WorldWideScience

Sample records for varying water depth

  1. A boundary element model for diffraction of water waves on varying water depth

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Sanne

    1997-12-31

    In this thesis a boundary element model for calculating diffraction of water waves on varying water depth is presented. The varying water depth is approximated with a perturbed constant depth in the mild-slope wave equation. By doing this, the domain integral which is a result of the varying depth is no longer a function of the unknown wave potential but only a function of position and the constant depth wave potential. The number of unknowns is the resulting system of equations is thus reduced significantly. The integration procedures in the model are tested very thoroughly and it is found that a combination of analytical integration in the singular region and standard numerical integration outside works very well. The gradient of the wave potential is evaluated successfully using a hypersingular integral equation. Deviations from the analytical solution are only found on the boundary or very close to, but these deviations have no significant influence on the accuracy of the solution. The domain integral is evaluated using the dual reciprocity method. The results are compared with a direct integration of the integral, and the accuracy is quite satisfactory. The problem with irregular frequencies is taken care of by the CBIEM (or CHIEF-method) together with a singular value decomposition technique. This method is simple to implement and works very well. The model is verified using Homma`s island as a test case. The test cases are limited to shallow water since the analytical solution is only valid in this region. Several depth ratios are examined, and it is found that the accuracy of the model increases with increasing wave period and decreasing depth ratio. Short waves, e.g. wind generated waves, can allow depth variations up to approximately 2 before the error exceeds 10%, while long waves can allow larger depth ratios. It is concluded that the perturbation idea is highly usable. A study of (partially) absorbing boundary conditions is also conducted. (EG)

  2. Growth and production of tomato fertilized with ash and castor cake and under varying water depths, cultivated in organic potponics

    Directory of Open Access Journals (Sweden)

    Daniela Pinto Gomes

    2017-04-01

    Full Text Available Two experiments were performed to evaluate the effect of ash (40, 80, and 120 g per plant, castor cake (140 and 280 g per plant and water depth (135, 165, 191, and 213 mm on the growth and production of organic tomato cultivated in pots in a greenhouse. The experimental design was randomized blocks, and the irrigation was managed using an automatic irrigation device. The following variables were evaluated: plant heights, numbers of leaves, bunches, flowers and fruits, total mass of fruits, mass of marketable fruits, mass of fruits with blossom-end rot, total diameter of fruits, and diameter of marketable fruits. Most of the growth variables showed gains with the application of 140 g of ash and 280 g of cake. The dose of 280 g of castor cake was responsible for the greatest mass of marketable fruits (1.78 kg per plant, regardless of the ash dose. The water deficit reduced values of most of the variables of growth and production. The irrigation depth of 213 mm was responsible for the greatest mass of marketable fruits (4.04 kg per plant. The highest water use efficiencies, 37.00 and 37.93 kg m-3, were observed at irrigation depths of 191 and 213 mm, respectively.

  3. Stereoscopic depth perception varies with hues

    Science.gov (United States)

    Chen, Zaiqing; Shi, Junsheng; Tai, Yonghang; Yun, Lijun

    2012-09-01

    The contribution of color information to stereopsis is controversial, and whether the stereoscopic depth perception varies with chromaticity is ambiguous. This study examined the changes in depth perception caused by hue variations. Based on the fact that a greater disparity range indicates more efficient stereoscopic perception, the effect of hue variations on depth perception was evaluated through the disparity range with random-dot stereogram stimuli. The disparity range was obtained by constant-stimulus method for eight chromaticity points sampled from the CIE 1931 chromaticity diagram. Eight sample points include four main color hues: red, yellow, green, and blue at two levels of chroma. The results show that the disparity range for the yellow hue is greater than the red hue, the latter being greater than the blue hue and the disparity range for green hue is smallest. We conclude that the perceived depth is not the same for different hues for a given size of disparity. We suggest that the stereoscopic depth perception can vary with chromaticity.

  4. Aurelia labiata (Scyphozoa) jellyfish in Roscoe Bay: Their spatial distribution varies with population size and their behaviour changes with water depth

    Science.gov (United States)

    Albert, David J.

    2009-02-01

    During 2003 and 2004, there were large numbers of Aurelia labiata medusae in Roscoe Bay and they distributed themselves across the entire bay. A smaller population present during 2006 and 2007 typically formed an aggregation in the west half of the bay. Since currents would have been the same during these two time periods, the behaviour of medusae must have influenced their distribution. The way medusae spaced themselves in aggregations appeared to interact with tidal currents to produce the difference in medusae distribution during the two time periods. In a second series of observations, I found that medusae were not stranded on a Roscoe Bay beach by ebb tides. When the depth of the water column declined to about 1 m or less, medusae in an intertidal zone dove down and bumped into the bottom or swam into rocks or oysters. Their response to these collisions was to swim to the surface or within a few centimetres of the surface. Since the ebb stream was at the surface, being at the surface increased the probability that medusae drifted out of the intertidal zone. The influence of medusae behaviour on their distribution and on their avoidance of stranding is a further indication of the importance of adaptive behaviour in the ecology of Aurelia labiata medusae.

  5. Modelling mid-span water table depth and drainage discharge ...

    African Journals Online (AJOL)

    2015-04-03

    Apr 3, 2015 ... groundwater table depth at varied drain depth and spacing combinations (ASAE Standards, 1999). ... Where ∆Va is the change in water pore space (cm) at any time increment ∆t (h); F is the amount of water ...... and nitrogen losses in a cold climate using DRAINMOD 5.1. Trans. ASAE 53 (2) 385−395.

  6. Light, heat, nutrients and oxygen concentrations vary with depth in ...

    African Journals Online (AJOL)

    spamer

    1995-02-19

    Feb 19, 1995 ... All zoo- plankton samples were preserved in 4% buffered saline formalin. Temperature, salinity, dissolved oxygen and chloro- phyll concentration were measured (over depth) at regular times (04:00, 09:00, 18:00 and 22:00) through- ..... Villefranche Bay, France. Palma (1985). Leuckartiara octona. DVM.

  7. Water depth penetration film test

    Science.gov (United States)

    Lockwood, H. E.; Perry, L.; Sauer, G. E.; Lamar, N. T.

    1974-01-01

    As part of the National Aeronautics and Space Administration Earth Resources Program, a comparative and controlled evaluation of nine film-filter combinations was completed to establish the relative effectiveness in recording water subsurface detail if exposed from an aerial platform over a typical water body. The films tested, with one exception, were those which prior was suggested had potential. These included an experimental 2-layer positive color film, a 2-layer (minus blue layer) film, a normal 3-layer color film, a panchromatic black-and-white film, and a black-and-white infrared film. Selective filtration was used with all films.

  8. Depth to ground water of Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a raster-based, depth to ground-water data set for the State of Nevada. The source of this data set is a statewide water-table contour data set constructed...

  9. Method of varying a physical property of a material through its depth

    Science.gov (United States)

    Daniel, Claus

    2015-04-21

    A method is disclosed for varying a mechanical property of a material at two depths. The method involves the application of at least two laser pulses of different durations. The method involves a determination of the density of the material from the surface to each depth, a determination of the heat capacity of the material from the surface to each depth, and a determination of the thermal conductivity of the material from the surface to each depth. Each laser pulse may affect the density, heat capacity, and thermal conductivity of the material, so it may be necessary to re-evaluate those parameters after each laser pulse and prior to the next pulse. The method may be applied to implantation materials to improve osteoblast and osteoclast activity.

  10. Wave spectral response to sudden changes in wind direction in finite depth waters

    Science.gov (United States)

    2015-11-14

    Virtual Special Issue Ocean Surface Waves Wave spectral response to sudden changes in wind direction in finite -depth waters Saima Aijaz a , ∗, W...exact solutions of the nonlinear term n two-dimensional models, in particular for finite -depth waters. In ddition to the complexities of shallow water...vary in time. This study seeks to investigate the wave response in finite -depth aters due to sudden changes in wind by conducting numerical imulations

  11. Anchoring International sets new water depth record

    Energy Technology Data Exchange (ETDEWEB)

    Noble, H.J.

    1983-07-01

    Santa Barbara Channel has a history steeped in firsts in techniques for the production of offshore oil. Landscaped drilling and production islands, production piers, and directional drilling from land rigs to production under the channel, to name a few. The latest such project was handled by Anchoring International, Inc., a pipe line anchoring company headquartered in Houston, Texas. Contracted by Healy Tibbets Construction Company, prime contractor, Anchoring was commissioned to handle a new deep water record breaking anchoring job. The job was to anchor J-tube extensions in 820 feet of water--the deepest pipe line anchoring job ever undertaken. In most shallow water pipe line anchoring jobs, anchors and anchor installation unit placement over the pipe line is handled from a crane topside with visual assist from divers. However, due to the extreme depth of this project, the installation unit with anchors had to be modified for submersible operator-assisted placement capability. Anchoring International handled the anchor design and installation equipment, and submersible operator assistance was furnished by Oceaneering, International. WASP and JIM atmospheric diving systems were used. All ocean bottom activities were monitored topside with the JERED video-equipped remote controlled vehicle. Since the weight of the anchor sets and power installation unit are minimum, the entire operation was conducted from a small boat sufficient to carry dive equipment and the anchor installation unit power supply. A small pedestal crane was used to lower and retrieve the anchor installation unit.

  12. Annual Thaw Depths and Water Depths in Tanana Flats, Alaska, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Thaw depths and water depths were monitored at 1 m to 2 m intervals along a 255-m transect across an area of discontinuous and degrading permafrost on the Tanana...

  13. Monitoring waterbird abundance in wetlands: The importance of controlling results for variation in water depth

    Science.gov (United States)

    Bolduc, F.; Afton, A.D.

    2008-01-01

    Wetland use by waterbirds is highly dependent on water depth, and depth requirements generally vary among species. Furthermore, water depth within wetlands often varies greatly over time due to unpredictable hydrological events, making comparisons of waterbird abundance among wetlands difficult as effects of habitat variables and water depth are confounded. Species-specific relationships between bird abundance and water depth necessarily are non-linear; thus, we developed a methodology to correct waterbird abundance for variation in water depth, based on the non-parametric regression of these two variables. Accordingly, we used the difference between observed and predicted abundances from non-parametric regression (analogous to parametric residuals) as an estimate of bird abundance at equivalent water depths. We scaled this difference to levels of observed and predicted abundances using the formula: ((observed - predicted abundance)/(observed + predicted abundance)) ?? 100. This estimate also corresponds to the observed:predicted abundance ratio, which allows easy interpretation of results. We illustrated this methodology using two hypothetical species that differed in water depth and wetland preferences. Comparisons of wetlands, using both observed and relative corrected abundances, indicated that relative corrected abundance adequately separates the effect of water depth from the effect of wetlands. ?? 2008 Elsevier B.V.

  14. Depth of soil water uptake by tropical rainforest trees during dry periods: does tree dimension matter?

    Science.gov (United States)

    Stahl, Clément; Hérault, Bruno; Rossi, Vivien; Burban, Benoit; Bréchet, Claude; Bonal, Damien

    2013-12-01

    Though the root biomass of tropical rainforest trees is concentrated in the upper soil layers, soil water uptake by deep roots has been shown to contribute to tree transpiration. A precise evaluation of the relationship between tree dimensions and depth of water uptake would be useful in tree-based modelling approaches designed to anticipate the response of tropical rainforest ecosystems to future changes in environmental conditions. We used an innovative dual-isotope labelling approach (deuterium in surface soil and oxygen at 120-cm depth) coupled with a modelling approach to investigate the role of tree dimensions in soil water uptake in a tropical rainforest exposed to seasonal drought. We studied 65 trees of varying diameter and height and with a wide range of predawn leaf water potential (Ψpd) values. We confirmed that about half of the studied trees relied on soil water below 100-cm depth during dry periods. Ψpd was negatively correlated with depth of water extraction and can be taken as a rough proxy of this depth. Some trees showed considerable plasticity in their depth of water uptake, exhibiting an efficient adaptive strategy for water and nutrient resource acquisition. We did not find a strong relationship between tree dimensions and depth of water uptake. While tall trees preferentially extract water from layers below 100-cm depth, shorter trees show broad variations in mean depth of water uptake. This precludes the use of tree dimensions to parameterize functional models.

  15. Nano-fabrication of depth-varying amorphous silicon crescent shell array for light trapping.

    Science.gov (United States)

    Yang, Huan; Li, Ben Q; Jiang, Xinbing; Yu, Wei; Liu, Hongzhong

    2017-12-15

    We report a new structure of depth controllable amorphous silicon (a-Si) crescent shells array, fabricated by the SiO2 monolayer array assisted deposition of a-Si by plasma enhanced chemical vapor deposition and nanosphere lithography, for high-efficiency light trapping applications. The depth of the crescent shell cavity was tailored by selective etching of a-Si layer of the SiO2/a-Si core/shell nanoparticle array with a varied etching time. The morphological changes of the crescent shells were examined by scanning electron microscopy and atomic force microscopy. A simple model is developed to describe the geometrical evolution of the a-Si crescent shells. Spectroscopic measurements and finite difference time domain simulations were conducted to examine the optical performance of the crescent shells. Results show that these nanostructures all have a broadband high efficiency absorption and that the light trapping capability of these crescent shell structures depends on the excitation of depths-regulated optical resonance modes. With an appropriate selection of process parameters, the structure of crescent a-Si shells may be fine-tuned to achieve an optimal light trapping capacity.

  16. Nano-fabrication of depth-varying amorphous silicon crescent shell array for light trapping

    Science.gov (United States)

    Yang, Huan; Li, Ben Q.; Jiang, Xinbing; Yu, Wei; Liu, Hongzhong

    2017-12-01

    We report a new structure of depth controllable amorphous silicon (a-Si) crescent shells array, fabricated by the SiO2 monolayer array assisted deposition of a-Si by plasma enhanced chemical vapor deposition and nanosphere lithography, for high-efficiency light trapping applications. The depth of the crescent shell cavity was tailored by selective etching of a-Si layer of the SiO2/a-Si core/shell nanoparticle array with a varied etching time. The morphological changes of the crescent shells were examined by scanning electron microscopy and atomic force microscopy. A simple model is developed to describe the geometrical evolution of the a-Si crescent shells. Spectroscopic measurements and finite difference time domain simulations were conducted to examine the optical performance of the crescent shells. Results show that these nanostructures all have a broadband high efficiency absorption and that the light trapping capability of these crescent shell structures depends on the excitation of depths-regulated optical resonance modes. With an appropriate selection of process parameters, the structure of crescent a-Si shells may be fine-tuned to achieve an optimal light trapping capacity.

  17. Malheur NWR: Initial Survey Instructions for Water Table Depth Survey

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Water table wells assist in filling a critical information gap related to fluctuating water table depth and its influence on habitat expression within wet meadow...

  18. The effect of aorta unfolding and remodelling on oesophageal Doppler readings as probe depth is varied.

    Science.gov (United States)

    Zhang, J; Critchley, L A H; Huang, L

    2015-11-01

    The thoracic aorta elongates and unfolds with advancing age. Lateral displacement and tortuosity of the descending part may affect oesophageal Doppler monitoring (ODM) readings because probe alignment becomes slanted. This investigation aimed to relate aortic displacement as it appears on the chest radiograph with variations in ODM readings as the probe is inserted to different depths. In anaesthetized patients a series of three to five ODM stroke volume (SV) readings were obtained at insertion depths of 35-45 cm during stable haemodynamics. The coefficient of variation (CV=standard deviation/mean %) was calculated. The degree of descending aorta unfolding was measured by (i) lateral displacement (LD), that is, the difference in the maximum and minimum distances between the midline and para-aortic line; and (ii) curvature angle (CA), the angle formed by a tangential line from the intersection of the para-aortic line and the diaphragm to its curve with the vertical line. Data from 70 patients were analysed. The median CV of SV readings was 14% (range 4-48). Variation between ODM readings, shown by the CV of SV readings, increased linearly with aortic unfolding: R2=0.44 for LD and R2=0.60 for CA. Patients with a CA ≤15° were younger and had significantly lower CVs of ODM readings than those with a CA >15° (P=0.001). Age and hypertension was associated with increased CA. Increased lateral displacement and tortuosity of the descending aorta reduces the reliability of ODM measurements as probe depth is varied, especially with aging. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. The interplay between rainfall infiltration depth, rooting depth and water table depth in regulating Amazon evapotranspiration (ET)

    Science.gov (United States)

    Miguez-Macho, Gonzalo; Fan, Ying; Dominguez, Francina

    2017-04-01

    Plants link the subsurface to the atmosphere via water and carbon fluxes and are therefore a key player in climate. The Amazon, one of Earth's largest ecosystems, is an important climate regulator. As a large source of evapotranspiration, it has significant influence on regional and remote precipitation dynamics. For its equatorial position, it impacts significantly the global climate engine. The Amazon receives abundant annual rainfall but parts of it experience a multi-month dry season. Here we elucidate the interplay among three hydrological depths: precipitation infiltration depth, root water uptake-depth, and the water table depth in regulating dry-season ET, using inverse modeling based on observed productivity, ERA Interim reanalysis atmosphere, and a novel integrated soil-surface-groundwater model with dynamic root uptake to meet the transpiration demand. We perform high-resolution ( 1km) multi-year simulations over the region, with shallow soil, deep soil, with and without groundwater, with and without dynamic rooting depth; attempting to tease out these components. The results demonstrate the strong interactions among the three depths and what each factor does in regulating dry season ET, shedding light on how future global change may preferentially impact Amazon ecosystem functioning.

  20. Photonic crystal fiber coil sensor for water-depth sensing

    Science.gov (United States)

    Fan, Chen-Feng; Yu, Chin-Ping

    2013-05-01

    We fabricate a PCF coil sensor for water-depth sensing by winding a PCF on a plastic straw. Due to the bending-induced birefringence along the PCF, we can observe clear interference pattern in the output spectrum by placing the PCF coil into a Sagnac fiber loop. As we horizontally immerse the fabricated PCF coil into water, a nonlinear relationship between the water depth and the wavelength shift can be obtained. We have also measured the interference spectrum by vertically immersing the PCF coil into water. We can observe a linear relationship between the water depth and the wavelength shift, and the measured water-depth sensitivity for vertical immersion is -1.17 nm/mm.

  1. Depth varying rupture properties during the 2015 Mw 7.8 Gorkha (Nepal) earthquake

    Science.gov (United States)

    Yue, Han; Simons, Mark; Duputel, Zacharie; Jiang, Junle; Fielding, Eric; Liang, Cunren; Owen, Susan; Moore, Angelyn; Riel, Bryan; Ampuero, Jean Paul; Samsonov, Sergey V.

    2017-09-01

    On April 25th 2015, the Mw 7.8 Gorkha (Nepal) earthquake ruptured a portion of the Main Himalayan Thrust underlying Kathmandu and surrounding regions. We develop kinematic slip models of the Gorkha earthquake using both a regularized multi-time-window (MTW) approach and an unsmoothed Bayesian formulation, constrained by static and high rate GPS observations, synthetic aperture radar (SAR) offset images, interferometric SAR (InSAR), and teleseismic body wave records. These models indicate that Kathmandu is located near the updip limit of fault slip and approximately 20 km south of the centroid of fault slip. Fault slip propagated unilaterally along-strike in an ESE direction for approximately 140 km with a 60 km cross-strike extent. The deeper portions of the fault are characterized by a larger ratio of high frequency (0.03-0.2 Hz) to low frequency slip than the shallower portions. From both the MTW and Bayesian results, we can resolve depth variations in slip characteristics, with higher slip roughness, higher rupture velocity, longer rise time and higher complexity of subfault source time functions in the deeper extents of the rupture. The depth varying nature of rupture characteristics suggests that the up-dip portions are characterized by relatively continuous rupture, while the down-dip portions may be better characterized by a cascaded rupture. The rupture behavior and the tectonic setting indicate that the earthquake may have ruptured both fully seismically locked and a deeper transitional portions of the collision interface, analogous to what has been seen in major subduction zone earthquakes.

  2. Differential modulation of thalamo-parietal interactions by varying depths of isoflurane anesthesia.

    Directory of Open Access Journals (Sweden)

    Dongrae Cho

    Full Text Available The thalamus is thought to relay peripheral sensory information to the somatosensory cortex in the parietal lobe. Long-range thalamo-parietal interactions play an important role in inducing the effect of anesthetic. However, whether these interaction changes vary with different levels of anesthesia is not known. In the present study, we investigated the influence of different levels of isoflurane-induced anesthesia on the functional connectivity between the thalamus and the parietal region. Microelectrodes were implanted in rats to record local field potentials (LFPs. The rats underwent different levels of isoflurane anesthesia [deep anesthesia: isoflurane (ISO 2.5 vol%, light anesthesia (ISO 1 vol%, awake, and recovery state] and LFPs were recorded from four different brain areas (left parietal, right parietal, left thalamus, and right thalamus. Partial directed coherence (PDC was calculated for these areas. With increasing depth of anesthesia, the PDC in the thalamus-to-parietal direction was significantly increased mainly in the high frequency ranges; however, in the parietal-to-thalamus direction, the increase was mainly in the low frequency band. For both directions, the PDC changes were prominent in the alpha frequency band. Functional interactions between the thalamus and parietal area are augmented proportionally to the anesthesia level. This relationship may pave the way for better understanding of the neural processing of sensory inputs from the periphery under different levels of anesthesia.

  3. WATER DEPTH and Other Data (NCEI Accession 9400181)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NIRO-MET data set containing water depth and other data in this accession was sent by Borris Trotsenko from Southern Scientific Research Institute of Marine...

  4. Practical Analysis of materials with depth varying compositions using FT-IR photoacoustic spectroscopy (PAS)

    Energy Technology Data Exchange (ETDEWEB)

    J.F. McClelland; R.W. Jones; Siquan Luo

    2004-09-30

    FT-IR photoacoustic spectroscopy (PAS) is discussed as a nondestructive method to probe the molecular composition of materials versus depth on the basis of the analysis of layers of experimentally controllable thickness, which are measured from the sample surface to depths of some tens of micrometers, depending on optical and thermal properties. Computational methods are described to process photoacoustic amplitude and phase spectra for both semi-quantitative and quantitative depth analyses. These methods are demonstrated on layered and gradient samples.

  5. Interrelationships of petiolar air canal architecture, water depth, and convective air flow in Nymphaea odorata (Nymphaeaceae).

    Science.gov (United States)

    Richards, Jennifer H; Kuhn, David N; Bishop, Kristin

    2012-12-01

    Nymphaea odorata grows in water up to 2 m deep, producing fewer larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiolar air canals are the convective flow pathways. This study describes the structure of these canals, how this structure varies with water depth, and models how convective flow varies with depth. • Nymphaea odorata plants were grown at water depths from 30 to 90 cm. Lamina area, petiolar cross-sectional area, and number and area of air canals were measured. Field-collected leaves and leaves from juvenile plants were analyzed similarly. Using these data and data from the literature, we modeled how convective flow changes with water depth. • Petioles of N. odorata produce two central pairs of air canals; additional pairs are added peripherally, and succeeding pairs are smaller. The first three pairs account for 96% of air canal area. Air canals form 24% of petiolar cross-sectional area. Petiolar and air canal cross-sectional areas increase with water depth. Petiolar area scales with lamina area, but the slope of this relationship is lower in 90 cm water than at shallower depths. In our model, the rate of convective flow varied with depth and with the balance of influx to efflux leaves. • Air canals in N. odorata petioles increase in size and number in deeper water but at a decreasing amount in relation to lamina area. Convective flow also depends on the number of influx to efflux laminae.

  6. Wave Loads on Ships Sailing in Restricted Water Depth

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena; Jensen, Jørgen Juncher

    2003-01-01

    moment a ship may be subjected to during its operational lifetime. Whereas the influence of forward speed and ship heading with respect to the waves usually is accounted for, the effect of water depth is seldom considered, except in non-linear time domain formulations where a confined water domain must...... be specified anyhow. Usually, two-dimensional strip theories, either linear or non-linear, are applied for actual design cases and these theories are normally based on incident deep-water waves and furthermore apply added mass and damping calculations based on infinite water depth. Only a few papers have...... in the past addressed the influence of water depth on the ship response. In an early work Kim (1968) presented results for the variation of the added mass and hydrodynamic damping and for the heave and pitch motion for a Series 60 model using a relative motion strip theory formulation. A significant reduction...

  7. Depth

    Science.gov (United States)

    Koenderink, Jan J; van Doorn, Andrea J; Wagemans, Johan

    2011-01-01

    Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the fact that human observers often appear to apply mental transformations that involve depths in distinct visual directions. This implies that a comparison of empirically determined depths between observers involves pictorial space as an integral entity, whereas comparing pictorial depths as such is meaningless. We describe the formal structure of pictorial space purely in the phenomenological domain, without taking recourse to the theories of optics which properly apply to physical space—a distinct ontological domain. We introduce a number of general ways to design and implement methods of geodesy in pictorial space, and discuss some basic problems associated with such measurements. We deal mainly with conceptual issues. PMID:23145244

  8. Bacterial and fungal communities respond differently to varying tillage depth in agricultural soils.

    Science.gov (United States)

    Anderson, Craig; Beare, Mike; Buckley, Hannah L; Lear, Gavin

    2017-01-01

    In arable cropping systems, reduced or conservation tillage practices are linked with improved soil quality, C retention and higher microbial biomass, but most long-term studies rarely focus on depths greater than 15 cm nor allow comparison of microbial community responses to agricultural practices. We investigated microbial community structure in a long-term field trial (12-years, Lincoln, New Zealand) established in a silt-loam soil over four depth ranges down to 30 cm. Our objectives were to investigate the degree of homogenisation of soil biological and chemical properties with depth, and to determine the main drivers of microbial community response to tillage. We hypothesised that soil microbiological responses would depend on tillage depth, observed by a homogenisation of microbial community composition within the tilled zone. Tillage treatments were mouldboard plough and disc harrow, impacting soil to ∼20 and ∼10 cm depth, respectively. These treatments were compared to a no-tillage treatment and two control treatments, both permanent pasture and permanent fallow. Bacterial and fungal communities collected from the site were not impacted by the spatial location of sampling across the study area but were affected by physicochemical changes associated with tillage induced soil homogenisation and plant presence. Tillage treatment effects on both species richness and composition were more evident for bacterial communities than fungal communities, and were greater at depths <15 cm. Homogenisation of soil and changing land management appears to redistribute both microbiota and nutrients deeper in the soil profile while consequences for soil biogeochemical functioning remain poorly understood.

  9. The Antiproton Depth-Dose Curve in Water

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael; Jäkel, Oliver

    2008-01-01

    We have measured the depth-dose curve of 126 MeV antiprotons in a water phantom using ionization chambers. Since the antiproton beam provided by CERN has a pulsed structure and possibly carries a high-LET component from the antiproton annihilation, it is necessary to correct the acquired charge...

  10. Effects of tailwater depth on spillway aeration | Aras | Water SA

    African Journals Online (AJOL)

    Hydraulic structures such as spillways or weirs with their water-air controlling mechanisms are not only important for their structural properties but also for their effects on downstream ecology. Tailwater depth is an important factor affecting dissolved oxygen transfer and aeration rates of spillways. In this study, effects of ...

  11. Modelling mid-span water table depth and drainage discharge ...

    African Journals Online (AJOL)

    Water table depths were monitored in 1.7 m deep piezometers installed mid-way between two drains by using an electronic dip meter with a beeper, while DDs were measured at drain lateral outlet points, using a bucket and a stop watch. Both WTDs and DDs were monitored from September 2011 to February 2012. Results ...

  12. The perception of ego-motion change in environments with varying depth: Interaction of stereo and optic flow.

    Science.gov (United States)

    Ott, Florian; Pohl, Ladina; Halfmann, Marc; Hardiess, Gregor; Mallot, Hanspeter A

    2016-07-01

    When estimating ego-motion in environments (e.g., tunnels, streets) with varying depth, human subjects confuse ego-acceleration with environment narrowing and ego-deceleration with environment widening. Festl, Recktenwald, Yuan, and Mallot (2012) demonstrated that in nonstereoscopic viewing conditions, this happens despite the fact that retinal measurements of acceleration rate-a variable related to tau-dot-should allow veridical perception. Here we address the question of whether additional depth cues (specifically binocular stereo, object occlusion, or constant average object size) help break the confusion between narrowing and acceleration. Using a forced-choice paradigm, the confusion is shown to persist even if unambiguous stereo information is provided. The confusion can also be demonstrated in an adjustment task in which subjects were asked to keep a constant speed in a tunnel with varying diameter: Subjects increased speed in widening sections and decreased speed in narrowing sections even though stereoscopic depth information was provided. If object-based depth information (stereo, occlusion, constant average object size) is added, the confusion between narrowing and acceleration still remains but may be slightly reduced. All experiments are consistent with a simple matched filter algorithm for ego-motion detection, neglecting both parallactic and stereoscopic depth information, but leave open the possibility of cue combination at a later stage.

  13. Water use efficiency of six rangeland grasses under varied soil ...

    African Journals Online (AJOL)

    The changes in soil moisture content were measured by Gypsum Block which aided in determining the irrigation schedules. The grasses demonstrated varied levels of WUE which was evaluated by amount of biomass productivity in relation to evapotranspired water during the growing period. The three soil moisture content ...

  14. Optimizing the Use of Secchi Depth as a Proxy for Euphotic Depth in Coastal Waters: An Empirical Study from the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Hanna Luhtala

    2013-12-01

    Full Text Available Potential zone for photosynthesis in natural waters is restricted to a relatively thin illuminated surface water layer. The thickness of this layer is often indirectly estimated by measuring the depth in which 1% of the photosynthetically active radiation entering the water remains. This depth is referred to as the euphotic depth. A coarser way to evaluate the underwater light penetration is to measure the Secchi depth, which is a visual measure of water transparency. The numerical relationship between these two optical parameters, i.e., conversion coefficient m, varies according to the changes in the optical properties of water, especially in transitional coastal waters. The aim of our study is to assess which is the most suitable criterion to base these coefficients on. We tested nine methods, seven of which were locally calibrated with our own in situ data from the optically heterogeneous Baltic Sea archipelago coast of SW Finland. We managed to significantly improve the accuracy of modeling euphotic depths from Secchi depths by using scalable and locally calibrated methods instead of a single fixed coefficient. The best results were achieved by using methods, either continuous functions or series of constants, which are based on water transparency values.

  15. An analysis of depth dose characteristics of photon in water.

    Science.gov (United States)

    Buzdar, Saeed Ahmad; Rao, Muhammad Afzal; Nazir, Aalia

    2009-01-01

    Photon beam is most widely being used for radiation therapy. Biological effect of radiation is concerned with the evaluation of energy absorbed in the tissues. It was aimed to analyse the depth dose characteristics of x-ray beams of diverse energies to enhance the quality of radiotherapy treatment planning. Depth dose characteristics of different energy photon beams in water have been analysed. Photon beam is attenuated by the medium and the transmitted beam with less intensity causes lesser absorbed dose as depth increases. Relative attenuation on certain points on the beam axis and certain percentage of doses on different depths for available energies has been investigated. Photon beam depth dose characteristics do not show identical attributes as interaction of x-ray with matter is mainly governed by beam quality. Attenuation and penetration parameters of photon show variation with dosimetric parameters like field size due to scattering and Source to Surface Distance due to inverse square law, but the major parameter in photon interactions is its energy. Detailed analysis of photon Depth Dose characteristics helps to select appropriate beam for radiotherapy treatment when variety of beam energies available. Evaluation of this type of characteristics will help to establish theoretical relationships between dosimetric parameters to confirm measured values of dosimetric quantities, and hence to increase accuracy in radiotherapy treatment.

  16. Stope gully support and sidings geometry at all depths and at varying dip.

    CSIR Research Space (South Africa)

    Naidoo, K

    2002-08-01

    Full Text Available , provides a comprehensive review of gully practices industry-wide and derives a set of suitable guidelines for strike gully layouts. These examine the effects of both geometry and support at all depths in both gold and platinum mines, to reduce hazards... in the Witwatersrand gold mines. The review considers the recognition of factors that may contribute to poor gully ground conditions, past recommendations for gully layout and support, practices that mines have found successful, and areas where research work has...

  17. Electroacoustic Process Study of Plasma Sparker Under Different Water Depth

    KAUST Repository

    Huang, Yifan

    2015-01-05

    The plasma sparker has been applied in oceanic high-resolution seismic exploration for decades. Normally it is towed on the water surface. This is suitable for shallow water, but if the water depth is great, the resolution will decrease dramatically, especially in the horizontal direction. This paper proposes the concept of a deep-towed plasma sparker and presents an experimental study of plasma sparker performance in terms of electric parameters, bubble behavior, and acoustic characteristics. The results show that hydrostatic pressure at a source depth ranging from 1 to 2000 m has a negligible influence on the electric parameters but a strong influence on bubble behavior, wherein both the maximum bubble radius and oscillation period are decreased. The collapse pulse vanishes when the source depth reaches 1000 m or deeper, and no bubble oscillation can be distinguished. The source level (evaluated by the expansion pulse) is also decreased as the source depth increases; moreover, the greater the discharge energy, the smaller the source level loss. The discharge energy per electrode should be greater than 20 J for the deep-towed plasma sparker, which can make the source level loss induced by hydrostatic pressure smaller than the transmission loss. The fast Fourier transform (FFT) results show that the dominant energy is around 20 kHz, which is mainly induced by the expansion pulse and its oscillation. According to the simulation results, the fundamental frequency of the acoustic waveform increases with source depth in accord with a log linear trend, and also reaches tens of kilohertz in deep water. So, before the development of deep-towed plasma sparker, a new technical solution will need to be developed to solve this problem. © 1976-2012 IEEE.

  18. The unique chemistry of Eastern Mediterranean water masses selects for distinct microbial communities by depth.

    Directory of Open Access Journals (Sweden)

    Stephen M Techtmann

    Full Text Available The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbial community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly

  19. The unique chemistry of Eastern Mediterranean water masses selects for distinct microbial communities by depth.

    Science.gov (United States)

    Techtmann, Stephen M; Fortney, Julian L; Ayers, Kati A; Joyner, Dominique C; Linley, Thomas D; Pfiffner, Susan M; Hazen, Terry C

    2015-01-01

    The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbial community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial

  20. Evolution of a small hydrothermal eruption episode through a mud pool of varying depth and rheology, White Island, NZ

    Science.gov (United States)

    Edwards, M. J.; Kennedy, B. M.; Jolly, A. D.; Scheu, B.; Jousset, P.

    2017-02-01

    , which may in turn influence the bubble burst depth. Occasionally, visible yellowing of the steam/gas plume led us to suggest that elemental sulphur may also be present in the conduit and may also play a role in regulating bubble release dynamics. Although, evidence for magmatic/phreatomagmatic eruptions was present during eruptions later in 2013, we found no evidence for juvenile magma in the January-February eruption episode described here. However, we concur with other investigators that magma was probably intruded to shallow levels and may have driven heat and gas flux. Our explanation for the correlation of pool depth, mud viscosity and eruption regime is based on a conceptual model in which a pool is perched above a two phase hydrothermal system and is sensitive to changes in the heat and gas flux from shallow magma. The variable release of gas and thermal perturbations in the course of the January-February eruptive episode impacted the pool level, the water to sediment ratio in the pool, and thus its viscosity, and in turn modulated the eruption regime. The varying degree of explosivity throughout this episode calls for a new consideration of pool properties in assessing eruption hazards at this frequently visited volcano. We additionally emphasise that ballistic hazards from small eruptions exist coupled with a range of seismic signals and that the hazard was greatest during infrasound tremor.

  1. MODIS Retrieval of Aerosol Optical Depth over Turbid Coastal Water

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-06-01

    Full Text Available We present a new approach to retrieve Aerosol Optical Depth (AOD using the Moderate Resolution Imaging Spectroradiometer (MODIS over the turbid coastal water. This approach supplements the operational Dark Target (DT aerosol retrieval algorithm that currently does not conduct AOD retrieval in shallow waters that have visible sediments or sea-floor (i.e., Class 2 waters. Over the global coastal water regions in cloud-free conditions, coastal screening leads to ~20% unavailability of AOD retrievals. Here, we refine the MODIS DT algorithm by considering that water-leaving radiance at 2.1 μm to be negligible regardless of water turbidity, and therefore the 2.1 μm reflectance at the top of the atmosphere is sensitive to both change of fine-mode and coarse-mode AODs. By assuming that the aerosol single scattering properties over coastal turbid water are similar to those over the adjacent open-ocean pixels, the new algorithm can derive AOD over these shallow waters. The test algorithm yields ~18% more MODIS-AERONET collocated pairs for six AERONET stations in the coastal water regions. Furthermore, comparison of the new retrieval with these AERONET observations show that the new AOD retrievals have equivalent or better accuracy than those retrieved by the MODIS operational algorithm’s over coastal land and non-turbid coastal water product. Combining the new retrievals with the existing MODIS operational retrievals yields an overall improvement of AOD over those coastal water regions. Most importantly, this refinement extends the spatial and temporal coverage of MODIS AOD retrievals over the coastal regions where 60% of human population resides. This expanded coverage is crucial for better understanding of impact of anthropogenic aerosol particles on coastal air quality and climate.

  2. Compact water depth sensor with LPFG using the photoelastic effect and heat-shrinkable tube

    Science.gov (United States)

    Takama, Shinya; Kudomi, Takamasa; Ohashi, Masaharu; Miyoshi, Yuji

    2011-12-01

    We propose a compact water depth sensor with a long period fiber grating (LPFG) using a heat-shrinkable tube. The pressure property of the LPFG is investigated experimentally to confirm the feasibility of the water depth sensor. Moreover, the water depth in the 2m long water-filled pipe is successfully estimated by the proposed water sensors.

  3. Fluctuating water depths affect American alligator (Alligator mississippiensis) body condition in the Everglades, Florida, USA

    Science.gov (United States)

    Brandt, Laura A.; Beauchamp, Jeffrey S.; Jeffery, Brian M.; Cherkiss, Michael S.; Mazzotti, Frank J.

    2016-01-01

    Successful restoration of wetland ecosystems requires knowledge of wetland hydrologic patterns and an understanding of how those patterns affect wetland plant and animal populations.Within the Everglades, Florida, USA restoration, an applied science strategy including conceptual ecological models linking drivers to indicators is being used to organize current scientific understanding to support restoration efforts. A key driver of the ecosystem affecting the distribution and abundance of organisms is the timing, distribution, and volume of water flows that result in water depth patterns across the landscape. American alligators (Alligator mississippiensis) are one of the ecological indicators being used to assess Everglades restoration because they are a keystone species and integrate biological impacts of hydrological operations through all life stages. Alligator body condition (the relative fatness of an animal) is one of the metrics being used and targets have been set to allow us to track progress. We examined trends in alligator body condition using Fulton’s K over a 15 year period (2000–2014) at seven different wetland areas within the Everglades ecosystem, assessed patterns and trends relative to restoration targets, and related those trends to hydrologic variables. We developed a series of 17 a priori hypotheses that we tested with an information theoretic approach to identify which hydrologic factors affect alligator body condition. Alligator body condition was highest throughout the Everglades during the early 2000s and is approximately 5–10% lower now (2014). Values have varied by year, area, and hydrology. Body condition was positively correlated with range in water depth and fall water depth. Our top model was the “Current” model and included variables that describe current year hydrology (spring depth, fall depth, hydroperiod, range, interaction of range and fall depth, interaction of range and hydroperiod). Across all models, interaction

  4. Carbon storage potential in size–density fractions from semi-natural grassland ecosystems with different productivities over varying soil depths

    Energy Technology Data Exchange (ETDEWEB)

    Breulmann, Marc [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany); Helmholtz-Centre for Environmental Research – UFZ, Environmental and Biotechnology Centre (UBZ), Permoserstraße 15, 04318 Leipzig (Germany); Boettger, Tatjana [Helmholtz-Centre for Environmental Research – UFZ, Department of Isotope Hydrology, Theodor-Lieser-Str. 4, D-06120 Halle (Germany); Buscot, François [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany); German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig (Germany); Gruendling, Ralf [Helmholtz-Centre for Environmental Research – UFZ, Department, Department of Soil Physics, Theodor-Lieser-Str. 4, D-06120 Halle (Germany); Schulz, Elke [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany)

    2016-03-01

    Researchers have increasingly recognised a profound need for more information on SOC stocks in the soil and the factors governing their stability and dynamics. Many questions still remain unanswered about the interplay between changes in plant communities and the extent to which changes in aboveground productivity affect the carbon dynamics in soils through changes in its quantity and quality. Therefore, the main aim of this research was to examine the SOC accumulation potential of semi-natural grasslands of different productivities and determine the distribution of SOM fractions over varying soil depth intervals (0–10, 10–20, 20–30 30–50 50–80 and 80 + cm). SOM fractionation was considered as a relative measure of stability to separate SOM associated with clay minerals from SOM of specific light densities less than 2 g cm{sup −3} (size-density fractionation). Two clay-associated fractions (CF1, < 1 μm; and CF2, 1–2 μm) and two light fractions (LF1, < 1.8 g cm{sup −3}; and LF2, 1.8–2.0 g cm{sup −3}) were separated. The stability of these fractions was characterised by their carbon hot water extractability (C{sub HWE}) and stable carbon isotope composition. In the semi-natural grasslands studied, most OC was stored in the top 30 cm, where turnover is rapid. Effects of low productivity grasslands became only significantly apparent when fractional OC contributions of total SOM was considered (CF1 and LF1). In deeper soil depths OC was largely attributed to the CF1 fraction of low productivity grasslands. We suggest that the majority of OM in deeper soil depth intervals is microbially-derived, as evidenced by decreasing C/N ratios and decreasing δ{sup 13}C values. The hot water extraction and natural δ{sup 13}C abundance, employed here allowed the characterisation of SOM stabilisation properties, however how climatic changes affect the fate of OM within different soil depth intervals is still unknown. - Highlights: • OC stocks over varying

  5. Optimizing water depth for wetland-dependent wildlife could increase wetland restoration success, water efficiency, and water security

    Science.gov (United States)

    Nadeau, Christopher P.; Conway, Courtney J.

    2015-01-01

    Securing water for wetland restoration efforts will be increasingly difficult as human populations demand more water and climate change alters the hydrologic cycle. Minimizing water use at a restoration site could help justify water use to competing users, thereby increasing future water security. Moreover, optimizing water depth for focal species will increase habitat quality and the probability that the restoration is successful. We developed and validated spatial habitat models to optimize water depth within wetland restoration projects along the lower Colorado River intended to benefit California black rails (Laterallus jamaicensis coturniculus). We observed a 358% increase in the number of black rails detected in the year after manipulating water depth to maximize the amount of predicted black rail habitat in two wetlands. The number of black rail detections in our restoration sites was similar to those at our reference site. Implementing the optimal water depth in each wetland decreased water use while simultaneously increasing habitat suitability for the focal species. Our results also provide experimental confirmation of past descriptive accounts of black rail habitat preferences and provide explicit water depth recommendations for future wetland restoration efforts for this species of conservation concern; maintain surface water depths between saturated soil and 100 mm. Efforts to optimize water depth in restored wetlands around the world would likely increase the success of wetland restorations for the focal species while simultaneously minimizing and justifying water use.

  6. Estimating plant water uptake source depths with optimized stable water isotope labeling

    Science.gov (United States)

    Seeger, Stefan; Weiler, Markus

    2016-04-01

    Depth profiles of pore water stable isotopes in soils in conjunction with measurements of stable water isotopes (SWI) in plant transpiration allow the estimation of the contributions of different soil depths to plant water uptake (PWU).
 However, SWI depth profiles that result from the variations of SWI in natural precipitation may lead to highly ambiguous results, i.e. the same SWI signature in transpiration could result from different PWU patterns or SWI depth profiles. The aim of this study was to find an optimal stable water isotope depth profile to estimate plant water uptake patterns and to compare different PWU source depth estimation methods. We used a new soil water transport model including fractionation effects of SWI and exchange between the vapor and liquid phase to simulate different irrigation scenarios. Different amounts of water with differing SWI signatures (glacier melt water, summer precipitation water, deuterated water) were applied in order to obtain a wide variety of SWI depth profiles. Based on these simulated SWI depth profiles and a set of hypothetical PWU patterns, the theoretical SWI signatures of the respective plant transpiration were computed. In the next step, two methods - Bayesian isotope mixing models (BIMs) and optimization of a parametric distribution function (beta function) - were used to estimate the PWU patterns from the different SWI depth profiles and their respective SWI signatures in the resulting transpiration. Eventually, the estimated and computed profiles were compared to find the best SWI depth profile and the best method. The results showed, that compared to naturally occurring SWI depth profiles, the application of multiple, in terms of SWI, distinct labeling pulses greatly improves the possible spatial resolution and at the same time reduces the uncertainty of PWU estimates.
 For the PWU patterns which were assumed for this study, PWU pattern estimates based on an optimized parametric distribution function

  7. Corrosion in sea water at different depths. Korrosion i havsvatten paa olika djup

    Energy Technology Data Exchange (ETDEWEB)

    Sund, G.

    1990-05-17

    The sea and the sea bottom contain great resources which only during the last decades have begun to be used to any great extent. In this connection, stationary constructions for oil and gas extraction attract great interest, but floating factories, plants for water usage and desalting plants can also be mentioned. The ultimate goal of the project was to provide a comprehensive picture of how the corrosion rate varies at different depths in sea water by: - determining the risk for local corrosion of stainless steels. - determining the corrosion rate during the general corrosion of carbon steel and low alloy steels and the risk of hydrogen embrittlement of welded high-tensile steels. - studying galvanic effects when stainless steels/titanium are joined to carbon steel, Ni-resist and copper alloys. The investigation was carried out in the Koster fiord at a depth of ca 10 m and at a depth level corresponding to 130 m and at the Norske Veritas test station outside Bergen at depths of 10 m and 110 m. A lot of information concerning sea water parameters and growth was obtained and compiled for the different test sites. A large amount of data are presented in the report. (16 figs., 21 tabs., 12 refs.).

  8. Correlation between the thickness of the crestal and buccolingual cortical bone at varying depths and implant stability quotients.

    Directory of Open Access Journals (Sweden)

    Kanthanat Chatvaratthana

    Full Text Available Resonance frequency analysis (RFA is clinically used in dentistry to access the stiffness of dental implants in surrounding bone. However, the clear advantages and disadvantages of this method are still inconclusive. The aim of this study was to investigate and compare implant stability quotient (ISQ values obtained from RFA with parameters obtained from a cone beam computed tomography (CBCT scan of the same region.Nineteen implants (Conelog were inserted in the posterior maxillary and mandibular partially edentulous regions of 16 patients. At the time of implant placement, the ISQ values were obtained using RFA (Osstell. CBCT was used to measure the thickness of the crestal, cortical, buccolingual cortical, and cancellous bone at 3, 6, and 9 mm below the crestal bone level, as indicated by radiographic markers. The ratio of the thickness of the cortical to cancellous bone at varying depths was also calculated and classified into 4 groups (Group 1-4.There was a strong correlation between the crestal cortical bone thickness and ISQ values (P<0.001. The thickness of the buccolingual cortical bone and ratio of the cortical to cancellous bone thickness at 3 mm were significantly related to the ISQ (P = 0.018 and P = 0.034, respectively. Furthermore, the ISQs in Group 1 were the highest compared with those in Group 2 and Group 3, whereas the CBCT parameters at 6 and 9 mm did not have any specific correlation with the ISQ values.This study showed that the ISQ values obtained from RFA highly correlated with the quantity and quality of bone 3 mm below the crestal bone level. The correlation between the ISQ and bone surrounding the implant site was dependent on the depth of measurement. Therefore, RFA can help to predict the marginal bone level, as confirmed in this study.

  9. Water Constituents and Water Depth Retrieval from Sentinel-2A—A First Evaluation in an Oligotrophic Lake

    Directory of Open Access Journals (Sweden)

    Katja Dörnhöfer

    2016-11-01

    Full Text Available Satellite remote sensing may assist in meeting the needs of lake monitoring. In this study, we aim to evaluate the potential of Sentinel-2 to assess and monitor water constituents and bottom characteristics of lakes at spatio-temporal synoptic scales. In a field campaign at Lake Starnberg, Germany, we collected validation data concurrently to a Sentinel-2A (S2-A overpass. We compared the results of three different atmospheric corrections, i.e., Sen2Cor, ACOLITE and MIP, with in situ reflectance measurements, whereof MIP performed best (r = 0.987, RMSE = 0.002 sr−1. Using the bio-optical modelling tool WASI-2D, we retrieved absorption by coloured dissolved organic matter (aCDOM(440, backscattering and concentration of suspended particulate matter (SPM in optically deep water; water depths, bottom substrates and aCDOM(440 were modelled in optically shallow water. In deep water, SPM and aCDOM(440 showed reasonable spatial patterns. Comparisons with in situ data (mean: 0.43 m−1 showed an underestimation of S2-A derived aCDOM(440 (mean: 0.14 m−1; S2-A backscattering of SPM was slightly higher than backscattering from in situ data (mean: 0.027 m−1 vs. 0.019 m−1. Chlorophyll-a concentrations (~1 mg·m−3 of the lake were too low for a retrieval. In shallow water, retrieved water depths exhibited a high correlation with echo sounding data (r = 0.95, residual standard deviation = 0.12 m up to 2.5 m (Secchi disk depth: 4.2 m, though water depths were slightly underestimated (RMSE = 0.56 m. In deeper water, Sentinel-2A bands were incapable of allowing a WASI-2D based separation of macrophytes and sediment which led to erroneous water depths. Overall, the results encourage further research on lakes with varying optical properties and trophic states with Sentinel-2A.

  10. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    Science.gov (United States)

    Rayner, John

    2017-01-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  11. Assessing the effects of adaptation measures on optimal water resources allocation under varied water availability conditions

    Science.gov (United States)

    Liu, Dedi; Guo, Shenglian; Shao, Quanxi; Liu, Pan; Xiong, Lihua; Wang, Le; Hong, Xingjun; Xu, Yao; Wang, Zhaoli

    2018-01-01

    Human activities and climate change have altered the spatial and temporal distribution of water availability which is a principal prerequisite for allocation of different water resources. In order to quantify the impacts of climate change and human activities on water availability and optimal allocation of water resources, hydrological models and optimal water resource allocation models should be integrated. Given that increasing human water demand and varying water availability conditions necessitate adaptation measures, we propose a framework to assess the effects of these measures on optimal allocation of water resources. The proposed model and framework were applied to a case study of the middle and lower reaches of the Hanjiang River Basin in China. Two representative concentration pathway (RCP) scenarios (RCP2.6 and RCP4.5) were employed to project future climate, and the Variable Infiltration Capacity (VIC) hydrological model was used to simulate the variability of flows under historical (1956-2011) and future (2012-2099) conditions. The water availability determined by simulating flow with the VIC hydrological model was used to establish the optimal water resources allocation model. The allocation results were derived under an extremely dry year (with an annual average water flow frequency of 95%), a very dry year (with an annual average water flow frequency of 90%), a dry year (with an annual average water flow frequency of 75%), and a normal year (with an annual average water flow frequency of 50%) during historical and future periods. The results show that the total available water resources in the study area and the inflow of the Danjiangkou Reservoir will increase in the future. However, the uneven distribution of water availability will cause water shortage problems, especially in the boundary areas. The effects of adaptation measures, including water saving, and dynamic control of flood limiting water levels (FLWLs) for reservoir operation, were

  12. Finding the right fit: studying the biomechanics of under-tapping with varying thread depths and pitches.

    Science.gov (United States)

    Jazini, Ehsan; Petraglia, Carmen; Moldavsky, Mark; Tannous, Oliver; Weir, Tristan; Saifi, Comron; Elkassabany, Omar; Cai, Yiwei; Bucklen, Brandon; O'Brien, Joseph; Ludwig, Steven C

    2017-04-01

    Compromise of pedicle screw purchase is a concern in maintaining rigid spinal fixation, especially with osteoporosis. Little consistency exists among various tapping techniques. Pedicle screws are often prepared with taps of a smaller diameter, which can further exacerbate inconsistency. The objective of this study was to determine whether a mismatch between tap thread depth (D) and thread pitch (P) and screw D and P affects fixation when under-tapping in osteoporotic bone. This study is a polyurethane foam block biomechanical analysis. A foam block osteoporotic bone model was used to compare pullout strength of pedicle screws with a 5.3 nominal diameter tap of varying D's and P's. Blocks were sorted into seven groups: (1) probe only; (2) 0.5-mm D, 1.5-mm P tap; (3) 0.5-mm D, 2.0-mm P tap; (4) 0.75-mm D, 2.0-mm P tap; (5) 0.75-mm D, 2.5-mm P tap; (6) 0.75-mm D, 3.0-mm P tap; and (7) 1.0-mm D, 2.5-mm P tap. A pedicle screw, 6.5 mm in diameter and 40 mm in length, was inserted to a depth of 40 mm. Axial pullout testing was performed at a rate of 5 mm/min on 10 blocks from each group. No significant difference was noted between groups under axial pullout testing. The mode of failure in the probe-only group was block fracture, occurring in 50% of cases. Among the other six groups, only one screw failed because of block fracture. The other 59 failed because of screw pullout. In an osteoporotic bone model, changing the D or P of the tap has no statistically significant effect on axial pullout. Osteoporotic bone might render tap features marginal. Our findings indicate that changing the characteristics of the tap D and P does not help with pullout strength in an osteoporotic model. The high rate of fracture in the probe-only group might imply the potential benefit of tapping to prevent catastrophic failure of bone. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Estimated Depth to Ground Water and Configuration of the Water Table in the Portland, Oregon Area

    Science.gov (United States)

    Snyder, Daniel T.

    2008-01-01

    Reliable information on the configuration of the water table in the Portland metropolitan area is needed to address concerns about various water-resource issues, especially with regard to potential effects from stormwater injection systems such as UIC (underground injection control) systems that are either existing or planned. To help address these concerns, this report presents the estimated depth-to-water and water-table elevation maps for the Portland area, along with estimates of the relative uncertainty of the maps and seasonal water-table fluctuations. The method of analysis used to determine the water-table configuration in the Portland area relied on water-level data from shallow wells and surface-water features that are representative of the water table. However, the largest source of available well data is water-level measurements in reports filed by well constructors at the time of new well installation, but these data frequently were not representative of static water-level conditions. Depth-to-water measurements reported in well-construction records generally were shallower than measurements by the U.S. Geological Survey (USGS) in the same or nearby wells, although many depth-to-water measurements were substantially deeper than USGS measurements. Magnitudes of differences in depth-to-water measurements reported in well records and those measured by the USGS in the same or nearby wells ranged from -119 to 156 feet with a mean of the absolute value of the differences of 36 feet. One possible cause for the differences is that water levels in many wells reported in well records were not at equilibrium at the time of measurement. As a result, the analysis of the water-table configuration relied on water levels measured during the current study or used in previous USGS investigations in the Portland area. Because of the scarcity of well data in some areas, the locations of select surface-water features including major rivers, streams, lakes, wetlands, and

  14. Assessment of water depth change patterns in 120° sharp bend using numerical model

    Directory of Open Access Journals (Sweden)

    Azadeh Gholami

    2016-10-01

    Full Text Available In this study, FLUENT software was employed to simulate the flow pattern and water depth changes in a 120° sharp bend at four discharge rates. To verify the numerical model, a 90° sharp bend was first modeled with a three-dimensional numerical model, and the results were compared with available experimental results. Based on the numerical model validation, a 120° bend was simulated. The results show that the rate of increase of the water depth at the cross-section located 40 cm before the bend, compared with the cross-sections located 40 cm and 80 cm after the bend, decreases with the increase of the normal water depth in the 120° curved channel. Moreover, with increasing normal water depth, the dimensionless water depth change decreases at all cross-sections. At the interior cross-sections of the bend, the transverse water depth slope of the inner half-width is always greater than that of the outer half-width of the channel. Hence, the water depth slope is nonlinear at each cross-section in sharp bends. Two equations reflecting the relationships between the maximum and minimum dimensionless water depths and the normal water depth throughout the channel were obtained.

  15. Numerical comparison between deep water and intermediate water depth expressions applied to a wave energy converter

    Directory of Open Access Journals (Sweden)

    Pedro Beirão

    2015-09-01

    Full Text Available The energy that can be captured from the sea waves and converted into electricity should be seen as a contribution to decrease the excessive dependency and growing demand of fossil fuels. Devices suitable to harness this kind of renewable energy source and convert it into electricity—wave energy converters (WECs—are not yet commercially competitive. There are several types of WECs, with different designs and working principles. One possible classification is their distance to the shoreline and thus their depth. Near-shore devices are one of them since they are typically deployed at intermediate water depth (IWD. The selection of the WEC deployment site should be a balance between several parameters; water depth is one of them. Another way of classifying WECs is grouping them by their geometry, size and orientation. Considering a near-shore WEC belonging to the floating point category, this paper is focused on the numerical study about the differences arising in the power captured from the sea waves when the typical deep water (DW assumption is compared with the more realistic IWD consideration. Actually, the production of electricity will depend, among other issues, on the depth of the deployment site. The development of a dynamic model including specific equations for the usual DW assumption as well as for IWD is also described. Derived equations were used to build a time domain simulator (TDS. Numerical results were obtained by means of simulations performed using the TDS. The objective is to simulate the dynamic behavior of the WEC due to the action of sea waves and to characterize the wave power variations according with the depth of the deployment site.

  16. Depth to ground water contours of hydrographic area 153, Diamond Valley, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of depth to ground water contours for hydrographic-area (HA) 153, Diamond Valley, Nevada. These data represent static ground-water levels...

  17. Underwater Depth and Temperature Sensing Based on Fiber Optic Technology for Marine and Fresh Water Applications.

    Science.gov (United States)

    Duraibabu, Dinesh Babu; Leen, Gabriel; Toal, Daniel; Newe, Thomas; Lewis, Elfed; Dooly, Gerard

    2017-05-27

    Oceanic conditions play an important role in determining the effects of climate change and these effects can be monitored through the changes in the physical properties of sea water. In fact, Oceanographers use various probes for measuring the properties within the water column. CTDs (Conductivity, Temperature and Depth) provide profiles of physical and chemical parameters of the water column. A CTD device consists of Conductivity (C), Temperature (T) and Depth (D) probes to monitor the water column changes with respect to relative depth. An optical fibre-based point sensor used as a combined pressure (depth) and temperature sensor and the sensor system are described. Measurements accruing from underwater trials of a miniature sensor for pressure (depth) and temperature in the ocean and in fresh water are reported. The sensor exhibits excellent stability and its performance is shown to be comparable with the Sea-Bird Scientific commercial sensor: SBE9Plus.

  18. Underwater Depth and Temperature Sensing Based on Fiber Optic Technology for Marine and Fresh Water Applications

    Directory of Open Access Journals (Sweden)

    Dinesh Babu Duraibabu

    2017-05-01

    Full Text Available Oceanic conditions play an important role in determining the effects of climate change and these effects can be monitored through the changes in the physical properties of sea water. In fact, Oceanographers use various probes for measuring the properties within the water column. CTDs (Conductivity, Temperature and Depth provide profiles of physical and chemical parameters of the water column. A CTD device consists of Conductivity (C, Temperature (T and Depth (D probes to monitor the water column changes with respect to relative depth. An optical fibre-based point sensor used as a combined pressure (depth and temperature sensor and the sensor system are described. Measurements accruing from underwater trials of a miniature sensor for pressure (depth and temperature in the ocean and in fresh water are reported. The sensor exhibits excellent stability and its performance is shown to be comparable with the Sea-Bird Scientific commercial sensor: SBE9Plus.

  19. Nitrogen Uptake in Soils under Different Water Table Depths ...

    African Journals Online (AJOL)

    A mathematical model was used to examine the interactions of NH4 + transport to rice roots, as well as to calculate root length densities required to relate N uptake to concentrations of NH4 + in solution around the rooting medium for three water treatments: water table 30 cm below the surface, 15 cm below the surface and ...

  20. Decreased summer water table depth affects peatland vegetation

    NARCIS (Netherlands)

    Breeuwer, A.J.G.; Robroek, B.J.M.; Limpens, J.; Heijmans, M.M.P.D.; Schouten, M.G.C.; Berendse, F.

