Delay-Dependent Guaranteed Cost Control of an Interval System with Interval Time-Varying Delay
Directory of Open Access Journals (Sweden)
Xiao Min
2009-01-01
Full Text Available This paper concerns the problem of the delay-dependent robust stability and guaranteed cost control for an interval system with time-varying delay. The interval system with matrix factorization is provided and leads to less conservative conclusions than solving a square root. The time-varying delay is assumed to belong to an interval and the derivative of the interval time-varying delay is not a restriction, which allows a fast time-varying delay; also its applicability is broad. Based on the Lyapunov-Ktasovskii approach, a delay-dependent criterion for the existence of a state feedback controller, which guarantees the closed-loop system stability, the upper bound of cost function, and disturbance attenuation lever for all admissible uncertainties as well as out perturbation, is proposed in terms of linear matrix inequalities (LMIs. The criterion is derived by free weighting matrices that can reduce the conservatism. The effectiveness has been verified in a number example and the compute results are presented to validate the proposed design method.
Voelkle, Manuel C; Oud, Johan H L
2013-02-01
When designing longitudinal studies, researchers often aim at equal intervals. In practice, however, this goal is hardly ever met, with different time intervals between assessment waves and different time intervals between individuals being more the rule than the exception. One of the reasons for the introduction of continuous time models by means of structural equation modelling has been to deal with irregularly spaced assessment waves (e.g., Oud & Delsing, 2010). In the present paper we extend the approach to individually varying time intervals for oscillating and non-oscillating processes. In addition, we show not only that equal intervals are unnecessary but also that it can be advantageous to use unequal sampling intervals, in particular when the sampling rate is low. Two examples are provided to support our arguments. In the first example we compare a continuous time model of a bivariate coupled process with varying time intervals to a standard discrete time model to illustrate the importance of accounting for the exact time intervals. In the second example the effect of different sampling intervals on estimating a damped linear oscillator is investigated by means of a Monte Carlo simulation. We conclude that it is important to account for individually varying time intervals, and encourage researchers to conceive of longitudinal studies with different time intervals within and between individuals as an opportunity rather than a problem. © 2012 The British Psychological Society.
Mean Square Exponential Stability of Stochastic Switched System with Interval Time-Varying Delays
Directory of Open Access Journals (Sweden)
Manlika Rajchakit
2012-01-01
Full Text Available This paper is concerned with mean square exponential stability of switched stochastic system with interval time-varying delays. The time delay is any continuous function belonging to a given interval, but not necessary to be differentiable. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, a switching rule for the mean square exponential stability of switched stochastic system with interval time-varying delays and new delay-dependent sufficient conditions for the mean square exponential stability of the switched stochastic system are first established in terms of LMIs. Numerical example is given to show the effectiveness of the obtained result.
Delay-Dependent Guaranteed Cost H∞ Control of an Interval System with Interval Time-Varying Delay
Directory of Open Access Journals (Sweden)
Zhongke Shi
2009-01-01
Full Text Available This paper concerns the problem of the delay-dependent robust stability and guaranteed cost H∞ control for an interval system with time-varying delay. The interval system with matrix factorization is provided and leads to less conservative conclusions than solving a square root. The time-varying delay is assumed to belong to an interval and the derivative of the interval time-varying delay is not a restriction, which allows a fast time-varying delay; also its applicability is broad. Based on the Lyapunov-Ktasovskii approach, a delay-dependent criterion for the existence of a state feedback controller, which guarantees the closed-loop system stability, the upper bound of cost function, and disturbance attenuation lever for all admissible uncertainties as well as out perturbation, is proposed in terms of linear matrix inequalities (LMIs. The criterion is derived by free weighting matrices that can reduce the conservatism. The effectiveness has been verified in a number example and the compute results are presented to validate the proposed design method.
Robust stability analysis of uncertain stochastic neural networks with interval time-varying delay
International Nuclear Information System (INIS)
Feng Wei; Yang, Simon X.; Fu Wei; Wu Haixia
2009-01-01
This paper addresses the stability analysis problem for uncertain stochastic neural networks with interval time-varying delays. The parameter uncertainties are assumed to be norm bounded, and the delay factor is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. A sufficient condition is derived such that for all admissible uncertainties, the considered neural network is robustly, globally, asymptotically stable in the mean square. Some stability criteria are formulated by means of the feasibility of a linear matrix inequality (LMI), which can be effectively solved by some standard numerical packages. Finally, numerical examples are provided to demonstrate the usefulness of the proposed criteria.
Improving Delay-Range-Dependent Stability Condition for Systems with Interval Time-Varying Delay
Directory of Open Access Journals (Sweden)
Wei Qian
2013-01-01
Full Text Available This paper discusses the delay-range-dependent stability for systems with interval time-varying delay. Through defining the new Lyapunov-Krasovskii functional and estimating the derivative of the LKF by introducing new vectors, using free matrices and reciprocally convex approach, the new delay-range-dependent stability conditions are obtained. Two well-known examples are given to illustrate the less conservatism of the proposed theoretical results.
Finite-Time Stability of Large-Scale Systems with Interval Time-Varying Delay in Interconnection
Directory of Open Access Journals (Sweden)
T. La-inchua
2017-01-01
Full Text Available We investigate finite-time stability of a class of nonlinear large-scale systems with interval time-varying delays in interconnection. Time-delay functions are continuous but not necessarily differentiable. Based on Lyapunov stability theory and new integral bounding technique, finite-time stability of large-scale systems with interval time-varying delays in interconnection is derived. The finite-time stability criteria are delays-dependent and are given in terms of linear matrix inequalities which can be solved by various available algorithms. Numerical examples are given to illustrate effectiveness of the proposed method.
H∞ state estimation of generalised neural networks with interval time-varying delays
Saravanakumar, R.; Syed Ali, M.; Cao, Jinde; Huang, He
2016-12-01
This paper focuses on studying the H∞ state estimation of generalised neural networks with interval time-varying delays. The integral terms in the time derivative of the Lyapunov-Krasovskii functional are handled by the Jensen's inequality, reciprocally convex combination approach and a new Wirtinger-based double integral inequality. A delay-dependent criterion is derived under which the estimation error system is globally asymptotically stable with H∞ performance. The proposed conditions are represented by linear matrix inequalities. Optimal H∞ norm bounds are obtained easily by solving convex problems in terms of linear matrix inequalities. The advantage of employing the proposed inequalities is illustrated by numerical examples.
International Nuclear Information System (INIS)
Xu Shengyuan; Lam, James; Ho, Daniel W.C.
2005-01-01
This Letter is concerned with the problem of robust stability analysis for interval neural networks with multiple time-varying delays and parameter uncertainties. The parameter uncertainties are assumed to be bounded in given compact sets and the activation functions are supposed to be bounded and globally Lipschitz continuous. A sufficient condition is obtained by means of Lyapunov functionals, which guarantees the existence, uniqueness and global asymptotic stability of the delayed neural network for all admissible uncertainties. This condition is in terms of a linear matrix inequality (LMI), which can be easily checked by using recently developed algorithms in solving LMIs. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method
Directory of Open Access Journals (Sweden)
O. M. Kwon
2012-01-01
Full Text Available The purpose of this paper is to investigate the delay-dependent stability analysis for discrete-time neural networks with interval time-varying delays. Based on Lyapunov method, improved delay-dependent criteria for the stability of the networks are derived in terms of linear matrix inequalities (LMIs by constructing a suitable Lyapunov-Krasovskii functional and utilizing reciprocally convex approach. Also, a new activation condition which has not been considered in the literature is proposed and utilized for derivation of stability criteria. Two numerical examples are given to illustrate the effectiveness of the proposed method.
Effects of varied doses of psilocybin on time interval reproduction in human subjects.
Wackermann, Jirí; Wittmann, Marc; Hasler, Felix; Vollenweider, Franz X
2008-04-11
Action of a hallucinogenic substance, psilocybin, on internal time representation was investigated in two double-blind, placebo-controlled studies: Experiment 1 with 12 subjects and graded doses, and Experiment 2 with 9 subjects and a very low dose. The task consisted in repeated reproductions of time intervals in the range from 1.5 to 5s. The effects were assessed by parameter kappa of the 'dual klepsydra' model of internal time representation, fitted to individual response data and intra-individually normalized with respect to initial values. The estimates kappa were in the same order of magnitude as in earlier studies. In both experiments, kappa was significantly increased by psilocybin at 90 min from the drug intake, indicating a higher loss rate of the internal duration representation. These findings are tentatively linked to qualitative alterations of subjective time in altered states of consciousness.
Directory of Open Access Journals (Sweden)
Huaiqin Wu
2012-01-01
Full Text Available By combing the theories of the switched systems and the interval neural networks, the mathematics model of the switched interval neural networks with discrete and distributed time-varying delays of neural type is presented. A set of the interval parameter uncertainty neural networks with discrete and distributed time-varying delays of neural type are used as the individual subsystem, and an arbitrary switching rule is assumed to coordinate the switching between these networks. By applying the augmented Lyapunov-Krasovskii functional approach and linear matrix inequality (LMI techniques, a delay-dependent criterion is achieved to ensure to such switched interval neural networks to be globally asymptotically robustly stable in terms of LMIs. The unknown gain matrix is determined by solving this delay-dependent LMIs. Finally, an illustrative example is given to demonstrate the validity of the theoretical results.
