternary gas mixtures. The analysis, based on a source flow model and using moment equations is derived from the Boltzmann equation using the hypersonic approximation. Part II contains the experimental measurements of velocity slip. The numerical simulation of the slip process was carried out by using a Monte-Carlo numerical technique. In addition, comparisons between the theoretical analysis of Part I and the experiments are presented. Part III describes impact pressure measurements of free jet expansions from slot shaped two dimensional nozzles. At least two methods of aerodynamic isotope enrichment (opposed jet and velocity slip) would depend on the use of this type of two dimensional expansion. Flow surveys of single free jet and the interferene of crossed free jets are presented

  3. Summary analysis of the Gemini entry aerodynamics

    Science.gov (United States)

    Whitnah, A. M.; Howes, D. B.

    1972-01-01

    The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.

  4. Quasi-steady state aerodynamics of the cheetah tail.

    Science.gov (United States)

    Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-08-15

    During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. © 2016. Published by The Company of Biologists Ltd.

  5. Aeroelastic Limit-Cycle Oscillations resulting from Aerodynamic Non-Linearities

    NARCIS (Netherlands)

    van Rooij, A.C.L.M.

    2017-01-01

    Aerodynamic non-linearities, such as shock waves, boundary layer separation or boundary layer transition, may cause an amplitude limitation of the oscillations induced by the fluid flow around a structure. These aeroelastic limit-cycle oscillations (LCOs) resulting from aerodynamic non-linearities

  6. A one-time truncate and encode multiresolution stochastic framework

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, R.; Congedo, P.M.; Geraci, G., E-mail: gianluca.geraci@inria.fr

    2014-01-15

    In this work a novel adaptive strategy for stochastic problems, inspired from the classical Harten's framework, is presented. The proposed algorithm allows building, in a very general manner, stochastic numerical schemes starting from a whatever type of deterministic schemes and handling a large class of problems, from unsteady to discontinuous solutions. Its formulations permits to recover the same results concerning the interpolation theory of the classical multiresolution approach, but with an extension to uncertainty quantification problems. The present strategy permits to build numerical scheme with a higher accuracy with respect to other classical uncertainty quantification techniques, but with a strong reduction of the numerical cost and memory requirements. Moreover, the flexibility of the proposed approach allows to employ any kind of probability density function, even discontinuous and time varying, without introducing further complications in the algorithm. The advantages of the present strategy are demonstrated by performing several numerical problems where different forms of uncertainty distributions are taken into account, such as discontinuous and unsteady custom-defined probability density functions. In addition to algebraic and ordinary differential equations, numerical results for the challenging 1D Kraichnan–Orszag are reported in terms of accuracy and convergence. Finally, a two degree-of-freedom aeroelastic model for a subsonic case is presented. Though quite simple, the model allows recovering some physical key aspect, on the fluid/structure interaction, thanks to the quasi-steady aerodynamic approximation employed. The injection of an uncertainty is chosen in order to obtain a complete parameterization of the mass matrix. All the numerical results are compared with respect to classical Monte Carlo solution and with a non-intrusive Polynomial Chaos method.

  7. Biomimetic Approach for Accurate, Real-Time Aerodynamic Coefficients, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerodynamic and structural reliability and efficiency depends critically on the ability to accurately assess the aerodynamic loads and moments for each lifting...

  8. Experimental Investigation on the Characteristics of Sliding Discharge Plasma Aerodynamic Actuation

    International Nuclear Information System (INIS)

    Song Huimin; Zhang Qiaogen; Li Yinghong; Jia Min; Wu Yun

    2011-01-01

    A new electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A microsecond-pulse high voltage with a DC component was used to energize a three-electrode actuator to generate sliding discharge. The characteristics of plasma aerodynamic actuation by sliding discharge were experimentally investigated. Discharge morphology shows that sliding discharge is formed when energized by properly adjusting microsecond-pulse and DC voltage. Compared to dielectric barrier discharge (DBD), the plasma extension of sliding discharge is quasi-diffusive and stable but longer and more intensive. Results from particle image velocimetry (PIV) test indicate that plasma aerodynamic actuation by sliding discharge can induce a ‘starting vortex’ and a quasi-steady ‘near-wall jet’. Body force induced by plasma aerodynamic actuation is about the order of mN, which is stronger than that induced by single DBD. It is inferred that microsecond-pulse sliding discharge may be more effective to generate large-scale plasma aerodynamic actuation, which is very promising for improving aircraft aerodynamic characteristics and propulsion efficiency.

  9. Experimental Investigation on the Characteristics of Sliding Discharge Plasma Aerodynamic Actuation

    Science.gov (United States)

    Song, Huimin; Li, Yinghong; Zhang, Qiaogen; Jia, Min; Wu, Yun

    2011-10-01

    A new electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A microsecond-pulse high voltage with a DC component was used to energize a three-electrode actuator to generate sliding discharge. The characteristics of plasma aerodynamic actuation by sliding discharge were experimentally investigated. Discharge morphology shows that sliding discharge is formed when energized by properly adjusting microsecond-pulse and DC voltage. Compared to dielectric barrier discharge (DBD), the plasma extension of sliding discharge is quasi-diffusive and stable but longer and more intensive. Results from particle image velocimetry (PIV) test indicate that plasma aerodynamic actuation by sliding discharge can induce a ‘starting vortex’ and a quasi-steady ‘near-wall jet’. Body force induced by plasma aerodynamic actuation is about the order of mN, which is stronger than that induced by single DBD. It is inferred that microsecond-pulse sliding discharge may be more effective to generate large-scale plasma aerodynamic actuation, which is very promising for improving aircraft aerodynamic characteristics and propulsion efficiency.

  10. Application of CAD/CAE class systems to aerodynamic analysis of electric race cars

    Science.gov (United States)

    Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.

    2015-11-01

    Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.

  11. Hypersonic Inflatable Aerodynamic Decelerator (HIAD)

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an entry and descent technology to enhance and enable robotic and scientific missions to destinations with atmospheres.The Hypersonic Inflatable Aerodynamic...

  12. Sequential stochastic optimization

    CERN Document Server

    Cairoli, Renzo

    1996-01-01

    Sequential Stochastic Optimization provides mathematicians and applied researchers with a well-developed framework in which stochastic optimization problems can be formulated and solved. Offering much material that is either new or has never before appeared in book form, it lucidly presents a unified theory of optimal stopping and optimal sequential control of stochastic processes. This book has been carefully organized so that little prior knowledge of the subject is assumed; its only prerequisites are a standard graduate course in probability theory and some familiarity with discrete-paramet

  13. Simulation and control element design for a coupled aerodynamic/magnetic system

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E

    1982-11-01

    Aerodynamic effects are among the many problems raised by the Maglev technique and its industrial application, but until recently they were only regarded as disturbances. Theoretical studies as well as model experiments in wind and water tunnels were only interested in optimizing the shape of the vehicle cell. The most important goals of development were low sensitivity to side-wind and a neutral aerodynamic design of the vehicle nose. The present paper investigates the aerodynamic effects by means of extended models. Aerodynamic effects on the elevation control system are considered by a suitable control element structure.

  14. Stochastic Optimization of Wind Turbine Power Factor Using Stochastic Model of Wind Power

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Siano, Pierluigi; Bak-Jensen, Birgitte

    2010-01-01

    This paper proposes a stochastic optimization algorithm that aims to minimize the expectation of the system power losses by controlling wind turbine (WT) power factors. This objective of the optimization is subject to the probability constraints of bus voltage and line current requirements....... The optimization algorithm utilizes the stochastic models of wind power generation (WPG) and load demand to take into account their stochastic variation. The stochastic model of WPG is developed on the basis of a limited autoregressive integrated moving average (LARIMA) model by introducing a crosscorrelation...... structure to the LARIMA model. The proposed stochastic optimization is carried out on a 69-bus distribution system. Simulation results confirm that, under various combinations of WPG and load demand, the system power losses are considerably reduced with the optimal setting of WT power factor as compared...

  15. Fourier analysis of the aerodynamic behavior of cup anemometers

    International Nuclear Information System (INIS)

    Pindado, Santiago; Pérez, Imanol; Aguado, Maite

    2013-01-01

    The calibration results (the transfer function) of an anemometer equipped with several cup rotors were analyzed and correlated with the aerodynamic forces measured on the isolated cups in a wind tunnel. The correlation was based on a Fourier analysis of the normal-to-the-cup aerodynamic force. Three different cup shapes were studied: typical conical cups, elliptical cups and porous cups (conical-truncated shape). Results indicated a good correlation between the anemometer factor, K, and the ratio between the first two coefficients in the Fourier series decomposition of the normal-to-the-cup aerodynamic force. (paper)

  16. Aerodynamic profiles of women with muscle tension dysphonia/aphonia.

    Science.gov (United States)

    Gillespie, Amanda I; Gartner-Schmidt, Jackie; Rubinstein, Elaine N; Abbott, Katherine Verdolini

    2013-04-01

    In this study, the authors aimed to (a) determine whether phonatory airflows and estimated subglottal pressures (est-Psub) for women with primary muscle tension dysphonia/aphonia (MTD/A) differ from those for healthy speakers; (b) identify different aerodynamic profile patterns within the MTD/A subject group; and (c) determine whether results suggest new understanding of pathogenesis in MTD/A. Retrospective review of aerodynamic data collected from 90 women at the time of primary MTD/A diagnosis. Aerodynamic profiles were significantly different for women with MTD/A as compared with healthy speakers. Five distinct profiles were identified: (a) normal flow, normal est-Psub; (b) high flow, high est-Psub; (c) low flow, normal est-Psub; (d) normal flow, high est-Psub; and (e) high flow, normal est-Psub. This study is the first to identify distinct subgroups of aerodynamic profiles in women with MTD/A and to quantitatively identify a clinical phenomenon sometimes described in association with it-"breath holding"-that is shown by low airflow with normal est-Psub. Results were consistent with clinical claims that diverse respiratory and laryngeal functions may underlie phonatory patterns associated with MTD/A. One potential mechanism, based in psychobiological theory, is introduced to explain some of the variability in aerodynamic profiles of women with MTD/A.

  17. Aerodynamic vibrations of a maglev vehicle running on flexible guideways under oncoming wind actions

    Science.gov (United States)

    Yau, J. D.

    2010-05-01

    This paper intends to present a computational framework of aerodynamic analysis for a maglev (magnetically levitated) vehicle traveling over flexible guideways under oncoming wind loads. The guideway unit is simulated as a series of simple beams with identical span and the maglev vehicle as a rigid car body supported by levitation forces. To carry out the interaction dynamics of maglev vehicle/guideway system, this study adopts an onboard PID (proportional-integral-derivative) controller based on Ziegler-Nicholas (Z-N) method to control the levitation forces. Interaction of wind with high-speed train is a complicated situation arising from unsteady airflow around the train. In this study, the oncoming wind loads acting on the running maglev vehicle are generated in temporal/spatial domain using digital simulation techniques that can account for the moving effect of vehicle's speed and the spatial correlation of stochastic airflow velocity field. Considering the motion-dependent nature of levitation forces and the non-conservative characteristics of turbulent airflows, an iterative approach is used to compute the interaction response of the maglev vehicle/guideway coupling system under wind actions. For the purpose of numerical simulation, this paper employs Galerkin's method to convert the governing equations containing a maglev vehicle into a set of differential equations in generalized systems, and then solve the two sets of differential equations using an iterative approach with the Newmark method. From the present investigation, the aerodynamic forces may result in a significant amplification on acceleration amplitude of the running maglev vehicle at higher speeds. For this problem, a PID+LQR (linear quadratic regulator) controller is proposed to reduce the vehicle's acceleration response for the ride comfort of passengers.

  18. Noise aspects at aerodynamic blade optimisation projects

    International Nuclear Information System (INIS)

    Schepers, J.G.

    1997-06-01

    The Netherlands Energy Research Foundation (ECN) has often been involved in industrial projects, in which blade geometries are created automatic by means of numerical optimisation. Usually, these projects aim at the determination of the aerodynamic optimal wind turbine blade, i.e. the goal is to design a blade which is optimal with regard to energy yield. In other cases, blades have been designed which are optimal with regard to cost of generated energy. However, it is obvious that the wind turbine blade designs which result from these optimisations, are not necessarily optimal with regard to noise emission. In this paper an example is shown of an aerodynamic blade optimisation, using the ECN-program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. 11 figs., 8 refs

  19. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  20. Aerodynamic tailoring of the Learjet Model 60 wing

    Science.gov (United States)

    Chandrasekharan, Reuben M.; Hawke, Veronica M.; Hinson, Michael L.; Kennelly, Robert A., Jr.; Madson, Michael D.

    1993-01-01

    The wing of the Learjet Model 60 was tailored for improved aerodynamic characteristics using the TRANAIR transonic full-potential computational fluid dynamics (CFD) code. A root leading edge glove and wing tip fairing were shaped to reduce shock strength, improve cruise drag and extend the buffet limit. The aerodynamic design was validated by wind tunnel test and flight test data.

  1. Naval Aerodynamics Test Facility (NATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The NATF specializes in Aerodynamics testing of scaled and fullsized Naval models, research into flow physics found on US Navy planes and ships, aerosol testing and...

  2. Speed and Torque Control Strategies for Loss Reduction of Vertical Axis Wind Turbines

    Science.gov (United States)

    Argent, Michael; McDonald, Alasdair; Leithead, Bill; Giles, Alexander

    2016-09-01

    This paper builds on the work into modelling the generator losses for Vertical Axis Wind Turbines from their intrinsic torque cycling to investigate the effects of aerodynamic inefficiencies caused by the varying rotational speed resulting from different torque control strategies to the cyclic torque. This is achieved by modelling the wake that builds up from the rotation of the VAWT rotor to investigate how the wake responds to a changing rotor speed and how this in turn affects the torque produced by the blades as well as the corresponding change in generator losses and any changes to the energy extracted by the wind turbine rotor.

  3. Wind turbine design : with emphasis on Darrieus concept

    Energy Technology Data Exchange (ETDEWEB)

    Paraschivoiu, I. [Ecole Polytechnique, Montreal, PQ (Canada)

    2002-07-01

    This book described software applications designed to model the aerodynamic performance of the Darrieus vertical-axis wind turbine. The book also provided a comprehensive review of current vertical-axis wind turbine (VAWT) technology, and discussed recent advances in understanding the physics of flow associated with the Darrieus type of turbine. The principal theories and aerodynamic models for calculating the performance of the turbines were presented, as well as results from experimental data derived from prototypes as well as laboratory measurements. The book was divided into 10 chapters: (1) wind definition and characteristics; (2) a review of the Madaras rotor concept along with an introduction to vortex modelling; (3) an introduction to the geometry of the Darrieus rotor; (4) a single streamtube model; (5) dynamic-stall phenomenon and numerical simulations; (6) double actuator risk theory; (7) details of water channel experiments; (8) modelling of turbine components; (9) wind turbine design parameters; and (10) issues related to socio-economic and environmental impacts. refs., tabs., figs.

  4. Influence of hinge point on flexible flap aerodynamic performance

    International Nuclear Information System (INIS)

    Zhao, H Y; Ye, Z; Wu, P; Li, C

    2013-01-01

    Large scale wind turbines lead to increasing blade lengths and weights, which presents new challenges for blade design. This paper selects NREL S809 airfoil, uses the parameterized technology to realize the flexible trailing edge deformation, researches the static aerodynamic characteristics of wind turbine blade airfoil with flexible deformation, and the dynamic aerodynamic characteristics in the process of continuous deformation, analyses the influence of hinge point position on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With hinge point moving forward, total aerodynamic performance of flexible flap improves. Positive swing angle can push the transition point backward, thus postpones the occurrence of the transition phenomenon

  5. PyFly: A fast, portable aerodynamics simulator

    KAUST Repository

    Garcia, D.; Ghommem, M.; Collier, N.; Varga, B.O.N.; Calo, V.M.

    2018-01-01

    We present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approach to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. We simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.

  6. PyFly: A fast, portable aerodynamics simulator

    KAUST Repository

    Garcia, D.

    2018-03-18

    We present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approach to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. We simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.

  7. IEA joint action. Aerodynamics of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B. [ed.

    1997-12-31

    In the period 1992-1997 the IEA Annex XIV `Field Rotor Aerodynamics` was carried out. Within its framework 5 institutes from 4 different countries participated in performing detailed aerodynamic measurements on full-scale wind turbines. The Annex was successfully completed and resulted in a unique database of aerodynamic measurements. The database is stored on an ECN disc (available through ftp) and on a CD-ROM. It is expected that this base will be used extensively in the development and validation of new aerodynamic models. Nevertheless at the end of IEA Annex XIV, it was recommended to perform a new IEA Annex due to the following reasons: In Annex XIV several data exchange rounds appeared to be necessary before a satisfactory result was achieved. This is due to the huge amount of data which had to be supplied, by which a thorough inspection of all data is very difficult and very time consuming; Most experimental facilities are still operational and new, very useful, measurements are expected in the near future; The definition of angle of attack and dynamic pressure in the rotating environment is less straightforward than in the wind tunnel. The conclusion from Annex XIV was that the uncertainty which results from these different definitions is still too large and more investigation in this field is required. (EG)

  8. The space shuttle ascent vehicle aerodynamic challenges configuration design and data base development

    Science.gov (United States)

    Dill, C. C.; Young, J. C.; Roberts, B. B.; Craig, M. K.; Hamilton, J. T.; Boyle, W. W.

    1985-01-01

    The phase B Space Shuttle systems definition studies resulted in a generic configuration consisting of a delta wing orbiter, and two solid rocket boosters (SRB) attached to an external fuel tank (ET). The initial challenge facing the aerodynamic community was aerodynamically optimizing, within limits, this configuration. As the Shuttle program developed and the sensitivities of the vehicle to aerodynamics were better understood the requirements of the aerodynamic data base grew. Adequately characterizing the vehicle to support the various design studies exploded the size of the data base to proportions that created a data modeling/management challenge for the aerodynamicist. The ascent aerodynamic data base originated primarily from wind tunnel test results. The complexity of the configuration rendered conventional analytic methods of little use. Initial wind tunnel tests provided results which included undesirable effects from model support tructure, inadequate element proximity, and inadequate plume simulation. The challenge to improve the quality of test results by determining the extent of these undesirable effects and subsequently develop testing techniques to eliminate them was imposed on the aerodynamic community. The challenges to the ascent aerodynamics community documented are unique due to the aerodynamic complexity of the Shuttle launch. Never before was such a complex vehicle aerodynamically characterized. The challenges were met with innovative engineering analyses/methodology development and wind tunnel testing techniques.

  9. The impact of inertial forces on morphing wind turbine blade in vertical axis configuration

    International Nuclear Information System (INIS)

    Butbul, Jonathan; MacPhee, David; Beyene, Asfaw

    2015-01-01

    Highlights: • A novel flexible VAWT has been experimentally tested alongside numerically simulations. • Using FEA and CFD, direction of blade bending was predicted from inertial and aerodynamic forces. • High-speed camera footage has been used to validate the model. • The flexible VAWT was found to self-start in the majority of tests, while the rigid one did not. • It is suggested that flexible VAWTs can have improved performance in part-load applications. - Abstract: A novel flexible blade concept with the ability to morph and geometrically adapt to changing flow conditions has been proposed to improve part-load performance of horizontal-axis wind turbines. The extension of these benefits to a vertical axis wind turbine would make wind technology a more competitive player in the energy market. Both flexible and rigid wind turbine rotor blades for vertical axis application were modeled, designed, manufactured and tested. Their performances were tested in a low speed wind tunnel. The predicted magnitude and direction of blade morph was validated using a high speed camera as well as finite element analysis. The comparative results of straight rigid and straight morphing blades show that the coefficient of performance greatly depends on the tip speed ratio. Overall, the morphing blade has better performance at low RPMs, but the rigid blade performed better at high RPMs. It was observed that the flexible blade self-started in the majority of the experiments. At high RPM, the centrifugal force overwhelmed the lift force, bending the flexible blade out of phase in an undesired direction increasing drag and therefore reducing the coefficient of performance

  10. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  11. Method determination of aerodynamic performances of profile in the plane airfoil cascade

    Directory of Open Access Journals (Sweden)

    Л. Г. Волянська

    2003-03-01

    Full Text Available Method determination of aerodynamic forces by direct measurement using three-component aerodynamic balance are given in the article. There are the schematic model of the facility for determination airfoil cascade aerodynamic performances in the article. Drawing and description of slewing pack of blades are shown in the article

  12. Recent advances in ambit stochastics with a view towards tempo-spatial stochastic volatility/intermittency

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Benth, Fred Espen; Veraart, Almut

    Ambit stochastics is the name for the theory and applications of ambit fields and ambit processes and constitutes a new research area in stochastics for tempo-spatial phenomena. This paper gives an overview of the main findings in ambit stochastics up to date and establishes new results on genera...

  13. Functional Abstraction of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Bujorianu, L.M.; Blom, Henk A.P.; Hermanns, H.

    2006-01-01

    The verification problem for stochastic hybrid systems is quite difficult. One method to verify these systems is stochastic reachability analysis. Concepts of abstractions for stochastic hybrid systems are needed to ease the stochastic reachability analysis. In this paper, we set up different ways

  14. Stochastic quantisation: theme and variation

    International Nuclear Information System (INIS)

    Klauder, J.R.; Kyoto Univ.

    1987-01-01

    The paper on stochastic quantisation is a contribution to the book commemorating the sixtieth birthday of E.S. Fradkin. Stochastic quantisation reformulates Euclidean quantum field theory in the language of Langevin equations. The generalised free field is discussed from the viewpoint of stochastic quantisation. An artificial family of highly singular model theories wherein the space-time derivatives are dropped altogether is also examined. Finally a modified form of stochastic quantisation is considered. (U.K.)

  15. Variation in aerodynamic coefficients with altitude

    Science.gov (United States)

    Shahid, Faiza; Hussain, Mukkarum; Baig, Mirza Mehmood; Haq, Ihtram ul

    Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD). Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT), hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig). Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number). Similar simulations for a fixed Mach number '3' and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number). Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number) and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number) slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number) at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects.

  16. THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION

    Directory of Open Access Journals (Sweden)

    Dejan P Ninković

    2010-01-01

    Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.

  17. STOCHASTIC ASSESSMENT OF NIGERIAN STOCHASTIC ...

    African Journals Online (AJOL)

    eobe

    STOCHASTIC ASSESSMENT OF NIGERIAN WOOD FOR BRIDGE DECKS ... abandoned bridges with defects only in their decks in both rural and urban locations can be effectively .... which can be seen as the detection of rare physical.

  18. Experimental and Computational Investigations of Vertical Axis Wind Turbine Enclosed with Flanged Diffuser

    Science.gov (United States)

    Surya Raj, G.; Sangeetha, N.; Prince, M.

    2018-02-01

    Generation of wind energy is a must to meet out additional demand. To meet out the additional demand several long term plans were considered now being taken up for generation of energy for the fast developing industries. Detailed researches were since taken up to improve the efficiency of such vertical axis wind turbine (VAWT). In this work VAWT with diffuser and without diffuser arrangement are considered for experimental and analysis. Five diffusers were since provided around its blades of VAWT which will be placed inside a pentagon shaped fabricated structure. In this power output of the diffuser based VAWT arrangement were studied in both numerical and experimental methods and related with that of a bared VAWT. Finally, it was found that the output power of diffuser based VAWT generates approximately two times than that of bared VAWT.

  19. Particle Methods in Bluff Body Aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj

    . The implementation is two-dimensional and sequential. The implementation is validated against the analytic solution to the Perlman test case and by free-space simulations of the onset flow around fixed and rotating circular cylinders and bluff body flows around bridge sections. Finally a three-dimensional vortex...... is important. This dissertation focuses on the use of vortex particle methods and computational efficiency. The work is divided into three parts. A novel method for the simulation of the aerodynamic admittance in bluff body aerodynamics is presented. The method involves a model for describing oncoming...... section during the construction phase and the swimming motion of the medusa Aurelia aurita....

  20. Stochastic quantization and gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1984-01-01

    We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)

  1. Influence of unsteady aerodynamics on driving dynamics of passenger cars

    Science.gov (United States)

    Huemer, Jakob; Stickel, Thomas; Sagan, Erich; Schwarz, Martin; Wall, Wolfgang A.

    2014-11-01

    Recent approaches towards numerical investigations with computational fluid dynamics methods on unsteady aerodynamic loads of passenger cars identified major differences compared with steady-state aerodynamic excitations. Furthermore, innovative vehicle concepts such as electric-vehicles or hybrid drives further challenge the basic layout of passenger cars. Therefore, the relevance of unsteady aerodynamic loads on cross-wind stability of changing basic vehicle architectures should be analysed. In order to assure and improve handling and ride characteristics at high velocity of the actual range of vehicle layouts, the influence of unsteady excitations on the vehicle response was investigated. For this purpose, a simulation of the vehicle dynamics through multi-body simulation was used. The impact of certain unsteady aerodynamic load characteristics on the vehicle response was quantified and key factors were identified. Through a series of driving simulator tests, the identified differences in the vehicle response were evaluated regarding their significance on the subjective driver perception of cross-wind stability. Relevant criteria for the subjective driver assessment of the vehicle response were identified. As a consequence, a design method for the basic layout of passenger cars and chassis towards unsteady aerodynamic excitations was defined.

  2. Stochastic climate theory

    NARCIS (Netherlands)

    Gottwald, G.A.; Crommelin, D.T.; Franzke, C.L.E.; Franzke, C.L.E.; O'Kane, T.J.

    2017-01-01

    In this chapter we review stochastic modelling methods in climate science. First we provide a conceptual framework for stochastic modelling of deterministic dynamical systems based on the Mori-Zwanzig formalism. The Mori-Zwanzig equations contain a Markov term, a memory term and a term suggestive of

  3. The Aerodynamics of Heavy Vehicles III : Trucks, Buses and Trains

    CERN Document Server

    Orellano, Alexander

    2016-01-01

    This volume contains papers presented at the International conference “The Aerodynamics of Heavy Vehicles III: Trucks, Buses and Trains” held in Potsdam, Germany, September 12-17, 2010 by Engineering Conferences International (ECI). Leading scientists and engineers from industry, universities and research laboratories, including truck and high-speed train manufacturers and operators were brought together to discuss computer simulation and experimental techniques to be applied for the design of more efficient trucks, buses and high-speed trains in the future.   This conference was the third in the series after Monterey-Pacific Groove in 2002 and Lake Tahoe in 2007.  The presentations address different aspects of train aerodynamics (cross wind effects, underbody flow, tunnel aerodynamics and aeroacoustics, experimental techniques), truck aerodynamics (drag reduction, flow control, experimental and computational techniques) as well as computational fluid dynamics and bluff body, wake and jet flows.