    2009-01-01

    Climate change can be expected to increase the frequency of summer droughts and associated low water tables in ombrotrophic peatlands. We studied the effects of periodic water table drawdown in a mesocosm experiment. Mesocosms were collected in Southern Sweden, and subsequently brought to an

  1. Constraining water uptake depths in semiarid environments using water stable isotopes

    Science.gov (United States)

    Beyer, Matthias; Königer, Paul; Himmelsbach, Thomas

    2017-04-01

    The biophysical process of transpiration recently received increased attention by ecohydrologists as it has been proven the largest flux of the global water balance. However, fundamental aspects related to the questions how and from which sources plants receive their water are not fully understood. Especially the process of plant water uptake from deeper soil and its impact on the water balance requires increased scientific effort. In this study we combined tracer experiments with the analysis of natural isotopic compositions in order to: i) derive a suitable site-specific root water uptake distribution for hydrological modeling; ii) find indicators for groundwater use by specific plants; and iii) evaluate the importance of deep unsaturated zone water uptake using HYDRUS 1D. The bayesian mixing model MixSIAR was applied at a semiarid site with a deep unsaturated zone in northern Namibia in order to identify source water contributions of the most abundant species (A.erioloba, B.plurijuga, C.collinum, S.luebertii and T.sericea). In addition, a previously developed method for the investigation of root water uptake depths based on deuterium labeling (2H2O) at specific depths (0.5 to 4 m) and monitoring of tracer uptake by plants was carried out with a focus on the deeper unsaturated zone. With the experimental results a root water uptake distribution for the lateral root zone was derived which allows to constrain the source water contributions estimated with MixSIAR. Finally, a HYDRUS 1D model was established and unsaturated zone water transport was evaluated. The analysis of the natural isotopic compositions reveals a significant contribution of groundwater (median: 48%) to the isotopic composition of A.erioloba at the end of the dry season indicating the presence of deep tap roots for a number of individuals. All other investigated species obtain their water from the shallow (median: 22%) or deeper (median: 62%) unsaturated zone at this time of the year. The water

  2. Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy

    Directory of Open Access Journals (Sweden)

    Mugisidi Dan

    2018-01-01

    Full Text Available Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3, chloride, sodium, sulphate, and (KMnO4. In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.

  3. Investigation of Neutron Detector Response to Varying Temperature and Water Content for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Akkurt, Hatice [ORNL

    2010-01-01

    Nuclear logging techniques have been used for oil well logging applications for decades. The basic principle is to use a neutron and/or photon source and neutron and photon detectors for characterization purposes. Although the technology has matured, it is not directly applicable to geothermal logging due to even more challenging environmental conditions, both in terms of temperature and pressure. For geothermal logging, the operating temperature can go up to 376 C for depths up to 10,000 km. In this paper, the preliminary computational results for thermal neutron detector response for varying temperature and water content for geothermal applications are presented. In this summary, preliminary results for neutron detector response for varying formation temperature and water content are presented. The analysis is performed for a steady state source (AmBe) and time dependent source (PNG) in pulsed mode. The computational results show significant sensitivity to water content as well as temperature changes for both steady state and time dependent measurements. As expected, the most significant change is due to the temperature change for S({alpha}, {beta}) nuclear data instead of individual isotope cross sections for the formation. Clearly, this is partially because of the fact that strong absorbers (i.e., chlorine) are not taken into account for the analysis at this time. The computational analysis was performed using the temperature dependent data in the ENDF/B-VII libraries, supplied with MCNP. Currently, the data for intermediate temperatures are being generated using NJOY and validated. A series of measurements are planned to validate the computational results. Further measurements are planned to determine the neutron and photon detector response as a function of temperature. The tests will be performed for temperatures up to 400 C.

  4. Differences in water depth determine leaf-litter decomposition in streams: implications on impact assessment reliability

    Directory of Open Access Journals (Sweden)

    Martínez A.

    2016-01-01

    Full Text Available Leaf-litter decomposition is a widespread functional indicator to assess the stream ecosystem status. However, the spatial location of leaf-bags could distort the impact assessment since intrinsic features of a given site have an important role in the spatial distribution of macroinvertebrates, which could affect decomposition rate. A source of variability that can be easily controlled is the water depth at which bags are incubated in stream bed. Therefore, we tested if water depth within a same mesohabitat (riffles can determine decomposition rates. Due to the seasonal variability of macroinvertebrate assemblages in temperate regions, the study was performed in autumn-winter and spring to test the consistency of the findings. In three streams from North of Spain 15 mesh bags with alder leaves were placed in riffles covering a gradient of depths. Depth had a positive effect on decomposition rates and biomass of associated total invertebrates and shredders in autumn-winter, fauna variables helping to explain the differences in rates. In spring, depth affected negatively rates, the observed variability being weakly explained by invertebrates, which did not show differences along depth. Despite the opposite trend between seasons, water depth influences the decomposition rates, which may reduce or increase differences among systems if the water depth distribution is greatly biased. Our study highlights the importance of covering a similar range of water depths in the different systems being compared.

  5. Standing Water Depth on Larsen B Ice Shelf, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set addresses why surface melt water lakes on ice shelves and ice sheets are notably influential in triggering ice-shelf break-up and modulating seasonal...

  6. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed

    Science.gov (United States)

    Manning, Andrew H.; Verplanck, Philip L.; Caine, Jonathan S.; Todd, Andrew S.

    2013-01-01

    Recent studies suggest that climate change is causing rising solute concentrations in mountain lakes and streams. These changes may be more pronounced in mineralized watersheds due to the sensitivity of sulfide weathering to changes in subsurface oxygen transport. Specific causal mechanisms linking climate change and accelerated weathering rates have been proposed, but in general remain entirely hypothetical. For mineralized watersheds, a favored hypothesis is that falling water tables caused by declining recharge rates allow an increasing volume of sulfide-bearing rock to become exposed to air, thus oxygen. Here, we test the hypothesis that falling water tables are the primary cause of an increase in metals and SO4 (100-400%) observed since 1980 in the Upper Snake River (USR), Colorado. The USR drains an alpine watershed geologically and climatologically representative of many others in mineralized areas of the western U.S. Hydrologic and chemical data collected from 2005 to 2011 in a deep monitoring well (WP1) at the top of the USR watershed are utilized. During this period, both water table depths and groundwater SO4 concentrations have generally increased in the well. A numerical model was constructed using TOUGHREACT that simulates pyrite oxidation near WP1, including groundwater flow and oxygen transport in both saturated and unsaturated zones. The modeling suggests that a falling water table could produce an increase in metals and SO4 of a magnitude similar to that observed in the USR (up to 300%). Future water table declines may produce limited increases in sulfide weathering high in the watershed because of the water table dropping below the depth of oxygen penetration, but may continue to enhance sulfide weathering lower in the watershed where water tables are shallower. Advective air (oxygen) transport in the unsaturated zone caused by seasonally variable recharge and associated water table fluctuations was found to have little influence on pyrite

  7. The Everglades Depth Estimation Network (EDEN) surface-water model, version 2

    Science.gov (United States)

    Telis, Pamela A.; Xie, Zhixiao; Liu, Zhongwei; Li, Yingru; Conrads, Paul

    2015-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of water-level gages, interpolation models that generate daily water-level and water-depth data, and applications that compute derived hydrologic data across the freshwater part of the greater Everglades landscape. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for EDEN in order for EDEN to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan.

  8. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage

    Science.gov (United States)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-01-01

    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  9. Modelling mid-span water table depth and drainage discharge ...

    African Journals Online (AJOL)

    2015-04-03

    Apr 3, 2015 ... during calibration period, showed that there was a very strong agreement between simulated and observed WTDs with a goodness-of-fit (R2) of 0.826 ..... DRAINMOD model calibration, evaluation and statistical analysis ..... EL-SADEK A (2007) Up-scaling field scale hydrology and water quality modeling to ...

  10. Infrared spectra of penetration depth of into water and of water refraction-index

    Science.gov (United States)

    Ichikawa, Mahito

    1990-01-01

    Infrared radiation heating is becoming widely applied to drying processes of wet industrial materials and to heating processes for food-stuff containing water etc. Thus a growing importance is attributed to clarify the exactpenetration depth of IR radiation into water from heating engineering view point. Many IR transmittance data on water film have been published by various authors. All of them as far as the author knows, however, failed to indicate the detailed optical data of the two window plates used to fix water film thickness. Accordingly the exact penetration depth (or inverse of Lambert absorption coefficient) into water cannot be known, since multi-reflection takes place within bounded water and window plates too, thus affecting the transmittance value to be measured. Moreover in the measurement of very thin water film, there takes place often an interference between forward going electro-magnetic wave and successively reflected backward one. This too affects the measurement particularly in IR region of higher transmittance. Messrs. Robertson & Williams tackled with the captioned theme in the early years, and indicated, in their report" difficulty to remove the unfavorable effects introduced by window plates in view of finding Lambert coeff. of water. The difficulty had been experienced those days by many authors. Robertson & Williams elaborated a special precise absorption cell with window plates of either CaF2 or KRS-5, and succeeded in giving fairly good Lambert coeff.~ for 2.33 - 33.3 micro-meter wavelength region. They seemed to have paid enough experimental consideration and made some corrections on the inevitable interference effect, but not enough on the multi-reflection effect. Accordingly their derived formula for giving~ was not fully theoretically correct, since taking ratio of the two transmittance values with different water thickness did not cancel out all of the window plate effect. The author has carefully taken into consideration the

  11. Tracking water pathways in steep hillslopes by δ18O depth profiles of soil water

    Science.gov (United States)

    Mueller, Matthias H.; Alaoui, Abdallah; Kuells, Christoph; Leistert, Hannes; Meusburger, Katrin; Stumpp, Christine; Weiler, Markus; Alewell, Christine

    2014-11-01

    Assessing temporal variations in soil water flow is important, especially at the hillslope scale, to identify mechanisms of runoff and flood generation and pathways for nutrients and pollutants in soils. While surface processes are well considered and parameterized, the assessment of subsurface processes at the hillslope scale is still challenging since measurement of hydrological pathways is connected to high efforts in time, money and personnel work. The latter might not even be possible in alpine environments with harsh winter processes. Soil water stable isotope profiles may offer a time-integrating fingerprint of subsurface water pathways. In this study, we investigated the suitability of soil water stable isotope (δ18O) depth profiles to identify water flow paths along two transects of steep subalpine hillslopes in the Swiss Alps. We applied a one-dimensional advection-dispersion model using δ18O values of precipitation (ranging from -24.7 to -2.9‰) as input data to simulate the δ18O profiles of soil water. The variability of δ18O values with depth within each soil profile and a comparison of the simulated and measured δ18O profiles were used to infer information about subsurface hydrological pathways. The temporal pattern of δ18O in precipitation was found in several profiles, ranging from -14.5 to -4.0‰. This suggests that vertical percolation plays an important role even at slope angles of up to 46°. Lateral subsurface flow and/or mixing of soil water at lower slope angles might occur in deeper soil layers and at sites near a small stream. The difference between several observed and simulated δ18O profiles revealed spatially highly variable infiltration patterns during the snowmelt periods: The δ18O value of snow (-17.7 ± 1.9‰) was absent in several measured δ18O profiles but present in the respective simulated δ18O profiles. This indicated overland flow and/or preferential flow through the soil profile during the melt period. The applied

  12. Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation

    Science.gov (United States)

    Grossiord, Charlotte; Gessler, Arthur; Granier, André; Berger, Sigrid; Bréchet, Claude; Hentschel, Rainer; Hommel, Robert; Scherer-Lorenzen, Michael; Bonal, Damien

    2014-11-01

    Interactions between tree species in forests can be beneficial to ecosystem functions and services related to the carbon and water cycles by improving for example transpiration and productivity. However, little is known on below- and above-ground processes leading to these positive effects. We tested whether stratification in soil water uptake depth occurred between four tree species in a 10-year-old temperate mixed species plantation during a dry summer. We selected dominant and co-dominant trees of European beech, Sessile oak, Douglas fir and Norway spruce in areas with varying species diversity, competition intensity, and where different plant functional types (broadleaf vs. conifer) were present. We applied a deuterium labelling approach that consisted of spraying labelled water to the soil surface to create a strong vertical gradient of the deuterium isotope composition in the soil water. The deuterium isotope composition of both the xylem sap and the soil water was measured before labelling, and then again three days after labelling, to estimate the soil water uptake depth using a simple modelling approach. We also sampled leaves and needles from selected trees to measure their carbon isotope composition (a proxy for water use efficiency) and total nitrogen content. At the end of the summer, we found differences in the soil water uptake depth between plant functional types but not within types: on average, coniferous species extracted water from deeper layers than did broadleaved species. Neither species diversity nor competition intensity had a detectable influence on soil water uptake depth, foliar water use efficiency or foliar nitrogen concentration in the species studied. However, when coexisting with an increasing proportion of conifers, beech extracted water from progressively deeper soil layers. We conclude that complementarity for water uptake could occur in this 10-year-old plantation because of inherent differences among functional groups (conifers

  13. Neon-20 depth-dose relations in water

    Science.gov (United States)

    Wilson, J. W.; Townsend, L. W.; Bidasaria, H. B.; Schimmerling, W.; Wong, M.; Howard, J.

    1984-01-01

    The dose from heavy ion beams has been calculated using a one-dimensional transport theory and evaluated for 670 MeV/amu 20 Ne beams in water. The result is presented so as to be applicable to arbitrary ions for which the necessary interaction data are known. The present evaluation is based on thar Silberg-Tsao fragmentation parameters augmented with light fragment production from intranuclear cascades, recently calculated nuclear absorption cross sections, and evaluated stopping power data. Comparison with recent experimental data obtained at the Lawrence Berkeley Laboratory reveals the need for more accurate fragmentation data.

  14. A Method for Energy and Resource Assessment of Waves in Finite Water Depths

    Directory of Open Access Journals (Sweden)

    Wanan Sheng

    2017-04-01

    Full Text Available This paper presents a new method for improving the assessment of energy and resources of waves in the cases of finite water depths in which the historical and some ongoing sea wave measurements are simply given in forms of scatter diagrams or the forms of (significant wave heights and the relevant statistical wave periods, whilst the detailed spectrum information has been discarded, thus no longer available for the purpose of analysis. As a result of such simplified wave data, the assessment for embracing the effects of water depths on wave energy and resources becomes either difficult or inaccurate. In many practical cases, the effects of water depths are simply ignored because the formulas for deep-water waves are frequently employed. This simplification may cause large energy under-estimations for the sea waves in finite water depths. To improve the wave energy assessment for such much-simplified wave data, an approximate method is proposed for approximating the effect of water depth in this research, for which the wave energy period or the calculated peak period can be taken as the reference period for implementing the approximation. The examples for both theoretical and measured spectra show that the proposed method can significantly reduce the errors on wave energy assessment due to the approximations and inclusions of the effects of finite water depths.

  15. Fracture resistance of simulated immature maxillary anterior teeth restored with fiber posts and composite to varying depths.

    Science.gov (United States)

    Seto, Brandon; Chung, Kwok-Hung; Johnson, James; Paranjpe, Avina

    2013-10-01

    Traumatized immature teeth present a unique challenge during treatment, both endodontically as well as restoratively. Hence, the purpose of this study is to evaluate the type and depth of restoration that would be effective in simulated immature maxillary anterior teeth in terms of fracture resistance and mode of failure. Seventy-five extracted human maxillary anterior teeth were used in this study that was standardized to a length of 13 mm. Instrumentation of the canals was performed after which a Peezo no. 6 was taken 1 mm past the apex to simulate an incompletely formed root. MTA apexification was simulated after which all the teeth were mounted and a 3-mm-diameter engineering twist drill extended the preparation 3 and 7 mm below the facial cemento-enamel junction (CEJ) to simulate Cvek's stage 3. These teeth were divided into seven different groups: Group 1: Negative control: intact teeth; Group 2: Positive control: 3 mm, no restoration; Group 3: Positive control: 7 mm, no restoration; Group 4: 3-mm composite; Group 5: 3-mm quartz fiber post; Group 6: 7-mm composite; Group 7: 7-mm quartz fiber post. Fracture resistance was performed at 130° to the long axis of the tooth with a chisel-shaped tip at the cingulum with a cross-head speed of 5 mm min(-1) , and the maximum load at which the fracture occurred was recorded. Group 1 that was the negative control showed the highest fracture resistance. Among the experimental groups, 4 and 5 showed the highest fracture resistance, which were significantly different from groups 6 and 7, respectively. Within the limitations of this in vitro study, it can be concluded that using either dual-cure composite or a quartz fiber post with composite resin to a depth of 3 mm would significantly strengthen the roots in immature teeth. © 2012 John Wiley & Sons A/S.

  16. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers.

    Science.gov (United States)

    Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei

    2017-01-01

    Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as

  17. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers

    Directory of Open Access Journals (Sweden)

    Ren Bai

    2017-05-01

    Full Text Available Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2 techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai, an Oxisol (Leizhou, and an Ultisol (Taoyuan along four profile depths (up to 70 cm in depth in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and

  18. Water depth selection, daily feeding routines and diets of waterbirds in coastal lagoons in Ghana

    NARCIS (Netherlands)

    Ntiamoa-Baidu, Y; Piersma, T; Wiersma, P; Poot, M; Battley, P; Gordon, C

    Water depth requirements, diet, feeding styles and diurnal activity patterns are described for waterbirds using two brackish water lagoon systems in coastal Ghana, the Songor and Keta Lagoons, We project the habitat and activity data on a guild structure defined on the basis of individual feeding

  19. Regression analysis of growth responses to water depth in three wetland plant species

    DEFF Research Database (Denmark)

    Sorrell, Brian K; Tanner, Chris C; Brix, Hans

    2012-01-01

    ) differing in depth preferences in wetlands, using non-linear and quantile regression analyses to establish how flooding tolerance can explain field zonation. Methodology Plants were established for 8 months in outdoor cultures in waterlogged soil without standing water, and then randomly allocated to water...

  20. Effect of growing media, sowing depth, and hot water treatment on ...

    African Journals Online (AJOL)

    To optimize seedling production for reforestation of degraded dryland with A. senegal seeds, a study was conducted on the effect of boiled water treatment, growing media, sowing depth on seed germination and seedling growth of A. senegal. Three different growing media (farm soil, forest soil and sand soil), boiled water ...

  1. IMPACT OF DEPTH OF CUT ON CHIP FORMATION IN AZ91HP MAGNESIUM ALLOY MILLING WITH TOOLS OF VARYING CUTTING EDGE GEOMETRY

    Directory of Open Access Journals (Sweden)

    Olga Gziut

    2015-05-01

    Full Text Available Safety of Mg milling processes can be expressed by means of the form and the number of fractions of chips formed during milling. This paper presents the state of the art of magnesium alloys milling technology in the aspect of chip fragmentation. Furthermore, the impact of the depth of cut ap and the rake angle γ on the number of chip fractions was analysed in the study. These were conducted on AZ91HP magnesium cast alloy and milling was performed with carbide tools of varying rake angle values (γ = 5º and γ = 30º. It was observed that less intense chip fragmentation occurs with decreasing depth of cut ap. The number of chip fractions was lower at the tool rake angle of γ = 30º. The test results were formulated as technological recommendations according to the number of generated chip fractions.

  2. Estimation of missing water-level data for the Everglades Depth Estimation Network (EDEN), 2013 update

    Science.gov (United States)

    Petkewich, Matthew D.; Conrads, Paul

    2013-01-01

    The Everglades Depth Estimation Network is an integrated network of real-time water-level gaging stations, a ground-elevation model, and a water-surface elevation model designed to provide scientists, engineers, and water-resource managers with water-level and water-depth information (1991-2013) for the entire freshwater portion of the Greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for the Everglades Depth Estimation Network in order for the Network to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. In a previous study, water-level estimation equations were developed to fill in missing data to increase the accuracy of the daily water-surface elevation model. During this study, those equations were updated because of the addition and removal of water-level gaging stations, the consistent use of water-level data relative to the North American Vertical Datum of 1988, and availability of recent data (March 1, 2006, to September 30, 2011). Up to three linear regression equations were developed for each station by using three different input stations to minimize the occurrences of missing data for an input station. Of the 667 water-level estimation equations developed to fill missing data at 223 stations, more than 72 percent of the equations have coefficients of determination greater than 0.90, and 97 percent have coefficients of determination greater than 0.70.

  3. Water Reverberation Travel Time Analysis Acquired Using Multi-Depth Streamers

    OpenAIRE

    Po-Yen Tseng; Young-Fo Chang; Chih-Hsiung Chang; Ruey-Chyuan Shih

    2016-01-01

    Ghost reflections and water reverberations are major and inevitable seismic noises in marine seismic exploration. More recently, new receiver deployment techniques at different sea depths for signal-to-noise ratio (SNR) enhancement are developing. The reverberation characteristics must be known before applying the reverberation attenuation methods. This paper studies the characteristics of reverberations acquired using multi-depth streamers by analyzing the seismic ray path geometry and the s...

  4. Satellite-Derived Photic Depth on the Great Barrier Reef: Spatio-Temporal Patterns of Water Clarity

    Directory of Open Access Journals (Sweden)

    Scarla Weeks

    2012-11-01

    Full Text Available Detecting changes to the transparency of the water column is critical for understanding the responses of marine organisms, such as corals, to light availability. Long-term patterns in water transparency determine geographical and depth distributions, while acute reductions cause short-term stress, potentially mortality and may increase the organisms’ vulnerability to other environmental stressors. Here, we investigated the optimal, operational algorithm for light attenuation through the water column across the scale of the Great Barrier Reef (GBR, Australia. We implemented and tested a quasi-analytical algorithm to determine the photic depth in GBR waters and matched regional Secchi depth (ZSD data to MODIS-Aqua (2002–2010 and SeaWiFS (1997–2010 satellite data. The results of the in situ ZSD/satellite data matchup showed a simple bias offset between the in situ and satellite retrievals. Using a Type II linear regression of log-transformed satellite and in situ data, we estimated ZSD and implemented the validated ZSD algorithm to generate a decadal satellite time series (2002–2012 for the GBR. Water clarity varied significantly in space and time. Seasonal effects were distinct, with lower values during the austral summer, most likely due to river runoff and increased vertical mixing, and a decline in water clarity between 2008–2012, reflecting a prevailing La Niña weather pattern. The decline in water clarity was most pronounced in the inshore area, where a significant decrease in mean inner shelf ZSD of 2.1 m (from 8.3 m to 6.2 m occurred over the decade. Empirical Orthogonal Function Analysis determined the dominance of Mode 1 (51.3%, with the greatest variation in water clarity along the mid-shelf, reflecting the strong influence of oceanic intrusions on the spatio-temporal patterns of water clarity. The newly developed photic depth product has many potential applications for the GBR from water quality monitoring to analyses of

  5. Assessing the Effect of Different Water Table Depths on Water Use, Yield and Water Productivity of the Okra Crop

    Directory of Open Access Journals (Sweden)

    Nazir Gul

    2018-01-01

    Full Text Available An experimental study was carried out on a Lysimeter with the aim of partially meeting WRs (Water Requirements of the Okra crop through SWT (Shallow Water Table while maintaining the SWT at various levels below the ground surface. Under the study, CWR (Crop Water Requirement, yield, water productivity, salt accrual and contribution of SWTs towards meeting the CWR are assessed. The study was designed in accordance with the principles of CRD (Complete Randomized Design with three treatments and four replications. The treatments; viz. T1, T2, and T3 consisted of maintaining the WTDs (Water Table Depths at 45, 60 and 75 cm, respectively, below the ground surface. The crop was irrigated with a good quality water having ECw = 0.50 dS m-1 and pH = 7.3. The results of the study showed that the crop consumed the maximum amount of water under T1 treatment, followed by T2 and then by T3 treatment. Accordingly, the contribution of SWTs towards the CWR is 94.8, 93.2 and 42.9% of the total CWR under the T1, T2, and T3 treatments, respectively. Maximum yield is attained under T3 treatment, followed by T2 treatment and then by T1 treatment. Likewise, maximum water productivity is achieved under T3 treatment, followed by T2 treatment and then by T1 treatment. The dry bulk density (ρd of the soil, under T1 and T2 treatments, increased slightly; however, it remained unchanged under the T3 treatment. The ECse (Electrical Conductivity of the soil increased, whereas, the pH value of the soil decreased under all the treatments. Statistically, significant difference (p 0.05 under the three treatments. Accordingly, to make profitable use of SWTs, improve WUE and productivity, and maintain soil fertility, the depth of SWT be controlled at 75 cm for growing of the Okra crop. Adapting to this guideline will help in availing the maximum contribution of SWTs towards meeting the CWR and achieve the larger aim of water conservation.

  6. Nest Survival of American Coots Relative to Grazing, Burning, and Water Depths

    Directory of Open Access Journals (Sweden)

    Jane E. Austin

    2011-12-01

    Full Text Available Water and emergent vegetation are key features influencing nest site selection and success for many marsh-nesting waterbirds. Wetland management practices such as grazing, burning, and water-level manipulations directly affect these features and can influence nest survival. We used model selection and before-after-control-impact approaches to evaluate the effects of water depth and four common land-management practices or treatments, i.e., summer grazing, fall grazing, fall burning, and idle (no active treatment on nest survival of American coots (Fulica americana nesting at Grays Lake, a large montane wetland in southeast Idaho. The best model included the variables year × treatment, and quadratic functions of date, water depth, and nest age; height of vegetation at the nest did not improve the best model. However, results from the before-after-control-impact analysis indicate that management practices affected nest success via vegetation and involved interactions of hydrology, residual vegetation, and habitat composition. Nest success in idled fields changed little between pre- and post-treatment periods, whereas nest success declined in fields that were grazed or burned, with the most dramatic declines the year following treatments. The importance of water depth may be amplified in this wetland system because of rapid water-level withdrawal during the nesting season. Water and land-use values for area ranchers, management for nesting waterbirds, and long-term wetland function are important considerations in management of water levels and vegetation.

  7. Water uptake depth analyses using stable water isotopes in rice-based cropping systems in Southeastern Asia

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Orlowski, Natalie; Racela, Healthcliff S. U.; Breuer, Lutz

    2017-04-01

    Rice is one of the most water-consuming crop in the world. Understanding water source utilization of rice-based cropping systems will help to improve water use efficiency (WUE) in paddy management. The objectives of our study were to (1) determine the contributions of various water sources to plant growth in diversified rice-based production systems (wet rice, aerobic rice) (2) investigate water uptake depths at different maturity periods during wet and dry conditions, and (3) calculate WUE of the cropping systems. Our field experiment is based on changes of stable water isotope concentrations in the soil-plant-atmosphere continuum due to transpiration and evaporation. Soil samples were collected together with root sampling from nine different depths under vegetative, reproductive, and matured periods of plant growth together with stem samples. Soil and plant samples were extracted by cryogenic vacuum extraction. Groundwater, surface water, rain, and irrigation water were sampled weekly. All water samples were analyzed for hydrogen and oxygen isotope ratios (δ2H and δ18O) via a laser spectroscope (Los Gatos DLT100). The direct inference approach, which is based on comparing isotopic compositions between plant stem water and soil water, were used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These estimations were used to determine the proportion of water from upper soil horizons and deep horizons for rice in different maturity periods during wet and dry seasons. Shallow soil water has the higher evaporation than from deeper soil water where the highest evaporation effect is at 5 cm depth (drying front). Water uptake is mostly taking place from surface water in the vegetative and between 5-10 cm in the reproductive period, since roots have grown widely and deeper in the reproductive stage. This will be

  8. Water depth affects reproductive allocation and reproductive allometry in the submerged macrophyte Vallisneria natans.

    Science.gov (United States)

    Li, Lei; Bonser, Stephen P; Lan, Zhichun; Xu, Ligang; Chen, Jiakuan; Song, Zhiping

    2017-12-04

    In freshwater ecosystems, shifts in hydrological regimes have profound effects on reproductive output (R), along with vegetative biomass (V) and survival of plants. Because reproductive allocation (RA) is allometric, it remains unclear whether the observed variation of RA in response to water level variability is due to fixed patterns of development or plasticity in the developmental trajectories. Here, we investigated shifts in RA of a submerged macrophyte Vallisneria natans in response to water depth to test the hypothesis that allometric trajectories of RA are highly plastic. Plants were grown at three water depths (50, 100 and 150 cm) and measured after 26 weeks of growth. The relationships between R and V among treatments were compared. Deep water affected both biomass and number of fruits produced per plant, leading to less sexual reproduction. Plants in deep water started flowering at a smaller size and despite their small mature size, had a relatively high RA. Furthermore, these plants had a much lower log R-log V relationship than shallow- or intermediate-water plants. In conclusion, reproduction of V. natans is highly variable across water depth treatments, and variations in reproductive allometry represent different strategies under an important stress gradient for these freshwater angiosperms.

  9. Assessment of depth and turbidity with airborne Lidar bathymetry and multiband satellite imagery in shallow water bodies of the Alaskan North Slope

    Science.gov (United States)

    Saylam, Kutalmis; Brown, Rebecca A.; Hupp, John R.

    2017-06-01

    Airborne Lidar bathymetry (ALB) is an effective and a rapidly advancing technology for mapping and characterizing shallow coastal water zones as well as inland fresh-water basins such as rivers and lakes. The ability of light beams to detect and traverse shallow water columns has provided valuable information about unmapped and often poorly understood coastal and inland water bodies of the world. Estimating ALB survey results at varying water clarity and depth conditions is essential for realizing project expectations and preparing budgets accordingly. In remote locations of the world where in situ water clarity measurements are not feasible or possible, using multiband satellite imagery can be an effective tool for estimating and addressing such considerations. For this purpose, we studied and classified reflected electromagnetic energy from selected water bodies acquired by RapidEye sensor and then correlated findings with ALB survey results. This study was focused not on accurately measuring depth from optical bathymetry but rather on using multiband satellite imagery to quickly predict ALB survey results and identify potentially turbid water bodies with limited depth penetration. For this study, we constructed an in-house algorithm to confirm ALB survey findings using bathymetric waveform information. The study findings are expected to contribute to the ongoing understanding of forecasting ALB survey expectations in unknown and varying water conditions, especially in remote and inaccessible parts of the world.

  10. Scale effects on spatially varying relationships between urban landscape patterns and water quality.

    Science.gov (United States)

    Sun, Yanwei; Guo, Qinghai; Liu, Jian; Wang, Run

    2014-08-01

    Scientific interpretation of the relationships between urban landscape patterns and water quality is important for sustainable urban planning and watershed environmental protection. This study applied the ordinary least squares regression model and the geographically weighted regression model to examine the spatially varying relationships between 12 explanatory variables (including three topographical factors, four land use parameters, and five landscape metrics) and 15 water quality indicators in watersheds of Yundang Lake, Maluan Bay, and Xinglin Bay with varying levels of urbanization in Xiamen City, China. A local and global investigation was carried out at the watershed-level, with 50 and 200 m riparian buffer scales. This study found that topographical features and landscape metrics are the dominant factors of water quality, while land uses are too weak to be considered as a strong influential factor on water quality. Such statistical results may be related with the characteristics of land use compositions in our study area. Water quality variations in the 50 m buffer were dominated by topographical variables. The impact of landscape metrics on water quality gradually strengthen with expanding buffer zones. The strongest relationships are obtained in entire watersheds, rather than in 50 and 200 m buffer zones. Spatially varying relationships and effective buffer zones were verified in this study. Spatially varying relationships between explanatory variables and water quality parameters are more diversified and complex in less urbanized areas than in highly urbanized areas. This study hypothesizes that all these varying relationships may be attributed to the heterogeneity of landscape patterns in different urban regions. Adjustment of landscape patterns in an entire watershed should be the key measure to successfully improving urban lake water quality.

  11. Bottom depth and type for shallow waters: Hyperspectral observations from a blimp

    Energy Technology Data Exchange (ETDEWEB)

    Lee, ZhongPing; Carder, K.; Steward, R. [Univ. of South Florida, St. Petersburg, FL (United States)] [and others

    1997-08-01

    In a study of a blimp transect over Tampa Bay (Florida), hyperspectral upwelling radiance over the sand and seagrass bottoms was measured. These measurements were converted to hyperspectral remote-sensing reflectances. Using a shallow-water remote-sensing-reflectance model, in-water optical properties, bottom depths and bottom albedos were derived analytically and simultaneously by an optimization procedure. In the process, curvatures of sand and seagrass albedos were used. Also used was a model of absorption spectrum of phytoplankton pigments. The derived bottom depths were compared with bathymetry charts and found to agree well. This study suggests that a low-flying blimp is a useful platform for the study and mapping of coastal water environments. The optical model as well as the data-reduction procedure used are practical for the retrieval of shallow water optical properties.

  12. Creating a water depth map from Earth Observation-derived flood extent and topography data

    Science.gov (United States)

    Matgen, Patrick; Giustarini, Laura; Chini, Marco; Hostache, Renaud; Pelich, Ramona; Schlaffer, Stefan

    2017-04-01

    Enhanced methods for monitoring temporal and spatial variations of water depth in rivers and floodplains are very important in operational water management. Currently, variations of water elevation can be estimated indirectly at the land-water interface using sequences of satellite EO imagery in combination with topographic data. In recent years high-resolution digital elevation models (DEM) and satellite EO data have become more readily available at global scale. This study introduces an approach for efficiently converting remote sensing-derived flood extent maps into water depth maps using a floodplain's topography information. For this we make the assumption of uniform flow, that is the depth of flow with respect to the drainage network is considered to be the same at every section of the floodplain. In other words, the depth of water above the nearest drainage is expected to be constant for a given river reach. To determine this value we first need the Height Above Nearest Drainage (HAND) raster obtained by using the area of interest's DEM as source topography and a shapefile of the river network. The HAND model normalizes the topography with respect to the drainage network. Next, the HAND raster is thresholded in order to generate a binary mask that optimally fits, over the entire region of study, the flood extent map obtained from SAR or any other remote sensing product, including aerial photographs. The optimal threshold value corresponds to the height of the water line above the nearest drainage, termed HANDWATER, and is considered constant for a given subreach. Once the HANDWATER has been optimized, a water depth map can be generated by subtracting the value of the HAND raster at the each location from this parameter value. These developments enable large scale and near real-time applications and only require readily available EO data, a DEM and the river network as input data. The approach is based on a hierarchical split-based approach that subdivides a

  13. Simulation of emergence of winter wheat in response to soil temperature, water potential and planting depth

    Science.gov (United States)

    Seedling emergence is a critical stage in the establishment of dryland wheat. Soil temperature, soil water potential and planting depth are important factors influencing emergence. These factors have considerable spatio-temporal variation making it difficult to predict the timing and percentage of w...

  14. Planting depth effects and water potential effects on oak seedling emergence and acorn germination

    Science.gov (United States)

    Wayne A. Smiles; Jeffrey O. Dawson

    1995-01-01

    The effects of four planting depths (0, 3, 7, 11 cm) and acorn size on the percentage seedling emergence of red, pin, and black oak were determined. In a complimentary study, the effects of five water potential treatments (0, -.2, -.4, -.6, -1.0 MPa) on the percentage germination of red, pin, and black oak acorns were measured.

  15. Growth and Physiological Responses to Water Depths in Carex schmidtii Meinsh.

    Directory of Open Access Journals (Sweden)

    Hong Yan

    Full Text Available A greenhouse experiment was performed to investigate growth and physiological responses to water depth in completely submerged condition of a wetland plant Carex schmidtii Meinsh., one of the dominant species in the Longwan Crater Lake wetlands (China. Growth and physiological responses of C. schmidtii were investigated by growing under control (non-submerged and three submerged conditions (5 cm, 15 cm and 25 cm water level. Total biomass was highest in control, intermediate in 5 cm treatment and lowest in the other two submerged treatments. Water depth prominently affected the first-order lateral root to main root mass ratio. Alcohol dehydrogenase (ADH activity decreased but malondialdehyde (MDA content increased as water depth increased. The starch contents showed no differences among the various treatments at the end of the experiment. However, soluble sugar contents were highest in control, intermediate in 5 cm and 15 cm treatments and lowest in 25 cm treatment. Our data suggest that submergence depth affected some aspects of growth and physiology of C. schmidtii, which can reduce anoxia damage not only through maintaining the non-elongation strategy in shoot part but also by adjusting biomass allocation to different root orders rather than adjusting root-shoot biomass allocation.

  16. Characterization of spatial heterogeneity of groundwater-stream water interactions using multiple depth streambed temperature measurements at the reach scale

    Directory of Open Access Journals (Sweden)

    C. Schmidt

    2006-01-01

    Full Text Available Streambed temperatures can be easily, accurately and inexpensively measured at many locations. To characterize patterns of groundwater-stream water interaction with a high spatial resolution, we measured 140 vertical streambed temperature profiles along a 220 m section of a small man-made stream. Groundwater temperature at a sufficient depth remains nearly constant while stream water temperatures vary seasonally and diurnally. In summer, streambed temperatures of groundwater discharge zones are relatively colder than downwelling zones of stream water. Assuming vertical flow in the streambed, the observed temperatures are correlated to the magnitude of water fluxes. The water fluxes are then estimated by applying a simple analytical solution of the heat conduction-advection equation to the observed vertical temperature profiles. The calculated water fluxes through the streambed ranged between 455 Lm−2 d−1 of groundwater discharging to the stream and approximately 10 Lm−2 d−1 of stream water entering the streambed. The investigated reach was dominated by groundwater discharge with two distinct high discharge locations accounting for 50% of the total flux on 20% of the reach length.

  17. Executive Functions of Divers Are Selectively Impaired at 20-Meter Water Depth

    Directory of Open Access Journals (Sweden)

    Fabian Steinberg

    2017-06-01

    Full Text Available Moving and acting underwater within recreational or occupational activities require intact executive functions, since they subserve higher cognitive functions such as successful self-regulation, coping with novel situations, and decision making; all of which could be influenced by nitrogen narcosis due to elevated partial pressure under water. However, specific executive functions that could provide a differentiated view on humans’ cognitive performance ability have not yet been systematically analyzed in full-water immersion, which is a research gap addressed within this approach to contribute to a better understanding of nitrogen narcosis. In this study, 20 young, healthy, and certified recreational divers participated and performed three different executive-function tests: the Stroop test (Inhibition, the Number/Letter test (Task switching, the 2-back test (Updating/Working memory, and a simple reaction time test (Psychomotor performance. These tests were performed once on land, at 5-meter (m water depth, and at 20-meter (m water depth of an indoor diving facility in standardized test conditions (26°C in all water depths. A water-proofed and fully operational tablet computer was used to present visual stimuli and to register reaction times. Performance of the simple reaction time test was not different between underwater and land testing, suggesting that reaction times were not biased by the utilization of the tablet in water immersion. Executive functions were not affected by the shallow water immersion of 5-m water depth. However, performance scores in 20-m water depth revealed a decreased performance in the incongruent test condition (i.e., an index of inhibitory control ability of the Stroop test, while all other tests were unaffected. Even though only one out of the three tested cognitive domains was affected, the impairment of inhibitory control ability even in relatively shallow water of 20-m is a critical component that should be

  18. Predicting Nutrient Effects on Secchi Depth using the Tampa Bay Water Clarity Model (TBWCM)

    Science.gov (United States)

    Rogers, J. E.; Russell, M.

    2016-02-01

    The Tampa Bay Water Clarity Model was developed to predict the impact of changing nutrient loads on water clarity as measured by secchi depth. The model combines a physical mixing model with an irradiance model and nutrient cycling model. A 10 segment bifurcated box model based on salt and water balance, which assumed complete mixing of each segment at each time step, was used to physically mix the Bay. The irradiance model predicted light levels just below the Bay surface from atmospheric conditions appropriate for Tampa Bay. The nutrient cycling model was primarily based on the growth of phytoplankton, their death and the recycling of inorganic nutrients as described in WASP. Secchi depths were calculated from Kd values based on light absorption by water, total chlorophyll (a, b and c), colored disolved organic matter, and the effects of turbidity. The model was calibrated against monthly salinity, total chlorophyll, ammonia, total kjeldahl nitrogen, and dissolved oxygen data collected during 1985 through 1991. The model was calibrated in two stages: (1) by first calibrating the exchange coefficients using the box model and (2) by calibrating selected nutrient cycling parameters using the complete water clarity model. Validation of the model was conducted with a similar data set collected during 1992 through 1994. We assessed the sensitivity of the model to changes in nutrient load by running the model in predictive mode. Scenarios were run with nutrient inputs from gauged rivers and unguaged drainage basins scaled by factors of 50% to 500%. A linear relationship was found between nutrient inputs and average secchi depth, ammonia, and total chlorophyll for the seven year (1985-1991) model runs. A 5-fold increase in gauged river nitrogen input resulted in a 10 percent decrease in secchi depth which resulted in a 30 percent decrease in the maximum depth for seagrass growth in the middle portion of Old Tampa Bay.

  19. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    Science.gov (United States)

    Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.

  20. The Depths of Hydraulic Fracturing and Accompanying Water Use Across the United States.

    Science.gov (United States)

    Jackson, Robert B; Lowry, Ella R; Pickle, Amy; Kang, Mary; DiGiulio, Dominic; Zhao, Kaiguang

    2015-08-04

    Reports highlight the safety of hydraulic fracturing for drinking water if it occurs "many hundreds of meters to kilometers underground". To our knowledge, however, no comprehensive analysis of hydraulic fracturing depths exists. Based on fracturing depths and water use for ∼44,000 wells reported between 2010 and 2013, the average fracturing depth across the United States was 8300 ft (∼2500 m). Many wells (6900; 16%) were fractured less than a mile from the surface, and 2600 wells (6%) were fractured above 3000 ft (900 m), particularly in Texas (850 wells), California (720), Arkansas (310), and Wyoming (300). Average water use per well nationally was 2,400,000 gallons (9,200,000 L), led by Arkansas (5,200,000 gallons), Louisiana (5,100,000 gallons), West Virginia (5,000,000 gallons), and Pennsylvania (4,500,000 gallons). Two thousand wells (∼5%) shallower than one mile and 350 wells (∼1%) shallower than 3000 ft were hydraulically fractured with >1 million gallons of water, particularly in Arkansas, New Mexico, Texas, Pennsylvania, and California. Because hydraulic fractures can propagate 2000 ft upward, shallow wells may warrant special safeguards, including a mandatory registry of locations, full chemical disclosure, and, where horizontal drilling is used, predrilling water testing to a radius 1000 ft beyond the greatest lateral extent.

  1. Quantitative radial imaging of porous particles beds with varying water contents.

    Science.gov (United States)

    Hills, B P; Babonneau, F

    1994-01-01

    Radial imaging protocols suitable for monitoring water transport in biopolymer and food materials during processes such as drying and rehydration are developed and tested on a well-characterized model sample. This model consisted of a randomly packed bed of Sephadex beads with varying water content. The results are interpreted with theoretical models for the dependence of the initial water magnetization, transverse relaxation, and diffusive attenuation on water content for two slice-selective radial imaging pulse sequences. It is shown that volume shrinkage and changes in packing density complicate the dependence of the initial magnetization on water content, so that the transverse relaxation rate provides the most reliable monitor of water content. Radial imaging is shown to offer many advantages over conventional two-dimensional imaging whenever the sample can be made with cylindrical symmetry.

  2. Greenhouse irrigation water depths in relation to rose stem and bud qualities

    Directory of Open Access Journals (Sweden)

    Folegatti Marcos Vinícius

    2001-01-01

    Full Text Available The cultivation of roses occupies a special place in the flower production of Brazil, the concern with the quality of the buds being intimately related with the appropriate supply of water and nutrients to the plant. With the objective of evaluating stem and bud quality the rose variety 'Osiana' was cultivated in a greenhouse using different irrigation water depths based on fractions of pan evaporation (0.25, 0.50, 0.75, 1.00 and 1.25. The experimental design consisted of total randomized blocks with five replications and five treatments. There is a linear tendency of increasing the length and diameter of the stems and the length and diameter of the buds with increasing irrigation water depths.

  3. Tank tests to determine the effect of varying design parameters of planing-tail hulls II : effect of varying depth of step, angle of after- body keel, length of afterbody chine, and gross load

    Science.gov (United States)

    Dawson, John R; Mckann, Robert; Hay, Elizabeth S

    1946-01-01

    The second part of a series of tests made in Langley tank no. 2 to determine the effect of varying design parameters of planing-tail hulls is presented. Results are given to show the effects on resistance characteristics of varying angle of afterbody keel, depth of step, and length of afterbody chine. The effect of varying the gross load is shown for one configuration. The resistance characteristics of planing-tail hulls are compared with those of a conventional flying-boat hull. The forces on the forebody and afterbody of one configuration are compared with the forces on a conventional hull. Increasing the angle of afterbody keel had small effect on hump resistance and no effect on high-speed resistance but increased free-to-trim resistance at intermediate speeds. Increasing the depth of step increased hump resistance, had little effect on high-speed resistance, and increased free-to-trim resistance at intermediate speeds. Omitting the chines on the forward 25 percent of the afterbody had no appreciable effect on resistance. Omitting 70 percent of the chine length had almost no effect on maximum resistance but broadened the hump and increased spray around the afterbody. Load-resistance ratio at the hump decreased more rapidly with increasing load coefficient for the planing-tail hull than for the representative conventional hull, although the load-resistance ratio at the hump was greater for the planing-tail hull than for the conventional hull throughout the range of loads tested. At speeds higher than hump speed, load-resistance ratio for the planing-tail hull was a maximum at a particular gross load and was slightly less at heavier and lighter gross loads. The planing-tail hull was found to have lower resistance than the conventional hull at both the hump and at high speeds, but at intermediate speeds there was little difference. The lower hump resistance of the planing-tail hull was attributed to the ability of the afterbody to carry a greater percentage of the

  4. Tree specific traits vs. stand level characteristics - assessing the source depths of plant water uptake in a mixed forest stand

    Science.gov (United States)

    Seeger, Stefan; Brinkmann, Nadine; Kahmen, Ansgar; Weiler, Markus

    2017-04-01

    Due to differences in fine root distributions, physiological root characteristics and plant plasticity, the spatial and temporal characteristics of plant water uptake are expected to vary between different tree species. This has implications on the overall water budget of a forest stand as well as on the drought sensitivity of particular trees. A four-year time series of climate data, soil moisture, and stable water isotopes in soil and tree xylem was used to investigate plant water uptake dynamics of four tree species (beech - Fagus sylvatica, spruce - Picea abies, ash - Fraxinus excelsior and maple - Acer pseudoplatanus) in a mixed forest stand. Modeling with a modified version of the soil hydrological model Hydrus-1D allowed us to simulate continuous time series of stable water isotopes in plant water uptake, which were compared to the measured values in tree xylem water and soil water. We found that different estimated species specific fine root distributions and root water uptake parameters lead to very similar simulated water balances and soil water isotope depth profiles for all four species. According to our simulations, differences in evaporative demand (i.e. LAI) had the biggest influence on water uptake and soil water distributions. Comparing the isotopic signatures of simulated root water uptake and measured xylem water, the simulations for beech were most suited to predict the observed signatures of all four species. This indicates that isolated, tree specific parametrized 1-D simulations are not suited to predict actual water uptake of different trees in a mixed stand. Due to overlapping root spaces dominant trees (in our case beeches with an LAI of around 5.5) may influence the soil water storage below accompanying trees (spruces, ashes and maples with LAIs between 1.8 and 3.1) in a degree that their actual water uptake cannot be predicted with 1-D simulations based on their smaller LAI values. Consequently, for a mixed forest stand the interplay of

  5. Abundance of macrozoobenthos in relation to bottom soil textural types and water depth In aquaculture ponds

    Directory of Open Access Journals (Sweden)

    N. Nupur

    2013-12-01

    Full Text Available The present experiment was conducted to evaluate the effects of bottom soil textural classes and different water depths on abundance of macrozoobenthos in aquaculture ponds. Three treatments, i.e., ponds bottom with sandy loam (T1, with loam (TS2 and with clay loam (T3 were considered in this experiment. Samples were collected from three different depths (60.96 cm, 106.68 cm and 152.40 cm with three replications. The ranges of water quality parameters were suitable for the growth of macrozoobenthos during the experimental period. Similarly, chemical properties of soil were also within suitable ranges and every parameter showed comparatively higher ranges in T2. Eight genera were recorded belonging to major groups of Chironomidae, Oligochaeta, Mollusca and Ceratoponogonidae. The highest population densities of Oligochaeta (1200±4.25 per m2, Chironomidae (1422±4.88 per m2, Ceratopogonidae (399±1.56 per m2 and Mollusca (977±2.24 per m2 were found in T2. The population densities of macrozoobenthos showed fortnightly variations in all the treatments. Among the three depths, significantly highest densities of macrozoobenthos were recorded in 106.68 cm in every treatment. The mean abundance of macrozoobenthos was significantly highest in T2. The present study indicates that loamy soil pond bottom along with water depth 106.68 cm is suitable for the growth and production of macrozoobenthos in aquaculture ponds.

  6. Estimating the Depth and Shape of Lake Vostok's Water Cavity from Aerogravity Data

    Science.gov (United States)

    Studinger, M.; Bell, R. E.; Tikku, A. A.

    2003-12-01

    The water circulation within Lake Vostok provides a viable mechanism for transporting mass and energy through the lake, enhancing the potential for the support of biota. The circulation pattern depends primarily on the geometry of the lake bathymetry. Water in shallow regions will warm more from the geothermal heat flux than in deeper parts, resulting in subtle lateral changes of water density. This temperature-induced change in water density is the primary driving force for the horizontal circulation within the lake. To date, only a few seismic soundings have provided estimates of the water depth of Lake Vostok. To determine the depth and shape of the water cavity over the entire lake we use gravity data acquired along a grid of flight lines traversing the region. The free-air gravity anomaly field reflects density variations related to both major geological and topographic structures and changes in the water depth of the lake. The gravity contribution from the deeper geological structures can be removed from the free-air anomaly by low-pass filtering of the data. The subglacial topography outside the lake and the geometry of the overlying ice sheet are well constrained from ice-penetrating radar measurements. The unknown parameter that dominates the filtered gravity anomaly is the relief of the bedrock-water interface. Assuming a constant density contrast across this boundary, the gravity data can be inverted for the bathymetry of the lake. The results show that Lake Vostok consists of two sub-basins, a northern and southern. The southern sub-basin is much deeper and approximately double the spatial area of the smaller northern sub-basin. The two sub-basins are separated by a saddle with very shallow water depths. The separation of Lake Vostok in two distinct sub-basins has important ramifications for the water circulation within the lake. The lake volume estimated from the inversion of gravity data is 5200 cubic km, three times bigger than previously thought

  7. Forcing of a bottom-mounted circular cylinder by steep regular water waves at finite depth

    DEFF Research Database (Denmark)

    Paulsen, Bo Terp; Bredmose, Henrik; Bingham, Harry B.

    2014-01-01

    with the experimental data was found. Time-domain computations of the normalized inline force history on the cylinder were analysed as a function of dimensionless wave height, water depth and wavelength. Here the dependence on depth was weak, while an increase in wavelength or wave height both lead to the formation......-harmonic force, a good agreement with the perturbation theories of Faltinsen, Newman & Vinje (J. Fluid Mech., vol. 289, 1995, pp. 179–198) and Malenica & Molin (J. Fluid Mech., vol. 302, 1995, pp. 203–229) was found. It was shown that the third-harmonic forces were estimated well by a Morison force formulation...

  8. Rock Physics of Reservoir Rocks with Varying Pore Water Saturation and Pore Water Salinity

    DEFF Research Database (Denmark)

    Katika, Konstantina

    and in the Smart Water project performed in a laboratory scale in order to evaluate the EOR processes in selected core plugs. A major step towards this evaluation is to identify the composition of the injected water that leads to increased oil recovery in reservoirs and to define changes in the petrophysical...... properties of the rock due to the water injection. During advanced waterflooding of reservoirs, or in the Smart Water project, during core flooding experiments, several chemical and petrophysical processes occur in the grains and pore space due to rock, brine and oil interactions. These processes may affect...... be performed on specific geological structures and why it is sometimes successful; has yet to be established. The presence of both oil and water in the pore space, several different ions present in the injected water that contact the pore walls, possible changes in the fluid wetting the surface of the grains...

  9. A correlation for predicting the abrasive water jet cutting depth for natural stones

    Directory of Open Access Journals (Sweden)

    Irfan C. Engin

    2012-09-01

    Full Text Available The abrasive water jet (AWJ cutting method has been used widely for the cutting and processing of materials because of its cool, damage-free, and precise cutting technique. Nowadays, the use of AWJ cutting in the natural stone industry is increasing. However, the effectiveness of AWJ cutting of natural stones is dependent on the rock properties and machine operating parameters. In this study, injection-type AWJ cutting was applied to 42 different types of natural stones to investigate the effects of rock properties and operating parameters on the cutting depth. Shore hardness, Bohme surface abrasion resistance and the density of the rocks were the most significant rock properties affecting the cutting depth. The working pump pressure and traverse velocity were the most significant operating parameters affecting cutting, as has been shown previously. The relationships between the rock properties or operating parameters and the cutting depth were evaluated using multiple linear and nonlinear regression analyses, and estimation models were developed. Some of the models included only rock properties under fixed operating conditions, and others included both rock properties and operating parameters to predict cutting depth. The models allow for the preselection of particular operating parameters for the cutting of specific rocks types. The prediction of cutting depth is a valuable tool for the controlled surface machining of rock materials.

  10. Water Reverberation Travel Time Analysis Acquired Using Multi-Depth Streamers

    Directory of Open Access Journals (Sweden)

    Po-Yen Tseng

    2016-01-01

    Full Text Available Ghost reflections and water reverberations are major and inevitable seismic noises in marine seismic exploration. More recently, new receiver deployment techniques at different sea depths for signal-to-noise ratio (SNR enhancement are developing. The reverberation characteristics must be known before applying the reverberation attenuation methods. This paper studies the characteristics of reverberations acquired using multi-depth streamers by analyzing the seismic ray path geometry and the scaled physical model data. The study results show that the primary reflection waveforms and reverberations are broadened with an increase in offset. The reverberation waveforms are quite different from those of primary reflections due to the wide-angle reflection. Under shallow water and small spread approximation, new arrival time equations for the primary reflections and reverberations are derived and fit the scaled physical model data very well. The depth-arrival time relationships of the primary reflections and reverberations in the common-source vertical-array gather are linear but their depth-arrival time relationship slopes are different. The primary reflection slopes are the same for different common-source vertical-array offsets but the reverberation slopes increase with offsets.

  11. Intestinal Water Absorption Varies with Expected Dietary Water Load among Bats but Does Not Drive Paracellular Nutrient Absorption.

    Science.gov (United States)

    Price, Edwin R; Brun, Antonio; Gontero-Fourcade, Manuel; Fernández-Marinone, Guido; Cruz-Neto, Ariovaldo P; Karasov, William H; Caviedes-Vidal, Enrique

    2015-01-01

    Rapid absorption and elimination of dietary water should be particularly important to flying species and were predicted to vary with the water content of the natural diet. Additionally, high water absorption capacity was predicted to be associated with high paracellular nutrient absorption due to solvent drag. We compared the water absorption rates of sanguivorous, nectarivorous, frugivorous, and insectivorous bats in intestinal luminal perfusions. High water absorption rates were associated with high expected dietary water load but were not highly correlated with previously measured rates of (paracellular) arabinose clearance. In conjunction with these tests, we measured water absorption and the paracellular absorption of nutrients in the intestine and stomach of vampire bats using luminal perfusions to test the hypothesis that the unique elongated vampire stomach is a critical site of water absorption. Vampire bats' gastric water absorption was high compared to mice but not compared to their intestines. We therefore conclude that (1) dietary water content has influenced the evolution of intestinal water absorption capacity in bats, (2) solvent drag is not the only driver of paracellular nutrient absorption, and (3) the vampire stomach is a capable but not critical location for water absorption.

  12. Elemental Water Impact Test: Phase 3 Plunge Depth of a 36-Inch Aluminum Tank Head

    Science.gov (United States)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA water landing simulations. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. Phase 3 featured a composite tank head that was tested at a range of heights to verify the ability to predict structural failure of composites. To support planning for Phase 3, a test series was conducted with an aluminum tank head dropped from heights of 2, 6, 10, and 12 feet to verify that the test article would not impact the bottom of the test pool. This report focuses on the comparisons of the measured plunge depths to LS-DYNA predictions. The results for the tank head model demonstrated the following. 1. LS-DYNA provides accurate predictions for peak accelerations. 2. LS-DYNA consistently under-predicts plunge depth. An allowance of at least 20% should be added to the LS-DYNA predictions. 3. The LS-DYNA predictions for plunge depth are relatively insensitive to the fluid-structure coupling stiffness.

  13. Simulating streamflow and water table depth with a coupled hydrological model

    Directory of Open Access Journals (Sweden)

    Alphonce Chenjerayi Guzha

    2010-09-01

    Full Text Available A coupled model integrating MODFLOW and TOPNET with the models interacting through the exchange of recharge and baseflow and river-aquifer interactions was developed and applied to the Big Darby Watershed in Ohio, USA. Calibration and validation results show that there is generally good agreement between measured streamflow and simulated results from the coupled model. At two gauging stations, average goodness of fit (R2, percent bias (PB, and Nash Sutcliffe efficiency (ENS values of 0.83, 11.15%, and 0.83, respectively, were obtained for simulation of streamflow during calibration, and values of 0.84, 8.75%, and 0.85, respectively, were obtained for validation. The simulated water table depths yielded average R2 values of 0.77 and 0.76 for calibration and validation, respectively. The good match between measured and simulated streamflows and water table depths demonstrates that the model is capable of adequately simulating streamflows and water table depths in the watershed and also capturing the influence of spatial and temporal variation in recharge.

  14. Spatio-temporal representativeness of euphotic depth in situ sampling in transitional coastal waters

    Science.gov (United States)

    Luhtala, Hanna; Tolvanen, Harri

    2016-06-01

    In dynamic coastal waters, the representativeness of spot sampling is limited to the measurement time and place due to local heterogeneity and irregular water property fluctuations. We assessed the representativeness of in situ sampling by analysing spot-sampled depth profiles of photosynthetically active radiation (PAR) in dynamic coastal archipelago waters in the south-western Finnish coast of the Baltic Sea. First, we assessed the role of spatio-temporality within the underwater light dynamics. As a part of this approach, an anomaly detection procedure was tested on a dataset including a large archipelago area and extensive temporal coverage throughout the ice-free season. The results suggest that euphotic depth variability should be treated as a spatio-temporal process rather than considering spatial and temporal dimensions separately. Second, we assessed the representativeness of spot sampling through statistical analysis of comparative data from spatially denser sampling on three test sites on two optically different occasions. The datasets revealed variability in different dimensions and scales. The suitability of a dataset to reveal wanted phenomena can usually be improved by careful planning and by clearly defining the data sampling objectives beforehand. Nonetheless, conducting a sufficient in situ sampling in dynamic coastal area is still challenging: detecting the general patterns at all the relevant dimensions is complicated by the randomness effect, which reduces the reliability of spot samples on a more detailed scale. Our results indicate that good representativeness of a euphotic depth sampling location is not a stable feature in a highly dynamic environment.

  15. Determinants of the spatial covariation of primary productivity and water table depth

    Science.gov (United States)

    Koirala, S.; Jung, M.; de Graaf, I. E. M.; Reichstein, M.; Carvalhais, N.

    2015-12-01

    This study explores when, where and how the spatial variations of gross primary productivity (GPP) and water table depth (WTD) are linked at the global scale. Latest observation-based global datasets, at a relatively high resolution of ~10 km (5 arc-minutes), are used to analyse spatial partial correlations between GPP and WTD. Results indicate that strength, direction, and spatial distribution of the partial correlation change with climate, vegetation cover, and seasonal availability of precipitation and radiation. Shallower water table depth is associated with larger GPP (negative correlation) in 14.3-23.9% of the global land area in different seasons. Such negative correlations between GPP and WTD seem to prevail in arid to temperate climatic regions with crop, shrub, or Savanna vegetation covers. These regions often have WTD shallower than 15-20 m. Positive correlations, on the other hand, mostly occur in relatively humid forested regions, suggesting that large water uptake by tree roots decreases groundwater recharge and thus draws the water table down. Gradients of primarily positive to primarily negative correlations are arranged along decreasing tree cover, and increasing coverage of plants with C4-photosynthesis. This possibly indicates that the water use efficiency of ecosystems may also play a critical role in determining productivity-groundwater relationships.