International Nuclear Information System (INIS)
Balasubramaniam, P.; Lakshmanan, S.; Manivannan, A.
2012-01-01
Highlights: ► Robust stability analysis for Markovian jumping interval neural networks is considered. ► Both linear fractional and interval uncertainties are considered. ► A new LKF is constructed with triple integral terms. ► MATLAB LMI control toolbox is used to validate theoretical results. ► Numerical examples are given to illustrate the effectiveness of the proposed method. - Abstract: This paper investigates robust stability analysis for Markovian jumping interval neural networks with discrete and distributed time-varying delays. The parameter uncertainties are assumed to be bounded in given compact sets. The delay is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the new Lyapunov–Krasovskii functional (LKF), some inequality techniques and stochastic stability theory, new delay-dependent stability criteria have been obtained in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the less conservative and effectiveness of our theoretical results.
Park, Ju H.; Kwon, O. M.
In the letter, the global asymptotic stability of bidirectional associative memory (BAM) neural networks with delays is investigated. The delay is assumed to be time-varying and belongs to a given interval. A novel stability criterion for the stability is presented based on the Lyapunov method. The criterion is represented in terms of linear matrix inequality (LMI), which can be solved easily by various optimization algorithms. Two numerical examples are illustrated to show the effectiveness of our new result.
Park, Myeongjin; Lee, Seung-Hoon; Kwon, Oh-Min; Seuret, Alexandre
2017-09-06
This paper investigates synchronization in complex dynamical networks (CDNs) with interval time-varying delays. The CDNs are representative of systems composed of a large number of interconnected dynamical units, and for the purpose of the mathematical analysis, the leading work is to model them as graphs whose nodes represent the dynamical units. At this time, we take note of the importance of each node in networks. One way, in this paper, is that the closeness-centrality mentioned in the field of social science is grafted onto the CDNs. By constructing a suitable Lyapunov-Krasovskii functional, and utilizing some mathematical techniques, the sufficient and closeness-centrality-based conditions for synchronization stability of the networks are established in terms of linear matrix inequalities. Ultimately, the use of the closeness-centrality can be weighted with regard to not only the interconnection relation among the nodes, which was utilized in the existing works but also more information about nodes. Here, the centrality will be added as the concerned information. Moreover, to avoid the computational burden causing the nonconvex term including the square of the time-varying delay, how to deal with it is applied by estimating it to the convex term including time-varying delay. Finally, two illustrative examples are given to show the advantage of the closeness-centrality in point of the robustness on time-delay.
International Nuclear Information System (INIS)
Lu, Chien-Yu
2011-01-01
This paper considers the problem of delay-dependent global robust stabilization for discrete, distributed and neutral interval time-varying delayed neural networks described by nonlinear delay differential equations of the neutral type. The parameter uncertainties are norm bounded. The activation functions are assumed to be bounded and globally Lipschitz continuous. Using a Lyapunov functional approach and linear matrix inequality (LMI) techniques, the stability criteria for the uncertain neutral neural networks with interval time-varying delays are established in the form of LMIs, which can be readily verified using the standard numerical software. An important feature of the result reported is that all the stability conditions are dependent on the upper and lower bounds of the delays. Another feature of the results lies in that it involves fewer free weighting matrix strategy, and upper bounds of the inner product between two vectors are not introduced to reduce the conservatism of the criteria. Two illustrative examples are provided to demonstrate the effectiveness and the reduced conservatism of the proposed method
Robust Moving Horizon H∞ Control of Discrete Time-Delayed Systems with Interval Time-Varying Delays
Directory of Open Access Journals (Sweden)
F. Yıldız Tascikaraoglu
2014-01-01
Full Text Available In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method.
International Nuclear Information System (INIS)
Li Hongjie; Yue Dong
2010-01-01
The paper investigates the synchronization stability problem for a class of complex dynamical networks with Markovian jumping parameters and mixed time delays. The complex networks consist of m modes and the networks switch from one mode to another according to a Markovian chain with known transition probability. The mixed time delays are composed of discrete and distributed delays, the discrete time delay is assumed to be random and its probability distribution is known a priori. In terms of the probability distribution of the delays, the new type of system model with probability-distribution-dependent parameter matrices is proposed. Based on the stochastic analysis techniques and the properties of the Kronecker product, delay-dependent synchronization stability criteria in the mean square are derived in the form of linear matrix inequalities which can be readily solved by using the LMI toolbox in MATLAB, the solvability of derived conditions depends on not only the size of the delay, but also the probability of the delay-taking values in some intervals. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.
Directory of Open Access Journals (Sweden)
Jin Wang
2017-03-01
Full Text Available This article proposes a multiple-step fault estimation algorithm for hypersonic flight vehicles that uses an interval type-II Takagi–Sugeno fuzzy model. An interval type-II Takagi–Sugeno fuzzy model is developed to approximate the nonlinear dynamic system and handle the parameter uncertainties of hypersonic firstly. Then, a multiple-step time-varying additive fault estimation algorithm is designed to estimate time-varying additive elevator fault of hypersonic flight vehicles. Finally, the simulation is conducted in both aspects of modeling and fault estimation; the validity and availability of such method are verified by a series of the comparison of numerical simulation results.
International Nuclear Information System (INIS)
O’Brien, Ricky T; Cooper, Benjamin J; Keall, Paul J
2013-01-01
Four dimensional cone beam computed tomography (4DCBCT) is an emerging clinical image guidance strategy for tumour sites affected by respiratory motion. In current generation 4DCBCT techniques, both the gantry rotation speed and imaging frequency are constant and independent of the patient’s breathing which can lead to projection clustering. We present a mixed integer quadratic programming (MIQP) model for respiratory motion guided-4DCBCT (RMG-4DCBCT) which regulates the gantry velocity and projection time interval, in response to the patient’s respiratory signal, so that a full set of evenly spaced projections can be taken in a number of phase, or displacement, bins during the respiratory cycle. In each respiratory bin, an image can be reconstructed from the projections to give a 4D view of the patient’s anatomy so that the motion of the lungs, and tumour, can be observed during the breathing cycle. A solution to the full MIQP model in a practical amount of time, 10 s, is not possible with the leading commercial MIQP solvers, so a heuristic method is presented. Using parameter settings typically used on current generation 4DCBCT systems (4 min image acquisition, 1200 projections, 10 respiratory bins) and a sinusoidal breathing trace with a 4 s period, we show that the root mean square (RMS) of the angular separation between projections with displacement binning is 2.7° using existing constant gantry speed systems and 0.6° using RMG-4DCBCT. For phase based binning the RMS is 2.7° using constant gantry speed systems and 2.5° using RMG-4DCBCT. The optimization algorithm presented is a critical step on the path to developing a system for RMG-4DCBCT. (paper)
Directory of Open Access Journals (Sweden)
Jami George
2016-04-01
Full Text Available Information is lacking on preserving fish carcasses to minimize postmortem autolysis artifacts when a necropsy cannot be performed immediately. The purpose of this study was to qualitatively identify and score histologic postmortem changes in two species of freshwater fish (bluegill—Lepomis macrochirus; crappie—Pomoxis annularis, at varied time intervals and storage temperatures, to assess the histologic quality of collected samples. A pooled sample of 36 mix sex individuals of healthy bluegill and crappie were euthanized, stored either at room temperature, refrigerated at 4 °C, or frozen at −20 °C, and then necropsied at 0, 4, 24, and 48 h intervals. Histologic specimens were evaluated by light microscopy. Data showed that immediate harvesting of fresh samples provides the best quality and refrigeration would be the preferred method of storage if sample collection had to be delayed for up to 24 h. When sample collection must be delayed more than 24 h, the preferred method of storage to minimize autolysis artifacts is freezing if evaluation of the gastrointestinal tract is most important, or refrigeration if gill histology is most important. The gill arch, intestinal tract, followed by the liver and kidney were the most sensitive organs to autolysis.
Sun, Bo; Sunkavalli, Kalyan; Ramamoorthi, Ravi; Belhumeur, Peter N; Nayar, Shree K
2007-01-01
The properties of virtually all real-world materials change with time, causing their bidirectional reflectance distribution functions (BRDFs) to be time varying. However, none of the existing BRDF models and databases take time variation into consideration; they represent the appearance of a material at a single time instance. In this paper, we address the acquisition, analysis, modeling, and rendering of a wide range of time-varying BRDFs (TVBRDFs). We have developed an acquisition system that is capable of sampling a material's BRDF at multiple time instances, with each time sample acquired within 36 sec. We have used this acquisition system to measure the BRDFs of a wide range of time-varying phenomena, which include the drying of various types of paints (watercolor, spray, and oil), the drying of wet rough surfaces (cement, plaster, and fabrics), the accumulation of dusts (household and joint compound) on surfaces, and the melting of materials (chocolate). Analytic BRDF functions are fit to these measurements and the model parameters' variations with time are analyzed. Each category exhibits interesting and sometimes nonintuitive parameter trends. These parameter trends are then used to develop analytic TVBRDF models. The analytic TVBRDF models enable us to apply effects such as paint drying and dust accumulation to arbitrary surfaces and novel materials.