  4. Reliability and Applicability of Aerodynamic Measures in Dysphonia Assessment

    Science.gov (United States)

    Yiu, Edwin M.-L.; Yuen, Yuet-Ming; Whitehill, Tara; Winkworth, Alison

    2004-01-01

    Aerodynamic measures are frequently used to analyse and document pathological voices. Some normative data are available for speakers from the English-speaking population. However, no data are available yet for Chinese speakers despite the fact that they are one of the largest populations in the world. The high variability of aerodynamic measures…

  5. Aerodynamic efficiency of a bio-inspired flapping wing rotor at low Reynolds number

    OpenAIRE

    Li, Hao; Guo, Shijun

    2018-01-01

    This study investigates the aerodynamic efficiency of a bioinspired flapping wing rotor kinematics which combines an active vertical flapping motion and a passive horizontal rotation induced by aerodynamic thrust. The aerodynamic efficiencies for producing both vertical lift and horizontal thrust of the wing are obtained using a quasi-steady aerodynamic model and two-dimensional (2D) CFD analysis at Reynolds number of 2500. The calculated efficiency data show that both efficiencies (propulsiv...

  6. Experimental Investigation of Aerodynamic Instability of Iced Bridge Cable Sections

    DEFF Research Database (Denmark)

    Koss, Holger; Lund, Mia Schou Møller

    2013-01-01

    The accretion of ice on structural bridge cables changes the aerodynamic conditions of the surface and influences hence the acting wind load process. Full-scale monitoring indicates that light precipitation at moderate low temperatures between zero and -5°C may lead to large amplitude vibrations...... of bridge cables under wind action. This paper describes the experimental simulation of ice accretion on a real bridge cable sheet HDPE tube segment (diameter 160mm) and its effect on the aerodynamic load. Furthermore, aerodynamic instability will be estimated with quasi-steady theory using the determined...

  7. 2–stage stochastic Runge–Kutta for stochastic delay differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Norhayati; Jusoh Awang, Rahimah [Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Pahang (Malaysia); Bahar, Arifah; Yeak, S. H. [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-05-15

    This paper proposes a newly developed one-step derivative-free method, that is 2-stage stochastic Runge-Kutta (SRK2) to approximate the solution of stochastic delay differential equations (SDDEs) with a constant time lag, r > 0. General formulation of stochastic Runge-Kutta for SDDEs is introduced and Stratonovich Taylor series expansion for numerical solution of SRK2 is presented. Local truncation error of SRK2 is measured by comparing the Stratonovich Taylor expansion of the exact solution with the computed solution. Numerical experiment is performed to assure the validity of the method in simulating the strong solution of SDDEs.

  8. A Comparative Assessment of Aerodynamic Models for Buffeting and Flutter of Long-Span Bridges

    Directory of Open Access Journals (Sweden)

    Igor Kavrakov

    2017-12-01

    Full Text Available Wind-induced vibrations commonly represent the leading criterion in the design of long-span bridges. The aerodynamic forces in bridge aerodynamics are mainly based on the quasi-steady and linear unsteady theory. This paper aims to investigate different formulations of self-excited and buffeting forces in the time domain by comparing the dynamic response of a multi-span cable-stayed bridge during the critical erection condition. The bridge is selected to represent a typical reference object with a bluff concrete box girder for large river crossings. The models are viewed from a perspective of model complexity, comparing the influence of the aerodynamic properties implied in the aerodynamic models, such as aerodynamic damping and stiffness, fluid memory in the buffeting and self-excited forces, aerodynamic nonlinearity, and aerodynamic coupling on the bridge response. The selected models are studied for a wind-speed range that is typical for the construction stage for two levels of turbulence intensity. Furthermore, a simplified method for the computation of buffeting forces including the aerodynamic admittance is presented, in which rational approximation is avoided. The critical flutter velocities are also compared for the selected models under laminar flow. Keywords: Buffeting, Flutter, Long-span bridges, Bridge aerodynamics, Bridge aeroelasticity, Erection stage

  9. Space-time-modulated stochastic processes

    Science.gov (United States)

    Giona, Massimiliano

    2017-10-01

    Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.

  10. RES: Regularized Stochastic BFGS Algorithm

    Science.gov (United States)

    Mokhtari, Aryan; Ribeiro, Alejandro

    2014-12-01

    RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.

  11. Numerical simulation of aerodynamic sound radiated from a two-dimensional airfoil

    OpenAIRE

    飯田, 明由; 大田黒, 俊夫; 加藤, 千幸; Akiyoshi, Iida; Toshio, Otaguro; Chisachi, Kato; 日立機研; 日立機研; 東大生研; Mechanical Engineering Research Laboratory, Hitachi Ltd.; Mechanical Engineering Research Laboratory, Hitachi Ltd.; University of Tokyo

    2000-01-01

    An aerodynamic sound radiated from a two-dimensional airfoil has been computed with the Lighthill-Curle's theory. The predicted sound pressure level is agreement with the measured one. Distribution of vortex sound sources is also estimated based on the correlation between the unsteady vorticity fluctuations and the aerodynamic sound. The distribution of vortex sound source reveals that separated shear layers generate aerodynamic sound. This result is help to understand noise reduction method....

  12. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    International Nuclear Information System (INIS)

    Wu, P; Stanford, B K; Ifju, P G; Saellstroem, E; Ukeiley, L

    2011-01-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  13. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P; Stanford, B K; Ifju, P G [Department of Mechanical and Aerospace Engineering, MAE-A 231, University of Florida, Gainesville, FL 32611 (United States); Saellstroem, E; Ukeiley, L, E-mail: diccidwp@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Shalimar, FL 32579 (United States)

    2011-03-15

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  14. Elitism and Stochastic Dominance

    OpenAIRE

    Bazen, Stephen; Moyes, Patrick

    2011-01-01

    Stochastic dominance has typically been used with a special emphasis on risk and inequality reduction something captured by the concavity of the utility function in the expected utility model. We claim that the applicability of the stochastic dominance approach goes far beyond risk and inequality measurement provided suitable adpations be made. We apply in the paper the stochastic dominance approach to the measurment of elitism which may be considered the opposite of egalitarianism. While the...

  15. Mechanism of unconventional aerodynamic characteristics of an elliptic airfoil

    Directory of Open Access Journals (Sweden)

    Sun Wei

    2015-06-01

    Full Text Available The aerodynamic characteristics of elliptic airfoil are quite different from the case of conventional airfoil for Reynolds number varying from about 104 to 106. In order to reveal the fundamental mechanism, the unsteady flow around a stationary two-dimensional elliptic airfoil with 16% relative thickness has been simulated using unsteady Reynolds-averaged Navier–Stokes equations and the γ-Reθt‾ transition turbulence model at different angles of attack for flow Reynolds number of 5 × 105. The aerodynamic coefficients and the pressure distribution obtained by computation are in good agreement with experimental data, which indicates that the numerical method works well. Through this study, the mechanism of the unconventional aerodynamic characteristics of airfoil is analyzed and discussed based on the computational predictions coupled with the wind tunnel results. It is considered that the boundary layer transition at the leading edge and the unsteady flow separation vortices at the trailing edge are the causes of the case. Furthermore, a valuable insight into the physics of how the flow behavior affects the elliptic airfoil’s aerodynamics is provided.

  16. The efficiency of aerodynamic force production in Drosophila.

    Science.gov (United States)

    Lehmann, F O

    2001-12-01

    Total efficiency of aerodynamic force production in insect flight depends on both the efficiency with which flight muscles turn metabolic energy into muscle mechanical power and the efficiency with which this power is converted into aerodynamic flight force by the flapping wings. Total efficiency has been estimated in tethered flying fruit flies Drosophila by modulating their power expenditures in a virtual reality flight simulator while simultaneously measuring stroke kinematics, locomotor performance and metabolic costs. During flight, muscle efficiency increases with increasing flight force production, whereas aerodynamic efficiency of lift production decreases with increasing forces. As a consequence of these opposite trends, total flight efficiency in Drosophila remains approximately constant within the kinematic working range of the flight motor. Total efficiency is broadly independent of different profile power estimates and typically amounts to 2-3%. The animal achieves maximum total efficiency near hovering flight conditions, when the beating wings produce flight forces that are equal to the body weight of the insect. It remains uncertain whether this small advantage in total efficiency during hovering flight was shaped by evolutionary factors or results from functional constraints on both the production of mechanical power by the indirect flight muscles and the unsteady aerodynamic mechanisms in flapping flight.

  17. Natural aerodynamics

    CERN Document Server

    Scorer, R S

    1958-01-01

    Natural Aerodynamics focuses on the mathematics of any problem in air motion.This book discusses the general form of the law of fluid motion, relationship between pressure and wind, production of vortex filaments, and conduction of vorticity by viscosity. The flow at moderate Reynolds numbers, turbulence in a stably stratified fluid, natural exploitation of atmospheric thermals, and plumes in turbulent crosswinds are also elaborated. This text likewise considers the waves produced by thermals, transformation of thin layer clouds, method of small perturbations, and dangers of extra-polation.Thi

  18. Stochastic analytic regularization

    International Nuclear Information System (INIS)

    Alfaro, J.

    1984-07-01

    Stochastic regularization is reexamined, pointing out a restriction on its use due to a new type of divergence which is not present in the unregulated theory. Furthermore, we introduce a new form of stochastic regularization which permits the use of a minimal subtraction scheme to define the renormalized Green functions. (author)

  19. On Stochastic Dependence

    Science.gov (United States)

    Meyer, Joerg M.

    2018-01-01

    The contrary of stochastic independence splits up into two cases: pairs of events being favourable or being unfavourable. Examples show that both notions have quite unexpected properties, some of them being opposite to intuition. For example, transitivity does not hold. Stochastic dependence is also useful to explain cases of Simpson's paradox.

  20. Stochastic massless fields I: Integer spin

    International Nuclear Information System (INIS)

    Lim, S.C.

    1981-04-01

    Nelson's stochastic quantization scheme is applied to classical massless tensor potential in ''Coulomb'' gauge. The relationship between stochastic potential field in various gauges is discussed using the case of vector potential as an illustration. It is possible to identify the Euclidean tensor potential with the corresponding stochastic field in physical Minkowski space-time. Stochastic quantization of massless fields can also be carried out in terms of field strength tensors. An example of linearized stochastic gravitational field in vacuum is given. (author)

  1. [Acoustic and aerodynamic characteristics of the oesophageal voice].

    Science.gov (United States)

    Vázquez de la Iglesia, F; Fernández González, S

    2005-12-01

    The aim of the study is to determine the physiology and pathophisiology of esophageal voice according to objective aerodynamic and acoustic parameters (quantitative and qualitative parameters). Our subjects were comprised of 33 laryngectomized patients (all male) that underwent aerodynamic, acoustic and perceptual protocol. There is a statistical association between acoustic and aerodynamic qualitative parameters (phonation flow chart type, sound spectrum, perceptual analysis) among quantitative parameters (neoglotic pressure, phonation flow, phonation time, fundamental frequency, maximum intensity sound level, speech rate). Nevertheles, not always such observations bring practical resources to clinical practice. We consider that the facts studied may enable us to add, pragmatically, new resources to the more effective vocal rehabilitation to these patients. The physiology of esophageal voice is well understood by the method we have applied, also seeking for rehabilitation, improving oral communication skills in the laryngectomee population.

  2. Wind turbines. Unsteady aerodynamics and inflow noise

    Energy Technology Data Exchange (ETDEWEB)

    Riget Broe, B.

    2009-12-15

    Aerodynamical noise from wind turbines due to atmospheric turbulence has the highest emphasis in semi-empirical models. However it is an open question whether inflow noise has a high emphasis. This illustrates the need to investigate and improve the semi-empirical model for noise due to atmospheric turbulence. Three different aerodynamical models are investigated in order to estimate the lift fluctuations due to unsteady aerodynamics. Two of these models are investigated to find the unsteady lift distribution or pressure difference as function of chordwise position on the aerofoil. An acoustic model is investigated using a model for the lift distribution as input. The two models for lift distribution are used in the acoustic model. One of the models for lift distribution is for completely anisotropic turbulence and the other for perfectly isotropic turbulence, and so is also the corresponding models for the lift fluctuations derived from the models for lift distribution. The models for lift distribution and lift are compared with pressure data which are obtained by microphones placed flush with the surface of an aerofoil. The pressure data are from two experiments in a wind tunnel, one experiment with a NACA0015 profile and a second with a NACA63415 profile. The turbulence is measured by a triple wired hotwire instrument in the experiment with a NACA0015 profile. Comparison of the aerodynamical models with data shows that the models capture the general characteristics of the measurements, but the data are hampered by background noise from the fan propellers in the wind tunnel. The measurements are in between the completely anisotropic turbulent model and the perfectly isotropic turbulent model. This indicates that the models capture the aerodynamics well. Thus the measurements suggest that the noise due to atmospheric turbulence can be described and modeled by the two models for lift distribution. It was not possible to test the acoustical model by the measurements

  3. Progress in vehicle aerodynamics and thermal management. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Jochen (ed.) [Stuttgart Univ. (DE). Inst. fuer Kraftfahrwesen und Verbrennungsmotoren (IVK); Forschungsinstitut fuer Kraftfahrwesen und Fahrzeugmotoren (FKFS), Stuttgart (Germany)

    2010-07-01

    Vehicle aerodynamics and thermal management are subjects of increasing importance for automotive development especially regarding the necessity to reduce the energy consumption of the vehicle as well as the need to improve ist comfort. This book is intended for engineers, physicists, and mathematicians who work on vehicle aerodynamics. It is also addressed to people in research organizations, at universities and agencies. It may be of interest to technical journalists and to students. (orig.)

  4. Stochastic processes inference theory

    CERN Document Server

    Rao, Malempati M

    2014-01-01

    This is the revised and enlarged 2nd edition of the authors’ original text, which was intended to be a modest complement to Grenander's fundamental memoir on stochastic processes and related inference theory. The present volume gives a substantial account of regression analysis, both for stochastic processes and measures, and includes recent material on Ridge regression with some unexpected applications, for example in econometrics. The first three chapters can be used for a quarter or semester graduate course on inference on stochastic processes. The remaining chapters provide more advanced material on stochastic analysis suitable for graduate seminars and discussions, leading to dissertation or research work. In general, the book will be of interest to researchers in probability theory, mathematical statistics and electrical and information theory.

  5. Variation in aerodynamic coefficients with altitude

    Directory of Open Access Journals (Sweden)

    Faiza Shahid

    Full Text Available Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD. Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT, hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig. Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number. Similar simulations for a fixed Mach number ‘3’ and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number. Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects. Keywords: Mach number, Reynolds number, Blunt body, Altitude effect, Angle of attacks

  6. Path to Stochastic Stability: Comparative Analysis of Stochastic Learning Dynamics in Games

    KAUST Repository

    Jaleel, Hassan

    2018-04-08

    Stochastic stability is a popular solution concept for stochastic learning dynamics in games. However, a critical limitation of this solution concept is its inability to distinguish between different learning rules that lead to the same steady-state behavior. We address this limitation for the first time and develop a framework for the comparative analysis of stochastic learning dynamics with different update rules but same steady-state behavior. We present the framework in the context of two learning dynamics: Log-Linear Learning (LLL) and Metropolis Learning (ML). Although both of these dynamics have the same stochastically stable states, LLL and ML correspond to different behavioral models for decision making. Moreover, we demonstrate through an example setup of sensor coverage game that for each of these dynamics, the paths to stochastically stable states exhibit distinctive behaviors. Therefore, we propose multiple criteria to analyze and quantify the differences in the short and medium run behavior of stochastic learning dynamics. We derive and compare upper bounds on the expected hitting time to the set of Nash equilibria for both LLL and ML. For the medium to long-run behavior, we identify a set of tools from the theory of perturbed Markov chains that result in a hierarchical decomposition of the state space into collections of states called cycles. We compare LLL and ML based on the proposed criteria and develop invaluable insights into the comparative behavior of the two dynamics.

  7. Quantum stochastics

    CERN Document Server

    Chang, Mou-Hsiung

    2015-01-01

    The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...

  8. Stochastic cooling

    International Nuclear Information System (INIS)

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron

  9. Stochastic optimal control, forward-backward stochastic differential equations and the Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Wolfgang; Koeppe, Jeanette [Institut fuer Physik, Martin Luther Universitaet, 06099 Halle (Germany); Grecksch, Wilfried [Institut fuer Mathematik, Martin Luther Universitaet, 06099 Halle (Germany)

    2016-07-01

    The standard approach to solve a non-relativistic quantum problem is through analytical or numerical solution of the Schroedinger equation. We show a way to go around it. This way is based on the derivation of the Schroedinger equation from conservative diffusion processes and the establishment of (several) stochastic variational principles leading to the Schroedinger equation under the assumption of a kinematics described by Nelson's diffusion processes. Mathematically, the variational principle can be considered as a stochastic optimal control problem linked to the forward-backward stochastic differential equations of Nelson's stochastic mechanics. The Hamilton-Jacobi-Bellmann equation of this control problem is the Schroedinger equation. We present the mathematical background and how to turn it into a numerical scheme for analyzing a quantum system without using the Schroedinger equation and exemplify the approach for a simple 1d problem.

  10. Aerodynamic research of a racing car based on wind tunnel test and computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Wang Jianfeng

    2018-01-01

    Full Text Available Wind tunnel test and computational fluid dynamics (CFD simulation are two main methods for the study of automotive aerodynamics. CFD simulation software solves the results in calculation by using the basic theory of aerodynamic. Calculation will inevitably lead to bias, and the wind tunnel test can effectively simulate the real driving condition, which is the most effective aerodynamics research method. This paper researches the aerodynamic characteristics of the wing of a racing car. Aerodynamic model of a racing car is established. Wind tunnel test is carried out and compared with the simulation results of computational fluid dynamics. The deviation of the two methods is small, and the accuracy of computational fluid dynamics simulation is verified. By means of CFD software simulation, the coefficients of six aerodynamic forces are fitted and the aerodynamic equations are obtained. Finally, the aerodynamic forces and torques of the racing car travel in bend are calculated.

  11. Numerical study of aerodynamic effects on road vehicles lifting surfaces

    Science.gov (United States)

    Cernat, Mihail Victor; Cernat Bobonea, Andreea

    2017-01-01

    The aerodynamic performance analysis of road vehicles depends on the study of engine intake and cooling flow, internal ventilation, tire cooling, and overall external flow as the motion of air around a moving vehicle affects all of its components in one form or another. Due to the complex geometry of these, the aerodynamic interaction between the various body components is significant, resulting in vortex flow and lifting surface shapes. The present study, however focuses on the effects of external aerodynamics only, and in particular on the flow over the lifting surfaces of a common compact car, designed especially for this study.

  12. Stochastic Analysis : A Series of Lectures

    CERN Document Server

    Dozzi, Marco; Flandoli, Franco; Russo, Francesco

    2015-01-01

    This book presents in thirteen refereed survey articles an overview of modern activity in stochastic analysis, written by leading international experts. The topics addressed include stochastic fluid dynamics and regularization by noise of deterministic dynamical systems; stochastic partial differential equations driven by Gaussian or Lévy noise, including the relationship between parabolic equations and particle systems, and wave equations in a geometric framework; Malliavin calculus and applications to stochastic numerics; stochastic integration in Banach spaces; porous media-type equations; stochastic deformations of classical mechanics and Feynman integrals and stochastic differential equations with reflection. The articles are based on short courses given at the Centre Interfacultaire Bernoulli of the Ecole Polytechnique Fédérale de Lausanne, Switzerland, from January to June 2012. They offer a valuable resource not only for specialists, but also for other researchers and Ph.D. students in the fields o...

  13. Stochastic Analysis with Financial Applications

    CERN Document Server

    Kohatsu-Higa, Arturo; Sheu, Shuenn-Jyi

    2011-01-01

    Stochastic analysis has a variety of applications to biological systems as well as physical and engineering problems, and its applications to finance and insurance have bloomed exponentially in recent times. The goal of this book is to present a broad overview of the range of applications of stochastic analysis and some of its recent theoretical developments. This includes numerical simulation, error analysis, parameter estimation, as well as control and robustness properties for stochastic equations. This book also covers the areas of backward stochastic differential equations via the (non-li

  14. TAD- THEORETICAL AERODYNAMICS PROGRAM

    Science.gov (United States)

    Barrowman, J.

    1994-01-01

    This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.

  15. State of the art in wind turbine aerodynamics and aeroelasticity

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Sørensen, Jens Nørkær; Voutsinas, S

    2006-01-01

    A comprehensive review of wind turbine aeroelasticity is given. The aerodynamic part starts with the simple aerodynamic Blade Element Momentum Method and ends with giving a review of the work done applying CFD on wind turbine rotors. In between is explained some methods of intermediate complexity...

  16. Full-scale measurements of aerodynamic induction in a rotor plane

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2014-01-01

    in the rotor plane of an operating 2MW/80m wind turbine to perform detailed analysis the aerodynamic induction. The experimental setup, analyses of the spatial structure of the aerodynamic induction and subsequent comparisons with numerical predictions, using the HAWC2 aerolastic code, are presented....

  17. Application of CFD technique for HYFLEX aerodynamic design

    OpenAIRE

    Yamamoto, Yukimitsu; Watanabe, Shigeya; Ishiguro, Mitsuo; Ogasawara, Ko; 山本 行光; 渡辺 重哉; 石黒 満津夫; 小笠原 宏

    1994-01-01

    An overview of the application of Computational Fluid Dynamics (CFD) technique for the HYFLEX (Hypersonic Flight Experiment) aerodynamic design by using the numerical simulation codes in the supersonic and hypersonic speed ranges is presented. Roles of CFD required to make up for the short term of development and small amount of the wind tunnel test cases, application in the HYFLEX aerodynamic design and their application methods are described. The procedure of CFD code validation by the expe...

  18. The aerodynamic design of an advanced rotor airfoil

    Science.gov (United States)

    Blackwell, J. A., Jr.; Hinson, B. L.

    1978-01-01

    An advanced rotor airfoil, designed utilizing supercritical airfoil technology and advanced design and analysis methodology is described. The airfoil was designed subject to stringent aerodynamic design criteria for improving the performance over the entire rotor operating regime. The design criteria are discussed. The design was accomplished using a physical plane, viscous, transonic inverse design procedure, and a constrained function minimization technique for optimizing the airfoil leading edge shape. The aerodynamic performance objectives of the airfoil are discussed.

  19. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2010-01-01

    This introduction to the principles of unsteady aerodynamics covers all the core concepts, provides readers with a review of the fundamental physics, terminology and basic equations, and covers hot new topics such as the use of flapping wings for propulsion.

  20. Aerodynamic Classification of Swept-Wing Ice Accretion

    Science.gov (United States)

    Diebold, Jeff M.; Broeren, Andy P.; Bragg, Michael B.

    2013-01-01

    The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current stateof- the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice and spanwise-ridge ice. In the case of horn ice it is shown that a further subclassification of "nominally 3D" or "highly 3D" horn ice may be necessary. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.

  1. Active aerodynamic drag reduction on morphable cylinders

    Science.gov (United States)

    Guttag, M.; Reis, P. M.

    2017-12-01

    We study a mechanism for active aerodynamic drag reduction on morphable grooved cylinders, whose topography can be modified pneumatically. Our design is inspired by the morphology of the Saguaro cactus (Carnegiea gigantea), which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. Our analog experimental samples comprise a spoked rigid skeleton with axial cavities, covered by a stretched elastomeric film. Decreasing the inner pressure of the sample produces axial grooves, whose depth can be accurately varied, on demand. First, we characterize the relation between groove depth and pneumatic loading through a combination of precision mechanical experiments and finite element simulations. Second, wind tunnel tests are used to measure the aerodynamic drag coefficient (as a function of Reynolds number) of the grooved samples, with different levels of periodicity and groove depths. We focus specifically on the drag crisis and systematically measure the associated minimum drag coefficient and the critical Reynolds number at which it occurs. The results are in agreement with the classic literature of rough cylinders, albeit with an unprecedented level of precision and resolution in varying topography using a single sample. Finally, we leverage the morphable nature of our system to dynamically reduce drag for varying aerodynamic loading conditions. We demonstrate that actively controlling the groove depth yields a drag coefficient that decreases monotonically with Reynolds number and is significantly lower than the fixed sample counterparts. These findings open the possibility for the drag reduction of grooved cylinders to be operated over a wide range of flow conditions.

  2. Stochastic Reachability Analysis of Hybrid Systems

    CERN Document Server

    Bujorianu, Luminita Manuela

    2012-01-01

    Stochastic reachability analysis (SRA) is a method of analyzing the behavior of control systems which mix discrete and continuous dynamics. For probabilistic discrete systems it has been shown to be a practical verification method but for stochastic hybrid systems it can be rather more. As a verification technique SRA can assess the safety and performance of, for example, autonomous systems, robot and aircraft path planning and multi-agent coordination but it can also be used for the adaptive control of such systems. Stochastic Reachability Analysis of Hybrid Systems is a self-contained and accessible introduction to this novel topic in the analysis and development of stochastic hybrid systems. Beginning with the relevant aspects of Markov models and introducing stochastic hybrid systems, the book then moves on to coverage of reachability analysis for stochastic hybrid systems. Following this build up, the core of the text first formally defines the concept of reachability in the stochastic framework and then...

  3. Wind Tunnel Testing on Crosswind Aerodynamic Forces Acting on Railway Vehicles

    Science.gov (United States)

    Kwon, Hyeok-Bin; Nam, Seong-Won; You, Won-Hee

    This study is devoted to measure the aerodynamic forces acting on two railway trains, one of which is a high-speed train at 300km/h maximum operation speed, and the other is a conventional train at the operating speed 100km/h. The three-dimensional train shapes have been modeled as detailed as possible including the inter-car, the upper cavity for pantograph, and the bogie systems. The aerodynamic forces on each vehicle of the trains have been measured in the subsonic wind tunnel with 4m×3m test section of Korea Aerospace Research Institute at Daejeon, Korea. The aerodynamic forces and moments of the train models have been plotted for various yaw angles and the characteristics of the aerodynamic coefficients has been discussed relating to the experimental conditions.