  16. Testing peatland water-table depth transfer functions using high-resolution hydrological monitoring data

    Science.gov (United States)

    Swindles, Graeme T.; Holden, Joseph; Raby, Cassandra L.; Turner, T. Edward; Blundell, Antony; Charman, Dan J.; Menberu, Meseret Walle; Kløve, Bjørn

    2015-07-01

    Transfer functions are now commonly used to reconstruct past environmental variability from palaeoecological data. However, such approaches need to be critically appraised. Testate amoeba-based transfer functions are an established method for the quantitative reconstruction of past water-table variations in peatlands, and have been applied to research questions in palaeoclimatology, peatland ecohydrology and archaeology. We analysed automatically-logged peatland water-table data from dipwells located in England, Wales and Finland and a suite of three year, one year and summer water-table statistics were calculated from each location. Surface moss samples were extracted from beside each dipwell and the testate amoebae community composition was determined. Two published transfer functions were applied to the testate-amoeba data for prediction of water-table depth (England and Europe). Our results show that estimated water-table depths based on the testate amoeba community reflect directional changes, but that they are poor representations of the real mean or median water-table magnitudes for the study sites. We suggest that although testate amoeba-based reconstructions can be used to identify past shifts in peat hydrology, they cannot currently be used to establish precise hydrological baselines such as those needed to inform management and restoration of peatlands. One approach to avoid confusion with contemporary water-table determinations is to use residuals or standardised values for peatland water-table reconstructions. We contend that our test of transfer functions against independent instrumental data sets may be more powerful than relying on statistical testing alone.

  17. Water masses transform at mid-depths over the Antarctic Continental Slope

    Science.gov (United States)

    Mead Silvester, Jess; Lenn, Yueng-Djern; Polton, Jeffrey; Phillips, Helen E.; Morales Maqueda, Miguel

    2017-04-01

    The Meridional Overturning Circulation (MOC) controls the oceans' latitudinal heat distribution, helping to regulate the Earth's climate. The Southern Ocean is the primary place where cool, deep waters return to the surface to complete this global circulation. While water mass transformations intrinsic to this process predominantly take place at the surface following upwelling, recent studies implicate vertical mixing in allowing transformation at mid-depths over the Antarctic continental slope. We deployed an EM-Apex float near Elephant Island, north of the Antarctic Peninsula's tip, to profile along the slope and use potential vorticity to diagnose observed instabilities. The float captures direct heat exchange between a lens of Upper Circumpolar Deep Water (UCDW) and surrounding Lower Circumpolar Deep Waters (LCDW) at mid-depths and over the course of several days. Heat fluxes peak across the top and bottom boundaries of the UCDW lens and peak diffusivities across the bottom boundary are associated with shear instability. Estimates of diffusivity from shear-strain finestructure parameterisation and heat fluxes are found to be in reasonable agreement. The two-dimensional Ertel potential vorticity is elevated both inside the UCDW lens and along its bottom boundary, with a strong contribution from the shear term in these regions and instabilities are associated with gravitational and symmetric forcing. Thus, shear instabilities are driving turbulent mixing across the lower boundary between these two water masses, leading to the observed heat exchange and transformation at mid-depths over the Antarctic continental slope. This has implications for our understanding of the rates of upwelling and ocean-atmosphere exchanges of heat and carbon at this critical location.

  18. Hydrologic record extension of water-level data in the Everglades Depth Estimation Network (EDEN), 1991-99

    Science.gov (United States)

    Conrads, Paul; Petkewich, Matthew D.; O'Reilly, Andrew M.; Telis, Pamela A.

    2015-01-01

    The real-time Everglades Depth Estimation Network (EDEN) has been established to support a variety of scientific and water management purposes. The expansiveness of the Everglades, limited number of gaging stations, and extreme sensitivity of the ecosystem to small changes in water depth have created a need for accurate water-level and water-depth maps. The EDEN water-surface elevation model uses data from approximately 240 gages in the Everglades to create daily continuous interpolations of the water-surface elevation and water depth for the freshwater portion of the Everglades from 2000 to the present (2014). These maps provide hydrologic data previously unavailable for assessing biological and ecological studies.

  19. Linking Plant Water-Use Efficiency and Depth of Water Uptake to Field­-Level Productivity Under Surplus and Deficit Irrigation in Almond Orchards

    Science.gov (United States)

    Seely, T.; Shackel, K.; Silva, L. C. R.

    2016-12-01

    The impact of water stress on depth of water uptake, as well as water­-use efficiency (WUE) at the tree-level and field-level was examined in almond orchards under varying degrees of deficit and surplus irrigation treatments. Three different orchards, spanning a latitudinal gradient (35° to 39° N) were sampled during two growing seasons in the central valley of CA. The orchards encompass a range of climatic and edaphic conditions, providing an opportunity for comparisons of WUE and orchard yield under contrasting environmental conditions. In each orchard, the control treatment received 100% replacement of water lost to evapotranspiration (ET), while the surplus treatment received 110% and the deficit treatment received 70% replenishment of ET, the latter simulating conditions of water stress. Preliminary results based on the analysis of carbon isotope ratios (δ13C) in leaves throughout the 2015 and 2016 growing seasons, reveal a significant change in WUE in all three orchard sites, increasing up to 20% on average in the deficit irrigation treatment relative to controls. In contrast, trees growing under surplus irrigation had the lowest WUE across all orchard sites. The difference in WUE between surplus irrigated trees and control irrigated trees within each orchard was not always statistically significant. These physiological responses to levels of water availability were not reflected in field-level orchard productivity, which was highly variable across orchard sites and treatments. Additionally, analysis of oxygen (δ18O) and hydrogen (δ2H) isotope ratios of stem, leaf, and soil water has been undertaken to determine the effect of water stress on the depth of root water uptake. The hypothesis that almond trees can effectively acclimate to water stress through higher WUE and deeper root water uptake compared to well-watered trees will be tested. This multi-scale, ecohydrological study will elucidate the impacts of drought on almond orchards, one of the most

  20. Historical Tracking of Nitrate in Contrasting Vineyard Using Water Isotopes and Nitrate Depth Profiles

    Science.gov (United States)

    Sprenger, M.; Erhardt, M.; Riedel, M.; Weiler, M.

    2015-12-01

    The European Water Framework Directive (EWFD) aims to achieve a good chemical status for the groundwater bodies in Europe by the year 2015. Despite the effort to reduce the nitrate pollution from agriculture within the last two decades, there are still many groundwater aquifers that exceed nitrate concentrations above the EWFD threshold of 50 mg/l. Viticulture is seen as a major contributor of nitrate leaching and sowing of a green cover was shown to have a positive effect on lowering the nitrate loads in the upper 90 cm of the soil. However, the consequences for nitrate leaching into the subsoil were not yet tested. We analyzed the nitrate concentrations and pore water stable isotope composition to a depth of 380 cm in soil profiles under an old vineyard and a young vineyard with either soil tillage or permanent green cover in between the grapevines. The pore water stable isotopes were used to calibrate a soil physical model, which was then used to infer the age of the soil water at different depths. This way, we could relate elevated nitrate concentrations below an old vineyard to tillage processes that took place during the winter two years before the sampling. We further showed that the elevated nitrate concentration in the subsoil of a young vineyard can be related to the soil tillage prior to the planting of the new vineyard. If the soil is kept bare due to tillage, a nitrate concentration of 200 kg NO3--N/ha is found in 290 to 380 cm depth 2.5 years after the installation of the vineyard. The amount of nitrate leaching is considerably reduced due to a seeded green cover between the grapevines that takes up a high share of the mobilized nitrate reducing a potential contamination of the groundwater.

  1. Rooting depth: a key trait connecting water and carbon metabolism of trees

    Science.gov (United States)

    Savi, Tadeja; Dal Borgo, Anna; Casolo, Valentino; Bressan, Alice; Stenni, Barbara; Zini, Luca; Bertoncin, Paolo; Nardini, Andrea

    2015-04-01

    Drought episodes accompanied by heat waves are thought to be the main cause of increasing rates of tree decline and mortality in several biomes with consequent ecological/economical consequences. Three possible and not mutually exclusive mechanisms have been proposed to be the drivers of this phenomenon: hydraulic failure caused by massive xylem cavitation and leading to strong reduction of root-to-leaf water transport, carbon starvation caused by prolonged stomatal closure and leading to impairment of primary and secondary metabolism, and finally attacks of biotic agents. The different mechanisms have been reported to have different relevance in the different species. We analyzed the seasonal changes of water relations, xylem sap isotopic composition, and concentration of non-structural carbohydrates in four different woody species co-occurring in the same habitat during a summer drought. Analysis of rain and deep soil water isotopic composition were also performed. Different species showed differential access to deep water sources which influences the gas exchanges and the concentration of non structural carbohydrates (NSC) during the dry season. Species with access to deeper water maintained higher NSC content and were also able to better preserve the integrity of the water transport pathway. On the basis of our results, we propose that rooting depth is a key trait connecting water and carbon plant metabolism, thus mediating the likelihood of hydraulic failure vs carbon starvation in trees subjected to global warming.

  2. Using inferential sensors for quality control of Everglades Depth Estimation Network water-level data

    Science.gov (United States)

    Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul

    2016-09-29

    The Everglades Depth Estimation Network (EDEN), with over 240 real-time gaging stations, provides hydrologic data for freshwater and tidal areas of the Everglades. These data are used to generate daily water-level and water-depth maps of the Everglades that are used to assess biotic responses to hydrologic change resulting from the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. The generation of EDEN daily water-level and water-depth maps is dependent on high quality real-time data from water-level stations. Real-time data are automatically checked for outliers by assigning minimum and maximum thresholds for each station. Small errors in the real-time data, such as gradual drift of malfunctioning pressure transducers, are more difficult to immediately identify with visual inspection of time-series plots and may only be identified during on-site inspections of the stations. Correcting these small errors in the data often is time consuming and water-level data may not be finalized for several months. To provide daily water-level and water-depth maps on a near real-time basis, EDEN needed an automated process to identify errors in water-level data and to provide estimates for missing or erroneous water-level data.The Automated Data Assurance and Management (ADAM) software uses inferential sensor technology often used in industrial applications. Rather than installing a redundant sensor to measure a process, such as an additional water-level station, inferential sensors, or virtual sensors, were developed for each station that make accurate estimates of the process measured by the hard sensor (water-level gaging station). The inferential sensors in the ADAM software are empirical models that use inputs from one or more proximal stations. The advantage of ADAM is that it provides a redundant signal to the sensor in the field without the environmental threats associated with field conditions at stations (flood or hurricane, for example). In the

  3. Predicted pH at the domestic and public supply drinking water depths, Central Valley, California

    Science.gov (United States)

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, Jo Ann M.

    2017-03-08

    This scientific investigations map is a product of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project modeling and mapping team. The prediction grids depicted in this map are of continuous pH and are intended to provide an understanding of groundwater-quality conditions at the domestic and public supply drinking water zones in the groundwater of the Central Valley of California. The chemical quality of groundwater and the fate of many contaminants is often influenced by pH in all aquifers. These grids are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to pH. In this work, the median well depth categorized as domestic supply was 30 meters below land surface, and the median well depth categorized as public supply is 100 meters below land surface. Prediction grids were created using prediction modeling methods, specifically boosted regression trees (BRT) with a Gaussian error distribution within a statistical learning framework within the computing framework of R (http://www.r-project.org/). The statistical learning framework seeks to maximize the predictive performance of machine learning methods through model tuning by cross validation. The response variable was measured pH from 1,337 wells and was compiled from two sources: USGS National Water Information System (NWIS) database (all data are publicly available from the USGS: http://waterdata.usgs.gov/ca/nwis/nwis) and the California State Water Resources Control Board Division of Drinking Water (SWRCB-DDW) database (water quality data are publicly available from the SWRCB: http://www.waterboards.ca.gov/gama/geotracker_gama.shtml). Only wells with measured pH and well depth data were selected, and for wells with multiple records, only the most recent sample in the period 1993–2014 was used. A total of 1,003 wells (training dataset) were used to train the BRT

  4. Effects of different depth of grain colour on antioxidant capacity during water imbibition in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Shin, Oon Ha; Kim, Dae Yeon; Seo, Yong Weon

    2017-07-01

    The importance of the effect of phytochemical accumulation in wheat grain on grain physiology has been recognised. In this study, we tracked phytochemical concentration in the seed coat of purple wheat during the water-imbibition phase and also hypothesised that the speed of germination was only relevant to its initial phytochemical concentration. The results indicate that the speed of germination was significantly reduced in the darker grain groups within the purple wheat. Total phenol content was slightly increased in all groups compared to their initial state, but the levels of other phytochemicals varied among groups. It is revealed that anthocyanin was significantly degraded during the water imbibition stage. Also, the activities of peroxidase, ascorbate peroxidase, catalase, glutathione S-transferase, glutathione reductase, and glutathione peroxidase in each grain colour group did not correlated with germination speed. Overall antioxidant activity was reduced as imbibition progressed in each group. Generally, darker grain groups showed higher total antioxidant activities than did lighter grain groups. These findings suggested that the reduced activity of reactive oxygen species, as controlled by internal antioxidant enzymes and phytochemicals, related with germination speed during the water imbibition stage in grains with greater depth of purple colouring. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Ascii grids of predicted pH in depth zones used by domestic and public drinking water supply depths, Central Valley, California

    Science.gov (United States)

    Zamora, Celia; Nolan, Bernard T.; Gronberg, JoAnn M.

    2017-01-01

    The ascii grids associated with this data release are predicted distributions of continuous pH at the drinking water depth zones in the groundwater of Central Valley, California. The two prediction grids produced in this work represent predicted pH at the domestic supply and public supply drinking water depths, respectively and are bound by the alluvial boundary that defines the Central Valley. A depth of 46 m was used to stratify wells into the shallow and deep aquifer and were derived from depth percentiles associated with domestic and public supply in previous work by Burow et al. (2013). In this work, the median well depth categorized as domestic supply was 30 meters below land surface and the median well depth categorized as public supply is 100 meters below land surface. Prediction grids were created using prediction modeling methods, specifically Boosted Regression Trees (BRT) with a gaussian error distribution within a statistical learning framework within R's computing framework (http://www.r-project.org/). The statistical learning framework seeks to maximize the predictive performance of machine learning methods through model tuning by cross validation. The response variable was measured pH from 1337 wells, and was compiled from two sources: US Geological Survey (USGS) National Water Information System (NWIS) Database (all data are publicly available from the USGS: http://waterdata.usgs.gov/ca/nwis/nwis) and the California State Water Resources Control Board Division of Drinking Water (SWRCB-DDW) database (water quality data are publicly available from the SWRCB: http://www.waterboards.ca.gov/gama/geotracker_gama.shtml). Only wells with measured pH and well depth data were selected, and for wells with multiple records, only the most recent sample in the period 1993-2014 was used. A total of 1003 wells (training dataset) were used to train the BRT model and 334 wells (hold-out dataset) were used to validate the prediction model. The training r-squared was

  6. Monitoring plant water status and rooting depth for precision irrigation in the vineyards of Classic Karst

    Science.gov (United States)

    Savi, Tadeja; Moretti, Elisa; Dal Borgo, Anna; Petruzzellis, Francesco; Stenni, Barbara; Bertoncin, Paolo; Dreossi, Giuliano; Zini, Luca; Martellos, Stefano; Nardini, Andrea

    2017-04-01

    The extreme summer drought and heat waves that occurred in South-Europe in 2003 and 2012 have led to the loss of more than 50% of winery production in the Classic Karst (NE Italy). The irrigation of vineyards in this area is not appropriately developed and, when used, it does not consider the actual water status and needs of plants, posing risks of inappropriate or useless usage of large water volumes. The predicted future increase in frequency and severity of extreme climate events poses at serious risk the local agriculture based on wine business. We monitored seasonal trends of pre-dawn (Ψpd) and minimum (Ψmin) leaf water potential, and stomatal conductance (gL) of 'Malvasia' grapevine in one mature (MV, both in 2015 and 2016) and one young vineyard (YV, in 2016). Moreover, we extracted xylem sap form plant stems and soil water from samples collected in nearby caves, by cryo-vacuum distillation. We also collected precipitation and irrigation water in different months. Oxygen isotope composition (δ18O) of atmospheric, plant, soil and irrigation water was analyzed to get information about rooting depth. In 2015, at the peak of summer aridity, two irrigation treatments were applied according to traditional management practices. The treatments were performed in a sub-area of the MV, followed by physiological analysis and yield measurements at grape harvest. In 2016, the soil water potential (Ψsoil) at 50 cm depth was also monitored throughout the season. Under harsh environmental conditions the apparently deep root system ensured relatively favorable plant water status in both MV and YV and during both growing seasons. The Ψsoil at 50 cm depth gradually decreased as drought progressed, reaching a minimum value of about -1.7 MPa, far more negative than Ψpd recorded in plants (about -0.5 MPa). In July, significant stomatal closure was observed, but Ψmin never surpassed the critical threshold of -1.3 MPa, indicating that irrigation was not needed. The xylem sap

  7. Effects of Subsurface Sampling & Processing on Martian Simulant Containing Varying Quantities of Water

    Science.gov (United States)

    Menard, J.; Sangillo, J.; Savain, A.; McNamara, K. M.

    2004-01-01

    The presence of water-ice in the Martian subsurface is a subject of much debate and excited speculation. Recent results from the gammaray spectrometer (GRS) on board NASA's Mars Odyssey spacecraft indicate the presence of large amounts of hydrogen in regions of predicted ice stability. The combination of chemistry, low gravitational field (3.71 m/s(exp 2)) and a surface pressure of about 6.36 mbar at the mean radius, place limits on the stability of H2O on the surface, however, results from the GRS indicate that the hydrogen rich phase may be present at a depth as shallow as one meter in some locations on Mars. The potential for water on Mars leads directly to the speculation that life may once have existed there, since liquid water is the unifying factor for environments known to support life on Earth. Lubricant-free drilling has been considered as a means of obtaining water-rich subsurface samples on Mars, and two recent white papers sponsored by the Mars Program have attempted to identify the problems associated with this goal. The two major issues identified were: the engineering challenges of drilling into a water-soil mixture where phase changes may occur; and the potential to compromise the integrity of in-situ scientific analysis due to contamination, volatilization, and mineralogical or chemical changes as a result of processing. This study is a first attempt to simulate lubricantfree drilling into JSC Mars-1 simulant containing up to 50% water by weight. The goal is to address the following: 1) Does sample processing cause reactions or changes in mineralogy which will compromise the interpretation of scientific measurements conducted on the surface? 2) Does the presence of water-ice in the sample complicate (1)? 3) Do lubricant-free drilling and processing leave trace contaminants which may compromise our understanding of sample composition? 4) How does the torque/power required for drilling change as a function of water content and does this lead to

  8. Technology Concept of TLP Platform Towing and Installation in Waters with Depth of 60 m

    Directory of Open Access Journals (Sweden)

    Dymarski Czesław

    2017-04-01

    Full Text Available The article is part of the design and research work conducted at the Gdansk University of Technology, Faculty of Ocean Engineering and Ship Technology, in cooperation with a number of other research centres, which concerns offshore wind farms planned to be built in the Polish zone of the Baltic sea in the next years. One of most difficult tasks in this project is building suitable foundations for each power unit consisting of a tower and a wind turbine mounted on its top. Since the water regions selected for building those wind farms have different depths, there was need to study different possible technical variants of this task, with the reference to both the foundation structures themselves, and the technology of their transport and setting, or anchoring. The article presents the technology of towing, from the shipyard to the setting place, and installation of the foundation having the form of a floating platform of TLP (Tension Leg Platform type, anchored by tight chains to suction piles in the waters with depth of 60 m.

  9. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth.

    Science.gov (United States)

    Carter, Jennifer L; White, Donald A

    2009-11-01

    Information on how vegetation adapts to differences in water supply is critical for predicting vegetation survival, growth and water use, which, in turn, has important impacts on site hydrology. Many field studies assess adaptation to water stress by comparing between disparate sites, which makes it difficult to distinguish between physiological or morphological changes and long-term genetic adaptation. When planting trees into new environments, the phenotypic adaptations of a species to water stress will be of primary interest. This study examined the response to water availability of Eucalyptus kochii ssp. borealis (C. Gardner) D. Nicolle, commonly integrated with agriculture in south-western Australia for environmental and economic benefits. By choosing a site where the groundwater depth varied but where climate and soil type were the same, we were able to isolate tree response to water supply. Tree growth, leaf area and stand water use were much larger for trees over shallow groundwater than for trees over a deep water table below a silcrete hardpan. However, water use on a leaf area basis was similar in trees over deep and shallow groundwater, as were the minimum leaf water potential observed over different seasons and the turgor loss point. We conclude that homeostasis in leaf water use and water relations was maintained through a combination of stomatal control and adjustment of sapwood-to-leaf area ratios (Huber value). Differences in the Huber value with groundwater depth were associated with different sapwood-specific conductivity and water use on a sapwood area basis. Knowledge of the coordination between water supply, leaf area, sapwood area and leaf transpiration rate for different species will be important when predicting stand water use.

  10. Space-time modeling of water table depth using a regionalized time series model and the Kalman filter

    NARCIS (Netherlands)

    Bierkens, M.F.P.; Knotters, M.; Hoogland, T.

    2001-01-01

    Water authorities in the Netherlands are not only responsible for managing surface water, but also for managing the groundwater reserves. Particularly the water table depth is an important variable, determining agricultural production and the potential for nature development. Knowledge of the

  11. The importance of atmospheric correction for airborne hyperspectral remote sensing of shallow waters: application to depth estimation

    Science.gov (United States)

    Castillo-López, Elena; Dominguez, Jose Antonio; Pereda, Raúl; de Luis, Julio Manuel; Pérez, Ruben; Piña, Felipe

    2017-10-01

    Accurate determination of water depth is indispensable in multiple aspects of civil engineering (dock construction, dikes, submarines outfalls, trench control, etc.). To determine the type of atmospheric correction most appropriate for the depth estimation, different accuracies are required. Accuracy in bathymetric information is highly dependent on the atmospheric correction made to the imagery. The reduction of effects such as glint and cross-track illumination in homogeneous shallow-water areas improves the results of the depth estimations. The aim of this work is to assess the best atmospheric correction method for the estimation of depth in shallow waters, considering that reflectance values cannot be greater than 1.5 % because otherwise the background would not be seen. This paper addresses the use of hyperspectral imagery to quantitative bathymetric mapping and explores one of the most common problems when attempting to extract depth information in conditions of variable water types and bottom reflectances. The current work assesses the accuracy of some classical bathymetric algorithms (Polcyn-Lyzenga, Philpot, Benny-Dawson, Hamilton, principal component analysis) when four different atmospheric correction methods are applied and water depth is derived. No atmospheric correction is valid for all type of coastal waters, but in heterogeneous shallow water the model of atmospheric correction 6S offers good results.

  12. Depth and Areal Distribution of Cs-137 in the Soil of a Small Water Catchment in the Sopron Mountains

    National Research Council Canada - National Science Library

    Ervin Kiss; Péter Volford

    2013-01-01

    The study presents the depth and areal distribution of Cs-137 activity concentration in the forest soils of Farkas Trench, a small water catchment in the Sopron Mountains, in 2001 and 2010, moreover...

  13. Calculation of intercepted runoff depth based on stormwater quality and environmental capacity of receiving waters for initial stormwater pollution management.

    Science.gov (United States)

    Peng, Hai-Qin; Liu, Yan; Gao, Xue-Long; Wang, Hong-Wu; Chen, Yi; Cai, Hui-Yi

    2017-11-01

    While point source pollutions have gradually been controlled in recent years, the non-point source pollution problem has become increasingly prominent. The receiving waters are frequently polluted by the initial stormwater from the separate stormwater system and the wastewater from sewage pipes through stormwater pipes. Consequently, calculating the intercepted runoff depth has become a problem that must be resolved immediately for initial stormwater pollution management. The accurate calculation of intercepted runoff depth provides a solid foundation for selecting the appropriate size of intercepting facilities in drainage and interception projects. This study establishes a separate stormwater system for the Yishan Building watershed of Fuzhou City using the InfoWorks Integrated Catchment Management (InfoWorks ICM), which can predict the stormwater flow velocity and the flow of discharge outlet after each rainfall. The intercepted runoff depth is calculated from the stormwater quality and environmental capacity of the receiving waters. The average intercepted runoff depth from six rainfall events is calculated as 4.1 mm based on stormwater quality. The average intercepted runoff depth from six rainfall events is calculated as 4.4 mm based on the environmental capacity of the receiving waters. The intercepted runoff depth differs when calculated from various aspects. The selection of the intercepted runoff depth depends on the goal of water quality control, the self-purification capacity of the water bodies, and other factors of the region.

  14. Temperate carbonate cycling and water mass properties from intertidal to bathyal depths (Azores

    Directory of Open Access Journals (Sweden)

    M. Wisshak

    2010-08-01

    Full Text Available The rugged submarine topography of the Azores supports a diverse heterozoan association resulting in intense biotically-controlled carbonate-production and accumulation. In order to characterise this cold-water (C factory a 2-year experiment was carried out in the southern Faial Channel to study the biodiversity of hardground communities and for budgeting carbonate production and degradation along a bathymetrical transect from the intertidal to bathyal 500 m depth.

    Seasonal temperatures peak in September (above a thermocline and bottom in March (stratification diminishes with a decrease in amplitude and absolute values with depth, and tidal-driven short-term fluctuations. Measured seawater stable isotope ratios and levels of dissolved nutrients decrease with depth, as do the calcium carbonate saturation states. The photosynthetic active radiation shows a base of the euphotic zone in ~70 m and a dysphotic limit in ~150 m depth.

    Bioerosion, being primarily a function of light availability for phototrophic endoliths and grazers feeding upon them, is ~10 times stronger on the illuminated upside versus the shaded underside of substrates in the photic zone, with maximum rates in the intertidal (−631 g/m2/yr. Rates rapidly decline towards deeper waters where bioerosion and carbonate accretion are slow and epibenthic/endolithic communities take years to mature. Accretion rates are highest in the lower euphotic zone (955 g/m2/yr, where the substrate is less prone to hydrodynamic force. Highest rates are found – inversely to bioerosion – on down-facing substrates, suggesting that bioerosion may be a key factor governing the preferential settlement and growth of calcareous epilithobionts on down-facing substrates.

    In context of a latitudinal gradient, the Azores carbonate cycling rates plot between known values from the cold-temperate Swedish Kosterfjord and the tropical Bahamas, with a total range of

  15. The Spatial and Temporal Variability of Water Content in an Organic Soil in Dartmoor National Park, UK and its Relation to Microtopography and Organic Soil Horizon Depth.

    Science.gov (United States)

    Rogers, J.; Miles, H.; Berg, A.

    2009-05-01

    The water content of organic and mineral soils is an important parameter which links energy and mass balances at the earth's surface and as such is essential to understanding the spatial and temporal organization of many biological, biogeochemical, and hydrological processes. The characterization of surface water content in space and time is also important for the continued development of regional-scale and global circulation climate models and has large implications for agriculture and land-use planning. A field study was performed in Dartmoor National Park, Devon, UK in August 2008 for the purpose of exploring the predictive power of terrain indices on wetness patterns in an organic soil. Point samples were taken over the course of three days on two hill slopes of varying aspect in order to assess the influence of incident solar radiation on water storage. Additionally, the depth of the organic layer was estimated for each sample location and topographic information collected for the creation of a digital elevation model. A weak correlation between peat water content and organic soil layer depth was demonstrated and found to be strongest in shallow soils. Microtopography was found to influence the variability of soil moisture over the sampled area with surface roughness (measured by using residual elevation from the mean transect slope). Based on repeated observations over the sampling grids temporal persistence of water content patterns is evident and can be linked to terrain indices and depth of the organic layer.

  16. Lipid composition and molecular interactions change with depth in the avian stratum corneum to regulate cutaneous water loss.

    Science.gov (United States)

    Champagne, Alex M; Allen, Heather C; Williams, Joseph B

    2015-10-01

    The outermost 10-20 µm of the epidermis, the stratum corneum (SC), consists of flat, dead cells embedded in a matrix of intercellular lipids. These lipids regulate cutaneous water loss (CWL), which accounts for over half of total water loss in birds. However, the mechanisms by which lipids are able to regulate CWL and how these mechanisms change with depth in the SC are poorly understood. We used attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to measure lipid-lipid and lipid-water interactions as a function of depth in the SC of house sparrows (Passer domesticus Linnaeus) in the winter and summer. We then compared these molecular interactions at each depth with lipid composition at the same depth. We found that in both groups, water content increased with depth in the SC, and likely contributed to greater numbers of gauche defects in lipids in deeper levels of the SC. In winter-caught birds, which had lower rates of CWL than summer-caught birds, water exhibited stronger hydrogen bonding in deeper layers of the SC, and these strong hydrogen bonds were associated with greater amounts of polar lipids such as ceramides and cerebrosides. Based on these data, we propose a model by which polar lipids in deep levels of the SC form strong hydrogen bonds with water molecules to increase the viscosity of water and slow the permeation of water through the SC. © 2015. Published by The Company of Biologists Ltd.

  17. Condition and biochemical profile of blue mussels (Mytilus edulis L.) cultured at different depths in a cold water coastal environment

    Science.gov (United States)

    Gallardi, Daria; Mills, Terry; Donnet, Sebastien; Parrish, Christopher C.; Murray, Harry M.

    2017-08-01

    The growth and health of cultured blue mussels (Mytilus edulis) are affected by environmental conditions. Typically, culture sites are situated in sheltered areas near shore (i.e., conflicts and environmental impact in coastal areas are concerns and interest in developing deep water (> 20 m depth) mussel culture has been growing. This study evaluated the effect of culture depth on blue mussels in a cold water coastal environment (Newfoundland, Canada). Culture depth was examined over two years from September 2012 to September 2014; mussels from three shallow water (5 m) and three deep water (15 m) sites were compared for growth and biochemical composition; culture depths were compared for temperature and chlorophyll a. Differences between the two years examined were noted, possibly due to harsh winter conditions in the second year of the experiment. In both years shallow and deep water mussels presented similar condition; in year 2 deep water mussels had a significantly better biochemical profile. Lipid and glycogen analyses showed seasonal variations, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a significantly higher content of omega-3 s (20:5ω3; EPA) and lower content of bacterial fatty acids in deep water sites in year 2. Everything considered, deep water appeared to provide a more favorable environment for mussel growth than shallow water under harsher weather conditions.

  18. Wind wave analysis in depth limited water using OCEANLYZ, A MATLAB toolbox

    Science.gov (United States)

    Karimpour, Arash; Chen, Qin

    2017-09-01

    There are a number of well established methods in the literature describing how to assess and analyze measured wind wave data. However, obtaining reliable results from these methods requires adequate knowledge on their behavior, strengths and weaknesses. A proper implementation of these methods requires a series of procedures including a pretreatment of the raw measurements, and adjustment and refinement of the processed data to provide quality assurance of the outcomes, otherwise it can lead to untrustworthy results. This paper discusses potential issues in these procedures, explains what parameters are influential for the outcomes and suggests practical solutions to avoid and minimize the errors in the wave results. The procedure of converting the water pressure data into the water surface elevation data, treating the high frequency data with a low signal-to-noise ratio, partitioning swell energy from wind sea, and estimating the peak wave frequency from the weighted integral of the wave power spectrum are described. Conversion and recovery of the data acquired by a pressure transducer, particularly in depth-limited water like estuaries and lakes, are explained in detail. To provide researchers with tools for a reliable estimation of wind wave parameters, the Ocean Wave Analyzing toolbox, OCEANLYZ, is introduced. The toolbox contains a number of MATLAB functions for estimation of the wave properties in time and frequency domains. The toolbox has been developed and examined during a number of the field study projects in Louisiana's estuaries.

  19. Incidence of marine debris in seabirds feeding at different water depths.

    Science.gov (United States)

    Tavares, D C; de Moura, J F; Merico, A; Siciliano, S

    2017-06-30

    Marine debris such as plastic fragments and fishing gears are accumulating in the ocean at alarming rates. This study assesses the incidence of debris in the gastrointestinal tracts of seabirds feeding at different depths and found stranded along the Brazilian coast in the period 2010-2013. More than half (55%) of the species analysed, corresponding to 16% of the total number of individuals, presented plastic particles in their gastrointestinal tracts. The incidence of debris was higher in birds feeding predominantly at intermediate (3-6m) and deep (20-100m) waters than those feeding at surface (debris in organisms mainly feeding at the ocean surface provides a limited view about the risks that this form of pollution has on marine life and highlight the ubiquitous and three-dimensional distribution of plastic in the oceans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. In-air fluence profiles and water depth dose for uncollimated electron beams

    Science.gov (United States)

    Toutaoui, Abedelkadar; Aichouche, Amar Nassim; Adjidir, Kenza Adjidir; Chami, Ahmed Chafik

    2008-01-01

    Advanced electron beam dose calculation models for radiation treatment planning systems require the input of a phase space beam model to configure a clinical electron beam in a computer. This beam model is a distribution in position, energy, and direction of electrons and photons in a plane in front of the patient. The phase space beam model can be determined by Monte Carlo simulation of the treatment head or from a limited set of measurements. In the latter case, parameters of the electron phase space beam model are obtained by fitting measured to calculated dosimetric data. In the present work, data for air fluence profiles and water depth doses have been presented for electron beams without an applicator for a medical linear accelerator. These data are used to parameterize the electron phase space beam model to a Monte Carlo dose calculation module available in the first commercial (MDS Nordion, now Nucletron) Monte Carlo treatment planning for electron beams. PMID:19893707

  1. Influence of water vapour and permanent gases on the atmospheric optical depths and transmittance

    Science.gov (United States)

    Badescu, V.

    1991-05-01

    The influence of the atmospheric state on the extinction of direct solar radiation has been studied by using a four layer atmospheric model. Simple analytical formulae are established for the spectral optical depths of permanent gases and water vapour. These formulae use the ground level values of air pressure, temperature and relative huniidity. An additional parameter, related to the vertical distribution of the hunmidity content, is used for a better estimation of the water vapour optical depth. Good agreement between theory and measurements is found. The paper shows the dependence of the atmospheric spectral transmittance on the above mentioned parameters. L'influence de l'état atmosphérique sur l'extinction de la radiation solaire directe a été étudiée à l'aide d'un modèle atmosphérique développé antérieurement par l'auteur. Des formules simples ont été établies pour l'épaisseur optique spectrale des gaz et de la vapeur d'eau. Ces formules utilisent les valeurs de la pression atmosphérique, de la température et de l'humidité relative, mesurées au niveau du sol. Un paramètre supplémentaire, lié à la distribution verticale du contenu d'humidité, est utilisé pour calculer l'épaisseur optique due à la vapeur d'eau. La théorie est en bon accord avec les résultats des mesures. Le travail montre la dépendance de la transmittance atmosphérique spectrale en fonction des paramètres spécifiés ci-dessus.

  2. Modeling the time-varying interaction between surface water and groundwater bodies

    Science.gov (United States)

    Gliege, Steffen; Steidl, Jörg; Lischeid, Gunnar; Merz, Christoph

    2016-04-01

    The countless kettle holes (small lakes) in the Late Pleistocene landscapes of Northern Europe have important ecological and hydrological functions. On the one hand they act as depressions in which water and solutes of mainly agriculturally used catchments accumulate. On the other hand they operate as biochemical reactors with respect to greenhouse gas emissions, carbon sequestration, and as major sinks for nutrients and contaminants. Even small kettle holes often are hydraulically connected to the uppermost groundwater system: Groundwater discharges into the kettle hole on one side, and the aquifer is recharged from the kettle hole water body on the other side. Thus kettle hole biogeochemical processes are both affected by groundwater and vice versa. Groundwater flow direction and velocity into and out of the kettle hole often is not stable over time. Groundwater flow direction might reverse at the downstream part, resulting in repeated recycling of groundwater and corresponding solute turnover within the kettle holes. A sound understanding of this intricate interplay is a necessary prerequisite for better understanding of the biogeochemistry of this terrestrial-aquatic interface. A numerical experiment was used to quantify the lateral solute exchange between a kettle hole and the surrounding groundwater. A vertical cross section through the real existing catchment of a kettle hole was chosen. Glacial till represents the lower boundary. The heterogeneity of the subsurface was reproduced by various parameterizations of the soil hydraulic properties as well as varying the thickness of the unconfined aquifer or the lateral boundary conditions. In total 24 different parameterizations were implemented in the modeling software HydroGeoSphere (HGS). HGS is suitable to calculate the fluid exchange between surface and subsurface simultaneously and in a physically based way. The simulation runs were done for the period from November 1994 to October 2014. All results were

  3. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges.

    Science.gov (United States)

    Batt, Angela L; Bruce, Ian B; Aga, Diana S

    2006-07-01

    Effluents from three wastewater treatment plants with varying wastewater treatment technologies and design were analyzed for six antibiotics and caffeine on three sampling occasions. Sulfamethoxazole, trimethoprim, ciprofloxacin, tetracycline, and clindamycin were detected in the effluents at concentrations ranging from 0.090 to 6.0 microg/L. Caffeine was detected in all effluents at concentrations ranging from 0.19 to 9.9 microg/L. These findings indicate that several conventional wastewater management practices are not effective in the complete removal of antibiotics, and their discharges have a large potential to affect the aquatic environment. To evaluate the persistence of antibiotics coming from the wastewater discharges on the surrounding surface waters, samples were collected from the receiving streams at 10-, 20- and 100-m intervals. Ciprofloxacin, sulfamethoxazole, and clindamycin (0.043 to 0.076 microg/L) were found as far as 100 m from the discharge point, which indicates the persistence of these drugs in surface waters.

  4. Sensitivity of stream flow and water table depth to potential climatic variability in a coastal forested watershed

    Science.gov (United States)

    Zhaohua Dai; Carl Trettin; Changsheng Li; Devendra M. Amatya; Ge Sun; Harbin Li

    2010-01-01

    A physically based distributed hydrological model, MIKE SHE, was used to evaluate the effects of altered temperature and precipitation regimes on the streamflow and water table in a forested watershed on the southeastern Atlantic coastal plain. The model calibration and validation against both streamflow and water table depth showed that the MIKE SHE was applicable for...

  5. Modelling contrasting responses of wetland productivity to changes in water table depth

    Directory of Open Access Journals (Sweden)

    R. F. Grant

    2012-11-01

    Full Text Available Responses of wetland productivity to changes in water table depth (WTD are controlled by complex interactions among several soil and plant processes, and hence are site-specific rather than general in nature. Hydrological controls on wetland productivity were studied by representing these interactions in connected hummock and hollow sites in the ecosystem model ecosys, and by testing CO2 and energy fluxes from the model with those measured by eddy covariance (EC during years with contrasting WTD in a shrub fen at Lost Creek, WI. Modelled interactions among coupled processes for O2 transfer, O2 uptake, C oxidation, N mineralization, N uptake and C fixation by diverse microbial, root and mycorrhizal populations enabled the model to simulate complex responses of CO2 exchange to changes in WTD that depended on the WTD at which change was occurring. At the site scale, greater WTD caused the model to simulate greater CO2 influxes and effluxes over hummocks vs. hollows, as has been found at field sites. At the landscape scale, greater WTD caused the model to simulate greater diurnal CO2 influxes and effluxes under cooler weather when water tables were shallow, but also smaller diurnal CO2 influxes and effluxes under warmer weather when water tables were deeper, as was also apparent in the EC flux measurements. At an annual time scale, these diurnal responses to WTD in the model caused lower net primary productivity (NPP and heterotrophic respiration (Rh, but higher net ecosystem productivity (NEP = NPP − Rh, to be simulated in a cooler year with a shallower water table than in a warmer year with a deeper one. This difference in NEP was consistent with those estimated from gap-filled EC fluxes in years with different water tables at Lost Creek and at similar boreal fens elsewhere. In sensitivity tests of the model, annual NEP

  6. Semi-empirical lake level (SELL) model for mapping lake water depths from partially clouded satellite data

    Science.gov (United States)

    Velpuri, N.; Senay, G. B.

    2011-12-01

    Information on the variability in surface water is critical to understand the impact of climate change and global water cycle. Surface water features such as lakes, or reservoirs can affect local weather and regional climate. Hence, there is a widespread demand for accurate and quantitative global observations of surface water variability. Satellite imagery provides a direct way to monitor variations in surface water. However, estimating accurate surface area from satellite imagery can be a problem due to clouds. Hence, the use of optical imagery for operational implementation has been a challenge for monitoring variations in surface water. In this research, a semi-empirical lake level (SELL) model is developed to derive lake/reservoir water levels from partially covered satellite imagery. SRTM elevation combined with bathymetry was used to derive the relationships between lake depth vs. surface area and shore line (L). Using these relationships, lake level/depth (D) was estimated from the surface area (A) and/or shore line (L) delineated from Landsat and MODIS data. The SELL model was applied on Lake Turkana, one of the rift valley lakes in East Africa. First, Lake Turkana water levels were delineated using cloud-free or partially clouded Landsat and MODIS imagery over 1993-2009 and 2002-2009 time periods respectively. Historic lake depths were derived using 1972-1992 Landsat imagery. Lake depths delineated using this approach were validated using TOPEX/Poseidon/Jason satellite altimetry data. It was found that lake depths derived using SELL model matched reasonably well with the satellite altimetry data. The approach presented in this research can be used to (a) simulate lake water level variations in data scarce regions (b) increase the frequency of observation in regions where cloud cover is a problem (c) operationally monitor lake water levels in ungauged basins (d) derive historic lake level information using satellite data.

  7. Effective cloud optical depth and enhancement effects for broken liquid water clouds in Valencia (Spain)

    Science.gov (United States)

    Marín, M. J.; Serrano, D.; Utrillas, M. P.; Núñez, M.; Martínez-Lozano, J. A.

    2017-10-01

    Partly cloudy skies with liquid water clouds have been analysed, founding that it is essential to distinguish data if the Sun is obstructed or not by clouds. Both cases can be separated considering simultaneously the Cloud Modification Factor (CMF) and the clearness index (kt). For partly cloudy skies and the Sun obstructed the effective cloud optical depth (τ) has been obtained by the minimization method for overcast skies. This method was previously developed by the authors but, in this case, taking into account partial cloud cover. This study has been conducted for the years 2011-2015 with the multiple scattering model SBDART and irradiance measurements for the UV Erythemal Radiation (UVER) and the broadband ranges. Afterwards a statistical analysis of τ has shown that the maximum value is much lower than for overcast skies and there is more discrepancy between the two spectral ranges regarding the results for overcast skies. In order to validate these results the effective cloud optical depth has been correlated with several transmission factors, giving similar fit parameters to those obtained for overcast skies except for the clearness index in the UVER range. As our method is not applicable for partly cloudy skies with the visible Sun, the enhancement of radiation caused by clouds when the Sun is visible has been studied. Results show that the average enhancement CMF values are the same for both ranges although enhancement is more frequent for low cloud cover in the UVER and medium-high cloud cover in the broadband range and it does not depend on the solar zenith angle.

  8. Performance of the drag type of Horizontal Axis Water Turbine (HAWT) as effect of depth to width ratio of blade

    Science.gov (United States)

    Hadi, Syamsul; Apdila, Rio Jevri; Purwono, Arif Hidayat; Budiana, Eko Prasetya; Tjahjana, Dominicus Danardono Dwi Prija

    2017-01-01

    Application of wind turbine to the water turbine is an interesting topic because of different energy momentum. A Horizontal Axis Water Turbine (HWAT) was proposed to produce energy in building the pipeline. A preliminary study using simulation and experimentally study of depth to width ratio of the blade was examined in order to determine optimum performance of the turbine using several variations of depth to width ratio of the blade with a constant head of 2 m and angle of the blocking system of 30°. Effect of the existing of different depth to width ratio of the blade for debit was reported. The optimal performance of the turbine was obtained at depth to width ratio of 0.29 that shown by highest obtained voltage of 8.62 Volt, the power output of 3.447 Watt and coefficient power of 2.73×10-2.

  9. The effects of water depth and light on oviposition and egg cannibalism in the bluefin killifish Lucania goodei.

    Science.gov (United States)

    Sandkam, B A; Fuller, R C

    2011-03-01

    This study showed that sex and depth had strong effects on egg cannibalism, whereas water clarity (clear v. tea-stained) had no effect on cannibalism or oviposition in the bluefin killifish Lucania goodei. These results are consistent with the extreme levels of iteroparity in L. goodei where females appear to spread their eggs across multiple locations and depths presumably to avoid egg predation. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  10. Validity of Core Temperature Measurements at 3 Rectal Depths During Rest, Exercise, Cold-Water Immersion, and Recovery.

    Science.gov (United States)

    Miller, Kevin C; Hughes, Lexie E; Long, Blaine C; Adams, William M; Casa, Douglas J

    2017-04-01

      No evidence-based recommendation exists regarding how far clinicians should insert a rectal thermistor to obtain the most valid estimate of core temperature. Knowing the validity of temperatures at different rectal depths has implications for exertional heat-stroke (EHS) management.   To determine whether rectal temperature (Trec) taken at 4 cm, 10 cm, or 15 cm from the anal sphincter provides the most valid estimate of core temperature (as determined by esophageal temperature [Teso]) during similar stressors an athlete with EHS may experience.   Cross-sectional study.   Laboratory.   Seventeen individuals (14 men, 3 women: age = 23 ± 2 years, mass = 79.7 ± 12.4 kg, height = 177.8 ± 9.8 cm, body fat = 9.4% ± 4.1%, body surface area = 1.97 ± 0.19 m2).   Rectal temperatures taken at 4 cm, 10 cm, and 15 cm from the anal sphincter were compared with Teso during a 10-minute rest period; exercise until the participant's Teso reached 39.5°C; cold-water immersion (∼10°C) until all temperatures were ≤38°C; and a 30-minute postimmersion recovery period. The Teso and Trec were compared every minute during rest and recovery. Because exercise and cooling times varied, we compared temperatures at 10% intervals of total exercise and cooling durations for these periods.   The Teso and Trec were used to calculate bias (ie, the difference in temperatures between sites).   Rectal depth affected bias (F2,24 = 6.8, P = .008). Bias at 4 cm (0.85°C ± 0.78°C) was higher than at 15 cm (0.65°C ± 0.68°C, P .05). Bias varied over time (F2,34 = 79.5, P < .001). Bias during rest (0.42°C ± 0.27°C), exercise (0.23°C ± 0.53°C), and recovery (0.65°C ± 0.35°C) was less than during cooling (1.72°C ± 0.65°C, P < .05). Bias during exercise was less than during postimmersion recovery (0.65°C ± 0.35°C, P < .05).   When EHS is suspected, clinicians should insert the flexible rectal thermistor to 15 cm (6 in) because it is the most valid depth. The low

  11. Experimental investigations on effect of different materials and varying depths of one turn exhaust channel swiss roll combustor on its thermal performance

    Science.gov (United States)

    Mane Deshmukh, Sagar B.; Krishnamoorthy, A.; Bhojwani, V. K.; Pawane, Ashwini

    2017-05-01

    More energy density of hydrocarbon fuels compared to advanced batteries available in the market demands for development of systems which will use hydrocarbon fuels at small scale to generate power in small quantity (i.e. in few watts) and device efficiency should be reasonably good, but the basic requirement is to generate heat from the fuels like methane, propane, hydrogen, LPG and converting into power. Swiss roll combustor has proved to be best combustor at small scale. Present work is carried out on one turn exhaust channel and half turn of inlet mixture channel Swiss roll combustor. Purpose of keeping exhaust channel length more than the inlet mixture channel to ensure sufficient time for heat exchange between burned and unburned gases, which is not reported in earlier studies. Experimental study mentions effects of different design parameters like materials of combustor, various depths, equivalence ratio, mass flow rates of liquefied petroleum gas (LPG), volume of combustion space and environmental conditions (with insulation and without insulation to combustors) on fuel lean limit and fuel rich limit, temperature profile obtained on all external surfaces, in the main combustion chamber, in the channel carrying unburned gas mixture and burned gas mixture, heat loss to atmosphere from all the walls of combustor, flame location. Different combustor materials tested were stainless steel, Aluminum, copper, brass, bronze, Granite. Depths considered were 22mm, 15mm, 10mm and 5mm. It was observed that flame stability inside the combustion chamber is affected by materials, depths and flow rates. Unburned mixture carrying channel was kept below quenching distance of flame to avoid flash back. Burned gas carrying channel dimension was more than the quenching distance. Considerable temperature rise was observed with insulation to combustors. But combustors with more thermal conductivity showed more heat loss to atmosphere which led to instability of flame.

  12. [Effects of water depth on the growth of Vallisneria natans and photosynthetic system II photochemical characteristics of the leaves].

    Science.gov (United States)

    Yang, Xin; Zhang, Qi-Chao; Sun, Shu-Yun; Chen, Kai-Ning

    2014-06-01

    The effects of water depth on the growth of Vallisneria natans and photosynthetic system II photochemical characteristics of the leaves were investigated at three depths of 0.6, 1.3 and 2.0 m. The rapid fluorescence induction kinetics curves (OJIP) of the leaves were measured with Plant Efficiency Analyzer and analyzed with JIP-test. The results indicated that the light intensities at water depths of 0.6, 1.3 and 2.0 m were obviously different and the growth of V. natans was restricted under water depth of 2.0 m. Biomass, number of ramets, number of leaves, total root length, root surface area and other morphological indices decreased significantly with the increasing water depth, and the maximum leaf length, average leaf length, maximum leaf width changed insignificantly with the water depth. With the increasing water depth, absorption flux per reaction center (ABS/RC), trapped energy flux per RC (TR0/RC), electron transport flux per RC (ET0/RC), reduction of end acceptors at photosynthetic system I (PS I ) electron acceptor side per RC (RE0/ RC) decreased significantly. The dissipated energy flux per RC (DI0/RC) also decreased significantly, which led to no obvious difference in quantum yield for the reduction of end acceptors of PS I per photon absorbed (phiR0) and the efficiency for the trapped exciton to move an electron into the electron transport chain from QA- to the PS I end electron acceptors (deltaR0). Because the amount of active PS II RCs per CS increased significantly, photosynthesis per area of V. natans grown at 2.0 m was significantly greater than that of V. natans grown at 0.6 m. The performance index PIs, Ples, Plabs,.otal photochemistry efficiency of leaves of V. natans grown at 2.0 m was significantly in- creased, suggesting that light stress may promote a more efficient conversion of light energy to active chemical energy. V. natans leaves accommodate the low light intensity environment through activating inactive reaction centers but not

  13. Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply.

    Science.gov (United States)

    Biswas, Ashis; Nath, Bibhash; Bhattacharya, Prosun; Halder, Dipti; Kundu, Amit K; Mandal, Ujjal; Mukherjee, Abhijit; Chatterjee, Debashis; Mörth, Carl-Magnus; Jacks, Gunnar

    2012-08-01

    Delineation of safe aquifer(s) that can be targeted by cheap drilling technology for tubewell (TW) installation becomes highly imperative to ensure access to safe and sustainable drinking water sources for the arsenic (As) affected population in Bengal Basin. This study investigates the potentiality of brown sand aquifers (BSA) as a safe drinking water source by characterizing its hydrogeochemical contrast to grey sand aquifers (GSA) within shallow depth (water guidelines, which warrants rigorous assessment of attendant health risk for Mn prior to considering mass scale exploitation of the BSA for possible sustainable drinking water supply. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Water relations and foliar isotopic composition of Prosopis tamarugo Phil. an endemic tree of the Atacama Desert growing under three levels of water table depth.

    Directory of Open Access Journals (Sweden)

    Marco eGarrido

    2016-03-01

    Full Text Available Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the Pampa del Tamarugal, Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m and 7.1 ± 0.1 m, (the last GWD being our reference were selected and groups of 4 individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and midday water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ13C and δ18O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behaviour and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P

  15. Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth

    Czech Academy of Sciences Publication Activity Database

    Juszczak, R.; Humphreys, E.; Acosta, Manuel; Michalak-Galczewska, M.; Kayzer, D.; Olejnik, Janusz

    2013-01-01

    Roč. 366, 1-2 (2013), s. 505-520 ISSN 0032-079X Institutional support: RVO:67179843 Keywords : Ecosystem respiration * Geogenous peatland * Chamber measurements * CO2 fluxes * Water table depth Subject RIV: EH - Ecology, Behaviour Impact factor: 3.235, year: 2013

  16. Diurnal variations in depth profiles of UV-induced DNA damage and inhibition of bacterioplankton production in tropical coastal waters

    NARCIS (Netherlands)

    Visser, PM; Poos, JJ; Scheper, BB; Boelen, P; van Duyl, FC

    2002-01-01

    In this study, diurnal changes in bacterial production and DNA damage in bacterio-plankton (measured as cyclobutane pyrimidine dimers, CPDs) incubated in bags at different depths in tropical coastal waters were investigated. The DNA damage and inhibition of the bacterial production was highest at

  17. Effect of water depth and temperature on germination characteristics of rice and barnyard grass in the laboratory conditions

    Directory of Open Access Journals (Sweden)

    M. HaghighiKhah

    2016-05-01

    Full Text Available Response of seed germination of a crop to different environmental conditions is one of the most important determination factors to indicate its ability in competition with weeds. In order to evaluate the effects of water depth and temperature on the germination of different varieties of rice and barnyard grass, an experiment was conducted in the Seed Laboratory, Faculty of Agriculture, Ferdowsi University of Mashhad, as a factorial design based on a Complete Randomized Blocks in four replications of 25 seeds. First factor was water depth in six levels (0, 2, 4, 6, 8, and 10 cm, second factor was temperature in seven levels (10, 15, 20, 25, 30, 35 and 40 oC, and third one was different cultivars (Khazar, Hashemi and Domsiah and barnyard grass. According to the results the best germination characteristics of all rice varieties and barnyard grass obtained at 30 oC. With increasing temperature up to 30oC germination increased. However, temperatures above 30oC reduced the germination. Increasing water depth lead to reduce the speed and percentage of germination in all varieties, But the effect of water depth on the germination of rice varieties was lower than the barnyard grass.

  18. Transverse structure of tidal flow, residual flow and sediment concentration in estuaries: sensitivity to tidal forcing and water depth

    NARCIS (Netherlands)

    Huijts, K.M.H.|info:eu-repo/dai/nl/304831867; de Swart, H.E.|info:eu-repo/dai/nl/073449725; Schramkowski, G.P.; Schuttelaars, H.M.

    2011-01-01

    An analytical and a numerical model are used to understand the response of velocity and sediment distributions over Gaussian-shaped estuarine cross-sections to changes in tidal forcing and water depth. The estuaries considered here are characterized by strong mixing and a relatively weak

  19. Effects of water depth, seasonal exposure, and substrate orientation on microbial bioerosion in the Ionian Sea (Eastern Mediterranean.

    Directory of Open Access Journals (Sweden)

    Claudia Färber

    Full Text Available The effects of water depth, seasonal exposure, and substrate orientation on microbioerosion were studied by means of a settlement experiment deployed in 15, 50, 100, and 250 m water depth south-west of the Peloponnese Peninsula (Greece. At each depth, an experimental platform was exposed for a summer period, a winter period, and about an entire year. On the up- and down-facing side of each platform, substrates were fixed to document the succession of bioerosion traces, and to measure variations in bioerosion and accretion rates. In total, 29 different bioerosion traces were recorded revealing a dominance of microborings produced by phototrophic and organotrophic microendoliths, complemented by few macroborings, attachment scars, and grazing traces. The highest bioerosion activity was recorded in 15 m up-facing substrates in the shallow euphotic zone, largely driven by phototrophic cyanobacteria. Towards the chlorophyte-dominated deep euphotic to dysphotic zones and the organotroph-dominated aphotic zone the intensity of bioerosion and the diversity of bioerosion traces strongly decreased. During summer the activity of phototrophs was higher than during winter, which was likely stimulated by enhanced light availability due to more hours of daylight and increased irradiance angles. Stable water column stratification and a resulting nutrient depletion in shallow water led to lower turbidity levels and caused a shift in the photic zonation that was reflected by more phototrophs being active at greater depth. With respect to the subordinate bioerosion activity of organotrophs, fluctuations in temperature and the trophic regime were assumed to be the main seasonal controls. The observed patterns in overall bioeroder distribution and abundance were mirrored by the calculated carbonate budget with bioerosion rates exceeding carbonate accretion rates in shallow water and distinctly higher bioerosion rates at all depths during summer. These findings

  20. Depth-to-water area polygons, isopleths showing mean annual runoff, 1912-1963, and water-level altitude contours for the Humboldt River Basin, Nevada

    Science.gov (United States)

    Welborn, Toby L.; Medina, Rose L.

    2017-01-01

    This USGS data release represents the 1:500,000-scale geospatial data for the following publication:Eakin, T.E., and Lamke, R.D., 1966, Hydrologic reconnaissance of the Humboldt River basin, Nevada: Nevada Department of Conservation and Natural Resources, Water Resources Bulletin 32, 107 p.The data set consists of 3 separate items:1. Depth-to-water area polygons2. Isopleths showing mean annual runoff, 1912-19633. Water-level altitude contours

  1. Irrigation water demand of common bean on field and regional scale under varying climatic conditions

    Directory of Open Access Journals (Sweden)

    Michael Wagner

    2016-09-01

    Full Text Available Crop irrigation plays an important role in the world's food production and its role is expected to increase still further. For policy makers, the quantification of the irrigation water demand and the water availability on a regional scale is crucial. In the project ‘SAPHIR’, a new stochastic framework was developed to upscale crop yield and crop water demand from irrigation experiments with common bean to the regional scale using the one-dimensional mechanistic crop model Daisy. The crop model parameters – derived based on a comprehensive experimental data collection and a sound calibration of the crop model – were used to simulate potential bean yield, yield reduction due to drought stress, and crop water demand in mid and northern Saxony, Eastern Germany, using the dominant soil characteristics. The stochastic relationship between irrigated water and crop yield (stochastic crop water production function enabled the prediction of the crop productivity on a regional scale. Furthermore, the available water resources for irrigation on the catchment scale were compared to the predicted irrigation water requirements to estimate the degree of local water self sufficiency. The simulation results show that an irrigation of common bean has high yield effects especially in locations with low precipitation during the growing season or for soils with a low water storage capacity. Especially in the drier northern parts of Saxony with its lower soil water storage capability, a decrease in non-irrigated fresh matter bean yield up to 40 % is predicted for the future. Irrigation and the projected increasing temperature can enhance the bean yield in southern Saxony. However, the required amount of irrigation water in northern Saxony can only be delivered by down to 20 % and less from the local precipitation. The presented framework enables policy makers to compare water demand and available water which allows a precise estimation of relevant

  2. Depth to water in the High Plains Aquifer in Colorado, 2000.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data are in support of report DS 456 (Arnold and others, 2009). This grid represents the depth to groundwater in the High Plains Aquifer in Colorado in 2000....

  3. Molecular dynamics simulations of proteins: can the explicit water model be varied?

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, David [University of Heidelberg; Smith, Jeremy C [ORNL

    2007-03-01

    In molecular mechanics simulations of biological systems, the solvation water is typically represented by a default water model which is an integral part of the force field. Indeed, protein nonbonding parameters are chosen in order to obtain a balance between water-water and protein-water interactions and hence a reliable description of protein solvation. However, less attention has been paid to the question of whether the water model provides a reliable description of the water properties under the chosen simulation conditions, for which more accurate water models often exist. Here we consider the case of the CHARMM protein force field, which was parameterized for use with a modified TIP3P model. Using quantum mechanical and molecular mechanical calculations, we investigate whether the CHARMM force field can be used with other water models: TIP4P and TIP5P. Solvation properties of N-methylacetamide (NMA), other small solute molecules, and a small protein are examined. The results indicate differences in binding energies and minimum energy geometries, especially for TIP5P, but the overall description of solvation is found to be similar for all models tested. The results provide an indication that molecular mechanics simulations with the CHARMM force field can be performed with water models other than TIP3P, thus enabling an improved description of the solvent water properties.

  4. Molecular Dynamics Simulations of Proteins: Can the Explicit Water Model Be Varied?

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeremy C [ORNL; Nutt, David [University of Heidelberg

    2007-01-01

    In molecular mechanics simulations of biological systems, the solvation water is typically represented by a default water model which is an integral part of the force field. Indeed, protein nonbonding parameters are chosen in order to obtain a balance between water-water and protein-water interactions and hence a reliable description of protein solvation. However, less attention has been paid to the question of whether the water model provides a reliable description of the water properties under the chosen simulation conditions, for which more accurate water models often exist. Here we consider the case of the CHARMM protein force field, which was parameterized for use with a modified TIP3P model. Using quantum mechanical and molecular mechanical calculations, we investigate whether the CHARMM force field can be used with other water models: TIP4P and TIP5P. Solvation properties of N-methylacetamide (NMA), other small solute molecules, and a small protein are examined. The results indicate differences in binding energies and minimum energy geometries, especially for TIP5P, but the overall description of solvation is found to be similar for all models tested. The results provide an indication that molecular mechanics simulations with the CHARMM force field can be performed with water models other than TIP3P, thus enabling an improved description of the solvent water properties.