Srinivasulu, S; Vidhya, S; Sujatha, M; Mahalaxmi, S
2012-01-01
This in vitro study evaluated the shear bond strength of composite resin to deep dentin using a total etch adhesive after treatment with two collagen cross-linking agents at varying time intervals. Thirty freshly extracted human maxillary central incisors were sectioned longitudinally into equal mesial and distal halves (n=60). The proximal deep dentin was exposed, maintaining a remaining dentin thickness (RDT) of approximately 1 mm. The specimens were randomly divided into three groups based on the surface treatment of dentin prior to bonding as follows: group I (n=12, control): no prior dentin surface treatment; group II (n=24): dentin surface pretreated with 10% sodium ascorbate; and group III (n=24): dentin surface pretreated with 6.5% proanthocyanidin. Groups II and III were further subdivided into two subgroups of 12 specimens each, based on the pretreatment time of five minutes (subgroup A) and 10 minutes (subgroup B). Shear bond strength of the specimens was tested with a universal testing machine, and the data were statistically analyzed. Significantly higher shear bond strength to deep dentin was observed in teeth treated with 10% sodium ascorbate (group II) and 6.5% proanthocyanidin (group III) compared to the control group (group I). Among the collagen cross-linkers used, specimens treated with proanthocyanidin showed significantly higher shear bond strength values than those treated with sodium ascorbate. No significant difference was observed between the five-minute and 10-minute pretreatment times in groups II and III. It can be concluded that dentin surface pretreatment with both 10% sodium ascorbate and 6.5% proanthocyanidin resulted in significant improvement in bond strength of resin composite to deep dentin.
Zhang, Xian-Ming; Han, Qing-Long; Ge, Xiaohua
2017-09-22
This paper is concerned with the problem of robust H∞ control of an uncertain discrete-time Takagi-Sugeno fuzzy system with an interval-like time-varying delay. A novel finite-sum inequality-based method is proposed to provide a tighter estimation on the forward difference of certain Lyapunov functional, leading to a less conservative result. First, an auxiliary vector function is used to establish two finite-sum inequalities, which can produce tighter bounds for the finite-sum terms appearing in the forward difference of the Lyapunov functional. Second, a matrix-based quadratic convex approach is employed to equivalently convert the original matrix inequality including a quadratic polynomial on the time-varying delay into two boundary matrix inequalities, which delivers a less conservative bounded real lemma (BRL) for the resultant closed-loop system. Third, based on the BRL, a novel sufficient condition on the existence of suitable robust H∞ fuzzy controllers is derived. Finally, two numerical examples and a computer-simulated truck-trailer system are provided to show the effectiveness of the obtained results.
DEFF Research Database (Denmark)
Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae
We estimate a continuous-time model with stochastic volatility and dynamic crash probability for the S&P 500 index and find that market illiquidity dominates other factors in explaining the stock market crash risk. While the crash probability is time-varying, its dynamic depends only weakly on re...
Institute of Scientific and Technical Information of China (English)
惠俊军; 张合新; 周鑫; 孟飞; 张金生
2014-01-01
Interval time delay is an important delay type in practical systems. In such sys-tems, the delay may vary in a range for which the lower bound is not restricted to being zero. In this paper, we consider the robust stability for a class of linear systems with interval time-varying delay and nonlinear perturbations. Based on the delay decomposition approach, both the lower and upper bounds of the interval time-varying delay are proposed. By applying a new Lyapunov-Krasovskii (L-K) functional, and free-weighing matrix approach, a less conservative delay-dependent stability criteria are obtained, which are established in the forms of linear matrix inequalities (LMIs). The main advantage of the method is that more information of the interval delay is employed, and hence yields less conservative. Finally, numerical examples indicate the effectiveness and superiority of the proposed method.%区间时滞是在实际应用当中一类重要的时滞类型。在这类系统当中，时滞往往处于一个变化的区间之内，而时滞的下界不一定为零。本文讨论一类含非线性扰动的区间变时滞系统的稳定性问题。基于时滞分解法，把时滞下界分成两个相等的子区间，通过构造包含时滞区间下界和上界新Lyapunov-Krasovskii (L-K)泛函，结合改进的自由权矩阵技术，建立了线性矩阵不等式(LMI)形式的时滞相关稳定性判据。该方法充分利用了系统的时滞信息，因而具有更低的保守性。数值算例说明了该方法的有效性和优越性。
Reviewing interval cancers: Time well spent?
International Nuclear Information System (INIS)
Gower-Thomas, Kate; Fielder, Hilary M.P.; Branston, Lucy; Greening, Sarah; Beer, Helen; Rogers, Cerilan
2002-01-01
OBJECTIVES: To categorize interval cancers, and thus identify false-negatives, following prevalent and incident screens in the Welsh breast screening programme. SETTING: Breast Test Wales (BTW) Llandudno, Cardiff and Swansea breast screening units. METHODS: Five hundred and sixty interval breast cancers identified following negative mammographic screening between 1989 and 1997 were reviewed by eight screening radiologists. The blind review was achieved by mixing the screening films of women who subsequently developed an interval cancer with screen negative films of women who did not develop cancer, in a ratio of 4:1. Another radiologist used patients' symptomatic films to record a reference against which the reviewers' reports of the screening films were compared. Interval cancers were categorized as 'true', 'occult', 'false-negative' or 'unclassified' interval cancers or interval cancers with minimal signs, based on the National Health Service breast screening programme (NHSBSP) guidelines. RESULTS: Of the classifiable interval films, 32% were false-negatives, 55% were true intervals and 12% occult. The proportion of false-negatives following incident screens was half that following prevalent screens (P = 0.004). Forty percent of the seed films were recalled by the panel. CONCLUSIONS: Low false-negative interval cancer rates following incident screens (18%) versus prevalent screens (36%) suggest that lower cancer detection rates at incident screens may have resulted from fewer cancers than expected being present, rather than from a failure to detect tumours. The panel method for categorizing interval cancers has significant flaws as the results vary markedly with different protocol and is no more accurate than other, quicker and more timely methods. Gower-Thomas, K. et al. (2002)
Early diastolic time intervals during hypertensive pregnancy.
Spinelli, L; Ferro, G; Nappi, C; Farace, M J; Talarico, G; Cinquegrana, G; Condorelli, M
1987-10-01
Early diastolic time intervals have been assessed by means of the echopolycardiographic method in 17 pregnant women who developed hypertension during pregnancy (HP) and in 14 normal pregnant women (N). Systolic time intervals (STI), stroke volume (SV), ejection fraction (EF), and mean velocity of myocardial fiber shortening (VCF) were also evaluated. Recordings were performed in the left lateral decubitus (LLD) and then in the supine decubitus (SD). In LLD, isovolumic relaxation period (IRP) was prolonged in the hypertensive pregnant women compared with normal pregnant women (HP 51 +/- 12.5 ms, N 32.4 +/- 15 ms p less than 0.05), whereas time of the mitral valve maximum opening (DE) was not different in the groups. There was no difference in SV, EF, and mean VCF, whereas STI showed only a significant (p less than 0.05) lengthening of pre-ejection period (PEP) in HP. When the subjects shifted from the left lateral to the supine decubitus position, left ventricular ejection time index (LVETi) and SV decreased significantly (p less than 0.05) in both normotensive hypertensive pregnant women. IRP and PEP lengthened significantly (p less than 0.05) only in normals, whereas they were unchanged in HP. DE time did not vary in either group. In conclusion, hypertension superimposed on pregnancy induces lengthening of IRP, as well as of PEP, and minimizes the effects of the postural changes in preload on the above-mentioned time intervals.
Intact interval timing in circadian CLOCK mutants.
Cordes, Sara; Gallistel, C R
2008-08-28
While progress has been made in determining the molecular basis for the circadian clock, the mechanism by which mammalian brains time intervals measured in seconds to minutes remains a mystery. An obvious question is whether the interval-timing mechanism shares molecular machinery with the circadian timing mechanism. In the current study, we trained circadian CLOCK +/- and -/- mutant male mice in a peak-interval procedure with 10 and 20-s criteria. The mutant mice were more active than their wild-type littermates, but there were no reliable deficits in the accuracy or precision of their timing as compared with wild-type littermates. This suggests that expression of the CLOCK protein is not necessary for normal interval timing.