  4. Homogenization of the stochastic Navier–Stokes equation with a stochastic slip boundary condition

    KAUST Repository

    Bessaih, Hakima

    2015-11-02

    The two-dimensional Navier–Stokes equation in a perforated domain with a dynamical slip boundary condition is considered. We assume that the dynamic is driven by a stochastic perturbation on the interior of the domain and another stochastic perturbation on the boundaries of the holes. We consider a scaling (ᵋ for the viscosity and 1 for the density) that will lead to a time-dependent limit problem. However, the noncritical scaling (ᵋ, β > 1) is considered in front of the nonlinear term. The homogenized system in the limit is obtained as a Darcy’s law with memory with two permeabilities and an extra term that is due to the stochastic perturbation on the boundary of the holes. The nonhomogeneity on the boundary contains a stochastic part that yields in the limit an additional term in the Darcy’s law. We use the two-scale convergence method after extending the solution with 0 inside the holes to pass to the limit. By Itô stochastic calculus, we get uniform estimates on the solution in appropriate spaces. Due to the stochastic integral, the pressure that appears in the variational formulation does not have enough regularity in time. This fact made us rely only on the variational formulation for the passage to the limit on the solution. We obtain a variational formulation for the limit that is solution of a Stokes system with two pressures. This two-scale limit gives rise to three cell problems, two of them give the permeabilities while the third one gives an extra term in the Darcy’s law due to the stochastic perturbation on the boundary of the holes.

  5. Stochastic Estimation via Polynomial Chaos

    Science.gov (United States)

    2015-10-01

    AFRL-RW-EG-TR-2015-108 Stochastic Estimation via Polynomial Chaos Douglas V. Nance Air Force Research...COVERED (From - To) 20-04-2015 – 07-08-2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Stochastic Estimation via Polynomial Chaos ...This expository report discusses fundamental aspects of the polynomial chaos method for representing the properties of second order stochastic

  6. An assessment of glass microspheres for use as number-based aerodynamic size standards

    International Nuclear Information System (INIS)

    Ball, M.H.E.; Marshall, I.A.; Mitchell, J.P.; Rideal, G.

    1989-08-01

    Polydisperse, non-porous microspheres are required with well-defined aerodynamic properties to determine if enhanced settling of micron-sized aerosol particles occurs in the presence of larger particles (gravitational agglomeration). Glass spheres with claimed unimodal narrow distributions were evaluated using a TSI Aerodynamic Particle Sizer (APS33B). The size fractions containing particles in the range from 1 to 5 μm aerodynamic diameter were truly unimodal, but the fractions which were supposed to consist solely of particles larger than 5 μm aerodynamic diameter contained a significant proportion of submicron particles. (author)

  7. Remarks on stochastic acceleration

    International Nuclear Information System (INIS)

    Graeff, P.

    1982-12-01

    Stochastic acceleration and turbulent diffusion are strong turbulence problems since no expansion parameter exists. Hence the problem of finding rigorous results is of major interest both for checking approximations and for reference models. Since we have found a way of constructing such models in the turbulent diffusion case the question of the extension to stochastic acceleration now arises. The paper offers some possibilities illustrated by the case of 'stochastic free fall' which may be particularly interesting in the context of linear response theory. (orig.)

  8. Self-starting aerodynamics analysis of vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Jianyang Zhu

    2015-12-01

    Full Text Available Vertical axis wind turbine is a special type of wind-force electric generator which is capable of working in the complicated wind environment. The self-starting aerodynamics is one of the most important considerations for this kind of turbine. This article aims at providing a systematic synthesis on the self-starting aerodynamic characteristics of vertical axis wind turbine based on the numerical analysis approach. First, the physical model of vertical axis wind turbine and its parameter definitions are presented. Secondary, the interaction model between the vertical axis wind turbine and fluid is developed by using the weak coupling approach; the numerical data of this model are then compared with the wind tunnel experimental data to show its feasibility. Third, the effects of solidity and fixed pitch angle on the self-starting aerodynamic characteristics of the vertical axis wind turbine are analyzed systematically. Finally, the quantification effects of the solidity and fixed pitch angle on the self-starting performance of the turbine can be obtained. The analysis in this study will provide straightforward physical insight into the self-starting aerodynamic characteristics of vertical axis wind turbine.

  9. Stochastic parameterizing manifolds and non-Markovian reduced equations stochastic manifolds for nonlinear SPDEs II

    CERN Document Server

    Chekroun, Mickaël D; Wang, Shouhong

    2015-01-01

    In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give access to such PMs in practice. The key idea consists of representing the modes with high wave numbers as a pullback limit depending on the time-history of the modes with low wave numbers. Non-Markovian stochastic reduced systems are then derived based on such a PM approach. The reduced systems take the form of stochastic differential equations involving random coefficients that convey memory effects. The theory is illustrated on a stochastic Burgers-type equation.

  10. Stochastic spin-one massive field

    International Nuclear Information System (INIS)

    Lim, S.C.

    1984-01-01

    Stochastic quantization schemes of Nelson and Parisi and Wu are applied to a spin-one massive field. Unlike the scalar case Nelson's stochastic spin-one massive field cannot be identified with the corresponding euclidean field even if the fourth component of the euclidean coordinate is taken as equal to the real physical time. In the Parisi-Wu quantization scheme the stochastic Proca vector field has a similar property as the scalar field; which has an asymptotically stationary part and a transient part. The large equal-time limit of the expectation values of the stochastic Proca field are equal to the expectation values of the corresponding euclidean field. In the Stueckelberg formalism the Parisi-Wu scheme gives rise to a stochastic vector field which differs from the massless gauge field in that the gauge cannot be fixed by the choice of boundary condition. (orig.)

  11. A Stochastic Maximum Principle for a Stochastic Differential Game of a Mean-Field Type

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, John Joseph Absalom, E-mail: j.j.a.hosking@cma.uio.no [University of Oslo, Centre of Mathematics for Applications (CMA) (Norway)

    2012-12-15

    We construct a stochastic maximum principle (SMP) which provides necessary conditions for the existence of Nash equilibria in a certain form of N-agent stochastic differential game (SDG) of a mean-field type. The information structure considered for the SDG is of a possible asymmetric and partial type. To prove our SMP we take an approach based on spike-variations and adjoint representation techniques, analogous to that of S. Peng (SIAM J. Control Optim. 28(4):966-979, 1990) in the optimal stochastic control context. In our proof we apply adjoint representation procedures at three points. The first-order adjoint processes are defined as solutions to certain mean-field backward stochastic differential equations, and second-order adjoint processes of a first type are defined as solutions to certain backward stochastic differential equations. Second-order adjoint processes of a second type are defined as solutions of certain backward stochastic equations of a type that we introduce in this paper, and which we term conditional mean-field backward stochastic differential equations. From the resulting representations, we show that the terms relating to these second-order adjoint processes of the second type are of an order such that they do not appear in our final SMP equations. A comparable situation exists in an article by R. Buckdahn, B. Djehiche, and J. Li (Appl. Math. Optim. 64(2):197-216, 2011) that constructs a SMP for a mean-field type optimal stochastic control problem; however, the approach we take of using these second-order adjoint processes of a second type to deal with the type of terms that we refer to as the second form of quadratic-type terms represents an alternative to a development, to our setting, of the approach used in their article for their analogous type of term.

  12. A Stochastic Maximum Principle for a Stochastic Differential Game of a Mean-Field Type

    International Nuclear Information System (INIS)

    Hosking, John Joseph Absalom

    2012-01-01

    We construct a stochastic maximum principle (SMP) which provides necessary conditions for the existence of Nash equilibria in a certain form of N-agent stochastic differential game (SDG) of a mean-field type. The information structure considered for the SDG is of a possible asymmetric and partial type. To prove our SMP we take an approach based on spike-variations and adjoint representation techniques, analogous to that of S. Peng (SIAM J. Control Optim. 28(4):966–979, 1990) in the optimal stochastic control context. In our proof we apply adjoint representation procedures at three points. The first-order adjoint processes are defined as solutions to certain mean-field backward stochastic differential equations, and second-order adjoint processes of a first type are defined as solutions to certain backward stochastic differential equations. Second-order adjoint processes of a second type are defined as solutions of certain backward stochastic equations of a type that we introduce in this paper, and which we term conditional mean-field backward stochastic differential equations. From the resulting representations, we show that the terms relating to these second-order adjoint processes of the second type are of an order such that they do not appear in our final SMP equations. A comparable situation exists in an article by R. Buckdahn, B. Djehiche, and J. Li (Appl. Math. Optim. 64(2):197–216, 2011) that constructs a SMP for a mean-field type optimal stochastic control problem; however, the approach we take of using these second-order adjoint processes of a second type to deal with the type of terms that we refer to as the second form of quadratic-type terms represents an alternative to a development, to our setting, of the approach used in their article for their analogous type of term.

  13. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach

    OpenAIRE

    Nakata, Toshiyuki; Liu, Hao

    2011-01-01

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated comp...

  14. Stochastic TDHF and the Boltzman-Langevin equation

    International Nuclear Information System (INIS)

    Suraud, E.; Reinhard, P.G.

    1991-01-01

    Outgoing from a time-dependent theory of correlations, we present a stochastic differential equation for the propagation of ensembles of Slater determinants, called Stochastic Time-Dependent Hartree-Fock (Stochastic TDHF). These ensembles are allowed to develop large fluctuations in the Hartree-Fock mean fields. An alternative stochastic differential equation, the Boltzmann-Langevin equation, can be derived from Stochastic TDHF by averaging over subensembles with small fluctuations

  15. Analysis of broadband aerodynamic noise from VS45

    Energy Technology Data Exchange (ETDEWEB)

    Dundabin, P. [Renewable Energy Systems Ltd., Glasgow, Scotland (United Kingdom)

    1997-12-31

    This paper describes the analysis of acoustic data taken from the VS45 at Kaiser-Wilhelm-Koog. The aim was to investigate the dependence of aerodynamic noise on tip speed and angle of attack. In particular, the dependence of noise in individual third octave bands on these variable is examined. The analysis is divided into 3 sections: data selection, data checks and analysis of broadband nacelle noise; analysis of broadband aerodynamic noise and its sensitivity to tip speed and angle of attack. (LN)

  16. An explicit multi-time-stepping algorithm for aerodynamic flows

    OpenAIRE

    Niemann-Tuitman, B.E.; Veldman, A.E.P.

    1997-01-01

    An explicit multi-time-stepping algorithm with applications to aerodynamic flows is presented. In the algorithm, in different parts of the computational domain different time steps are taken, and the flow is synchronized at the so-called synchronization levels. The algorithm is validated for aerodynamic turbulent flows. For two-dimensional flows speedups in the order of five with respect to single time stepping are obtained.

  17. Stochastic resonance in a stochastic bistable system with additive noises and square–wave signal

    International Nuclear Information System (INIS)

    Feng, Guo; Xiang-Dong, Luo; Shao-Fu, Li; Yu-Rong, Zhou

    2010-01-01

    This paper considers the stochastic resonance in a stochastic bistable system driven by a periodic square-wave signal and a static force as well as by additive white noise and dichotomous noise from the viewpoint of signal-to-noise ratio. It finds that the signal-to-noise ratio appears as stochastic resonance behaviour when it is plotted as a function of the noise strength of the white noise and dichotomous noise, as a function of the system parameters, or as a function of the static force. Moreover, the influence of the strength of the stochastic potential force and the correlation rate of the dichotomous noise on the signal-to-noise ratio is investigated. (general)

  18. Specialized computer architectures for computational aerodynamics

    Science.gov (United States)

    Stevenson, D. K.

    1978-01-01

    In recent years, computational fluid dynamics has made significant progress in modelling aerodynamic phenomena. Currently, one of the major barriers to future development lies in the compute-intensive nature of the numerical formulations and the relative high cost of performing these computations on commercially available general purpose computers, a cost high with respect to dollar expenditure and/or elapsed time. Today's computing technology will support a program designed to create specialized computing facilities to be dedicated to the important problems of computational aerodynamics. One of the still unresolved questions is the organization of the computing components in such a facility. The characteristics of fluid dynamic problems which will have significant impact on the choice of computer architecture for a specialized facility are reviewed.

  19. Stochastic quantization of Proca field

    International Nuclear Information System (INIS)

    Lim, S.C.

    1981-03-01

    We discuss the complications that arise in the application of Nelson's stochastic quantization scheme to classical Proca field. One consistent way to obtain spin-one massive stochastic field is given. It is found that the result of Guerra et al on the connection between ground state stochastic field and the corresponding Euclidean-Markov field extends to the spin-one case. (author)

  20. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements

    Directory of Open Access Journals (Sweden)

    Shaomin Liu

    2007-01-01

    Full Text Available Parameterizations of aerodynamic resistance to heat and water transfer have a significant impact on the accuracy of models of land – atmosphere interactions and of estimated surface fluxes using spectro-radiometric data collected from aircrafts and satellites. We have used measurements from an eddy correlation system to derive the aerodynamic resistance to heat transfer over a bare soil surface as well as over a maize canopy. Diurnal variations of aerodynamic resistance have been analyzed. The results showed that the diurnal variation of aerodynamic resistance during daytime (07:00 h–18:00 h was significant for both the bare soil surface and the maize canopy although the range of variation was limited. Based on the measurements made by the eddy correlation system, a comprehensive evaluation of eight popularly used parameterization schemes of aerodynamic resistance was carried out. The roughness length for heat transfer is a crucial parameter in the estimation of aerodynamic resistance to heat transfer and can neither be taken as a constant nor be neglected. Comparing with the measurements, the parameterizations by Choudhury et al. (1986, Viney (1991, Yang et al. (2001 and the modified forms of Verma et al. (1976 and Mahrt and Ek (1984 by inclusion of roughness length for heat transfer gave good agreements with the measurements, while the parameterizations by Hatfield et al. (1983 and Xie (1988 showed larger errors even though the roughness length for heat transfer has been taken into account.

  1. Stochastic optimization methods

    CERN Document Server

    Marti, Kurt

    2005-01-01

    Optimization problems arising in practice involve random parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insensitive with respect to random parameter variations, deterministic substitute problems are needed. Based on the distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Deterministic and stochastic approximation methods and their analytical properties are provided: Taylor expansion, regression and response surface methods, probability inequalities, First Order Reliability Methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation methods, differentiation of probability and mean value functions. Convergence results of the resulting iterative solution procedures are given.

  2. Unsteady Aerodynamics Experiment Phases II-IV Test Configurations and Available Data Campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Simms, D. A.; Hand, M. M.; Fingersh, L. J.; Jager, D. W.

    1999-08-19

    The main objective of the Unsteady Aerodynamics Experiment is to provide information needed to quantify the full-scale three-dimensional aerodynamic behavior of horizontal axis wind turbines. To accomplish this, an experimental wind turbine configured to meet specific research objectives was assembled and operated at the National Renewable Energy Laboratory (NREL). The turbine was instrumented to characterize rotating blade aerodynamic performance, machine structural responses, and atmospheric inflow conditions. Comprehensive tests were conducted with the turbine operating in an outdoor field environment under diverse conditions. Resulting data are used to validate aerodynamic and structural dynamics models which are an important part of wind turbine design and engineering codes. Improvements in these models are needed to better characterize aerodynamic response in both the steady-state post-stall and dynamic stall regimes. Much of the effort in the earlier phase of the Unsteady Aerodynamics Experiment focused on developing required data acquisition systems. Complex instrumentation and equipment was needed to meet stringent data requirements while operating under the harsh environmental conditions of a wind turbine rotor. Once the data systems were developed, subsequent phases of experiments were then conducted to collect data for use in answering specific research questions. A description of the experiment configuration used during Phases II-IV of the experiment is contained in this report.

  3. Unsteady Aerodynamics Experiment Phase V: Test Configuration and Available Data Campaigns; TOPICAL

    International Nuclear Information System (INIS)

    Hand, M. M.; Simms, D. A.; Fingersh, L. J.; Jager, D. W.; Cotrell, J. R.

    2001-01-01

    The main objective of the Unsteady Aerodynamics Experiment is to provide information needed to quantify the full-scale, three-dimensional, unsteady aerodynamic behavior of horizontal-axis wind turbines (HAWTs). To accomplish this, an experimental wind turbine configured to meet specific research objectives was assembled and operated at the National Renewable Energy Laboratory (NREL). The turbine was instrumented to characterize rotating-blade aerodynamic performance, machine structural responses, and atmospheric inflow conditions. Comprehensive tests were conducted with the turbine operating in an outdoor field environment under diverse conditions. Resulting data are used to validate aerodynamic and structural dynamics models, which are an important part of wind turbine design and engineering codes. Improvements in these models are needed to better characterize aerodynamic response in both the steady-state post-stall and dynamic-stall regimes. Much of the effort in the first phase of the Unsteady Aerodynamics Experiment focused on developing required data acquisition systems. Complex instrumentation and equipment was needed to meet stringent data requirements while operating under the harsh environmental conditions of a wind turbine rotor. Once the data systems were developed, subsequent phases of experiments were then conducted to collect data for use in answering specific research questions. A description of the experiment configuration used during Phase V of the experiment is contained in this report

  4. Aerodynamic resistance reduction of electric and hybrid vehicles

    Science.gov (United States)

    1979-01-01

    The generation of an EHV aerodynamic data base was initiated by conducting full-scale wind tunnel tests on 16 vehicles. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current 4-passenger prototype automobile which was designed with aerodynamics as an integrated parameter. Characteristic effects of aspect ratio or fineness ratio which might appear if electric vehicle shape proportions were to vary significantly from current automobiles were identified. Some preliminary results indicate a 5 to 10% variation in drag over the range of interest. Effective drag coefficient wind-weighting factors over J227a driving cycles in the presence of annual mean wind fields were identified. Such coefficients, when properly weighted, were found to be from 5 to 65% greater than the zero-yaw drag coefficient in the cases presented. A vehicle aerodynamics bibliography of over 160 entries, in six general categories is included.

  5. Atmospheric testing of wind turbine trailing edge aerodynamic brakes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.S. [Wichita State Univ., KS (United States); Migliore, P.G. [National Renewable Energy Lab., Golden, CO (United States); Quandt, G.A.

    1997-12-31

    An experimental investigation was conducted using an instrumented horizontal-axis wind turbine that incorporated variable span trailing-edge aerodynamic brakes. A primary goal was to directly compare study results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were utilized to define effective changes in the aerodynamic coefficients, as a function of angle of attack and control deflection, for three device spans and configurations. Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (<70%) for 15% or larger span devices. Interestingly, aerodynamic controls with characteristic vents or openings appear most affected by span reductions and three-dimensional flow.

  6. Aerodynamic analysis of the Darrieus rotor including secondary effects

    Science.gov (United States)

    Paraschivoiu, I.; Delclaux, F.; Fraunie, P.; Beguier, C.

    1983-10-01

    An aerodynamic analysis is made of two variants of the two-actuator-disk theory for modeling the Darrieus wind turbine. The double-multiple-streamtube model with constant and variable interference factors, including secondary effects, is examined for a Darrieus rotor. The influence of the secondary effects, namely, the blade geometry and profile type, the rotating tower, and the presence of struts and aerodynamic spoilers, is relatively significant, especially at high tip-speed ratios. Variation of the induced velocity as a function of the azimuthal angle allows a more accurate calculation of the aerodynamic loads on the downwind zone of the rotor with respect to the assumed constant interference factors. The theoretical results were compared with available experimental data for the Magdalen Islands wind turbine and Sandia-type machines (straight-line/circular-arc shape).

  7. Design and Aero-elastic Simulation of a 5MW Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Vita, Luca; Schmidt Paulsen, Uwe; Aagaard Madsen, Helge

    2013-01-01

    This paper deals with the design of a 5MW floating offshore Vertical Axis Wind Turbine (VAWT). The design is based on a new offshore wind turbine concept (DeepWind concept), consisting of a Darrieus rotor mounted on a spar buoy support structure, which is anchored to the sea bed with mooring lines......-DTU. The numerical simulations take into account the fully coupled aerodynamic and hydrodynamic loads on the structure, due to wind, waves and currents. The turbine is tested in operative conditions, at different sea states, selected according to the international offshore standards. The research is part...... of the European project DeepWind (2010-2014), which has been financed by the European Union (FP7-Future Emerging Technologies)....

  8. Status report on the Aeronautical Research Institute of Sweden version of the missile aerodynamics program LARV, for calculation of static aerodynamic properties and longitudinal aerodynamic damping derivatives. Part 1: Theory

    Science.gov (United States)

    Weibust, E.

    Improvements to a missile aerodynamics program which enable it to (a) calculate aerodynamic coefficients as input for a flight mechanics model, (b) check manufacturers' data or estimate performance from photographs, (c) reduce wind tunnel testing, and (d) aid optimization studies, are discussed. Slender body theory is used for longitudinal damping derivatives prediction. Program predictions were compared to known values. Greater accuracy is required in the estimation of drag due to excrescences on actual missile configurations, the influence of a burning motor, and nonlinear effects in the stall region. Prediction of pressure centers on wings and on bodies in presence of wings must be improved.

  9. Phenomenology of stochastic exponential growth

    Science.gov (United States)

    Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya

    2017-06-01

    Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.

  10. Aerodynamic Support of a Big Industrial Turboblower Rotor

    OpenAIRE

    Šimek, Jiří; Kozánek, Jan; Šafr, Milan

    2007-01-01

    Aerodynamic bearing support for the rotor of a 100 kW input industrial turboblower with operational speed of 18 000 rpm was designed and manufactured. Rotor with mass of about 50 kg is supported in two tilting-pad journal bearings 120 mm in diameter, axial forces are taken up by aerodynamic spiral groove thrust bearing 250 mm in diameter. Some specific features of the bearing design are described in the paper and the results of rotor support tests are presented. The paper is an extended versi...

  11. Aerodynamic sampling for landmine trace detection

    Science.gov (United States)

    Settles, Gary S.; Kester, Douglas A.

    2001-10-01

    Electronic noses and similar sensors show promise for detecting buried landmines through the explosive trace signals they emit. A key step in this detection is the sampler or sniffer, which acquires the airborne trace signal and presents it to the detector. Practicality demands no physical contact with the ground. Further, both airborne particulates and molecular traces must be sampled. Given a complicated minefield terrain and microclimate, this becomes a daunting chore. Our prior research on canine olfactory aerodynamics revealed several ways that evolution has dealt with such problems: 1) proximity of the sniffer to the scent source is important, 2) avoid exhaling back into the scent source, 3) use an aerodynamic collar on the sniffer inlet, 4) use auxiliary airjets to stir up surface particles, and 5) manage the 'impedance mismatch' between sniffer and sensor airflows carefully. Unfortunately, even basic data on aerodynamic sniffer performance as a function of inlet-tube and scent-source diameters, standoff distance, etc., have not been previously obtained. A laboratory-prototype sniffer was thus developed to provide guidance for landmine trace detectors. Initial experiments with this device are the subject of this paper. For example, a spike in the trace signal is observed upon starting the sniffer airflow, apparently due to rapid depletion of the available signal-laden air. Further, shielding the sniffer from disruptive ambient airflows arises as a key issue in sampling efficiency.

  12. Optimal Control for Stochastic Delay Evolution Equations

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingxin, E-mail: mqx@hutc.zj.cn [Huzhou University, Department of Mathematical Sciences (China); Shen, Yang, E-mail: skyshen87@gmail.com [York University, Department of Mathematics and Statistics (Canada)

    2016-08-15

    In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we apply stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.

  13. Estimation of aircraft aerodynamic derivatives using Extended Kalman Filter

    OpenAIRE

    Curvo, M.

    2000-01-01

    Design of flight control laws, verification of performance predictions, and the implementation of flight simulations are tasks that require a mathematical model of the aircraft dynamics. The dynamical models are characterized by coefficients (aerodynamic derivatives) whose values must be determined from flight tests. This work outlines the use of the Extended Kalman Filter (EKF) in obtaining the aerodynamic derivatives of an aircraft. The EKF shows several advantages over the more traditional...

  14. Introduction to stochastic calculus

    CERN Document Server

    Karandikar, Rajeeva L

    2018-01-01

    This book sheds new light on stochastic calculus, the branch of mathematics that is most widely applied in financial engineering and mathematical finance. The first book to introduce pathwise formulae for the stochastic integral, it provides a simple but rigorous treatment of the subject, including a range of advanced topics. The book discusses in-depth topics such as quadratic variation, Ito formula, and Emery topology. The authors briefly address continuous semi-martingales to obtain growth estimates and study solution of a stochastic differential equation (SDE) by using the technique of random time change. Later, by using Metivier–Pellumail inequality, the solutions to SDEs driven by general semi-martingales are discussed. The connection of the theory with mathematical finance is briefly discussed and the book has extensive treatment on the representation of martingales as stochastic integrals and a second fundamental theorem of asset pricing. Intended for undergraduate- and beginning graduate-level stud...

  15. Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine

    Science.gov (United States)

    Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi

    This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.

  16. Some Features of Aerodynamics of Cyclonic Chamber with Free Exit

    Directory of Open Access Journals (Sweden)

    A. N. Orekhov

    2007-01-01

    Full Text Available The paper cites results of an experimental research in aerodynamics of a cyclonic chamber with a free exit that has a large relative length. Distributions of aerodynamic stream characteristics depending on geometry of working volume of the cyclonic chamber are given in the paper. Calculative dependences are proposed in the paper.

  17. ON THE IMPACT OF FLIGHT SAFETY CERTIFICATION REQUIREMENTS ON THE AERODYNAMIC EFFICIENCY OF COMMERCIAL AIRPLANES

    Directory of Open Access Journals (Sweden)

    Vladimir I. Shevyakov

    2018-01-01

    Full Text Available The article considers the issue of aerodynamics efficiency implementation taking into account certification requirements for flight safety. Aerodynamics efficiency means high aerodynamic performance (depending on the airplane size, aerodynamic performance in cruise flight, high aerodynamic performance at takeoff, as well as lift performance at landing.The author estimated the impact on aerodynamics efficiency of both the requirements for aerodynamics performance and requirements for aircraft systems, noncompliance with which may result in significant change of expected operating conditions. It was shown that the use of supercritical wing profiles may result in flight mode limitations due to failure of the required buffeting capacities. It does not allow engaging all the advantages of aerodynamics layout and requires special design solutions to prevent such cases.There were reviewed certification requirements for flight level pressure altitude accuracy and icing conditions warning sysytem. The research presented the methods of aerodynamic efficiency increase by meeting the requirements for reduced vertical separation minima flights and in icing conditions, including requirements for air data probes. Reduced vertical separation minima flight requirements are met by means of efficient air data probes location. Theoretical methods of flow calculation determine areas on the airplane skin surface where static probes minimize errors depending on angle-of-attack and sideslip. It was shown that if certification requirements are not met and in case of flight out of reduced vertical separation minima area, aerodynamics efficiency is significantly reduced and fuel consumption can be increased by 10% and higher. Suggested approaches implementation allows increasing commercial airplanes competitiveness.