  5. Airborne detection of oceanic turbidity cell structure using depth-resolved laser-induced water Raman backscatter

    Science.gov (United States)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne laser-induced, depth-resolved water Raman backscatter is useful in the detection and mapping of water optical transmission variations. This test, together with other field experiments, has identified the need for additional field experiments to resolve the degree of the contribution to the depth-resolved, Raman-backscattered signal waveform that is due to (1) sea surface height or elevation probability density; (2) off-nadir laser beam angle relative to the mean sea surface; and (3) the Gelbstoff fluorescence background, and the analytical techniques required to remove it. When converted to along-track profiles, the waveforms obtained reveal cells of a decreased Raman backscatter superimposed on an overall trend of monotonically decreasing water column optical transmission.

  6. Enteric Pathogen Survival Varies Substantially in Irrigation Water from Belgian Lettuce Producers

    Science.gov (United States)

    Van Der Linden, Inge; Cottyn, Bart; Uyttendaele, Mieke; Berkvens, Nick; Vlaemynck, Geertrui; Heyndrickx, Marc; Maes, Martine

    2014-01-01

    It is accepted that irrigation water is a potential carrier of enteric pathogens, such as Salmonella and E. coli O157:H7 and, therefore, a source for contamination of fresh produce. We tested this by comparing irrigation water samples taken from five different greenhouses in Belgium. The water samples were inoculated with four zoonotic strains, two Salmonella and two E. coli O157:H7 strains, and pathogen survival and growth in the water were monitored up till 14 days. The influence of water temperature and chemical water quality was evaluated, and the survival tests were also performed in water samples from which the resident aquatic microbiota had previously been eliminated by filter sterilization. The pathogen’s survival differed greatly in the different irrigation waters. Three water samples contained nutrients to support important growth of the pathogens, and another enabled weaker growth. However, for all, growth was only observed in the samples that did not contain the resident aquatic microbiota. In the original waters with their specific water biota, pathogen levels declined. The same survival tendencies existed in water of 4 °C and 20 °C, although always more expressed at 20 °C. Low water temperatures resulted in longer pathogen survival. Remarkably, the survival capacity of two E. coli 0157:H7 strains differed, while Salmonella Thompson and Salmonella Typhimurium behaved similarly. The pathogens were also transferred to detached lettuce leaves, while suspended in two of the water samples or in a buffer. The effect of the water sample on the pathogen’s fitness was also reproduced on the leaves when stored at 100% relative humidity. Inoculation of the suspension in buffer or in one of the water samples enabled epiphytic growth and survival, while the pathogen level in the other water sample decreased once loaded on the leaves. Our results show that irrigation waters from different origin may have a different capacity to transmit enteric pathogens and

  7. Enteric pathogen survival varies substantially in irrigation water from Belgian lettuce producers.

    Science.gov (United States)

    Van Der Linden, Inge; Cottyn, Bart; Uyttendaele, Mieke; Berkvens, Nick; Vlaemynck, Geertrui; Heyndrickx, Marc; Maes, Martine

    2014-09-29

    It is accepted that irrigation water is a potential carrier of enteric pathogens, such as Salmonella and E. coli O157:H7 and, therefore, a source for contamination of fresh produce. We tested this by comparing irrigation water samples taken from five different greenhouses in Belgium. The water samples were inoculated with four zoonotic strains, two Salmonella and two E. coli O157:H7 strains, and pathogen survival and growth in the water were monitored up till 14 days. The influence of water temperature and chemical water quality was evaluated, and the survival tests were also performed in water samples from which the resident aquatic microbiota had previously been eliminated by filter sterilization. The pathogen's survival differed greatly in the different irrigation waters. Three water samples contained nutrients to support important growth of the pathogens, and another enabled weaker growth. However, for all, growth was only observed in the samples that did not contain the resident aquatic microbiota. In the original waters with their specific water biota, pathogen levels declined. The same survival tendencies existed in water of 4 °C and 20 °C, although always more expressed at 20 °C. Low water temperatures resulted in longer pathogen survival. Remarkably, the survival capacity of two E. coli 0157:H7 strains differed, while Salmonella Thompson and Salmonella Typhimurium behaved similarly. The pathogens were also transferred to detached lettuce leaves, while suspended in two of the water samples or in a buffer. The effect of the water sample on the pathogen's fitness was also reproduced on the leaves when stored at 100% relative humidity. Inoculation of the suspension in buffer or in one of the water samples enabled epiphytic growth and survival, while the pathogen level in the other water sample decreased once loaded on the leaves. Our results show that irrigation waters from different origin may have a different capacity to transmit enteric pathogens and an

  8. Enteric Pathogen Survival Varies Substantially in Irrigation Water from Belgian Lettuce Producers

    Directory of Open Access Journals (Sweden)

    Inge Van Der Linden

    2014-09-01

    Full Text Available It is accepted that irrigation water is a potential carrier of enteric pathogens, such as Salmonella and E. coli O157:H7 and, therefore, a source for contamination of fresh produce. We tested this by comparing irrigation water samples taken from five different greenhouses in Belgium. The water samples were inoculated with four zoonotic strains, two Salmonella and two E. coli O157:H7 strains, and pathogen survival and growth in the water were monitored up till 14 days. The influence of water temperature and chemical water quality was evaluated, and the survival tests were also performed in water samples from which the resident aquatic microbiota had previously been eliminated by filter sterilization. The pathogen’s survival differed greatly in the different irrigation waters. Three water samples contained nutrients to support important growth of the pathogens, and another enabled weaker growth. However, for all, growth was only observed in the samples that did not contain the resident aquatic microbiota. In the original waters with their specific water biota, pathogen levels declined. The same survival tendencies existed in water of 4 °C and 20 °C, although always more expressed at 20 °C. Low water temperatures resulted in longer pathogen survival. Remarkably, the survival capacity of two E. coli 0157:H7 strains differed, while Salmonella Thompson and Salmonella Typhimurium behaved similarly. The pathogens were also transferred to detached lettuce leaves, while suspended in two of the water samples or in a buffer. The effect of the water sample on the pathogen’s fitness was also reproduced on the leaves when stored at 100% relative humidity. Inoculation of the suspension in buffer or in one of the water samples enabled epiphytic growth and survival, while the pathogen level in the other water sample decreased once loaded on the leaves. Our results show that irrigation waters from different origin may have a different capacity to transmit

  9. Benthic Habitat Mapping by Combining Lyzenga’s Optical Model and Relative Water Depth Model in Lintea Island, Southeast Sulawesi

    Science.gov (United States)

    Hafizt, M.; Manessa, M. D. M.; Adi, N. S.; Prayudha, B.

    2017-12-01

    Benthic habitat mapping using satellite data is one challenging task for practitioners and academician as benthic objects are covered by light-attenuating water column obscuring object discrimination. One common method to reduce this water-column effect is by using depth-invariant index (DII) image. However, the application of the correction in shallow coastal areas is challenging as a dark object such as seagrass could have a very low pixel value, preventing its reliable identification and classification. This limitation can be solved by specifically applying a classification process to areas with different water depth levels. The water depth level can be extracted from satellite imagery using Relative Water Depth Index (RWDI). This study proposed a new approach to improve the mapping accuracy, particularly for benthic dark objects by combining the DII of Lyzenga’s water column correction method and the RWDI of Stumpt’s method. This research was conducted in Lintea Island which has a high variation of benthic cover using Sentinel-2A imagery. To assess the effectiveness of the proposed new approach for benthic habitat mapping two different classification procedures are implemented. The first procedure is the commonly applied method in benthic habitat mapping where DII image is used as input data to all coastal area for image classification process regardless of depth variation. The second procedure is the proposed new approach where its initial step begins with the separation of the study area into shallow and deep waters using the RWDI image. Shallow area was then classified using the sunglint-corrected image as input data and the deep area was classified using DII image as input data. The final classification maps of those two areas were merged as a single benthic habitat map. A confusion matrix was then applied to evaluate the mapping accuracy of the final map. The result shows that the new proposed mapping approach can be used to map all benthic objects in

  10. Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions.

    Science.gov (United States)

    Böhlke, J K; O'Connell, Michael E; Prestegaard, Karen L

    2007-01-01

    Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.

  11. Effect of varying ratios of produced water and municipal water on soil characteristics, plant biomass, and secondary metabolites of Artemisia annua and Panicum virgatum

    Science.gov (United States)

    Coal-bed natural gas production in the U.S. in 2012 was 1,655 billion cubic feet (bcf). A by-product of this production is co-produced water, which is categorized as a waste product by the Environmental Protection Agency. The effects of varying concentrations of coal-bed methane (produced) water wer...

  12. Bivariate functional data clustering: grouping streams based on a varying coefficient model of the stream water and air temperature relationship

    Science.gov (United States)

    H. Li; X. Deng; Andy Dolloff; E. P. Smith

    2015-01-01

    A novel clustering method for bivariate functional data is proposed to group streams based on their water–air temperature relationship. A distance measure is developed for bivariate curves by using a time-varying coefficient model and a weighting scheme. This distance is also adjusted by spatial correlation of streams via the variogram. Therefore, the proposed...

  13. The Ecological Response of Carex lasiocarpa Community in the Riparian Wetlands to the Environmental Gradient of Water Depth in Sanjiang Plain, Northeast China

    Directory of Open Access Journals (Sweden)

    Zhaoqing Luan

    2013-01-01

    Full Text Available The response of Carex lasiocarpa in riparian wetlands in Sanjiang Plain to the environmental gradient of water depth was analyzed by using the Gaussian Model based on the biomass and average height data, and the ecological water-depth amplitude of Carex lasiocarpa was derived. The results indicated that the optimum ecological water-depth amplitude of Carex lasiocarpa based on biomass was [13.45 cm, 29.78 cm], while the optimum ecological water-depth amplitude of Carex lasiocarpa based on average height was [2.31 cm, 40.11 cm]. The intersection of the ecological water-depth amplitudes based on biomass and height confirmed that the optimum ecological water-depth amplitude of Carex lasiocarpa was [13.45 cm, 29.78 cm] and the optimist growing water-depth of Carex lasiocarpa was 21.4 cm. The TWINSPAN, a polythetic and divisive classification tool, was used to classify the wetland ecological series into 6 associations. Result of TWINSPAN matrix classification reflected an obvious environmental gradient in these associations: water-depth gradient. The relation of biodiversity of Carex lasiocarpa community and water depth was determined by calculating the diversity index of each association.

  14. The hydrological effects of varying vegetation characteristics in a temperate water-limited basin: Development of the dynamic Budyko-Choudhury-Porporato (dBCP) model

    Science.gov (United States)

    Liu, Qiang; McVicar, Tim R.; Yang, Zhifeng; Donohue, Randall J.; Liang, Liqiao; Yang, Yuting

    2016-12-01

    Vegetation patterns are affected by water availability, which, in turn, influences the hydrological partitioning and regional water balance, especially in water-limited regions. Considering the important role of vegetation in partitioning the catchment water yield, the recently developed Budyko-Choudhury-Porporato (or BCP) model incorporated Porporato's model of key ecohydrological processes into Choudury's form of the Budyko hydroclimatic framework. Here we extend the steady state BCP model by incorporating dynamic ecohydrological processes into it and combining it with a typical bucket soil water balance model (resulting in the dynamic BCP, or dBCP, model). The dBCP model is used here to assess the impacts of vegetation on the water balance in a temperate water-limited basin (i.e., the Yellow River Basin (YRB) in north China), where growing season phenology is primarily constrained by low temperatures. The results show that: (i) the incorporation of dynamic growing season (fs) and dynamic effective rooting depth (Ze) conditions into the dBCP model improves results when compared to the original BCP model; (ii) dBCP model's results vary depending on time-step used (i.e., we tested mean-annual to monthly), which reflected the influence of catchment variables, e.g., catchment area, catchment-average air temperature, dryness index and Ze; and (iii) actual evapotranspiration (E) is more sensitive to changes in mean storm depth (α), followed by P, Ze, and Ep. When taking into account observed variability of each of four ecohydrological variables, changes in Ze cause the greatest variability in E, generally followed by variability in P and α, and then Ep. The dBCP results indicate that incorporating dynamic ecohydrological processes into the Budyko framework can improve the estimation of inter-annual variability of the regional water balance. This can help to understand the water requirement and to establish suitable water management strategies to adapt to climate

  15. Radiocarbon Distribution of Atlantic Water Masses Over the Last 30 kyr - Results From a South Atlantic Sediment Depth Transect

    Science.gov (United States)

    Charles, C. D.; Kashgarian, M.; Slowey, N. C.

    2006-12-01

    Here we present the results of a field experiment to document the changes in mid-depth water masses in the mid-depth ocean. Our sediment cores are from the southeastern Atlantic, offshore Angola and Namibia, and range in water depth from 500 to 3200 meters, with a vertical spacing of approximately 200 meters. This is a region where, within a limited area, the seafloor intersects all the principal watermasses involved in the thermohaline circulation of the Atlantic — including those of northern and southern hemisphere origin, allowing the possibility for a detailed history of the intermediate water masses (Antarctic Intermediate Water and Labrador Sea Water) throughout the last deglaciation. These cores are all characterized by sediment rates in excess of 5 cm/kyr and can be correlated stratigraphically with each other to within a few cms on the basis of physical properties and isotopic profiles. We present a detailed calibration of the planktonic/benthic radiocarbon age difference from thirty sediment core tops that are younger than 3 ka (radiocarbon years). These analyses involve a mixed benthic foraminiferal radiocarbon determination, as well as planktonic foraminiferal dates from either or both Orbulina universa or Globigerina bulloides. These data allow an evaluation of the radiocarbon information in different planktonic foraminifera species: for example, there is a significant offset between O. universa and G. bulloides radiocarbon content that undoubtedly reflects habitat differences. The core top calibration also allows determination of the extent to which benthic and planktonic age pairs represent water column radiocarbon distribution. Using stringent selection criteria guided by the core top results, we analyze the radiocarbon distribution in ice age and deglacial water masses, deduced from over 100 planktonic-benthic foraminiferal age pairs. The reconstructed water column profiles can then be cross-checked with other tracers such as oxygen isotopes

  16. Changes in the Functional Potential of Diverse and Active Bacterial Communities in Arctic Deep-Sea Sediments along a Water Depth Gradient

    Science.gov (United States)

    Rapp, J. Z.; Bienhold, C.; Offre, P.; Boetius, A.

    2016-02-01

    The deep sea covers approximately 70% of the Earth's surface and the majority of its seafloor is composed of fine-grained sediments. Bacteria are the dominant organisms in these sediments, accounting for up to 90% of total benthic biomass. Although benthic bacterial communities are assumed to play a central role in biogeochemical cycling at the seafloor, we still have very limited knowledge of their diversity, activity and ecological functions. We sampled Arctic deep-sea surface sediments from seven stations along a gradient from 1000 m to 5500 m water depth at the long-term ecological research station HAUSGARTEN in Fram Strait. Bacterial cell numbers decreased with depth from 3.8*108 to 1.3*108 cells per ml sediment. Illumina 16S rRNA gene surveys based on DNA and cDNA revealed substantial shifts in the structure of the total and active bacterial community along this gradient, which could be linked to environmental parameters, especially organic matter availability. The functional potential and actual activity of microbial communities was investigated using meta-genomic and -transcriptomic sequencing of four representative samples. Reconstruction of 16S rRNA genes from metagenomic data indicated a stronger contribution of certain groups at 1200-2500 m depth (e.g. OM190, Planctomycetacia, Betaproteobacteria) as compared to 3500-5500 m depth (e.g. SAR202 clade, Subgroup 22, Cytophagia). Analysis of orthologous gene clusters and protein families suggested that the genetic potential of microbial communities at the deepest station varied from that of communities at shallower depth, with higher representation of genes involved in the TCA cycle and in the biosynthesis of fatty acids, amino acids and vitamin biosynthesis at the deepest station. The observed variations may result from the accumulation of organic matter at the deepest station caused by the funnel-like topography at this site. The research contributes to European Research Council Advanced Investigator grant

  17. Photosynthesis, Transpiration, Leaf Temperature, and Stomatal Activity of Cotton Plants under Varying Water Potentials.

    Science.gov (United States)

    Pallas, J E; Michel, B E; Harris, D G

    1967-01-01

    Cotton plants, Gossypium hirsutum L. were grown in a growth room under incident radiation levels of 65, 35, and 17 Langleys per hour to determine the effects of vapor pressure deficits (VPD's) of 2, 9, and 17 mm Hg at high soil water potential, and the effects of decreasing soil water potential and reirrigation on transpiration, leaf temperature, stomatal activity, photosynthesis, and respiration at a VPD of 9 mm Hg.Transpiration was positively correlated with radiation level, air VPD and soil water potential. Reirrigation following stress led to slow recovery, which may be related to root damage occurring during stress. Leaf water potential decreased with, but not as fast as, soil water potential.Leaf temperature was usually positively correlated with light intensity and negatively correlated with transpiration, air VPD, and soil water. At high soil water, leaf temperatures ranged from a fraction of 1 to a few degrees above ambient, except at medium and low light and a VPD of 19 mm Hg when they were slightly below ambient, probably because of increased transpirational cooling. During low soil water leaf temperatures as high as 3.4 degrees above ambient were recorded. Reirrigation reduced leaf temperature before appreciably increasing transpiration. The upper leaf surface tended to be warmer than the lower at the beginning of the day and when soil water was adequate; otherwise there was little difference or the lower surface was warmer. This pattern seemed to reflect transpiration cooling and leaf position effects.Although stomata were more numerous in the lower than the upper epidermis, most of the time a greater percentage of the upper were open. With sufficient soil water present, stomata opened with light and closed with darkness. Fewer stomata opened under low than high light intensity and under even moderate, as compared with high soil water. It required several days following reirrigation for stomata to regain original activity levels.Apparent photosynthesis

  18. Protein Dynamics in Organic Media at Varying Water Activity Studied by Molecular Dynamics Simulation

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar; Abildskov, Jens; Peters, Günther H.J.

    2012-01-01

    relies on determining the water content of the bulk phase and uses a combination of Kirkwood−Buff theory and free energy calculations to determine corresponding activity coefficients. We apply the method in a molecular dynamics study of Candida antarctica lipase B in pure water and the organic solvents...

  19. On the time varying horizontal water velocity of single, multiple, and random gravity wave trains

    NARCIS (Netherlands)

    Wells, D.R.

    1964-01-01

    In this dissertation some characteristics of the horizontal water velocity for single, multiple, and random gravity wave trains are studied. This work consists of two parts, an analogue study and hydraulic measurements. An important aspect in this work is to suggest the horizontal water velocity

  20. Surface fluxes and water balance of spatially varying vegetation within a small mountainous headwater catchment

    Science.gov (United States)

    Understanding the role of ecosystems in modulating energy, water and carbon fluxes is critical to quantifying the variability in energy, carbon, and water balances across landscapes. This study compares and contrasts the seasonal surface fluxes of sensible heat, latent heat and carbon fluxes measur...

  1. Mediterranean water structure in the central Atlantic: Results of remote acoustic and conductivity-temperature-depth measurements

    Science.gov (United States)

    Berezutskii, V.; Maximov, S. E.; Rodionov, V. B.; Sklyarov, V. E.

    1994-10-01

    In March 1990, combined acoustic and conductivity-temperature-depth measurements were carried out in the central Atlantic (29°-35°N, 20°-26°W) to study volume sound backscattering (VSB) at depths of Mediterranean Intermediate Water (MIW). Spatial variability of VSB in the presence of MIW was found. The influence of the intermittent character of the MIW structure on VSB at depths of 700-1900 m was revealed and examined. The possibility of acoustic detection and monitoring of both meddies and thermohaline fine structure features directly from the sea surface was discovered. This paper presents the first acoustic imaging of the MIW structure and dynamics in the central Atlantic.

  2. Flowing equation gradually varied in rectangles channels on depth curve; Ecuacion del flujo gradualmente variado en canales rectangulares de fondo curvo

    Energy Technology Data Exchange (ETDEWEB)

    Sotelo-Avila, G.; Gallegos-Silva, J. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2002-03-01

    The study of channel flow usually have its basis in the hydrostatic distribution of pressure and the rectilinear flow hypotheses. It is from this hypothesis that the main flow equations are obtained. However, this is not applicable to a vertically curved flow that is present in a curved bed channel. This kind of channel is used to join two different slopes or in ski jumps. This kind of flow presents several changes from the rectilinear flow as in the velocity and pressure distributions and even in the energy loses. The authors of this article propose an equation of gradually varied flow for vertically-curved bed rectangular channels that adds a coefficient to modify the velocity in the calculus of the local friction gradient. With these results is possible now to analyze flow profiles in vertically-curved bed channels where before were used the methods for straight channels and therefore, increase accuracy. [Spanish] Las hipotesis del movimiento rectilineo y de distribucion hidrostatica de la presion son ciertamente las mas importantes en la hidraulica de canales, y de ellas se derivan los principales modelos de flujo que usualmente emplean. Sin embargo, no es valido aplicar la misma hipotesis y metodos de analisis al flujo curvilineo, que ocurre cuando el canal adopta curvaturas verticales en el fondo, las cuales inducen cambios importantes en la distribucion de la velocidad, presion y hasta en la perdida d energia. Tal es el caso de canales que contienen curvas verticales para unir tramos de distintas pendientes y producir el cambio en la direccion del flujo en cubetas deflectoras y vertedores en tunel. Los autores de este articulo proponen una ecuacion de flujo gradualmente variado en canales rectangulares de fondo curvo, esta es de gran utilidad en la determinacion del perfil del flujo con dichas caracteristicas, donde se plantea la adicion de un factor de amplificacion de la velocidad en el calculo del gradiente local de friccion, para tomar en cuenta el

  3. Investigation of Arctic and Antarctic spatial and depth patterns of sea water in CTD profiles using chemometric data analysis

    DEFF Research Database (Denmark)

    Kotwa, Ewelina Katarzyna; Lacorte, Silvia; Duarte, Carlos

    2014-01-01

    In this paper we examine 2- and 3-way chemometric methods for analysis of Arctic and Antarctic water samples. Standard CTD (conductivity–temperature–depth) sensor devices were used during two oceanographic expeditions (July 2007 in the Arctic; February 2009 in the Antarctic) covering a total of 1......-chemical properties of the water samples; and 4) we confirm the ability to predict fluorescence values from physical measurements when the 3-way data structure is used in N-way PLS regression.......In this paper we examine 2- and 3-way chemometric methods for analysis of Arctic and Antarctic water samples. Standard CTD (conductivity–temperature–depth) sensor devices were used during two oceanographic expeditions (July 2007 in the Arctic; February 2009 in the Antarctic) covering a total of 174...... locations. The output from these devices can be arranged in a 3-way data structure (according to sea water depth, measured variables, and geographical location). We used and compared 2- and 3-way statistical tools including PCA, PARAFAC, PLS, and N-PLS for exploratory analysis, spatial patterns discovery...

  4. Soil water retention at varying matric potentials following repeated wetting with modestly saline-sodic water and subsequent air drying

    Energy Technology Data Exchange (ETDEWEB)

    Browning, L.S.; Hershberger, K.R.; Bauder, J.W. [Montana State University, Bozeman, MT (United States). Dept. of Land Resources & Environmental Science

    2007-07-01

    Coal bed natural gas (CBNG) development in the Powder River (PR) Basin produces modestly saline, highly sodic wastewater. This study assessed impacts of wetting four textural groups (0-11%, 12-22%, 23 -33%, and > 33% clay (g clay/100 g soil) x 100%))with simulated PR or CBNG water on water retention. Soils received the following treatments with each water quality: a single wetting event, five wetting and drying events, or five wetting and drying events followed by leaching with salt-free water. Treated samples were then resaturated with the final treatment water and equilibrated to -10, -33, -100, -500, or -1,500 kPa. At all potentials, soil water retention increased significantly with increasing clay content. Drought-prone soils lost water-holding capacity between saturation and field capacity with repeated wetting and drying, whereas finer textured soils withstood this treatment better and had increased water-retention capacity at lower matric potentials.

  5. Iodine in drinking water varies by more than 100-fold in Denmark. Importance for iodine content of infant formulas

    DEFF Research Database (Denmark)

    Pedersen, K M; Laurberg, P; Nøhr, S

    1999-01-01

    for preparation. We found that iodine in tap water was a major determinant of regional differences in iodine intake in Denmark. Changes in water supply and possibly water purification methods may influence the population iodine intake level and the occurrence of thyroid disorders. Udgivelsesdato: 1999-May......The iodine intake level of the population is of major importance for the occurrence of thyroid disorders in an area. The aim of the present study was to evaluate the importance of drinking water iodine content for the known regional differences in iodine intake in Denmark and for the iodine content...... of infant formulas. Iodine in tap water obtained from 55 different locations in Denmark varied from

  6. Noncontact methods for measuring water-surface elevations and velocities in rivers: Implications for depth and discharge extraction

    Science.gov (United States)

    Nelson, Jonathan M.; Kinzel, Paul J.; McDonald, Richard R.; Schmeeckle, Mark

    2016-01-01

    Recently developed optical and videographic methods for measuring water-surface properties in a noninvasive manner hold great promise for extracting river hydraulic and bathymetric information. This paper describes such a technique, concentrating on the method of infrared videog- raphy for measuring surface velocities and both acoustic (laboratory-based) and laser-scanning (field-based) techniques for measuring water-surface elevations. In ideal laboratory situations with simple flows, appropriate spatial and temporal averaging results in accurate water-surface elevations and water-surface velocities. In test cases, this accuracy is sufficient to allow direct inversion of the governing equations of motion to produce estimates of depth and discharge. Unlike other optical techniques for determining local depth that rely on transmissivity of the water column (bathymetric lidar, multi/hyperspectral correlation), this method uses only water-surface information, so even deep and/or turbid flows can be investigated. However, significant errors arise in areas of nonhydrostatic spatial accelerations, such as those associated with flow over bedforms or other relatively steep obstacles. Using laboratory measurements for test cases, the cause of these errors is examined and both a simple semi-empirical method and computational results are presented that can potentially reduce bathymetric inversion errors.

  7. Heterophylly in the yellow waterlily, Nuphar variegata (Nymphaeaceae): effects of [CO2], natural sediment type, and water depth.

    Science.gov (United States)

    Titus, J E; Gary Sullivan, P

    2001-08-01

    We transplanted Nuphar variegata with submersed leaves only into natural lake sediments in pH-, [CO(2)]-, depth-, and temperature-controlled greenhouse tanks to test the hypotheses that more fertile sediment, lower free [CO(2)], and shallower depth would all stimulate the development of floating leaves. Sediment higher in porewater [NH(4)(+)] favored floating leaf development. Low CO(2)-grown plants initiated floating leaf development significantly earlier than high CO(2)-grown plants, which produced significantly more submersed leaves and fewer floating leaves. Mean floating leaf biomass was significantly greater than mean submersed leaf biomass but was not influenced by CO(2) enrichment, whereas mean submersed leaf biomass increased 88% at high [CO(2)]. At the shallower depth (35 cm), floating leaves required 50% less biomass investment per leaf than at 70 cm, and a significantly greater proportion of plants had floating leaves (70 vs. 23-43% at 35 vs. 70 cm, respectively) for the last three of the eight leaf censuses. Sediment type, water depth, and especially free [CO(2)] all can influence leaf morphogenesis in Nuphar variegata, and the development of more and larger submersed leaves with CO(2) enrichment favors the exploitation of high [CO(2)] when it is present in the water column.

  8. Cost of oviposition site selection in a water strider Aquarius paludum insularis: egg mortality increases with oviposition depth.

    Science.gov (United States)

    Hirayama, Hiroyuki; Kasuya, Eiiti

    2010-06-01

    Females generally avoid selecting sites for oviposition which have a high predation risk to increase offspring survival. Previous studies have focused on costs to ovipositing females. However, although offspring may also incur costs by being oviposited at low predation risk sites, no studies have focused on costs to offspring. Such costs to offspring were examined by using Aquarius paludum insularis, females of which avoid eggs parasitism by ovipositing at deep sites. Deep sites are safe from egg parasitism but may be unsuitable for hatching due to environmental factors. We examined the costs to offspring at deep sites by comparing the hatching rate, the duration to hatching and the proportion of drowned larvae between eggs that were set at three levels of water depth (0 cm, 25 cm and 50 cm depth). While the hatching rate at 50 cm was lower than that at 0 cm, the rate at 25 cm did not differ from that at 0 cm. Duration to hatching and the proportion of drowned larvae did not differ between the three depths. It is suggested that the declining survival rate of A. paludum eggs was due to increased water pressure at greater depth. Such a cost may exist in other species and such an observation may aid in understanding oviposition site selection. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Caries status in 16 year-olds with varying exposure to water fluoridation in Ireland.

    LENUS (Irish Health Repository)

    Mullen, J

    2012-12-01

    Most of the Republic of Ireland\\'s public water supplies have been fluoridated since the mid-1960s while Northern Ireland has never been fluoridated, apart from some small short-lived schemes in east Ulster.

  10. Energy and water budgets of larks in a life history perspective : Parental effort varies with aridity

    NARCIS (Netherlands)

    Tieleman, BI; Williams, JB; Visser, GH

    We compared physiological, demographic, and ecological variables of larks to gain insights into life history variation along an aridity gradient, incorporating phylogenetic relationships in analyses when appropriate. Quantifying field metabolic rate (FMR). and water influx rate (WIR) of parents

  11. Water-Depth-Based Prediction Formula for the Blasting Vibration Velocity of Lighthouse Caused by Underwater Drilling Blasting

    Directory of Open Access Journals (Sweden)

    Wenbin Gu

    2017-01-01

    Full Text Available Lighthouses are the most important hydraulic structures that should be protected during underwater drilling blasting. Thus, the effect of blasting vibration on lighthouse should be studied. On the basis of the dimensional analysis, we deduced a revised formula for water depth based on Sodev’s empirical formula and established the linear fitting model. During the underwater reef project in the main channel of Shipu Harbor in the Ningbo–Zhoushan Port, the blasting vibration data of the lighthouse near the underwater blasting area were monitored. The undetermined coefficient, resolvable coefficient, and F value of the two formulas were then obtained. The comparison of the data obtained from the two formulas showed that they can effectively predict the blasting vibration on the lighthouse. The correction formula that considers water depth can obviously reduce prediction errors and accurately predict blasting vibration.

  12. A river water quality model for time varying BOD discharge concentration

    Directory of Open Access Journals (Sweden)

    Oppenheimer Seth F.

    1999-01-01

    Full Text Available We consider a model for biochemical oxygen demand (BOD in a semi-infinite river where the BOD is prescribed by a time varying function at the left endpoint. That is, we study the problem with a time varying boundary loading. We obtain the well-posedness for the model when the boundary loading is smooth in time. We also obtain various qualitative results such as ordering, positivity, and boundedness. Of greatest interest, we show that a periodic loading function admits a unique asymptotically attracting periodic solution. For non-smooth loading functions, we obtain weak solutions. Finally, for certain special cases, we show how to obtain explicit solutions in the form of infinite series.

  13. Depth Estimation of Submerged Aquatic Vegetation in Clear Water Streams Using Low-Altitude Optical Remote Sensing

    Science.gov (United States)

    Visser, Fleur; Buis, Kerst; Verschoren, Veerle; Meire, Patrick

    2015-01-01

    UAVs and other low-altitude remote sensing platforms are proving very useful tools for remote sensing of river systems. Currently consumer grade cameras are still the most commonly used sensors for this purpose. In particular, progress is being made to obtain river bathymetry from the optical image data collected with such cameras, using the strong attenuation of light in water. No studies have yet applied this method to map submergence depth of aquatic vegetation, which has rather different reflectance characteristics from river bed substrate. This study therefore looked at the possibilities to use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a clear water stream. The results showed that for each species the ratio of certain wavelengths were strongly associated with depth. A combined assessment of all species resulted in equally strong associations, indicating that the effect of spectral variation in vegetation is subsidiary to spectral variation due to depth changes. Strongest associations (R2-values ranging from 0.67 to 0.90 for different species) were found for combinations including one band in the near infrared (NIR) region between 825 and 925 nm and one band in the visible light region. Currently data of both high spatial and spectral resolution is not commonly available to apply the OBRA results directly to image data for SAV depth mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band high spatial resolution image composites using a NIR sensitive DSLR camera. A field dataset of SAV submergence depths was used to develop regression models for the mapping of submergence depth from image pixel values. Band (combinations) providing the best performing models (R2-values up to 0.77) corresponded with the OBRA findings

  14. Depth Estimation of Submerged Aquatic Vegetation in Clear Water Streams Using Low-Altitude Optical Remote Sensing.

    Science.gov (United States)

    Visser, Fleur; Buis, Kerst; Verschoren, Veerle; Meire, Patrick

    2015-09-30

    UAVs and other low-altitude remote sensing platforms are proving very useful tools for remote sensing of river systems. Currently consumer grade cameras are still the most commonly used sensors for this purpose. In particular, progress is being made to obtain river bathymetry from the optical image data collected with such cameras, using the strong attenuation of light in water. No studies have yet applied this method to map submergence depth of aquatic vegetation, which has rather different reflectance characteristics from river bed substrate. This study therefore looked at the possibilities to use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a clear water stream. The results showed that for each species the ratio of certain wavelengths were strongly associated with depth. A combined assessment of all species resulted in equally strong associations, indicating that the effect of spectral variation in vegetation is subsidiary to spectral variation due to depth changes. Strongest associations (R²-values ranging from 0.67 to 0.90 for different species) were found for combinations including one band in the near infrared (NIR) region between 825 and 925 nm and one band in the visible light region. Currently data of both high spatial and spectral resolution is not commonly available to apply the OBRA results directly to image data for SAV depth mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band high spatial resolution image composites using a NIR sensitive DSLR camera. A field dataset of SAV submergence depths was used to develop regression models for the mapping of submergence depth from image pixel values. Band (combinations) providing the best performing models (R²-values up to 0.77) corresponded with the OBRA

  15. Predicting shape and stability of air-water interface on superhydrophobic surfaces comprised of pores with arbitrary shapes and depths

    Science.gov (United States)

    Emami, B.; Tafreshi, H. Vahedi; Gad-el-Hak, M.; Tepper, G. C.

    2012-01-01

    An integro-differential equation for the three dimensional shape of air-water interface on superhydrophobic surfaces comprised of pores with arbitrary shapes and depths is developed and used to predict the static critical pressure under which such surfaces depart from the non-wetting state. Our equation balances the capillary forces with the pressure of the air entrapped in the pores and that of the water over the interface. Stability of shallow and deep circular, elliptical, and polygonal pores is compared with one another and a general conclusion is drawn for designing pore shapes for superhydrophobic surfaces with maximum stability.

  16. Penetration depth measurement of a 6 MeV electron beam in water by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    B. E. Hammer

    2011-11-01

    Full Text Available We demonstrate magnetic resonance imaging (MRI visualization of a 6 MeV electron beam in ferrous-doped water; a 25 mm penetration depth was measured. Time domain nuclear magnetic resonance was used to investigate the effect of generated free radicals on the free induction decay (FID in nondoped water; no apparent effects to the FID were observed. We show that MRI visualization of charged particle beams used in medical applications will require exogenous agents to provide contrast enhancement.

  17. Is Your Drinking Water Acidic? A Comparison of the Varied pH of Popular Bottled Waters.

    Science.gov (United States)

    Wright, Kellie F

    2015-06-01

    Dental professionals continually educate patients on the dangers of consuming acidic foods and beverages due to their potential to contribute to dental erosion and tooth decay. Excess acid in the diet can also lead to acidosis, which causes negative systemic side effects. However, water is not typically categorized as acidic. The purpose of this in-vitro study was to investigate the pH levels of several popular brands of bottled water and compare them to various other acidic beverages. Two different brands of marketed alkaline water (with a pH of 8.8 or higher) were also studied, tested for acidity and described. A pilot in-vitro study was conducted to determine the pH levels of a convenience sample of popular brands of bottled water, tap water and other known acidic beverages in comparison with the pH values reported on the respective manufacturers' website. Each beverage was tested in a laboratory using a calibrated Corning pH meter model 240, and waters were compared to the corresponding company's testified pH value. Waters were also compared and contrasted based on their process of purification. The data was then compiled and analyzed descriptively. The pH values for the tested beverages and bottled waters were found to be predominantly acidic. Ten out of the 14 beverages tested were acidic (pHwaters were neutral (pH=7) and 2 bottled waters were alkaline (pH>7). The majority of waters tested had a more acidic pH when tested in the lab than the value listed in their water quality reports. It is beneficial for the health care provider to be aware of the potential acidity of popular bottled drinking waters and educate patients accordingly. Copyright © 2015 The American Dental Hygienists’ Association.

  18. Depth to water in the eastern Snake River Plain and surrounding tributary valleys, southwestern Idaho and eastern Oregon, calculated using water levels from 1980 to 1988

    Science.gov (United States)

    Maupin, Molly A.

    1992-01-01

    The vulnerability of ground water to contamination in Idaho is being assessed by the IDHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Orotection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability or ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantha,, Idaho Department of Health and Welfare, written commun., 1989). A digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a sols data set developed by the SCS (Soil Conservation Service) and IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (Idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) developed digital depth-to-water values for eleven 1:100,000-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.

  19. Depth to water in the western Snake River Plain and surrounding tributary valleys, southwestern Idaho and eastern Oregon, calculated using water levels from 1980 to 1988

    Science.gov (United States)

    Maupin, Molly A.

    1991-01-01

    The vulnerability of ground water to contamination in Idaho is being assessed by the ISHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Protection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability of ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantham, Idaho Department of Health and Welfare, written commun., 1989). Digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a soils data set developed by the SCS (Soul Conservation Service) and the IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) has developed digital depth-to-water values for eleven 1:100,00-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.

  20. Surface fluxes and water balance of spatially varying vegetation within a small mountainous headwater catchment

    Directory of Open Access Journals (Sweden)

    G. N. Flerchinger

    2010-06-01

    Full Text Available Precipitation variability and complex topography often create a mosaic of vegetation communities in mountainous headwater catchments, creating a challenge for measuring and interpreting energy and mass fluxes. Understanding the role of these communities in modulating energy, water and carbon fluxes is critical to quantifying the variability in energy, carbon, and water balances across landscapes. The focus of this paper was: (1 to demonstrate the utility of eddy covariance (EC systems in estimating the evapotranspiration component of the water balance of complex headwater mountain catchments; and (2 to compare and contrast the seasonal surface energy and carbon fluxes across a headwater catchment characterized by large variability in precipitation and vegetation cover. Eddy covariance systems were used to measure surface fluxes over sagebrush (Artemesia arbuscula and Artemesia tridentada vaseyana, aspen (Populus tremuloides and the understory of grasses and forbs beneath the aspen canopy. Peak leaf area index of the sagebrush, aspen, and aspen understory was 0.77, 1.35, and 1.20, respectively. The sagebrush and aspen canopies were subject to similar meteorological forces, while the understory of the aspen was sheltered from the wind. Missing periods of measured data were common and made it necessary to extrapolate measured fluxes to the missing periods using a combination of measured and simulated data. Estimated cumulative evapotranspiratation from the sagebrush, aspen trees, and aspen understory were 384 mm, 314 mm and 185 mm. A water balance of the catchment indicated that of the 699 mm of areal average precipitation, 421 mm was lost to evapotranspiration, and 254 mm of streamflow was measured from the catchment; water balance closure for the catchment was within 22 mm. Fluxes of latent heat and carbon for all sites were minimal through the winter. Growing season fluxes of latent heat and carbon were consistently higher

  1. A 3D, map based approach to reconstruct and calibrate palaeo-bathymetries - Testing the Cretaceous water depth of the Hammerfest Basin, southwestern Barents Sea

    Science.gov (United States)

    Emmel, B.; de Jager, G.; Zieba, K.; Kurtev, K.; Grøver, A.; Lothe, A.; Lippard, S. J.; Roli, O. A.

    2015-04-01

    A new 3D approach to quantify and calibrate palaeo-water depth (PWD) has been applied to evaluate the Aptian to Maastrichtian/Danian (Cretaceous) bathymetric development in a sub-basin scale within the Hammerfest Basin, southwestern Barents Sea. The results indicate PWD's varying between ca. 200 m and 95 m, recording a local sea-level decrease of ca. 105 m. A calibration against shale volume based on gamma-ray logs from four exploration wells indicates a model sensitivity of ca. +50 m and -150 m. These results are in agreement with empirical PWD estimates obtained from sedimentological and micropalaeontological observations. A comparison with the global eustatic sea level curve indicates that the PWD decrease in the Hammerfest Basin contradicts the general, global trend indicating a primary control by local tectonics such as differential subsidence and uplift along the evolving continental margin offshore north-west Norway.

  2. Estimating space-time mean concentrations of nutrients in surface waters of variable depth

    NARCIS (Netherlands)

    Knotters, M.; Brus, D.J.

    2010-01-01

    A monitoring scheme has been designed to test whether the space-time mean concentration total Nitrogen (N-total) in the surface water in the Northern Frisian Woodlands (NFW, The Netherlands) complies with standards of the European Water Framework directive. Since in statistical testing for

  3. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    Science.gov (United States)

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  4. Influence of water depth on the carbon sequestration capacity of seagrasses

    Science.gov (United States)

    Serrano, Oscar; Lavery, Paul S.; Rozaimi, Mohammad; Mateo, Miguel Ángel

    2014-09-01

    The actual estimates of carbon stocks beneath seagrass meadows worldwide are derived from few data, resulting in a tendency to generalize global carbon stocks from a very limited number of seagrass habitats. We surveyed Posidonia oceanica and Posidonia sinuosa meadows along depth-induced gradients of light availability to assess the variability in their sedimentary organic carbon (Corg) stocks and accretion rates. This study showed a fourfold decrease in Corg stocks from 2-4 m to 6-8 m depth P. sinuosa meadows (averaging 7.0 and 1.8 kg m-2, respectively; top meter of sediment) and a fourteenfold to sixteenfold decrease from shallow (2 m) to deep (32 m) P. oceanica meadows (200 and 19 kg m-2 average, respectively; top 2.7 m of sediment). The average Corg accretion rates in shallow P. sinuosa meadows were higher (10.5 g m-2 yr-1) than in deeper meadows (2.1 g m-2 yr-1). The reduction of sedimentary Corg stocks and accretion rates along depth-related gradients of light reduction suggests that irradiance, controlling plant productivity, meadow density, and sediment accretion rates, is a key environmental factor affecting Corg storage potential of seagrasses. The results obtained highlighted the exceptional carbon storage capacity of P. oceanica meadows at Balearic Islands (Spain), containing the highest areal Corg stocks of all seagrasses (estimated in up to 691-770 kg m-2 in 8-13 m thick deposits). Seagrass communities are experiencing worldwide decline, and reduced irradiance (following e.g., eutrophication or sediment regime alterations) will lead to photoacclimation responses (i.e., reduced plant productivity and shoot density), which may impact the carbon sequestration capacity of seagrasses.

  5. A Semianalytical Ocean Color Inversion Algorithm with Explicit Water Column Depth and Substrate Reflectance Parameterization

    Science.gov (United States)

    Mckinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.

    2015-01-01

    A semianalytical ocean color inversion algorithm was developed for improving retrievals of inherent optical properties (IOPs) in optically shallow waters. In clear, geometrically shallow waters, light reflected off the seafloor can contribute to the water-leaving radiance signal. This can have a confounding effect on ocean color algorithms developed for optically deep waters, leading to an overestimation of IOPs. The algorithm described here, the Shallow Water Inversion Model (SWIM), uses pre-existing knowledge of bathymetry and benthic substrate brightness to account for optically shallow effects. SWIM was incorporated into the NASA Ocean Biology Processing Group's L2GEN code and tested in waters of the Great Barrier Reef, Australia, using the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua time series (2002-2013). SWIM-derived values of the total non-water absorption coefficient at 443 nm, at(443), the particulate backscattering coefficient at 443 nm, bbp(443), and the diffuse attenuation coefficient at 488 nm, Kd(488), were compared with values derived using the Generalized Inherent Optical Properties algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA). The results indicated that in clear, optically shallow waters SWIM-derived values of at(443), bbp(443), and Kd(443) were realistically lower than values derived using GIOP and QAA, in agreement with radiative transfer modeling. This signified that the benthic reflectance correction was performing as expected. However, in more optically complex waters, SWIM had difficulty converging to a solution, a likely consequence of internal IOP parameterizations. Whilst a comprehensive study of the SWIM algorithm's behavior was conducted, further work is needed to validate the algorithm using in situ data.

  6. CO2 snow depth and subsurface water-ice abundance in the northern hemisphere of Mars.

    Science.gov (United States)

    Mitrofanov, I G; Zuber, M T; Litvak, M L; Boynton, W V; Smith, D E; Drake, D; Hamara, D; Kozyrev, A S; Sanin, A B; Shinohara, C; Saunders, R S; Tretyakov, V

    2003-06-27

    Observations of seasonal variations of neutron flux from the high-energy neutron detector (HEND) on Mars Odyssey combined with direct measurements of the thickness of condensed carbon dioxide by the Mars Orbiter Laser Altimeter (MOLA) on Mars Global Surveyor show a latitudinal dependence of northern winter deposition of carbon dioxide. The observations are also consistent with a shallow substrate consisting of a layer with water ice overlain by a layer of drier soil. The lower ice-rich layer contains between 50 and 75 weight % water, indicating that the shallow subsurface at northern polar latitudes on Mars is even more water rich than that in the south.

  7. The Chemical Fate of Brass Dust in Waters of Varying Hardness Levels

    Science.gov (United States)

    1988-08-01

    many species of freshwater algae. Results from studies on the acute exposure of microalgae to brass dust indicate that concentrations of 0.06 to 0.32 mg...W.T., and Landis, W.G., "The Toxicity of Brass Dust to the Microalgae An istrodesmus falcatus and Selenn m canricornutu," J. A . Tx Vol. 6(4), pp...Hemisphere Publishing Corporation, Washington, DC, p 653, 1985. 7. "Method 314B," Standard Methods for the Examination of Water and Wastewater , 15th Edition

  8. Remote sensing of euphotic depth in shallow tropical inland waters of Lake Naivasha using MERIS data

    CSIR Research Space (South Africa)

    Majozi, NP

    2014-05-01

    Full Text Available Freshwater resources are deteriorating rapidly due to human activities and climate change. Remote sensing techniques have shown potential for monitoring water quality in shallow inland lakes, especially in data-scarce areas. The purpose...

  9. Cloud optical thickness and liquid water path – does the k coefficient vary with droplet concentration?

    Directory of Open Access Journals (Sweden)

    O. Geoffroy

    2011-09-01

    Full Text Available Cloud radiative transfer calculations in general circulation models involve a link between cloud microphysical and optical properties. Indeed, the liquid water content expresses as a function of the mean volume droplet radius, while the light extinction is a function of their mean surface radius. There is a small difference between these two parameters because of the droplet spectrum width. This issue has been addressed by introducing an empirical multiplying correction factor to the droplet concentration. Analysis of in situ sampled data, however, revealed that the correction factor decreases when the concentration increases, hence partially mitigating the aerosol indirect effect. Five field experiments are reanalyzed here, in which standard and upgraded versions of the droplet spectrometer were used to document shallow cumulus and stratocumulus topped boundary layers. They suggest that the standard probe noticeably underestimates the correction factor compared to the upgraded versions. The analysis is further refined to demonstrate that the value of the correction factor derived by averaging values calculated locally along the flight path overestimates the value derived from liquid water path and optical thickness of a cloudy column, and that there is no detectable relationship between the correction factor and the droplet concentration. It is also shown that the droplet concentration dilution by entrainment-mixing after CCN activation is significantly stronger in shallow cumuli than in stratocumulus layers. These various effects are finally combined to produce the today best estimate of the correction factor to use in general circulation models.

  10. Nanoparticles of varying hydrophobicity at the emulsion droplet-water interface: adsorption and coalescence stability.

    Science.gov (United States)

    Simovic, Spomenka; Prestidge, Clive A

    2004-09-14

    The coalescence stability of poly(dimethylsiloxane) emulsion droplets in the presence of silica nanoparticles ( approximately 50 nm) of varying contact angles has been investigated. Nanoparticle adsorption isotherms were determined by depletion from solution. The coalescence kinetics (determined under coagulation conditions at high salt concentration) and the physical structure of coalesced droplets were determined from optical microscopy. Fully hydrated silica nanoparticles adsorb with low affinity, reaching a maximum surface coverage that corresponds to a close packed monolayer, based on the effective particle radius and controlled by the salt concentration. Adsorbed layers of hydrophilic nanoparticles introduce a barrier to coalescence of approximately 1 kT, only slightly reduce the coalescence kinetics, and form kinetically unstable networks at high salt concentrations. Chemically hydrophobized silica nanoparticles, over a wide range of contact angles (25 to >90 degrees ), adsorb at the droplet interface with high affinity and to coverages equivalent to close-packed multilayers. Adsorption isotherms are independent of the contact angle, suggesting that hydrophobic attraction overcomes electrostatic repulsion in all cases. The highly structured and rigid adsorbed layers significantly reduce coalescence kinetics: at or above monolayer surface coverage, stable flocculated networks of droplets form and, regardless of their wettability, particles are not detached from the interface during coalescence. At sub-monolayer nanoparticle coverages, limited coalescence is observed and interfacial saturation restricts the droplet size increase. When the nanoparticle interfacial coverage is >0.7 and droplets, whereas mixtures of hydrophobized and hydrophilic nanoparticles do not effectively stabilize emulsion droplets.

  11. Effects of surrounding land use and water depth on seagrass dynamics relative to a catastrophic algal bloom.

    Science.gov (United States)

    Breininger, David R; Breininger, Robert D; Hall, Carlton R

    2017-02-01

    Seagrasses are the foundation of many coastal ecosystems and are in global decline because of anthropogenic impacts. For the Indian River Lagoon (Florida, U.S.A.), we developed competing multistate statistical models to quantify how environmental factors (surrounding land use, water depth, and time [year]) influenced the variability of seagrass state dynamics from 2003 to 2014 while accounting for time-specific detection probabilities that quantified our ability to determine seagrass state at particular locations and times. We classified seagrass states (presence or absence) at 764 points with geographic information system maps for years when seagrass maps were available and with aerial photographs when seagrass maps were not available. We used 4 categories (all conservation, mostly conservation, mostly urban, urban) to describe surrounding land use within sections of lagoonal waters, usually demarcated by land features that constricted these waters. The best models predicted that surrounding land use, depth, and year would affect transition and detection probabilities. Sections of the lagoon bordered by urban areas had the least stable seagrass beds and lowest detection probabilities, especially after a catastrophic seagrass die-off linked to an algal bloom. Sections of the lagoon bordered by conservation lands had the most stable seagrass beds, which supports watershed conservation efforts. Our results show that a multistate approach can empirically estimate state-transition probabilities as functions of environmental factors while accounting for state-dependent differences in seagrass detection probabilities as part of the overall statistical inference procedure. © 2016 Society for Conservation Biology.

  12. Discoloration of polyvinyl chloride (PVC) tape as a proxy for water-table depth in peatlands: validation and assessment of seasonal variability

    Science.gov (United States)

    Booth, Robert K.; Hotchkiss, Sara C.; Wilcox, Douglas A.

    2005-01-01

    Summary: 1. Discoloration of polyvinyl chloride (PVC) tape has been used in peatland ecological and hydrological studies as an inexpensive way to monitor changes in water-table depth and reducing conditions. 2. We investigated the relationship between depth of PVC tape discoloration and measured water-table depth at monthly time steps during the growing season within nine kettle peatlands of northern Wisconsin. Our specific objectives were to: (1) determine if PVC discoloration is an accurate method of inferring water-table depth in Sphagnum-dominated kettle peatlands of the region; (2) assess seasonal variability in the accuracy of the method; and (3) determine if systematic differences in accuracy occurred among microhabitats, PVC tape colour and peatlands. 3. Our results indicated that PVC tape discoloration can be used to describe gradients of water-table depth in kettle peatlands. However, accuracy differed among the peatlands studied, and was systematically biased in early spring and late summer/autumn. Regardless of the month when the tape was installed, the highest elevations of PVC tape discoloration showed the strongest correlation with midsummer (around July) water-table depth and average water-table depth during the growing season. 4. The PVC tape discoloration method should be used cautiously when precise estimates are needed of seasonal changes in the water-table.

  13. Solving the linear inviscid shallow water equations in one dimension, with variable depth, using a recursion formula

    Science.gov (United States)

    Hernandez-Walls, R.; Martín-Atienza, B.; Salinas-Matus, M.; Castillo, J.

    2017-11-01

    When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations.

  14. TOPMODEL simulations of streamflow and depth to water table in Fishing Brook Watershed, New York, 2007-09

    Science.gov (United States)

    Nystrom, Elizabeth A.; Burns, Douglas A.

    2011-01-01

    TOPMODEL, a physically based, variable-source area rainfall-runoff model, was used to simulate streamflow and depth to water table for the period January 2007-September 2009 in the 65.6 square kilometers of Fishing Brook Watershed in northern New York. The Fishing Brook Watershed is located in the headwaters of the Hudson River and is predominantly forested with a humid, cool continental climate. The motivation for applying this model at Fishing Brook was to provide a simulation that would be effective later at this site in modeling the interaction of hydrologic processes with mercury dynamics.

  15. Development and design of a semi-floater substructure for multi-megawatt wind turbines at 50+ m water depths

    DEFF Research Database (Denmark)

    NJOMO WANDJI, Wilfried; Natarajan, Anand; Dimitrov, Nikolay Krasimirov

    2016-01-01

    A semi-floater concept as a substructure for multi-megawatt wind turbines is developed herein for installation at 50þ m water depths. The semi-floater concept is a hybrid between a fixed monopile type support structure and a floating spar buoy. The configuration of the substructure is composed...... turbine components, and to exhibit low platform displacement at the mean sea level. Finally, the overall performance of the structure related to energy production is similar to that of a reference wind turbine situated on land....

  16. Seed Burial Depth and Soil Water Content Affect Seedling Emergence and Growth of Ulmus pumila var. sabulosa in the Horqin Sandy Land

    Directory of Open Access Journals (Sweden)

    Jiao Tang

    2016-01-01

    Full Text Available We investigated the effects of seed burial depth and soil water content on seedling emergence and growth of Ulmus pumila var. sabulosa (sandy elm, an important native tree species distributed over the European-Asian steppe. Experimental sand burial depths in the soil were 0.5, 1.0, 1.5, 2.0 and 2.5 cm, and soil water contents were 4%, 8%, 12% and 16% of field capacity. All two-way ANOVA (five sand burial depths and four soil water contents results showed that seed burial depths, soil water content and their interactions significantly affected all the studied plant variables. Most of the times, seedling emergence conditions were greater at the lower sand burial depths (less than 1.0 cm than at the higher (more than 1.0 cm seed burial depths, and at the lower water content (less than 12% than at the higher soil water content. However, high seed burial depths (more than 1.5 cm or low soil water content (less than 12% reduced seedling growth or change in the root/shoot biomass ratios. In conclusion, the most suitable range of sand burial was from 0.5 to 1.0 cm soil depth and soil water content was about 12%, respectively, for the processes of seedling emergence and growth. These findings indicate that seeds of the sandy elm should be kept at rather shallow soil depths, and water should be added up to 12% of soil capacity when conducting elm planting and management. Our findings could help to create a more appropriate sandy elm cultivation and understand sparse elm woodland recruitment failures in arid and semi-arid regions.

  17. Remote sensing of euphotic depth in shallow tropical inland waters of Lake Naivasha using MERIS data

    NARCIS (Netherlands)

    Majozi, N.P.; Salama, M.S.; Bernard, S.; Harper, D.M.; Habte, M.G.

    2014-01-01

    Freshwater resources are deteriorating rapidly due to human activities and climate change. Remote sensing techniques have shown potential for monitoring water quality in shallow inland lakes, especially in data-scarce areas. The purpose of this study was to determine the spectral diffuse attenuation

  18. Colliding jets provide depth control for water jetting in bone tissue

    NARCIS (Netherlands)

    den Dunnen, S.; Dankelman, J.; Kerkhoffs, G. M.; Tuijthof, G.

    2017-01-01

    In orthopaedic surgery, water jet drilling provides several advantages over classic drilling with rigid drilling bits, such as the always sharp cut, absence of thermal damage and increased manoeuvrability. Previous research showed that the heterogeneity of bone tissue can cause variation in drilling

  19. Assessment of satellite derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters

    Science.gov (United States)

    Optical data collected in coastal waters off South Florida and in the Caribbean Sea between January 2009 and December 2010 were used to evaluate products derived with three bio-optical inversion algorithms applied to MOIDS/Aqua, MODIS/Terra, and SeaWiFS satellite observations. Th...

  20. The Modeling of Time-Varying Stream Water Age Distributions: Preliminary Investigations with Non-Conservative Solutes

    Science.gov (United States)

    Wilusz, D. C.; Harman, C. J.; Ball, W. P.

    2014-12-01

    Modeling the dynamics of chemical transport from the landscape to streams is necessary for water quality management. Previous work has shown that estimates of the distribution of water age in streams, the transit time distribution (TTD), can improve prediction of the concentration of conservative tracers (i.e., ones that "follow the water") based on upstream watershed inputs. A major challenge however has been accounting for climate and transport variability when estimating TDDs at the catchment scale. In this regard, Harman (2014, in review) proposed the Omega modeling framework capable of using watershed hydraulic fluxes to approximate the time-varying TTD. The approach was previously applied to the Plynlimon research watershed in Wales to simulate stream concentration dynamics of a conservative tracer (chloride) including 1/f attenuation of the power spectra density. In this study we explore the extent to which TTDs estimated by the Omega model vary with the concentration of non-conservative tracers (i.e., ones whose concentrations are also affected by transformations and interactions with other phases). First we test the hypothesis that the TTD calibrated in Plynlimon can explain a large part of the variation in non-conservative stream water constituents associated with storm flow (acidity, Al, DOC, Fe) and base flow (Ca, Si). While controlling for discharge, we show a correlation between the percentage of water of different ages and constituent concentration. Second, we test the hypothesis that TTDs help explain variation in stream nitrate concentration, which is of particular interest for pollution control but can be highly non-conservative. We compare simulation runs from Plynlimon and the agricultural Choptank watershed in Maryland, USA. Following a top-down approach, we estimate nitrate concentration as if it were a conservative tracer and examine the structure of residuals at different temporal resolutions. Finally, we consider model modifications to

  1. Microbial community responses to 17 years of altered precipitation are seasonally dependent and coupled to co-varying effects of water content on vegetation and soil C

    Science.gov (United States)

    Sorensen, Patrick O.; Germino, Matthew J.; Feris, Kevin P.

    2013-01-01

    Precipitation amount and seasonal timing determine the duration and distribution of water available for plant and microbial activity in the cold desert sagebrush steppe. In this study, we sought to determine if a sustained shift in the amount and timing of precipitation would affect soil microbial diversity, community composition, and soil carbon (C) storage. Field plots were irrigated (+200 mm) during the dormant or growing-season for 17 years. Microbial community responses were assessed over the course of a year at two depths (15–20 cm, 95–100 cm) by terminal restriction fragment length polymorphism (T-RFLP), along with co-occurring changes in plant cover and edaphic properties. Bacterial richness, Shannon Weaver diversity, and composition in shallow soils (15–20 cm) as well as evenness in deep soils (95–100 cm) differed across irrigation treatments during July. Irrigation timing affected fungal community diversity and community composition during the dormant season and most strongly in deep soils (95–100 cm). Dormant-season irrigation increased the ratio of shrubs to forbs and reduced soil C in shallow soils by 16% relative to ambient conditions. It is unclear whether or not soil C will continue to decline with continued treatment application or if microbial adaptation could mitigate sustained soil C losses. Future changes in precipitation timing will affect soil microbes in a seasonally dependent manner and be coupled to co-varying effects of water content on vegetation and soil C.

  2. Biofouling reduction for improvement of depth water filtration. Filter production and testing

    Directory of Open Access Journals (Sweden)

    Sztuk - Sikorska Ewa

    2016-09-01

    Full Text Available Water is a strategic material. Recycling is an important component of balancing its use. Deep-bed filtration is an inexpensive purification method and seems to be very effective in spreading water recovery. Good filter designs, such as the fibrous filter, have high separation efficiency, low resistance for the up-flowing fluid and high retention capacity. However, one of the substantial problems of this process is the biofouling of the filter. Biofouling causes clogging and greatly reduces the life of the filter. Therefore, the melt-blown technique was used for the formation of novel antibacterial fibrous filters. Such filters are made of polypropylene composites with zinc oxide and silver nanoparticles on the fiber surface. These components act as inhibitors of bacterial growth in the filter and were tested in laboratory and full scale experiments. Antibacterial/bacteriostatic tests were performed on Petri dishes with E. coli and B. subtilis. Full scale experiments were performed on natural river water, which contained abiotic particles and mutualistic bacteria. The filter performance at industrial scale conditions was measured using a particle counter, a flow cytometer and a confocal microscope. The results of the experiments indicate a significant improvement of the composite filter performance compared to the regular fibrous filter. The differences were mostly due to a reduction in the biofouling effect.