Perceptions of Time and Long Time Intervals
Energy Technology Data Exchange (ETDEWEB)
Drottz-Sjoeberg, Britt-Marie [Norwegian Univ. of Science and Technology, Trondheim (Norway). Dept. of Psychology
2006-09-15
There are certainly many perspectives presented in the literature on time and time perception. This contribution has focused on perceptions of the time frames related to risk and danger of radiation from a planned Swedish repository for spent nuclear fuel. Respondents from two municipalities judged SSI's reviews of the entrepreneur's plans and work of high importance, and more important the closer to our time the estimate was given. Similarly were the consequences of potential leakage from a repository perceived as more serious the closer it would be to our time. Judgements of risks related to the storage of spent nuclear fuel were moderately large on the used measurement scales. Experts are experts because they have more knowledge, and in this context they underlined e.g. the importance of reviews of the radiation situation of time periods up to 100,000 years. It was of interest to note that 55% of the respondents from the municipalities did not believe that the future repository would leak radioactivity. They were much more pessimistic with respect to world politics, i.e. a new world war. However, with respect to the seriousness of the consequences given a leakage from the repository, the public group consistently gave high risk estimates, often significantly higher than those of the expert group. The underestimations of time estimates, as seen in the tasks of pinpointing historic events, provide examples of the difficulty of making estimations involving long times. Similar results showed that thinking of 'the future' most often involved about 30 years. On average, people reported memories of about 2.5 generations back in time, and emotional relationships stretching approximately 2.5 generations into the future; 94% of the responses, with respect to how many future generations one had an emotional relationship, were given in the range of 1-5 generations. Similarly, Svenson and Nilsson found the opinion that the current generations
Perceptions of Time and Long Time Intervals
International Nuclear Information System (INIS)
Drottz-Sjoeberg, Britt-Marie
2006-01-01
There are certainly many perspectives presented in the literature on time and time perception. This contribution has focused on perceptions of the time frames related to risk and danger of radiation from a planned Swedish repository for spent nuclear fuel. Respondents from two municipalities judged SSI's reviews of the entrepreneur's plans and work of high importance, and more important the closer to our time the estimate was given. Similarly were the consequences of potential leakage from a repository perceived as more serious the closer it would be to our time. Judgements of risks related to the storage of spent nuclear fuel were moderately large on the used measurement scales. Experts are experts because they have more knowledge, and in this context they underlined e.g. the importance of reviews of the radiation situation of time periods up to 100,000 years. It was of interest to note that 55% of the respondents from the municipalities did not believe that the future repository would leak radioactivity. They were much more pessimistic with respect to world politics, i.e. a new world war. However, with respect to the seriousness of the consequences given a leakage from the repository, the public group consistently gave high risk estimates, often significantly higher than those of the expert group. The underestimations of time estimates, as seen in the tasks of pinpointing historic events, provide examples of the difficulty of making estimations involving long times. Similar results showed that thinking of 'the future' most often involved about 30 years. On average, people reported memories of about 2.5 generations back in time, and emotional relationships stretching approximately 2.5 generations into the future; 94% of the responses, with respect to how many future generations one had an emotional relationship, were given in the range of 1-5 generations. Similarly, Svenson and Nilsson found the opinion that the current generations' general responsibility for
Learned Interval Time Facilitates Associate Memory Retrieval
van de Ven, Vincent; Kochs, Sarah; Smulders, Fren; De Weerd, Peter
2017-01-01
The extent to which time is represented in memory remains underinvestigated. We designed a time paired associate task (TPAT) in which participants implicitly learned cue-time-target associations between cue-target pairs and specific cue-target intervals. During subsequent memory testing, participants showed increased accuracy of identifying…
Timing intervals using population synchrony and spike timing dependent plasticity
Directory of Open Access Journals (Sweden)
Wei Xu
2016-12-01
Full Text Available We present a computational model by which ensembles of regularly spiking neurons can encode different time intervals through synchronous firing. We show that a neuron responding to a large population of convergent inputs has the potential to learn to produce an appropriately-timed output via spike-time dependent plasticity. We explain why temporal variability of this population synchrony increases with increasing time intervals. We also show that the scalar property of timing and its violation at short intervals can be explained by the spike-wise accumulation of jitter in the inter-spike intervals of timing neurons. We explore how the challenge of encoding longer time intervals can be overcome and conclude that this may involve a switch to a different population of neurons with lower firing rate, with the added effect of producing an earlier bias in response. Experimental data on human timing performance show features in agreement with the model’s output.
Time-Varying Periodicity in Intraday Volatility
DEFF Research Database (Denmark)
Andersen, Torben Gustav; Thyrsgaard, Martin; Todorov, Viktor
We develop a nonparametric test for deciding whether return volatility exhibits time-varying intraday periodicity using a long time-series of high-frequency data. Our null hypothesis, commonly adopted in work on volatility modeling, is that volatility follows a stationary process combined...... with a constant time-of-day periodic component. We first construct time-of-day volatility estimates and studentize the high-frequency returns with these periodic components. If the intraday volatility periodicity is invariant over time, then the distribution of the studentized returns should be identical across...... with estimating volatility moments through their sample counterparts. Critical values are computed via easy-to-implement simulation. In an empirical application to S&P 500 index returns, we find strong evidence for variation in the intraday volatility pattern driven in part by the current level of volatility...
Conceptual Modeling of Time-Varying Information
DEFF Research Database (Denmark)
Gregersen, Heidi; Jensen, Christian S.
2004-01-01
A wide range of database applications manage information that varies over time. Many of the underlying database schemas of these were designed using the Entity-Relationship (ER) model. In the research community as well as in industry, it is common knowledge that the temporal aspects of the mini......-world are important, but difficult to capture using the ER model. Several enhancements to the ER model have been proposed in an attempt to support the modeling of temporal aspects of information. Common to the existing temporally extended ER models, few or no specific requirements to the models were given...
A time-varying magnetic flux concentrator
International Nuclear Information System (INIS)
Kibret, B; Premaratne, M; Lewis, P M; Thomson, R; Fitzgerald, P B
2016-01-01
It is known that diverse technological applications require the use of focused magnetic fields. This has driven the quest for controlling the magnetic field. Recently, the principles in transformation optics and metamaterials have allowed the realization of practical static magnetic flux concentrators. Extending such progress, here, we propose a time-varying magnetic flux concentrator cylindrical shell that uses electric conductors and ferromagnetic materials to guide magnetic flux to its center. Its performance is discussed based on finite-element simulation results. Our proposed design has potential applications in magnetic sensors, medical devices, wireless power transfer, and near-field wireless communications. (paper)
Traces of times past : Representations of temporal intervals in memory
Taatgen, Niels; van Rijn, Hedderik
2011-01-01
Theories of time perception typically assume that some sort of memory represents time intervals. This memory component is typically underdeveloped in theories of time perception. Following earlier work that suggested that representations of different time intervals contaminate each other (Grondin,
Time varying, multivariate volume data reduction
Energy Technology Data Exchange (ETDEWEB)
Ahrens, James P [Los Alamos National Laboratory; Fout, Nathaniel [UC DAVIS; Ma, Kwan - Liu [UC DAVIS
2010-01-01
Large-scale supercomputing is revolutionizing the way science is conducted. A growing challenge, however, is understanding the massive quantities of data produced by large-scale simulations. The data, typically time-varying, multivariate, and volumetric, can occupy from hundreds of gigabytes to several terabytes of storage space. Transferring and processing volume data of such sizes is prohibitively expensive and resource intensive. Although it may not be possible to entirely alleviate these problems, data compression should be considered as part of a viable solution, especially when the primary means of data analysis is volume rendering. In this paper we present our study of multivariate compression, which exploits correlations among related variables, for volume rendering. Two configurations for multidimensional compression based on vector quantization are examined. We emphasize quality reconstruction and interactive rendering, which leads us to a solution using graphics hardware to perform on-the-fly decompression during rendering. In this paper we present a solution which addresses the need for data reduction in large supercomputing environments where data resulting from simulations occupies tremendous amounts of storage. Our solution employs a lossy encoding scheme to acrueve data reduction with several options in terms of rate-distortion behavior. We focus on encoding of multiple variables together, with optional compression in space and time. The compressed volumes can be rendered directly with commodity graphics cards at interactive frame rates and rendering quality similar to that of static volume renderers. Compression results using a multivariate time-varying data set indicate that encoding multiple variables results in acceptable performance in the case of spatial and temporal encoding as compared to independent compression of variables. The relative performance of spatial vs. temporal compression is data dependent, although temporal compression has the
Flexible time-varying filter banks
Tuncer, Temel E.; Nguyen, Truong Q.
1993-09-01
Linear phase maximally flat FIR Butterworth filter approximations are discussed and a new filter design method is introduced. This variable cutoff filter design method uses the cosine modulated versions of a prototype filter. The design procedure is simple and different variants of this procedure can be used to obtain close to optimum linear phase filters. Using this method, flexible time-varying filter banks with good reconstruction error are introduced. These types of oversampled filter banks have small magnitude error which can be easily controlled by the appropriate choice of modulation frequency. This error can be further decreased by magnitude equalization without increasing the computational complexity considerably. Two dimensional design examples are also given.
TIME-VARYING DYNAMICAL STAR FORMATION RATE
Energy Technology Data Exchange (ETDEWEB)
Lee, Eve J.; Chang, Philip; Murray, Norman, E-mail: evelee@berkeley.edu [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON M5S 3H8 (Canada)
2015-02-10
We present numerical evidence of dynamic star formation in which the accreted stellar mass grows superlinearly with time, roughly as t {sup 2}. We perform simulations of star formation in self-gravitating hydrodynamic and magnetohydrodynamic turbulence that is continuously driven. By turning the self-gravity of the gas in the simulations on or off, we demonstrate that self-gravity is the dominant physical effect setting the mass accretion rate at early times before feedback effects take over, contrary to theories of turbulence-regulated star formation. We find that gravitational collapse steepens the density profile around stars, generating the power-law tail on what is otherwise a lognormal density probability distribution function. Furthermore, we find turbulent velocity profiles to flatten inside collapsing regions, altering the size-line width relation. This local flattening reflects enhancements of turbulent velocity on small scales, as verified by changes to the velocity power spectra. Our results indicate that gas self-gravity dynamically alters both density and velocity structures in clouds, giving rise to a time-varying star formation rate. We find that a substantial fraction of the gas that forms stars arrives via low-density flows, as opposed to accreting through high-density filaments.
Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla
2010-12-01
The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns. Copyright © 2010 Elsevier Ltd. All rights reserved.