  18. Aerodynamic window for a laser fusion device

    International Nuclear Information System (INIS)

    Masuda, Wataru

    1983-01-01

    Since the window of a laser system absorbs a part of the laser energy, the output power is determined by the characteristics of the window. The use of an aerodynamic window has been studied. The required characteristics are to keep the large pressure difference. An equation of motion of a vortex was presented and analyzed. The operation power of the system was studied. A multi-stage aerodynamic window was proposed to reduce the power. When the jet flow of 0.3 of the Mach number is used, the operation power will be several Megawatt, and the length of an optical path will be about 100 m. (Kato, T.)

  19. Brownian motion, martingales, and stochastic calculus

    CERN Document Server

    Le Gall, Jean-François

    2016-01-01

    This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested i...

  20. Stochastic line motion and stochastic flux conservation for nonideal hydromagnetic models

    International Nuclear Information System (INIS)

    Eyink, Gregory L.

    2009-01-01

    We prove that smooth solutions of nonideal (viscous and resistive) incompressible magnetohydrodynamic (MHD) equations satisfy a stochastic law of flux conservation. This property implies that the magnetic flux through a surface is equal to the average of the magnetic fluxes through an ensemble of surfaces advected backward in time by the plasma velocity perturbed with a random white noise. Our result is an analog of the well-known Alfven theorem of ideal MHD and is valid for any value of the magnetic Prandtl number. A second stochastic conservation law is shown to hold at unit Prandtl number, a random version of the generalized Kelvin theorem derived by Bekenstein and Oron for ideal MHD. These stochastic conservation laws are not only shown to be consequences of the nonideal MHD equations but are proved in fact to be equivalent to those equations. We derive similar results for two more refined hydromagnetic models, Hall MHD and the two-fluid plasma model, still assuming incompressible velocities and isotropic transport coefficients. Finally, we use these results to discuss briefly the infinite-Reynolds-number limit of hydromagnetic turbulence and to support the conjecture that flux conservation remains stochastic in that limit.

  1. Brownian motion and stochastic calculus

    CERN Document Server

    Karatzas, Ioannis

    1998-01-01

    This book is designed as a text for graduate courses in stochastic processes. It is written for readers familiar with measure-theoretic probability and discrete-time processes who wish to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed. The power of this calculus is illustrated by results concerning representations of martingales and change of measure on Wiener space, and these in turn permit a presentation of recent advances in financial economics (option pricing and consumption/investment optimization). This book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The text is complemented by a large num...

  2. Variance decomposition in stochastic simulators.

    Science.gov (United States)

    Le Maître, O P; Knio, O M; Moraes, A

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  3. Variance decomposition in stochastic simulators

    Science.gov (United States)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  4. Variance decomposition in stochastic simulators

    Energy Technology Data Exchange (ETDEWEB)

    Le Maître, O. P., E-mail: olm@limsi.fr [LIMSI-CNRS, UPR 3251, Orsay (France); Knio, O. M., E-mail: knio@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708 (United States); Moraes, A., E-mail: alvaro.moraesgutierrez@kaust.edu.sa [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  5. Variance decomposition in stochastic simulators

    KAUST Repository

    Le Maî tre, O. P.; Knio, O. M.; Moraes, Alvaro

    2015-01-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  6. Stochastic synaptic plasticity with memristor crossbar arrays

    KAUST Repository

    Naous, Rawan

    2016-11-01

    Memristive devices have been shown to exhibit slow and stochastic resistive switching behavior under low-voltage, low-current operating conditions. Here we explore such mechanisms to emulate stochastic plasticity in memristor crossbar synapse arrays. Interfaced with integrate-and-fire spiking neurons, the memristive synapse arrays are capable of implementing stochastic forms of spike-timing dependent plasticity which parallel mean-rate models of stochastic learning with binary synapses. We present theory and experiments with spike-based stochastic learning in memristor crossbar arrays, including simplified modeling as well as detailed physical simulation of memristor stochastic resistive switching characteristics due to voltage and current induced filament formation and collapse. © 2016 IEEE.

  7. Stochastic synaptic plasticity with memristor crossbar arrays

    KAUST Repository

    Naous, Rawan; Al-Shedivat, Maruan; Neftci, Emre; Cauwenberghs, Gert; Salama, Khaled N.

    2016-01-01

    Memristive devices have been shown to exhibit slow and stochastic resistive switching behavior under low-voltage, low-current operating conditions. Here we explore such mechanisms to emulate stochastic plasticity in memristor crossbar synapse arrays. Interfaced with integrate-and-fire spiking neurons, the memristive synapse arrays are capable of implementing stochastic forms of spike-timing dependent plasticity which parallel mean-rate models of stochastic learning with binary synapses. We present theory and experiments with spike-based stochastic learning in memristor crossbar arrays, including simplified modeling as well as detailed physical simulation of memristor stochastic resistive switching characteristics due to voltage and current induced filament formation and collapse. © 2016 IEEE.

  8. AERODYNAMIC IMPROVEMENT OF KhADI 33 RACING CAR RADIATOR COMPARTMENT

    Directory of Open Access Journals (Sweden)

    A. Avershyn

    2011-01-01

    Full Text Available Aerodynamic characteristics of radiator compartment of KhADI 33 racing car on the basis of the decision of the interfaced problem of internal and external aerodynamics are numerically investigated. The rational variant of radiator compartment which is characterized by high throughput and low level of non-uniformity of speed field at the input is offered.

  9. Unsteady aerodynamic modeling at high angles of attack using support vector machines

    Directory of Open Access Journals (Sweden)

    Wang Qing

    2015-06-01

    Full Text Available Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determination and parameter estimation due to little understanding of the flow mechanism. Support vector machines (SVMs based on statistical learning theory provide a novel tool for nonlinear system modeling. The work presented here examines the feasibility of applying SVMs to high angle-of-attack unsteady aerodynamic modeling field. Mainly, after a review of SVMs, several issues associated with unsteady aerodynamic modeling by use of SVMs are discussed in detail, such as selection of input variables, selection of output variables and determination of SVM parameters. The least squares SVM (LS-SVM models are set up from certain dynamic wind tunnel test data of a delta wing and an aircraft configuration, and then used to predict the aerodynamic responses in other tests. The predictions are in good agreement with the test data, which indicates the satisfying learning and generalization performance of LS-SVMs.

  10. Transonic and supersonic ground effect aerodynamics

    Science.gov (United States)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  11. Numerical aerodynamic simulation (NAS)

    International Nuclear Information System (INIS)

    Peterson, V.L.; Ballhaus, W.F. Jr.; Bailey, F.R.

    1984-01-01

    The Numerical Aerodynamic Simulation (NAS) Program is designed to provide a leading-edge computational capability to the aerospace community. It was recognized early in the program that, in addition to more advanced computers, the entire computational process ranging from problem formulation to publication of results needed to be improved to realize the full impact of computational aerodynamics. Therefore, the NAS Program has been structured to focus on the development of a complete system that can be upgraded periodically with minimum impact on the user and on the inventory of applications software. The implementation phase of the program is now under way. It is based upon nearly 8 yr of study and should culminate in an initial operational capability before 1986. The objective of this paper is fivefold: 1) to discuss the factors motivating the NAS program, 2) to provide a history of the activity, 3) to describe each of the elements of the processing-system network, 4) to outline the proposed allocation of time to users of the facility, and 5) to describe some of the candidate problems being considered for the first benchmark codes

  12. An introduction to probability and stochastic processes

    CERN Document Server

    Melsa, James L

    2013-01-01

    Geared toward college seniors and first-year graduate students, this text is designed for a one-semester course in probability and stochastic processes. Topics covered in detail include probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.

  13. Research on nonlinear stochastic dynamical price model

    International Nuclear Information System (INIS)

    Li Jiaorui; Xu Wei; Xie Wenxian; Ren Zhengzheng

    2008-01-01

    In consideration of many uncertain factors existing in economic system, nonlinear stochastic dynamical price model which is subjected to Gaussian white noise excitation is proposed based on deterministic model. One-dimensional averaged Ito stochastic differential equation for the model is derived by using the stochastic averaging method, and applied to investigate the stability of the trivial solution and the first-passage failure of the stochastic price model. The stochastic price model and the methods presented in this paper are verified by numerical studies

  14. Recent topics on aerodynamic noise; Kuriki soon ni kansuru saikin no wadai

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, M [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)

    1995-04-20

    For measures to deal with aerodynamic noise, recent subjects were put in order and some examples of the studies were introduced in this paper. Aerodynamic noise can be classified into rotational aerodynamic noise such as jet engine fans or helicopter rotors and general aerodynamic noise such as high speed jet noise, high speed air flow inside piping, and external noise from vehicles, cars and aeroplanes. The aerodynamic noise of the air flow radiated from a wind tunnel exit was caused more or less by the pressure fluctuation of a boundary layer in a high frequency wave region. In checking the noise generated from a difference in level, projection, cavity, opening, etc., of a high speed vehicle in a wind tunnel test, the noise was louder in the case of a difference in level where the downstream side was raised. The finding was similar with projections. In the rear of a super sonic choke part, a strong flow was generated and became a violent noise source when a flow was overexpanded and a pressure was recovered with a sonic boom. However, the noise was greatly reduced by installing a porous material such as a porous metal immediately behind the choke part. An active control of noise was carried out by changing a sound field characteristic against aerodynamic self-excited noise with a speaker. 32 refs., 11 figs.

  15. Stochastic Systems Uncertainty Quantification and Propagation

    CERN Document Server

    Grigoriu, Mircea

    2012-01-01

    Uncertainty is an inherent feature of both properties of physical systems and the inputs to these systems that needs to be quantified for cost effective and reliable designs. The states of these systems satisfy equations with random entries, referred to as stochastic equations, so that they are random functions of time and/or space. The solution of stochastic equations poses notable technical difficulties that are frequently circumvented by heuristic assumptions at the expense of accuracy and rigor. The main objective of Stochastic Systems is to promoting the development of accurate and efficient methods for solving stochastic equations and to foster interactions between engineers, scientists, and mathematicians. To achieve these objectives Stochastic Systems presents: ·         A clear and brief review of essential concepts on probability theory, random functions, stochastic calculus, Monte Carlo simulation, and functional analysis   ·          Probabilistic models for random variables an...

  16. Stochastic-field cavitation model

    International Nuclear Information System (INIS)

    Dumond, J.; Magagnato, F.; Class, A.

    2013-01-01

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations

  17. Stochastic-field cavitation model

    Science.gov (United States)

    Dumond, J.; Magagnato, F.; Class, A.

    2013-07-01

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

  18. An Influence Function Method for Predicting Store Aerodynamic Characteristics during Weapon Separation,

    Science.gov (United States)

    1981-05-14

    8217 AO-Ail 777 GRUMMAN AEROSPACE CORP BETHPAGE NY F/G 20/4 AN INFLUENCE FUNCTION METHOD FOR PREDICTING STORE AERODYNAMIC C--ETCCU) MAY 8 1 R MEYER, A...CENKO, S YARDS UNCLASSIFIED N ’.**~~N**n I EHEEKI j~j .25 Q~4 111110 111_L 5. AN INFLUENCE FUNCTION METHOD FOR PREDICTING STORE AERODYNAMIC...extended to their logical conclusion one is led quite naturally to consideration of an " Influence Function Method" for I predicting store aerodynamic

  19. Stochastic Pi-calculus Revisited

    DEFF Research Database (Denmark)

    Cardelli, Luca; Mardare, Radu Iulian

    2013-01-01

    We develop a version of stochastic Pi-calculus with a semantics based on measure theory. We dene the behaviour of a process in a rate environment using measures over the measurable space of processes induced by structural congruence. We extend the stochastic bisimulation to include the concept of...

  20. Aerodynamic loads on buses due to crosswind gusts: extended analysis

    Science.gov (United States)

    Drugge, Lars; Juhlin, Magnus

    2010-12-01

    The objective of this work is to use inverse simulations on measured vehicle data in order to estimate the aerodynamic loads on a bus when exposed to crosswind situations. Tyre forces, driver input, wind velocity and vehicle response were measured on a typical coach when subjected to natural crosswind gusts. Based on these measurements and a detailed MBS vehicle model, the aerodynamic loads were estimated through inverse simulations. In order to estimate the lift force, roll and pitch moments in addition to the lateral force and yaw moment, the simulation model was extended by also incorporating the estimation of the vertical road disturbances. The proposed method enables the estimation of aerodynamic loads due to crosswind gusts without using a full scale wind tunnel adapted for crosswind excitation.

  1. The effect of variations in first- and second-order derivatives on airfoil aerodynamic performance

    Directory of Open Access Journals (Sweden)

    Penghui Yi

    2017-01-01

    Full Text Available The geometric factors which influence airfoil aerodynamic performance are attributed to variations in local first- and second-order curvature derivatives. Based on a self-developed computational fluid dynamics (CFD program called UCFD, the influence of local profile variations on airfoil aerodynamic performance in different pressure areas is investigated. The results show that variations in first- and second-order derivatives of the airfoil profiles can cause fluctuations in airfoil aerodynamic performance. The greater the variation in local first- and second-order derivatives, the greater the fluctuation amplitude of the airfoil aerodynamic coefficients. Moreover, at the area near the leading edge and the shock-wave position, the surface pressure is more sensitive to changes in first- and second-order derivatives. These results provide a reference for airfoil aerodynamic shape design.

  2. The aerodynamics of sailing apparel

    NARCIS (Netherlands)

    Jansen, A.J.; Van Deursen, B.; Howe, C.

    2012-01-01

    The paper presents the effect of changes in sailing apparel on aerodynamic drag, starting from the assumption that drag reduction of sailing apparel will increase the speed of an Olympic class sailing boat (in this case the Laser, a single-handed Olympic dinghy), mainly on upwind courses. Due to the

  3. Stochastic volatility of volatility in continuous time

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Veraart, Almut

    This paper introduces the concept of stochastic volatility of volatility in continuous time and, hence, extends standard stochastic volatility (SV) models to allow for an additional source of randomness associated with greater variability in the data. We discuss how stochastic volatility...... of volatility can be defined both non-parametrically, where we link it to the quadratic variation of the stochastic variance process, and parametrically, where we propose two new SV models which allow for stochastic volatility of volatility. In addition, we show that volatility of volatility can be estimated...

  4. Shape optimization for aerodynamic efficiency and low observability

    Science.gov (United States)

    Vinh, Hoang; Van Dam, C. P.; Dwyer, Harry A.

    1993-01-01

    Field methods based on the finite-difference approximations of the time-domain Maxwell's equations and the potential-flow equation have been developed to solve the multidisciplinary problem of airfoil shaping for aerodynamic efficiency and low radar cross section (RCS). A parametric study and an optimization study employing the two analysis methods are presented to illustrate their combined capabilities. The parametric study shows that for frontal radar illumination, the RCS of an airfoil is independent of the chordwise location of maximum thickness but depends strongly on the maximum thickness, leading-edge radius, and leadingedge shape. In addition, this study shows that the RCS of an airfoil can be reduced without significant effects on its transonic aerodynamic efficiency by reducing the leading-edge radius and/or modifying the shape of the leading edge. The optimization study involves the minimization of wave drag for a non-lifting, symmetrical airfoil with constraints on the airfoil maximum thickness and monostatic RCS. This optimization study shows that the two analysis methods can be used effectively to design aerodynamically efficient airfoils with certain desired RCS characteristics.

  5. Quantum stochastic calculus associated with quadratic quantum noises

    International Nuclear Information System (INIS)

    Ji, Un Cig; Sinha, Kalyan B.

    2016-01-01

    We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus

  6. Quantum stochastic calculus associated with quadratic quantum noises

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr [Department of Mathematics, Research Institute of Mathematical Finance, Chungbuk National University, Cheongju, Chungbuk 28644 (Korea, Republic of); Sinha, Kalyan B., E-mail: kbs-jaya@yahoo.co.in [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-64, India and Department of Mathematics, Indian Institute of Science, Bangalore-12 (India)

    2016-02-15

    We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus.

  7. Set-Valued Stochastic Lebesque Integral and Representation Theorems

    Directory of Open Access Journals (Sweden)

    Jungang Li

    2008-06-01

    Full Text Available In this paper, we shall firstly illustrate why we should introduce set-valued stochastic integrals, and then we shall discuss some properties of set-valued stochastic processes and the relation between a set-valued stochastic process and its selection set. After recalling the Aumann type definition of stochastic integral, we shall introduce a new definition of Lebesgue integral of a set-valued stochastic process with respect to the time t . Finally we shall prove the presentation theorem of set-valued stochastic integral and dis- cuss further properties that will be useful to study set-valued stochastic differential equations with their applications.

  8. Instantaneous stochastic perturbation theory

    International Nuclear Information System (INIS)

    Lüscher, Martin

    2015-01-01

    A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.

  9. A retrodictive stochastic simulation algorithm

    International Nuclear Information System (INIS)

    Vaughan, T.G.; Drummond, P.D.; Drummond, A.J.

    2010-01-01

    In this paper we describe a simple method for inferring the initial states of systems evolving stochastically according to master equations, given knowledge of the final states. This is achieved through the use of a retrodictive stochastic simulation algorithm which complements the usual predictive stochastic simulation approach. We demonstrate the utility of this new algorithm by applying it to example problems, including the derivation of likely ancestral states of a gene sequence given a Markovian model of genetic mutation.

  10. Stochastic processes and quantum theory

    International Nuclear Information System (INIS)

    Klauder, J.R.

    1975-01-01

    The author analyses a variety of stochastic processes, namely real time diffusion phenomena, which are analogues of imaginary time quantum theory and convariant imaginary time quantum field theory. He elaborates some standard properties involving probability measures and stochastic variables and considers a simple class of examples. Finally he develops the fact that certain stochastic theories actually exhibit divergences that simulate those of covariant quantum field theory and presents examples of both renormaizable and unrenormalizable behavior. (V.J.C.)

  11. Laryngeal Aerodynamics in Healthy Older Adults and Adults with Parkinson's Disease

    Science.gov (United States)

    Matheron, Deborah; Stathopoulos, Elaine T.; Huber, Jessica E.; Sussman, Joan E.

    2017-01-01

    Purpose: The present study compared laryngeal aerodynamic function of healthy older adults (HOA) to adults with Parkinson's disease (PD) while speaking at a comfortable and increased vocal intensity. Method: Laryngeal aerodynamic measures (subglottal pressure, peak-to-peak flow, minimum flow, and open quotient [OQ]) were compared between HOAs and…

  12. Self-starting aerodynamics analysis of vertical axis wind turbine

    OpenAIRE

    Jianyang Zhu; Hailin Huang; Hao Shen

    2015-01-01

    Vertical axis wind turbine is a special type of wind-force electric generator which is capable of working in the complicated wind environment. The self-starting aerodynamics is one of the most important considerations for this kind of turbine. This article aims at providing a systematic synthesis on the self-starting aerodynamic characteristics of vertical axis wind turbine based on the numerical analysis approach. First, the physical model of vertical axis wind turbine and its parameter defi...

  13. Aerodynamic models for high-amplitude, low reynolds flapping airfoils

    OpenAIRE

    Morales Tirado, Elisa

    2015-01-01

    In this thesis a new aerodynamic model of insect-like flapping flight for micro air vehicles has been developed. The New Predicted Aerodynamic Model (NPAM) was based on the model described by Weis-Fogh model in Energetics of Hovering Flight in Hummingbirds and Drosophila. In order to achieved the NPAM some variations were introduced regarding the geometry of the problem under study and also some improvements was done to the theory developed by Weis-Fogh. To have the required ...

  14. Influence of Icing on Bridge Cable Aerodynamics

    DEFF Research Database (Denmark)

    Koss, Holger; Frej Henningsen, Jesper; Olsen, Idar

    2013-01-01

    In recent years the relevance of ice accretion for wind-induced vibration of structural bridge cables has been recognised and became a subject of research in bridge engineering. Full-scale monitoring and observation indicate that light precipitation at moderate low temperatures between zero and -5......°C may lead to large amplitude vibrations of bridge cables under wind action. For the prediction of aerodynamic instability quasi-steady models have been developed estimating the cable response magnitude based on structural properties and aerodynamic force coefficients for drag, lift and torsion...... forces of different bridge cables types. The experiments were conducted in a wind tunnel facility capable amongst others to simulate incloud icing conditions....

  15. Stochastic Still Water Response Model

    DEFF Research Database (Denmark)

    Friis-Hansen, Peter; Ditlevsen, Ove Dalager

    2002-01-01

    In this study a stochastic field model for the still water loading is formulated where the statistics (mean value, standard deviation, and correlation) of the sectional forces are obtained by integration of the load field over the relevant part of the ship structure. The objective of the model is...... out that an important parameter of the stochastic cargo field model is the mean number of containers delivered by each customer.......In this study a stochastic field model for the still water loading is formulated where the statistics (mean value, standard deviation, and correlation) of the sectional forces are obtained by integration of the load field over the relevant part of the ship structure. The objective of the model...... is to establish the stochastic load field conditional on a given draft and trim of the vessel. The model contributes to a realistic modelling of the stochastic load processes to be used in a reliability evaluation of the ship hull. Emphasis is given to container vessels. The formulation of the model for obtaining...

  16. Stochastic quantization and topological theories

    International Nuclear Information System (INIS)

    Fainberg, V.Y.; Subbotin, A.V.; Kuznetsov, A.N.

    1992-01-01

    In the last two years topological quantum field theories (TQFT) have attached much attention. This paper reports that from the very beginning it was realized that due to a peculiar BRST-like symmetry these models admitted so-called Nicolai mapping: the Nicolai variables, in terms of which actions of the theories become gaussian, are nothing but (anti-) selfduality conditions or their generalizations. This fact became a starting point in the quest of possible stochastic interpretation to topological field theories. The reasons behind were quite simple and included, in particular, the well-known relations between stochastic processes and supersymmetry. The main goal would have been achieved, if it were possible to construct stochastic processes governed by Langevin or Fokker-Planck equations in a real Euclidean time leading to TQFT's path integrals (equivalently: to reformulate TQFTs as non-equilibrium phase dynamics of stochastic processes). Further on, if it would appear that these processes correspond to the stochastic quantization of theories of some definite kind, one could expect (d + 1)-dimensional TQFTs to share some common properties with d-dimensional ones

  17. Stochastic quantization of Einstein gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1986-01-01

    We determine a one-parameter family of covariant Langevin equations for the metric tensor of general relativity corresponding to DeWitt's one-parameter family of supermetrics. The stochastic source term in these equations can be expressed in terms of a Gaussian white noise upon the introduction of a stochastic tetrad field. The only physically acceptable resolution of a mathematical ambiguity in the ansatz for the source term is the adoption of Ito's calculus. By taking the formal equilibrium limit of the stochastic metric a one-parameter family of covariant path-integral measures for general relativity is obtained. There is a unique parameter value, distinguished by any one of the following three properties: (i) the metric is harmonic with respect to the supermetric, (ii) the path-integral measure is that of DeWitt, (iii) the supermetric governs the linearized Einstein dynamics. Moreover the Feynman propagator corresponding to this parameter is causal. Finally we show that a consistent stochastic perturbation theory gives rise to a new type of diagram containing ''stochastic vertices.''

  18. Momentum Maps and Stochastic Clebsch Action Principles

    Science.gov (United States)

    Cruzeiro, Ana Bela; Holm, Darryl D.; Ratiu, Tudor S.

    2018-01-01

    We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to the phase space variables through a momentum map. This special coupling simplifies the structure of the resulting stochastic Hamilton equations for the momentum map. In particular, these stochastic Hamilton equations collectivize for Hamiltonians that depend only on the momentum map variable. The Stratonovich equations are derived from the Clebsch variational principle and then converted into Itô form. In comparing the Stratonovich and Itô forms of the stochastic dynamical equations governing the components of the momentum map, we find that the Itô contraction term turns out to be a double Poisson bracket. Finally, we present the stochastic Hamiltonian formulation of the collectivized momentum map dynamics and derive the corresponding Kolmogorov forward and backward equations.

  19. Aerodynamic optimization of wind turbine rotor using CFD/AD method

    Science.gov (United States)

    Cao, Jiufa; Zhu, Weijun; Wang, Tongguang; Ke, Shitang

    2018-05-01

    The current work describes a novel technique for wind turbine rotor optimization. The aerodynamic design and optimization of wind turbine rotor can be achieved with different methods, such as the semi-empirical engineering methods and more accurate computational fluid dynamic (CFD) method. The CFD method often provides more detailed aerodynamics features during the design process. However, high computational cost limits the application, especially for rotor optimization purpose. In this paper, a CFD-based actuator disc (AD) model is used to represent turbulent flow over a wind turbine rotor. The rotor is modeled as a permeable disc of equivalent area where the forces from the blades are distributed on the circular disc. The AD model is coupled with a Reynolds Averaged Navier-Stokes (RANS) solver such that the thrust and power are simulated. The design variables are the shape parameters comprising the chord, the twist and the relative thickness of the wind turbine rotor blade. The comparative aerodynamic performance is analyzed between the original and optimized reference wind turbine rotor. The results showed that the optimization framework can be effectively and accurately utilized in enhancing the aerodynamic performance of the wind turbine rotor.

  20. Asymmetric Uncertainty Expression for High Gradient Aerodynamics

    Science.gov (United States)

    Pinier, Jeremy T

    2012-01-01

    When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

  1. Noise aspects at aerodynamic blade optimisation projects

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G. [Netherlands Energy Research Foundation, Petten (Netherlands)

    1997-12-31

    This paper shows an example of an aerodynamic blade optimisation, using the program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. The aerodynamic optimised geometry from PVOPT is the `real` optimum (up to the latest decimal). The most important conclusion from this study is, that it is worthwhile to investigate the behaviour of the objective function (in the present case the energy yield) around the optimum: If the optimum is flat, there is a possibility to apply modifications to the optimum configuration with only a limited loss in energy yield. It is obvious that the modified configurations emits a different (and possibly lower) noise level. In the BLADOPT program (the successor of PVOPT) it will be possible to quantify the noise level and hence to assess the reduced noise emission more thoroughly. At present the most promising approaches for noise reduction are believed to be a reduction of the rotor speed (if at all possible), and a reduction of the tip angle by means of low lift profiles, or decreased twist at the outboard stations. These modifications were possible without a significant loss in energy yield. (LN)

  2. Stochastic biomathematical models with applications to neuronal modeling

    CERN Document Server

    Batzel, Jerry; Ditlevsen, Susanne

    2013-01-01

    Stochastic biomathematical models are becoming increasingly important as new light is shed on the role of noise in living systems. In certain biological systems, stochastic effects may even enhance a signal, thus providing a biological motivation for the noise observed in living systems. Recent advances in stochastic analysis and increasing computing power facilitate the analysis of more biophysically realistic models, and this book provides researchers in computational neuroscience and stochastic systems with an overview of recent developments. Key concepts are developed in chapters written by experts in their respective fields. Topics include: one-dimensional homogeneous diffusions and their boundary behavior, large deviation theory and its application in stochastic neurobiological models, a review of mathematical methods for stochastic neuronal integrate-and-fire models, stochastic partial differential equation models in neurobiology, and stochastic modeling of spreading cortical depression.