  3. Central Hemodynamics and Extravascular Lung Water Index in Varying Degrees of Community-Acquired Pneumonia

    Directory of Open Access Journals (Sweden)

    S. N. Avdeykin

    2015-01-01

    Full Text Available Objective: to assess the specific features of central hemodynamics (CH, extravascular lung water index (EVLWI, and pulmonary oxygenizing function in patients with different outcomes of treatment for severe communityacquired pneumonia (CAP.Subjects and methods. The retrospective study enrolled 57 patients with CAP. According to its outcome, there were 2 groups: 1 44 patients (33 men and 11 women, whose disease ended in recovery; 2 13 patients (8 men and 5 women, whose CAP resulted in a fatal out come. The groups did not differ in age (48.1±2.3 and 55.3±4.1 years and overall disease severity according to the APACHE II (21.5±0.8 and 25.2±2.1 scores and SOFA (8.7±0.2 and 9.7±1.0 scores scales (p<0.05. CAP was more severe in Group 2: 3.5±0.1 and 4.4±0.27 CURB65 scores (p>0.05. All the patients received identical antibiotic therapy. They underwent transpulmonary thermodilution according to the standard procedure. The indicators were daily recorded. The data were statistically processed. A corre lation analysis was made calculating the correlation coefficients (r. The significance of differences was estimated by the Student's ttest or Mann-Whitney test.Results. On day 1 of followup, the patients in both groups were prone to arterial hypotension, had tachycardia, lower or nearnormal central venous pressure (CVP. Group 1 versus Group 2 had higher cardiac index (CI (2.9±0.2 and 2.1±0.1 l/min/m2 and global ejection fraction (GEF (22.5±1 and 15.8±1.7% (p<0.05 and lower CVP (4.1±0.2 and 5.6±0.4 mm Hg (p<0.05. On day 3, Group 2 versus Group 1 had higher CVP (p<0.05 and lower CI, GEF, and some other cardiac pump function indicators. Admission EVLWI was virtually equally elevated in both groups. In Group 1, the indicator decreased later on and approached the normal values at 67 days of treatment. In Group 2, EVLWI remained high and did not virtually decrease. The indicator was ascertained to be inversely correlated with GEF on treatment days 1

  4. Chemical composition, water vapor permeability, and mechanical properties of yuba film influenced by soymilk depth and concentration.

    Science.gov (United States)

    Zhang, Siran; Lee, Jaesang; Kim, Yookyung

    2017-09-01

    Yuba is a soy protein-lipid film formed during heating of soymilk. This study described yuba as an edible film by analyzing its chemical composition, water vapor permeability (WVP), and mechanical properties. Three yuba films were prepared by using different concentrations and depths of soymilk: HS (86 g kg-1 and 2.3 cm), LS (70 g kg-1 and 2.3 cm), and LD (70 g kg-1 and 3.0 cm). As yuba was successively skimmed, the protein, lipid, and SH content decreased, but carbohydrate and SS content increased. Though both the initial concentration and the depth of soymilk affect the properties of the films, the depth of soymilk influences WVP and tensile strength (TS) more. The WVP of the HS and LS changed the least (13-17 g mm kPa-1 m-2 day), while that of the LD changed the most (13-35 g mm kPa-1 m-2 day-1 ). There were no differences (P > 0.05) in the TS between the HS and LS. LD had the greatest decrease of TS and the lowest TS among the groups. The earlier the yuba films were collected, the greater the elongation of the films was: 129% (HS), 113% (LS), and 155% (LD). The initial concentration and the depth of soymilk changed the chemical composition and structure of the yuba films. The LS yuba produced more uniform edible films with good mechanical properties. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Comparison of stratum corneum thickness between two proposed methods of calculation using Raman spectroscopic depth profiling of skin water content.

    Science.gov (United States)

    Lee, M; Won, K; Kim, E J; Hwang, J S; Lee, H K

    2018-02-20

    The stratum corneum (SC) is the most important layer for the barrier function of skin, so investigation of the SC is very important in cosmetic and medical research. Here, we calculated the SC thickness using the depth profile of the skin's water concentration based on previously described methods, and then compared the results. Seven Korean women in their 30s participated in this study. Raman spectroscopy was used to measure the in vivo depth profile of skin water concentration. A total of 21 areas were measured at forearm. Microsoft Excel 2007 was used to calculate SC thickness based on the slope and intersection methods. The slope method and the intersection method gave a forearm SC thickness calculated at 21.3 ± 2.6 μm and 17.6 ± 2.8 μm, respectively. There was a significant difference between the two calculation methods but the two methods showed strong correlation of SC thickness results (r = .899). Although there was a difference in calculated SC thickness of about 20% between the two methods, these results reveal that the two SC thickness calculation methods using Raman spectroscopy were suitable for measuring SC thickness, a finding consistent with other published results. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Effect of water depth on amount of flexion and extension of joints of the distal aspects of the limbs in healthy horses walking on an underwater treadmill.

    Science.gov (United States)

    Mendez-Angulo, Jose L; Firshman, Anna M; Groschen, Donna M; Kieffer, Philip J; Trumble, Troy N

    2013-04-01

    To determine the maximum amount of flexion and extension of the carpal, tarsal, metacarpophalangeal, and metatarsophalangeal joints and the percentage duration of the stance and swing phases of the stride for horses walking on an underwater treadmill in various water depths. 9 healthy adult horses. Zinc oxide markers were placed on the forelimbs and hind limbs of the horses. Video was recorded of horses walking (0.9 m/s) on an underwater treadmill during baseline conditions (joints). Maximum amount of joint flexion and extension, range of motion (ROM), and the percentage durations of the stance and swing phases of the stride were determined with 2-D motion analysis software. The ROM was greater for all evaluated joints in any amount of water versus ROM for joints in baseline conditions (primarily because of increases in amount of joint flexion). The greatest ROM for carpal joints was detected in a tarsal joint water depth, for tarsal joints in a stifle joint water depth, and for metacarpophalangeal and metatarsophalangeal joints in metatarsophalangeal and tarsal joint water depths. As water depth increased, the percentage durations of the stance and swing phases of the stride significantly decreased and increased, respectively. Results of this study suggested that exercise on an underwater treadmill is useful for increasing the ROM of various joints of horses during rehabilitation and that the depth of water affects the amount of flexion and extension of joints.

  7. Temperature profile and water depth data collected from HARKNESS in the Indian Ocean from 15 December 1986 to 14 January 1987 (NODC Accession 8700087)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the HARKNESS in the Indian Ocean and TOGA Area - India Ocean. Data were collected...

  8. Temperature profile and water depth data collected from R/V ENDEAVOR using CTD casts from 14 September 1981 to 01 October 1981 (NODC Accession 8600220)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using CTD casts from the R/V ENDEAVOR. Data were collected from 14 September 1981 to 01 October 1981 by Woods...

  9. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Hawaiian Archipelago in 2013 (NCEI Accession 0161327)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  10. Temperature profile and water depth data collected from USS MOBILE BAY in the NW Atlantic Ocean from 05 March 1987 to 31 March 1987 (NODC Accession 8700170)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS MOBILE BAY in the Northwest Atlantic Ocean and Caribbean Sea. Data were...

  11. Temperature profile and water depth data collected from DOWNES in the NW Pacific (limit-180W) from 09 September 1986 to 29 September 1986 (NODC Accession 8700044)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the DOWNES in the Northeast Pacific Ocean. Data were collected from 09 September 1986...

  12. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Pacific Remote Island Areas since 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  13. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across American Samoa in 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  14. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  15. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Hawaiian Archipelago since 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  16. Measurement of LET (linear energy transfer) spectra using CR-39 at different depths of water irradiated by 171 MeV protons: A comparison with Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, G.S. [Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tripathy, S.P., E-mail: sam.tripathy@gmail.com [Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Mumbai 400094 (India); Molokanov, A.G.; Aleynikov, V.E. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Sharma, S.D. [Homi Bhabha National Institute, Mumbai 400094 (India); Radiological Physics & Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bandyopadhyay, T. [Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Mumbai 400094 (India)

    2016-05-11

    In this work, we have used CR-39 detectors to estimate the LET (linear energy transfer) spectrum of secondary particles due to 171 MeV proton beam at different depths of water including the Bragg peak region. The measured LET spectra were compared with those obtained from FLUKA Monte Carlo simulation. The absorbed dose (D{sub LET}), dose equivalent (H{sub LET}) were estimated using the LET spectra. The values of D{sub LET} and H{sub LET} per incident proton fluence were found to increase with the increase in depth of water and were maximum at Bragg peak. - Highlights: • Measurement of LET spectrometry using CR-39 detectors at different depths of water. • Comparison of measured spectra with FLUKA Monte carlo simulation. • Absorbed dose and dose equivalent was found to increase with depth of water.

  17. Temperature profile and water depth data collected from HARKNESS in the Indian Ocean from 01 March 1987 to 10 March 1987 (NODC Accession 8700159)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the HARKNESS in the Indian Ocean and TOGA Area - Indian Ocean. Data were collected from...

  18. Temperature profile and water depth data collected from COCHRANE in the South China Sea and other seas from 09 January 1987 to 22 February 1987 (NODC Accession 8700095)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the COCHRANE in the South China and other seas. Data were collected from 09 January...

  19. 1000 meters water depth rigid TLP riser; Riser rigido de plataforma de pernas atirantadas para lamina d'agua de 1000 metros

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Mauro Jacinto Pastor

    1990-07-01

    A procedure to estimate the fatigue life of a TLP riser in 1000 meters water depth based on a hydro-elastic analysis of an integrated riser-TLP model in the time domain is presented . The computational architecture is shown that makes it feasible to process and store the great amount of data involved. The procedure is applied to a 1000 meters water depth TLP with a set of 40 risers 8 inches in diameter equipped with a floatation layer. (author)

  20. Changing Energy Inputs at Earth's Surface Translates to Differences in Water Availability, Weathering Rates, and Biotic Activity at Depth

    Science.gov (United States)

    McIntosh, J. C.; Zapata-Rios, X.; Rasmussen, C.; Brooks, P. D.; Gallery, R. E.; Pelletier, J. D.; Chorover, J.

    2016-12-01

    The Critical Zone (CZ), the thin skin of the Earth, from the top of canopies down to saturated bedrock, provides vital environmental and human services, including water storage, elemental cycling and climate regulation. CZ structure develops over both long (geologic) timescales in response to variations in water, energy and carbon availability, or short (episodic) timescales due to disturbance, such as fire and land use change. This structural heterogeneity in turn mediates dissipative products of CZ development altering water and solute fluxes, transit times and flowpaths. Understanding how these coupled process control CZ evolution across timescales is one of the grand challenges for CZ science. Here, we investigate how microclimate and hydrologic fluxes related to aspect and landscape position influence CZ structure and function across time scales in seasonally water-limited montane catchments. We show how CZ topographic structure interacts with climate change and associated disturbance to control inputs of water, energy and carbon into the CZ, which translates to differences in water availability, weathering rates, and biotic activity at depth. Beyond temporal and elevational trends in climatic forcing, we observe strong impacts of aspect variation on biological productivity in water-limited systems, largely because of the aspect induced diurnal covariation of solar radiation with temperature, that increases potential ET on S- or W-facing slopes relative to N- or E-facing slopes. This directly impacts the amount of water, carbon and energy available for subsurface weathering, leading to deeper regolith on N- and E-facing slopes. Consequently, we see longer water transit times and greater weathering fluxes in N-facing slopes. Higher weathering fluxes and microbial activity are also seen in convergent areas characterized by higher values of topographic wetness index, due to greater lateral fluxes of water and DOC. In so far as CZ evolution depends on meteorologic

  1. Characterizing the Breadth and Depth of Volunteer Water Monitoring Programs in the United States

    Science.gov (United States)

    Stepenuck, Kristine F.; Genskow, Kenneth D.

    2018-01-01

    A survey of 345 volunteer water monitoring programs in the United States was conducted to document their characteristics, and perceived level of support for data to inform natural resource management or policy decisions. The response rate of 86% provided information from 46 states. Programs represented a range of ages, budgets, objectives, scopes, and level of quality assurance, which influenced data uses and perceived support by sponsoring agency administrators and external decision makers. Most programs focused on rivers, streams, and lakes. Programs had not made substantial progress to develop EPA or state-approved quality assurance plans since 1998, with only 48% reporting such plans. Program coordinators reported feeling slightly more support for data to be used for management as compared to policy decisions. Programs with smaller budgets may be at particular risk of being perceived to lack credibility due to failure to develop quality assurance plans. Over half of programs identified as collaborative, in that volunteers assisted scientists in program design, data analysis and/or dissemination of results. Just under a third were contributory, in which volunteers primarily collected data in a scientist-defined program. Recommendations to improve perceived data credibility, and to augment limited budgets include developing quality assurance plans and gaining agency approval, and developing partnerships with other organizations conducting monitoring in the area to share resources and knowledge. Funding agencies should support development of quality assurance plans to help ensure data credibility. Service providers can aid in plan development by providing training to program staff over time to address high staff turnover rates.

  2. Depth investigation of rapid sand filters for drinking water production reveals strong stratification in nitrification biokinetic behavior.

    Science.gov (United States)

    Tatari, K; Smets, B F; Albrechtsen, H-J

    2016-09-15

    The biokinetic behavior of NH4(+) removal was investigated at different depths of a rapid sand filter treating groundwater for drinking water preparation. Filter materials from the top, middle and bottom layers of a full-scale filter were exposed to various controlled NH4(+) loadings in a continuous-flow lab-scale assay. NH4(+) removal capacity, estimated from short term loading up-shifts, was at least 10 times higher in the top than in the middle and bottom filter layers, consistent with the stratification of Ammonium Oxidizing Bacteria (AOB). AOB density increased consistently with the NH4(+) removal rate, indicating their primarily role in nitrification under the imposed experimental conditions. The maximum AOB cell specific NH4(+) removal rate observed at the bottom was at least 3 times lower compared to the top and middle layers. Additionally, a significant up-shift capacity (4.6 and 3.5 times) was displayed from the top and middle layers, but not from the bottom layer at increased loading conditions. Hence, AOB with different physiological responses were active at the different depths. The biokinetic analysis predicted that despite the low NH4(+) removal capacity at the bottom layer, the entire filter is able to cope with a 4-fold instantaneous loading increase without compromising the effluent NH4(+). Ultimately, this filter up-shift capacity was limited by the density of AOB and their biokinetic behavior, both of which were strongly stratified. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Modeling Water Flux at the Base of the Rooting Zone for Soils with Varying Glacial Parent Materials

    Science.gov (United States)

    Naylor, S.; Ellett, K. M.; Ficklin, D. L.; Olyphant, G. A.

    2013-12-01

    Soils of varying glacial parent materials in the Great Lakes Region (USA) are characterized by thin unsaturated zones and widespread use of agricultural pesticides and nutrients that affect shallow groundwater. To better our understanding of the fate and transport of contaminants, improved models of water fluxes through the vadose zones of various hydrogeologic settings are warranted. Furthermore, calibrated unsaturated zone models can be coupled with watershed models, providing a means for predicting the impact of varying climate scenarios on agriculture in the region. To address these issues, a network of monitoring sites was developed in Indiana that provides continuous measurements of precipitation, potential evapotranspiration (PET), soil volumetric water content (VWC), and soil matric potential to parameterize and calibrate models. Flux at the base of the root zone is simulated using two models of varying complexity: 1) the HYDRUS model, which numerically solves the Richards equation, and 2) the soil-water-balance (SWB) model, which assumes vertical flow under a unit gradient with infiltration and evapotranspiration treated as separate, sequential processes. Soil hydraulic parameters are determined based on laboratory data, a pedo-transfer function (ROSETTA), field measurements (Guelph permeameter), and parameter optimization. Groundwater elevation data are available at three of six sites to establish the base of the unsaturated zone model domain. Initial modeling focused on the groundwater recharge season (Nov-Feb) when PET is limited and much of the annual vertical flux occurs. HYDRUS results indicate that base of root zone fluxes at a site underlain by glacial ice-contact parent materials are 48% of recharge season precipitation (VWC RMSE=8.2%), while SWB results indicate that fluxes are 43% (VWC RMSE=3.7%). Due in part to variations in surface boundary conditions, more variable fluxes were obtained for a site underlain by alluvium with the SWB model (68

  4. A measurement of the muon-induced neutron yield in lead at a depth of 2850 m water equivalent

    Energy Technology Data Exchange (ETDEWEB)

    Reichhart, L.; Ghag, C. [School of Physics and Astronomy, SUPA University of Edinburgh, UK and High Energy Physics Group, Department of Physics and Astronomy, University College London (United Kingdom); Lindote, A.; Chepel, V.; DeViveiros, L.; Lopes, M. I.; Neves, F.; Pinto da Cunha, J.; Silva, C.; Solovov, V. N. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Akimov, D. Yu.; Belov, V. A.; Burenkov, A. A.; Kobyakin, A. S.; Kovalenko, A. G.; Stekhanov, V. N. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Araújo, H. M.; Bewick, A.; Currie, A.; Horn, M. [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom); and others

    2013-08-08

    We present results from the measurement of the neutron production rate in lead by high energy cosmic-ray muons at a depth of 2850 m water equivalent (mean muon energy of 260 GeV). A tonne-scale highly segmented plastic scintillator detector was utilised to detect both the energy depositions from the traversing muons as well as the delayed radiative capture signals of the induced neutrons. Complementary Monte Carlo simulations reproduce well the distributions of muons and detected muon-induced neutrons. Absolute agreement between simulation and data is of the order of 25%. By comparing the measured and simulated neutron capture rates a neutron yield in pure lead of (5.78{sub −0.28}{sup +0.21})×10{sup −3} neutrons/muon/(g/cm{sup 2}) has been obtained.

  5. Effects of climate and water balance across grasslands of varying C3 and C4 grass cover

    Science.gov (United States)

    Witwicki, Dana L.; Munson, Seth M.; Thoma, David P.

    2016-01-01

    Climate change in grassland ecosystems may lead to divergent shifts in the abundance and distribution of C3 and C4 grasses. Many studies relate mean climate conditions over relatively long time periods to plant cover, but there is still much uncertainty about how the balance of C3and C4 species will be affected by climate at a finer temporal scale than season (individual events to months). We monitored cover at five grassland sites with co-dominant C3 and C4 grass species or only dominant C3 grass species for 6 yr in national parks across the Colorado Plateau region to assess the influence of specific months of climate and water balance on changes in grass cover. C4 grass cover increased and decreased to a larger degree than C3 grass cover with extremely dry and wet consecutive years, but this response varied by ecological site. Climate and water balance explained 10–49% of the inter-annual variability of cover of C3 and C4 grasses at all sites. High precipitation in the spring and in previous year monsoon storms influenced changes in cover of C4 grasses, with measures of water balance in the same months explaining additional variability. C3 grasses in grasslands where they were dominant were influenced primarily by longer periods of climate, while C3 grasses in grasslands where they were co-dominant with C4 grasses were influenced little by climate anomalies at either short or long periods of time. Our results suggest that future changes in spring and summer climate and water balance are likely to affect cover of both C3 and C4 grasses, but cover of C4 grasses may be affected more strongly, and the degree of change will depend on soils and topography where they are growing and the timing of the growing season.

  6. Response of N₂O emissions to elevated water depth regulation: comparison of rhizosphere versus non-rhizosphere of Phragmites australis in a field-scale study.

    Science.gov (United States)

    Gu, Xiao-Zhi; Chen, Kai-Ning; Wang, Zhao-de

    2016-03-01

    Emissions of nitrous oxide (N2O) from wetland ecosystems are globally significant and have recently received increased attention. However, relatively few direct studies of these emissions in response to water depth-related changes in sediment ecosystems have been conducted, despite the likely role they play as hotspots of N2O production. We investigated depth-related differential responses of the dissolved inorganic nitrogen distribution in Phragmites australis (Cav.) Trin. ex Steud. rhizosphere versus non-rhizosphere sediments to determine if they accelerated N2O emissions and the release of inorganic nitrogen. Changes in static water depth and P. australis growth both had the potential to disrupt the distribution of porewater dissolved NH4 (+), NO3 (-), and NO2 (-) in profiles, and NO3 (-) had strong surface aggregation tendency and decreased significantly with depth. Conversely, the highest NO2 (-) contents were observed in deep water and the lowest in shallow water in the P. australis rhizosphere. When compared with NO3 (-), NH4 (+), and NO2 (-), fluxes from the rhizosphere were more sensitive to the effects of water depth, and both fluxes increased significantly at a depth of more than 1 m. Similarly, N2O emissions were obviously accelerated with increasing depth, although those from the rhizosphere were more readily controlled by P. australis. Pearson's correlation analysis showed that water depth was significantly related to N2O emission and NO2 (-) fluxes, and N2O emissions were also strongly dependent on NO2 (-) fluxes (r = 0.491, p < 0.05). The results presented herein provide new insights into inorganic nitrogen biogeochemical cycles in freshwater sediment ecosystems.

  7. Exploring the impact of co-varying water availability and energy price on productivity and profitability of Alpine hydropower

    Science.gov (United States)

    Anghileri, Daniela; Botter, Martina; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Alpine hydropower systems are experiencing dramatic changes both from the point of view of hydrological conditions, e.g., water availability and frequency of extremes events, and of energy market conditions, e.g., partial or total liberalization of the market and increasing share of renewable power sources. Scientific literature has, so far, mostly focused on the analysis of climate change impacts and associated uncertainty on hydropower operation, underlooking the consequences that socio-economic changes, e.g., energy demand and/or price changes, can have on hydropower productivity and profitability. In this work, we analyse how hydropower reservoir operation is affected by changes in both water availability and energy price. We consider stochastically downscaled climate change scenarios of precipitation and temperature to simulate reservoir inflows using a physically explicit hydrological model. We consider different scenarios of energy demand and generation mix to simulate energy prices using an electricity market model, which includes different generation sources, demand sinks, and features of the transmission lines. We then use Multi-Objective optimization techniques to design the operation of hydropower reservoirs for different purposes, e.g. maximization of revenue and/or energy production. The objective of the work is to assess how the tradeoffs between the multiple operating objectives evolve under different co-varying climate change and socio-economic scenarios and to assess the adaptive capacity of the system. The modeling framework is tested on the real-world case study of the Mattmark reservoir in Switzerland.

  8. A depth-averaged 2-D shallow water model for breaking and non-breaking long waves affected by rigid vegetation

    Science.gov (United States)

    This paper presents a depth-averaged two-dimensional shallow water model for simulating long waves in vegetated water bodies under breaking and non-breaking conditions. The effects of rigid vegetation are modelled in the form of drag and inertia forces as sink terms in the momentum equations. The dr...

  9. A feasibility study to estimate minimum surface-casing depths of oil and gas wells to prevent ground-water contamination in four areas of western Pennsylvania

    Science.gov (United States)

    Buckwalter, T.F.; Squillace, P.J.

    1995-01-01

    Hydrologic data were evaluated from four areas of western Pennsylvania to estimate the minimum depth of well surface casing needed to prevent contamination of most of the fresh ground-water resources by oil and gas wells. The areas are representative of the different types of oil and gas activities and of the ground-water hydrology of most sections of the Appalachian Plateaus Physiographic Province in western Pennsylvania. Approximate delineation of the base of the fresh ground-water system was attempted by interpreting the following hydrologic data: (1) reports of freshwater and saltwater in oil and gas well-completion reports, (2) water well-completion reports, (3) geophysical logs, and (4) chemical analyses of well water. Because of the poor quality and scarcity of ground-water data, the altitude of the base of the fresh ground-water system in the four study areas cannot be accurately delineated. Consequently, minimum surface-casing depths for oil and gas wells cannot be estimated with confidence. Conscientious and reliable reporting of freshwater and saltwater during drilling of oil and gas wells would expand the existing data base. Reporting of field specific conductance of ground water would greatly enhance the value of the reports of ground water in oil and gas well-completion records. Water-bearing zones in bedrock are controlled mostly by the presence of secondary openings. The vertical and horizontal discontinuity of secondary openings may be responsible, in part, for large differences in altitudes of freshwater zones noted on completion records of adjacent oil and gas wells. In upland and hilltop topographies, maximum depths of fresh ground water are reported from several hundred feet below land surface to slightly more than 1,000 feet, but the few deep reports are not substantiated by results of laboratory analyses of dissolved-solids concentrations. Past and present drillers for shallow oil and gas wells commonly install surface casing to below the

  10. Efficient Wetland Surface Water Detection and Monitoring via Landsat: Comparison with in situ Data from the Everglades Depth Estimation Network

    Directory of Open Access Journals (Sweden)

    John W. Jones

    2015-09-01

    Full Text Available The U.S. Geological Survey is developing new Landsat science products. One, named Dynamic Surface Water Extent (DSWE, is focused on the representation of ground surface inundation as detected in cloud-/shadow-/snow-free pixels for scenes collected over the U.S. and its territories. Characterization of DSWE uncertainty to facilitate its appropriate use in science and resource management is a primary objective. A unique evaluation dataset developed from data made publicly available through the Everglades Depth Estimation Network (EDEN was used to evaluate one candidate DSWE algorithm that is relatively simple, requires no scene-based calibration data, and is intended to detect inundation in the presence of marshland vegetation. A conceptual model of expected algorithm performance in vegetated wetland environments was postulated, tested and revised. Agreement scores were calculated at the level of scenes and vegetation communities, vegetation index classes, water depths, and individual EDEN gage sites for a variety of temporal aggregations. Landsat Archive cloud cover attribution errors were documented. Cloud cover had some effect on model performance. Error rates increased with vegetation cover. Relatively low error rates for locations of little/no vegetation were unexpectedly dominated by omission errors due to variable substrates and mixed pixel effects. Examined discrepancies between satellite and in situ modeled inundation demonstrated the utility of such comparisons for EDEN database improvement. Importantly, there seems no trend or bias in candidate algorithm performance as a function of time or general hydrologic conditions, an important finding for long-term monitoring. The developed database and knowledge gained from this analysis will be used for improved evaluation of candidate DSWE algorithms as well as other measurements made on Everglades surface inundation, surface water heights and vegetation using radar, lidar and hyperspectral

  11. Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora.

    Science.gov (United States)

    Pinheiro, Hugo A; Damatta, Fábio M; Chaves, Agnaldo R M; Loureiro, Marcelo E; Ducatti, Carlos

    2005-07-01

    Drought is a major environmental constraint affecting growth and production of Coffea canephora. Selection of C. canephora clones has been largely empirical as little is known about how clones respond physiologically to drought. Using clones previously shown to differ in drought tolerance, this study aimed to identify the extent of variation of water use and the mechanisms responsible, particularly those associated morphological traits. * Clones (14 and 120, drought-tolerant; 46 and 109A, drought-sensitive, based on their abilities to yield under drought) were grown in 120-L pots until they were 12-months old, when an irrigation and a drought treatment were applied; plants were droughted until the pressure potential (psi(x)) before dawn (pre-dawn) reached -3.0 MPa. Throughout the drought period, psi(x) and stomatal conductance (g(s)) were measured. At the end of the experiment, carbon isotope ratio and parameters from pressure-volume curves were estimated. Morphological traits were also assessed. * With irrigation, plant hydraulic conductance (K(L)), midday psi(x) and total biomass were all greater in clones 109A and 120 than in the other clones. Root mass to leaf area ratio was larger in clone 109A than in the others, whereas rooting depth was greater in drought-tolerant than in drought-sensitive clones. Predawn psi(x) of -3.0 MPa was reached fastest by 109A, followed progressively by clones 46, 120 and 14. Decreases in g(s) with declining psi(x), or increasing evaporative demand, were similar for clones 14, 46, and 120, but lower in 109A. Carbon isotope ratio increased under drought; however, it was lower in 109A than in other clones. For all clones, psi(x), g(s) and K(L) recovered rapidly following re-watering. Differences in root depth, K(L) and stomatal control of water use, but not osmotic or elastic adjustments, largely explained the differences in relative tolerance to drought stress of clones 14 and 120 compared with clones 46 and 109A.

  12. Efficient wetland surface water detection and monitoring via Landsat: Comparison with in situ data from the Everglades Depth Estimation Network

    Science.gov (United States)

    Jones, John W.

    2015-01-01

    The U.S. Geological Survey is developing new Landsat science products. One, named Dynamic Surface Water Extent (DSWE), is focused on the representation of ground surface inundation as detected in cloud-/shadow-/snow-free pixels for scenes collected over the U.S. and its territories. Characterization of DSWE uncertainty to facilitate its appropriate use in science and resource management is a primary objective. A unique evaluation dataset developed from data made publicly available through the Everglades Depth Estimation Network (EDEN) was used to evaluate one candidate DSWE algorithm that is relatively simple, requires no scene-based calibration data, and is intended to detect inundation in the presence of marshland vegetation. A conceptual model of expected algorithm performance in vegetated wetland environments was postulated, tested and revised. Agreement scores were calculated at the level of scenes and vegetation communities, vegetation index classes, water depths, and individual EDEN gage sites for a variety of temporal aggregations. Landsat Archive cloud cover attribution errors were documented. Cloud cover had some effect on model performance. Error rates increased with vegetation cover. Relatively low error rates for locations of little/no vegetation were unexpectedly dominated by omission errors due to variable substrates and mixed pixel effects. Examined discrepancies between satellite and in situ modeled inundation demonstrated the utility of such comparisons for EDEN database improvement. Importantly, there seems no trend or bias in candidate algorithm performance as a function of time or general hydrologic conditions, an important finding for long-term monitoring. The developed database and knowledge gained from this analysis will be used for improved evaluation of candidate DSWE algorithms as well as other measurements made on Everglades surface inundation, surface water heights and vegetation using radar, lidar and hyperspectral instruments

  13. Effect of Sampling Depth on Air-Sea CO2 Flux Estimates in River-Stratified Arctic Coastal Waters

    Science.gov (United States)

    Miller, L. A.; Papakyriakou, T. N.

    2015-12-01

    In summer-time Arctic coastal waters that are strongly influenced by river run-off, extreme stratification severely limits wind mixing, making it difficult to effectively sample the surface 'mixed layer', which can be as shallow as 1 m, from a ship. During two expeditions in southwestern Hudson Bay, off the Nelson, Hayes, and Churchill River estuaries, we confirmed that sampling depth has a strong impact on estimates of 'surface' pCO2 and calculated air-sea CO2 fluxes. We determined pCO2 in samples collected from 5 m, using a typical underway system on the ship's seawater supply; from the 'surface' rosette bottle, which was generally between 1 and 3 m; and using a niskin bottle deployed at 1 m and just below the surface from a small boat away from the ship. Our samples confirmed that the error in pCO2 derived from typical ship-board versus small-boat sampling at a single station could be nearly 90 μatm, leading to errors in the calculated air-sea CO2 flux of more than 0.1 mmol/(m2s). Attempting to extrapolate such fluxes over the 6,000,000 km2 area of the Arctic shelves would generate an error approaching a gigamol CO2/s. Averaging the station data over a cruise still resulted in an error of nearly 50% in the total flux estimate. Our results have implications not only for the design and execution of expedition-based sampling, but also for placement of in-situ sensors. Particularly in polar waters, sensors are usually deployed on moorings, well below the surface, to avoid damage and destruction from drifting ice. However, to obtain accurate information on air-sea fluxes in these areas, it is necessary to deploy sensors on ice-capable buoys that can position the sensors in true 'surface' waters.

  14. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Corrie E. [Argonne National Lab. (ANL), Argonne, IL (United States); Harto, Christopher B. [Argonne National Lab. (ANL), Argonne, IL (United States); Schroeder, Jenna N. [Argonne National Lab. (ANL), Argonne, IL (United States); Martino, Louis E. [Argonne National Lab. (ANL), Argonne, IL (United States); Horner, Robert M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-08-01

    describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration

  15. Modelling effects of seasonal variation in water table depth on net ecosystem CO2 exchange of a tropical peatland

    Science.gov (United States)

    Mezbahuddin, M.; Grant, R. F.; Hirano, T.

    2014-02-01

    Seasonal variation in water table depth (WTD) determines the balance between aggradation and degradation of tropical peatlands. Longer dry seasons together with human interventions (e.g. drainage) can cause WTD drawdowns making tropical peatland C storage highly vulnerable. Better predictive capacity for effects of WTD on net CO2 exchange is thus essential to guide conservation of tropical peat deposits. Mathematical modelling of basic eco-hydrological processes under site-specific conditions can provide such predictive capacity. We hereby deploy a process-based mathematical model ecosys to study effects of seasonal variation in WTD on net ecosystem productivity (NEP) of a drainage affected tropical peat swamp forest at Palangkaraya, Indonesia. Simulated NEP suggested that the peatland was a C source (NEP ~ -2 g C m-2 d-1, where a negative sign represents a C source and a positive sign a C sink) during rainy seasons with shallow WTD, C neutral or a small sink (NEP ~ +1 g C m-2 d-1) during early dry seasons with intermediate WTD and a substantial C source (NEP ~ -4 g C m-2 d-1) during late dry seasons with deep WTD from 2002 to 2005. These values were corroborated by regressions (P 0.8, intercepts approaching 0 and slopes approaching 1. We also simulated a gradual increase in annual NEP from 2002 (-609 g C m-2) to 2005 (-373 g C m-2) with decreasing WTD which was attributed to declines in duration and intensity of dry seasons following the El Niño event of 2002. This increase in modelled NEP was corroborated by EC-gap filled annual NEP estimates. Our modelling hypotheses suggested that (1) poor aeration in wet soils during shallow WTD caused slow nutrient (predominantly phosphorus) mineralization and consequent slow plant nutrient uptake that suppressed gross primary productivity (GPP) and hence NEP (2) better soil aeration during intermediate WTD enhanced nutrient mineralization and hence plant nutrient uptake, GPP and NEP and (3) deep WTD suppressed NEP through a

  16. Predictive Determination of the Integral Characteristics of Evaporation of Water Droplets in Gas Media with a Varying Temperature

    Science.gov (United States)

    Vysokomornaya, O. V.; Kuznetsov, G. V.; Strizhak, P. A.

    2017-05-01

    The possibility of using three heat-transfer models based on ordinary differential equations (ODEs) has been analyzed with account taken of the relevant endothermic phase transformations to predict the integral characteristics of evaporation of liquid droplets (with the example of water) in gas media with a varying temperature. The existing formulations with "diffusive" and "kinetic" approximations to the description of the process of evaporation have been considered, and a new model has been developed according to approximations obtained from the results of conducted experiments (with the use of high-speed cameras and cross-correlation software and hardware systems). Two integral characteristics of the process of evaporation were monitored: the mass rate of vaporization and the lifetime (time of complete evaporation) of a droplet. A comparison of simulation results and experimental data allowed us to draw the conclusion on the expediency of use of ODE-based "diffusive" and "phase-transition" models in a limited temperature range (to 600 K). At high gas temperatures (particularly, higher than 1000 K), a satisfactory correlation with experimental data can be provided by a model that takes account of the substantially nonlinear dependence of the vaporization rate on temperature, the formation of a buffer (steam) layer between the droplet and the gas medium, and the basic mechanisms of heat transfer in the liquid and in the gas medium.

  17. Heavy metals in precipitation waters under conditions of varied anthropopressure in typical of European low mountain regions

    Directory of Open Access Journals (Sweden)

    Rabajczyk A.

    2013-04-01

    Full Text Available The environment is a dynamic system, subject to change resulting from a variety of physicochemical factors, such as temperature, pressure, pH, redox potential and human activity. The quantity and variety of these determinants cause the inflow of substances into individual environmental elements to vary in both time and space, as well as in terms of substance types and quantities. The energy and matter flow in the environment determines its integrity, which means that the processes occurring in one element of the environment affect the others. A certain measure of the energy and matter flow is the migration of chemical substances in various forms from one place to another. In a particular geographical space, under natural conditions, a specific level of balance between individual processes appears; in areas subject to anthropopressure, the correlations are different. In small areas, varying deposition volumes and chemism of precipitation waters which reach the substratum directly can both be observed. The study area is similar in terms of geological origins as well as morphological, structural and physico-chemical properties, and is typical of European low mountain regions. A qualitative and quantitative study of wet atmospheric precipitation was conducted between February 2009 and May 2011 in the Bobrza river catchment in the Holy Cross (Świętokrzyskie Mountains (Poland, at three sampling sites of varying land development and distance from sources of various acidic-alkaline emissions. Field and laboratory work was conducted over 29 months, from February 2009 to May 2011. Atmospheric precipitation measurements were carried out in a continuous manner by means of a Hellman rain gauge (200cm2. The collecting surface was placed at ground level (0m AGL. The application of a collecting funnel and an adequately prepared polyethylene collecting can in the rain gauge enabled the measurement of precipitation volume and water sampling for chemical

  18. Spatio-temporal distribution of Diaphanosoma brachyurum (Cladocera: Sididae in freshwater reservoir ecosystems: importance of maximum water depth and macrophyte beds for avoidance of fish predation

    Directory of Open Access Journals (Sweden)

    Jong-Yun Choi

    2014-10-01

    Full Text Available In empirical studies, Cladocera is commonly utilized as a primary food source for predators such as fish, thus, predator avoidance are important strategies to sustain their population in freshwater ecosystems. In this study, we tested the hypothesis that water depth is an important factor in determining the spatial distribution of Diaphanosoma brachyurum Liévin, 1848 in response to fish predation. Quarterly monitoring was implemented at three water layers (i.e., water surface and middle and bottom layers in 21 reservoirs located in the southeastern part of South Korea. D. brachyurum individuals were frequently observed at the study sites and exhibited different spatial patterns of distribution in accordance with the maximum depth of the reservoirs. In the reservoirs with a maximum depth of more than 6 m, high densities of D. brachyurum were observed in the bottom layers; however, in the shallower reservoirs (maximum depth <6 m, D. brachyurum were concentrated in the surface layer. Moreover, during additional surveys, we observed a trend in which D. brachyurum densities increased as the maximum depth or macrophyte biomass increased. Gut contents analysis revealed that predatory fishes in each reservoir frequently consumed D. brachyurum; however, the consumption rate abruptly decreased in reservoirs where the maximum depth was more than 11 m or in the shallow reservoirs supporting a macrophyte bed. Interestingly, the reservoirs more than 11-m depth supported high densities of D. brachyurum in the bottom layer and in the surface macrophyte bed. Based on these results, reservoirs with a maximum depth of more than 11 m or those with a macrophyte bed may provide a refuge for D. brachyurum to avoid fish predation. Compared with other cladoceran species, D. brachyurum readily exploits various types of refugia (in this study, the deep layer or surface macrophyte bed, which may help explain why this species is abundant in various types of reservoirs.

  19. Depth intensity relations of muons in the standard rock, the K. G. F. rock and the sea water, and their related problems including prompt muon production

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobusuke; Kujirai, Hideyuki; Adachi, Atsuko; Ogita, Naofumi; Misaki, Akeo.

    1984-07-01

    In order to analyze world wide data of muon fluxes in the standard rock, the K.G.F. flux and expected data in the sea water which will be obtained from future Dumand project, depth intensity relations of muons are calculated in the Monte Carlo method in which rigorous techniques are utilized as much as possible. Calculational results obtained here are as follows: Depth intensity relations of muon in the standard rock, the K.G.F. rock and the sea water are obtained, in which the powers of differential energy spectra at sea level are changed from 3.6 to 3.9 in unit of 0.05. (author).

  20. Fish depth distributions in the Lower Mississippi River

    Science.gov (United States)

    Killgore, K. J.; Miranda, Leandro E.

    2014-01-01

    A substantial body of literature exists about depth distribution of fish in oceans, lakes and reservoirs, but less is known about fish depth distribution in large rivers. Most of the emphasis on fish distributions in rivers has focused on longitudinal and latitudinal spatial distributions. Knowledge on depth distribution is necessary to understand species and community habitat needs. Considering this void, our goal was to identify patterns in fish benthic distribution along depth gradients in the Lower Mississippi River. Fish were collected over 14 years in depths down to 27 m. Fish exhibited non-random depth distributions that varied seasonally and according to species. Species richness was highest in shallow water, with about 50% of the 62 species detected no longer collected in water deeper than 8 m and about 75% no longer collected in water deeper than 12 m. Although richness was highest in shallow water, most species were not restricted to shallow water. Rather, most species used a wide range of depths. A weak depth zonation occurred, not as strong as that reported for deep oceans and lakes. Larger fish tended to occur in deeper water during the high-water period of an annual cycle, but no correlation was evident during the low-water period. The advent of landscape ecology has guided river research to search for spatial patterns along the length of the river and associated floodplains. Our results suggest that fish assemblages in large rivers are also structured vertically. 

  1. Optimizing subsurface dripline installation depth with Hydrus 2D/3D to improve irrigation water use efficiency in the central Tunisia

    Directory of Open Access Journals (Sweden)

    Ghazouani Hiba

    2015-01-01

    Full Text Available The main objective of the work is to optimize drip installation depth for Eggplant crop irrigated with surface or subsurface drip irrigation systems to improve irrigation Water Use Effeciency (WUE, by means of field measurements and simulations carried out with Hydrus-2D model. Initially, a comparison between simulated Soil Water Contents (SWC and the corresponding measured in two plots, in which laterals with coextruded emitters are laid on the soil surface (T0 and at 20 cm depth (T20, respectively. In order to choose the best position of the lateral, the results of different simulation run, carried out by choosing a deeper installation (T45 depth. Simulated SWC’s resulted fairly close to the corresponding measured at different distances from the emitter and therefore the model was able to predict SWC’s in the root zone with values of the Root Mean Square Error generally lower than 4%. This result is consequent to the appropriate schematization of the root distribution, as well as of the root water uptake. The values of WUE associated to the different examined installation depths tend to a very slight increase when the position of the lateral is situated on 20 cm and start to decrease for the higher depths.

  2. Geotechnology to determine the depth of active zone in expansive ...

    African Journals Online (AJOL)

    The active zone is the region of soil near the surface in which the water content varies due to precipitation and evapo-transpiration. Even though the soil may have the potential to shrink and swell below the depth of active zone, volume changes will not take place because the water content of the soil is constant. Because ...

  3. Estimating Snow Depth and Snow Water Equivalence Using Repeat-Pass Interferometric SAR in the Northern Piedmont Region of the Tianshan Mountains

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-01-01

    Full Text Available Snow depth and Snow Water Equivalence (SWE are important parameters for hydrological applications. In this application, a theoretical method of snow depth estimation with repeat-pass InSAR measurements was proposed, and a preliminary sensitivity analysis of snow phase changes versus the incident angle and snow density was developed. Moreover, the snow density and incident angle parameters were analyzed and calibrated, and the local incident angle was used as a substitute for the satellite incident angle to improve the snow depth estimation. From the results, the coherence images showed that a high degree of coherence can be found for dry snow, and, apart from the effect of snow, land use/cover change due to a long temporal baseline and geometric distortion due to the rugged terrain were the main constraints for InSAR technique to measure snow depth and SWE in this area. The result of snow depth estimation between July 2008 and February 2009 demonstrated that the average snow depth was about 20 cm, which was consistent with the field survey results. The areal coverage of snow distribution estimated from the snow depth and SWE results was consistent with snow cover obtained from HJ-1A CCD optical data at the same time.

  4. Using "residual depths" to monitor pool depths independently of discharge

    Science.gov (United States)

    Thomas E. Lisle

    1987-01-01

    As vital components of habitat for stream fishes, pools are often monitored to follow the effects of enhancement projects and natural stream processes. Variations of water depth with discharge, however, can complicate monitoring changes in the depth and volume of pools. To subtract the effect of discharge on depth in pools, residual depths can be measured. Residual...

  5. User’s manual for the Automated Data Assurance and Management application developed for quality control of Everglades Depth Estimation Network water-level data

    Science.gov (United States)

    Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul

    2016-09-29

    The generation of Everglades Depth Estimation Network (EDEN) daily water-level and water-depth maps is dependent on high quality real-time data from over 240 water-level stations. To increase the accuracy of the daily water-surface maps, the Automated Data Assurance and Management (ADAM) tool was created by the U.S. Geological Survey as part of Greater Everglades Priority Ecosystems Science. The ADAM tool is used to provide accurate quality-assurance review of the real-time data from the EDEN network and allows estimation or replacement of missing or erroneous data. This user’s manual describes how to install and operate the ADAM software. File structure and operation of the ADAM software is explained using examples.

  6. Discovering Optimum Method to Extract Depth Information for Nearshore Coastal Waters from SENTINEL-2A - Case Study: Nayband Bay, Iran

    Science.gov (United States)

    Kabiri, K.

    2017-09-01

    The capabilities of Sentinel-2A imagery to determine bathymetric information in shallow coastal waters were examined. In this regard, two Sentinel-2A images (acquired on February and March 2016 in calm weather and relatively low turbidity) were selected from Nayband Bay, located in the northern Persian Gulf. In addition, a precise and accurate bathymetric map for the study area were obtained and used for both calibrating the models and validating the results. Traditional linear and ratio transform techniques, as well as a novel integrated method, were employed to determine depth values. All possible combinations of the three bands (Band 2: blue (458-523 nm), Band 3: green (543-578 nm), and Band 4: red (650-680 nm), spatial resolution: 10 m) have been considered (11 options) using the traditional linear and ratio transform techniques, together with 10 model options for the integrated method. The accuracy of each model was assessed by comparing the determined bathymetric information with field measured values. The correlation coefficients (R2), and root mean square errors (RMSE) for validation points were calculated for all models and for two satellite images. When compared with the linear transform method, the method employing ratio transformation with a combination of all three bands yielded more accurate results (R2Mac = 0.795, R2Feb = 0.777, RMSEMac = 1.889 m, and RMSEFeb =2.039 m). Although most of the integrated transform methods (specifically the method including all bands and band ratios) have yielded the highest accuracy, these increments were not significant, hence the ratio transformation has selected as optimum method.

  7. Coccolithophore fluxes in the open tropical North Atlantic: influence of thermocline depth, Amazon water, and Saharan dust

    Science.gov (United States)

    Guerreiro, Catarina V.; Baumann, Karl-Heinz; Brummer, Geert-Jan A.; Fischer, Gerhard; Korte, Laura F.; Merkel, Ute; Sá, Carolina; de Stigter, Henko; Stuut, Jan-Berend W.

    2017-10-01

    Coccolithophores are calcifying phytoplankton and major contributors to both the organic and inorganic oceanic carbon pumps. Their export fluxes, species composition, and seasonal patterns were determined in two sediment trap moorings (M4 at 12° N, 49° W and M2 at 14° N, 37° W) collecting settling particles synchronously from October 2012 to November 2013 at 1200 m of water depth in the open equatorial North Atlantic. The two trap locations showed a similar seasonal pattern in total coccolith export fluxes and a predominantly tropical coccolithophore settling assemblage. Species fluxes were dominated throughout the year by lower photic zone (LPZ) taxa (Florisphaera profunda, Gladiolithus flabellatus) but also included upper photic zone (UPZ) taxa (Umbellosphaera spp., Rhabdosphaera spp., Umbilicosphaera spp., Helicosphaera spp.). The LPZ flora was most abundant during fall 2012, whereas the UPZ flora was more important during summer. In spite of these similarities, the western part of the study area produced persistently higher fluxes, averaging 241×107 ± 76×107 coccoliths m-2 d-1 at station M4 compared to only 66×107 ± 31×107 coccoliths m-2 d-1 at station M2. Higher fluxes at M4 were mainly produced by the LPZ species, favoured by the westward deepening of the thermocline and nutricline. Still, most UPZ species also contributed to higher fluxes, reflecting enhanced productivity in the western equatorial North Atlantic. Such was the case of two marked flux peaks of the more opportunistic species Gephyrocapsa muellerae and Emiliania huxleyi in January and April 2013 at M4, indicating a fast response to the nutrient enrichment of the UPZ, probably by wind-forced mixing. Later, increased fluxes of G. oceanica and E. huxleyi in October-November 2013 coincided with the occurrence of Amazon-River-affected surface waters. Since the spring and fall events of 2013 were also accompanied by two dust flux peaks, we propose a scenario in which atmospheric dust also

  8. Estimation of the depth to the fresh-water/salt-water interface from vertical head gradients in wells in coastal and island aquifers

    Science.gov (United States)

    Izuka, Scot K.; Gingerich, Stephen B.

    An accurate estimate of the depth to the theoretical interface between fresh, water and salt water is critical to estimates of well yields in coastal and island aquifers. The Ghyben-Herzberg relation, which is commonly used to estimate interface depth, can greatly underestimate or overestimate the fresh-water thickness, because it assumes no vertical head gradients and no vertical flow. Estimation of the interface depth needs to consider the vertical head gradients and aquifer anisotropy that may be present. This paper presents a method to calculate vertical head gradients using water-level measurements made during drilling of a partially penetrating well; the gradient is then used to estimate interface depth. Application of the method to a numerically simulated fresh-water/salt-water system shows that the method is most accurate when the gradient is measured in a deeply penetrating well. Even using a shallow well, the method more accurately estimates the interface position than does the Ghyben-Herzberg relation where substantial vertical head gradients exist. Application of the method to field data shows that drilling, collection methods of water-level data, and aquifer inhomogeneities can cause difficulties, but the effects of these difficulties can be minimized. Résumé Une estimation précise de la profondeur de l'interface théorique entre l'eau douce et l'eau salée est un élément critique dans les estimations de rendement des puits dans les aquifères insulaires et littoraux. La relation de Ghyben-Herzberg, qui est habituellement utilisée pour estimer la profondeur de cette interface, peut fortement sous-estimer ou surestimer l'épaisseur de l'eau douce, parce qu'elle suppose l'absence de gradient vertical de charge et d'écoulement vertical. L'estimation de la profondeur de l'interface requiert de prendre en considération les gradients verticaux de charge et l'éventuelle anisotropie de l'aquifère. Cet article propose une méthode de calcul des

  9. Calibrating water depths of Ordovician communities: lithological and ecological controls on depositional gradients in Upper Ordovician strata of southern Ohio and north-central Kentucky, USA

    Directory of Open Access Journals (Sweden)

    Carlton E. Brett

    2015-02-01

    Full Text Available Limestone and shale facies of the Upper Ordovician Grant Lake Formation (Katian: Cincinnatian, Maysvillian are well exposed in the Cincinnati Arch region of southern Ohio and north-central Kentucky, USA. These rocks record a gradual change in lithofacies and biofacies along a gently northward-sloping ramp. This gradient spans very shallow, olive-gray, platy, laminated dolostones with sparse ostracodes in the south to offshore, nodular, phosphatic, brachiopod-rich limestones and marls in the north. This study uses facies analysis in outcrop to determine paleoenvironmental parameters, particularly those related to water depth (e.g., position of the photic zone and shoreline, relative degree of environmental energy. Within a tightly correlated stratigraphic interval (the Mount Auburn and Straight Creek members of the Grant Lake Formation and the Terrill Member of the Ashlock Formation, we document the occurrence of paleoenvironmental indicators, including desiccation cracks and light-depth indicators, such as red and green algal fossils and oncolites. This permitted recognition of a ramp with an average gradient of 10–20 cm water depth per horizontal kilometer. Thus, shallow subtidal (“lagoonal” deposits in the upramp portion fall within the 1.5–6 m depth range, cross-bedded grainstones representing shoal-type environments fall within the 6–18 m depth range and subtidal, shell-rich deposits in the downramp portion fall within the 20–30 m depth range. These estimates match interpretations of depth independently derived from faunal and sedimentologic evidence that previously suggested a gentle ramp gradient and contribute to ongoing and future high-resolution paleontologic and stratigraphic studies of the Cincinnati Arch region.

  10. Effect of the spatial distribution of physical aquifer properties on modelled water table depth and stream discharge in a headwater catchment

    Directory of Open Access Journals (Sweden)

    C. Gascuel-Odoux

    2010-07-01

    Full Text Available Water table depth and its dynamics on hillslopes are often poorly predicted despite they control both water transit time within the catchment and solute fluxes at the catchment outlet. This paper analyses how relaxing the assumption of lateral homogeneity of physical properties can improve simulations of water table depth and dynamics. Four different spatial models relating hydraulic conductivity to topography have been tested: a simple linear relationship, a linear relationship with two different topographic indexes, two Ks domains with a transitional area. The Hill-Vi model has been modified to test these hypotheses. The studied catchment (Kervidy-Naizin, Western France is underlain by schist crystalline bedrock. A shallow and perennial groundwater highly reactive to rainfall events mainly develops in the weathered saprolite layer. The results indicate that (1 discharge and the water table in the riparian zone are similarly predicted by the four models, (2 distinguishing two Ks domains constitutes the best model and slightly improves prediction of the water table upslope, and (3 including spatial variations in the other parameters such as porosity or rate of hydraulic conductivity decrease with depth does not improve the results. These results underline the necessity of better investigations of upslope areas in hillslope hydrology.

  11. Effects of soil temperature and depth to ground water on first-year growth of a dryland riparian phreatophyte, Glycyrrhiza lepidota (American licorice)

    Science.gov (United States)

    Andersen, Douglas C.; Nelson, S. Mark

    2014-01-01

    We investigated the effects of soil temperature and depth to ground water on first-year growth of a facultative floodplain phreatophyte, Glycyrrhiza lepidota, in a 2-×-2 factorial greenhouse experiment. We grew plants in mesocosms subirrigated with water low in dissolved oxygen, mimicking natural systems, and set depth of ground water at 63 or 100 cm and soil temperature at cold (ambient) or warm (≤2.7°C above ambient). We hypothesized the moister (63 cm) and warmer soil would be most favorable and predicted faster growth of shoots and roots and greater nitrogen-fixation (thus, less uptake of mineral nitrogen) under those conditions. Growth in height was significantly faster in the moister treatment but was not affected by soil temperature. Final biomass of shoots and of roots, total biomass of plants, and root:shoot ratio indicated a significant effect only from depth of ground water. Final levels of soil mineral-nitrogen were as predicted, with level of nitrate in the moister treatment more than twice that in the drier treatment. No effect from soil temperature on level of soil-mineral nitrogen was detected. Our results suggest that establishment of G. lepidotarequires strict conditions of soil moisture, which may explain the patchy distribution of the species along southwestern dryland rivers.

  12. A semi-analytical model for calculating the penetration depth of a high energy electron beam in a water phantom with a magnetic field.

    Science.gov (United States)

    You, Shihu; Gou, Chengjun; Wu, Zhangwen; Hou, Qing

    2015-07-01

    As an electron beam is incident on a uniform water phantom in the presence of a lateral magnetic field, the depth-dose distribution of the electron beam changes significantly and forms the well-known 'Bragg peak', with a depth-dose distribution similar to that of heavy ions. This phenomenon has pioneered a new field in the clinical application of electron beams. For such clinical applications, evaluating the penetration depth of electron beams quickly and accurately is the critical problem. This paper describes a model for calculating the penetration depth of an electron beam rapidly and correctly in a water phantom under the influence of a magnetic field. The model was used to calculate the penetration depths under different conditions: the energies of electron beams of 6, 8, 12 and 15 MeV and the magnetic induction intensities of 0.75, 1.0, 1.5, 2.0 and 3.0 T. In addition, the calculation results were compared with the results of a Monte Carlo simulation. The comparison results indicate that the difference between the two calculation methods was less than 0.5 cm. Moreover, the computing time of the calculation model was less than a second. The semi-analytical model proposed in the present study enables the penetration depth of the electron beam in the presence of a magnetic field to be obtained with a computational efficiency higher than that of the Monte Carlo approach; thus, the proposed model has high potential for application. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. The effect of varying duration of water restriction on drinking behaviour, welfare and production of lactating sows

    DEFF Research Database (Denmark)

    Jensen, Margit Bak; Schild, Sarah-Lina Aagaard; Theil, Peter Kappel

    2016-01-01

    trough was seen (22%, 18%, 42% and 67% of 0, 3, 6 and 12 h sows; P = 0.09). Duration of water restriction did not affect water consumption on a 24-h basis, nursing behaviour or performance. In conclusion, behavioural indicators of thirst increased with increasing duration of nightly water restriction......Access to drinking water is essential for animal welfare, but it is unclear if temporary water restriction during the night represents a welfare problem. The aim of the present study was to investigate the effect of various durations of nightly restriction of water on thirst in loose housed...... lactating sows from day 10 to 28 of lactation. A total of 48 sows were deprived of water for either 0 h (n = 12; control), 3 h (n = 12; 0500 to 0800 h), 6 h (n = 12; 0200 to 0800 h) or 12 h (n = 12; 2000 to 0800 h). Control sows consumed 22% of their water intake during the night (2000 to 0800 h), whereas...

  14. Control of protein delivery from amphiphilic poly(ether ester) multiblock copolymers by varying their water content using emulsification techniques

    NARCIS (Netherlands)

    Bezemer, J.M.; Grijpma, Dirk W.; Dijkstra, Pieter J.; van Blitterswijk, Clemens; Feijen, Jan

    2000-01-01

    Protein-containing films and microspheres, based on poly(ethylene glycol)–poly(butylene terephthalate) (PEG–PBT) multiblock copolymers, were prepared from water-in-oil (w/o) emulsions. The properties of the matrices could be controlled by the water-to-polymer ratio (w/p) in the w/o emulsion. A

  15. Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment

    Directory of Open Access Journals (Sweden)

    E. E. Stigter

    2017-07-01

    Full Text Available Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE. Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF. Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May and decreases during the late melt season (June to September as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.

  16. WAVECALC: an Excel-VBA spreadsheet to model the characteristics of fully developed waves and their influence on bottom sediments in different water depths

    Science.gov (United States)

    Le Roux, Jacobus P.; Demirbilek, Zeki; Brodalka, Marysia; Flemming, Burghard W.

    2010-10-01

    The generation and growth of waves in deep water is controlled by winds blowing over the sea surface. In fully developed sea states, where winds and waves are in equilibrium, wave parameters may be calculated directly from the wind velocity. We provide an Excel spreadsheet to compute the wave period, length, height and celerity, as well as horizontal and vertical particle velocities for any water depth, bottom slope, and distance below the reference water level. The wave profile and propagation can also be visualized for any water depth, modeling the sea surface change from sinusoidal to trochoidal and finally cnoidal profiles into shallow water. Bedload entrainment is estimated under both the wave crest and the trough, using the horizontal water particle velocity at the top of the boundary layer. The calculations are programmed in an Excel file called WAVECALC, which is available online to authorized users. Although many of the recently published formulas are based on theoretical arguments, the values agree well with several existing theories and limited field and laboratory observations. WAVECALC is a user-friendly program intended for sedimentologists, coastal engineers and oceanographers, as well as marine ecologists and biologists. It provides a rapid means to calculate many wave characteristics required in coastal and shallow marine studies, and can also serve as an educational tool.

  17. Development of inferential sensors for real-time quality control of water-level data for the Everglades Depth Estimation Network

    Science.gov (United States)

    Daamen, Ruby C.; Edwin A. Roehl, Jr.; Conrads, Paul

    2010-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level gaging stations, ground-elevation models, and watersurface models designed to provide scientists, engineers, and water-resource managers with current (2000-present) water-depth information for the entire freshwater portion of the greater Everglades. The generation of EDEN waterlevel surfaces is derived from real-time data. Real-time data are automatically checked for outliers using minimum, maximum, and rate-of-change thresholds for each station. Smaller errors in the real-time data, such as gradual drift of malfunctioning pressure transducers, are more difficult to immediately identify with visual inspection of time-series plots and may only be identified during on-site inspections of the gages. Correcting smaller errors in the data often is time consuming and water-level data may not be finalized for several months. To provide water-level surfaces on a daily basis, EDEN needed an automated process to identify errors in water-level data and to provide estimates for missing or erroneous waterlevel data.