Modelling tourists arrival using time varying parameter
Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.
2017-06-01
The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.
Detection of dynamically varying interaural time differences
DEFF Research Database (Denmark)
Kohlrausch, Armin; Le Goff, Nicolas; Breebaart, Jeroen
2010-01-01
of fringes surrounding the probe is equal to the addition of the effects of the individual fringes. In this contribution, we present behavioral data for the same experimental condition, called dynamically varying ITD detection, but for a wider range of probe and fringe durations. Probe durations varied...
Timed arrays wideband and time varying antenna arrays
Haupt, Randy L
2015-01-01
Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth
Tracking time-varying coefficient-functions
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Joensen, Alfred K.
2000-01-01
is a combination of recursive least squares with exponential forgetting and local polynomial regression. It is argued, that it is appropriate to let the forgetting factor vary with the value of the external signal which is the argument of the coefficient functions. Some of the key properties of the modified method...... are studied by simulation...
First Passage Time Intervals of Gaussian Processes
Perez, Hector; Kawabata, Tsutomu; Mimaki, Tadashi
1987-08-01
The first passage time problem of a stationary Guassian process is theretically and experimentally studied. Renewal functions are derived for a time-dependent boundary and numerically calculated for a Gaussian process having a seventh-order Butterworth spectrum. The results show a multipeak property not only for the constant boundary but also for a linearly increasing boundary. The first passage time distribution densities were experimentally determined for a constant boundary. The renewal functions were shown to be a fairly good approximation to the distribution density over a limited range.
Daniels, Carter W; Sanabria, Federico
2017-03-01
The distribution of latencies and interresponse times (IRTs) of rats was compared between two fixed-interval (FI) schedules of food reinforcement (FI 30 s and FI 90 s), and between two levels of food deprivation. Computational modeling revealed that latencies and IRTs were well described by mixture probability distributions embodying two-state Markov chains. Analysis of these models revealed that only a subset of latencies is sensitive to the periodicity of reinforcement, and prefeeding only reduces the size of this subset. The distribution of IRTs suggests that behavior in FI schedules is organized in bouts that lengthen and ramp up in frequency with proximity to reinforcement. Prefeeding slowed down the lengthening of bouts and increased the time between bouts. When concatenated, latency and IRT models adequately reproduced sigmoidal FI response functions. These findings suggest that behavior in FI schedules fluctuates in and out of schedule control; an account of such fluctuation suggests that timing and motivation are dissociable components of FI performance. These mixture-distribution models also provide novel insights on the motivational, associative, and timing processes expressed in FI performance. These processes may be obscured, however, when performance in timing tasks is analyzed in terms of mean response rates.
Estimating fluvial wood discharge from timelapse photography with varying sampling intervals
Anderson, N. K.
2013-12-01
There is recent focus on calculating wood budgets for streams and rivers to help inform management decisions, ecological studies and carbon/nutrient cycling models. Most work has measured in situ wood in temporary storage along stream banks or estimated wood inputs from banks. Little effort has been employed monitoring and quantifying wood in transport during high flows. This paper outlines a procedure for estimating total seasonal wood loads using non-continuous coarse interval sampling and examines differences in estimation between sampling at 1, 5, 10 and 15 minutes. Analysis is performed on wood transport for the Slave River in Northwest Territories, Canada. Relative to the 1 minute dataset, precision decreased by 23%, 46% and 60% for the 5, 10 and 15 minute datasets, respectively. Five and 10 minute sampling intervals provided unbiased equal variance estimates of 1 minute sampling, whereas 15 minute intervals were biased towards underestimation by 6%. Stratifying estimates by day and by discharge increased precision over non-stratification by 4% and 3%, respectively. Not including wood transported during ice break-up, the total minimum wood load estimated at this site is 3300 × 800$ m3 for the 2012 runoff season. The vast majority of the imprecision in total wood volumes came from variance in estimating average volume per log. Comparison of proportions and variance across sample intervals using bootstrap sampling to achieve equal n. Each trial was sampled for n=100, 10,000 times and averaged. All trials were then averaged to obtain an estimate for each sample interval. Dashed lines represent values from the one minute dataset.
Yu, Jonas C. P.; Wee, H. M.; Yang, P. C.; Wu, Simon
2016-06-01
One of the supply chain risks for hi-tech products is the result of rapid technological innovation; it results in a significant decline in the selling price and demand after the initial launch period. Hi-tech products include computers and communication consumer's products. From a practical standpoint, a more realistic replenishment policy is needed to consider the impact of risks; especially when some portions of shortages are lost. In this paper, suboptimal and optimal order policies with partial backordering are developed for a buyer when the component cost, the selling price, and the demand rate decline at a continuous rate. Two mathematical models are derived and discussed: one model has the suboptimal solution with the fixed replenishment interval and a simpler computational process; the other one has the optimal solution with the varying replenishment interval and a more complicated computational process. The second model results in more profit. Numerical examples are provided to illustrate the two replenishment models. Sensitivity analysis is carried out to investigate the relationship between the parameters and the net profit.
Interval timing in genetically modified mice: a simple paradigm
Balci, F.; Papachristos, E. B.; Gallistel, C. R.; Brunner, D.; Gibson, J.; Shumyatsky, G. P.
2007-01-01
We describe a behavioral screen for the quantitative study of interval timing and interval memory in mice. Mice learn to switch from a short-latency feeding station to a long-latency station when the short latency has passed without a feeding. The psychometric function is the cumulative distribution of switch latencies. Its median measures timing accuracy and its interquartile interval measures timing precision. Next, using this behavioral paradigm, we have examined mice with a gene knockout ...
Time interval approach to the pulsed neutron logging method
International Nuclear Information System (INIS)
Zhao Jingwu; Su Weining
1994-01-01
The time interval of neighbouring neutrons emitted from a steady state neutron source can be treated as that from a time-dependent neutron source. In the rock space, the neutron flux is given by the neutron diffusion equation and is composed of an infinite terms. Each term s composed of two die-away curves. The delay action is discussed and used to measure the time interval with only one detector in the experiment. Nuclear reactions with the time distribution due to different types of radiations observed in the neutron well-logging methods are presented with a view to getting the rock nuclear parameters from the time interval technique
Soil erosion under multiple time-varying rainfall events
Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.
2010-05-01
Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.
Foundation for a Time Interval Access Control Model
National Research Council Canada - National Science Library
Afinidad, Francis B; Levin, Timothy E; Irvine, Cynthia E; Nguyen, Thuy D
2005-01-01
A new model for representing temporal access control policies is introduced. In this model, temporal authorizations are represented by time attributes associated with both subjects and objects, and a time interval access graph...
Decker, A. J.
1982-01-01
The use of a Nd:YAG laser to record holographic motion pictures of time-varying reflecting objects and time-varying phase objects is discussed. Sample frames from both types of holographic motion pictures are presented. The holographic system discussed is intended for three-dimensional flow visualization of the time-varying flows that occur in jet-engine components.
Perception of short time scale intervals in a hypnotic virtuoso
Noreika, Valdas; Falter, Christine M.; Arstila, Valtteri; Wearden, John H.; Kallio, Sakari
2012-01-01
Previous studies showed that hypnotized individuals underestimate temporal intervals in the range of several seconds to tens of minutes. However, no previous work has investigated whether duration perception is equally disorderly when shorter time intervals are probed. In this study, duration
Unpacking a time interval lengthens its perceived temporal distance
Directory of Open Access Journals (Sweden)
Yang eLiu
2014-11-01
Full Text Available In quantity estimation, people often perceive that the whole is less than the sum of its parts. The current study investigated such an unpacking effect in temporal distance judgment. Our results showed that participants in the unpacked condition judged a given time interval longer than those in the packed condition, even the time interval was kept constant between the two conditions. Furthermore, this unpacking effect persists regardless of the unpacking ways we employed. Results suggest that unpacking a time interval may be a good strategy for lengthening its perceived temporal distance.
Discrete-time optimal control and games on large intervals
Zaslavski, Alexander J
2017-01-01
Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discret...
Time interval measurement between two emissions: Ar + Au
International Nuclear Information System (INIS)
Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Durand, D.; Genoux-Lubain, A.; Hamdani, T.; Horn, D.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Louvel, M.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.
1998-01-01
The Ar + Au system was studied at two bombarding energies, 30 and 60 A.MeV. The comparison of the distributions of fragment emission angles in central collisions was carried out by means of a simulation allowing the emission time interval variation. It was found that this interval depends on the bombarding energy (i.e. deposed excitation energy).For 30 A.MeV this interval is 500 fm/c (0.33 · 10 -23 s), while for 60 A.MeV it is so short that the multifragmentation concept can be used
Analysis of time-varying psoriasis lesion image patterns
DEFF Research Database (Denmark)
Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær; Nielsen, Allan Aasbjerg
2004-01-01
The multivariate alteration detection transform is applied to pairs of within and between time varying registered psoriasis image patterns. Color band contribution to the variates explaining maximal change is analyzed.......The multivariate alteration detection transform is applied to pairs of within and between time varying registered psoriasis image patterns. Color band contribution to the variates explaining maximal change is analyzed....
Multivariate time-varying volatility modeling using probabilistic fuzzy systems
Basturk, N.; Almeida, R.J.; Golan, R.; Kaymak, U.