  3. Aerodynamic Characteristic of the Active Compliant Trailing Edge Concept

    Science.gov (United States)

    Nie, Rui; Qiu, Jinhao; Ji, Hongli; Li, Dawei

    2016-06-01

    This paper introduces a novel Morphing Wing structure known as the Active Compliant Trailing Edge (ACTE). ACTE structures are designed using the concept of “distributed compliance” and wing skins of ACTE are fabricated from high-strength fiberglass composites laminates. Through the relative sliding between upper and lower wing skins which are connected by a linear guide pairs, the wing is able to achieve a large continuous deformation. In order to present an investigation about aerodynamics and noise characteristics of ACTE, a series of 2D airfoil analyses are established. The aerodynamic characteristics between ACTE and conventional deflection airfoil are analyzed and compared, and the impacts of different ACTE structure design parameters on aerodynamic characteristics are discussed. The airfoils mentioned above include two types (NACA0012 and NACA64A005.92). The computing results demonstrate that: compared with the conventional plane flap airfoil, the morphing wing using ACTE structures has the capability to improve aerodynamic characteristic and flow separation characteristic. In order to study the noise level of ACTE, flow field analysis using LES model is done to provide noise source data, and then the FW-H method is used to get the far field noise levels. The simulation results show that: compared with the conventional flap/aileron airfoil, the ACTE configuration is better to suppress the flow separation and lower the overall sound pressure level.

  4. Introduction to stochastic dynamic programming

    CERN Document Server

    Ross, Sheldon M; Lukacs, E

    1983-01-01

    Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist-providing counterexamples where appropriate-and the

  5. Stochastic Finite Elements in Reliability-Based Structural Optimization

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...

  6. BRST stochastic quantization

    International Nuclear Information System (INIS)

    Hueffel, H.

    1990-01-01

    After a brief review of the BRST formalism and of the Parisi-Wu stochastic quantization method we introduce the BRST stochastic quantization scheme. It allows the second quantization of constrained Hamiltonian systems in a manifestly gauge symmetry preserving way. The examples of the relativistic particle, the spinning particle and the bosonic string are worked out in detail. The paper is closed by a discussion on the interacting field theory associated to the relativistic point particle system. 58 refs. (Author)

  7. Improving the aerodynamics of a cooling system of a Formula Student car

    OpenAIRE

    Siitonen, Henri Mikael

    2011-01-01

    Now days the aerodynamics is the last frontier in which the race teams try to gain those precious seconds and levels of grip. The rules try to make the playing field even so that the competition would be fair. Still the teams come up with new innovations which then will give them the edge. For an automotive engineer it is vital to know the basics in aerodynamics, because also in the commercial side the cars are made more aerodynamic in order to achieve the lowest possible fuel consumption. ...

  8. Stochastic quantum gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1987-01-01

    We begin with a naive application of the Parisi-Wu scheme to linearized gravity. This will lead into trouble as one peculiarity of the full theory, the indefiniteness of the Euclidean action, shows up already at this level. After discussing some proposals to overcome this problem, Minkowski space stochastic quantization will be introduced. This will still not result in an acceptable quantum theory of linearized gravity, as the Feynman propagator turns out to be non-causal. This defect will be remedied only after a careful analysis of general covariance in stochastic quantization has been performed. The analysis requires the notion of a metric on the manifold of metrics, and a natural candidate for this is singled out. With this a consistent stochastic quantization of Einstein gravity becomes possible. It is even possible, at least perturbatively, to return to the Euclidean regime. 25 refs. (Author)

  9. Stochastic models, estimation, and control

    CERN Document Server

    Maybeck, Peter S

    1982-01-01

    This volume builds upon the foundations set in Volumes 1 and 2. Chapter 13 introduces the basic concepts of stochastic control and dynamic programming as the fundamental means of synthesizing optimal stochastic control laws.

  10. A Synthesis of Hybrid RANS/LES CFD Results for F-16XL Aircraft Aerodynamics

    Science.gov (United States)

    Luckring, James M.; Park, Michael A.; Hitzel, Stephan M.; Jirasek, Adam; Lofthouse, Andrew J.; Morton, Scott A.; McDaniel, David R.; Rizzi, Arthur M.

    2015-01-01

    A synthesis is presented of recent numerical predictions for the F-16XL aircraft flow fields and aerodynamics. The computational results were all performed with hybrid RANS/LES formulations, with an emphasis on unsteady flows and subsequent aerodynamics, and results from five computational methods are included. The work was focused on one particular low-speed, high angle-of-attack flight test condition, and comparisons against flight-test data are included. This work represents the third coordinated effort using the F-16XL aircraft, and a unique flight-test data set, to advance our knowledge of slender airframe aerodynamics as well as our capability for predicting these aerodynamics with advanced CFD formulations. The prior efforts were identified as Cranked Arrow Wing Aerodynamics Project International, with the acronyms CAWAPI and CAWAPI-2. All information in this paper is in the public domain.

  11. Aerodynamic performance of winglets covering the tip gap inlet in a turbine cascade

    International Nuclear Information System (INIS)

    Lee, Sang Woo; Kim, Seon Ung; Kim, Kyoung Hoon

    2012-01-01

    Highlights: ► We test aerodynamics of PS and LEPS winglets for three winglet widths. ► PS winglet reduces tip leakage loss but increases loss in the passage vortex region. ► Mass-averaged loss reductions by PS and LEPS winglets are marginal. ► The loss reductions are much smaller than that by a cavity squealer tip. - Abstract: The aerodynamic performance of two different kinds of winglets covering the tip gap inlet of a plane tip, a “pressure-side” (PS) winglet and a “leading-edge and pressure-side” (LEPS) winglet, has been investigated in a turbine cascade. For a tip gap height-to-chord ratio of h/c = 2.0%, their width-to-pitch ratio is changed to be w/p = 2.64, 5.28, and 10.55%. The PS winglet reduces aerodynamic loss in the tip leakage vortex region as well as in an area downstream of the winglet-pressure surface corner, whereas it increases aerodynamic loss in the central area of the passage vortex region. The additional leading-edge winglet portion of the LEPS winglet reduces aerodynamic loss considerably on the casing wall side of the passage vortex region but delivers a noticeable aerodynamic loss increase on its mid-span side. These local trends are deepened with increasing w/p. However, the mass-averaged aerodynamic loss reductions by installing the PS and LEPS winglets in comparison with the baseline no winglet data are only marginal even for w/p = 10.55% and found much smaller than that by employing a cavity squealer tip.

  12. Stochastic theories of quantum mechanics

    International Nuclear Information System (INIS)

    De la Pena, L.; Cetto, A.M.

    1991-01-01

    The material of this article is organized into five sections. In Sect. I the basic characteristics of quantum systems are briefly discussed, with emphasis on their stochastic properties. In Sect. II a version of stochastic quantum mechanics is presented, to conclude that the quantum formalism admits an interpretation in terms of stochastic processes. In Sect. III the elements of stochastic electrodynamics are described, and its possibilities and limitations as a fundamental theory of quantum systems are discussed. Section IV contains a recent reformulation that overcomes the limitations of the theory discussed in the foregoing section. Finally, in Sect. V the theorems of EPR, Von Neumann and Bell are discussed briefly. The material is pedagogically presented and includes an ample list of references, but the details of the derivations are generally omitted. (Author)

  13. Research on Aerodynamic Noise Reduction for High-Speed Trains

    OpenAIRE

    Zhang, Yadong; Zhang, Jiye; Li, Tian; Zhang, Liang; Zhang, Weihua

    2016-01-01

    A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES) using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD)/Ffowcs Williams-Hawkings (FW-H)...

  14. A heterogeneous stochastic FEM framework for elliptic PDEs

    International Nuclear Information System (INIS)

    Hou, Thomas Y.; Liu, Pengfei

    2015-01-01

    We introduce a new concept of sparsity for the stochastic elliptic operator −div(a(x,ω)∇(⋅)), which reflects the compactness of its inverse operator in the stochastic direction and allows for spatially heterogeneous stochastic structure. This new concept of sparsity motivates a heterogeneous stochastic finite element method (HSFEM) framework for linear elliptic equations, which discretizes the equations using the heterogeneous coupling of spatial basis with local stochastic basis to exploit the local stochastic structure of the solution space. We also provide a sampling method to construct the local stochastic basis for this framework using the randomized range finding techniques. The resulting HSFEM involves two stages and suits the multi-query setting: in the offline stage, the local stochastic structure of the solution space is identified; in the online stage, the equation can be efficiently solved for multiple forcing functions. An online error estimation and correction procedure through Monte Carlo sampling is given. Numerical results for several problems with high dimensional stochastic input are presented to demonstrate the efficiency of the HSFEM in the online stage

  15. Separable quadratic stochastic operators

    International Nuclear Information System (INIS)

    Rozikov, U.A.; Nazir, S.

    2009-04-01

    We consider quadratic stochastic operators, which are separable as a product of two linear operators. Depending on properties of these linear operators we classify the set of the separable quadratic stochastic operators: first class of constant operators, second class of linear and third class of nonlinear (separable) quadratic stochastic operators. Since the properties of operators from the first and second classes are well known, we mainly study the properties of the operators of the third class. We describe some Lyapunov functions of the operators and apply them to study ω-limit sets of the trajectories generated by the operators. We also compare our results with known results of the theory of quadratic operators and give some open problems. (author)

  16. Numerical study on aerodynamics of banked wing in ground effect

    Directory of Open Access Journals (Sweden)

    Qing Jia

    2016-03-01

    Full Text Available Unlike conventional airplane, a WIG craft experiences righting moment and adverse yaw moment in banked turning in ground effect. Numerical simulations are carried out to study the aerodynamics of banked wing in ground effect. Configurations of rectangular wing and delta wing are considered, and performance of endplates and ailerons during banking are also studied. The study shows that righting moment increase nonlinearly with heeling angle, and endplates enhance the righting. The asymmetric aerodynamic distribution along span of wing with heeling angle introduces adverse yaw moment. Heeling in ground effect with small ground clearance increases the vertical aerodynamic force and makes WIG craft climb. Deflections of ailerons introduce lift decrease and a light pitching motion. Delta wing shows advantage in banked turning for smaller righting moment and adverse yaw moment during banking.

  17. Trajectory averaging for stochastic approximation MCMC algorithms

    KAUST Repository

    Liang, Faming

    2010-01-01

    to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic

  18. Dynamical and hamiltonian dilations of stochastic processes

    International Nuclear Information System (INIS)

    Baumgartner, B.; Gruemm, H.-R.

    1982-01-01

    This is a study of the problem, which stochastic processes could arise from dynamical systems by loss of information. The notions of ''dilation'' and ''approximate dilation'' of a stochastic process are introduced to give exact definitions of this particular relationship. It is shown that every generalized stochastic process is approximately dilatable by a sequence of dynamical systems, but for stochastic processes in full generality one needs nets. (Author)

  19. Aerodynamic design of electric and hybrid vehicles: A guidebook

    Science.gov (United States)

    Kurtz, D. W.

    1980-01-01

    A typical present-day subcompact electric hybrid vehicle (EHV), operating on an SAE J227a D driving cycle, consumes up to 35% of its road energy requirement overcoming aerodynamic resistance. The application of an integrated system design approach, where drag reduction is an important design parameter, can increase the cycle range by more than 15%. This guidebook highlights a logic strategy for including aerodynamic drag reduction in the design of electric and hybrid vehicles to the degree appropriate to the mission requirements. Backup information and procedures are included in order to implement the strategy. Elements of the procedure are based on extensive wind tunnel tests involving generic subscale models and full-scale prototype EHVs. The user need not have any previous aerodynamic background. By necessity, the procedure utilizes many generic approximations and assumptions resulting in various levels of uncertainty. Dealing with these uncertainties, however, is a key feature of the strategy.

  20. Aerodynamic Effects in Weakly Ionized Gas: Phenomenology and Applications

    International Nuclear Information System (INIS)

    Popovic, S.; Vuskovic, L.

    2006-01-01

    Aerodynamic effects in ionized gases, often neglected phenomena, have been subject of a renewed interest in recent years. After a brief historical account, we discuss a selected number of effects and unresolved problems that appear to be relevant in both aeronautic and propulsion applications in subsonic, supersonic, and hypersonic flow. Interaction between acoustic shock waves and weakly ionized gas is manifested either as plasma-induced shock wave dispersion and acceleration or as shock-wave induced double electric layer in the plasma, followed by the localized increase of the average electron energy and density, as well as enhancement of optical emission. We describe the phenomenology of these effects and discuss several experiments that still do not have an adequate interpretation. Critical for application of aerodynamic effects is the energy deposition into the flow. We classify and discuss some proposed wall-free generation schemes with respect to the efficiency of energy deposition and overall generation of the aerodynamic body force

  1. Transport in Stochastic Media

    International Nuclear Information System (INIS)

    Haran, O.; Shvarts, D.; Thieberger, R.

    1998-01-01

    Classical transport of neutral particles in a binary, scattering, stochastic media is discussed. It is assumed that the cross-sections of the constituent materials and their volume fractions are known. The inner structure of the media is stochastic, but there exist a statistical knowledge about the lump sizes, shapes and arrangement. The transmission through the composite media depends on the specific heterogeneous realization of the media. The current research focuses on the averaged transmission through an ensemble of realizations, frm which an effective cross-section for the media can be derived. The problem of one dimensional transport in stochastic media has been studied extensively [1]. In the one dimensional description of the problem, particles are transported along a line populated with alternating material segments of random lengths. The current work discusses transport in two-dimensional stochastic media. The phenomenon that is unique to the multi-dimensional description of the problem is obstacle bypassing. Obstacle bypassing tends to reduce the opacity of the media, thereby reducing its effective cross-section. The importance of this phenomenon depends on the manner in which the obstacles are arranged in the media. Results of transport simulations in multi-dimensional stochastic media are presented. Effective cross-sections derived from the simulations are compared against those obtained for the one-dimensional problem, and against those obtained from effective multi-dimensional models, which are partially based on a Markovian assumption

  2. Stochastic Stability of Endogenous Growth: Theory and Applications

    OpenAIRE

    Boucekkine, Raouf; Pintus, Patrick; Zou, Benteng

    2015-01-01

    We examine the issue of stability of stochastic endogenous growth. First, stochastic stability concepts are introduced and applied to stochastic linear homogenous differen- tial equations to which several stochastic endogenous growth models reduce. Second, we apply the mathematical theory to two models, starting with the stochastic AK model. It’s shown that in this case exponential balanced paths, which characterize optimal trajectories in the absence of uncertainty, are not robust to uncerta...

  3. Stochastic models: theory and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.

    2008-03-01

    Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.

  4. Flapping wing flight can save aerodynamic power compared to steady flight.

    Science.gov (United States)

    Pesavento, Umberto; Wang, Z Jane

    2009-09-11

    Flapping flight is more maneuverable than steady flight. It is debated whether this advantage is necessarily accompanied by a trade-off in the flight efficiency. Here we ask if any flapping motion exists that is aerodynamically more efficient than the optimal steady motion. We solve the Navier-Stokes equation governing the fluid dynamics around a 2D flapping wing, and determine the minimal aerodynamic power needed to support a specified weight. While most flapping wing motions are more costly than the optimal steady wing motion, we find that optimized flapping wing motions can save up to 27% of the aerodynamic power required by the optimal steady flight. We explain the cause of this energetic advantage.

  5. Progresses in application of computational ?uid dynamic methods to large scale wind turbine aerodynamics?

    Institute of Scientific and Technical Information of China (English)

    Zhenyu ZHANG; Ning ZHAO; Wei ZHONG; Long WANG; Bofeng XU

    2016-01-01

    The computational ?uid dynamics (CFD) methods are applied to aerody-namic problems for large scale wind turbines. The progresses including the aerodynamic analyses of wind turbine pro?les, numerical ?ow simulation of wind turbine blades, evalu-ation of aerodynamic performance, and multi-objective blade optimization are discussed. Based on the CFD methods, signi?cant improvements are obtained to predict two/three-dimensional aerodynamic characteristics of wind turbine airfoils and blades, and the vorti-cal structure in their wake ?ows is accurately captured. Combining with a multi-objective genetic algorithm, a 1.5 MW NH-1500 optimized blade is designed with high e?ciency in wind energy conversion.

  6. Design and Execution of the Hypersonic Inflatable Aerodynamic Decelerator Large-Article Wind Tunnel Experiment

    Science.gov (United States)

    Cassell, Alan M.

    2013-01-01

    The testing of 3- and 6-meter diameter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) test articles was completed in the National Full-Scale Aerodynamics Complex 40 ft x 80 ft Wind Tunnel test section. Both models were stacked tori, constructed as 60 degree half-angle sphere cones. The 3-meter HIAD was tested in two configurations. The first 3-meter configuration utilized an instrumented flexible aerodynamic skin covering the inflatable aeroshell surface, while the second configuration employed a flight-like flexible thermal protection system. The 6-meter HIAD was tested in two structural configurations (with and without an aft-mounted stiffening torus near the shoulder), both utilizing an instrumented aerodynamic skin.

  7. Stochastic diffusion models for substitutable technological innovations

    NARCIS (Netherlands)

    Wang, L.; Hu, B.; Yu, X.

    2004-01-01

    Based on the analysis of firms' stochastic adoption behaviour, this paper first points out the necessity to build more practical stochastic models. And then, stochastic evolutionary models are built for substitutable innovation diffusion system. Finally, through the computer simulation of the

  8. Simulation on a car interior aerodynamic noise control based on statistical energy analysis

    Science.gov (United States)

    Chen, Xin; Wang, Dengfeng; Ma, Zhengdong

    2012-09-01

    How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.

  9. Stochasticity in the Josephson map

    International Nuclear Information System (INIS)

    Nomura, Y.; Ichikawa, Y.H.; Filippov, A.T.

    1996-04-01

    The Josephson map describes nonlinear dynamics of systems characterized by standard map with the uniform external bias superposed. The intricate structures of the phase space portrait of the Josephson map are examined on the basis of the tangent map associated with the Josephson map. Numerical observation of the stochastic diffusion in the Josephson map is examined in comparison with the renormalized diffusion coefficient calculated by the method of characteristic function. The global stochasticity of the Josephson map occurs at the values of far smaller stochastic parameter than the case of the standard map. (author)

  10. Aerodynamic performance of winglets covering the tip gap inlet in a turbine cascade

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Woo, E-mail: swlee@kumoh.ac.kr [Department of Mechanical Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Kim, Seon Ung; Kim, Kyoung Hoon [Department of Mechanical Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701 (Korea, Republic of)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer We test aerodynamics of PS and LEPS winglets for three winglet widths. Black-Right-Pointing-Pointer PS winglet reduces tip leakage loss but increases loss in the passage vortex region. Black-Right-Pointing-Pointer Mass-averaged loss reductions by PS and LEPS winglets are marginal. Black-Right-Pointing-Pointer The loss reductions are much smaller than that by a cavity squealer tip. - Abstract: The aerodynamic performance of two different kinds of winglets covering the tip gap inlet of a plane tip, a 'pressure-side' (PS) winglet and a 'leading-edge and pressure-side' (LEPS) winglet, has been investigated in a turbine cascade. For a tip gap height-to-chord ratio of h/c = 2.0%, their width-to-pitch ratio is changed to be w/p = 2.64, 5.28, and 10.55%. The PS winglet reduces aerodynamic loss in the tip leakage vortex region as well as in an area downstream of the winglet-pressure surface corner, whereas it increases aerodynamic loss in the central area of the passage vortex region. The additional leading-edge winglet portion of the LEPS winglet reduces aerodynamic loss considerably on the casing wall side of the passage vortex region but delivers a noticeable aerodynamic loss increase on its mid-span side. These local trends are deepened with increasing w/p. However, the mass-averaged aerodynamic loss reductions by installing the PS and LEPS winglets in comparison with the baseline no winglet data are only marginal even for w/p = 10.55% and found much smaller than that by employing a cavity squealer tip.

  11. Numerical Simulation of the Heston Model under Stochastic Correlation

    Directory of Open Access Journals (Sweden)

    Long Teng

    2017-12-01

    Full Text Available Stochastic correlation models have become increasingly important in financial markets. In order to be able to price vanilla options in stochastic volatility and correlation models, in this work, we study the extension of the Heston model by imposing stochastic correlations driven by a stochastic differential equation. We discuss the efficient algorithms for the extended Heston model by incorporating stochastic correlations. Our numerical experiments show that the proposed algorithms can efficiently provide highly accurate results for the extended Heston by including stochastic correlations. By investigating the effect of stochastic correlations on the implied volatility, we find that the performance of the Heston model can be proved by including stochastic correlations.

  12. Aerodynamic Parameters of a UK City Derived from Morphological Data

    Science.gov (United States)

    Millward-Hopkins, J. T.; Tomlin, A. S.; Ma, L.; Ingham, D. B.; Pourkashanian, M.

    2013-03-01

    Detailed three-dimensional building data and a morphometric model are used to estimate the aerodynamic roughness length z 0 and displacement height d over a major UK city (Leeds). Firstly, using an adaptive grid, the city is divided into neighbourhood regions that are each of a relatively consistent geometry throughout. Secondly, for each neighbourhood, a number of geometric parameters are calculated. Finally, these are used as input into a morphometric model that considers the influence of height variability to predict aerodynamic roughness length and displacement height. Predictions are compared with estimations made using standard tables of aerodynamic parameters. The comparison suggests that the accuracy of plan-area-density based tables is likely to be limited, and that height-based tables of aerodynamic parameters may be more accurate for UK cities. The displacement heights in the standard tables are shown to be lower than the current predictions. The importance of geometric details in determining z 0 and d is then explored. Height variability is observed to greatly increase the predicted values. However, building footprint shape only has a significant influence upon the predictions when height variability is not considered. Finally, we develop simple relations to quantify the influence of height variation upon predicted z 0 and d via the standard deviation of building heights. The difference in these predictions compared to the more complex approach highlights the importance of considering the specific shape of the building-height distributions. Collectively, these results suggest that to accurately predict aerodynamic parameters of real urban areas, height variability must be considered in detail, but it may be acceptable to make simple assumptions about building layout and footprint shape.

  13. Aerodynamic Optimization Design of a Multistage Centrifugal Steam Turbine and Its Off-Design Performance Analysis

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-01-01

    Full Text Available Centrifugal turbine which has less land occupation, simple structure, and high aerodynamic efficiency is suitable to be used as small to medium size steam turbines or waste heat recovery plant. In this paper, one-dimensional design of a multistage centrifugal steam turbine was performed by using in-house one-dimensional aerodynamic design program. In addition, three-dimensional numerical simulation was also performed in order to analyze design and off-design aerodynamic performance of the proposed centrifugal steam turbine. The results exhibit reasonable flow field and smooth streamline; the aerodynamic performance of the designed turbine meets our initial expectations. These results indicate that the one-dimensional aerodynamic design program is reliable and effective. The off-design aerodynamic performance of centrifugal steam turbine was analyzed, and the results show that the mass flow increases with the decrease of the pressure ratio at a constant speed, until the critical mass flow is reached. The efficiency curve with the pressure ratio has an optimum efficiency point. And the pressure ratio of the optimum efficiency agrees well with that of the one-dimensional design. The shaft power decreases as the pressure ratio increases at a constant speed. Overall, the centrifugal turbine has a wide range and good off-design aerodynamic performance.

  14. Study on aerodynamics characteristics an urban concept car for energy-efficient race

    Science.gov (United States)

    Ambarita, H.; Siregar, M. R.; Kawai, H.

    2018-03-01

    "Horas Mesin USU" is a prototype of urban concept vehicle designed by University of Sumatera Utara to participate in the energy-efficient competition. This paper deals with a numerical study on aerodynamic characteristics of the Horas Mesin USU. The numerical analyses are carried out by solving the governing equations using CFD FLUENT commercial code. The turbulent flow is closed using k-epsilon turbulence model. In the results, pathline, velocity vector and pressure distribution are plotted. By using the pressure distributions, drag and lift coefficients are calculated. In order to make a comparison, the aerodynamic characteristics of the present design are compared with commercial city car Ford-Fiesta. The averaged drag coefficients of Horas Mesin USU and Ford-Fiesta are 0.24320 and 0.29598, respectively. On the other hand, the averaged lift coefficients of the Horas Mesin USU and Ford-Fiesta are 0.03192202 and 0.09485621, respectively. This fact suggests that Ford-Fiesta has a better aerodynamic performance in comparison with Horas Mesin USU. The flow field analysis shows that there are many modifications can be proposed to improve the aerodynamic performance of the Horas Mesin USU. It is suggested to perform further analysis to improve the aerodynamic performance of Horas Mesin USU.

  15. Stochastic Finite Elements in Reliability-Based Structural Optimization

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    1995-01-01

    Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...... to optimization variables can be performed. A computer implementation is described and an illustrative example is given....

  16. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation

    International Nuclear Information System (INIS)

    Sun Quan; Cheng Bangqin; Li Yinghong; Cui Wei; Jin Di; Li Jun

    2013-01-01

    An experimental investigation on airfoil (NACA64—215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma = 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation

  17. Aerodynamic instabilities in governing valves of steam turbines

    International Nuclear Information System (INIS)

    Richard, J.M.; Pluviose, M.

    1991-01-01

    The capacity of a.c. turbogenerators in a Pressurized Water Reactor (PWR) is regulated by means of governing valves located at the inlet of the high-pressure turbine. The conditions created in these valves (due to the throttling of the steam) involve the generation of a jet structure, possibly supersonic. Aerodynamic instabilities could potentially excite the mechanical structure. These aerodynamic phenomena are studied in this paper by means of a two-dimensional numerical model. Viscous effects are taken into account with heuristic criteria on separation and reattachment. Detailed experimental analysis of the flow behaviour is compared with the numerical prediction of stability limits. (Author)

  18. Aerodynamic Noise An Introduction for Physicists and Engineers

    CERN Document Server

    Bose, Tarit

    2013-01-01

    Aerodynamic Noise extensively covers the theoretical basis and mathematical modeling of sound, especially the undesirable sounds produced by aircraft. This noise could come from an aircraft’s engine—propellers, fans, combustion chamber, jets—or the vehicle itself—external surfaces—or from sonic booms. The majority of the sound produced is due to the motion of air and its interaction with solid boundaries, and this is the main discussion of the book. With problem sets at the end of each chapter, Aerodynamic Noise is ideal for graduate students of mechanical and aerospace engineering. It may also be useful for designers of cars, trains, and wind turbines.