  18. Spatial pattern of a fish assemblage in a seasonal tropical wetland: effects of habitat, herbaceous plant biomass, water depth, and distance from species sources

    Directory of Open Access Journals (Sweden)

    Izaias M Fernandes

    Full Text Available The influence of habitat, biomass of herbaceous vegetation, depth and distance from permanent water bodies on the structure of fish assemblages of a seasonal floodplain was evaluated using data collected along 22 transects in an area of 25 km² in the floodplain of Cuiabá River, Pantanal, Brazil. Each transect was sampled for fish using throw traps and gillnets during the flood period of 2006. Multivariate multiple regression analysis and multivariate analysis of covariance indicated that depth was the only variable that affected the structure of the fish assemblage, both for quantitative data (abundance and qualitative data (presence-absence. Species such as Neofundulus parvipinnis and Laetacara dorsigera were more abundant in shallower sites (below 25 cm, while Serrasalmus maculatus and Metynnis mola were found mostly in the deepest areas (over 55 cm. However, species such as Hoplias malabaricus and Hoplerythrinus unitaeniatus occurred at all sampled depths. Although the distribution of most species was restricted to a few sites, there was a positive relationship between species richness and depth of the water body. Surprisingly, the replacement of native vegetation by exotic pasture did not affect the fish assemblage in the area, at the probability level considered.

  19. Using ground penetrating radar to investigate the water table depth in weathered granites : Sardon case study, Spain

    NARCIS (Netherlands)

    Mahmoudzadeh, M.R.; Frances, A.P.; Lubczynski, M.; Lambot, S.

    2012-01-01

    Precise and non-invasive measurement of groundwater depth is essential to support management of groundwater resources. In that respect, GPR is a promising tool for high resolution, large scale characterization and monitoring of hydrological systems. We applied GPR in a semi-arid catchment (Sardon,

  20. Effect of Water Depth on the Underwater Wet Welding of Ferritic Steels Using Austenitic Ni-Based Alloy Electrodes

    National Research Council Canada - National Science Library

    Sheakley, Brian

    2000-01-01

    ...), slag inclusions, oxide inclusions, and porosity. To avoid underbead cracking three weld samples were made using an austenitic nickel weld metal with an Oxylance coating at 10 feet of salt water, 25 feet of salt water, and 33 feet of salt water...

  1. Ground-Penetrating-Radar Profiles of Interior Alaska Highways: Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw Settlement over Ice-Rich Permafrost

    Science.gov (United States)

    2016-08-01

    Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw Settlement over Ice-Rich Permafrost Co ld R eg io ns R es ea rc h an d En...within the discontinuous permafrost zone ............................................................. 7 4 (A) 1958 surficial geology map (Péwé...looking north and reveals that the valley walls are not steep. Figure 4. (A) 1958 surficial geology map (Péwé 1958) showing that the Elliott

  2. Importance of depth and intensity of convection on the isotopic composition of water vapor as seen from IASI and TES δD observations

    Science.gov (United States)

    Lacour, Jean-Lionel; Risi, Camille; Worden, John; Clerbaux, Cathy; Coheur, Pierre-François

    2018-01-01

    We use tropical observations of the water vapor isotopic composition, derived from IASI and TES spaceborne measurements, to show that the isotopic composition of water vapor in the free troposphere is sensitive to both the depth and the intensity of convection. We find that for any given precipitation intensity, vapor associated with deep convection is isotopically depleted relative to vapor associated with shallow convection. The intensity of precipitation also plays a role as for any given depth of convection, the relative enrichment of water vapor decreases as the intensity of precipitation increases. Shallow convection, via the uplifting of enriched boundary layer air into the free troposphere and the convective detrainment, enriches the free troposphere. In contrast, deep convection is associated with processes that deplete the water vapor in the free troposphere, such as rain re-evaporation. The results of this study allow for a better identification of the parameters controlling the isotopic composition of the free troposphere and indicate that the isotopic composition of water vapor can be used to evaluate the relative contributions of shallow and deep convection in global models.

  3. Canopy conductance of Pinus taeda, Liquidambar styraciflua and Quercus phellos under varying atmospheric and soil water conditions.

    Science.gov (United States)

    Pataki, D. E.; Oren, R.; Katul, G.; Sigmon, J.

    1998-05-01

    Sap flow, and atmospheric and soil water data were collected in closed-top chambers under conditions of high soil water potential for saplings of Liquidambar styraciflua L., Quercus phellos L. and Pinus taeda L., three co-occurring species in the southeastern USA. Responses of canopy stomatal conductance (g(t)) to water stress induced by high atmospheric water vapor demand or transpiration rate were evaluated at two temporal scales. On a diurnal scale, the ratio of canopy stomatal conductance to maximum conductance (g(t)/g(t,max)) was related to vapor pressure deficit (D), and transpiration rate per unit leaf area (E(l)). High D or E(l) caused large reductions in g(t)/g(t,max) in L. styraciflua and P. taeda. The response of g(t)/g(t,max) to E(l) was light dependent in L. styraciflua, with higher g(t)/g(t,max) on sunny days than on cloudy days. In both L. styraciflua and Q. phellos, g(t)/g(t,max) decreased linearly with increasing D (indicative of a feed-forward mechanism of stomatal control), whereas g(t)/g(t,max) of P. taeda declined linearly with increasing E(l) (indicative of a feedback mechanism of stomatal control). Longer-term responses to depletion of soil water were observed as reductions in mean midday g(t)/g(t,max), but the reductions did not differ significantly between species. Thus, species that employ contrasting methods of stomatal control may show similar responses to soil water depletion in the long term.

  4. Work Plan for Three-Dimensional Time-Varying, Hydrodynamic and Water Quality Model of Chesapeake Bay

    Science.gov (United States)

    1988-08-01

    for the past 30 years exists. How can hydrology be projected into the future? The "best- case " scenario is that hydrodynamics and water quality are not...TOXIcant Water Analysis Simulation Program (Ambrose et al., 1983) was developed by the USEPA by modifying, and in some cases simplifying, the kinetic...Technical DirectorI WES Oversight Group Dr. J. Harrison, C/EL Mr. F. Herrmann, C/HL Dr. J. Houston. C/CERC I EStudy ManagerMr. D. L. Robey Ms. C. Rogers

  5. Examining spatially varying relationships between land use and water quality using geographically weighted regression I: model design and evaluation.

    Science.gov (United States)

    Tu, Jun; Xia, Zong-Guo

    2008-12-15

    Traditional regression techniques such as ordinary least squares (OLS) can hide important local variations in the model parameters, and are not able to deal with spatial autocorrelations existing in the variables. A recently developed technique, geographically weighted regression (GWR), is used to examine the relationships between land use and water quality in eastern Massachusetts, USA. GWR models make great improvements of model performance over OLS models, which is proved by F-test and comparisons of model R2 and corrected Akaike Information Criterion (AICc) from both GWR and OLS. GWR models also improve the reliabilities of the relationships by reducing spatial autocorrelations. The application of GWR models finds that the relationships between land use and water quality are not constant over space but show great spatial non-stationarity. GWR models are able to reveal the information previously ignored by OLS models on the local causes of water pollution, and so improve the model ability to explain local situation of water quality. The results of this study suggest that GWR technique has the potential to serve as a useful tool for environmental research and management at watershed, regional, national and even global scales.

  6. Varying evapotranspiration and salinity level of irrigation water influence soil quality and performance of perennial ryegrass (lolium perenne l.)

    Science.gov (United States)

    Increasing use of recycled water that is often high in salinity warrants further examination of irrigation practices for turfgrass health and salinity management. A study was conducted during 2011-2012 in Riverside, CA to evaluate the response of perennial ryegrass (Lolium perenne L.) ‘SR 4550’ turf...

  7. DURABILITY ESTIMATION OF ASPHALT CONCRETE TESTED IN THE CLIMATIC CONDITIONS WITH VARYING HUMIDITY, ULTRAVIOLET RADIATION AND AGGRESSIVE SEA WATER

    Directory of Open Access Journals (Sweden)

    Erofeev Vladimir Trofimovich

    2016-06-01

    Full Text Available The article studies the effect of ultraviolet radiation, salt fog, variable humidity, and sea water of the Black Sea coast of Krasnodar region near the village of Abrau-Durso on the basic physical and mechanical properties of asphalt: the average density, water saturation, tensile strength at 122 °F, 68 °F and 32 °F, on the waterproofing quality of asphalt concrete. The samples were exhibited on a pier and in the soil on the coast of the Black Sea, in the sea water and in the air 400 m away from the sea. Test specimens were manufactured in accordance with Russian State Standard GOST 12801-98. Test duration was 240 days. It is found out that sea water has a negative effect on the majority of physical and mechanical characteristics of asphalt concrete. The authors found the compositions of asphalt concrete with increased resistance to the influence of climatic factors. Higher resistance is achieved in the case of dense asphaltic concrete ballast.

  8. X-ray CT-Derived Soil Characteristics Explain Varying Air, Water, and Solute Transport Properties across a Loamy Field

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Katuwal, Sheela; Møldrup, Per

    2016-01-01

    The characterization of soil pore space geometry is important for explaining fluxes of air, water, and solutes through soil and understanding soil hydrogeochemical functions. X-ray computed tomography (CT) can be applied for this characterization, and in this study CT-derived parameters were used...... to explain water, air, and solute transport through soil. Forty-five soil columns (20 by 20 cm) were collected from an agricultural field in Estrup, Denmark, and subsequently scanned using a medical CT scanner. Nonreactive tracer leaching experiments were performed in the laboratory along with measurements...... of air permeability (Ka) and saturated hydraulic conductivity (Ksat). The CT number of the matrix (CTmatrix), which represents the moist bulk density of the soil matrix, was obtained from the CT scans as the average CT number of the voxels in the grayscale image excluding macropores and stones...

  9. Modulating the phenology and yield of camelina sativa L. by varying sowing dates under water deficit stress conditions

    Directory of Open Access Journals (Sweden)

    Ejaz Ahmad Waraich

    2017-05-01

    Full Text Available Camelina (Camelina sativa L. an oilseed crop has emerged as a potential source for biofuels and bio-products. Camelina is an economic crop due to its less requirements of agronomic inputs as compared to other oilseed crops. However, it is direly required to evaluate the adaptability of camelina and characterize its production potential. Therefore, a pot experiment was carried out in rain out shelter at the Department of Agronomy, University of Agriculture, Faisalabad, Pakistan to optimize appropriate sowing date with respect to growth and yield potential of different genotypes of camelina under drought stress. Completely randomized design with factorial arrangements was adopted. Three sowing dates with the difference of 10 days (November 13 th, 23rd and December 03rd, two water regimes (100% FC and 60% FC and two camlena genotypes (611 and 618 were used in this experiment. Results indicated that camelina growth and yield related traits were significantly influenced by difference in sowing dates and water regimes. Maximum leaf area index (LAI, crop growth rate (CGR, leaf area duration (LAD, net assimilation rate (NAR and yield related traits were recorded with early sowing (13th November which was followed by sowing on 23rd November and least values of these variables were recorded in late sowing (December 03rd. Plants grown under water deficit conditions (60% FC showed the decreased values of LAI, CGR, LAD, NAR and yield related attributes as compared to normally irrigated plants (100% FC. However, the response of genotypes of camelina 611 and 618 remained statistically similar to each other.

  10. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: A case study at Jianghan Plain, central China.

    Science.gov (United States)

    Yao, Linlin; Wang, Yanxin; Tong, Lei; Deng, Yamin; Li, Yonggang; Gan, Yiqun; Guo, Wei; Dong, Chuangju; Duan, Yanhua; Zhao, Ke

    2017-01-01

    The occurrence of 14 antibiotics (fluoroquinolones, tetracyclines, macrolides and sulfonamides) in groundwater and surface water at Jianghan Plain was investigated during three seasons. The total concentrations of target compounds in the water samples were higher in spring than those in summer and winter. Erythromycin was the predominant antibiotic in surface water samples with an average value of 1.60μg/L, 0.772μg/L and 0.546μg/L respectively in spring, summer and winter. In groundwater samples, fluoroquinolones and tetracyclines accounted for the dominant proportion of total antibiotic residues. The vertical distributions of total antibiotics in groundwater samples from three different depths boreholes (10m, 25m, and 50m) exhibited irregular fluctuations. Consistently decreasing of antibiotic residues with increasing of depth was observed in four (G01, G02, G03 and G05) groundwater sampling sites over three seasons. However, at the sampling sites G07 and G08, the pronounced high concentrations of total antibiotic residues were detected in water samples from 50m deep boreholes instead of those at upper aquifer in winter sampling campaign, with the total concentrations of 0.201μg/L and 0.100μg/L respectively. The environmental risks posed by the 14 antibiotics were assessed by using the methods of risk quotient and mixture risk quotient for algae, daphnids and fish in surface water and groundwater. The results suggested that algae might be the aquatic organism most sensitive to the antibiotics, with the highest risk levels posed by erythromycin in surface water and by ciprofloxacin in groundwater among the 14 antibiotics. In addition, the comparison between detected antibiotics in groundwater samples and the reported effective concentrations of antibiotics on denitrification by denitrifying bacteria, indicating this biogeochemical process driven by microorganisms won't be inhibitory influenced by the antibiotic residues in groundwater. Copyright © 2016

  11. Varying bottom water oxygenation during deposition of organic-rich, bioclastic carbonates on a southern Tethys ramp (lower-middle Eocene, Tunisia)

    Science.gov (United States)

    Jimenez Berrocoso, A.; Bodin, S.; Wood, J.

    2012-04-01

    Redox-sensitive and sulphide-forming metals are variably enriched in the bioclastic carbonates of the lower-middle Eocene Bou Dabbous Formation (BDFm) of north-central Tunisia. The occurrence of trace metal enrichment in sediments that contain benthic fossils is a long standing sedimentary anomaly with respect to the level of bottom water oxygenation during deposition. In the BDFm, varying levels of oxygen depletion, suggested by varying trace metal enrichment, further compounds this question. An integrated sedimentological, paleontological and geochemical study of the BDFm is underway in order to address as to what controls the magnitude and physical extend of this oxygen depletion. Up to 4 lithofacies are distinguished in the seven sections studied. Common characteristics in all of them include alternating, massive limestones and marly limestones with abundant planktonic foraminifera and common to rare phosphatic grains and disseminated pyrite. The main difference among lithofacies is the amount of benthic fossils (e.g., echinoids, bivalves, foraminifera), being higher in lithofacies 1 and 2 and lower in lithofacies 3 and 4. Lithofacies 4 is characterised by laminated fabrics with mm-thick, phosphatic laminae alternating with thicker, black bands. All lithofacies were deposited in the distal part of a ramp, with the less bioclastic lithofacies 3 and 4 representing the most distal deposits. However, a fraction of the benthic bioclasts in all lithofacies represents in situ fossil remains. Coupled with the presence of in situ benthic fossils, clear enrichment of Cr, U and V in lithofacies 2, 3 and 4 of six sections studied indicate suboxic bottom waters during their deposition. Consistent with some dissolved oxygen in bottom waters allowing seafloor colonisation by benthic organisms, these lithofacies are only moderately enriched in Mo (up to 9 ppm) and suggests a steep redox boundary close below the sediment/water interface, where anoxia could have fully developed

  12. CO2 and water vapour exchange in four alpine herbs at two altitudes and under varying light and temperature conditions.

    Science.gov (United States)

    Rawat, A S; Purohit, A N

    1991-06-01

    CO2 and water vapour exchange rates of four alpine herbs namely: Rheum emodi, R. moorcroftianum, Megacarpaea polyandra and Rumex nepalensis were studied under field conditions at 3600 m (natural habitat) and 550 m altitudes. The effect of light and temperature on CO2 and water vapour exchange was studied in the plants grown at lower altitude. In R. moorcroftianum and R. nepalensis, the average photosynthesis rates were found to be about three times higher at 550 m as compared to that under their natural habitat. However, in M. polyandra, the CO2 exchange rates were two times higher at 3600 m than at 550 m but in R. emodi, there were virtually no differences at the two altitudes. These results indicate the variations in the CO2 exchange rates are species specific. The change in growth altitude does not affect this process uniformly.The transpiration rates in R. emodi and M. polyandra were found to be very high at 3600 m compared to 550 m and are attributed to overall higher stomatal conductance in plants of these species, grown at higher altitude. The mid-day closure of stomata and therefore, restriction of transpirational losses of water were observed in all the species at 550 m altitude. In addition to the effect of temperature and relative humidity, the data also indicate some endogenous rhythmic control of stomatal conductance.The temperature optima for photosynthesis was close to 30°C in M. polyandra and around 20°C in the rest of the three species. High temperature and high light intensity, as well as low temperature and high light intensity, adversely affect the net rate of photosynthesis in these species.Both light compensation point and dark respiration rate increased with increasing temperature.The effect of light was more prominent on photosynthesis than the effect of temperature, however, on transpiration the effect of temperature was more prominent than the effect of light intensity.No definite trends were found in stomatal conductance with respect to

  13. Depth investigation of rapid sand filters for drinking water production reveals strong stratification in nitrification biokinetic behavior

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Albrechtsen, Hans-Jørgen

    2016-01-01

    -flow lab-scale assay. NH4 + removal capacity, estimated from short term loading up-shifts, was at least 10 times higher in the top than in the middle and bottom filter layers, consistent with the stratification of Ammonium Oxidizing Bacteria (AOB). AOB density increased consistently with the NH4 + removal...... rate, indicating their primarily role in nitrification under the imposed experimental conditions. The maximum AOB cell specific NH4 + removal rate observed at the bottom was at least 3 times lower compared to the top and middle layers. Additionally, a significant up-shift capacity (4.6 and 3.5 times......) was displayed from the top and middle layers, but not from the bottom layer at increased loading conditions. Hence, AOB with different physiological responses were active at the different depths. The biokinetic analysis predicted that despite the low NH4 + removal capacity at the bottom layer, the entire filter...

  14. Effect of varying water-to-powder ratios and ultrasonic placement on the compressive strength of mineral trioxide aggregate.

    Science.gov (United States)

    Basturk, Fatima B; Nekoofar, Mohammad Hossein; Gunday, Mahir; Dummer, Paul M H

    2015-04-01

    The purpose of this study was to compare the compressive strength of mineral trioxide aggregate (MTA) when mixed with 2 different water-to-powder (WP) proportions using either hand or ultrasonic placement. Tooth-colored ProRoot MTA (Dentsply Maillefer, Ballaigues, Switzerland) and white MTA Angelus (Angelus Soluçoes Odontologicas, Londrina, Brazil) were investigated. One gram of each MTA powder was mixed with either 0.34 or 0.40 g distilled water. The 4 groups were further divided into 2 groups of 5 specimens for each of the following techniques: conventional (ie, hand placement) and placement using indirect ultrasonic activation for 30 seconds. All specimens were subjected to compressive strength testing after 4 days. The results were statistically analyzed with multivariate analysis of variance and Tukey Honestly Significant Difference tests at a significance level of P MTA (84.17 ± 22.68) were significantly greater than those of MTA Angelus (47.71 ± 14.29) (P MTA specimens that were mixed in the 0.34 WP ratio, and then the samples were placed with ultrasonic activation (mean = 91.35 MPa). The lowest values were recorded for MTA Angelus samples that were mixed in the 0.40 WP ratio, and the specimens were placed without ultrasonic activation (mean = 36.36 MPa). Ultrasonic activation had no significant difference in terms of compressive strength. When using ProRoot MTA and MTA Angelus, higher WP ratios resulted in lower compressive strength values. Ultrasonication had no significant effect on the compressive strength of the material regardless of the WP ratio that was used. Therefore, adherence to the manufacturer's recommended WP ratio when preparing MTA for use in dental applications is advised. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Use of Contour Maps of Water Depths to Predict Flora and Fauna Abundance in Moist Soil Management

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The goal of this project was to develop a technique to quantitatively predict the area of moist soil that would be exposed as a result of a water drawdown of any...

  16. Measurement of the Muon Atmospheric Production Depth with the Water Cherenkov Detectors of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Molina Bueno, Laura [Univ. of Granada (Spain)

    2015-09-01

    Ultra-high-energy cosmic rays (UHECR) are particles of uncertain origin and composition, with energies above 1 EeV (1018 eV or 0.16 J). The measured flux of UHECR is a steeply decreasing function of energy. The largest and most sensitive apparatus built to date to record and study cosmic ray Extensive Air Showers (EAS) is the Pierre Auger Observatory. The Pierre Auger Observatory has produced the largest and finest amount of data ever collected for UHECR. A broad physics program is being carried out covering all relevant topics of the field. Among them, one of the most interesting is the problem related to the estimation of the mass composition of cosmic rays in this energy range. Currently the best measurements of mass are those obtained by studying the longitudinal development of the electromagnetic part of the EAS with the Fluorescence Detector. However, the collected statistics is small, specially at energies above several tens of EeV. Although less precise, the volume of data gathered with the Surface Detector is nearly a factor ten larger than the fluorescence data. So new ways to study composition with data collected at the ground are under investigation. The subject of this thesis follows one of those new lines of research. Using preferentially the time information associated with the muons that reach the ground, we try to build observables related to the composition of the primaries that initiated the EAS. A simple phenomenological model relates the arrival times with the depths in the atmosphere where muons are produced. The experimental confirmation that the distributions of muon production depths (MPD) correlate with the mass of the primary particle has opened the way to a variety of studies, of which this thesis is a continuation, with the aim of enlarging and improving its range of applicability. We revisit the phenomenological model which is at the root of the analysis and discuss a new way to improve some aspects of the model. We carry

  17. Quantification of groundwater-stream water interactions based on temperature depth profiles under strong upwelling conditions in a sand-bed stream

    Science.gov (United States)

    Gaona, Jaime; Lewandowski, Jörg

    2017-04-01

    The quantification of groundwater-surface water interactions is not only required for budgets but also for an understanding of the complex relations between hyporheic exchange flows (HEF) and the associated chemical and biological processes that take place in hyporheic zones (HZ). Thus, there is a strong need to improve methods for flux estimation.The present study aims to quantify the vertical fluxes across the riverbed from data of temperature depth profiles recorded at the River Schlaube in East Brandenburg, Germany. In order to test the capabilities and limitations of existing methods, fluxes were calculated with an analytical (VFLUX, based on the amplitude attenuation and phase shift analysis) and a numerical (1DTempPro, parametrization based on observed values) approach for heat conduction. We conclude that the strong limitations of the flux estimates are caused by thermal and hydraulic heterogeneities of the sediment properties. Consequently, upscaling of fluxes must include other thermal techniques able to portray the spatial variability of thermal patterns, along with further developments of methods to link thermal depth profiles, thermal patterns of the surface of the streambed and all the other factors involved. Considering time and costs of temperature depth profiles of riverbeds, and the need for multiple devices to cover larger areas, it is additionally tested whether vertical fluxes can be infered from the uppermost temperature sensors of a data set. That would ease hyporheic investigations at larger scales.

  18. Varying the dietary supply of C and N to manipulate the manure composition of water buffalo heifers in Oman

    Directory of Open Access Journals (Sweden)

    Anne Schiborra

    2012-01-01

    Full Text Available Optimizing the composition of manure has the potential to reduce nutrient losses to the environment and to increase crop yields. In this study the effect of dietary ratios of carbon (C to nitrogen (N and neutral detergent fibre (NDF to soluble carbohydrates (SC on faeces composition of water buffalo heifers was assessed. Two digestibility trials were conducted with 12 animals each, fed one control and four test diets composed to achieve (1 high C/N and high NDF/SC ratios (HH, (2 low C/N and low NDF/SC ratios (LL, (3 high C/N and low NDF/SC ratios (HL and (4 low C/N and high NDF/SC (LH ratios. Faecal C/N ratios were generally lower than dietary C/N ratios, but the reduction was especially large for high C/N ratio diets (HH=55 %, HL=51 %. Faecal N concentration was positively correlated (r^2 = 0.6; P < 0.001 with N intake, but the increase in faecal N was more pronounced for diets that supplied low amounts of N. Faecal NDF concentration was positively related to NDF intake (r^2 = 0.42; P < 0.001, as well as the faecal C/N ratio (r^2 = 0.3; P < 0.001. Results demonstrate that C/N ratio and NDF concentration of buffalo manure were affected by diet composition. Diets with high C/N ratio and low NDF/SC ratio are preferable with regard to manure quality, but may not satisfy the nutritional requirements of producing animals, since N concentration in these diets was low and fibre concentration simultaneously high.

  19. Barnacle settlement and the adhesion of protein and diatom microfouling to xerogel films with varying surface energy and water wettability.

    Science.gov (United States)

    Finlay, John A; Bennett, Stephanie M; Brewer, Lenora H; Sokolova, Anastasiya; Clay, Gemma; Gunari, Nikhil; Meyer, Anne E; Walker, Gilbert C; Wendt, Dean E; Callow, Maureen E; Callow, James A; Detty, Michael R

    2010-08-01

    Previous work has shown that organosilica-based xerogels have the potential to control biofouling. In this study, modifications of chemistry were investigated with respect to their resistance to marine slimes and to settlement of barnacle cyprids. Adhesion force measurements of bovine serum albumin (BSA)-coated atomic force microscopy (AFM) tips to xerogel surfaces prepared from aminopropylsilyl-, fluorocarbonsilyl-, and hydrocarbonsilyl-containing precursors, indicated that adhesion was significantly less on the xerogel surfaces in comparison to a poly(dimethylsiloxane) elastomer (PDMSE) standard. The strength of adhesion of BSA on the xerogels was highest on surfaces with the highest and the lowest critical surface tensions, gamma(C) and surface energies, gamma(S), and duplicated the 'Baier curve'. The attachment to and removal of cells of the diatom Navicula perminuta from a similar series of xerogel surfaces were examined. Initial attachment of cells was comparable on all of the xerogel surfaces, but the percentage removal of attached cells by hydrodynamic shear stress increased with gamma(C) and increased wettability as measured by the static water contact angle, theta(Ws), of the xerogel surfaces. The percentage removal of cells of Navicula was linearly correlated with both properties (R(2) = 0.74 for percentage removal as a function of theta(Ws) and R(2) = 0.69 for percentage removal as a function of gamma(C)). Several of the aminopropylsilyl-containing xerogels showed significantly greater removal of Navicula compared to a PDMSE standard. Cypris larvae of the barnacle B. amphitrite showed preferred settlement on hydrophilic/higher energy surfaces. Settlement was linearly correlated with theta(Ws) (R(2) = 0.84) and gamma(C) (R(2) = 0.84). Hydrophilic xerogels should prove useful as coatings for boats in regions where fouling is dominated by microfouling (protein and diatom slimes).

  20. Comparison of PALSAR-2 Interferometric Estimates of Snow Water Equivalent, Airborne Snow Observatory Snow Depths, and Results from a Distributed Energy Balance Snow Model (iSnobal)

    Science.gov (United States)

    Deeb, E. J.; Marshall, H. P.; Painter, T. H.; Marks, D. G.; Hedrick, A. R.; Havens, S.; Forster, R. R.; Siqueira, P.

    2016-12-01

    The interferometric approach to estimating snow water equivalent (SWE) leverages the fact that at relatively low frequencies ( 1 GHz, L-Band), differences in snow microstructure and layering do not significantly affect the radar backscatter of dry snow. At these frequencies, the main contribution of the radar backscatter is the snow/ground interface, and the difference in the timing of the radar propagation through the snowpack is controlled by snow depth, density and liquid water content. While engineering limitations prevent direct measurement of absolute radar travel-time, interferometric phase shift between acquisitions can be used to monitor changes in radar travel-time, caused by changes in snow properties. PALSAR-2 is a L-Band synthetic aperture radar (SAR) aboard the Japan Aerospace Exploration Agency's (JAXA) ALOS-2 satellite. Launched in 2014, PALSAR-2 interferometric pairs geographically and temporally overlap data collected by the NASA/JPL Airborne Snow Observatory (ASO) which provides spatial distribution of snow depths across basins (e.g. Tuolumne, CA and Grand Mesa, CO) identified as contributing significantly to NASA's multi-year airborne SnowEx campaign. As part of ASO's operational requirements, a spatially distributed energy balance snow model (iSnobal) is run over these domains estimating density (and other snow properties) and providing SWE products for water resource managers as well as other cryospheric science applications. This effort identifies PALSAR-2 satellite pairs closely coincident with ASO collections, processes interferometric products of coherence and phase change, and compares these results with the spatially distributed snow depths from ASO and modeled snow densities from iSnobal. Moreover, for satellite acquisitions not temporally matching the ASO collections, the modeled snow properties (depths and densities) from iSnobal are used for comparison with interferometric estimates of SWE. The integration of ground measurements

  1. Mudpuppy (Necturus maculosus maculosus ) spatial distribution, breeding water depth, and use of artificial spawning habitat in the Detroit River

    Science.gov (United States)

    Craig, Jaquelyn M.; Mifsud, David A.; Briggs, Andrew S.; Boase, James C.; Kennedy, Gregory W.

    2015-01-01

    Mudpuppy (Necturus maculosus maculosus) populations have been declining in the Great Lakes region of North America. However, during fisheries assessments in the Detroit River, we documented Mudpuppy reproduction when we collected all life stages from egg through adult as by-catch in fisheries assessments. Ten years of fisheries sampling resulted in two occurrences of Mudpuppy egg collection and 411 Mudpuppies ranging in size from 37–392 mm Total Length, collected from water 3.5–15.1 m deep. Different types of fisheries gear collected specific life stages; spawning females used cement structures for egg deposition, larval Mudpuppies found refuge in eggmats, and we caught adults with baited setlines and minnow traps. Based on logistic regression models for setlines and minnow traps, there was a higher probability of catching adult Mudpuppies at lower temperatures and in shallower water with reduced clarity. In addition to documenting the presence of all life stages of this sensitive species in a deep and fast-flowing connecting channel, we were also able to show that standard fisheries research equipment can be used for Mudpuppy research in areas not typically sampled in herpetological studies. Our observations show that typical fisheries assessments and gear can play an important role in data collection for Mudpuppy population and spawning assessments.

  2. Temperature profile and water depth data collected from USS CURTS using BT and XBT casts in the Japan Sea from 11 January 1989 to 17 January 1989 (NODC Accession 8900027)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS CURTS in the Japan Sea. Data were collected from 11 January 1989 to 17...

  3. Temperature profile and water depth data collected from KIDD using BT and XBT casts in the North/South Pacific Ocean from 06 August 1977 to 30 April 1990 (NODC Accession 9000141)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected from thirty three different ships used for 44 cruises. The data was collected between August 6, 1987 to April 30,...

  4. Temperature profile and water depth data collected from IOWA using BT and XBT casts in the North Pacific Ocean from 31 May 1985 to 23 March 1990 (NODC Accession 9000092)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected using two dozen different ships through a grant to Dr. Douglas C. Biggs MMS # 14-35-0001-30501. The data was...

  5. Temperature profile and water depth data collected from USCGC GLACIER using BT and XBT casts in the NW / SW Pacific Ocean from 25 October 1986 to 31 January 1987 (NODC Accession 8700140)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts in the NW / SW Pacific Ocean from USCGC GLACIER. Data were collected from 25 October...

  6. Temperature profile and water depth data collected from USCGC GLACIER in the NW/SE Pacific Ocean and other seas from 31 January 1987 to 08 April 1987 (NODC Accession 8700183)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USCGC GLACIER in the Northwest/Southeast Pacific Ocean and other seas. Data...

  7. Temperature profile and water depth data from BT and XBT casts in the Atlantic Ocean from USCGC POLAR SEA from 14 December 1983 to 06 May 1984 (NODC Accession 8600108)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USCGC POLAR SEA in the Atlantic Ocean. Data were collected from 14 December...

  8. Temperature profile and water depth data collected from BT and XBT casts in the Northwest Atlantic Ocean from OCEANUS from 17 January 1981 to 05 May 1981 (NODC Accession 8600391)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth were collected using BT and XBT casts from the OCEANUS in the Northwest Atlantic Ocean. Data were collected from 17 January 1981...

  9. Temperature profile and water depth data collected from BAINBRIDGE using BT and XBT casts in the North Pacific Ocean from 03 July 1975 to 31 October 1977 (NODC Accession 8900230)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the BAINBRIDGE in the North Pacific Ocean and TOGA Area - Pacific Ocean. Data...

  10. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Hawaiian Archipelago from 2016-09-01 to 2016-09-27 (NCEI Accession 0161171)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  11. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Mariana Archipelago from 2014-03-24 to 2014-05-05 (NCEI Accession 0161168)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  12. Temperature profile and water depth data collected from USS ROBERT G. BRADLEY using BT and XBT casts in the NE/NW Atlantic Ocean and other seas from 03 May 1988 to 31 May 1988 (NODC Accession 8800213)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS ROBERT G. BRADLEY in the Northwest / Northeast Atlantic Ocean, Arabian...

  13. Temperature profile and water depth data collected from AUSTRALIA STAR and other platforms using XBT casts in the TOGA Area - Atlantic and Pacific Ocean from 05 October 1989 to 21 December 1992 (NODC Accession 9400035)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using XBT casts from the AUSTRALIA STAR and other platforms in the TOGA Area - Atlantic and Pacific Ocean,...

  14. Temperature profile and water depth collected from W.V. PRATT using BT and XBT casts in the NW Atlantic Ocean from 09 January 1987 to 30 January 1987 (NODC Accession 8700076)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the W.V. PRATT in the Northwest Atlantic Ocean and TOGA in the Atlantic Ocean. Data...

  15. Temperature profile and water depth data collected from USS MERRILL using BT and XBT casts in the Indian Ocean and other seas from 05 April 1988 to 11 April 1988 (NODC Accession 8800140)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS MERRILL in the Indian Ocean, Arabian Sea, and Gulf of Oman. Data were...

  16. Temperature profile and water depth data collected from USS BARBEY using BT and XBT casts in the TOGA Area - Pacific Ocean and other areas from 03 November 1988 to 01 December 1988 (NODC Accession 8800327)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS BARBEY in the TOGA Area - Pacific Ocean, Bay of Bengal, Indian Ocean,...

  17. Temperature profile and water depth data collected from USS BARBEY using BT and XBT casts in the Indian Ocean and other seas from 02 December 1988 to 28 December 1988 (NODC Accession 8900015)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS BARBEY in the Indian Ocean, Arabian Sea, Gulf of Oman, Gulf of Iran, and...

  18. Temperature profile and water depth data collected from USS MERRILL using BT and XBT casts in the Indian Ocean and other seas from 17 May 1988 to 01 June 1988 (NODC Accession 8800181)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS MERRILL in Arabian Sea, Indian Ocean, Gulf of Oman, Laccadive Sea, and...

  19. Temperature profile and water depth data collected from USS Merrill using BT and XBT casts in the Indian Ocean and other seas from 1988-03-01 to 1988-03-29 (NODC Accession 8800110)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS MERRILL in the Arabian Sea, Gulf of Oman, and Indian Ocean. Data were...

  20. Temperature profile and water depth data collected from USS HENRY B. WILSON using BT and XBT casts in the Indian Ocean and other seas from 22 October 1986 to 26 November 1986 (NODC Accession 8800183)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS HENRY B. WILSON in the Indian Ocean, Gulf of Oman, Gulf of Iran, and...

  1. Temperature profile and water depth data collected from USS CURTS using BT and XBT casts in the Northeast Pacific Ocean and other sea from 09 November 1988 to 20 November 1988 (NODC Accession 8800331)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS CURTS in the Northeast Pacific Ocean and Inland Sea. Data were collected...

  2. Temperature profile and water depth data collected from HMAS DARWIN and other platforms using BT and XBT casts in the North / South Pacific Ocean and Indian Ocean from 29 April 1985 to 12 April 1988 (NODC Accession 8800166)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the HMAS DARWIN and other platforms in the North / South Pacific Ocean and Indian...

  3. Temperature profile and water depth data collected from USS MOBILE BAY using BT and XBT casts in the NW Atlantic Ocean from 01 April 1987 to 07 April 1987 (NODC Accession 8700192)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS MOBILE BAY in the Northwest Atlantic Ocean and TOGA Area - Atlantic...

  4. Temperature profile and water depth collected from XIANG YANG HONG 05 in the South China Sea using BT and XBT casts from 16 November 1986 to 03 December 1986 (NODC Accession 8700009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth were collected using BT and XBT casts from the XIANG YANG HONG 05 in the South China Sea. Data were collected from 16 November...

  5. Temperature profile and water depth data collected from BT and XBT casts in the Indian Ocean from ANRO AUSTRALIA and other platforms from 31 May 1983 to 02 November 1986 (NODC Accession 8700034)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the ANRO AUSTRALIA, FLINDERS, and other platforms in Indian Ocean. Data were...

  6. Temperature profile and water depth data collected from AMERICAN RESERVIST using BT and XBT casts in the North Pacific Ocean from 20 January 1974 to 29 September 1977 (NODC Accession 8900287)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the AMERICAN RESERVIST in the North Pacific Ocean and TOGA Area - Pacific Ocean....

  7. Temperature profile and water depth data collected from USCGC BOUTWELL using BT and XBT casts in the NW Pacific Ocean from 03 February 1987 to 17 February 1987 (NODC Accession 8700161)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the USCGC BOUTWELL in the Northwest Pacific Ocean. Data were collected from 03 February...

  8. Temperature profile and water depth data collected from USS MERRILL using BT and XBT casts in the Northwest Pacific Ocean from 11 August 1992 to 27 August 1992 (NODC Accession 9200253)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS MERRILL in the Northwest Pacific Ocean. Data were collected from 11...

  9. Temperature profile and water depth data collected from USS COCHRANE using BT and XBT casts in the East China sea and other seas from 07 March 1987 to 19 March 1987 (NODC Accession 8700263)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS COCHRANE in the South China sea, East China Sea, and Philippine Sea. Data...

  10. Temperature profile and water depth data collected from USS CURTS using BT and XBT casts in the NE/NW Pacific Ocean from 02 June 1988 to 19 June 1988 (NODC Accession 8800215)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS CURTS in the Northeast / Northwest Pacific Ocean and TOGA Area - Pacific...

  11. Temperature profile and water depth data collected from USS CURTS using BT and XBT casts in the Northwest Pacific Ocean from 21 March 1988 to 22 March 1988 (NODC Accession 8800144)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS CURTS in the Northwest Pacific Ocean. Data were collected from 21 March...

  12. Temperature profile and water depth data collected from USS CURTS using BT and XBT casts in the Indian Ocean and other seas from 01 December 1987 to 21 December 1987 (NODC Accession 8800028)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS CURTS in the Indian Ocean and other seas. Data were collected from 01...

  13. Temperature profile and water depth data collected from USS COCHRANE using BT and XBT casts in the Indian Ocean and other seas from 01 August 1987 to 27 September 1987 (NODC Accession 8700394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS COCHRANE in the Indian Ocean, Arabian Sea, Laccadive Sea, and Philippine...

  14. Temperature profile and water depth data collected from USS JOUETT using BT and XBT casts in the Northwest Pacific Ocean from 14 July 1987 to 16 July 1987 (NODC Accession 8700264)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS JOUETT in the Northwest Pacific Ocean. Data were collected from 14 July...

  15. Temperature profile and water depth data collected from USS MERRILL using BT and XBT casts in the NE/NW Pacific Ocean and other seas from 17 June 1988 to 27 June 1988 (NODC Accession 8800217)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS MERRILL in the Northeast / Northwest Pacific Ocean, Japan Sea and Inland...

  16. Temperature profile and water depth data collected from USS ROBERT G. BRADLEY using BT and XBT casts in the Northwest Atlantic Ocean from 15 December 1988 to 28 February 1989 (NODC Accession 8900110)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS ROBERT G. BRADLEY in the Northwest Atlantic Ocean and TOGA Area -...

  17. Temperature profile and water depth data collected from USCGC HAMILTON using BT and XBT casts in the Northwest Pacific Ocean and Bering Sea from 23 October 1991 to 09 May 1992 (NODC Accession 9200241)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USCGC HAMILTON in the Northeast / Northwest Pacific Ocean and Bering Sea....

  18. Temperature profile and water depth data collected from USS HARRY E. YARNELL using BT and XBT casts in the Bay of Biscay and other seas from 30 June 1992 to 17 September 1992 (NODC Accession 9200283)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS HARRY E. YARNELL in the Bay of Biscay, English Channel, Northeast...

  19. Temperature profile and water depth data collected from SAXON STAR and other platforms in a World wide distribution from 09 March 1983 to 12 November 1986 (NODC Accession 8700035)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the SAXON STAR and other platforms in a World wide distribution. Data were collected...

  20. Temperature profile and water depth data collected from USS MOBILE BAY using BT and XBT casts in the NW Atlantic Ocean from 15 May 1987 to 27 May 19876 (NODC Accession 8700223)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS MOBILE BAY in the Northwest Atlantic Ocean. Data were collected from 15...

  1. Temperature profile and water depth data collected from USS BARBEY using BT and XBT casts in the Indian ocean and other seas from 07 January 1989 to 31 January 1989 (NODC Accession 8900034)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS BARBEY in the Indian Ocean, South China Sea, Burma Sea, and Malacca of...

  2. Temperature profile and water depth data collected from USS BARBEY using BT and XBT casts in the TOA Area - Pacific Ocean and other seas from 02 October 1988 to 30 October 1988 (NODC Accession 8800335)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS BARBEY in the TOGA Area - Pacific Ocean, Inland Sea, South China Sea,...

  3. Temperature profile and water depth data collected from USS HAYLER using BT and XBT casts in the Arabian Sea and other seas from 31 October 1984 to 22 October 1985 (NODC Accession 9200289)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS HAYLER in the Arabian Sea and other seas. Data were collected from 31...

  4. Temperature profile and water depth data collected from SAMUEL B. ROBERTS in the NW Atlantic (limit-40 W) from 22 September 1986 to 07 October 1986 (NODC Accession 8600353)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the USS SAMUEL B. ROBERTS in the Northwest Atlantic Ocean. Data were collected from 22...

  5. Temperature profile and water depth collected from EDGAR M. QUEENY from BT and XBT casts in the Gulf of Mexico from 13 December 1985 to 22 December 1985 (NODC Accession 8600318)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the EDGAR M. QUEENY in the Gulf of Mexico. Data were collected from 13 December...

  6. Shoot water relations of mature black spruce families displaying a genotype x environment interaction in growth rate. II. Temporal trends and response to varying soil water conditions

    Science.gov (United States)

    John E. Major; Kurt H. Johnsen

    1999-01-01

    Pressure-volume curves and shoot water potentials were determined for black spruce (Picea mariana (Mill.) BSP) trees from four full-sib families at the Petawawa Research Forest, Ontario, Canada. Trees were sampled from a dry site in 1992 and from the dry site and a wet site in 1993. Modulus of elasticity (e ), osmotic potential at...

  7. Growth and physiological responses of a tropical toxic marine microgalga Heterosigma akashiwo (Heterokontophyta: Raphidophyceae) from Singapore waters to varying nitrogen sources and light conditions

    Science.gov (United States)

    Kok, Jerome Wai Kit; Yeo, Darren Chong Jinn; Leong, Sandric Chee Yew

    2015-09-01

    Strains of Heterosigma akashiwo have been identified in Singapore waters, but there have been few studies detailing the biology of such tropical strains. Management of such species is important for the integrity of aquaculture industries, as well as for food safety and public health. Coastal modifications may, however, be altering the productivity of such species. This study investigated the effects of two anthropogenic factors—nitrogen (N)-pollution and light-shading—upon a single strain of H. akashiwo which was isolated from Singapore waters. The study observed that H. akashiwo strains grew well under the pulsed supply of three N-sources—ammonium, nitrate, and urea. Growth rate values suggest its ability to out-grow diatom species, which typically dominate coastal environments. The light absorption capacity highlighted potential response dissimilarity under the different N-regime conditions. Light experiments also demonstrated the ability of H. akashiwo to tolerate decreased light conditions, which allow it to thrive at depth. The ability to accumulate intracellular stores of N-nutrients was also demonstrated and can be important for sustaining cell productivity. This study therefore indicated how poor management of coastal environments may enhance the bloom potential of such toxic bloomforming species.

  8. The Northern Gulf of Mexico During OAE2 and the Relationship Between Water Depth and Black Shale Development

    Science.gov (United States)

    Lowery, Christopher M.; Cunningham, Robert; Barrie, Craig D.; Bralower, Timothy; Snedden, John W.

    2017-12-01

    Despite their name, Oceanic Anoxic Events (OAEs) are not periods of uniform anoxia and black shale deposition in ancient oceans. Shelf environments account for the majority of productivity and organic carbon burial in the modern ocean, and this was likely true in the Cretaceous as well. However, it is unlikely that the mechanisms for such an increase were uniform across all shelf environments. Some, like the northwest margin of Africa, were characterized by strong upwelling, but what might drive enhanced productivity on shelves not geographically suited for upwelling? To address this, we use micropaleontology, carbon isotopes, and sedimentology to present the first record of Oceanic Anoxic Event 2 (OAE2) from the northern Gulf of Mexico shelf. Here OAE2 occurred during the deposition of the well-oxygenated, inner neritic/lower estuarine Lower Tuscaloosa Sandstone. The overlying organic-rich oxygen-poor Marine Tuscaloosa Shale is entirely Turonian in age. We trace organic matter enrichment from the Spinks Core into the deepwater Gulf of Mexico, where wireline log calculations and public geochemical data indicate organic enrichment and anoxia throughout the Cenomanian-Turonian boundary interval. Redox change and organic matter preservation across the Gulf of Mexico shelf were driven by sea level rise prior to the early Turonian highstand, which caused the advection of nutrient-rich, oxygen-poor waters onto the shelf. This results in organic matter mass accumulation rates 1-2 orders of magnitude lower than upwelling sites like the NW African margin, but it likely occurred over a much larger geographic area, suggesting that sea level rise was an important component of the overall increase in carbon burial during OAE2.

  9. Testing the depth-differentiation hypothesis in a deepwater octocoral

    Science.gov (United States)

    Quattrini, Andrea; Baums, Iliana B.; Shank, Timothy M.; Morrison, Cheryl L.; Cordes, Erik E.

    2015-01-01

    The depth-differentiation hypothesis proposes that the bathyal region is a source of genetic diversity and an area where there is a high rate of species formation. Genetic differentiation should thus occur over relatively small vertical distances, particularly along the upper continental slope (200–1000 m) where oceanography varies greatly over small differences in depth. To test whether genetic differentiation within deepwater octocorals is greater over vertical rather than geographical distances, Callogorgia delta was targeted. This species commonly occurs throughout the northern Gulf of Mexico at depths ranging from 400 to 900 m. We found significant genetic differentiation (FST = 0.042) across seven sites spanning 400 km of distance and 400 m of depth. A pattern of isolation by depth emerged, but geographical distance between sites may further limit gene flow. Water mass boundaries may serve to isolate populations across depth; however, adaptive divergence with depth is also a possible scenario. Microsatellite markers also revealed significant genetic differentiation (FST = 0.434) between C. delta and a closely related species, Callogorgia americana, demonstrating the utility of microsatellites in species delimitation of octocorals. Results provided support for the depth-differentiation hypothesis, strengthening the notion that factors covarying with depth serve as isolation mechanisms in deep-sea populations.

  10. Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought.

    Science.gov (United States)

    Nardini, Andrea; Casolo, Valentino; Dal Borgo, Anna; Savi, Tadeja; Stenni, Barbara; Bertoncin, Paolo; Zini, Luca; McDowell, Nathan G

    2016-03-01

    In 2012, an extreme summer drought induced species-specific die-back in woody species in Northeastern Italy. Quercus pubescens and Ostrya carpinifolia were heavily impacted, while Prunus mahaleb was largely unaffected. By comparing seasonal changes in isotopic composition of xylem sap, rainfall and deep soil samples, we show that P. mahaleb has a deeper root system than the other two species. This morphological trait allowed P  mahaleb to maintain higher water potential (Ψ), gas exchange rates and non-structural carbohydrates content (NSC) throughout the summer, when compared with the other species. More favourable water and carbon states allowed relatively stable maintenance of stem hydraulic conductivity (k) throughout the growing season. In contrast, in Quercus pubescens and Ostrya carpinifolia, decreasing Ψ and NSC were associated with significant hydraulic failure, with spring-to-summer k loss averaging 60%. Our data support the hypothesis that drought-induced tree decline is a complex phenomenon that cannot be modelled on the basis of single predictors of tree status like hydraulic efficiency, vulnerability and carbohydrate content. Our data highlight the role of rooting depth in seasonal progression of water status, gas exchange and NSC, with possible consequences for energy-demanding mechanisms involved in the maintenance of vascular integrity. © 2015 John Wiley & Sons Ltd.

  11. Textural characteristics of ready-to-eat breakfast cereals produced from different types of cereal and with varying water addition during extrusion process

    Directory of Open Access Journals (Sweden)

    Žaneta Ugarčić-Hardi

    2010-01-01

    Full Text Available Textural characteristics of ready-to-eat breakfast cereals were evaluated in order to determine the influence of wheat, corn and rice flour, as well as a varying water addition during the extrusion process. Extruded breakfast cereal balls were made of wheat semolina in combination with wheat, corn or rice flour. Three different levels of water addition (21 %, 23 % and 27 % were used during the extrusion process. Samples were prepared with and without surface sugar coating. Sensory and instrumental assessments (TA.XT Plus were used to evaluate textural attributes of dry samples and samples during immersion in milk. Weibull equation was used for nonlinear estimation of experimental data obtained for milk absorption and crispiness as a function of time. Crispiness of dry extruded balls without coating was much higher than for samples with coating. The highest values for crispness were observed for wheat extruded balls and the lowest for samples with corn flour addition. Increasing water addition during the extrusion process significantly increased crispness of ready-to-eat breakfast cereals. The rate of milk absorption and loss of crispiness were significantly higher for samples without coating than for samples with coating.

  12. Variáveis microbiológicas e produtividade do arroz sob diferentes manejos do solo e água = Microbial variables and productivity of rice under different soil and water managements

    Directory of Open Access Journals (Sweden)

    Orivaldo Arf

    2007-07-01

    Full Text Available O objetivo do trabalho foi verificar o efeito de diferentes manejos de solo (MS e água (MA no cultivo de arroz de terras altas por meio da quantificação do carbono da biomassa microbiana (CBM e do CO2 (C-CO2 liberado, do quociente metabólico (qCO2, da micorrização e da produtividade (PROD. O cultivar utilizado foi o IAC 202 e odelineamento experimental foi em blocos casualizados, sendo 3 MS: plantio direto (PD, grade pesada+grade niveladora (GG, escarificador+grade niveladora (EG e 3 MA: lâmina L0 (sem irrigação, lâmina L1 (irrigação na fase reprodutiva e de maturação e lâmina L2 (irrigação durante todo ciclo, com 4 repetições. As variáveis microbiológicas apresentaram sensibilidade em detectar diferenças entre períodos com bons e irregulares índices pluviométricos, onde PD + L1 mostraram os melhores resultados. Sob a ótica da produtividade e viabilidade econômica, o EG + L1 propiciaram resultados mais satisfatórios para a cultura do arroz.This experiment aimed to verify the effects of differents soil (MSand water (WM managements on upland rice cultivation through microbial biomass carbon (MBC quantification, evoluted CO2 (C-CO2, metabolic quotient (qCO2, micorrhization and crop yield. Cultivar IAC 202 was used. The experimental design was a randomized complete block design, with 3 SM: no-tillage (NT, heavy disk + leveling diskharrowing (HL, and chisel plowing + leveling disk harrowing (CL, plus 3 WM: no irrigation (WD0, water depth 1 (WD1, irrigation at the reproductive and maturation periods and water depth 2 (WD2, irrigation throughout the rice cycle, with four replications. The microbiological variables showed sensitivity in detecting differencesbetween good periods and irregular rainfall, where the NT + WD1 showed best results. However, under the viewpoint of productivity and economic viability, CL + WD1 propitiated the most satisfactory results for rice culture.

  13. Reduction of fatigue loads on jacket substructure through blade design optimization for multi-megawatt wind turbines at 50 m water depths

    Science.gov (United States)

    Njomo Wandji, W.; Pavese, C.; Natarajan, A.; Zahle, F.

    2016-09-01

    This paper addresses the reduction of the fore-aft damage equivalent moment at the tower base for multi-megawatt offshore wind turbines mounted on jacket type substructures at 50 m water depths. The study investigates blade design optimization of a reference 10 MW wind turbine under standard wind conditions of onshore sites. The blade geometry and structure is optimized to yield a design that minimizes tower base fatigue loads without significant loss of power production compared to that of the reference setup. The resulting blade design is then mounted on a turbine supported by a jacket and placed under specific offshore site conditions. The new design achieves alleviate fatigue damage equivalent loads also in the jacket members, showing the possibility to prolong its design lifetime or to save material in comparison to the reference jacket. Finally, the results suggest additional benefit on the efficient design of other components such as the constituents of the nacelle.

  14. Measuring CO 2 and N 2 O Mass Transfer into GAP-1 CO 2 –Capture Solvents at Varied Water Loadings

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, Greg A.; Zwoster, Andy; Zheng, Feng; Perry, Robert J.; Wood, Benjamin R.; Spiry, Irina; Freeman, Charles J.; Heldebrant, David J.

    2017-04-12

    This paper investigates the CO2 and N2 O absorption behavior in the water-lean gamma amino propyl (GAP)-1/TEG solvent system using a wetted-wall contactor. Testing was performed on a blend of GAP-1 aminosilicone in triethylene glycol at varied water loadings in the solvent. Measurements were made with CO2 and N2 O at representative lean (0.04 mol CO2/mol alkalinity), middle (0.13 mol CO2 /mol alkalinity) and rich (0.46 mol CO2 /mol alkalinity) solvent loadings at 0, 5, 10 and 15 wt% water loadings at 40, 60 and 80C° and N2 O at (0.08-0.09 mol CO2 /mol alkalinity) at 5 wt% water at 40, 60 and 80C°. CO2 flux was found to be non-linear with respect to log mean pressure driving force (LMPD). Liquid-film mass transfer coefficients (k'g) were calculated by subtracting the gas film resistance (determined from a correlation from literature) from the overall mass transfer measurement. The resulting k'g values for CO2 and N2 O in GAP-1/TEG mixtures were found to be higher than that of 5M aqueous monoethanolamine under comparable driving force albeit at higher solvent viscosities. The k'g values for CO2 were also found to decrease with increasing solvent water content and increase with a decrease in temperature. These observations indicate that mass transfer of CO2 in GAP-1/TEG is linked to the physical solubility of CO2 , which is higher in organic solvents compared to water. This paper expands on the understanding of the unique mass transfer behavior and kinetics of CO2 capture in water-lean solvents.

  15. Distribution and biogeographic trends of decapod assemblages from Galicia Bank (NE Atlantic) at depths between 700 and 1800 m, with connexions to regional water masses

    Science.gov (United States)

    Cartes, J. E.; Papiol, V.; Frutos, I.; Macpherson, E.; González-Pola, C.; Punzón, A.; Valeiras, X.; Serrano, A.

    2014-08-01

    The Galicia Bank (NE Atlantic, 42°67‧N-11°74‧W) is an isolated seamount, near NW Spain, a complex geomorphological and sedimentary structure that receives influences from contrasting water masses of both northern and southern origins. Within the project INDEMARES, three cruises were performed on the bank in 2009 (Ecomarg0709), 2010 (BanGal0810) and 2011 (BanGal0811) all in July-August. Decapods and other macrobenthic crustaceans (eucarids and peracarids) were collected with different sampling systems, mainly beam trawls (BT, 10 mm of mesh size at codend) and a GOC73 otter trawl (20 mm mesh size). Sixty-seven species of decapod crustaceans, 6 euphausiids, 19 peracarids and 1 ostracod were collected at depths between 744 and 1808 m. We found two new species, one a member of the Chirostylidae, Uroptychus cartesi Baba & Macpherson, 2012, the other of the Petalophthalmidae (Mysida) Petalophthalmus sp. A, in addition to a number of new biogeographic species records for European or Iberian waters. An analysis of assemblages showed a generalized species renewal with depth, with different assemblages between 744 and ca. 1400 m (the seamount top assemblage, STA) and between ca. 1500 and 1800 m (the deep-slope assemblage over seamount flanks, DSA). These were respectively associated with Mediterranean outflow waters (MOW) and with Labrador Sea Water (LSW). Another significant factor separating different assemblages over the Galician Bank was the co-occurrence of corals (both colonies of hard corals such as Lophelia pertusa and Madrepora oculata and/or gorgonians) in hauls. Munidopsids (Munidopsis spp.), chirostylids (Uroptychus spp.), and the homolodromiid Dicranodromia mahieuxii formed a part of this coral-associated assemblage. Dominant species at the STA were the pandalid Plesionika martia (a shrimp of subtropical-southern distribution) and the crabs Bathynectes maravigna and Polybius henslowii, whereas dominant species in the DSA were of northern origin, the

  16. Spatial Autocorrelation, Source Water and the Distribution of Total and Viable Microbial Abundances within a Crystalline Formation to a Depth of 800 m.

    Science.gov (United States)

    Beaton, E D; Stuart, Marilyne; Stroes-Gascoyne, Sim; King-Sharp, Karen J; Gurban, Ioana; Festarini, Amy; Chen, Hui Q

    2017-01-01

    Proposed radioactive waste repositories require long residence times within deep geological settings for which we have little knowledge of local or regional subsurface dynamics that could affect the transport of hazardous species over the period of radioactive decay. Given the role of microbial processes on element speciation and transport, knowledge and understanding of local microbial ecology within geological formations being considered as host formations can aid predictions for long term safety. In this relatively unexplored environment, sampling opportunities are few and opportunistic. We combined the data collected for geochemistry and microbial abundances from multiple sampling opportunities from within a proposed host formation and performed multivariate mixing and mass balance (M3) modeling, spatial analysis and generalized linear modeling to address whether recharge can explain how subsurface communities assemble within fracture water obtained from multiple saturated fractures accessed by boreholes drilled into the crystalline formation underlying the Chalk River Laboratories site (Deep River, ON, Canada). We found that three possible source waters, each of meteoric origin, explained 97% of the samples, these are: modern recharge, recharge from the period of the Laurentide ice sheet retreat (ca. ∼12000 years before present) and a putative saline source assigned as Champlain Sea (also ca. 12000 years before present). The distributed microbial abundances and geochemistry provide a conceptual model of two distinct regions within the subsurface associated with bicarbonate - used as a proxy for modern recharge - and manganese; these regions occur at depths relevant to a proposed repository within the formation. At the scale of sampling, the associated spatial autocorrelation means that abundances linked with geochemistry were not unambiguously discerned, although fine scale Moran's eigenvector map (MEM) coefficients were correlated with the abundance data

  17. Accumulation of N and P in the Legume Lespedeza davurica in Controlled Mixtures with the Grass Bothriochloa ischaemum under Varying Water and Fertilization Conditions

    Directory of Open Access Journals (Sweden)

    Bingcheng Xu

    2018-02-01

    Full Text Available Water and fertilizers affect the nitrogen (N and phosphorus (P acquisition and allocation among organs in dominant species in natural vegetation on the semiarid Loess Plateau. This study aimed to clarify the N and P accumulation and N:P ratio at organ and plant level of a local legume species mixed with a grass species under varying water and fertilizer supplies, and thus to fully understand the requirements and balance of nutrient elements in response to growth conditions change of native species. The N and P concentration in the organ (leaf, stem, and root and plant level of Lespedeza davurica (C3 legume, were examined when intercropped with Bothriochloa ischaemum (C4 grass. The two species were grown outdoors in pots under 80, 60, and 40% of soil water field capacity (FC, -NP, +N, +P, and +NP supply and the grass:legume mixture ratios of 2:10, 4:8, 6:6, 8:4, 10:2, and 12:0. The three set of treatments were under a randomized complete block design. Intercropping with B. ischaemum did not affect N concentrations in leaf, stem and root of L. davurica, but reduced P concentration in each organ under P fertilization. Only leaf N concentration in L. davurica showed decreasing trend as soil water content decreased under all fertilization and mixture proportion treatments. Stems had the lowest, while roots had the highest N and P concentration. As the mixture proportion of L. davurica decreased under P fertilization, P concentration in leaf and root also decreased. The N concentration in L. davurica at the whole plant level was 11.1–17.2%. P fertilization improved P concentration, while decreased N:P ratio in L. davurica. The N:P ratios were less than 14.0 under +P and +NP treatments. Our results implied that exogenous N and P fertilizer application may change the N:P stoichiometry and influence the balance between nutrients and organs of native dominant species in natural grassland, and P element should be paid more attention when considering

  18. Predicting the impact of riverbed excavation on the buried depth of groundwater table and capillary water zone in the river banks-taking Xinfeng hydropower station as an example

    Science.gov (United States)

    Shi, Jie; Lan, Jun-Kang

    2017-06-01

    In order to obtain a larger water level drop for power generation, Xinfeng hydropower station proposed to dig 0∼3m depth under the riverbed of downstream. This will affect the burial depth of the groundwater level and capillary water zone on both sides of the river and the nearby resident life and agriculture production. In this study, a three-dimensional groundwater numerical model was set using GMS software to predict the flow field changes after the downstream of riverbed was deepen in Xinfeng hydropower station. Simulation results showed that groundwater level near the bank will greatly decline, affecting water consumption of local residents. Because of the local developed canal system and abundant irrigation water amount, riverbed excavation barely affects agriculture production when increasing the irrigation water volume and frequency.