2016-01-01
Methods to accurately analyze financial risk have drawn considerable attention in financial institutions. One difficulty in financial risk analysis is the fact that banks and other financial institutions invest in several assets which show time-varying volatilities and hence time-varying financial
Hybrid integrated circuit for charge-to-time interval conversion
Energy Technology Data Exchange (ETDEWEB)
Basiladze, S.G.; Dotsenko, Yu.Yu.; Man' yakov, P.K.; Fedorchenko, S.N. (Joint Inst. for Nuclear Research, Dubna (USSR))
The hybrid integrated circuit for charge-to time interval conversion with nanosecond input fast response is described. The circuit can be used in energy measuring channels, time-to-digital converters and in the modified variant in amplitude-to-digital converters. The converter described consists of a buffer amplifier, a linear transmission circuit, a direct current source and a unit of time interval separation. The buffer amplifier represents a current follower providing low input and high output resistances by the current feedback. It is concluded that the described converter excelled the QT100B circuit analogous to it in a number of parameters especially, in thermostability.
Time varying voltage combustion control and diagnostics sensor
Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy D [Morgantown, WV; Huckaby, E David [Morgantown, WV; Fincham, William [Fairmont, WV
2011-04-19
A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.
The effects of varying sampling intervals on the growth and survival ...
African Journals Online (AJOL)
Four different sampling intervals were investigated during a six-week outdoor nursery management of Heterobranchus longifilis (Valenciennes, 1840) fry in outdoor concrete tanks in order to determine the most suitable sampling regime for maximum productivity in terms of optimum growth and survival of hatchlings and ...
A model of interval timing by neural integration.
Simen, Patrick; Balci, Fuat; de Souza, Laura; Cohen, Jonathan D; Holmes, Philip
2011-06-22
We show that simple assumptions about neural processing lead to a model of interval timing as a temporal integration process, in which a noisy firing-rate representation of time rises linearly on average toward a response threshold over the course of an interval. Our assumptions include: that neural spike trains are approximately independent Poisson processes, that correlations among them can be largely cancelled by balancing excitation and inhibition, that neural populations can act as integrators, and that the objective of timed behavior is maximal accuracy and minimal variance. The model accounts for a variety of physiological and behavioral findings in rodents, monkeys, and humans, including ramping firing rates between the onset of reward-predicting cues and the receipt of delayed rewards, and universally scale-invariant response time distributions in interval timing tasks. It furthermore makes specific, well-supported predictions about the skewness of these distributions, a feature of timing data that is usually ignored. The model also incorporates a rapid (potentially one-shot) duration-learning procedure. Human behavioral data support the learning rule's predictions regarding learning speed in sequences of timed responses. These results suggest that simple, integration-based models should play as prominent a role in interval timing theory as they do in theories of perceptual decision making, and that a common neural mechanism may underlie both types of behavior.
Rambo, J. E.; Kim, W.; Miller, K.
2017-12-01
Physical modeling of a delta's evolution can represent how changing the intervals of flood and interflood can alter a delta's fluvial pattern and geometry. Here we present a set of six experimental runs in which sediment and water were discharged at constant rates over each experiment. During the "flood" period, both sediment and water were discharged at rates of 0.25 cm3/s and 15 ml/s respectively, and during the "interflood" period, only water was discharged at 7.5 ml/s. The flood periods were only run for 30 minutes to keep the total volume of sediment constant. Run 0 did not have an interflood period and therefore ran with constant sediment and water discharge for the duration of the experiment.The other five runs had either 5, 10, or 15-min intervals of flood with 5, 10, or 15-min intervals of interflood. The experimental results show that Run 0 had the smallest topset area. This is due to a lack of surface reworking that takes place during interflood periods. Run 1 had 15-minute intervals of flood and 15-minute intervals of interflood, and it had the largest topset area. Additionally, the experiments that had longer intervals of interflood than flood had more elongated delta geometries. Wetted fraction color maps were also created to plot channel locations during each run. The maps show that the runs with longer interflood durations had channels occurring predominantly down the middle with stronger incisions; these runs produced deltas with more elongated geometries. When the interflood duration was even longer, however, strong channels started to occur at multiple locations. This increased interflood period allowed for the entire area over the delta's surface to be reworked, thus reducing the downstream slope and allowing channels to be more mobile laterally. Physical modeling of a delta allows us to predict a delta's resulting geometry given a set of conditions. This insight is needed especially with delta's being the home to many populations of people and
Infinite time interval backward stochastic differential equations with continuous coefficients.
Zong, Zhaojun; Hu, Feng
2016-01-01
In this paper, we study the existence theorem for [Formula: see text] [Formula: see text] solutions to a class of 1-dimensional infinite time interval backward stochastic differential equations (BSDEs) under the conditions that the coefficients are continuous and have linear growths. We also obtain the existence of a minimal solution. Furthermore, we study the existence and uniqueness theorem for [Formula: see text] [Formula: see text] solutions of infinite time interval BSDEs with non-uniformly Lipschitz coefficients. It should be pointed out that the assumptions of this result is weaker than that of Theorem 3.1 in Zong (Turkish J Math 37:704-718, 2013).
Specifying real-time systems with interval logic
Rushby, John
1988-01-01
Pure temporal logic makes no reference to time. An interval temporal logic and an extension to that logic which includes real time constraints are described. The application of this logic by giving a specification for the well-known lift (elevator) example is demonstrated. It is shown how interval logic can be extended to include a notion of process. How the specification language and verification environment of EHDM could be enhanced to support this logic is described. A specification of the alternating bit protocol in this extended version of the specification language of EHDM is given.
Pemodelan Markov Switching Dengan Time-varying Transition Probability
Savitri, Anggita Puri; Warsito, Budi; Rahmawati, Rita
2016-01-01
Exchange rate or currency is an economic variable which reflects country's state of economy. It fluctuates over time because of its ability to switch the condition or regime caused by economic and political factors. The changes in the exchange rate are depreciation and appreciation. Therefore, it could be modeled using Markov Switching with Time-Varying Transition Probability which observe the conditional changes and use information variable. From this model, time-varying transition probabili...
Interval timing in genetically modified mice: a simple paradigm.
Balci, F; Papachristos, E B; Gallistel, C R; Brunner, D; Gibson, J; Shumyatsky, G P
2008-04-01
We describe a behavioral screen for the quantitative study of interval timing and interval memory in mice. Mice learn to switch from a short-latency feeding station to a long-latency station when the short latency has passed without a feeding. The psychometric function is the cumulative distribution of switch latencies. Its median measures timing accuracy and its interquartile interval measures timing precision. Next, using this behavioral paradigm, we have examined mice with a gene knockout of the receptor for gastrin-releasing peptide that show enhanced (i.e. prolonged) freezing in fear conditioning. We have tested the hypothesis that the mutants freeze longer because they are more uncertain than wild types about when to expect the electric shock. The knockouts however show normal accuracy and precision in timing, so we have rejected this alternative hypothesis. Last, we conduct the pharmacological validation of our behavioral screen using d-amphetamine and methamphetamine. We suggest including the analysis of interval timing and temporal memory in tests of genetically modified mice for learning and memory and argue that our paradigm allows this to be done simply and efficiently.
Design of 2D Time-Varying Vector Fields
Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D.; Zhang, Eugene
2012-01-01
Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. © 1995-2012 IEEE.
Design of 2D time-varying vector fields.
Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D; Zhang, Eugene
2012-10-01
Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects.
Design of 2D Time-Varying Vector Fields
Chen, Guoning
2012-10-01
Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. © 1995-2012 IEEE.
Cardiac Time Intervals by Tissue Doppler Imaging M-Mode
DEFF Research Database (Denmark)
Biering-Sørensen, Tor; Mogelvang, Rasmus; de Knegt, Martina Chantal
2016-01-01
PURPOSE: To define normal values of the cardiac time intervals obtained by tissue Doppler imaging (TDI) M-mode through the mitral valve (MV). Furthermore, to evaluate the association of the myocardial performance index (MPI) obtained by TDI M-mode (MPITDI) and the conventional method of obtaining...
Frequency interval balanced truncation of discrete-time bilinear systems
DEFF Research Database (Denmark)
Jazlan, Ahmad; Sreeram, Victor; Shaker, Hamid Reza
2016-01-01
This paper presents the development of a new model reduction method for discrete-time bilinear systems based on the balanced truncation framework. In many model reduction applications, it is advantageous to analyze the characteristics of the system with emphasis on particular frequency intervals...... are the solution to a pair of new generalized Lyapunov equations. The conditions for solvability of these new generalized Lyapunov equations are derived and a numerical solution method for solving these generalized Lyapunov equations is presented. Numerical examples which illustrate the usage of the new...... generalized frequency interval controllability and observability gramians as part of the balanced truncation framework are provided to demonstrate the performance of the proposed method....
Do Time-Varying Covariances, Volatility Comovement and Spillover Matter?
Lakshmi Balasubramanyan
2005-01-01
Financial markets and their respective assets are so intertwined; analyzing any single market in isolation ignores important information. We investigate whether time varying volatility comovement and spillover impact the true variance-covariance matrix under a time-varying correlation set up. Statistically significant volatility spillover and comovement between US, UK and Japan is found. To demonstrate the importance of modelling volatility comovement and spillover, we look at a simple portfo...