  19. Transient response of two lobe aerodynamic journal bearing

    Directory of Open Access Journals (Sweden)

    Saurabh Kumar Yadav

    2018-03-01

    Full Text Available The dynamic behavior of a rotor-dynamic system is greatly affected by the performance of aerodynamic bearing and the performance of bearing is characterized by the stiffness and damping coefficients. In the present work, stiffness and damping coefficients of bearing are computed and the performance of the bearing is greatly changed with the change in bearing air film profile. The effect of lobe offset factors on the transient performance of aerodynamic bearing is presented. Bifurcation and Poincare diagrams of two lobe journal bearing have been presented for different offset factors. A bearing designer can judge the bearing performance based on bifurcation diagrams.

  20. Membrane wing aerodynamics for micro air vehicles

    Science.gov (United States)

    Lian, Yongsheng; Shyy, Wei; Viieru, Dragos; Zhang, Baoning

    2003-10-01

    The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 10 6 to 10 4. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15 cm or smaller, flight speed around 10 m/ s, and a corresponding Reynolds number of 10 4-10 5. This paper reviews the aerodynamics of membrane and corresponding rigid wings under the MAV flight conditions. The membrane wing is observed to yield desirable characteristics in delaying stall as well as adapting to the unsteady flight environment, which is intrinsic to the designated flight speed. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble and tip vortex are reviewed. Structural dynamics in response to the surrounding flow field is presented to highlight the multiple time-scale phenomena. Based on the computational capabilities for treating moving boundary problems, wing shape optimization can be conducted in automated manners. To enhance the lift, the effect of endplates is evaluated. The proper orthogonal decomposition method is also discussed as an economic tool to describe the flow structure around a wing and to facilitate flow and vehicle control.

  1. Environmental vs Demographic Stochasticity in Population Growth

    OpenAIRE

    Braumann, C. A.

    2010-01-01

    Compares the effect on population growth of envinonmental stochasticity (random environmental variations described by stochastic differential equations) with demographic stochasticity (random variations in births and deaths described by branching processes and birth-and-death processes), in the density-independent and the density-dependent cases.

  2. Alternative Asymmetric Stochastic Volatility Models

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe stochastic volatility model usually incorporates asymmetric effects by introducing the negative correlation between the innovations in returns and volatility. In this paper, we propose a new asymmetric stochastic volatility model, based on the leverage and size effects. The model is

  3. Assessment of CFD Estimation of Aerodynamic Characteristics of Basic Reusable Rocket Configurations

    Science.gov (United States)

    Fujimoto, Keiichiro; Fujii, Kozo

    Flow-fields around the basic SSTO-rocket configurations are numerically simulated by the Reynolds-averaged Navier-Stokes (RANS) computations. Simulations of the Apollo-like configuration is first carried out, where the results are compared with NASA experiments and the prediction ability of the RANS simulation is discussed. The angle of attack of the freestream ranges from 0° to 180° and the freestream Mach number ranges from 0.7 to 2.0. Computed aerodynamic coefficients for the Apollo-like configuration agree well with the experiments under a wide range of flow conditions. The flow simulations around the slender Apollo-type configuration are carried out next and the results are compared with the experiments. Computed aerodynamic coefficients also agree well with the experiments. Flow-fields are dominated by the three-dimensional massively separated flow, which should be captured for accurate aerodynamic prediction. Grid refinement effects on the computed aerodynamic coefficients are investigated comprehensively.

  4. Aerodynamic study of sounding rocket flows using Chimera and patched multiblock meshes

    Directory of Open Access Journals (Sweden)

    João Alves de Oliveira Neto

    2011-01-01

    Full Text Available Aerodynamic flow simulations over a typical sounding rocket are presented in this paper. The work is inserted in the effort of developing computational tools necessary to simulate aerodynamic flows over configurations of interest for Instituto de Aeronáutica e Espaço of Departamento de Ciência e Tecnologia Aeroespacial. Sounding rocket configurations usually require fairly large fins and, quite frequently, have more than one set of fins. In order to be able to handle such configurations, the present paper presents a novel methodology which combines both Chimera and patched multiblock grids in the discretization of the computational domain. The flows of interest are modeled using the 3-D Euler equations and the work describes the details of discretization procedure, which uses a finite difference approach for structure, body-conforming, multiblock grids. The method is used to calculate the aerodynamics of a sounding rocket vehicle. The results indicate that the present approach can be a powerful aerodynamic analysis and design tool.

  5. Transport stochastic multi-dimensional media

    International Nuclear Information System (INIS)

    Haran, O.; Shvarts, D.

    1996-01-01

    Many physical phenomena evolve according to known deterministic rules, but in a stochastic media in which the composition changes in space and time. Examples to such phenomena are heat transfer in turbulent atmosphere with non uniform diffraction coefficients, neutron transfer in boiling coolant of a nuclear reactor and radiation transfer through concrete shields. The results of measurements conducted upon such a media are stochastic by nature, and depend on the specific realization of the media. In the last decade there has been a considerable efforts to describe linear particle transport in one dimensional stochastic media composed of several immiscible materials. However, transport in two or three dimensional stochastic media has been rarely addressed. The important effect in multi-dimensional transport that does not appear in one dimension is the ability to bypass obstacles. The current work is an attempt to quantify this effect. (authors)

  6. Transport stochastic multi-dimensional media

    Energy Technology Data Exchange (ETDEWEB)

    Haran, O; Shvarts, D [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev; Thiberger, R [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1996-12-01

    Many physical phenomena evolve according to known deterministic rules, but in a stochastic media in which the composition changes in space and time. Examples to such phenomena are heat transfer in turbulent atmosphere with non uniform diffraction coefficients, neutron transfer in boiling coolant of a nuclear reactor and radiation transfer through concrete shields. The results of measurements conducted upon such a media are stochastic by nature, and depend on the specific realization of the media. In the last decade there has been a considerable efforts to describe linear particle transport in one dimensional stochastic media composed of several immiscible materials. However, transport in two or three dimensional stochastic media has been rarely addressed. The important effect in multi-dimensional transport that does not appear in one dimension is the ability to bypass obstacles. The current work is an attempt to quantify this effect. (authors).

  7. Use of water towing tanks for aerodynamics and hydrodynamics

    Science.gov (United States)

    Gadelhak, Mohamed

    1987-01-01

    Wind tunnels and flumes have become standard laboratory tools for modeling a variety of aerodynamic and hydrodynamic flow problems. Less available, although by no means less useful, are facilities in which a model can be towed (or propelled) through air or water. This article emphasizes the use of the water towing tank as an experimental tool for aerodynamic and hydrodynamic studies. Its advantages and disadvantages over other flow rigs are discussed, and its usefullness is illustrated through many examples of research results obtained over the past few years in a typical towing tank facility.

  8. Modelling and application of stochastic processes

    CERN Document Server

    1986-01-01

    The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza­ tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef­ ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side,...

  9. Turbulent response in a stochastic regime

    International Nuclear Information System (INIS)

    Molvig, K.; Freidberg, J.P.; Potok, R.; Hirshman, S.P.; Whitson, J.C.; Tajima, T.

    1981-06-01

    The theory for the non-linear, turbulent response in a system with intrinsic stochasticity is considered. It is argued that perturbative Eulerian theories, such as the Direct Interaction Approximation (DIA), are inherently unsuited to describe such a system. The exponentiation property that characterizes stochasticity appears in the Lagrangian picture and cannot even be defined in the Eulerian representation. An approximation for stochastic systems - the Normal Stochastic Approximation - is developed and states that the perturbed orbit functions (Lagrangian fluctuations) behave as normally distributed random variables. This is independent of the Eulerian statistics and, in fact, we treat the Eulerian fluctuations as fixed. A simple model problem (appropriate for the electron response in the drift wave) is subjected to a series of computer experiments. To within numerical noise the results are in agreement with the Normal Stochastic Approximation. The predictions of the DIA for this mode show substantial qualitative and quantitative departures from the observations

  10. Stochastic modeling and analysis of telecoms networks

    CERN Document Server

    Decreusefond, Laurent

    2012-01-01

    This book addresses the stochastic modeling of telecommunication networks, introducing the main mathematical tools for that purpose, such as Markov processes, real and spatial point processes and stochastic recursions, and presenting a wide list of results on stability, performances and comparison of systems.The authors propose a comprehensive mathematical construction of the foundations of stochastic network theory: Markov chains, continuous time Markov chains are extensively studied using an original martingale-based approach. A complete presentation of stochastic recursions from an

  11. A comparison of extreme structural responses and fatigue damage of semi-submersible type floating horizontal and vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Chai, Wei

    2017-01-01

    •A comprehensive comparison of floating HAWTs and VAWTs with different blade number.•Extreme structural responses and fatigue damage are studied.•Both operational and parked conditions are considered.•The merits and disadvantages of floating HAWTs and VAWTs are revealed and highlighted.......•A comprehensive comparison of floating HAWTs and VAWTs with different blade number.•Extreme structural responses and fatigue damage are studied.•Both operational and parked conditions are considered.•The merits and disadvantages of floating HAWTs and VAWTs are revealed and highlighted....

  12. Trajectory averaging for stochastic approximation MCMC algorithms

    KAUST Repository

    Liang, Faming

    2010-10-01

    The subject of stochastic approximation was founded by Robbins and Monro [Ann. Math. Statist. 22 (1951) 400-407]. After five decades of continual development, it has developed into an important area in systems control and optimization, and it has also served as a prototype for the development of adaptive algorithms for on-line estimation and control of stochastic systems. Recently, it has been used in statistics with Markov chain Monte Carlo for solving maximum likelihood estimation problems and for general simulation and optimizations. In this paper, we first show that the trajectory averaging estimator is asymptotically efficient for the stochastic approximation MCMC (SAMCMC) algorithm under mild conditions, and then apply this result to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic approximation MLE algorithm for missing data problems, is also considered in the paper. © Institute of Mathematical Statistics, 2010.

  13. Stochastic resonance during a polymer translocation process

    International Nuclear Information System (INIS)

    Mondal, Debasish; Muthukumar, M.

    2016-01-01

    We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

  14. Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Deglaire, Paul

    2010-01-01

    Wind power is a renewable energy source that is today the fastest growing solution to reduce CO 2 emissions in the electric energy mix. Upwind horizontal axis wind turbine with three blades has been the preferred technical choice for more than two decades. This horizontal axis concept is today widely leading the market. The current PhD thesis will cover an alternative type of wind turbine with straight blades and rotating along the vertical axis. A brief overview of the main differences between the horizontal and vertical axis concept has been made. However the main focus of this thesis is the aerodynamics of the wind turbine blades. Making aerodynamically efficient turbines starts with efficient blades. Making efficient blades requires a good understanding of the physical phenomena and effective simulations tools to model them. The specific aerodynamics for straight bladed vertical axis turbine flow are reviewed together with the standard aerodynamic simulations tools that have been used in the past by blade and rotor designer. A reasonably fast (regarding computer power) and accurate (regarding comparison with experimental results) simulation method was still lacking in the field prior to the current work. This thesis aims at designing such a method. Analytical methods can be used to model complex flow if the geometry is simple. Therefore, a conformal mapping method is derived to transform any set of section into a set of standard circles. Then analytical procedures are generalized to simulate moving multibody sections in the complex vertical flows and forces experienced by the blades. Finally the fast semi analytical aerodynamic algorithm boosted by fast multipole methods to handle high number of vortices is coupled with a simple structural model of the rotor to investigate potential aeroelastic instabilities. Together with these advanced simulation tools, a standard double multiple streamtube model has been developed and used to design several straight bladed

  15. Is human failure a stochastic process?

    International Nuclear Information System (INIS)

    Dougherty, Ed M.

    1997-01-01

    Human performance results in failure events that occur with a risk-significant frequency. System analysts have taken for granted the random (stochastic) nature of these events in engineering assessments such as risk assessment. However, cognitive scientists and error technologists, at least those who have interest in human reliability, have, over the recent years, claimed that human error does not need this stochastic framework. Yet they still use the language appropriate to stochastic processes. This paper examines the potential for the stochastic nature of human failure production as the basis for human reliability analysis. It distinguishes and leaves to others, however, the epistemic uncertainties over the possible probability models for the real variability of human performance

  16. ISOLATED AERODYNAMIC SURFACE CALCULUS

    Directory of Open Access Journals (Sweden)

    ENUŞ Marilena

    2014-07-01

    Full Text Available The paper proposes to present a few steps for calculating the dynamics of flight. From an organizational perspective, the paper is structured in three parts. The first part provides essential information that needs to be taken into account when designing an aircraft wing. The second part presents the basic steps in the wing design procedure and finally, the third part contains the diagrams in which one can find the aerodynamic coefficient of a specifying wing.

  17. Stochastic Switching Dynamics

    DEFF Research Database (Denmark)

    Simonsen, Maria

    This thesis treats stochastic systems with switching dynamics. Models with these characteristics are studied from several perspectives. Initially in a simple framework given in the form of stochastic differential equations and, later, in an extended form which fits into the framework of sliding...... mode control. It is investigated how to understand and interpret solutions to models of switched systems, which are exposed to discontinuous dynamics and uncertainties (primarily) in the form of white noise. The goal is to gain knowledge about the performance of the system by interpreting the solution...

  18. Stochastic singular optics

    CSIR Research Space (South Africa)

    Roux, FS

    2013-09-01

    Full Text Available Roux Presented at the International Conference on Correlation Optics 2013 Chernivtsi, Ukraine 18-20 September 2013 CSIR National Laser Centre, Pretoria, South Africa – p. 1/24 Contents ⊲ Defining Stochastic Singular Optics (SSO) ⊲ Tools of Stochastic... of vortices: topological charge ±1 (higher order are unstable). Positive and negative vortex densities np(x, y, z) and nn(x, y, z) ⊲ Vortex density: V = np + nn ⊲ Topological charge density: T = np − nn – p. 4/24 Subfields of SSO ⊲ Homogeneous, normally...

  19. Aerodynamic levitation and laser heating: Applications at synchrotron and neutron sources

    International Nuclear Information System (INIS)

    Hennet, L.; Pozdnyakova, I.; Drewitt, J.W.E.; Leydier, M.; Brassamin, S.; Zanghi, D.; Magazu, S.; Price, D.L.; Cristiglio, V.; Kozaily, J.; Fischer, H.E.; Cuello, G.J.; Koza, M.; Bytchkov, A.; Thiaudiere, D.; Gruner, S.; Greaves, G.N.

    2011-01-01

    Aerodynamic levitation is an effective way to suspend samples which can be heated with CO 2 lasers. The advantages of this container-less technique are the simplicity and compactness of the device, making it possible to integrate it easily in different kinds of experiments. In addition, all types of materials can be used, including metals and oxides. The integration of aerodynamic levitation at synchrotron and neutron sources provides powerful tools to study the structure and dynamics of molten materials. We present here an overview of the existing techniques (electromagnetic levitation, electrostatic levitation, single-axis acoustic levitation, and aerodynamic levitation) and of the developments made at the CEMHTI in Orleans, as well as a few examples of experimental results already obtained. (authors)

  20. Aerodynamic levitation and laser heating: Applications at synchrotron and neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Hennet, L.; Pozdnyakova, I.; Drewitt, J.W.E.; Leydier, M.; Brassamin, S.; Zanghi, D.; Magazu, S.; Price, D.L. [CEMHTI and University of Orleans, 45071 Orleans Cedex 02 (France); Cristiglio, V.; Kozaily, J.; Fischer, H.E.; Cuello, G.J.; Koza, M. [ILL, BP. 156, 38042 Grenoble Cedex 09 (France); Bytchkov, A. [ESRF, BP. 220, 38043 Grenoble Cedex 09 (France); Thiaudiere, D. [Synchrotron SOLEIL, BP. 48, 91192 Gif-sur-Yvette Cedex (France); Gruner, S. [Institute of Physics, Chemnitz UT, 09107 Chemnitz (Germany); Greaves, G.N. [IMAPS, University of Wales, Aberystwyth, SY23 3BZ (United Kingdom)

    2011-05-15

    Aerodynamic levitation is an effective way to suspend samples which can be heated with CO{sub 2} lasers. The advantages of this container-less technique are the simplicity and compactness of the device, making it possible to integrate it easily in different kinds of experiments. In addition, all types of materials can be used, including metals and oxides. The integration of aerodynamic levitation at synchrotron and neutron sources provides powerful tools to study the structure and dynamics of molten materials. We present here an overview of the existing techniques (electromagnetic levitation, electrostatic levitation, single-axis acoustic levitation, and aerodynamic levitation) and of the developments made at the CEMHTI in Orleans, as well as a few examples of experimental results already obtained. (authors)

  1. Visualization of numerically simulated aerodynamic flow fields

    International Nuclear Information System (INIS)

    Hian, Q.L.; Damodaran, M.

    1991-01-01

    The focus of this paper is to describe the development and the application of an interactive integrated software to visualize numerically simulated aerodynamic flow fields so as to enable the practitioner of computational fluid dynamics to diagnose the numerical simulation and to elucidate essential flow physics from the simulation. The input to the software is the numerical database crunched by a supercomputer and typically consists of flow variables and computational grid geometry. This flow visualization system (FVS), written in C language is targetted at the Personal IRIS Workstations. In order to demonstrate the various visualization modules, the paper also describes the application of this software to visualize two- and three-dimensional flow fields past aerodynamic configurations which have been numerically simulated on the NEC-SXIA Supercomputer. 6 refs

  2. Flight Test Maneuvers for Efficient Aerodynamic Modeling

    Science.gov (United States)

    Morelli, Eugene A.

    2011-01-01

    Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.

  3. Aerodynamic Modelling and Optimization of Axial Fans

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft

    A numerically efficient mathematical model for the aerodynamics oflow speed axial fans of the arbitrary vortex flow type has been developed.The model is based on a blade-element principle, whereby therotor is divided into a number of annular streamtubes.For each of these streamtubes relations......-Raphson method, andsolutions converged to machine accuracy are found at small computing costs.The model has been validated against published measurementson various fan configurations,comprising two rotor-only fan stages, a counter-rotatingfan unit and a stator-rotor-stator stage.Comparisons of local...... and integrated propertiesshow that the computed results agree well with the measurements.Integrating a rotor-only version of the aerodynamic modelwith an algorithm for numerical designoptimization, enables the finding of an optimum fan rotor.The angular velocity of the rotor, the hub radius and the spanwise...

  4. KNOW-BLADE Task-2 report: Aerodynamic accessories

    DEFF Research Database (Denmark)

    Johansen, J.; Sørensen, Niels N.; Zahle, Frederik

    2004-01-01

    In the EC project KNOW-BLADE a work package has been defined to investigate the possibility to numerically model aerodynamic accessories in existing Navier-Stokes solvers. Four different aerodynamic accessories have been investigated. Firstly, thepotential of applying active flow control by means...... of the stall strip. Finally, the effect of surface roughness was modelled by either modifying the boundary condition of the turbulence model or by modifying the airfoil geometry. Using the roughness model gave relatively good agreement withmeasurements and it must be concluded that the effect of using...... to increase the oscillation amplitude, which is not very attractive for load control on wind turbines. Secondly, the effect of vortex generators hasbeen modelled using two phenomenological vortex generator models. The models have been applied to three airfoil configurations. For all cases investigated...

  5. POEMS in Newton's Aerodynamic Frustum

    Science.gov (United States)

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita

    2010-01-01

    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  6. Estimation of morphing airfoil shapes and aerodynamic loads using artificial hair sensors

    Science.gov (United States)

    Butler, Nathan Scott

    An active area of research in adaptive structures focuses on the use of continuous wing shape changing methods as a means of replacing conventional discrete control surfaces and increasing aerodynamic efficiency. Although many shape-changing methods have been used since the beginning of heavier-than-air flight, the concept of performing camber actuation on a fully-deformable airfoil has not been widely applied. A fundamental problem of applying this concept to real-world scenarios is the fact that camber actuation is a continuous, time-dependent process. Therefore, if camber actuation is to be used in a closed-loop feedback system, one must be able to determine the instantaneous airfoil shape, as well as the aerodynamic loads, in real time. One approach is to utilize a new type of artificial hair sensors (AHS) developed at the Air Force Research Laboratory (AFRL) to determine the flow conditions surrounding deformable airfoils. In this study, AHS measurement data will be simulated by using the flow solver XFoil, with the assumption that perfect data with no noise can be collected from the AHS measurements. Such measurements will then be used in an artificial neural network (ANN) based process to approximate the instantaneous airfoil camber shape, lift coefficient, and moment coefficient at a given angle of attack. Additionally, an aerodynamic formulation based on the finite-state inflow theory has been developed to calculate the aerodynamic loads on thin airfoils with arbitrary camber deformations. Various aerodynamic properties approximated from the AHS/ANN system will be compared with the results of the finite-state inflow aerodynamic formulation in order to validate the approximation approach.

  7. Dynamics of non-holonomic systems with stochastic transport

    Science.gov (United States)

    Holm, D. D.; Putkaradze, V.

    2018-01-01

    This paper formulates a variational approach for treating observational uncertainty and/or computational model errors as stochastic transport in dynamical systems governed by action principles under non-holonomic constraints. For this purpose, we derive, analyse and numerically study the example of an unbalanced spherical ball rolling under gravity along a stochastic path. Our approach uses the Hamilton-Pontryagin variational principle, constrained by a stochastic rolling condition, which we show is equivalent to the corresponding stochastic Lagrange-d'Alembert principle. In the example of the rolling ball, the stochasticity represents uncertainty in the observation and/or error in the computational simulation of the angular velocity of rolling. The influence of the stochasticity on the deterministically conserved quantities is investigated both analytically and numerically. Our approach applies to a wide variety of stochastic, non-holonomically constrained systems, because it preserves the mathematical properties inherited from the variational principle.

  8. Extension of a nonlinear systems theory to general-frequency unsteady transonic aerodynamic responses

    Science.gov (United States)

    Silva, Walter A.

    1993-01-01

    A methodology for modeling nonlinear unsteady aerodynamic responses, for subsequent use in aeroservoelastic analysis and design, using the Volterra-Wiener theory of nonlinear systems is presented. The methodology is extended to predict nonlinear unsteady aerodynamic responses of arbitrary frequency. The Volterra-Wiener theory uses multidimensional convolution integrals to predict the response of nonlinear systems to arbitrary inputs. The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code is used to generate linear and nonlinear unit impulse responses that correspond to each of the integrals for a rectangular wing with a NACA 0012 section with pitch and plunge degrees of freedom. The computed kernels then are used to predict linear and nonlinear unsteady aerodynamic responses via convolution and compared to responses obtained using the CAP-TSD code directly. The results indicate that the approach can be used to predict linear unsteady aerodynamic responses exactly for any input amplitude or frequency at a significant cost savings. Convolution of the nonlinear terms results in nonlinear unsteady aerodynamic responses that compare reasonably well with those computed using the CAP-TSD code directly but at significant computational cost savings.

  9. Development of a morphing flap using shape memory alloy actuators: the aerodynamic characteristics of a morphing flap

    International Nuclear Information System (INIS)

    Ko, Seung-Hee; Bae, Jae-Sung; Rho, Jin-Ho

    2014-01-01

    The discontinuous contour of a wing with conventional flaps diminishes the aerodynamic performance of an aircraft. A wing with a continuous contour does not experience extreme flow stream fluctuations during flight, and consequently has good aerodynamic characteristics. In this study, a morphing flap using shape memory alloy actuators is proposed, designed and fabricated, and its aerodynamic characteristics are investigated using aerodynamic analyses and wind tunnel tests. The ribs of the morphing flap are designed and fabricated with multiple elements joined together in a way that allows relative rotations of adjacent elements and forms a smooth contour of the morphing flap. The aerodynamic analyses of this multiple-element morphing-flap wing are performed using XFLR pro; its aerodynamic performance is compared with that of a mechanical-flap wing, and is measured through wind-tunnel tests. (papers)

  10. Stochastic cooling at Fermilab

    International Nuclear Information System (INIS)

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system

  11. Stochastic inflation in phase space: is slow roll a stochastic attractor?

    Energy Technology Data Exchange (ETDEWEB)

    Grain, Julien [Institut d' Astrophysique Spatiale, UMR8617, CNRS, Univ. Paris Sud, Université Paris-Saclay, Bt. 121, Orsay, F-91405 (France); Vennin, Vincent, E-mail: julien.grain@ias.u-psud.fr, E-mail: vincent.vennin@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO13FX (United Kingdom)

    2017-05-01

    An appealing feature of inflationary cosmology is the presence of a phase-space attractor, ''slow roll'', which washes out the dependence on initial field velocities. We investigate the robustness of this property under backreaction from quantum fluctuations using the stochastic inflation formalism in the phase-space approach. A Hamiltonian formulation of stochastic inflation is presented, where it is shown that the coarse-graining procedure—where wavelengths smaller than the Hubble radius are integrated out—preserves the canonical structure of free fields. This means that different sets of canonical variables give rise to the same probability distribution which clarifies the literature with respect to this issue. The role played by the quantum-to-classical transition is also analysed and is shown to constrain the coarse-graining scale. In the case of free fields, we find that quantum diffusion is aligned in phase space with the slow-roll direction. This implies that the classical slow-roll attractor is immune to stochastic effects and thus generalises to a stochastic attractor regardless of initial conditions, with a relaxation time at least as short as in the classical system. For non-test fields or for test fields with non-linear self interactions however, quantum diffusion and the classical slow-roll flow are misaligned. We derive a condition on the coarse-graining scale so that observational corrections from this misalignment are negligible at leading order in slow roll.

  12. Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory

    KAUST Repository

    Richtarik, Peter; Taká č, Martin

    2017-01-01

    We develop a family of reformulations of an arbitrary consistent linear system into a stochastic problem. The reformulations are governed by two user-defined parameters: a positive definite matrix defining a norm, and an arbitrary discrete or continuous distribution over random matrices. Our reformulation has several equivalent interpretations, allowing for researchers from various communities to leverage their domain specific insights. In particular, our reformulation can be equivalently seen as a stochastic optimization problem, stochastic linear system, stochastic fixed point problem and a probabilistic intersection problem. We prove sufficient, and necessary and sufficient conditions for the reformulation to be exact. Further, we propose and analyze three stochastic algorithms for solving the reformulated problem---basic, parallel and accelerated methods---with global linear convergence rates. The rates can be interpreted as condition numbers of a matrix which depends on the system matrix and on the reformulation parameters. This gives rise to a new phenomenon which we call stochastic preconditioning, and which refers to the problem of finding parameters (matrix and distribution) leading to a sufficiently small condition number. Our basic method can be equivalently interpreted as stochastic gradient descent, stochastic Newton method, stochastic proximal point method, stochastic fixed point method, and stochastic projection method, with fixed stepsize (relaxation parameter), applied to the reformulations.