  19. Validating the Inhibition of Staphylococcus aureus in Shelf-Stable, Ready-to-Eat Snack Sausages with Varying Combinations of pH and Water Activity.

    Science.gov (United States)

    Tilkens, Blair L; King, Amanda M; Glass, Kathleen A; Sindelar, Jeffrey J

    2015-06-01

    Shelf-stable, ready-to-eat meat and poultry products represent a large sector of the meat snack category in the meat and poultry industry. Determining the physiochemical conditions that prevent the growth of foodborne pathogens, namely, Staphylococcus aureus postprocessing, is not entirely clear. Until recently, pH and water activity (a(w)) criteria for shelf stability has been supported from the U.S. Department of Agriculture training materials. However, concern about the source and scientific validity of these critical parameters has brought their use into question. Therefore, the objective of this study was to evaluate different combinations of pH and aw that could be used for establishing scientifically supported shelf stability criteria defined as preventing S. aureus growth postprocessing. Snack sausages were manufactured with varying pH (5.6, 5.1, and 4.7) and a(w) (0.96, 0.92, and 0.88) to achieve a total of nine treatments. The treatments were inoculated with a three-strain mixture of S. aureus, with populations measured at days 0, 7, 14, and 28 during 21 °C storage. Results revealed treatments with a pH ≤ 5.1 and a(w) ≤ 0.96 did not support the growth of S. aureus and thus could be considered shelf stable for this pathogen. The results provide validated shelf stability parameters to inhibit growth of S. aureus in meat and poultry products.

  20. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Science.gov (United States)

    Mezbahuddin, Mohammad; Grant, Robert F.; Flanagan, Lawrence B.

    2017-12-01

    Water table depth (WTD) effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1) oxygen transport, which controls energy yields from microbial and root oxidation-reduction reactions, and (2) vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May-October WTD drawdown of ˜ 0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re) by 0.26 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen) status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP) and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss) GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. Similar increases in GPP and Re caused no significant WTD effects on modeled

  1. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Directory of Open Access Journals (Sweden)

    M. Mezbahuddin

    2017-12-01

    Full Text Available Water table depth (WTD effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1 oxygen transport, which controls energy yields from microbial and root oxidation–reduction reactions, and (2 vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May–October WTD drawdown of  ∼  0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re by 0.26 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. Similar increases in

  2. Fluctuations in Anoxia and the Depth of the Eastern Equatorial Pacific Thermocline Inferred from a 2000 Year Sediment Record of Water-Column Denitrification Off Baja California.

    Science.gov (United States)

    van Geen, A.; Mey, J. L., IV; Thunell, R.; Berelson, W.; Deutsch, C. A.

    2014-12-01

    High-resolution records of sediment 15N at three sites along the western margin of North America were recently shown to indicate a gradual weakening of water-column denitrification and therefore anoxia from 1860 to 1990 followed by two decades of intensifying denitrification and anoxia (Deutsch et al., Science August 8, 2014). An ocean general circulation model driven by wind and buoyancy fluxes reproduces these variations for the last 50 years and mechanistically links them to changes in the depth of the thermocline in the eastern Pacific. The data-model comparison shows that strong denitrification and anoxia are associated with a shallow thermocline in the eastern equatorial Pacific and vice-versa. We present here a longer record of sediment 15N from one of the previously studied sites, Soledad basin, indicating that the period of particularly weak denitrification and anoxia in the eastern Pacific reached in the early 1990s was unprecedented for the past 2000 years. This supports the notion that a concomitant deepening of the thermocline during the 20th century simulated by Intergovernmental Panel on Climate Change models may have been driven by the anthropogenic buildup of greenhouse gases. At the other end of the spectrum, the extended sediment 15N record indicates a period of particularly strong denitrification and anoxia extending from about 800 to 1200 AD. This coincides with the Medieval Warm Period of prolonged droughts indicated by tree-ring studies in the American West as well as reduced runoff recorded off coastal Peru. The particularly shallow thermocline inferred from the Soledad basin 15N record for this interval is consistent with the prolonged La Nina-like conditions in the equatorial Pacific that have been proposed to explain the Medieval droughts.

  3. Temperature profile and water depth data collected from USS McInerney from expendable bathythermographs (XBT) in the Red Sea from 07 December 1992 to 28 December 1992 (NODC Accession 9300017)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS McInerney in the Red Sea. Data were collected from 07 December 1992 to 28...

  4. Response of seasonal soil freeze depth to climate change across China

    Science.gov (United States)

    Peng, Xiaoqing; Zhang, Tingjun; Frauenfeld, Oliver W.; Wang, Kang; Cao, Bin; Zhong, Xinyue; Su, Hang; Mu, Cuicui

    2017-05-01

    The response of seasonal soil freeze depth to climate change has repercussions for the surface energy and water balance, ecosystems, the carbon cycle, and soil nutrient exchange. Despite its importance, the response of soil freeze depth to climate change is largely unknown. This study employs the Stefan solution and observations from 845 meteorological stations to investigate the response of variations in soil freeze depth to climate change across China. Observations include daily air temperatures, daily soil temperatures at various depths, mean monthly gridded air temperatures, and the normalized difference vegetation index. Results show that soil freeze depth decreased significantly at a rate of -0.18 ± 0.03 cm yr-1, resulting in a net decrease of 8.05 ± 1.5 cm over 1967-2012 across China. On the regional scale, soil freeze depth decreases varied between 0.0 and 0.4 cm yr-1 in most parts of China during 1950-2009. By investigating potential climatic and environmental driving factors of soil freeze depth variability, we find that mean annual air temperature and ground surface temperature, air thawing index, ground surface thawing index, and vegetation growth are all negatively associated with soil freeze depth. Changes in snow depth are not correlated with soil freeze depth. Air and ground surface freezing indices are positively correlated with soil freeze depth. Comparing these potential driving factors of soil freeze depth, we find that freezing index and vegetation growth are more strongly correlated with soil freeze depth, while snow depth is not significant. We conclude that air temperature increases are responsible for the decrease in seasonal freeze depth. These results are important for understanding the soil freeze-thaw dynamics and the impacts of soil freeze depth on ecosystem and hydrological process.

  5. THE IMPACT OF PHYTOPLANKTON ON SPECTRAL WATER TRANSPARENCY IN THE SOUTHERN-OCEAN - IMPLICATIONS FOR PRIMARY PRODUCTIVITY

    NARCIS (Netherlands)

    TILZER, MM; GIESKES, WW; HEUSEL, R; FENTON, N

    Spectral water transparency in the Northern Weddell Sea was studied during Austral spring. The depth of the 1-% surface irradiance level (''euphotic depth'') varied between 35 and 109 m and was strongly influenced by phytoplankton biomass. Secchi depths were non-linearly related to euphotic depth.

  6. Conductivity, temperature, depth, water quality and pigment data from R/V Bellows cruise BE-1311, 2012-12-12 to 2012-12-14 (NCEI Accession 0159411)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains conductivity, temperature, and depth data collected during R/V Bellows cruise BE-1311 of the offshore shelf of the Florida Panhandle Bight at...

  7. VERIFIKASI PERCENTAGE DEPTH DOSE (PDD) DAN PROFILE DOSE PESAWAT LINEAR ACCELERATOR (LINAC) BERKAS ELEKTRON 6 MeV, 9 MeV, 12 MeV DAN 15 MeV MENGGUNAKAN WATER PHANTOM

    OpenAIRE

    Marten Padang, Jumedi

    2015-01-01

    Abstrak Telah dilakukan penelitian tentang Verifikasi Percentage Depth Dose (PDD) dan Profile Dose Pesawat Linear Accelerator (LINAC) Berkas Elektron 6 MeV, 9 MeV, 12 MeV dan 15 MeV Menggunakan Water Phantom. Penelitian ini bertujuan untuk menganalisis Percentage Depth Dose (PDD) dan Profile Dose pesawat linac jenis HCX 5640 berkas elektron 6 MeV, 9 MeV, 12 MeV dan 15 MeV untuk luas lapangan 10 x 10 cm2. Penelitian ini membandingkan data acuan yang telah ada sebelumnya dan data yang dipero...

  8. Oregano production under various water depths estimated by means of the class A pan evaporation Produção de orégano com diferentes lâminas de irrigação estimadas a partir da evaporação do tanque classe A

    Directory of Open Access Journals (Sweden)

    Patricia Angélica A Marques

    2009-03-01

    Full Text Available The purpose of this experiment was to analyze the effect of five irrigation water depths on oregano production. Oregano is a plant rich in essential oil, commonly used as seasoning in food preparation. The water depths were estimated based on the class A pan evaporation (CPE: 0 CPE (without water replacement; 25 CPE, 50 CPE, 75 CPE, and 100% CPE. The analyzed variables were fresh and dry weight of leaves and roots, yield, net return, and water use efficiency. The experiment was carried out in Presidente Prudente, São Paulo State, Brazil, from February to May 2006. The best results for all the studied variables were found when 100% CPE was used. A linear positive relation was observed between water increments and fresh and dry weight of both the aboveground part and roots. The use of a water depth corresponding to 100% CPE resulted in the maximum productivity (8,089.7 kg ha-1, and in the highest net annual return (R$ 57,637.87 ha-1.Foi analisado o efeito de cinco lâminas de irrigação na produção do orégano, planta rica em óleo essencial, muito usada como tempero na preparação de alimentos. As lâminas de água foram baseadas na evaporação do tanque classe A (ECA sendo: 0 ECA (sem reposição de água; 25 ECA; 50 ECA; 75 ECA e 100% ECA. As variáveis analisadas foram matéria fresca e seca de folhas e raízes, produtividade, receita líquida e eficiência do uso da água. O experimento foi instalado em Presidente Prudente (SP, de fevereiro a maio de 2006. Os melhores resultados para todas as variáveis estudadas foram encontrados com a reposição de 100% ECA. Observou-se uma relação linear positiva entre o incremento das lâminas de irrigação e as massas fresca e seca tanto da parte aérea, quanto das raízes. A aplicação da lâmina de irrigação equivalente a 100% ECA resultou na máxima produtividade observada (8.089,7 kg ha-1 e na receita líquida anual mais alta (R$ 57.637,87 ha-1.

  9. Produção de escleródios de Sclerotinia sclerotiorum e severidade de oídio em cultivares de ervilha sob diferentes lâminas de água Sclerotia of Sclerotinia sclerotiorum production and powdery mildew severity in pea cultivars under different water depths

    Directory of Open Access Journals (Sweden)

    Carlos Alberto da S Oliveira

    2000-03-01

    Full Text Available Foi estudado o efeito de lâminas de água sobre o número de escleródios produzidos por Sclerotinia sclerotiorum, a severidade de oídio causada por Erysiphe pisi e a produção de matéria seca da parte aérea em ervilha (Pisum sativum L. sob condições de solo e clima do Brasil Central. O delineamento experimental foi de blocos ao acaso, com parcelas subdivididas e quatro repetições. As lâminas de água, aplicadas através de uma única linha de aspersão, variaram entre 125 e 499 mm. As cultivares estudadas foram Maria, Luíza, Marina, Mikado, Triofin, Viçosa, Amélia e Kodama. A matéria seca da parte aérea das plantas não variou entre as cultivares, mas aumentou com a lâmina total de água aplicada. O número de escleródios produzidos nas plantas aumentou significativamente com o aumento da lâmina de água aplicada e não diferiu entre cultivares semi-áfilas e cultivares de folhas normais. As cultivares Marina, Mikado e Luíza mostraram uma produção de escleródios significativamente inferior à observada na cultivar Triofin. Lâmina de água e cultivar interagiram significativamente para severidade de oídio avaliada aos 70 dias após o plantio. O aumento da lâmina de água total aplicada na cultura reduziu a severidade de oídio nas cultivares suscetíveis Amélia e Mikado. As cultivares Maria e Marina apresentaram potencial de serem utilizadas em áreas com problemas de Sclerotinia.The effect of water depth on the number of sclerotia produced by Sclerotinia sclerotiorum, oidium severity caused by Erysiphe pisi, and top plant dry matter of dry pea (Pisum sativum L. was studied under soil and climate conditions of Central Brazil. It was used a randomized complete block design with four replications (cultivar as a factor and a split plot on water depth. Water depths, applied through a single irrigation sprinkler line, varied from 125 to 499 mm, and the cultivars studied were Maria, Luiza, Marina, Mikado, Triofin, Viçosa, Am

  10. Rapid and long-term effects of water deficit on gas exchange and hydraulic conductance of silver birch trees grown under varying atmospheric humidity.

    Science.gov (United States)

    Sellin, Arne; Niglas, Aigar; Õunapuu-Pikas, Eele; Kupper, Priit

    2014-03-24

    Effects of water deficit on plant water status, gas exchange and hydraulic conductance were investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air conditions; long-term water deficit was generated by seasonal drought. The rapid water deficit quantified by leaf (ΨL) and branch water potentials (ΨB) had a significant (P gas exchange parameters, while inclusion of ΨB in models resulted in a considerably better fit than those including ΨL, which supports the idea that stomatal openness is regulated to prevent stem rather than leaf xylem dysfunction. Under moderate water deficit (ΨL≥-1.55 MPa), leaf conductance to water vapour (gL), transpiration rate and leaf hydraulic conductance (KL) were higher (P < 0.05) and leaf temperature lower in trees grown in elevated air humidity (H treatment) than in control trees (C treatment). Under severe water deficit (ΨL<-1.55 MPa), the treatments showed no difference. The humidification manipulation influenced most of the studied characteristics, while the effect was to a great extent realized through changes in soil water availability, i.e. due to higher soil water potential in H treatment. Two functional characteristics (gL, KL) exhibited higher (P < 0.05) sensitivity to water deficit in trees grown under increased air humidity. The experiment supported the hypothesis that physiological traits in trees acclimated to higher air humidity exhibit higher sensitivity to rapid water deficit with respect to two characteristics - leaf conductance to water vapour and leaf hydraulic conductance. Disproportionate changes in sensitivity of stomatal versus leaf hydraulic conductance to water deficit will impose greater risk of desiccation-induced hydraulic

  11. Regional scenario building as a tool to support vulnerability assessment of food & water security and livelihood conditions under varying natural resources managements

    Science.gov (United States)

    Reinhardt, Julia; Liersch, Stefan; Dickens, Chris; Kabaseke, Clovis; Mulugeta Lemenih, Kassaye; Sghaier, Mongi; Hattermann, Fred

    2013-04-01

    Participatory regional scenario building was carried out with stakeholders and local researchers in four meso-scale case studies (CS) in Africa. In all CS the improvement of food and / or water security and livelihood conditions was identified as the focal issue. A major concern was to analyze the impacts of different plausible future developments on these issues. The process of scenario development is of special importance as it helps to identify main drivers, critical uncertainties and patterns of change. Opportunities and constraints of actors and actions become clearer and reveal adaptation capacities. Effective strategies must be furthermore reasonable and accepted by local stakeholders to be implemented. Hence, developing scenarios and generating strategies need the integration of local knowledge. The testing of strategies shows how they play out in different scenarios and how robust they are. Reasons and patterns of social and natural vulnerability can so be shown. The scenario building exercise applied in this study is inspired by the approach from Peter Schwartz. It aims at determining critical uncertainties and to identify the most important driving forces for a specific focal issue which are likely to shape future developments of a region. The most important and uncertain drivers were analyzed and systematized with ranking exercises during meetings with local researchers and stakeholders. Cause-effect relationships were drawn in the form of concept maps either during the meetings or by researchers based on available information. Past observations and the scenario building outcomes were used to conduct a trend analysis. Cross-comparisons were made to find similarities and differences between CS in terms of main driving forces, patterns of change, opportunities and constraints. Driving forces and trends which aroused consistently over scenarios and CS were identified. First results indicate that livelihood conditions of people rely often directly on the

  12. Depth distribution and abundance of a coral-associated reef fish: roles of recruitment and post-recruitment processes

    Science.gov (United States)

    Smallhorn-West, Patrick F.; Bridge, Tom C. L.; Munday, Philip L.; Jones, Geoffrey P.

    2017-03-01

    The abundance of many reef fish species varies with depth, but the demographic processes influencing this pattern remain unclear. Furthermore, while the distribution of highly specialized reef fish often closely matches that of their habitat, it is unclear whether changes in distribution patterns over depth are the result of changes in habitat availability or independent depth-related changes in population parameters such as recruitment and mortality. Here, we show that depth-related patterns in the distribution of the coral-associated goby, Paragobiodon xanthosoma, are strongly related to changes in recruitment and performance (growth and survival). Depth-stratified surveys showed that while the coral host, Seriatopora hystrix, extended into deeper water (>20 m), habitat use by P. xanthosoma declined with depth and both adult and juvenile P. xanthosoma were absent below 20 m. Standardization of S. hystrix abundance at three depths (5, 15 and 30 m) demonstrated that recruitment of P. xanthosoma was not determined by the availability of its habitat. Reciprocal transplantation of P. xanthosoma to S. hystrix colonies among three depths (5, 15 and 30 m) then established that individual performance (survival and growth) was lowest in deeper water; mortality was three times higher and growth greatly reduced in individuals transplanted to 30 m. Individuals collected from 15 m also exhibited growth rates 50% lower than fish from shallow depths. These results indicate that the depth distribution of this species is limited not by the availability of its coral habitat, but by demographic costs associated with living in deeper water.

  13. The Effect of Repeated Irrigation with Water Containing Varying Levels of Total Organic Carbon on the Persistence of Escherichia coli O157:H7 on Baby Spinach

    Science.gov (United States)

    The California lettuce and leafy greens industry has adopted the Leafy Greens Marketing Agreement (LGMA), which allows for 126 Most Probable Number (MPN) generic E. coli/100ml in irrigation water. Repeat irrigation of baby spinach plants with water containing E. coli O157:H7 and different levels of...

  14. Soil spatial variability and the estimation of the irrigation water depth Variabilidade espacial do solo e a estimativa da lâmina de irrigação

    Directory of Open Access Journals (Sweden)

    Klaus Reichardt

    2001-09-01

    Full Text Available The effects of soil water spatial variability previous to irrigation and of the field capacity on the estimation of irrigation water depth are evaluated. The experiment consisted of a common bean (Phaseolus vulgaris L. crop established on a Kandiudalfic Eutrudox of Piracicaba, SP, Brazil, irrigated by central pivot, in which soil water contents were evaluated with a depth neutron gauge, in a grid of 20x4 points with lag of 0.5 m. In a given situation, the 80 calculated irrigation water depths presented a coefficient of variation of 29.3%, with an average water value of 18 mm, maximum of 41mm and minimum of 9 mm. It is concluded that the only practical way of irrigation is the use of an average water depth, due to the inherent variability of the soil, and that the search for better field capacity values does not imply in better water depth estimates.A influência da variabilidade espacial da umidade do solo em uma situação pré-irrigação e da capacidade de campo é avaliada no cálculo da lâmina de irrigação. O experimento constou de cultura de feijão (Phaseolus vulgaris L. estabelecida em um ARGISSOLO da região de Piracicaba, SP, irrigada por pivô central, tendo as medidas de umidade sido feitas com sonda de nêutrons, em uma malha de 20x4 pontos, espaçados de 0.5 m. Em determinada situação, os 80 valores de lâmina de irrigação calculados apresentaram um coeficiente de variação de 29.3%, para uma média de 18 mm, com valor mínimo de 9 mm e máximo de 41mm. É concluído que a única forma prática de irrigação é o uso de uma lâmina média devido à variabilidade inerente ao solo, e que a procura de melhores valores para a capacidade de campo não implica em melhores estimativas da lâmina de irrigação.

  15. The Shoreline Management Tool, an ArcMap Tool for Analyzing Water Depth, Inundated Area, Volume, and Selected Habitats, with an Example for the Lower Wood River Valley, Oregon

    Science.gov (United States)

    Snyder, D. T.; Haluska, T. L.; Respini-Irwin, D.

    2012-12-01

    The Shoreline Management Tool is a GIS-based program developed to assist water- and land-resource managers in assessing the benefits and impacts of changes in surface-water stage on water depth, inundated area, and water volume. In addition, the tool can be used to identify aquatic or terrestrial habitat areas where conditions may be suitable for specific plants or animals as defined by user-specified criteria, including water depth, land-surface slope, and land-surface aspect or to delineate areas for use in determining a variety of hydrologic budget components such as surface-water storage, precipitation, runoff, or evapotranspiration. The Shoreline Management Tool consists of two parts, a graphical user interface for use with ArcMap GIS software to interact with the user to define scenarios and map results, and a spreadsheet in Microsoft Excel® developed to display tables and graphs of the results. The graphical user interface allows the user to define a scenario consisting of an inundation level (stage), land areas (parcels), and habitats (areas meeting user-specified conditions) based on water depth, slope, and aspect criteria. The tool uses data consisting of land-surface elevation, tables of stage/volume and stage/area, and delineated parcel boundaries to produce maps (data layers) of inundated areas and areas that meet the habitat criteria. The tool can be run in a Single-Time Scenario mode or in a Time-Series Scenario mode which uses an input file of dates and associated stages. The spreadsheet portion of the tool uses a macro to process the results from the graphical user interface to create tables and graphs of inundated water volume, inundated area, dry area, and mean water depth for each land parcel based on the user-specified stage. The macro also creates tables and graphs of the area, perimeter, and number of polygons comprising the user-specified habitat areas within each parcel. The Shoreline Management Tool is designed to be highly transferable

  16. The Shoreline Management Tool - an ArcMap tool for analyzing water depth, inundated area, volume, and selected habitats, with an example for the lower Wood River Valley, Oregon

    Science.gov (United States)

    Snyder, Daniel T.; Haluska, Tana L.; Respini-Irwin, Darius

    2013-01-01

    The Shoreline Management Tool is a geographic information system (GIS) based program developed to assist water- and land-resource managers in assessing the benefits and effects of changes in surface-water stage on water depth, inundated area, and water volume. Additionally, the Shoreline Management Tool can be used to identify aquatic or terrestrial habitat areas where conditions may be suitable for specific plants or animals as defined by user-specified criteria including water depth, land-surface slope, and land-surface aspect. The tool can also be used to delineate areas for use in determining a variety of hydrologic budget components such as surface-water storage, precipitation, runoff, or evapotranspiration. The Shoreline Management Tool consists of two parts, a graphical user interface for use with Esri™ ArcMap™ GIS software to interact with the user to define scenarios and map results, and a spreadsheet in Microsoft® Excel® developed to display tables and graphs of the results. The graphical user interface allows the user to define a scenario consisting of an inundation level (stage), land areas (parcels), and habitats (areas meeting user-specified conditions) based on water depth, slope, and aspect criteria. The tool uses data consisting of land-surface elevation, tables of stage/volume and stage/area, and delineated parcel boundaries to produce maps (data layers) of inundated areas and areas that meet the habitat criteria. The tool can be run in a Single-Time Scenario mode or in a Time-Series Scenario mode, which uses an input file of dates and associated stages. The spreadsheet part of the tool uses a macro to process the results from the graphical user interface to create tables and graphs of inundated water volume, inundated area, dry area, and mean water depth for each land parcel based on the user-specified stage. The macro also creates tables and graphs of the area, perimeter, and number of polygons comprising the user-specified habitat areas

  17. Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment

    NARCIS (Netherlands)

    Stigter, Emmy E.; Wanders, Niko; Saloranta, Tuomo M.; Shea, Joseph M.; Bierkens, M.F.P.; Immerzeel, W.W.

    2017-01-01

    Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water

  18. Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum

    Science.gov (United States)

    2015-09-30

    hardware. The four-day data set, sponsored under a separate MURI research thrust, inadvertently collected numerous sperm, humpback, and dolphin calls...remains the same. 9 Figure 9: Evolution of ray arrival angles (top) and relative multipath arrival times (bottom) as a controlled source is winched...from 300 m to 100 m depth at 49.5 km range. Figure 10: Evolution of ray arrival angles (top) and relative arrival times for a sperm whale click train over 20 minutes.

  19. Topsoil Depth Effects on Crop Yields as Affected by Weather

    Science.gov (United States)

    Lee, Scott; Cruse, Richard

    2015-04-01

    Topsoil (A-horizon) depth is positively correlated with crop productivity; crop roots and available nutrients are concentrated in this layer; topsoil is critical for nutrient retention and water holding capacity. Its loss or reduction can be considered an irreversible impact of soil erosion. Climatic factors such as precipitation and temperature extremes that impose production stress further complicate the relationship between soil erosion and crop productivity. The primary research objective was to determine the effects of soil erosion on corn and soybean yields of loess and till-derived soils in the rain-fed farming region of Iowa. Data collection took place from 2007 to 2012 at seven farm sites located in different major soil regions. Collection consisted of 40 to 50 randomly selected georeferenced soil probe locations across varying erosion classes in well drained landscape positions. Soil probes were done to a minimum depth of 100 cm and soil organic carbon samples were obtained in the top 10 cm. Crop yields were determined utilizing georeferenced harvest maps from yield monitoring devices and cross referenced with georeferenced field data points. Data analysis targeted relationships between crop yields versus soil organic carbon contents (SOC) and crop yields versus topsoil depths (TSD). The variation of yield and growing season rainfall across multiple years were also evaluated to provide an indication of soil resiliency associated with topsoil depth and soil organic carbon levels across varying climatic conditions. Results varied between sites but generally indicated a greater yield potential at thicker TSD's and higher SOC concentrations; an annual variation in yield response as a function of precipitation amount during the growing season; largest yield responses to both TSD and SOC occurred in the driest study year (2012); and little to no significant yield responses to TSD occurred during the wettest study year (2010). These results were not

  20. Relationship between specific surface area and the dry end of the water retention curve for soils with varying clay and organic carbon contents

    DEFF Research Database (Denmark)

    Resurreccion, Augustus C.; Møldrup, Per; Tuller, Markus

    2011-01-01

    contents. However, the TO model still overestimated water film thickness at potentials approaching ovendry condition (about −800 MPa). The semi–log linear Campbell-Shiozawa-Rossi-Nimmo (CSRN) model showed better fits for all investigated soils from −10 to −800 MPa and yielded high correlations with CL...

  1. How to quench your thirst. The effect of water-based products varying in temperature and texture, flavour, and sugar content on thirst

    NARCIS (Netherlands)

    Belzen, van L.; Postma, E.M.; Postma, E.M.; Postma, E.M.; Boesveldt, S.

    2017-01-01

    The sensation of thirst plays an important role in the consumption of water or other fluids to rehydrate the body in order to keep bodily functions working properly. An increase in saliva secretion, wetting the mouth by ingestion of liquids, and cooling and sour components in products can alleviate

  2. Water- and sediment-quality effects on Pimephales promelas spawning vary along an agriculture-to-urban land-use gradient.

    Science.gov (United States)

    Corsi, Steven R; Klaper, Rebecca D; Weber, Daniel N; Bannerman, Roger T

    2011-10-15

    Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1mg/L and 15 streams experienced DO less than 4.8mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water- and

  3. Effect of repeated irrigation with water containing varying levels of total organic carbon on the persistence of Escherichia coli O157:H7 on baby spinach.

    Science.gov (United States)

    Ingram, David T; Patel, Jitu; Sharma, Manan

    2011-05-01

    The California lettuce and leafy greens industry has adopted the Leafy Greens Marketing Agreement (LGMA), which allows for 126 most-probable-number (MPN) Escherichia coli per 100 ml in irrigation water. Repeat irrigation of baby spinach plants with water containing E. coli O157:H7 and different levels of total organic carbon (TOC) was used to determine the epiphytic survival of E. coli O157:H7. Three irrigation treatments (0 ppm of TOC, 12 or 15 ppm of TOC, and 120 or 150 ppm of TOC) were prepared with bovine manure containing E. coli O157:H7 at either low (0 to 1 log CFU/100 ml) or high (5 to 6 log CFU/100 ml) populations, and sprayed onto baby spinach plants in growth chambers by using a fine-mist airbrush. MPN and direct plating techniques were used to determine the E. coli O157:H7 populations on the aerial plant tissue. Plants irrigated with high E. coli O157:H7 populations, regardless of TOC levels, showed a 3-log reduction within the first 24 h. Low levels of E. coli O157:H7 were observed for up to 16 days on all TOC treatments, ranging from 76.4 MPN per plant (day 1) to 0.40 MPN per plant (day 16). No viable cells were detected on spinach tissue 24 h after irrigation with water containing fewer than 126 CFU/100 ml E. coli O157:H7. Under growth chamber conditions in this study, E. coli O157:H7 populations in irrigation water that complies with the LGMA standards will not persist for more than 24 h when applied onto foliar surfaces of spinach plants.

  4. Estimativa da chuva efetiva para o cultivo de arroz irrigado por submersão com lâmina contínua Estimative of the effective rainfall for rice crop irrigated by continuous submersion water depth

    Directory of Open Access Journals (Sweden)

    Alvaro Moreira Rota

    1998-09-01

    Full Text Available O trabalho consistiu na simulação da chuva efetiva da lavoura de arroz, irrigado com lâmina contínua de submersão, através da utilização de planilha eletrônica para computador. O modelo considerou condições específicas do cultivo de arroz, irrigado, na região sul do Estado do Rio Grande do Sul, em planossolo de textura argilosa (albaqualf. Foram considerados dois manejos de irrigação. Um deles retratando a situação existente na região mencionada, o qual considera a aplicação da lâmina de inundação de modo uniforme, através de um incremento constante e diário de altura, até atingir o valor máximo de 100mm; e o segundo, preconizado pelas entidades de pesquisa locais, no qual a lâmina tem o mesmo incremento, porém apenas até a altura de 35mm, permanecendo fixa nesse valor, até o período de maior necessidade de altura, quando é elevada para 75mm e assim mantida até a supressão da irrigação. Os resultados obtidos demostraram valores de chuva efetiva mais elevados, quando considerada a metodologia que utiliza lâmina máxima de inundação de 75mm, do que aqueles obtidos quando o modelo considerou a lâmina máxima de 100mm. A utilização dessa lâmina de inundação pode gerar uma economia no volume líquido de água de irrigação, da ordem de 20%.A computer model was developed based on computerized spreed sheet to estimate the effective rainfall for irrigated rice by innundation. The model has considered the specific conditions of irrigated rice in the Rio Grande do Sul State in albaqualf soil. Two different irrigation water managements were considered: (i using the actual situation used by farmers and; (ii the management recommended by local research centers. In the first one, a water depth of 25mm was used since the beginning of irrigation and a progressive increase in the water table wafs used until a value of 100mm was reached. However, in the second one, the initial water depth of 25mm was increased only

  5. In-Depth Investigation of Statistical and Physicochemical Properties on the Field Study of the Intermittent Filling of Large Water Tanks

    Directory of Open Access Journals (Sweden)

    Do-Hwan Kim

    2017-01-01

    Full Text Available Large-demand customers, generally high-density dwellings and buildings, have dedicated ground or elevated water tanks to consistently supply drinking water to residents. Online field measurement for Nonsan-2 district meter area demonstrated that intermittent replenishment from large-demand customers could disrupt the normal operation of a water distribution system by taking large quantities of water in short times when filling the tanks from distribution mains. Based on the previous results of field measurement for hydraulic and water quality parameters, statistical analysis is performed for measured data in terms of autocorrelation, power spectral density, and cross-correlation. The statistical results show that the intermittent filling interval of 6.7 h and diurnal demand pattern of 23.3 h are detected through autocorrelation analyses, the similarities of the flow-pressure and the turbidity-particle count data are confirmed as a function of frequency through power spectral density analyses, and a strong cross-correlation is observed in the flow-pressure and turbidity-particle count analyses. In addition, physicochemical results show that the intermittent refill of storage tank from large-demand customers induces abnormal flow and pressure fluctuations and results in transient-induced turbid flow mainly composed of fine particles ranging within 2–4 μm and constituting Fe, Si, and Al.

  6. Gradually-varied flow profiles in open channels analytical solutions by using Gaussian hypergeometric function

    CERN Document Server

    Jan, Chyan-Deng

    2014-01-01

    Gradually-varied flow (GVF) is a steady non-uniform flow in an open channel with gradual changes in its water surface elevation. The evaluation of GVF profiles under a specific flow discharge is very important in hydraulic engineering. This book proposes a novel approach to analytically solve the GVF profiles by using the direct integration and Gaussian hypergeometric function. Both normal-depth- and critical-depth-based dimensionless GVF profiles are presented. The novel approach has laid the foundation to compute at one sweep the GVF profiles in a series of sustaining and adverse channels, w

  7. Millimeter wave silicon micromachined waveguide probe as an aid for skin diagnosis--results of measurements on phantom material with varied water content.

    Science.gov (United States)

    Dancila, D; Augustine, R; Töpfer, F; Dudorov, S; Hu, X; Emtestam, L; Tenerz, L; Oberhammer, J; Rydberg, A

    2014-02-01

    More than 2 million cases of skin cancer are diagnosed annually in the United States, which makes it the most common form of cancer in that country. Early detection of cancer usually results in less extensive treatment and better outcome for the patient. Millimeter wave silicon micromachined waveguide probe is foreseen as an aid for skin diagnosis, which is currently based on visual inspection followed by biopsy, in cases where the macroscopical picture raises suspicion of malignancy. Demonstration of the discrimination potential of tissues of different water content using a novel micromachined silicon waveguide probe. Secondarily, the silicon probe miniaturization till an inspection area of 600 × 200 μm2, representing a drastic reduction by 96.3% of the probing area, in comparison with a conventional WR-10 waveguide. The high planar resolution is required for histology and early-state skin-cancer detection. To evaluate the probe three phantoms with different water contents, i.e. 50%, 75% and 95%, mimicking dielectric properties of human skin were characterized in the frequency range of 95-105 GHz. The complex permittivity values of the skin are obtained from the variation in frequency and amplitude of the reflection coefficient (S11), measured with a Vector Network Analyzer (VNA), by comparison with finite elements simulations of the measurement set-up, using the commercially available software, HFSS. The expected frequency variation is calculated with HFSS and is based on extrapolated complex permittivities, using one relaxation Debye model from permittivity measurements obtained using the Agilent probe. Millimeter wave reflection measurements were performed using the probe in the frequency range of 95-105 GHz with three phantoms materials and air. Intermediate measurement results are in good agreement with HFSS simulations, based on the extrapolated complex permittivity. The resonance frequency lowers, from the idle situation when it is probing air

  8. Maps showing predicted probabilities for selected dissolved oxygen and dissolved manganese threshold events in depth zones used by the domestic and public drinking water supply wells, Central Valley, California

    Science.gov (United States)

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.

    2018-01-31

    The purpose of the prediction grids for selected redox constituents—dissolved oxygen and dissolved manganese—are intended to provide an understanding of groundwater-quality conditions at the domestic and public-supply drinking water depths. The chemical quality of groundwater and the fate of many contaminants is influenced by redox processes in all aquifers, and understanding the redox conditions horizontally and vertically is critical in evaluating groundwater quality. The redox condition of groundwater—whether oxic (oxygen present) or anoxic (oxygen absent)—strongly influences the oxidation state of a chemical in groundwater. The anoxic dissolved oxygen thresholds of water, making drinking water undesirable with respect to taste, staining, or scaling. Three dissolved manganese thresholds, water wells. The 50 µg/L event threshold represents the secondary maximum contaminant level (SMCL) benchmark for manganese (U.S. Environmental Protection Agency, 2017; California Division of Drinking Water, 2014), whereas the 300 µg/L event threshold represents the U.S. Geological Survey (USGS) health-based screening level (HBSL) benchmark, used to put measured concentrations of drinking-water contaminants into a human-health context (Toccalino and others, 2014). The 150 µg/L event threshold represents one-half the USGS HBSL. The resultant dissolved oxygen and dissolved manganese prediction grids may be of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions. Prediction grids for selected redox constituents and thresholds were created by the USGS National Water-Quality Assessment (NAWQA) modeling and mapping team.

  9. Efeito da profundidade de soldagem no hidrogênio difusível de soldas molhadas Effect of water depth on diffusible hydrogen on wet welds

    Directory of Open Access Journals (Sweden)

    Weslley Carlos Dias da Silva

    2012-12-01

    Full Text Available Em soldagem subaquática molhada, a ocorrência de poros e trincas a frio pode ter um efeito bastante prejudicial nas propriedades mecânicas da junta soldada. O hidrogênio contribui diretamente para o aparecimento destas duas descontinuidades. A quantidade de hidrogênio difusível (Hdif no metal de solda pode ser influenciada por diversos fatores. Todavia, pouco se sabe sobre a influência da profundidade de soldagem (pressão sobre a quantidade de Hdif no metal de solda. Neste trabalho, diversas medições de hidrogênio difusível foram feitas nas profundidades de 0,30 m, 10 m e 20 m e 30 m em soldagem molhada. O consumível utilizado foi o eletrodo comercial E6013 envernizado. As medições de hidrogênio difusível foram feitas através do método da cromatografia. Para medição de porosidade foi utilizado o método macrográfico e um programa analisador de imagem. O hidrogênio residual também foi medido. Os resultados mostraram que o hidrogênio difusível reduziu significativamente com o aumento da pressão hidrostática ao contrário da porosidade, que aumentou com o aumento da pressão hidrostática. Não se observou alterações apreciáveis no hidrogênio residual do metal de solda. Desta forma, é possível concluir que a profundidade de soldagem afeta diversos aspectos da soldagem subaquática molhada, em especial, o hidrogênio difusível e porosidade, conforme foi observado neste trabalho.In underwater wet welding, cold cracking and pores might have a deleterious effect in the mechanical properties of welded joint. The hydrogen might act in the occurrence of theses discontinuities. The amount of diffusible hydrogen in the weld metal can be influenced by several factors. However, not yet known whether the depth of welding (pressure affects the amount of diffusible hydrogen in weld metal. In this work, several measurements of diffusible hydrogen were made at following depth: 0.30 m, 10 m, 20 m and 30 m atwet welding. The

  10. Effects of pre-incubation of eggs in fresh water and varying sperm concentration on fertilization rate in sterlet sturgeon, Acipenser ruthenus

    DEFF Research Database (Denmark)

    Siddique, Mohammad Abdul Momin; Butts, Ian; Psěnička, Martin

    2015-01-01

    , while it was significant at the 4300:1 and 430:1 ratios. The use of adequate experimental suboptimal sperm to egg ratio revealed a positive effect of pre-incubation time, such that at the 430:1 ratio, 0.5. min pre-incubation increased the fertilization rate than 10. min. At 0. min pre...... than the 430:1 ratio. Generally, for 430:1 ratio, the fertilization rate is lower than in control. Transmission electron microscopy showed that pre-incubation of eggs in water for reaction or the formation of a perivitelline space. Results suggest that with a low...... and explore how pre-incubation of eggs in freshwater for 0. min, 0.5. min, 1. min, and 10. min interacts with different sperm ratios. Fertilization success ranged from 29.7% at 430:1 to 84.2% at 430,000:1. Pre-incubation time had no effect on fertilization success at 430,000:1 and 43,000:1 sperm to egg ratios...

  11. USE of seismic refraction method for the determination of the depth of water table at ozalla, owan west l.g.a edo state. Nigeria USE of seismic refraction method for the determination of the depth of water table at ozalla, owan west l.g.a edo state. Nigeria USE of seismic refraction method for the determination of the depth of water table at ozalla, owan west l.g.a edo state. Nigeria USE of seismic refraction method for the determination of the depth of water table at ozalla, Nigeria

    Science.gov (United States)

    Aikpitanyi, C. U.

    2012-12-01

    This Project research was carried out using seismic refraction method at st Patrick catholic church( site) ozalla owan west l.g.a Edo state. Nigeria A MCSEIS- 160M Seismograph was used as the recording instrument with 12 geophones as wave detectors in series with one another, each of 1.5m Perpendicular to a firing line of of36m long. but the geophones are spread at a predetermined distance. the impact of heavy metal(about 5kg) on a flat metal plate served as the source of artificial wave generation. The wave front method of interpretation was used in interpreting the field results at fine distance . Plot reveals that the subsurface under Investigation is three layers of velocities, 208ms-1 750ms-1 and 1250ms-1 for the first, second and third layers respectively. And the depth of the first and second layer is 12 .7m and 14.0m respectively. This investigation has further revealed that at approximately 27m from the surface a possible aquifer could be encountered, this result agreed with electrical resistivity Studies carried out in the past within the studied area.

  12. Effect of pond water depth on snail populations and fish-borne zoonotic trematode transmission in juvenile giant gourami (Osphronemus goramy) aquaculture nurseries

    DEFF Research Database (Denmark)

    Thien, P. C.; Madsen, Henry; Nga, H. T. N.

    2015-01-01

    Infection with fish-borne zoonotic trematodes (FZT) is an important public health problem in many parts of Southeast Asia. People become infected with FZT when eating raw or undercooked fish that contain the infective stage (metacercariae) of FZT. The parasites require specific freshwater snails...... be on habitats surrounding ponds as transmission may occur through cercariae produced outside ponds and carried into ponds with water pumped into ponds....

  13. A Decadal Regional and Global Trend Analysis of the Aerosol Optical Depth using a Data-Assimilation Grade Over-Water MODIS and Level 2 MISR Aerosol Products

    Science.gov (United States)

    2010-01-01

    Analysis of MODIS –MISR calibration differences using surface albedo around AERONET sites and cloud reflectance, Remote Sens. En- viron.,107, 12–21...over-water MODIS and Level 2 MISR aerosol products J. Zhang1 and J. S. Reid2 1Department of Atmospheric Science, University of North Dakota, Grand Folks...Assimilation (DA) quality Terra MODIS and MISR aerosol products, as well as 7 years of Aqua MODIS , we studied both regional and global aerosol trends over

  14. Effects of pre-incubation of eggs in fresh water and varying sperm concentration on fertilization rate in sterlet sturgeon, Acipenser ruthenus.

    Science.gov (United States)

    Siddique, Mohammad Abdul Momin; Butts, Ian Anthony Ernest; Psenicka, Martin; Linhart, Otomar

    2015-08-01

    Standardization of fertilization protocols for sterlet Acipenser ruthenus is crucial for improving reproductive techniques and for conservation purposes. Our objectives were to determine the number of sperm (tested 430,000:1, 43,000:1, 4300:1, 430:1 sperm to egg) required to fertilize eggs and explore how pre-incubation of eggs in freshwater for 0min, 0.5min, 1min, and 10min interacts with different sperm ratios. Fertilization success ranged from 29.7% at 430:1 to 84.2% at 430,000:1. Pre-incubation time had no effect on fertilization success at 430,000:1 and 43,000:1 sperm to egg ratios, while it was significant at the 4300:1 and 430:1 ratios. The use of adequate experimental suboptimal sperm to egg ratio revealed a positive effect of pre-incubation time, such that at the 430:1 ratio, 0.5min pre-incubation increased the fertilization rate than 10min. At 0min pre-incubation the proportion of fertilized eggs increased at the 430,000:1 ratio, while at 1min fertilization increased at the 4300:1 ratio. At the 10min pre-incubation time, fertilization increased at the 43,000:1 ratio. Moreover, at the 0.5min pre-incubation time, the 43,000:1 ratio increased the fertilization rate than the 430:1 ratio. Generally, for 430:1 ratio, the fertilization rate is lower than in control. Transmission electron microscopy showed that pre-incubation of eggs in water for reaction or the formation of a perivitelline space. Results suggest that with a low sperm to egg ratio 0.5 to 1min pre-incubation of eggs in freshwater prior to fertilization can enhance fertilization rate of sterlet. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Regular patterns of Cs-137 distribution in natural conjugated elementary landscapes as a result of a balanced surface and depth water migration

    Science.gov (United States)

    Korobova, Elena; Romanov, Sergey

    2016-04-01

    Distribution of artificial radionuclides in the environment has long been used successfully for revealing migration pathways of their stable analogues. Migration of water in natural conjugated elementary landscapes characterizing the system of top-slope-resulting depression, has a specific structure and the radionuclide tracer is inevitably reflecting it by specific sorption and exchange processes. Other important issues are the concentration levels and the difference in characteristic time of chemical element dispersion. Modern biosphere has acquired its sustainable structure within a long period of time and is formed by basic macroelements allowing the water soluble portion of elements functioning as activators of chemical exchange. Water migration is controlled by gravitation, climate and relief while fixation depends upon the parameters of surfaces and chemical composition. The resulting structure depends on specificity and duration of the process. The long-term redistribution of chemical elements in terrestrial environment has led to a distinct geochemical structure of conjugated landscapes with a specific geometry of redistribution and accumulation of chemical elements. Migration of the newly born anthropogenic radionuclides followed natural pathways in biosphere. The initial deposition of the Chernobyl's radionuclides within the elementary landscape-geochemical system was even by condition of aerial deposition. But further exchange process is controlled by the strength of fixation and migration ability of the carriers. Therefore patterns of spatial distribution of artificial radionuclides in natural landscapes are considerably different as compared to those of the long-term forming the basic structure of chemical fields in biosphere. Our monitoring of Cs-137 radial and lateral distribution in the test plots characterizing natural undisturbed conjugated elementary landscapes performed in the period from 2005 until now has revealed a stable and specifically

  16. Increasing carbon discrimination rates and depth of water uptake favor the growth of Mediterranean evergreen trees in the ecotone with temperate deciduous forests.

    Science.gov (United States)

    Barbeta, Adrià; Peñuelas, Josep

    2017-12-01

    Tree populations at the low-altitudinal or -latitudinal limits of species' distributional ranges are predicted to retreat toward higher altitudes and latitudes to track the ongoing changes in climate. Studies have focused on the climatic sensitivity of the retreating species, whereas little is known about the potential replacements. Competition between tree species in forest ecotones will likely be strongly influenced by the ecophysiological responses to heat and drought. We used tree-ring widths and δ13 C and δ18 O chronologies to compare the growth rates and long-term ecophysiological responses to climate in the temperate-Mediterranean ecotone formed by the deciduous Fagus sylvatica and the evergreen Quercus ilex at the low altitudinal and southern latitudinal limit of F. sylvatica (NE Iberian Peninsula). F. sylvatica growth rates were similar to those of other southern populations and were surprisingly not higher than those of Q. ilex, which were an order of magnitude higher than those in nearby drier sites. Higher Q. ilex growth rates were associated with high temperatures, which have increased carbon discrimination rates in the last 25 years. In contrast, stomatal regulation in F. sylvatica was proportional to the increase in atmospheric CO2 . Tree-ring δ18 O for both species were mostly correlated with δ18 O in the source water. In contrast to many previous studies, relative humidity was not negatively correlated with tree-ring δ18 O but had a positive effect on Q. ilex tree-ring δ18 O. Furthermore, tree-ring δ18 O decreased in Q. ilex over time. The sensitivity of Q. ilex to climate likely reflects the uptake of deep water that allowed it to benefit from the effect of CO2 fertilization, in contrast to the water-limited F. sylvatica. Consequently, Q. ilex is a strong competitor at sites currently dominated by F. sylvatica and could be favored by increasingly warmer conditions. © 2017 John Wiley & Sons Ltd.

  17. The Role of Dissolved Loads Partitioned Between Surface and Ground Waters in the Chemical Weathering Rates of Tropical Islands Under Varied Climates: A Preliminary Assessment from Oahu, Hawaii, USA

    Science.gov (United States)

    Lemaistre, M. J.; Nelson, S.; Tingey, D. G.

    2009-12-01

    The island of Oahu, Hawaii, USA is an ideal natural laboratory for understanding the role of climate, surface waters, and ground waters in the erosion and ultimate disappearance of ocean islands. This island is in a post-constructional phase, is composed entirely (or nearly so) of a single rock type (tholeiitic basalt), and rainfall totals vary by about an order of magnitude. On portions of the windward Koolau Range, rain exceeds 7 m annually, whereas portions of the southern island receive less than 0.8 m per year. There is considerable variability in the geochemical facies and total dissolve solid (TDS) content of surface and groundwaters, even among samples from similar climatic settings. Most waters tend to be of the Na-Mg-Cl type. However, ground waters tend to have higher TDS loads than surface waters, indicative of longer contact times with rock. 3H contents of wells average 0.6 TU, streams 1.2 TU, and rain 1.7 TU. Thus, the mean residence of groundwater may be on the order of 15-20 yr. Portions of Oahu such as the north central agricultural region have extremely well-developed soils, and TDS contents are very low on average (600 mg/L derived from water-rock interaction. Oahu has been subdivided into 5 major hydrographic regions and existing water budgets for Oahu can be coupled with mean solute loads for ground and surface water to estimate denudation rates via dissolved loads. Weathering products removed by surface waters are not considered here. Windward and south central Oahu are eroding at rates ˜0.20 m/ka, and the large majority of the solute flux is in ground rather than surface water. Arid western and southeastern parts of the island combined with north central Oahu appear to be eroding at rates more than an order of magnitude lower than this. In summary, high chemical weathering rates on windward Oahu are likely to be due to thin soils on steep slopes and chemically aggressive waters. During July of 1998 we measured soil CO2 concentrations of 5

  18. Nutrient load can lead to enhanced CH4 fluxes through changes in vegetation, peat surface elevation and water table depth in ombrotrophic bog

    Science.gov (United States)

    Juutinen, Sari; Bubier, Jill; Larmola, Tuula; Humphreys, Elyn; Arnkil, Sini; Roy, Cameron; Moore, Tim

    2016-04-01

    Atmospheric nitrogen (N) deposition has led to nutrient enrichment in wetlands, particularly in temperate areas, affecting plant community composition, carbon (C) cycling, and microbial dynamics. It is vital to understand the temporal scales and mechanisms of the changes, because peatlands are long-term sinks of C, but sources of methane (CH4), an important greenhouse gas. Rainwater fed (ombrotrophic) bogs are considered to be vulnerable to nutrient loading due to their natural nutrient poor status. We fertilized Mer Bleue Bog, a Sphagnum moss and evergreen shrub-dominated ombrotrophic bog near Ottawa, Ontario, now for 11-16 years with N (NO3 NH4) at 0.6, 3.2, and 6.4 g N m-2 y-1 (~5, 10 and 20 times ambient N deposition during summer months) with and without phosphorus (P) and potassium (K). Treatments were applied to triplicate plots (3 x 3 m) from May - August 2000-2015 and control plots received distilled water. We measured CH4 fluxes with static chambers weekly from May to September 2015 and peat samples were incubated in laboratory to measure CH4 production and consumption potentials. Methane fluxes at the site were generally low, but after 16 years, mean CH4 emissions have increased and more than doubled in high nitrogen addition treatments if P and K input was also increased (3.2 and 6.4 g N m-2yr-1 with PK), owing to drastic changes in vegetation and soil moisture. Vegetation changes include a loss of Sphagnum moss and introduction of new species, typical to minerogenic mires, which together with increased decomposition have led to decreased surface elevation and to higher water table level relative to the surface. The trajectories indicate that the N only treatments may result in similar responses, but only over longer time scales. Elevated atmospheric deposition of nutrients to peatlands may increase loss of C not only due to changes in CO2 exchange but also due to enhanced CH4 emissions in peatlands through a complex suite of feedbacks and interactions

  19. Hydrologic regulation of plant rooting depth

    Science.gov (United States)

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos

    2017-10-01

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (˜1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  20. Hydroelastic responses of pontoon type very large floating offshore structures. 2nd Report. Effect of the water depth and the drift forces; Pontoon gata choogata futaishiki kaiyo kozobutsu no harochu chosei oto ni kansuru kenkyu. 2. Senkai eikyo to hyoryuryoku

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, H.; Miyajima, S. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Masuda, K.; Ikoma, T. [Nihon University, Tokyo (Japan). College of Science and Technology

    1996-12-31

    Steady-state drift force in regular waves is theoretically analyzed. It is also studied under combined external force experimentally using a two-dimensional water tank. The fluid forces are analyzed by the pressure distribution method based on the potential theory, in which the effects of water depth are taken into account to discuss the effects of elastic deformation of the floating structure on the drift characteristics of steady-state waves. The tests were carried out using a wave-making circulating water tank equipped with a wind duct to create wind, waves and tidal flow. Drift force under a combined external force by wind, wave and/or tidal flow cannot be accurately predicted by arithmetically adding these components. For predicting drift force by tidal flow, it is necessary to take into account drag force in current at the floating structure bottom as well as that in wind at the front face. Drift force by tidal flow is affected by shallowness of water, which should be taken into account for drag forces. The floating structure will be deformed along the wave face as its stiffness decreases, basically decreasing steady-state drift force. 9 refs., 14 figs.

  1. Hourly change in cercarial densities of Schistosoma haematobium and S. bovis at different depths in the water and distances from the shore of a dam in Kwale District, Kenya.

    Science.gov (United States)

    Kimura, E; Uga, S; Migwi, D K; Mutua, W R; Kiliku, F M; Muhoho, N D

    1994-06-01

    Hourly change in cercarial densities was studied at different depths in the water and distances from the shore at a dam in Kwale District (Kenya), where Schistosoma haematobium is highly endemic, by using a filtration apparatus for detecting cercariae. The peak of cercarial density at the surface of water (2-3 cm deep) was at 11:00 hours. Those at the middle point (25 cm deep) and the bottom (50 cm deep) were at 12:00 and 13:00 hours respectively. In the morning, the majority of cercariae (79% of the total detected) was obtained at the surface of water, but none at the bottom. After midday, 40% of the cercariae were obtained at the bottom. Cercariae seemed to sink with time resulting in a wider distribution in the water. The numbers of cercariae obtained at a sampling point 20 cm from the shore, which was inside the wire-screened snail-free area, were 3.4-23 times more than those obtained at a sampling point 340 cm from the shore, indicating that cercariae were accumulating immediately near the shore. Winds might cause the accumulation.

  2. Characterization of surface oxides on water-atomized steel powder by XPS/AES depth profiling and nano-scale lateral surface analysis

    Science.gov (United States)

    Chasoglou, D.; Hryha, E.; Norell, M.; Nyborg, L.

    2013-03-01

    Characterization of oxide products on the surface of water-atomized steel powder is essential in order to determine the reducing conditions required for their removal during the sintering stage which in turn will result in improved mechanical properties. Pre-alloyed powder with 3 wt% Cr and 0.5 wt% Mo was chosen as the model material. Investigation of the powder surface characteristics with regard to composition, morphology, size and distribution of surface oxides was performed using X-ray photoelectron spectroscopy, Auger electron spectroscopy and high resolution scanning electron microscopy combined with X-ray microanalysis. The analysis revealed that the powder is covered by a homogeneous (˜6 nm thick) Fe-oxide layer to ˜94% whereas the rest is covered by fine particulate features with the size below 500 nm. These particulates were further analyzed and were divided into three main categories (i) Cr-based oxides with simultaneous presence of nitrogen, (ii) Si-based oxides of "hemispherical" shape and (iii) agglomerates of the afore mentioned oxides.

  3. Depth of Processing and Age Differences

    Science.gov (United States)

    Kheirzadeh, Shiela; Pakzadian, Sarah Sadat

    2016-01-01

    The present article is aimed to investigate whether there are any differences between youngsters and adults in their working and long-term memory functioning. The theory of Depth of Processing (Craik and Lockhart in "J Verbal Learning Verbal Behav" 11:671-684, 1972) discusses the varying degrees of strengths of memory traces as the…

  4. Aeration equipment for small depths

    Directory of Open Access Journals (Sweden)

    Sluše Jan

    2015-01-01

    Full Text Available Deficit of air in water causes complications with cyanobacteria mainly in the summer months. Cyanobacteria is a bacteria that produces poison called cyanotoxin. When the concentration of cyanobacteria increases, the phenomena „algal bloom“ appears, which is very toxic and may kill all the organisms. This article describes new equipment for aeration of water in dams, ponds and reservoirs with small depth. This equipment is mobile and it is able to work without any human factor because its control is provided by a GPS module. The main part of this equipment consists of a floating pump which pumps water from the surface. Another important part of this equipment is an aerator where water and air are blended. Final aeration process runs in the nozzles which provide movement of all this equipment and aeration of the water. Simulations of the flow are solved by multiphase flow with diffusion in open source program called OpenFOAM. Results will be verified by an experiment.

  5. Modeled Daily Thaw Depth and Frozen Ground Depth, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains modeled daily thaw depth and freezing depth for the Arctic terrestrial drainage basin. Thaw and freezing depths were calculated over the study...

  6. Temporary expansion to shelf depths rather than an onshore-offshore trend: the shallow-water rise and demise of the modern deep-sea brittle star family Ophiacanthidae (Echinodermata: Ophiuroidea

    Directory of Open Access Journals (Sweden)

    Ben Thuy

    2013-07-01

    Full Text Available Hypotheses on the age and possible antiquity of the modern deep-sea fauna put forward to date almost all agree on the assumption that the deep-sea fauna is largely the result of colonisation from shallow-water environments. Here, the fossil record of the Ophiacanthidae, a modern deep-sea brittle star family with extensive fossil occurrences at shelf depths, is systematically traced against a calibrated phylogeny. Several lines of evidence suggest that the Ophiacanthidae originated and greatly diversified in the deep sea, with most extant clades having diverged by the end of the Triassic at the latest. During the Jurassic, the family temporarily invaded shelf environments, attaining relative abundances and diversities comparable to those found in coeval and modern deep-sea settings, and gradually declined in abundance subsequently, to become largely restricted to the deep-sea again. The pattern of temporary expansion to shelf environments suggested here underpins the potential of deep-sea environments to contribute significantly to shallow-water biodiversity; an aspect that has mostly been neglected so far. It is speculated that the large-scale ophiacanthid invasion of shelf environments around the Triassic-Jurassic boundary was initiated by a change from thermohaline to halothermal circulation, attenuating the thermal stratification of the water column and thus providing opportunities for enhanced vertical migration of marine taxa.

  7. Why bother about depth?

    DEFF Research Database (Denmark)

    Stæhr, Peter A.; Obrador, Biel; Christensen, Jesper Philip

    We present results from a newly developed method to determine depth specific rates of GPP, NEP and R using frequent automated profiles of DO and temperature. Metabolic rate calculations were made for three lakes of different trophic status using a diel DO methodology that integrates rates across...

  8. Diurnally-Varying Lunar Hydration

    Science.gov (United States)

    Hendrix, A. R.; Hurley, D.; Retherford, K. D.; Mandt, K.; Greathouse, T. K.; Farrell, W. M.; Vilas, F.

    2016-12-01

    Dayside, non-polar lunar hydration signatures have been observed by a handful of instruments and present insights into the lunar water cycle. In this study, we utilize the unique measurements from the current Lunar Reconnaissance Orbiter (LRO) mission to study the phenomenon of diurnally-varying dayside lunar hydration. The Lyman Alpha Mapping Project (LAMP) onboard LRO senses a strong far-ultraviolet water absorption edge indicating hydration in small abundances in the permanently shadowed regions as well as on the lunar dayside. We report on diurnal variability in hydration in different terrain types. We investigate the importance of different sources of hydration, including solar wind bombardment and meteoroid bombardment, by observing trends during magnetotail and meteor stream crossings.

  9. Dynamic Source Inversion of Intermediate Depth Earthquakes in Mexico

    Science.gov (United States)

    Yuto Sho Mirwald, Aron; Cruz-Atienza, Victor Manuel; Krishna Singh-Singh, Shri

    2017-04-01

    The source mechanisms of earthquakes at intermediate depth (50-300 km) are still under debate. Due to the high confining pressure at depths below 50 km, rocks ought to deform by ductile flow rather than brittle failure, which is the mechanism originating most earthquakes. Several source mechanisms have been proposed, but for neither of them conclusive evidence has been found. One of two viable mechanisms is Dehydration Embrittlement, where liberation of water lowers the effective pressure and enables brittle fracture. The other is Thermal Runaway, a highly localized ductile deformation (Prieto et. al., Tecto., 2012). In the Mexican subduction zone, intermediate depth earthquakes represent a real hazard in central Mexico due to their proximity to highly populated areas and the large accelerations induced on ground motion (Iglesias et. al., BSSA, 2002). To improve our understanding of these rupture processes, we use a recently introduced inversion method (Diaz-Mojica et. al., JGR, 2014) to analyze several intermediate depth earthquakes in Mexico. The method inverts strong motion seismograms to determine the dynamic source parameters based on a genetic algorithm. It has been successfully used for the M6.5 Zumpango earthquake that occurred at a depth of 62 km in the state of Guerrero, Mexico. For this event, high radiated energy, low radiation efficiency and low rupture velocity were determined. This indicates a highly dissipative rupture process, suggesting that Thermal Runaway could probably be the dominant source process. In this work we improved the inversion method by introducing a theoretical consideration for the nucleation process that minimizes the effects of rupture initiation and guarantees self-sustained rupture propagation (Galis et. al., GJInt., 2014). Preliminary results indicate that intermediate depth earthquakes in central Mexico may vary in their rupture process. For instance, for a M5.9 normal-faulting earthquake at 55 km depth that produced very

  10. Depth resolution and preferential sputtering in depth profiling of sharp interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [Max Planck Institute for Intelligent Systems (formerly MPI for Metals Research), Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Han, Y.S. [Department of Physics, Shantou University, 243 Daxue Road, Shantou, 515063 Guangdong (China); Wang, J.Y., E-mail: wangjy@stu.edu.cn [Department of Physics, Shantou University, 243 Daxue Road, Shantou, 515063 Guangdong (China)

    2017-07-15

    Highlights: • Interfacial depth resolution from MRI model depends on sputtering rate differences. • Depth resolution critically depends on the dominance of roughness or atomic mixing. • True (depth scale) and apparent (time scale) depth resolutions are different. • Average sputtering rate approximately yields true from apparent depth resolution. • Profiles by SIMS and XPS are different but similar to surface concentrations. - Abstract: The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16–84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16–84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.