Testing for time-varying loadings in dynamic factor models
DEFF Research Database (Denmark)
Mikkelsen, Jakob Guldbæk
Abstract: In this paper we develop a test for time-varying factor loadings in factor models. The test is simple to compute and is constructed from estimated factors and residuals using the principal components estimator. The hypothesis is tested by regressing the squared residuals on the squared...... there is evidence of time-varying loadings on the risk factors underlying portfolio returns for around 80% of the portfolios....
Department of Defense Precise Time and Time Interval program improvement plan
Bowser, J. R.
1981-01-01
The United States Naval Observatory is responsible for ensuring uniformity in precise time and time interval operations including measurements, the establishment of overall DOD requirements for time and time interval, and the accomplishment of objectives requiring precise time and time interval with minimum cost. An overview of the objectives, the approach to the problem, the schedule, and a status report, including significant findings relative to organizational relationships, current directives, principal PTTI users, and future requirements as currently identified by the users are presented.
Time interval measurement between to emission: a systematics
International Nuclear Information System (INIS)
Bizard, G.; Bougault, R.; Brou, R.; Colin, J.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Mahi, M.; Meslin, C.; Steckmeyer, J.C.; Tamain, B.; Wieloch, A.
1998-01-01
A systematic study of the evolution of intervals of fragment emission times as a function of the energy deposited in the compound system was performed. Several measurements, Ne at 60 MeV/u, Ar at 30 and 60 MeV/u and two measurements for Kr at 60 MeV/u (central and semi-peripheral collisions) are presented. In all the experiments the target was Au and the mass of the compounds system was around A = 200. The excitation energies per nucleon reached in the case of these heavy systems cover the range of 3 to 5.5 MeV/u. The method used to determine the emission time intervals is based on the correlation functions associated to the relative angle distributions. The gaps between the data and simulations allow to evaluate the emission times. A rapid decrease of these time intervals was observed when the excitation energy increased. This variation starts at 500 fm/c which corresponds to a sequential emission. This relatively long time which indicates a weak interaction between fragments, corresponds practically to the measurement threshold. The shortest intervals (about 50 fm/c) are associated to a spontaneous multifragmentation and were observed in the case of central collisions at Ar+Au and Kr+Au at 60 MeV/u. Two interpretations are possible. The multifragmentation process might be viewed as a sequential process of very short time-separation or else, one can separate two zones heaving in mind that the multifragmentation is predominant from 4,5 MeV/u excitation energy upwards. This question is still open and its study is under way at LPC. An answer could come from the study of the rupture process of an excited nucleus, notably by the determination of its life-time
Optimal time interval for induction of immunologic adaptive response
International Nuclear Information System (INIS)
Ju Guizhi; Song Chunhua; Liu Shuzheng
1994-01-01
The optimal time interval between prior dose (D1) and challenge dose (D2) for the induction of immunologic adaptive response was investigated. Kunming mice were exposed to 75 mGy X-rays at a dose rate of 12.5 mGy/min. 3, 6, 12, 24 or 60 h after the prior irradiation the mice were challenged with a dose of 1.5 Gy at a dose rate of 0.33 Gy/min. 18h after D2, the mice were sacrificed for examination of immunological parameters. The results showed that with an interval of 6 h between D1 and D2, the adaptive response of the reaction of splenocytes to LPS was induced, and with an interval of 12 h the adaptive responses of spontaneous incorporation of 3 H-TdR into thymocytes and the reaction of splenocytes to Con A and LPS were induced with 75 mGy prior irradiation. The data suggested that the optimal time intervals between D1 and D2 for the induction of immunologic adaptive response were 6 h and 12 h with a D1 of 75 mGy and a D2 of 1.5 Gy. The mechanism of immunologic adaptation following low dose radiation is discussed
Belke, Terry W; Christie-Fougere, Melissa M
2006-11-01
Across two experiments, a peak procedure was used to assess the timing of the onset and offset of an opportunity to run as a reinforcer. The first experiment investigated the effect of reinforcer duration on temporal discrimination of the onset of the reinforcement interval. Three male Wistar rats were exposed to fixed-interval (FI) 30-s schedules of wheel-running reinforcement and the duration of the opportunity to run was varied across values of 15, 30, and 60s. Each session consisted of 50 reinforcers and 10 probe trials. Results showed that as reinforcer duration increased, the percentage of postreinforcement pauses longer than the 30-s schedule interval increased. On probe trials, peak response rates occurred near the time of reinforcer delivery and peak times varied with reinforcer duration. In a second experiment, seven female Long-Evans rats were exposed to FI 30-s schedules leading to 30-s opportunities to run. Timing of the onset and offset of the reinforcement period was assessed by probe trials during the schedule interval and during the reinforcement interval in separate conditions. The results provided evidence of timing of the onset, but not the offset of the wheel-running reinforcement period. Further research is required to assess if timing occurs during a wheel-running reinforcement period.
Newtonian cosmology with a time-varying constant of gravitation
International Nuclear Information System (INIS)
McVittie, G.C.
1978-01-01
Newtonian cosmology is based on the Eulerian equations of fluid mechanics combined with Poisson's equation modified by the introduction of a time-varying G. Spherically symmetric model universes are worked out with instantaneously uniform densities. They are indeterminate unless instantaneous uniformity of the pressure is imposed. When G varies as an inverse power of the time, the models can in some cases be shown to depend on the solution of a second-order differential equation which also occurs in the Friedmann models of general relativity. In Section 3, a method for 'passing through' a singularity of this equation is proposed which entails making four arbitrary mathematical assumptions. When G varies as (time) -1 , models with initially cycloidal motion are possible, each cycle becoming longer as time progresses. Finally, gravitation becomes so weak that the model expands to infinity. Kinetic and potential energies for the whole model are derived from the basic equations; their sum is not constant. (author)
Investigating Time-Varying Drivers of Grid Project Emissions Impacts
Energy Technology Data Exchange (ETDEWEB)
Barrett, Emily L.; Thayer, Brandon L.; Pal, Seemita; Studarus, Karen E.
2017-11-15
The emissions consequences of smart grid technologies depend heavily on their context and vary not only by geographical location, but by time of year. The same technology operated to meet the same objective may increase the emissions associated with energy generation for part of the year and decrease emissions during other times. The Grid Project Impact Quantification (GridPIQ) tool provides the ability to estimate these seasonal variations and garner insight into the time-varying drivers of grid project emissions impacts. This work leverages GridPIQ to examine the emissions implications across years and seasons of adding energy storage technology to reduce daily peak demand in California and New York.
Overcoming Spurious Regression Using time-Varying Fourier ...
African Journals Online (AJOL)
Non-stationary time series data have been traditionally analyzed in the frequency domain by assuming constant amplitudes regardless of the timelag. A new approach called time-varying amplitude method (TVAM) is presented here. Oscillations are analyzed for changes in the magnitude of Fourier Coefficients which are ...
Scattering of a TEM wave from a time varying surface
Elcrat, Alan R.; Harder, T. Mark; Stonebraker, John T.
1990-03-01
A solution is given for reflection of a plane wave with TEM polarization from a planar surface with time varying properties. These properties are given in terms of the currents on the surface. The solution is obtained by numerically solving a system of differential-delay equations in the time domain.
Time-varying correlation and common structures in volatility
Liu, Yang
2016-01-01
This thesis studies time series properties of the covariance structure of multivariate asset returns. First, the time-varying feature of correlation is investigated at the intraday level with a new correlation model incorporating the intraday correlation dynamics. Second, the thesis develops a
Mediation analysis with time varying exposures and mediators.
VanderWeele, Tyler J; Tchetgen Tchetgen, Eric J
2017-06-01
In this paper we consider causal mediation analysis when exposures and mediators vary over time. We give non-parametric identification results, discuss parametric implementation, and also provide a weighting approach to direct and indirect effects based on combining the results of two marginal structural models. We also discuss how our results give rise to a causal interpretation of the effect estimates produced from longitudinal structural equation models. When there are time-varying confounders affected by prior exposure and mediator, natural direct and indirect effects are not identified. However, we define a randomized interventional analogue of natural direct and indirect effects that are identified in this setting. The formula that identifies these effects we refer to as the "mediational g-formula." When there is no mediation, the mediational g-formula reduces to Robins' regular g-formula for longitudinal data. When there are no time-varying confounders affected by prior exposure and mediator values, then the mediational g-formula reduces to a longitudinal version of Pearl's mediation formula. However, the mediational g-formula itself can accommodate both mediation and time-varying confounders and constitutes a general approach to mediation analysis with time-varying exposures and mediators.
Time-variant random interval natural frequency analysis of structures
Wu, Binhua; Wu, Di; Gao, Wei; Song, Chongmin
2018-02-01
This paper presents a new robust method namely, unified interval Chebyshev-based random perturbation method, to tackle hybrid random interval structural natural frequency problem. In the proposed approach, random perturbation method is implemented to furnish the statistical features (i.e., mean and standard deviation) and Chebyshev surrogate model strategy is incorporated to formulate the statistical information of natural frequency with regards to the interval inputs. The comprehensive analysis framework combines the superiority of both methods in a way that computational cost is dramatically reduced. This presented method is thus capable of investigating the day-to-day based time-variant natural frequency of structures accurately and efficiently under concrete intrinsic creep effect with probabilistic and interval uncertain variables. The extreme bounds of the mean and standard deviation of natural frequency are captured through the embedded optimization strategy within the analysis procedure. Three particularly motivated numerical examples with progressive relationship in perspective of both structure type and uncertainty variables are demonstrated to justify the computational applicability, accuracy and efficiency of the proposed method.