  13. Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory

    KAUST Repository

    Richtarik, Peter

    2017-06-04

    We develop a family of reformulations of an arbitrary consistent linear system into a stochastic problem. The reformulations are governed by two user-defined parameters: a positive definite matrix defining a norm, and an arbitrary discrete or continuous distribution over random matrices. Our reformulation has several equivalent interpretations, allowing for researchers from various communities to leverage their domain specific insights. In particular, our reformulation can be equivalently seen as a stochastic optimization problem, stochastic linear system, stochastic fixed point problem and a probabilistic intersection problem. We prove sufficient, and necessary and sufficient conditions for the reformulation to be exact. Further, we propose and analyze three stochastic algorithms for solving the reformulated problem---basic, parallel and accelerated methods---with global linear convergence rates. The rates can be interpreted as condition numbers of a matrix which depends on the system matrix and on the reformulation parameters. This gives rise to a new phenomenon which we call stochastic preconditioning, and which refers to the problem of finding parameters (matrix and distribution) leading to a sufficiently small condition number. Our basic method can be equivalently interpreted as stochastic gradient descent, stochastic Newton method, stochastic proximal point method, stochastic fixed point method, and stochastic projection method, with fixed stepsize (relaxation parameter), applied to the reformulations.

  14. Quantization of dynamical systems and stochastic control theory

    International Nuclear Information System (INIS)

    Guerra, F.; Morato, L.M.

    1982-09-01

    In the general framework of stochastic control theory we introduce a suitable form of stochastic action associated to the controlled process. Then a variational principle gives all main features of Nelson's stochastic mechanics. In particular we derive the expression of the current velocity field as the gradient of the phase action. Moreover the stochastic corrections to the Hamilton-Jacobi equation are in agreement with the quantum mechanical form of the Madelung fluid (equivalent to the Schroedinger equation). Therefore stochastic control theory can provide a very simple model simulating quantum mechanical behavior

  15. On Lipschitzian quantum stochastic differential inclusions

    International Nuclear Information System (INIS)

    Ekhaguere, G.O.S.

    1990-12-01

    Quantum stochastic differential inclusions are introduced and studied within the framework of the Hudson-Parthasarathy formulation of quantum stochastic calculus. Results concerning the existence of solutions of a Lipschitzian quantum stochastic differential inclusion and the relationship between the solutions of such an inclusion and those of its convexification are presented. These generalize the Filippov existence theorem and the Filippov-Wazewski Relaxation Theorem for classical differential inclusions to the present noncommutative setting. (author). 9 refs

  16. Stochastic temperature and the Nicolai map

    International Nuclear Information System (INIS)

    Hueffel, H.

    1989-01-01

    Just as standard temperature can be related to the time coordinate of Euclidean space, a new concept of 'stochastic temperature' may be introduced by associating it to the Parisi-Wu time of stochastic quantization. The perturbative equilibrium limit for a self-interacting scalar field is studied, and a 'thermal' mass shift to one loop is shown. In addition one may interpret the underlying stochastic process as a Nicolai map at nonzero 'temperature'. 22 refs. (Author)

  17. Stochastic Linear Quadratic Optimal Control Problems

    International Nuclear Information System (INIS)

    Chen, S.; Yong, J.

    2001-01-01

    This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well

  18. Computational Aerodynamics of Shuttle Orbiter Damage Scenarios in Support of the Columbia Accident Investigation

    Science.gov (United States)

    Bibb, Karen L.; Prabhu, Ramadas K.

    2004-01-01

    In support of the Columbia Accident Investigation, inviscid computations of the aerodynamic characteristics for various Shuttle Orbiter damage scenarios were performed using the FELISA unstructured CFD solver. Computed delta aerodynamics were compared with the reconstructed delta aerodynamics in order to postulate a progression of damage through the flight trajectory. By performing computations at hypervelocity flight and CF4 tunnel conditions, a bridge was provided between wind tunnel testing in Langley's 20-Inch CF4 facility and the flight environment experienced by Columbia during re-entry. The rapid modeling capability of the unstructured methodology allowed the computational effort to keep pace with the wind tunnel and, at times, guide the wind tunnel efforts. These computations provided a detailed view of the flowfield characteristics and the contribution of orbiter components (such as the vertical tail and wing) to aerodynamic forces and moments that were unavailable from wind tunnel testing. The damage scenarios are grouped into three categories. Initially, single and multiple missing full RCC panels were analyzed to determine the effect of damage location and magnitude on the aerodynamics. Next is a series of cases with progressive damage, increasing in severity, in the region of RCC panel 9. The final group is a set of wing leading edge and windward surface deformations that model possible structural deformation of the wing skin due to internal heating of the wing structure. By matching the aerodynamics from selected damage scenarios to the reconstructed flight aerodynamics, a progression of damage that is consistent with the flight data, debris forensics, and wind tunnel data is postulated.

  19. Wind tunnel study of helical and straight-bladed vertical-axis wind turbine wakes

    Science.gov (United States)

    Bagheri, Maryam; Araya, Daniel

    2017-11-01

    It is hypothesized that blade curvature can serve as a passive means to control fluid entrainment and wake recovery in vertical-axis wind turbine (VAWT) arrays. We test this experimentally in a wind tunnel using two different VAWT configurations, one with straight blades and another with helical blades, keeping all other experimental parameters fixed. A small-scale, commercially available VAWT (15W max power) is used as the baseline wind tunnel model in each case. The commercial VAWT blades are replaced with either straight or helical blades that are 3D-printed extrusions of the same airfoil cross-section. Results from smoke flow visualization, three-component wake velocity measurements, and turbine power data are presented. These results give insight into the potential use of VAWTs with curved blades in utility-scale wind farms.

  20. Stochastic programming with integer recourse

    NARCIS (Netherlands)

    van der Vlerk, Maarten Hendrikus

    1995-01-01

    In this thesis we consider two-stage stochastic linear programming models with integer recourse. Such models are at the intersection of two different branches of mathematical programming. On the one hand some of the model parameters are random, which places the problem in the field of stochastic

  1. First-order aerodynamic and aeroelastic behavior of a single-blade installation setup

    DEFF Research Database (Denmark)

    Gaunaa, Mac; Bergami, Leonardo; Guntur, Srinivas

    2014-01-01

    the first-order aerodynamic and aeroelastic behavior of a single blade installation system, where the blade is grabbed by a yoke, which is lifted by the crane and stabilized by two taglines. A simple engineering model is formulated to describe the aerodynamic forcing on the blade subject to turbulent wind...

  2. Aerodynamic Jump: A Short Range View for Long Rod Projectiles

    Directory of Open Access Journals (Sweden)

    Mark Bundy

    2001-01-01

    Full Text Available It is shown that aerodynamic jump for a nonspinning kinetic energy penetrator is not – as conventional definitions may infer – a discontinuous change in the direction of motion at the origin of free flight, nor is it the converse, a cumulative redirection over a domain of infinite extent. Rather, with the aid of an alternative kinematical definition, it is shown that aerodynamic jump for such a projectile is a localized redirection of the center-of-gravity motion, caused by the force of lift due to yaw over the relatively short region from entry into free flight until the yaw reaches its first maximum. A rigorous proof of this statement is provided, but the primary objective of this paper is to provide answers to the questions: what is aerodynamic jump, what does it mean, and what aspects of the flight trajectory does it refer to, or account for.

  3. Experimental study of wind-turbine airfoil aerodynamics in high turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Devinant, Ph.; Laverne, T.; Hureau, J. [Laboratoire de Mecanique et d' Energetique Ecole Superieure de l' Energie et des Materiaux Universite d' Orleans, rue Leonard de Vinci F-45072 , Cedex 2 Orleans (France)

    2002-06-01

    Wind turbines very often have to operate in high turbulence related, for example, with lower layers atmospheric turbulence or wakes of other wind turbines. Most available data on airfoil aerodynamics concerns mainly aeronautical applications, which are characterized by a low level of turbulence (generally less than 1%) and low angles of attack. This paper presents wind tunnel test data for the aerodynamic properties-lift, drag, pitching moment, pressure distributions-of an airfoil used on a wind turbine when subjected to incident flow turbulence levels of 0.5-16% and placed at angles of attack up to 90. The results show that the aerodynamic behavior of the airfoil can be strongly affected by the turbulence level both qualitatively and quantitatively. This effect is especially evidenced in the angle of attack range corresponding to airfoil stall, as the boundary layer separation point advances along the leeward surface of the airfoil.

  4. Frequency-domain characteristics of aerodynamic loads of offshore floating vertical axis wind turbines

    DEFF Research Database (Denmark)

    Borg, Michael; Collu, M.

    2015-01-01

    The re-emerging interest in vertical axis wind turbines for floating offshore applications has led to a need to investigate the relatively complex dynamics of such floating offshore structures. Through the use of a coupled model of dynamics this article investigates the frequency......-domain characteristics of floating vertical axis wind turbine aerodynamic loads. The impact of platform induced motion on aerodynamic loads is discussed in detail, with results indicating an increase in aerodynamic loads of several orders of magnitude over the range of frequencies usually containing significant wave...

  5. Lifting Wing in Constructing Tall Buildings —Aerodynamic Testing

    Directory of Open Access Journals (Sweden)

    Ian Skelton

    2014-05-01

    Full Text Available This paper builds on previous research by the authors which determined the global state-of-the-art of constructing tall buildings by surveying the most active specialist tall building professionals around the globe. That research identified the effect of wind on tower cranes as a highly ranked, common critical issue in tall building construction. The research reported here presents a design for a “Lifting Wing,” a uniquely designed shroud which potentially allows the lifting of building materials by a tower crane in higher and more unstable wind conditions, thereby reducing delay on the programmed critical path of a tall building. Wind tunnel tests were undertaken to compare the aerodynamic performance of a scale model of a typical “brick-shaped” construction load (replicating a load profile most commonly lifted via a tower crane against the aerodynamic performance of the scale model of the Lifting Wing in a range of wind conditions. The data indicate that the Lifting Wing improves the aerodynamic performance by a factor of up to 50%.

  6. Aerodynamic efficiency of a bioinspired flapping wing rotor at low Reynolds number.

    Science.gov (United States)

    Li, H; Guo, S

    2018-03-01

    This study investigates the aerodynamic efficiency of a bioinspired flapping wing rotor kinematics which combines an active vertical flapping motion and a passive horizontal rotation induced by aerodynamic thrust. The aerodynamic efficiencies for producing both vertical lift and horizontal thrust of the wing are obtained using a quasi-steady aerodynamic model and two-dimensional (2D) CFD analysis at Reynolds number of 2500. The calculated efficiency data show that both efficiencies (propulsive efficiency- η p , and efficiency for producing lift- P f ) of the wing are optimized at Strouhal number ( St ) between 0.1 and 0.5 for a range of wing pitch angles (upstroke angle of attack α u less than 45°); the St for high P f ( St  = 0.1 ∼ 0.3) is generally lower than for high η p ( St  = 0.2 ∼ 0.5), while the St for equilibrium rotation states lies between the two. Further systematic calculations show that the natural equilibrium of the passive rotating wing automatically converges to high-efficiency states: above 85% of maximum P f can be obtained for a wide range of prescribed wing kinematics. This study provides insight into the aerodynamic efficiency of biological flyers in cruising flight, as well as practical applications for micro air vehicle design.

  7. Stochastic quantization of gravity and string fields

    International Nuclear Information System (INIS)

    Rumpf, H.

    1986-01-01

    The stochastic quantization method of Parisi and Wu is generalized so as to make it applicable to Einstein's theory of gravitation. The generalization is based on the existence of a preferred metric in field configuration space, involves Ito's calculus, and introduces a complex stochastic process adapted to Lorentzian spacetime. It implies formally the path integral measure of DeWitt, a causual Feynman propagator, and a consistent stochastic perturbation theory. The lineraized version of the theory is also obtained from the stochastic quantization of the free string field theory of Siegel and Zwiebach. (Author)

  8. Uncertainty Quantification in Numerical Aerodynamics

    KAUST Repository

    Litvinenko, Alexander

    2017-05-16

    We consider uncertainty quantification problem in aerodynamic simulations. We identify input uncertainties, classify them, suggest an appropriate statistical model and, finally, estimate propagation of these uncertainties into the solution (pressure, velocity and density fields as well as the lift and drag coefficients). The deterministic problem under consideration is a compressible transonic Reynolds-averaged Navier-Strokes flow around an airfoil with random/uncertain data. Input uncertainties include: uncertain angle of attack, the Mach number, random perturbations in the airfoil geometry, mesh, shock location, turbulence model and parameters of this turbulence model. This problem requires efficient numerical/statistical methods since it is computationally expensive, especially for the uncertainties caused by random geometry variations which involve a large number of variables. In numerical section we compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and gradient-enhanced version of Kriging, radial basis functions and point collocation polynomial chaos, in their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry [D.Liu et al \\'17]. For modeling we used the TAU code, developed in DLR, Germany.

  9. The Dynamic Programming Method of Stochastic Differential Game for Functional Forward-Backward Stochastic System

    Directory of Open Access Journals (Sweden)

    Shaolin Ji

    2013-01-01

    Full Text Available This paper is devoted to a stochastic differential game (SDG of decoupled functional forward-backward stochastic differential equation (FBSDE. For our SDG, the associated upper and lower value functions of the SDG are defined through the solution of controlled functional backward stochastic differential equations (BSDEs. Applying the Girsanov transformation method introduced by Buckdahn and Li (2008, the upper and the lower value functions are shown to be deterministic. We also generalize the Hamilton-Jacobi-Bellman-Isaacs (HJBI equations to the path-dependent ones. By establishing the dynamic programming principal (DPP, we derive that the upper and the lower value functions are the viscosity solutions of the corresponding upper and the lower path-dependent HJBI equations, respectively.

  10. Determination of Orbiter and Carrier Aerodynamic Coefficients from Load Cell Measurements

    Science.gov (United States)

    Glenn, G. M.

    1976-01-01

    A method of determining orbiter and carrier total aerodynamic coefficients from load cell measurements is required to support the inert and the captive active flights of the ALT program. A set of equations expressing the orbiter and carrier total aerodynamic coefficients in terms of the load cell measurements, the sensed dynamics of the Boeing 747 (carrier) aircraft, and the relative geometry of the orbiter/carrier is derived.

  11. Aerodynamic drag of modern soccer balls.

    Science.gov (United States)

    Asai, Takeshi; Seo, Kazuya

    2013-12-01

    Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls have not yet been verified. Now, the Adidas Tango 12, having 32 panels, has been developed for use at tournaments; therefore, it is necessary to understand its aerodynamic characteristics. Through a wind tunnel test and ball trajectory simulations, this study shows that the aerodynamic resistance of the new 32-panel soccer ball is larger in the high-speed region and lower in the middle-speed region than that of the previous 14- and 8-panel balls. The critical Reynolds number of the Roteiro, Teamgeist II, Jabulani, and Tango 12 was ~2.2 × 10(5) (drag coefficient, C d  ≈ 0.12), ~2.8 × 10(5) (C d  ≈ 0.13), ~3.3 × 10(5) (C d  ≈ 0.13), and ~2.4 × 10(5) (C d  ≈ 0.15), respectively. The flight trajectory simulation suggested that the Tango 12, one of the newest soccer balls, has less air resistance in the medium-speed region than the Jabulani and can thus easily acquire large initial velocity in this region. It is considered that the critical Reynolds number of a soccer ball, as considered within the scope of this experiment, depends on the extended total distance of the panel bonds rather than the small designs on the panel surfaces.

  12. Thermal mixtures in stochastic mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, F [Rome Univ. (Italy). Ist. di Matematica; Loffredo, M I [Salerno Univ. (Italy). Ist. di Fisica

    1981-01-17

    Stochastic mechanics is extended to systems in thermal equilibrium. The resulting stochastic processes are mixtures of Nelson processes. Their Markov property is investigated in some simple cases. It is found that in order to inforce Markov property the algebra of observable associated to the present must be suitably enlarged.

  13. Aerodynamics of ski jumping: experiments and CFD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Meile, W.; Reisenberger, E.; Brenn, G. [Graz University of Technology, Institute of Fluid Mechanics and Heat Transfer, Graz (Austria); Mayer, M. [VRVis GmbH, Vienna (Austria); Schmoelzer, B.; Mueller, W. [Medical University of Graz, Department for Biophysics, Graz (Austria)

    2006-12-15

    The aerodynamic behaviour of a model ski jumper is investigated experimentally at full-scale Reynolds numbers and computationally applying a standard RANS code. In particular we focus on the influence of different postures on aerodynamic forces in a wide range of angles of attack. The experimental results proved to be in good agreement with full-scale measurements with athletes in much larger wind tunnels, and form a reliable basis for further predictions of the effects of position changes on the performance. The comparison of CFD results with the experiments shows poor agreement, but enables a clear outline of simulation potentials and limits when accurate predictions of effects from small variations are required. (orig.)

  14. Aerodynamics of ski jumping: experiments and CFD simulations

    Science.gov (United States)

    Meile, W.; Reisenberger, E.; Mayer, M.; Schmölzer, B.; Müller, W.; Brenn, G.

    2006-12-01

    The aerodynamic behaviour of a model ski jumper is investigated experimentally at full-scale Reynolds numbers and computationally applying a standard RANS code. In particular we focus on the influence of different postures on aerodynamic forces in a wide range of angles of attack. The experimental results proved to be in good agreement with full-scale measurements with athletes in much larger wind tunnels, and form a reliable basis for further predictions of the effects of position changes on the performance. The comparison of CFD results with the experiments shows poor agreement, but enables a clear outline of simulation potentials and limits when accurate predictions of effects from small variations are required.

  15. Aerodynamic Simulation Analysis of Unmanned Airborne Electronic Bomb

    Science.gov (United States)

    Yang, Jiaoying; Guo, Yachao

    2017-10-01

    For microelectronic bombs for UAVs, on the basis of the use of rotors to lift the insurance on the basis of ammunition, increased tail to increase stability. The aerodynamic simulation of the outer structure of the ammunition was carried out by FLUENT software. The resistance coefficient, the lift coefficient and the pitch moment coefficient under different angle of attack and Mach number were obtained, and the aerodynamic characteristics of the electronic bomb were studied. The pressure line diagram and the velocity line diagram of the flow around the bomb are further analyzed, and the rationality of the external structure is verified, which provides a reference for the subsequent design of the electronic bomb.

  16. The Robustness of Stochastic Switching Networks

    OpenAIRE

    Loh, Po-Ling; Zhou, Hongchao; Bruck, Jehoshua

    2009-01-01

    Many natural systems, including chemical and biological systems, can be modeled using stochastic switching circuits. These circuits consist of stochastic switches, called pswitches, which operate with a fixed probability of being open or closed. We study the effect caused by introducing an error of size ∈ to each pswitch in a stochastic circuit. We analyze two constructions – simple series-parallel and general series-parallel circuits – and prove that simple series-parallel circuits are robus...

  17. A Basic Study on Countermeasure Against Aerodynamic Force Acting on Train Running Inside Tunnel Using Air Blowing

    Science.gov (United States)

    Suzuki, Masahiro; Nakade, Koji

    A basic study of flow controls using air blowing was conducted to reduce unsteady aerodynamic force acting on trains running in tunnels. An air blowing device is installed around a model car in a wind tunnel. Steady and periodic blowings are examined utilizing electromagnetic valves. Pressure fluctuations are measured and the aerodynamic force acting on the car is estimated. The results are as follows: a) The air blowing allows reducing the unsteady aerodynamic force. b) It is effective to blow air horizontally at the lower side of the car facing the tunnel wall. c) The reduction rate of the unsteady aerodynamic force relates to the rate of momentum of the blowing to that of the uniform flow. d) The periodic blowing with the same frequency as the unsteady aerodynamic force reduces the aerodynamic force in a manner similar to the steady blowing.

  18. The intrinsic stochasticity of near-integrable Hamiltonian systems

    Energy Technology Data Exchange (ETDEWEB)

    Krlin, L [Ceskoslovenska Akademie Ved, Prague (Czechoslovakia). Ustav Fyziky Plazmatu

    1989-09-01

    Under certain conditions, the dynamics of near-integrable Hamiltonian systems appears to be stochastic. This stochasticity (intrinsic stochasticity, or deterministic chaos) is closely related to the Kolmogorov-Arnold-Moser (KAM) theorem of the stability of near-integrable multiperiodic Hamiltonian systems. The effect of the intrinsic stochasticity attracts still growing attention both in theory and in various applications in contemporary physics. The paper discusses the relation of the intrinsic stochasticity to the modern ergodic theory and to the KAM theorem, and describes some numerical experiments on related astrophysical and high-temperature plasma problems. Some open questions are mentioned in conclusion. (author).

  19. Development of multi-element active aerodynamics for the formula sae car

    Science.gov (United States)

    Merkel, James Patrick

    This thesis focuses on the design, development, and implementation of an active aerodynamics system on 2013 Formula SAE car. The aerodynamics package itself consists of five element front and rear wings as well as an under body diffuser. Five element wings produce significant amounts of drag which is a compromise between the cornering ability of the car and the acceleration capability on straights. The active aerodynamics system allows for the wing angle of attack to dynamically change their configuration on track based on sensory data to optimize the wings for any given scenario. The wings are studied using computational fluid dynamics both in their maximum lift configuration as well as a minimum drag configuration. A control system is then developed using an electro mechanical actuation system to articulate the wings between these two states.

  20. Development of aerodynamic bearing support for application in air cycle machines

    Directory of Open Access Journals (Sweden)

    Šimek J.

    2014-06-01

    Full Text Available Air cycle machines (ACM are used in environmental control system of aircrafts to manage pressurization of the cabin. The aim of this work is to gain theoretical and experimental data enabling replacement of rolling bearings, which require lubrication and have limited operating speed, with aerodynamic bearing support. Aerodynamic bearings do not pollute process air and at the same time allow achieving higher operating speed, thus enabling to reduce machine mass and dimensions. A test stand enabling the verification of aerodynamic bearing support properties for prospective ACM was designed, manufactured and tested with operating speeds up to 65 000 rpm. Some interesting features of the test stand design and the test results are presented. A smaller test stand with operating speed up to 100 000 rpm is in design stage.

  1. Shark skin-inspired designs that improve aerodynamic performance.

    Science.gov (United States)

    Domel, August G; Saadat, Mehdi; Weaver, James C; Haj-Hariri, Hossein; Bertoldi, Katia; Lauder, George V

    2018-02-01

    There have been significant efforts recently aimed at improving the aerodynamic performance of aerofoils through the modification of their surfaces. Inspired by the drag-reducing properties of the tooth-like denticles that cover the skin of sharks, we describe here experimental and simulation-based investigations into the aerodynamic effects of novel denticle-inspired designs placed along the suction side of an aerofoil. Through parametric modelling to query a wide range of different designs, we discovered a set of denticle-inspired surface structures that achieve simultaneous drag reduction and lift generation on an aerofoil, resulting in lift-to-drag ratio improvements comparable to the best-reported for traditional low-profile vortex generators and even outperforming these existing designs at low angles of attack with improvements of up to 323%. Such behaviour is enabled by two concurrent mechanisms: (i) a separation bubble in the denticle's wake altering the flow pressure distribution of the aerofoil to enhance suction and (ii) streamwise vortices that replenish momentum loss in the boundary layer due to skin friction. Our findings not only open new avenues for improved aerodynamic design, but also provide new perspective on the role of the complex and potentially multifunctional morphology of shark denticles for increased swimming efficiency. © 2018 The Author(s).

  2. Linear stochastic neutron transport theory

    International Nuclear Information System (INIS)

    Lewins, J.

    1978-01-01

    A new and direct derivation of the Bell-Pal fundamental equation for (low power) neutron stochastic behaviour in the Boltzmann continuum model is given. The development includes correlation of particle emission direction in induced and spontaneous fission. This leads to generalizations of the backward and forward equations for the mean and variance of neutron behaviour. The stochastic importance for neutron transport theory is introduced and related to the conventional deterministic importance. Defining equations and moment equations are derived and shown to be related to the backward fundamental equation with the detector distribution of the operational definition of stochastic importance playing the role of an adjoint source. (author)

  3. Entropy Production in Stochastics

    Directory of Open Access Journals (Sweden)

    Demetris Koutsoyiannis

    2017-10-01

    Full Text Available While the modern definition of entropy is genuinely probabilistic, in entropy production the classical thermodynamic definition, as in heat transfer, is typically used. Here we explore the concept of entropy production within stochastics and, particularly, two forms of entropy production in logarithmic time, unconditionally (EPLT or conditionally on the past and present having been observed (CEPLT. We study the theoretical properties of both forms, in general and in application to a broad set of stochastic processes. A main question investigated, related to model identification and fitting from data, is how to estimate the entropy production from a time series. It turns out that there is a link of the EPLT with the climacogram, and of the CEPLT with two additional tools introduced here, namely the differenced climacogram and the climacospectrum. In particular, EPLT and CEPLT are related to slopes of log-log plots of these tools, with the asymptotic slopes at the tails being most important as they justify the emergence of scaling laws of second-order characteristics of stochastic processes. As a real-world application, we use an extraordinary long time series of turbulent velocity and show how a parsimonious stochastic model can be identified and fitted using the tools developed.

  4. Design and aerodynamic analysis of a new Formula Ashenkoff car

    OpenAIRE

    Mateo Muñoz, Albert

    2016-01-01

    This project has the objective to learn to use CFD free software OpenFOAM focusing on turbulent problems resolution, with the objective of analyzing the aerodynamics of a formula racing car. We had the opportunity to contact with the company Ashenkoff S.L., whose managers were interested in creating a new prototype, the Ashenkoff K100, and they will borrow us resources to make it. The project will consists on the aerodynamic analysis of this new model using CFD software OpenFOAM. Previo...

  5. Uncertainty Quantification in Numerical Aerodynamics

    KAUST Repository

    Litvinenko, Alexander; Matthies, Hermann G.; Liu, Dishi; Schillings, Claudia; Schulz, Volker

    2017-01-01

    In numerical section we compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and gradient-enhanced version of Kriging, radial basis functions and point collocation polynomial chaos, in their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry [D.Liu et al '17]. For modeling we used the TAU code, developed in DLR, Germany.

  6. Stochastic approach to microphysics

    Energy Technology Data Exchange (ETDEWEB)

    Aron, J.C.