  11. Computations Of Critical Depth In Rivers With Flood Plains | Okoli ...

    African Journals Online (AJOL)

    Critical flows may occur at more than one depth in rivers with flood plains. The possibility of multiple critical depths affects the water-surface profile calculations. Presently available algorithms determine only one of the critical depths which may lead to large errors. It is the purpose of this paper to present an analytical ...

  12. Smoothly Varying Bright Blazars

    Science.gov (United States)

    Van Alfen, Nicholas; Hindman, Lauren; Moody, Joseph Ward; Biancardi, Rochelle; Whipple, Parkes; Gaunt, Caleb

    2018-01-01

    It is becoming increasingly apparent that blazar light can vary sinusoidally with periods of hundreds of days to tens of years. Such behavior is expected of, among other things, jets coming from binary black holes. To look for general variability in lesser-known blazars and AGN, in 2015-2016 we monitored 182 objects with Johnson V-band magnitudes reported as being < 16. In all, this campaign generated 22,000 frames from 2,000 unique pointings. We find that approximately one dozen of these objects show evidence of smooth variability consistent with sinusoidal periods. We report on the entire survey sample, highlighting those that show sinusoidal variations.

  13. Expansive Soil Crack Depth under Cumulative Damage

    Directory of Open Access Journals (Sweden)

    Bei-xiao Shi

    2014-01-01

    Full Text Available The crack developing depth is a key problem to slope stability of the expansive soil and its project governance and the crack appears under the roles of dry-wet cycle and gradually develops. It is believed from the analysis that, because of its own cohesion, the expansive soil will have a certain amount of deformation under pulling stress but without cracks. The soil body will crack only when the deformation exceeds the ultimate tensile strain that causes cracks. And it is also believed that, due to the combined effect of various environmental factors, particularly changes of the internal water content, the inherent basic physical properties of expansive soil are weakened, and irreversible cumulative damages are eventually formed, resulting in the development of expansive soil cracks in depth. Starting from the perspective of volumetric strain that is caused by water loss, considering the influences of water loss rate and dry-wet cycle on crack developing depth, the crack developing depth calculation model which considers the water loss rate and the cumulative damages is established. Both the proposal of water loss rate and the application of cumulative damage theory to the expansive soil crack development problems try to avoid difficulties in matrix suction measurement, which will surely play a good role in promoting and improving the research of unsaturated expansive soil.

  14. WATER TEMPERATURE and other data from SEMMES from 1990-07-01 to 1990-07-26 (NCEI Accession 9000212)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected from ship Semmes between July 1, 1990 and July 26, 1990. The real time data of water temperature at varying depth...

  15. WATER TEMPERATURE and other data from REASONER from 1990-07-01 to 1990-07-31 (NCEI Accession 9000203)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected from ship Reasoner over a period of one month in July 1990. The real time data of water temperature at varying depth...

  16. WATER TEMPERATURE and other data from HALYBURTON from 1990-08-08 to 1990-08-31 (NCEI Accession 9000222)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected from Ship Halyburton between August 8-31, 1990. The real time data of water temperature at varying depth bathythermograph...

  17. WATER TEMPERATURE and other data from VREELAND from 1990-11-02 to 1990-11-16 (NCEI Accession 9000298)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected from Ship Vreeland between November 2-16, 1990. The real time data of water temperature at varying depth bathythermograph...

  18. WATER TEMPERATURE and other data from REASONER from 1990-04-09 to 1990-04-30 (NCEI Accession 9000115)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected from ship Reasoner between April 9 to April 30, 1990. The real time data of water temperature at varying depth...

  19. WATER TEMPERATURE and other data from REASONER from 1990-05-01 to 1990-05-18 (NCEI Accession 9000147)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected from ship Reasoner between May 1 to May 18, 1990. The real time data of water temperature at varying depth bathythermograph...

  20. Directional spread parameter at intermediate water depth

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Deo, M.C.; Anand, N.M.; AshokKumar, K.

    V. Sanil Kumar et al. /Ocean Engineering 27 (2000) 889–905 Wang (1992) showed that value of ‘s’ can be related to the wave length associated with peak frequency of the spectrum, determined from the linear dispersion relation- ship... (2000) 889–905 using wave theories. Wave theories may be of linear and non-linear type and it becomes necessary to distinguish between them for the application concerned. Swart and Loubser (1978) proposed a parameter F c defined below, relating...

  1. Ship Springing Response in Finite Water Depth

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena

    2012-01-01

    Second-order forces and moments are derived for the pressure integration and the momentum conservation methods. They are implemented in the time-domain boundary element code AEGIR. Both Neumann-Kelvin and double-body flow linearization are used. Good agreement is found between AEGIR’s results and...

  2. KBRA OPWP Soil Depth to Water

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The...

  3. Validation of a spatial–temporal soil water movement and plant water uptake model

    KAUST Repository

    HEPPELL, J.

    2014-06-01

    © 2014, (publisher). All rights reserved. Management and irrigation of plants increasingly relies on accurate mathematical models for the movement of water within unsaturated soils. Current models often use values for water content and soil parameters that are averaged over the soil profile. However, many applications require models to more accurately represent the soil–plant–atmosphere continuum, in particular, water movement and saturation within specific parts of the soil profile. In this paper a mathematical model for water uptake by a plant root system from unsaturated soil is presented. The model provides an estimate of the water content level within the soil at different depths, and the uptake of water by the root system. The model was validated using field data, which include hourly water content values at five different soil depths under a grass/herb cover over 1 year, to obtain a fully calibrated system for plant water uptake with respect to climate conditions. When compared quantitatively to a simple water balance model, the proposed model achieves a better fit to the experimental data due to its ability to vary water content with depth. To accurately model the water content in the soil profile, the soil water retention curve and saturated hydraulic conductivity needed to vary with depth.

  4. Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies

    Directory of Open Access Journals (Sweden)

    J. I. López-Moreno

    2011-08-01

    Full Text Available Snow depth variability over small distances can affect the representativeness of depth samples taken at the local scale, which are often used to assess the spatial distribution of snow at regional and basin scales. To assess spatial variability at the plot scale, intensive snow depth sampling was conducted during January and April 2009 in 15 plots in the Rio Ésera Valley, central Spanish Pyrenees Mountains. Each plot (10 × 10 m; 100 m2 was subdivided into a grid of 1 m2 squares; sampling at the corners of each square yielded a set of 121 data points that provided an accurate measure of snow depth in the plot (considered as ground truth. The spatial variability of snow depth was then assessed using sampling locations randomly selected within each plot. The plots were highly variable, with coefficients of variation up to 0.25. This indicates that to improve the representativeness of snow depth sampling in a given plot the snow depth measurements should be increased in number and averaged when spatial heterogeneity is substantial.

    Snow depth distributions were simulated at the same plot scale under varying levels of standard deviation and spatial autocorrelation, to enable the effect of each factor on snowpack representativeness to be established. The results showed that the snow depth estimation error increased markedly as the standard deviation increased. The results indicated that in general at least five snow depth measurements should be taken in each plot to ensure that the estimation error is <10 %; this applied even under highly heterogeneous conditions. In terms of the spatial configuration of the measurements, the sampling strategy did not impact on the snow depth estimate under lack of spatial autocorrelation. However, with a high spatial autocorrelation a smaller error was obtained when the distance between measurements was greater.

  5. Drinking Water

    Science.gov (United States)

    ... the safest water supplies in the world, but drinking water quality can vary from place to place. It ... water supplier must give you annual reports on drinking water. The reports include where your water came from ...

  6. Fecundity and egg volume in Norway lobster (Nephrops norvegicus from different depths in the northern Tyrrhenian Sea

    Directory of Open Access Journals (Sweden)

    Mario Mori

    2001-06-01

    Full Text Available The relationships between fecundity and egg volume of Norway lobster (Nephrops norvegicus inhabiting three different depth ranges (200-300, 350-450, and 500-550 m in the North Tyrrhenian Sea (western Mediterranean were compared. Fecundity was not dependent on depth and egg volume did not vary with female size. The egg volume of females collected in the shallowest areas (200-450 m was instead significantly larger than that collected in deeper waters (500-550 m. Possible explanations for this fact are examined.

  7. varying elastic parameters distributions

    KAUST Repository

    Moussawi, Ali

    2014-12-01

    The experimental identication of mechanical properties is crucial in mechanics for understanding material behavior and for the development of numerical models. Classical identi cation procedures employ standard shaped specimens, assume that the mechanical elds in the object are homogeneous, and recover global properties. Thus, multiple tests are required for full characterization of a heterogeneous object, leading to a time consuming and costly process. The development of non-contact, full- eld measurement techniques from which complex kinematic elds can be recorded has opened the door to a new way of thinking. From the identi cation point of view, suitable methods can be used to process these complex kinematic elds in order to recover multiple spatially varying parameters through one test or a few tests. The requirement is the development of identi cation techniques that can process these complex experimental data. This thesis introduces a novel identi cation technique called the constitutive compatibility method. The key idea is to de ne stresses as compatible with the observed kinematic eld through the chosen class of constitutive equation, making possible the uncoupling of the identi cation of stress from the identi cation of the material parameters. This uncoupling leads to parametrized solutions in cases where 5 the solution is non-unique (due to unknown traction boundary conditions) as demonstrated on 2D numerical examples. First the theory is outlined and the method is demonstrated in 2D applications. Second, the method is implemented within a domain decomposition framework in order to reduce the cost for processing very large problems. Finally, it is extended to 3D numerical examples. Promising results are shown for 2D and 3D problems.

  8. Person tracking using audio and depth cues

    OpenAIRE

    Liu, Q; deCampos, T; Wang, W.; Jackson, P.; Hilton, H.

    2015-01-01

    In this paper, a novel probabilistic Bayesian tracking scheme is proposed and applied to bimodal measurements consisting of tracking results from the depth sensor and audio recordings collected using binaural microphones. We use random finite sets to cope with varying number of tracking targets. A measurement-driven birth process is integrated to quickly localize any emerging person. A new bimodal fusion method that prioritizes the most confident modality is employed. The approach was tested ...

  9. Quantifying the impact of groundwater depth on evapotranspiration in a semi-arid grassland region

    Directory of Open Access Journals (Sweden)

    M. E. Soylu

    2011-03-01

    Full Text Available Interactions between shallow groundwater and land surface processes play an important role in the ecohydrology of riparian zones. Some recent land surface models (LSMs incorporate groundwater-land surface interactions using parameterizations at varying levels of detail. In this paper, we examine the sensitivity of land surface evapotranspiration (ET to water table depth, soil texture, and two commonly used soil hydraulic parameter datasets using four models with varying levels of complexity. The selected models are Hydrus-1D, which solves the pressure-based Richards equation, the Integrated Biosphere Simulator (IBIS, which simulates interactions among multiple soil layers using a (water-content variant of the Richards equation, and two forms of a steady-state capillary flux model coupled with a single-bucket soil moisture model. These models are first evaluated using field observations of climate, soil moisture, and groundwater levels at a semi-arid site in south-central Nebraska, USA. All four models are found to compare reasonably well with observations, particularly when the effects of groundwater are included. We then examine the sensitivity of modelled ET to water table depth for various model formulations, node spacings, and soil textures (using soil hydraulic parameter values from two different sources, namely Rawls and Clapp-Hornberger. The results indicate a strong influence of soil texture and water table depth on groundwater contributions to ET. Furthermore, differences in texture-specific, class-averaged soil parameters obtained from the two literature sources lead to large differences in the simulated depth and thickness of the "critical zone" (i.e., the zone within which variations in water table depth strongly impact surface ET. Depending on the depth-to-groundwater, this can also lead to large discrepancies in simulated ET (in some cases by more than a factor of two. When the Clapp-Hornberger soil parameter dataset is used, the

  10. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  11. Offshore Wind Technology Depth Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coastal bathymetric depth, measured in meters at depth values of: -30, -60, -900 Shallow Zone (0-30m): Technology has been demonstrated on a commercial scale at...

  12. Depth inpainting by tensor voting.

    Science.gov (United States)

    Kulkarni, Mandar; Rajagopalan, Ambasamudram N

    2013-06-01

    Depth maps captured by range scanning devices or by using optical cameras often suffer from missing regions due to occlusions, reflectivity, limited scanning area, sensor imperfections, etc. In this paper, we propose a fast and reliable algorithm for depth map inpainting using the tensor voting (TV) framework. For less complex missing regions, local edge and depth information is utilized for synthesizing missing values. The depth variations are modeled by local planes using 3D TV, and missing values are estimated using plane equations. For large and complex missing regions, we collect and evaluate depth estimates from self-similar (training) datasets. We align the depth maps of the training set with the target (defective) depth map and evaluate the goodness of depth estimates among candidate values using 3D TV. We demonstrate the effectiveness of the proposed approaches on real as well as synthetic data.

  13. WATER TEMPERATURE and other data from USS HERALD from 1992-06-02 to 1992-06-29 (NODC Accession 9200145)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession were collected from USS HERALD between June 2, 1992 and June 28, 1992. The real time data of water temperature at varying depth...

  14. WATER TEMPERATURE and other data from USS ABRAHAM LINCOLN from 1995-05-19 to 1995-06-03 (NCEI Accession 9500094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession were collected from USS ABRAHAM LINCOLN between May 19, 1995 and June 3, 1995. The real time data of water temperature at varying depth...

  15. WATER TEMPERATURE and other data from USS STUMP DD-978) from 1990-04-01 to 1990-04-05 (NCEI Accession 9000105)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected from USS Stump between April 1 and April 5, 1990. The real time data of water temperature at varying depth bathythermograph...

  16. A high-resolution time-depth view of dimethylsulphide cycling in the surface sea

    Science.gov (United States)

    Royer, S.-J.; Galí, M.; Mahajan, A. S.; Ross, O. N.; Pérez, G. L.; Saltzman, E. S.; Simó, R.

    2016-08-01

    Emission of the trace gas dimethylsulphide (DMS) from the ocean influences the chemical and optical properties of the atmosphere, and the olfactory landscape for foraging marine birds, turtles and mammals. DMS concentration has been seen to vary across seasons and latitudes with plankton taxonomy and activity, and following the seascape of ocean’s physics. However, whether and how does it vary at the time scales of meteorology and day-night cycles is largely unknown. Here we used high-resolution measurements over time and depth within coherent water patches in the open sea to show that DMS concentration responded rapidly but resiliently to mesoscale meteorological perturbation. Further, it varied over diel cycles in conjunction with rhythmic photobiological indicators in phytoplankton. Combining data and modelling, we show that sunlight switches and tunes the balance between net biological production and abiotic losses. This is an outstanding example of how biological diel rhythms affect biogeochemical processes.

  17. Predicting Secchi disk depth from average beam attenuation in a deep, ultra-clear lake

    Science.gov (United States)

    Larson, G.L.; Hoffman, R.L.; Hargreaves, B.R.; Collier, R.W.

    2007-01-01

    We addressed potential sources of error in estimating the water clarity of mountain lakes by investigating the use of beam transmissometer measurements to estimate Secchi disk depth. The optical properties Secchi disk depth (SD) and beam transmissometer attenuation (BA) were measured in Crater Lake (Crater Lake National Park, Oregon, USA) at a designated sampling station near the maximum depth of the lake. A standard 20 cm black and white disk was used to measure SD. The transmissometer light source had a nearly monochromatic wavelength of 660 nm and a path length of 25 cm. We created a SD prediction model by regression of the inverse SD of 13 measurements recorded on days when environmental conditions were acceptable for disk deployment with BA averaged over the same depth range as the measured SD. The relationship between inverse SD and averaged BA was significant and the average 95% confidence interval for predicted SD relative to the measured SD was ??1.6 m (range = -4.6 to 5.5 m) or ??5.0%. Eleven additional sample dates tested the accuracy of the predictive model. The average 95% confidence interval for these sample dates was ??0.7 m (range = -3.5 to 3.8 m) or ??2.2%. The 1996-2000 time-series means for measured and predicted SD varied by 0.1 m, and the medians varied by 0.5 m. The time-series mean annual measured and predicted SD's also varied little, with intra-annual differences between measured and predicted mean annual SD ranging from -2.1 to 0.1 m. The results demonstrated that this prediction model reliably estimated Secchi disk depths and can be used to significantly expand optical observations in an environment where the conditions for standardized SD deployments are limited. ?? 2007 Springer Science+Business Media B.V.

  18. Seismic anisotropy evidence for dehydration embrittlement triggering intermediate-depth earthquakes.

    Science.gov (United States)

    Wang, Jian; Zhao, Dapeng; Yao, Zhenxing

    2017-06-01

    It has been proposed that dehydration embrittlement of hydrous materials can trigger intermediate-depth earthquakes and form a double seismic zone in a subducting slab. Seismic anisotropy may provide a possible insight into intermediate-depth intraslab seismicity, because anisotropic properties of minerals change with varying water distribution, temperature and pressure. Here we present a high-resolution model of P-wave radial anisotropy tomography of the Japan subduction zone down to ~400 km depth, which is obtained using a large number of arrival-time data of local earthquakes and teleseismic events. Our results reveal a close correlation between the pattern of intermediate-depth seismicity and anisotropic structures. The seismicity occurs in portions of the Pacific and Philippine Sea slabs where positive radial anisotropy (i.e., horizontal velocity being faster than vertical one) dominates due to dehydration, whereas the inferred anhydrous parts of the slabs are found to be aseismic where negative radial anisotropy (i.e., vertical velocity being faster than horizontal one) dominates. Our anisotropic results suggest that intermediate-depth earthquakes in Japan could be triggered by dehydration embrittlement of hydrous minerals in the subducting slabs.

  19. Depth dose distribution in the water for clinical applicators of {sup 90}Sr + {sup 90}Y, with a extrapolation mini chamber; Distribuicao de dose em profundidade na agua para aplicadores clinicos de {sup 90}Sr + {sup 90}Y, com uma mini-camara de extrapolacao

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Patricia de Lara; Caldas, Linda V.E., E-mail: patrilan@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Oliveira, Mercia L., E-mail: mercial@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2009-07-01

    This work determines the depth dose in the water for clinical applicators of {sup 90}Sr + {sup 90}Y, using a extrapolation mini chamber developed at the IPEN, Sao Paulo, Brazil, and different thickness acrylic plates. The obtained results were compared with the international recommendations and were considered satisfactory

  20. Relationship Depth and Associative Stigma of Disability

    Directory of Open Access Journals (Sweden)

    Katherine Nieweglowski

    2017-08-01

    Full Text Available Family, friends and acquaintances of people with disabilities may be viewed or treated differently by the public due to their association with a stigmatized person. Previous research finds that the public are more willing to engage in relationships with people with physical disability than with mental illness. In addition, attitudes towards associating with people with disabilities has been found to vary by depth of the chosen relationship. The current study sought to examine the connections between relationship depth (friend/romantic partner/acquaintance, disability type (physical/psychiatric and associative stigma. Adult participants (N=345 were randomly presented with vignettes varying in relationship depth and disability type via an online survey platform. Analyses found no differences in associative stigma between physical and psychiatric disabilities. Participants viewed the vignette actor Rachel as socially warmer when she was a friend or romantic partner of a person with a disability than when she was an acquaintance. Participants rated Rachel as different from themselves when she was romantically involved with the person with disability and were more willing to engage socially with Rachel when she befriended the person with disability rather than when she was a mere acquaintance.

  1. Wave Reflection and Loss Characteristics of an Emerged Quarter Circle Breakwater with Varying Seaside Perforations

    Science.gov (United States)

    Binumol, S.; Rao, Subba; Hegde, Arkal Vittal

    2017-09-01

    Breakwaters are one of the most important harbour structures constructed to withstand and dissipate the dynamic energy due to the action of the waves. Due to fast growing need of the universe and advances in technology different types of breakwaters are being developed. Quarter circle breakwater is a new type of breakwater emerged from semi circular breakwater and the first model was developed in Peoples Republic of China (2006). Quarter circle breakwater with perforations posses merits of caisson as well as perforated breakwaters such as low weight, requires less materials, suited for poor soil conditions, easily transported, handled and placed at the site, aesthetically pleasing, cost effective, eco-friendly and stable. Therefore it is necessary to carry out detailed studies on hydrodynamic characteristics to investigate the suitability and applicability of various types of quarter circle breakwaters. The present study investigates the wave reflection and loss characteristics of an emerged seaside perforated quarter circle breakwater of radius 55 cm and with varying ratios of spacing to diameter of perforations, for different water depths and wave conditions. The tests were conducted in the two-dimensional monochromatic wave flume available in Marine Structures laboratory of Department of Applied Mechanics and Hydraulics of National Institute of Technology, Surathkal, Karnataka, India. The results were plotted as non-dimensional graphs and it was observed that the reflection coefficient increases with increase in wave steepness for all values of ratio of height of breakwater structure to water depth. For a constant water depth, wave reflection increases with increase in ratio of spacing to diameter of perforations. It was also found that the loss coefficient decreases with increase in wave steepness for all values of ratio of height of breakwater structure to water depth, and ratio of spacing to diameter of perforations.

  2. WATER STRESS AND FERTILIZER INCORPORATION DEPTH AFFECTING BEAN YIELD COMPONENTS ESTRESSE HÍDRICO E PROFUNDIDADE DE INCORPORAÇÃO DO ADUBO AFETANDO OS COMPONENTES DE RENDIMENTO DO FEIJOEIRO

    Directory of Open Access Journals (Sweden)

    José Wéselli de Sá Andrade

    2009-03-01

    treatments and four replications. The variables studied were yield (kg ha-1, weight of 100 grains (g, leaf area index (m2 m-2, plant height (cm, number of pods per plant, and number of grains per pod. The irrigation suppression, during the different bean growth stages, was significantly negative in all analyzed varieties, except for weight of 100 grains. The Carioca comum cultivar presented the highest yield, when irrigation was suppressed during the beginning of flowering and full maturity, with fertilizer incorporation at 15 cm. For the Rudá and Pérola cultivars, when irrigation was suppressed in the seed pod development and full maturity stages, the fertilizer incorporation depth did not interfere in the productivity.

    KEY-WORDS: Water deficit; irrigation suppression; Phaseolus vulgaris.

  1. Full depth reclamation : workshop materials.

    Science.gov (United States)

    2011-01-01

    Rehabilitating an old pavement by pulverizing and stabilizing the existing pavement is a process referred to as Full Depth Reclamation (FDR). This process shows great potential as an economical rehabilitation alternative that provides deep structural...

  2. Archetypal Depth Criticism and Melville.

    Science.gov (United States)

    Maud, Ralph

    1983-01-01

    Applies psychologist James Hillman's idea of soul-making to literary studies. Uses the works of Melville to discuss the terms (1) depth, (2) image, and (3) archetype as they relate to the concept of soul-making. (MM)

  3. ISLSCP II Ecosystem Rooting Depths

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The goal of this study was to predict the global distribution of plant rooting depths based on data about global aboveground vegetation structure and...

  4. ISLSCP II Ecosystem Rooting Depths

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this study was to predict the global distribution of plant rooting depths based on data about global aboveground vegetation structure and climate....

  5. Geophysical modeling of the static water level

    Energy Technology Data Exchange (ETDEWEB)

    Bochicchio, R.

    1991-04-01

    The objective of this study is to determine if a geophysical investigation technique could be used to delineate depth to static water level to within 20 meters in several areas of the Nevada Test Site (NTS). Using noninvasive geophysical methods to obtain water-level data is potentially faster and more cost-effective than drilling wells, especially in the areas concerned, where water-level depths vary from approximately 200 to 600 meters. Electrical geophysical methods are well-suited for water-level delineation. The depth to the static water level is often related to that of the saturated zone, and the saturated zone often has a different electrical resistivity character than the adjacent unsaturated material. Most of the time, this will be a resistivity decrease, due to the presence of water instead of air in the pore spaces. However, a saturated zone with a resistive matrix may show a resistivity increase compared to an unsaturated layer composed of more conductive material, such as clay. The analytical method is to use known depths and electrical resistivities of the static water level to obtain simulated geophysical field data. These simulated data are referred to as the synthetic sounding curve. The synthetic sounding curve will be analyzed to see if it can be used to predict the static water level. 8 refs., 22 figs.

  6. An optical fiber expendable seawater temperature/depth profile sensor

    Science.gov (United States)

    Zhao, Qiang; Chen, Shizhe; Zhang, Keke; Yan, Xingkui; Yang, Xianglong; Bai, Xuejiao; Liu, Shixuan

    2017-10-01

    Marine expendable temperature/depth profiler (XBT) is a disposable measuring instrument which can obtain temperature/depth profile data quickly in large area waters and mainly used for marine surveys, scientific research, military application. The temperature measuring device is a thermistor in the conventional XBT probe (CXBT)and the depth data is only a calculated value by speed and time depth calculation formula which is not an accurate measurement result. Firstly, an optical fiber expendable temperature/depth sensor based on the FBG-LPG cascaded structure is proposed to solve the problems of the CXBT, namely the use of LPG and FBG were used to detect the water temperature and depth, respectively. Secondly, the fiber end reflective mirror is used to simplify optical cascade structure and optimize the system performance. Finally, the optical path is designed and optimized using the reflective optical fiber end mirror. The experimental results show that the sensitivity of temperature and depth sensing based on FBG-LPG cascade structure is about 0.0030C and 0.1%F.S. respectively, which can meet the requirements of the sea water temperature/depth observation. The reflectivity of reflection mirror is in the range from 48.8% to 72.5%, the resonant peak of FBG and LPG are reasonable and the whole spectrum are suitable for demodulation. Through research on the optical fiber XBT (FXBT), the direct measurement of deep-sea temperature/depth profile data can be obtained simultaneously, quickly and accurately. The FXBT is a new all-optical seawater temperature/depth sensor, which has important academic value and broad application prospect and is expected to replace the CXBT in the future.

  7. Magnitude, precision, and realism of depth perception in stereoscopic vision.

    Science.gov (United States)

    Hibbard, Paul B; Haines, Alice E; Hornsey, Rebecca L

    2017-01-01

    Our perception of depth is substantially enhanced by the fact that we have binocular vision. This provides us with more precise and accurate estimates of depth and an improved qualitative appreciation of the three-dimensional (3D) shapes and positions of objects. We assessed the link between these quantitative and qualitative aspects of 3D vision. Specifically, we wished to determine whether the realism of apparent depth from binocular cues is associated with the magnitude or precision of perceived depth and the degree of binocular fusion. We presented participants with stereograms containing randomly positioned circles and measured how the magnitude, realism, and precision of depth perception varied with the size of the disparities presented. We found that as the size of the disparity increased, the magnitude of perceived depth increased, while the precision with which observers could make depth discrimination judgments decreased. Beyond an initial increase, depth realism decreased with increasing disparity magnitude. This decrease occurred well below the disparity limit required to ensure comfortable viewing.

  8. Variability with xylem depth in sap flow in trunks and branches of mature olive trees.

    Science.gov (United States)

    Nadezhdina, Nadezhda; Nadezhdin, Valeriy; Ferreira, Maria Isabel; Pitacco, Andrea

    2007-01-01

    Knowledge of sap flow variability in tree trunks is important for up-scaling transpiration from the measuring point to the whole-tree and stand levels. Natural variability in sap flow, both radial and circumferential, was studied in the trunks and branches of mature olive trees (Olea europea L., cv Coratina) by the heat field deformation method using multi-point sensors. Sapwood depth ranged from 22 to 55 mm with greater variability in trunks than in branches. Two asymmetric types of sap flow radial patterns were observed: Type 1, rising to a maximum near the mid-point of the sapwood; and Type 2, falling continuously from a maximum just below cambium to zero at the inner boundary of the sapwood. The Type 1 pattern was recorded more often in branches and smaller trees. Both types of sap flow radial patterns were observed in trunks of the sample trees. Sap flow radial patterns were rather stable during the day, but varied with soil water changes. A decrease in sap flow in the outermost xylem was related to water depletion in the topsoil. We hypothesized that the variations in sap flow radial pattern in a tree trunk reflects a vertical distribution of water uptake that varies with water availability in different soil layers.

  9. Water

    Science.gov (United States)

    Leopold, Luna Bergere; Baldwin, Helene L.

    1962-01-01

    What do you use water for?If someone asked you this question you would probably think right away of water for drinking. Then you would think of water for bathing, brushing teeth, flushing the toilet. Your list would get longer as you thought of water for cooking, washing the dishes, running the garbage grinder. Water for lawn watering, for play pools, for swimming pools, for washing the car and the dog. Water for washing machines and for air conditioning. You can hardly do without water for fun and pleasure—water for swimming, boating, fishing, water-skiing, and skin diving. In school or the public library, you need water to wash your hands, or to have a drink. If your home or school bursts into flames, quantities of water are needed to put it out.In fact, life to Americans is unthinkable without large supplies of fresh, clean water. If you give the matter a little thought, you will realize that people in many countries, even in our own, may suffer from disease and dirt simply because their homes are not equipped with running water. Imagine your own town if for some reason - an explosion, perhaps - water service were cut off for a week or several weeks. You would have to drive or walk to a neighboring town and bring water back in pails. Certainly if people had to carry water themselves they might not be inclined to bathe very often; washing clothes would be a real chore.Nothing can live without water. The earth is covered by water over three-fourths of its surface - water as a liquid in rivers, lakes and oceans, and water as ice and snow on the tops of high mountains and in the polar regions. Only one-quarter of our bodies is bone and muscle; the other three-fourths is made of water. We need water to live, and so do plants and animals. People and animals can live a long time without food, but without water they die in a few days. Without water, everything would die, and the world would turn into a huge desert.

  10. Anterior chamber depth during hemodialysis

    Directory of Open Access Journals (Sweden)

    Gracitelli CPB

    2013-08-01

    Full Text Available Carolina Pelegrini Barbosa Gracitelli,1 Francisco Rosa Stefanini,1 Fernando Penha,1 Miguel Ângelo Góes,2 Sérgio Antonio Draibe,2 Maria Eugênia Canziani,2 Augusto Paranhos Junior1 1Ophthalmology Department, 2Division of Nephrology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil Background: Exacerbation of chronic glaucoma or acute glaucoma is occasionally observed in patients undergoing hemodialysis (HD because of anterior chamber depth changes during this therapy. Purpose: To evaluate anterior chamber depth and axial length in patients during HD sessions. Methods: A total of 67 eyes of 35 patients were prospectively enrolled. Axial length and anterior chamber depth were measured using ultrasonic biometry, and these measures were evaluated at three different times during HD sessions. Body weight and blood pressure pre- and post-HD were also measured. Results: There was no difference in the axial length between the three measurements (P = 0.241. We observed a significantly decreased anterior chamber depth (P = 0.002 during HD sessions. Conclusion: Our results support the idea that there is a change in anterior chamber depth in HD sessions. Keywords: anterior chamber, hemodialysis, axial length, acute angle-closure glaucoma

  11. Comparing the spatial variability of snow depth on glacierized and non- glacierized surfaces using a geostatistical approach

    Science.gov (United States)

    Schneider, K.; Schöber, J.; Stötter, J.

    2012-04-01

    .e. glacierized or non-glacierized) and the direction of highest variability (e.g. resulting from wind drift). The variogram analyses indicate that spatial variability of snow depth is much lower on the glacierized areas than on the non- glacierized areas, which is due to the smooth surface of the glacierized areas and the distance from obstacles (e.g. huge boulders) influencing the wind field. However, even on glacierized surfaces the spatial variability of snow depth can vary substantially The high variability of snow depth (and hence snow water equivalent) on non-glacierized surfaces has to be taken into account when interpreting remote sensing snow data which does not include snow depth information, like MODIS or Landsat products. Assuming a homogenous snow depth will bias the estimated snow water equivalent and in consequence result in huge uncertainties with respect to runoff predictions.

  12. Geophysical study of saline water intrusion in Lagos municipality

    African Journals Online (AJOL)

    aghomotsegin

    were obtained at Ikoyi, Dolphin, Victoria Island and Lekki. The geo-section generated for the axis is presented in Figure 6 while the interpretation summary is presented in Table 3. Within the axis, the delineated sand units are saline water saturated to depths varying between 118 and 196 m in Apapa and Ajah, respectively.

  13. An optical method to assess water clarity in coastal waters.

    Science.gov (United States)

    Kulshreshtha, Anuj; Shanmugam, Palanisamy

    2015-12-01

    Accurate estimation of water clarity in coastal regions is highly desired by various activities such as search and recovery operations, dredging and water quality monitoring. This study intends to develop a practical method for estimating water clarity based on a larger in situ dataset, which includes Secchi depth (Z sd ), turbidity, chlorophyll and optical properties from several field campaigns in turbid coastal waters. The Secchi depth parameter is found to closely vary with the concentration of suspended sediments, vertical diffuse attenuation coefficient K d (m(-1)) and beam attenuation coefficient c (m(-1)). The optical relationships obtained for the selected wavelengths (i.e. 520, 530 and 540 nm) exhibit an inverse relationship between Secchi depth and the length attenuation coefficient (1/(c + K d )). The variation in Secchi depth is expressed in terms of undetermined coupling coefficient which is composed of light penetration factor (expressed by z(1%)K d (λ)) and a correction factor (ξ) (essentially governed by turbidity of the water column). This method of estimating water clarity was validated using independent in situ data from turbid coastal waters, and its results were compared with those obtained from the existing methods. The statistical analysis of the measured and the estimated Z sd showed that the present method yields lower error when compared to the existing methods. The spatial structures of the measured and predicted Z sd are also highly consistent with in situ data, which indicates the potential of the present method for estimating the water clarity in turbid coastal and associated lagoon waters.

  14. Einstein Equations from Varying Complexity

    Science.gov (United States)

    Czech, Bartłomiej

    2018-01-01

    A recent proposal equates the circuit complexity of a quantum gravity state with the gravitational action of a certain patch of spacetime. Since Einstein's equations follow from varying the action, it should be possible to derive them by varying complexity. I present such a derivation for vacuum solutions of pure Einstein gravity in three-dimensional asymptotically anti-de Sitter space. The argument relies on known facts about holography and on properties of tensor network renormalization, an algorithm for coarse-graining (and optimizing) tensor networks.

  15. The energy costs of wading in water

    Directory of Open Access Journals (Sweden)

    Lewis G. Halsey

    2014-06-01

    Full Text Available Studies measuring the energy costs of wading in water have been limited to higher walking speeds in straight lines, in deep water. However, much foraging in water, by both humans and other primates, is conducted in the shallows and at low speeds of locomotion that include elements of turning, as befits searching for cryptic or hidden foods within a patch. The present study brings together data on the rate of oxygen consumption during wading by humans from previous studies, and augments these with new data for wading in shallower depths, with slower and more tortuous walking, to obtain a better understanding both of the absolute costs of wading in typical scenarios of aquatic foraging and of how the cost of wading varies as a function of water depth and speed of locomotion. Previous and present data indicate that, at low speeds, wading has a similar energetic cost to walking on land, particularly at lower water depths, and only at higher speeds is the cost of wading noticeably more expensive than when water is absent. This is probably explained by the relatively small volume of water that must be displaced during locomotion in shallow waters coupled with the compensating support to the limbs that the water affords. The support to the limbs/body provided by water is discussed further, in the context of bipedal locomotion by non-human primates during wading.

  16. Depth as an organizer of fish assemblages in floodplain lakes

    Science.gov (United States)

    Miranda, L.E.

    2011-01-01

    Depth reduction is a natural process in floodplain lakes, but in many basins has been accelerated by anthropogenic disturbances. A diverse set of 42 floodplain lakes in the Yazoo River Basin (Mississippi, USA) was examined to test the hypothesis of whether depth reduction was a key determinant of water quality and fish assemblage structure. Single and multiple variable analyses were applied to 10 commonly monitored water variables and 54 fish species. Results showed strong associations between depth and water characteristics, and between depth and fish assemblages. Deep lakes provided less variable environments, clearer water, and a wider range of microhabitats than shallow lakes. The greater environmental stability was reflected by the dominant species in the assemblages, which included a broader representation of large-body species, species less tolerant of extreme water quality, and more predators. Stability in deep lakes was further reflected by reduced among-lake variability in taxa representation. Fish assemblages in shallow lakes were more variable than deep lakes, and commonly dominated by opportunistic species that have early maturity, extended breeding seasons, small adult size, and short lifespan. Depth is a causal factor that drives many physical and chemical variables that contribute to organizing fish assemblages in floodplain lakes. Thus, correlations between fish and water transparency, temperature, oxygen, trophic state, habitat structure, and other environmental descriptors may ultimately be totally or partly regulated by depth. In basins undergoing rapid anthropogenic modifications, local changes forced by depth reductions may be expected to eliminate species available from the regional pool and could have considerable ecological implications. ?? 2010 Springer Basel AG (outside the USA).

  17. Water

    Science.gov (United States)

    ... the tap as described). 3. In all situations, drink or cook only with water that comes out of the tap cold. Water that comes out of the tap warm or hot can contain much higher levels of lead. Boiling ...

  18. A convex optimization approach for depth estimation under illumination variation.

    Science.gov (United States)

    Miled, Wided; Pesquet, Jean-Christophe; Parent, Michel

    2009-04-01

    Illumination changes cause serious problems in many computer vision applications. We present a new method for addressing robust depth estimation from a stereo pair under varying illumination conditions. First, a spatially varying multiplicative model is developed to account for brightness changes induced between left and right views. The depth estimation problem, based on this model, is then formulated as a constrained optimization problem in which an appropriate convex objective function is minimized under various convex constraints modelling prior knowledge and observed information. The resulting multiconstrained optimization problem is finally solved via a parallel block iterative algorithm which offers great flexibility in the incorporation of several constraints. Experimental results on both synthetic and real stereo pairs demonstrate the good performance of our method to efficiently recover depth and illumination variation fields, simultaneously.

  19. Impact of Years of Enrollment in the Conservation Reserve Program on Depth of Rain Infiltration

    Science.gov (United States)

    Goebel, T.; Lascano, R. J.; Acosta-Martinez, V.

    2014-12-01

    The Conservation Reserve Program (CRP) is a USDA program administered by the Farm Service Agency (FSA) introduced in 1985 to reduce soil erosion by increasing vegetative cover of highly erodible land. The Texas High Plains (THP) leads the US with >890,000 ha enrolled in CRP. Potential benefits of the CRP include, e.g., increased infiltration of rainfall and organic matter, and better soil structure. However, impact of these benefits is not well characterized. Participation in the CRP is done via contracts (10-15 years in length) and since its inception land area of the THP enrolled in CRP has varied significantly allowing the evaluation of years of enrollment (age) on soil structure and impact on rain infiltration. This information is critical for land users to determine how long it is necessary to enroll their land in the CRP to improve soil structure and impact rain infiltration and increase the water holding capacity of the soil. Stable isotopes of water present a useful technique that is used in ecology and hydrology to study water movement through ecosystems and can be used to evaluate the depth of infiltration of rainwater under CRP management. We compared the infiltration depth of rain in land under CRP management to land under continuous dryland cotton with no irrigation. Two locations, in Terry and Lynn counties, were used for this study. The site in Terry County was enrolled in CRP for 25 years (1985) and 22 years (1992) in Lynn County.

  20. INFLUENCE OF SUPERPLASTICIZER AND VARYING ...

    African Journals Online (AJOL)

    This paper presents the results of the study on the influence of superplasticizer and varying aggregate size on the drying shrinkage and compressive strength of laterised concrete. Four different samples of laterised concrete were made from prescribed mix ratio of 1:1:2 which include; two control specimens made with ...

  1. Optimistlik Karlovy Vary / Jaan Ruus

    Index Scriptorium Estoniae

    Ruus, Jaan, 1938-2017

    2007-01-01

    42. Karlovy Vary rahvusvahelise filmifestivali auhinnatud filmidest (žürii esimees Peter Bart). Kristallgloobuse sai Islandi-Saksamaa "Katseklaasilinn" (režii Baltasar Kormakur), parimaks režissööriks tunnistati norralane Bard Breien ("Negatiivse mõtlemise kunst"). Austraallase Michael James Rowlandi "Hea õnne teekond" sai žürii eripreemia

  2. Esmaklassiline Karlovy Vary / Jaanus Noormets

    Index Scriptorium Estoniae

    Noormets, Jaanus

    2007-01-01

    Ilmar Raagi mängufilm "Klass" võitis 42. Karlovy Vary rahvusvahelise filmifestivalil kaks auhinda - ametliku kõrvalvõistlusprogrammi "East of the West" eripreemia "Special mention" ja Euroopa väärtfilmikinode keti Europa Cinemas preemia. Ka Asko Kase lühifilmi "Zen läbi prügi linastumisest ning teistest auhinnasaajatest ning osalejatest

  3. Time-varying Crash Risk

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    We estimate a continuous-time model with stochastic volatility and dynamic crash probability for the S&P 500 index and find that market illiquidity dominates other factors in explaining the stock market crash risk. While the crash probability is time-varying, its dynamic depends only weakly...

  4. Eestlased Karlovy Varys / J. R.

    Index Scriptorium Estoniae

    J. R.

    2007-01-01

    Ilmar Raagi mängufilm "Klass" osaleb 42. Karlovy Vary rahvusvahelise filmifestivali võistlusprogrammis "East of the West" ja Asko Kase lühimängufilm "Zen läbi prügi" on valitud festivali kõrvalprogrammi "Forum of Independents"

  5. The very deep hole concept - Geoscientific appraisal of conditions at great depth

    Energy Technology Data Exchange (ETDEWEB)

    Juhlin, C. [Christopher Juhlin Consulting (Sweden); Wallroth, T. [Bergab Consulting Geologists (Sweden); Smellie, J.; Leijon, B. [Conterra AB (Sweden); Eliasson, T. [Geological Survey of Sweden (Sweden); Ljunggren, C. [Vattenfall Hydropower AB (Sweden); Beswick, J. [EDECO Petroleum Services Ltd. (United Kingdom)

    1998-06-01

    One of the alternative systems for disposal of high-level radioactive nuclear waste being studied by SKB is the very deep hole (2000 - 4000 m) concept. As part of SKB`s research programme a study has been carried out to increase the level of knowledge on the expected geological conditions in the depth interval 1000-5000 m in older crystalline rock. As a first step, existing data from relevant areas throughout the world have been compiled. The majority of the data come from deep boreholes, mines, and surface geophysical surveys. An attempt has been made to interpret these data in an integrated manner and to develop a conceptual geological model on the conditions in the Baltic Shield down to a depth of 5 km. One of the main features of the suggested model is that the upper 1 km of crust contains significantly more open fractures than the rock below. However, hydraulically conductive fractures and fracture zones may exist at great depth. In areas of low topography active groundwater circulation is primarily limited to the upper 1 km with the water below 1 km having high salinity. The high salinity reflects the near hydraulically stagnant conditions which exist relatively shallow in areas of low topography. In areas with greater topographic relief fresh water penetrates to great depth and near stagnant conditions are first encountered much deeper. The report also covers how the studied parameters which describe the geological conditions vary with depth. A number of recommendations are made on how the presented conceptual model can be tested and improved aside from obtaining data from new boreholes. These recommendations include the following geoscientific surveys and studies: Reflection and refraction seismics for mapping discrete sub-horizontal fracture zones and the upper more fractured part of the crust; Geoelectric methods for mapping the depth to saline water; Detailed hydrogeological measurements in existing deep boreholes; Isotope studies on fracture minerals

  6. Estimation of percentage depth dose distributions for therapeutic machines

    Science.gov (United States)

    Pal, Surajit; Muthukrishnan, G.; Ravishankar, R.; Sharma, R. P.; Ghose, A. M.

    2002-12-01

    A mathematical formulation has been carried out to predict megavoltage photon depth dose distributions for different field sizes inside a water phantom. From the studies it is found that it would be possible to predict depth dose distributions for different energies and different field sizes based on measurements carried out for single energy and single field size. The method has been successfully applied for 60Co γ-rays also.

  7. Depth estimation via stage classification

    NARCIS (Netherlands)

    Nedović, V.; Smeulders, A.W.M.; Redert, A.; Geusebroek, J.M.

    2008-01-01

    We identify scene categorization as the first step towards efficient and robust depth estimation from single images. Categorizing the scene into one of the geometric classes greatly reduces the possibilities in subsequent phases. To that end, we introduce 15 typical 3D scene geometries, called

  8. Factors that affect keratotomy depth.

    Science.gov (United States)

    Merlin, U; Bordin, P; Rimondi, A P; Sichirollo, R

    1991-01-01

    The authors investigated nine factors which can affect the depth of incisions performed during refractive keratotomy: (1) vertical vs oblique-cutting edge of the knife blade, (2) direction of cutting, (3) cutting velocity, (4) American vs Russian technique, (5) intraocular pressure (IOP), (6) initial vs final incisions, (7) sharpness of knife blade, (8) single vs double footplate, and (9) square vs double-edged blade. These variables were examined independently, performing at least 40 incisions for each experimental parameter studied. The depth of the resulting incisions was measured histologically using the micrometer eyepiece. The average and the standard deviation were calculated. The paired Student's t-test was used to establish significant differences between the two conditions investigated for each parameter. Factors that were demonstrated to increase significantly the depth of the incisions included: the vertical-cutting edge, the triple-edged diamond knife, the sharpness of the knife, and the single foot knife. High velocity in performing the incisions and, to a lesser extent, low IOP were the main factors that induced irregularity in depth.

  9. Truncation Depth Rule-of-Thumb for Convolutional Codes

    Science.gov (United States)

    Moision, Bruce

    2009-01-01

    In this innovation, it is shown that a commonly used rule of thumb (that the truncation depth of a convolutional code should be five times the memory length, m, of the code) is accurate only for rate 1/2 codes. In fact, the truncation depth should be 2.5 m/(1 - r), where r is the code rate. The accuracy of this new rule is demonstrated by tabulating the distance properties of a large set of known codes. This new rule was derived by bounding the losses due to truncation as a function of the code rate. With regard to particular codes, a good indicator of the required truncation depth is the path length at which all paths that diverge from a particular path have accumulated the minimum distance of the code. It is shown that the new rule of thumb provides an accurate prediction of this depth for codes of varying rates.

  10. Transient dynamics of pelagic producer-grazer systems in a gradient of nutrients and mixing depths.

    Science.gov (United States)

    Jäger, Christoph G; Diehl, Sebastian; Matauschek, Christian; Klausmeier, Christopher A; Stibor, Herwig

    2008-05-01

    Phytoplankton-grazer dynamics are often characterized by long transients relative to the length of the growing season. Using a phytoplankton-grazer model parameterized for Daphnia pulex with either flexible or fixed algal carbon:nutrient stoichiometry, we explored how nutrient and light supply (the latter by varying depth of the mixed water column) affect the transient dynamics of the system starting from low densities. The system goes through an initial oscillation across nearly the entire light-nutrient supply space. With flexible (but not with fixed) algal stoichiometry, duration of the initial algal peak, timing and duration of the subsequent grazer peak, and timing of the algal minimum are consistently accelerated by nutrient enrichment but decelerated by light enrichment (decreasing mixing depth) over the range of intermediate to shallow mixing depths. These contrasting effects of nutrient vs. light enrichment are consequences of their opposing influences on food quality (algal nutrient content): algal productivity and food quality are positively related along a nutrient gradient but inversely related along a light gradient. Light enrichment therefore slows down grazer growth relative to algal growth, decelerating oscillatory dynamics; nutrient enrichment has opposite effects. We manipulated nutrient supply and mixing depth in a field enclosure experiment. The experimental results were qualitatively much more consistent with the flexible than with the fixed stoichiometry model. Nutrient enrichment increased Daphnia peak biomass, decreased algal minimum biomass, decreased the seston C:P ratio, and accelerated transient oscillatory dynamics. Light enrichment (decreasing mixing depth) produced the opposite patterns, except that Daphnia peak biomass increased monotonously with light enrichment, too. Thus, while the model predicts the possibility of the "paradox of energy enrichment" (a decrease in grazer biomass with light enrichment) at high light and low

  11. Community structure and function of planktonic Crenarchaeota: changes with depth in the South China Sea.

    Science.gov (United States)

    Hu, Anyi; Jiao, Nianzhi; Zhang, Chuanlun L

    2011-10-01

    Marine Crenarchaeota represent a widespread and abundant microbial group in marine ecosystems. Here, we investigated the abundance, diversity, and distribution of planktonic Crenarchaeota in the epi-, meso-, and bathypelagic zones at three stations in the South China Sea (SCS) by analysis of crenarchaeal 16S rRNA gene, ammonia monooxygenase gene amoA involved in ammonia oxidation, and biotin carboxylase gene accA putatively involved in archaeal CO(2) fixation. Quantitative PCR analyses indicated that crenarchaeal amoA and accA gene abundances varied similarly with archaeal and crenarchaeal 16S rRNA gene abundances at all stations, except that crenarchaeal accA genes were almost absent in the epipelagic zone. Ratios of the crenarchaeal amoA gene to 16S rRNA gene abundances decreased ~2.6 times from the epi- to bathypelagic zones, whereas the ratios of crenarchaeal accA gene to marine group I crenarchaeal 16S rRNA gene or to crenarchaeal amoA gene abundances increased with depth, suggesting that the metabolism of Crenarchaeota may change from the epi- to meso- or bathypelagic zones. Denaturing gradient gel electrophoresis profiling of the 16S rRNA genes revealed depth partitioning in archaeal community structures. Clone libraries of crenarchaeal amoA and accA genes showed two clusters: the "shallow" cluster was exclusively derived from epipelagic water and the "deep" cluster was from meso- and/or bathypelagic waters, suggesting that niche partitioning may take place between the shallow and deep marine Crenarchaeota. Overall, our results show strong depth partitioning of crenarchaeal populations in the SCS and suggest a shift in their community structure and ecological function with increasing depth.

  12. Short- and long-term acclimation patterns of the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) along a depth gradient.

    Science.gov (United States)

    Koch, Kristina; Thiel, Martin; Hagen, Wilhelm; Graeve, Martin; Gómez, Iván; Jofre, David; Hofmann, Laurie C; Tala, Fadia; Bischof, Kai

    2016-04-01

    The giant kelp, Macrocystis pyrifera, is exposed to highly variable irradiance and temperature regimes across its geographic and vertical depth gradients. The objective of this study was to extend our understanding of algal acclimation strategies on different temporal scales to those varying abiotic conditions at various water depths. Different acclimation strategies to various water depths (0.2 and 4 m) between different sampling times (Jan/Feb and Aug/Sept 2012; long-term acclimation) and more rapid adjustments to different depths (0.2, 2 and 4 m; short-term acclimation) during 14 d of transplantation were found. Adjustments of variable Chl a fluorescence, pigment composition (Chl c, fucoxanthin), and the de-epoxidation state of the xanthophyll cycle pigments were responsible for the development of different physiological states with respect to various solar radiation and temperature climates. Interestingly, the results indicated that phlorotannins are important during long-term acclimation while antioxidants have a crucial role during short-term acclimation. Furthermore, the results suggested that modifications in total lipids and fatty acid compositions apparently also might play a role in depth acclimation. In Aug/Sept (austral winter), M. pyrifera responded to the transplantation from 4 m to 0.2 m depth with a rise in the degree of saturation and a switch from shorter- to longer-chain fatty acids. These changes seem to be essential for the readjustment of thylakoid membranes and might, thus, facilitate efficient photosynthesis under changing irradiances and temperatures. Further experiments are needed to disentangle the relative contribution of solar radiation, temperature and also other abiotic parameters in the observed physiological changes. © 2016 Phycological Society of America.

  13. Analysis of uncertainties, associated to the calculating hypothesis, in discharge tables for high flows estimating, based on mathematics models for calculating water surface profiles fore steady gradually varied flow; Analisis de las incertidumbres, asociadas a las hipotesis de calculo, en la estimacion de curvas de gasto para crcidas, basada en el empleo de modelo matematico de calculo hidraulico en regimen permanente

    Energy Technology Data Exchange (ETDEWEB)

    Aldana Valverde, A. L.; Gonzalez Rodriguez, J. C.

    1999-08-01

    In this paper are analyzed some of the most important factors which can influence on the results of calculating water surface profiles for steady gradually varied flow. In this case, the objective of this kind of modeling, has been the estimation of discharges tables for high flows of river station gages connected to the hydrologic automatic information system (SAIH) of the Confederacion Hidrografica del Sur de Espana, system named red Hidrosur. (Author) 3 refs

  14. Temperature profile and water depth data collected from USS CURTS using BT and XBT casts in the Northeast Pacific Ocean and other seas from 03 September 1988 to 30 September 1988 (NODC Accession 8800280)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected in Sea of Japan from USS CURTS between September 3, 1988 and September 30, 1988. The real time data of water temperature at...

  15. Bed Evolution under Rapidly Varying Flows by a New Method for Wave Speed Estimation

    Directory of Open Access Journals (Sweden)

    Khawar Rehman

    2016-05-01

    Full Text Available This paper proposes a sediment-transport model based on coupled Saint-Venant and Exner equations. A finite volume method of Godunov type with predictor-corrector steps is used to solve a set of coupled equations. An efficient combination of approximate Riemann solvers is proposed to compute fluxes associated with sediment-laden flow. In addition, a new method is proposed for computing the water depth and velocity values along the shear wave. This method ensures smooth solutions, even for flows with high discontinuities, and on domains with highly distorted grids. The numerical model is tested for channel aggradation on a sloping bottom, dam-break cases at flume-scale and reach-scale with flat bottom configurations and varying downstream water depths. The proposed model is tested for predicting the position of hydraulic jump, wave front propagation, and for predicting magnitude of bed erosion. The comparison between results based on the proposed scheme and analytical, experimental, and published numerical results shows good agreement. Sensitivity analysis shows that the model is computationally efficient and virtually independent of mesh refinement.

  16. Prediction of Soil Solum Depth Using Topographic Attributes in Some Hilly Land of Koohrang in Central Zagros

    Directory of Open Access Journals (Sweden)

    A. Mehnatkesh

    2016-02-01

    profiles were dug and described; and the solum thickness was measured for each profile. DEM data were created by using a 1:2,5000 topographic map. Topographical indices were generated from the DEM using TAS software. Terrain attributes in two categories, primary and secondary (compound attributes; primary attributes are included elevation, slope, aspect, catchment area, dispersal area, plan curvature, profile curvature, tangential curvature, shaded relief. Secondary or compound attributes such as soil water content or the potential for sheet erosion, stream power index, wetness index, and sediment transport index. Correlation coefficients to define relationships between soil depth and terrain attributes, and analysis of variance by Duncan test were done using the SPSS software. The statistical software SPSS was used for developing multiple linear regression models. Terrain attributes were selected as the independent variables and soil depth was employed as dependent variable in the model. Thirty sampling sites were used to validate the developed soil-landscape model. In testing soil-landscape model, we calculated two indices from the observed and predicted values included mean error (ME and root mean square error (RMSE. Results and Discussion: The soil depth in the studied profiles varied from 30 cm to 150 cm with an average of 108.6 cm. Relatively high variability (CV = 76% was obtained for soil depth in the study area. The linear correlation analysis of the 12 topographic attributes and one soil property (soil depth, showed that there was a significant correlation among 36 of the 77 attribute pairs. Soil depth showed high positive significant correlations with catchment area, plan curvature, and wetness index, and showed high negative correlation with sediment transport index, sediment power index and slope. Low positive significant correlations of soil depth were identified with tangential curvature, and profile curvature. Moreover, soil depth was negatively correlated

  17. Chemical and microbiological water quality of subsurface agricultural drains during a field trial of liquid dairy manure effluent application rate and varying tillage practices, Upper Tiffin Watershed, southeastern Michigan

    Science.gov (United States)

    Haack, Sheridan Kidd; Duris, Joseph W.

    2008-01-01

    A field trial was done in the Upper Tiffin River Watershed, in southeastern Michigan, to determine the influence of liquid dairy manure effluent (LDME) management practices on the quality of agricultural subsurface-drain water. Samples from subsurface drains were analyzed for nutrients, fecal-coliform and Escherichia coli (E. coli) bacteria, antibiotics, chemicals typically detected in wastewater, and the occurrence of genes indicating the presence of shiga-toxin-producing E. coli, or of bovine-specific Bacteroidetes bacteria. Samples were collected from November 2, 2006, to March 20, 2007, from eight subsurface drains under field plots that received no LDME and no tillage (controls) or received 4,000 or 8,000 gallons per acre (gal/acre) of LDME and either no tillage or two different types of tillage. The two types of tillage tested were (1) ground-driven, rotary, subsurface cultivation and (2) rolling-tine aeration. Samples were collected before LDME application and at 4 hours, and 1, 2, 6, 7, and 14 days post-application. Nutrient concentrations were high in subsurface-drain water throughout the field-trial period and could not be attributed to the field-trial LDME application. Of the 59 drain-water samples, including those collected before LDME application and control samples for each date, 56 had concentrations greater than the U.S. Environmental Protection Agency (USEPA), Ecoregion VI recommended surface-water criterion for total phosphorus, and all samples had concentrations greater than the recommended total nitrogen criterion. Nitrate + nitrite nitrogen concentration exceeded 20 milligrams per liter for every sample and contributed most to the total nitrogen concentrations. Substantial increases in drain-water concentrations of organic and ammonia nitrogen and total phosphorus were found for all treatments, including controls, at 14 days post-application after 0.84 inch of rainfall over 2 days. E. coli concentrations exceeded the USEPA recreational-water

  18. Relationship between Secchi depth and the diffuse light attenuation coefficient in Danish estuaries

    DEFF Research Database (Denmark)

    Murray, Ciarán; Markager, Stiig

    Analyis of temporal and spatial variation in the in the relationship between light attenuation and Secchi depth in Danish monitoring data There can be found timeseries of Secchi depth measurements in Danish waters which extend relatively far back in time. The Secchi depth measurement is therefore...

  19. Vegetation type and layer depth influence nitrite-dependent methane-oxidizing bacteria in constructed wetland.

    Science.gov (United States)

    Yang, Mengxi; Guo, Qingwei; Tong, Tianli; Li, Ningning; Xie, Shuguang; Long, Yan

    2017-04-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) process might be an important methane sink in wetland system. However, information on n-damo microorganisms in constructed wetland (CW) system for water treatment is still lacking. The present study investigated the n-damo communities in five full-scale vertical-flow CW systems with different plants. N-damo bacterial abundance did not show a considerable shift in CW planted with Cyperus papyrus, but varied greatly in other CW systems. However, the evident vertical change of n-damo community diversity occurred in each CW system. These CW systems displayed the different vertical change trends for either n-damo community abundance or diversity. In addition, CW n-damo community structure could change with wetland layer depth. At a given wetland layer depth, the evident difference of n-damo community abundance, diversity and structure could be observed in the five different CW systems. Both wetland layer depth and vegetation type could contribute to the shift of n-damo bacterial abundance and community structure in CWs.

  20. Limit of crustal drilling depth

    Directory of Open Access Journals (Sweden)

    Y.S. Zhao

    2017-10-01

    Full Text Available Deep drilling is becoming the direct and the most efficient means in exploiting deep mineral resources, facilitating to understanding the earthquake mechanism and performing other scientific researches on the Earth's crust. In order to understand the limit of drilling depth in the Earth's crust, we first conducted tests on granite samples with respect to the borehole deformation and stability under high temperature and high pressure using the triaxial servo-controlled rock testing system. Then the critical temperature-pressure coupling conditions that result in borehole instability are derived. Finally, based on the testing results obtained and the requirements for the threshold values of borehole deformations during deep drilling, the limit of drilling depth in the Earth's crust is formulated with ground temperature.