    1987-01-01

    The presently widespread idea of ''vacuum population'', together with the quantum concept of vacuum fluctuations leads to assume a random level below that of matter. This stochastic approach starts by a reminder of the author's previous work, first on the relation of diffusion laws with the foundations of microphysics, and then on hadron spectrum. Following the latter, a random quark model is advanced; it gives to quark pairs properties similar to those of a harmonic oscillator or an elastic string, imagined as an explanation to their asymptotic freedom and their confinement. The stochastic study of such interactions as electron-nucleon, jets in e/sup +/e/sup -/ collisions, or pp -> ..pi../sup 0/ + X, gives form factors closely consistent with experiment. The conclusion is an epistemological comment (complementarity between stochastic and quantum domains, E.P.R. paradox, etc...).

  7. AIAA Applied Aerodynamics Conference, 10th, Palo Alto, CA, June 22-24, 1992, Technical Papers. Pts. 1 AND 2

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Consideration is given to vortex physics and aerodynamics; supersonic/hypersonic aerodynamics; STOL/VSTOL/rotors; missile and reentry vehicle aerodynamics; CFD as applied to aircraft; unsteady aerodynamics; supersonic/hypersonic aerodynamics; low-speed/high-lift aerodynamics; airfoil/wing aerodynamics; measurement techniques; CFD-solvers/unstructured grid; airfoil/drag prediction; high angle-of-attack aerodynamics; and CFD grid methods. Particular attention is given to transonic-numerical investigation into high-angle-of-attack leading-edge vortex flow, prediction of rotor unsteady airloads using vortex filament theory, rapid synthesis for evaluating the missile maneuverability parameters, transonic calculations of wing/bodies with deflected control surfaces; the static and dynamic flow field development about a porous suction surface wing; the aircraft spoiler effects under wind shear; multipoint inverse design of an infinite cascade of airfoils, turbulence modeling for impinging jet flows; numerical investigation of tail buffet on the F-18 aircraft; the surface grid generation in a parameter space; and the flip flop nozzle extended to supersonic flows

  8. Markov stochasticity coordinates

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2017-01-01

    Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.

  9. Markov stochasticity coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo, E-mail: iddo.eliazar@intel.com

    2017-01-15

    Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.

  10. Preliminary Aerodynamic Investigation of Fan Rotor Blade Morphing

    Science.gov (United States)

    Tweedt, Daniel L.

    2012-01-01

    Various new technologies currently under development may enable controlled blade shape variability, or so-called blade morphing, to be practically employed in aircraft engine fans and compressors in the foreseeable future. The current study is a relatively brief, preliminary computational fluid dynamics investigation aimed at partially demonstrating and quantifying the aerodynamic potential of fan rotor blade morphing. The investigation is intended to provide information useful for near-term planning, as well as aerodynamic solution data sets that can be subsequently analyzed using advanced acoustic diagnostic tools, for the purpose of making fan noise comparisons. Two existing fan system models serve as baselines for the investigation: the Advanced Ducted Propulsor fan with a design tip speed of 806 ft/sec and a pressure ratio of 1.294, and the Source Diagnostic Test fan with a design tip speed of 1215 ft/sec and a pressure ratio of 1.470. Both are 22-in. sub-scale, low-noise research fan/nacelle models that have undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. The study, restricted to fan rotor blade morphing only, involves a fairly simple blade morphing technique. Specifically, spanwise-linear variations in rotor blade-section setting angle are applied to alter the blade shape; that is, the blade is linearly retwisted from hub to tip. Aerodynamic performance comparisons are made between morphed-blade and corresponding baseline configurations on the basis of equal fan system thrust, where rotor rotational speed for the morphed-blade fan is varied to change the thrust level for that configuration. The results of the investigation confirm that rotor blade morphing could be a useful technology, with the potential to enable significant improvements in fan aerodynamic performance. Even though the study is very limited in scope and confined to simple geometric perturbations of two existing fan

  11. Computational Aerodynamic Modeling of Small Quadcopter Vehicles

    Science.gov (United States)

    Yoon, Seokkwan; Ventura Diaz, Patricia; Boyd, D. Douglas; Chan, William M.; Theodore, Colin R.

    2017-01-01

    High-fidelity computational simulations have been performed which focus on rotor-fuselage and rotor-rotor aerodynamic interactions of small quad-rotor vehicle systems. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, low Mach number preconditioning, and hybrid turbulence modeling. Computational results for isolated rotors are shown to compare well with available experimental data. Computational results in hover reveal the differences between a conventional configuration where the rotors are mounted above the fuselage and an unconventional configuration where the rotors are mounted below the fuselage. Complex flow physics in forward flight is investigated. The goal of this work is to demonstrate that understanding of interactional aerodynamics can be an important factor in design decisions regarding rotor and fuselage placement for next-generation multi-rotor drones.

  12. Approximating Preemptive Stochastic Scheduling

    OpenAIRE

    Megow Nicole; Vredeveld Tjark

    2009-01-01

    We present constant approximative policies for preemptive stochastic scheduling. We derive policies with a guaranteed performance ratio of 2 for scheduling jobs with release dates on identical parallel machines subject to minimizing the sum of weighted completion times. Our policies as well as their analysis apply also to the recently introduced more general model of stochastic online scheduling. The performance guarantee we give matches the best result known for the corresponding determinist...

  13. The stochastic goodwill problem

    OpenAIRE

    Marinelli, Carlo

    2003-01-01

    Stochastic control problems related to optimal advertising under uncertainty are considered. In particular, we determine the optimal strategies for the problem of maximizing the utility of goodwill at launch time and minimizing the disutility of a stream of advertising costs that extends until the launch time for some classes of stochastic perturbations of the classical Nerlove-Arrow dynamics. We also consider some generalizations such as problems with constrained budget and with discretionar...

  14. Sequential neural models with stochastic layers

    DEFF Research Database (Denmark)

    Fraccaro, Marco; Sønderby, Søren Kaae; Paquet, Ulrich

    2016-01-01

    How can we efficiently propagate uncertainty in a latent state representation with recurrent neural networks? This paper introduces stochastic recurrent neural networks which glue a deterministic recurrent neural network and a state space model together to form a stochastic and sequential neural...... generative model. The clear separation of deterministic and stochastic layers allows a structured variational inference network to track the factorization of the model's posterior distribution. By retaining both the nonlinear recursive structure of a recurrent neural network and averaging over...

  15. Fuel Savings and Aerodynamic Drag Reduction from Rail Car Covers

    Science.gov (United States)

    Storms, Bruce; Salari, Kambiz; Babb, Alex

    2008-01-01

    The potential for energy savings by reducing the aerodynamic drag of rail cars is significant. A previous study of aerodynamic drag of coal cars suggests that a 25% reduction in drag of empty cars would correspond to a 5% fuel savings for a round trip [1]. Rail statistics for the United States [2] report that approximately 5.7 billion liters of diesel fuel were consumed for coal transportation in 2002, so a 5% fuel savings would total 284 million liters. This corresponds to 2% of Class I railroad fuel consumption nationwide. As part of a DOE-sponsored study, the aerodynamic drag of scale rail cars was measured in a wind tunnel. The goal of the study was to measure the drag reduction of various rail-car cover designs. The cover designs tested yielded an average drag reduction of 43% relative to empty cars corresponding to an estimated round-trip fuel savings of 9%.

  16. High angle of attack aerodynamics subsonic, transonic, and supersonic flows

    CERN Document Server

    Rom, Josef

    1992-01-01

    The aerodynamics of aircraft at high angles of attack is a subject which is being pursued diligently, because the modern agile fighter aircraft and many of the current generation of missiles must perform well at very high incidence, near and beyond stall. However, a comprehensive presentation of the methods and results applicable to the studies of the complex aerodynamics at high angle of attack has not been covered in monographs or textbooks. This book is not the usual textbook in that it goes beyond just presenting the basic theoretical and experimental know-how, since it contains reference material to practical calculation methods and technical and experimental results which can be useful to the practicing aerospace engineers and scientists. It can certainly be used as a text and reference book for graduate courses on subjects related to high angles of attack aerodynamics and for topics related to three-dimensional separation in viscous flow courses. In addition, the book is addressed to the aerodynamicist...

  17. Investigation of Aerodynamic Capabilities of Flying Fish in Gliding Flight

    Science.gov (United States)

    Park, H.; Choi, H.

    In the present study, we experimentally investigate the aerodynamic capabilities of flying fish. We consider four different flying fish models, which are darkedged-wing flying fishes stuffed in actual gliding posture. Some morphological parameters of flying fish such as lateral dihedral angle of pectoral fins, incidence angles of pectoral and pelvic fins are considered to examine their effect on the aerodynamic performance. We directly measure the aerodynamic properties (lift, drag, and pitching moment) for different morphological parameters of flying fish models. For the present flying fish models, the maximum lift coefficient and lift-to-drag ratio are similar to those of medium-sized birds such as the vulture, nighthawk and petrel. The pectoral fins are found to enhance the lift-to-drag ratio and the longitudinal static stability of gliding flight. On the other hand, the lift coefficient and lift-to-drag ratio decrease with increasing lateral dihedral angle of pectoral fins.

  18. AIAA Applied Aerodynamics Conference, 8th, Portland, OR, Aug. 20-22, 1990, Technical Papers. Parts 1 ampersand 2

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The present conference discusses topics in CFD methods and their validation, vortices and vortical flows, STOL/VSTOL aerodynamics, boundary layer transition and separation, wing airfoil aerodynamics, laminar flow, supersonic and hypersonic aerodynamics, CFD for wing airfoil and nacelle applications, wind tunnel testing, flight testing, missile aerodynamics, unsteady flow, configuration aerodynamics, and multiple body/interference flows. Attention is given to the numerical simulation of vortical flows over close-coupled canard-wing configuration, propulsive lift augmentation by side fences, road-vehicle aerodynamics, a shock-capturing method for multidimensional flow, transition-detection studies in a cryogenic environment, a three-dimensional Euler analysis of ducted propfan flowfields, multiple vortex and shock interaction at subsonic and supersonic speeds, and a Navier-Stokes simulation of waverider flowfields. Also discussed are the induced drag of crescent-shaped wings, the preliminary design aerodynamics of missile inlets, finite wing lift prediction at high angles-of-attack, optimal supersonic/hypersonic bodies, and adaptive grid embedding for the two-dimensional Euler equations

  19. History-dependent stochastic Petri nets

    NARCIS (Netherlands)

    Schonenberg, H.; Sidorova, N.; Aalst, van der W.M.P.; Hee, van K.M.; Pnueli, A.; Virbitskaite, I.; Voronkov, A.

    2010-01-01

    Stochastic Petri Nets are a useful and well-known tool for performance analysis. However, an implicit assumption in the different types of Stochastic Petri Nets is the Markov property. It is assumed that a choice in the Petri net only depends on the current state and not on earlier choices. For many

  20. Stochastic ferromagnetism analysis and numerics

    CERN Document Server

    Brzezniak, Zdzislaw; Neklyudov, Mikhail; Prohl, Andreas

    2013-01-01

    This monograph examines magnetization dynamics at elevated temperatures which can be described by the stochastic Landau-Lifshitz-Gilbert equation (SLLG). Comparative computational studies with the stochastic model are included. Constructive tools such as e.g. finite element methods are used to derive the theoretical results, which are then used for computational studies.

  1. Integration of CFD and Experimental Results at VKI in Low-Speed Aerodynamic Design

    Science.gov (United States)

    2007-06-01

    erosion in wind tunnel behind the building Today, almost all modern Antartic stations have undergone aerodynamic studies at different stages of design...2] J. Sanz Rodrigo, C. Gorle, J. van Beeck, P. Planquart: Aerodynamic Design of the Princess Elizabeth Antartic Research Station, 17th

  2. Modelling Cow Behaviour Using Stochastic Automata

    DEFF Research Database (Denmark)

    Jónsson, Ragnar Ingi

    This report covers an initial study on the modelling of cow behaviour using stochastic automata with the aim of detecting lameness. Lameness in cows is a serious problem that needs to be dealt with because it results in less profitable production units and in reduced quality of life...... for the affected livestock. By featuring training data consisting of measurements of cow activity, three different models are obtained, namely an autonomous stochastic automaton, a stochastic automaton with coinciding state and output and an autonomous stochastic automaton with coinciding state and output, all...... of which describe the cows' activity in the two regarded behavioural scenarios, non-lame and lame. Using the experimental measurement data the different behavioural relations for the two regarded behavioural scenarios are assessed. The three models comprise activity within last hour, activity within last...

  3. Aerodynamic Efficiency Enhancements for Air Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. Concepts are presented for morphing aircraft, to enable the aircraft to...

  4. Modeling of Aerodynamic Force Acting in Tunnel for Analysis of Riding Comfort in a Train

    Science.gov (United States)

    Kikko, Satoshi; Tanifuji, Katsuya; Sakanoue, Kei; Nanba, Kouichiro

    In this paper, we aimed to model the aerodynamic force that acts on a train running at high speed in a tunnel. An analytical model of the aerodynamic force is developed from pressure data measured on car-body sides of a test train running at the maximum revenue operation speed. The simulation of an 8-car train running while being subjected to the modeled aerodynamic force gives the following results. The simulated car-body vibration corresponds to the actual vibration both qualitatively and quantitatively for the cars at the rear of the train. The separation of the airflow at the tail-end of the train increases the yawing vibration of the tail-end car while it has little effect on the car-body vibration of the adjoining car. Also, the effect of the moving velocity of the aerodynamic force on the car-body vibration is clarified that the simulation under the assumption of a stationary aerodynamic force can markedly increase the car-body vibration.

  5. New insights into the wind-dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments

    KAUST Repository

    Parajuli, Sagar Prasad; Zobeck, Ted M.; Kocurek, Gary; Yang, Zong-Liang; Stenchikov, Georgiy L.

    2016-01-01

    Numerous parameterizations have been developed for predicting wind erosion, yet the physical mechanism of dust emission is not fully understood. Sandblasting is thought to be the primary mechanism, but recent studies suggest that dust emission by direct aerodynamic entrainment can be significant under certain conditions. In this work, using wind tunnel experiments, we investigated some of the lesser understood aspects of dust emission in sandblasting and aerodynamic entrainment for three soil types, namely clay, silty clay loam, and clay loam. First, we explored the role of erodible surface roughness on dust emitted by aerodynamic entrainment. Second, we compared the emitted dust concentration in sandblasting and aerodynamic entrainment under a range of wind friction velocities. Finally, we explored the sensitivity of emitted dust particle size distribution (PSD) to soil type and wind friction velocity in these two processes. The dust concentration in aerodynamic entrainment showed strong positive correlation, no significant correlation, and weak negative correlation, for the clay, silty clay loam, and clay loam, respectively, with the erodible soil surface roughness. The dust in aerodynamic entrainment was significant constituting up to 28.3, 41.4, and 146.4% compared to sandblasting for the clay, silty clay loam, and clay loam, respectively. PSD of emitted dust was sensitive to soil type in both sandblasting and aerodynamic entrainment. PSD was sensitive to the friction velocity in aerodynamic entrainment but not in sandblasting. Our results highlight the need to consider the details of sandblasting and direct aerodynamic entrainment processes in parameterizing dust emission in global/regional climate models.

  6. New insights into the wind-dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments

    KAUST Repository

    Parajuli, Sagar Prasad

    2016-01-22

    Numerous parameterizations have been developed for predicting wind erosion, yet the physical mechanism of dust emission is not fully understood. Sandblasting is thought to be the primary mechanism, but recent studies suggest that dust emission by direct aerodynamic entrainment can be significant under certain conditions. In this work, using wind tunnel experiments, we investigated some of the lesser understood aspects of dust emission in sandblasting and aerodynamic entrainment for three soil types, namely clay, silty clay loam, and clay loam. First, we explored the role of erodible surface roughness on dust emitted by aerodynamic entrainment. Second, we compared the emitted dust concentration in sandblasting and aerodynamic entrainment under a range of wind friction velocities. Finally, we explored the sensitivity of emitted dust particle size distribution (PSD) to soil type and wind friction velocity in these two processes. The dust concentration in aerodynamic entrainment showed strong positive correlation, no significant correlation, and weak negative correlation, for the clay, silty clay loam, and clay loam, respectively, with the erodible soil surface roughness. The dust in aerodynamic entrainment was significant constituting up to 28.3, 41.4, and 146.4% compared to sandblasting for the clay, silty clay loam, and clay loam, respectively. PSD of emitted dust was sensitive to soil type in both sandblasting and aerodynamic entrainment. PSD was sensitive to the friction velocity in aerodynamic entrainment but not in sandblasting. Our results highlight the need to consider the details of sandblasting and direct aerodynamic entrainment processes in parameterizing dust emission in global/regional climate models.

  7. Recent Experiments at the Gottingen Aerodynamic Institute

    Science.gov (United States)

    Ackeret, J

    1925-01-01

    This report presents the results of various experiments carried out at the Gottingen Aerodynamic Institute. These include: experiments with Joukowski wing profiles; experiments on an airplane model with a built-in motor and functioning propeller; and the rotating cylinder (Magnus Effect).

  8. Design and Experimental Analysis of an Exhaust Air Energy Recovery Wind Turbine Generator

    Directory of Open Access Journals (Sweden)

    Ahmad Fazlizan

    2015-06-01

    Full Text Available A vertical axis wind turbine (VAWT was positioned at the discharge outlet of a cooling tower electricity generator. To avoid a negative impact on the performance of the cooling tower and to optimize the turbine performance, the determination of the VAWT position in the discharge wind stream was conducted by experiment. The preferable VAWT position is where the higher wind velocity matches the positive torque area of the turbine rotation. With the proper matching among the VAWT configurations (blade number, airfoil type, operating tip-speed-ratio, etc. and exhaust air profile, the turbine system was not only able to recover the wasted kinetic energy, it also reduced the fan motor power consumption by 4.5% and increased the cooling tower intake air flow-rate by 11%. The VAWT had a free running rotational speed of 479 rpm, power coefficient of 10.6%, and tip-speed-ratio of 1.88. The double multiple stream tube theory was used to explain the VAWT behavior in the non-uniform wind stream. For the actual size of a cooling tower with a 2.4 m outlet diameter and powered by a 7.5 kW fan motor, it was estimated that a system with two VAWTs (side-by-side can generate 1 kW of power which is equivalent to 13% of energy recovery.

  9. Improved blade element momentum theory for wind turbine aerodynamic computations

    DEFF Research Database (Denmark)

    Sun, Zhenye; Chen, Jin; Shen, Wen Zhong

    2016-01-01

    Blade element momentum (BEM) theory is widely used in aerodynamic performance predictions and design applications for wind turbines. However, the classic BEM method is not quite accurate which often tends to under-predict the aerodynamic forces near root and over-predict its performance near tip....... for the MEXICO rotor. Results show that the improved BEM theory gives a better prediction than the classic BEM method, especially in the blade tip region, when comparing to the MEXICO measurements. (C) 2016 Elsevier Ltd. All rights reserved....

  10. Exact Algorithms for Solving Stochastic Games

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Koucky, Michal; Lauritzen, Niels

    2012-01-01

    Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games....

  11. Study on the Influence of the Convoy Rolling over Aerodynamic Resistance

    Science.gov (United States)

    Iozsa, D.; Stan, C.; Ilea, L.

    2017-10-01

    The aim of the study is to investigate how the aerodynamic resistance is influenced by the convoy rolling and to see how much this is possible by varying the distance between trucks. Then to see how the gains correlate with the position occupied by the truck in the convoy. The study starts from current research on the premises of running in convoy. Aerodynamic analysis was performed using software finite element of Computational Fluid Dynamics (CFD) type, where it was modeled the convoy rolling of a variable number of trucks. The number of trucks and the distance between them was varied in the model in order to acquire an understanding of the flow field around the trucks and how the distance between them can improve the aerodynamic parameters. The results are presented in the form of streamlines of the air, which indicates the air volume travel speed and direction and of the pressure distribution on the surface of the body. The most significant drop in pressure on the front surface was obtained for the second truck of the convoy, whereas for the following ones the reduction was less important. The participation in a convoy of more than two trucks is justified by the reduction of the whirls that appear and by the uniform air flow. The main advantage of running in convoy mode is to decrease aerodynamic resistance, with beneficial consequences on economic and ecological parameters. Continuing work from here on, it could be analyzed the impact of changing the distance between trucks on the aerodynamic coefficient. The results of CFD simulations need to be verified with experimental data, such as wind-tunnel test, to ensure reliability of the results.

  12. Statistical Methods for Stochastic Differential Equations

    CERN Document Server

    Kessler, Mathieu; Sorensen, Michael

    2012-01-01

    The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a sp

  13. Aerodynamic Improvements to Cargo Carrying Rail Cars due to Roof Modifications

    Science.gov (United States)

    Condie, Robert; Maynes, Daniel

    2012-11-01

    The aerodynamic drag associated with the transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. We provide an assessment of the influence of the roof structure on aerodynamic performance of two dissimilar rail cars, namely automobile carrying cars and coal carrying cars. Currently, the roof material for automobile carrying rail cars is corrugated steel, with the corrugation aligned perpendicular to the direction of travel. Coal cars are currently left uncovered for loading convenience and on the return leg from the power plant are empty. Aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the tops of both these car types. For the automobile-carrying cars, testing is performed for the corrugated and smooth roof configurations. This modification alone has the potential of reducing the car drag coefficient by nominally 25%. A broader study is performed for the coal cars, with data being acquired for coal filled models, empty models, and several cover prototype configurations. The results reveal that implementation of a cover may yield reductions in the aerodynamic drag for both coal filled (nominally 7%) and empty coal cars (nominally 30%).

  14. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.

    Science.gov (United States)

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef

    2017-08-01

    The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.

  15. In vivo measurement of aerodynamic weight support in freely flying birds

    Science.gov (United States)

    Lentink, David; Haselsteiner, Andreas; Ingersoll, Rivers

    2014-11-01

    Birds dynamically change the shape of their wing during the stroke to support their body weight aerodynamically. The wing is partially folded during the upstroke, which suggests that the upstroke of birds might not actively contribute to aerodynamic force production. This hypothesis is supported by the significant mass difference between the large pectoralis muscle that powers the down-stroke and the much smaller supracoracoideus that drives the upstroke. Previous works used indirect or incomplete techniques to measure the total force generated by bird wings ranging from muscle force, airflow, wing surface pressure, to detailed kinematics measurements coupled with bird mass-distribution models to derive net force through second derivatives. We have validated a new method that measures aerodynamic force in vivo time-resolved directly in freely flying birds which can resolve this question. The validation of the method, using independent force measurements on a quadcopter with pulsating thrust, show the aerodynamic force and impulse are measured within 2% accuracy and time-resolved. We demonstrate results for quad-copters and birds of similar weight and size. The method is scalable and can be applied to both engineered and natural flyers across taxa. The first author invented the method, the second and third authors validated the method and present results for quadcopters and birds.

  16. Pneumophonic coordination impairments in parkinsonian dysarthria: importance of aerodynamic parameters measurements.

    Science.gov (United States)

    Moustapha, S M; Alain, G; Robert, E; Bernard, T; Mourtalla, Kâ M; Lamine, G; François, V

    2012-01-01

    Among Parkinsonian axial signs, dysarthria represents an important disabling symptom able to lead towards a significant reduction of oral communication. Several methods of dysarthria assessment have been used but aerodynamic evaluation is rare in the literature. To highlight the importance of aerodynamic parameters measurements in assessment of parkinsonian dysarthria. Using a dedicated system (EVA2), 24 parkinsonian patients were recorded after withdrawal of L-dopa for at least 12 h (condition called OFF DOPA) in order to evaluate intra-oral pressure (IOP), mean oral air flow (MOAF) and laryngeal resistance (LR) on six /p/ during realization of the sentence "Papa ne m'a pas parle' de beau-papa" ("Daddy did not speak to me about daddy-in-law") which corresponds to a breath group. 50 control subjects were recorded in parallel in order to define reference measurements. It appeared that there is in Parkinson's disease aerodynamic impairments which were evidenced by the fall in IOP and that of MOAF in patients compared with control subjects. The difference between the two groups was statistically significant. In addition a greater instability of LR in patients compared with control subjects was also noted. Our results show that measurements of aerodynamics parameters, by reflecting the dysfunction induced by disease, may well be relevant factors in parkinsonian dysarthria evaluation.

  17. Stochastic quantization of general relativity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1986-01-01

    Following an elementary exposition of the basic mathematical concepts used in the theory of stochastic relaxation processes the stochastic quantization method of Parisi and Wu is briefly reviewed. The method is applied to Einstein's theory of gravitation using a formalism that is manifestly covariant with respect to field redefinitions. This requires the adoption of Ito's calculus and the introduction of a metric in field configuration space, for which there is a unique candidate. Due to the indefiniteness of the Euclidean Einstein-Hilbert action stochastic quantization is generalized to the pseudo-Riemannian case. It is formally shown to imply the DeWitt path integral measure. Finally a new type of perturbation theory is developed. (Author)

  18. Stochastic estimation of electricity consumption

    International Nuclear Information System (INIS)

    Kapetanovic, I.; Konjic, T.; Zahirovic, Z.

    1999-01-01

    Electricity consumption forecasting represents a part of the stable functioning of the power system. It is very important because of rationality and increase of control process efficiency and development planning of all aspects of society. On a scientific basis, forecasting is a possible way to solve problems. Among different models that have been used in the area of forecasting, the stochastic aspect of forecasting as a part of quantitative models takes a very important place in applications. ARIMA models and Kalman filter as stochastic estimators have been treated together for electricity consumption forecasting. Therefore, the main aim of this paper is to present the stochastic forecasting aspect using short time series. (author)

  19. Stochastic dynamics and irreversibility

    CERN Document Server

    Tomé, Tânia

    2015-01-01

    This textbook presents an exposition of stochastic dynamics and irreversibility. It comprises the principles of probability theory and the stochastic dynamics in continuous spaces, described by Langevin and Fokker-Planck equations, and in discrete spaces, described by Markov chains and master equations. Special concern is given to the study of irreversibility, both in systems that evolve to equilibrium and in nonequilibrium stationary states. Attention is also given to the study of models displaying phase transitions and critical phenomema both in thermodynamic equilibrium and out of equilibrium. These models include the linear Glauber model, the Glauber-Ising model, lattice models with absorbing states such as the contact process and those used in population dynamic and spreading of epidemic, probabilistic cellular automata, reaction-diffusion processes, random sequential adsorption and dynamic percolation. A stochastic approach to chemical reaction is also presented.The textbook is intended for students of ...

  20. Automated Flight Routing Using Stochastic Dynamic Programming

    Science.gov (United States)

    Ng, Hok K.; Morando, Alex; Grabbe, Shon

    2010-01-01

    Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.