Time-varying properties of renal autoregulatory mechanisms
DEFF Research Database (Denmark)
Zou, Rui; Cupples, Will A; Yip, K P
2002-01-01
In order to assess the possible time-varying properties of renal autoregulation, time-frequency and time-scaling methods were applied to renal blood flow under broad-band forced arterial blood pressure fluctuations and single-nephron renal blood flow with spontaneous oscillations obtained from...... normotensive (Sprague-Dawley, Wistar, and Long-Evans) rats, and spontaneously hypertensive rats. Time-frequency analyses of normotensive and hypertensive blood flow data obtained from either the whole kidney or the single-nephron show that indeed both the myogenic and tubuloglomerular feedback (TGF) mechanisms...... have time-varying characteristics. Furthermore, we utilized the Renyi entropy to measure the complexity of blood-flow dynamics in the time-frequency plane in an effort to discern differences between normotensive and hypertensive recordings. We found a clear difference in Renyi entropy between...
Housing Cycles in Switzerland - A Time-Varying Approach
Drechsel, Dirk
2015-01-01
In light of the strong increase of house prices in Switzerland, we analyze the effects of mortgage rate shocks, changes in the interplay between housing demand and supply and GDP growth on house prices for the time period 1981- 2014. We employ Bayesian time-varying coefficients vector autoregressions to allow different monetary and immigration regimes over time. A number of structural changes, such as regulatory changes in the aftermath of the 1990s real estate crisis, the introduction of fre...
Entropy Rate of Time-Varying Wireless Networks
DEFF Research Database (Denmark)
Cika, Arta; Badiu, Mihai Alin; Coon, Justin P.
2018-01-01
In this paper, we present a detailed framework to analyze the evolution of the random topology of a time-varying wireless network via the information theoretic notion of entropy rate. We consider a propagation channel varying over time with random node positions in a closed space and Rayleigh...... fading affecting the connections between nodes. The existence of an edge between two nodes at given locations is modeled by a Markov chain, enabling memory effects in network dynamics. We then derive a lower and an upper bound on the entropy rate of the spatiotemporal network. The entropy rate measures...
Time-Varying Value of Energy Efficiency in Michigan
Energy Technology Data Exchange (ETDEWEB)
Mims, Natalie; Eckman, Tom; Schwartz, Lisa C.
2018-04-02
Quantifying the time-varying value of energy efficiency is necessary to properly account for all of its benefits and costs and to identify and implement efficiency resources that contribute to a low-cost, reliable electric system. Historically, most quantification of the benefits of efficiency has focused largely on the economic value of annual energy reduction. Due to the lack of statistically representative metered end-use load shape data in Michigan (i.e., the hourly or seasonal timing of electricity savings), the ability to confidently characterize the time-varying value of energy efficiency savings in the state, especially for weather-sensitive measures such as central air conditioning, is limited. Still, electric utilities in Michigan can take advantage of opportunities to incorporate the time-varying value of efficiency into their planning. For example, end-use load research and hourly valuation of efficiency savings can be used for a variety of electricity planning functions, including load forecasting, demand-side management and evaluation, capacity planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service (KEMA 2012). In addition, accurately calculating the time-varying value of efficiency may help energy efficiency program administrators prioritize existing offerings, set incentive or rebate levels that reflect the full value of efficiency, and design new programs.
Time-to-code converter with selection of time intervals on duration
International Nuclear Information System (INIS)
Atanasov, I.Kh.; Rusanov, I.R.; )
2001-01-01
Identification of elementary particles on the basis of time-of-flight represents the important approach of the preliminary selection procedure. Paper describes a time-to-code converter with preliminary selection of the measured time intervals as to duration. It consists of a time-to-amplitude converter, an analog-to-digital converter, a unit of selection of time intervals as to duration, a unit of total reset and CAMAC command decoder. The time-to-code converter enables to measure time intervals with 100 ns accuracy within 0-100 ns range. Output code capacity is of 10. Selection time constitutes 50 ns [ru
Design of time interval generator based on hybrid counting method
Energy Technology Data Exchange (ETDEWEB)
Yao, Yuan [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Zhaoqi [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lu, Houbing [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei Electronic Engineering Institute, Hefei 230037 (China); Chen, Lian [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Jin, Ge, E-mail: goldjin@ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2016-10-01
Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some “off-the-shelf” TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.
Design of time interval generator based on hybrid counting method
International Nuclear Information System (INIS)
Yao, Yuan; Wang, Zhaoqi; Lu, Houbing; Chen, Lian; Jin, Ge
2016-01-01
Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some “off-the-shelf” TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.
Electromagnetic radiation in a time-varying background medium
Budko, N.V.
2009-01-01
Analytical solutions are presented for the electromagnetic radiation by an arbitrary pulsed source into a homogeneous time-varying background medium. In the constant-impedance case an explicit radiation formula is obtained for the synchronous permittivity and permeability described by any positive
Projected space-time and varying speed of light
International Nuclear Information System (INIS)
Iovane, G.; Bellucci, S.; Benedetto, E.
2008-01-01
In this paper starting from El Naschie's Cantorian space-time and our model of projected Universe, we consider its properties in connection with varying speed of light. A possible way-out of the related problem is provided by the Fantappie group approach
Time Varying Market Integration and Expected Rteurns in Emerging Markets
de Jong, F.C.J.M.; de Roon, F.A.
2001-01-01
We use a simple model in which the expected returns in emerging markets depend on their systematic risk as measured by their beta relative to the world portfolio as well as on the level of integration in that market.The level of integration is a time-varying variable that depends on the market value
Contact Dynamics of EHL Contacts under Time Varying Conditions
Venner, Cornelis H.; Popovici, G.; Wijnant, Ysbrand H.; Dalmaz, G.; Lubrecht, A.A.; Priest, M
2004-01-01
By means of numerical simulations of two situations with time varying operating conditions it is shown that the dynamic behaviour of Elasto-Hydrodynamically Lubricated contacts in terms of vibrations can be characterized as: Changes in the mutual approach lead to film thickness changes in the inlet
Electricity Futures Prices : Time Varying Sensitivity to Fundamentals
S-E. Fleten (Stein-Erik); R. Huisman (Ronald); M. Kilic (Mehtap); H.P.G. Pennings (Enrico); S. Westgaard (Sjur)
2014-01-01
textabstractThis paper provides insight in the time-varying relation between electricity futures prices and fundamentals in the form of prices of contracts for fossil fuels. As supply curves are not constant and different producers have different marginal costs of production, we argue that the
Visualizing time-varying harmonics using filter banks
Duque, C.A.; Da Silveira, P.M.; Ribeiro, P.F.
2011-01-01
Although it is well known that Fourier analysis is in reality only accurately applicable to steady state waveforms, it is a widely used tool to study and monitor time-varying signals, such as are commonplace in electrical power systems. The disadvantages of Fourier analysis, such as frequency
Time interval measurement between two emissions: Kr + Au
International Nuclear Information System (INIS)
Aboufirassi, M; Bougault, R.; Brou, R.; Colin, J.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Mahi, M.; Steckmeyer, J.C.; Tamain, B.
1998-01-01
To indicate the method allowing the determination of the emission intervals, the results obtained with the Kr + Au system at 43 and 60 A.MeV are presented. The experiments were performed with the NAUTILUS exclusive detectors. Central collisions were selected by means of a relative velocity criterion to reject the events containing a forward emitted fragment. For the two bombardment energies the data analysis shows that the formation of a compound of mass around A = 200. By comparing the fragment dynamical variables with simulations one can conclude about the simultaneity of the compound deexcitation processes. It was found that a 5 MeV/A is able to reproduce the characteristics of the detected fragments. Also, it was found that to reproduce the dynamical characteristics of the fragments issued from central collisions it was not necessary to superimpose a radial collective energy upon the Coulomb and thermal motion. The distribution of the relative angles between detected fragments is used here as a chronometer. For simultaneous ruptures the small relative angles are forbidden by the Coulomb repulsion, while for sequential processes this interdiction is the more lifted the longer the interval between the two emissions is. For the system discussed here the comparison between simulation and data has been carried out for the extreme cases, i.e. for a vanishing and infinite time interval between the two emissions, respectively. More sophisticated simulations to describe angular distributions between the emitted fragments were also developed
Scaling properties in time-varying networks with memory
Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong
2015-12-01
The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.
Vesicle biomechanics in a time-varying magnetic field.
Ye, Hui; Curcuru, Austen
2015-01-01
Cells exhibit distortion when exposed to a strong electric field, suggesting that the field imposes control over cellular biomechanics. Closed pure lipid bilayer membranes (vesicles) have been widely used for the experimental and theoretical studies of cellular biomechanics under this electrodeformation. An alternative method used to generate an electric field is by electromagnetic induction with a time-varying magnetic field. References reporting the magnetic control of cellular mechanics have recently emerged. However, theoretical analysis of the cellular mechanics under a time-varying magnetic field is inadequate. We developed an analytical theory to investigate the biomechanics of a modeled vesicle under a time-varying magnetic field. Following previous publications and to simplify the calculation, this model treated the inner and suspending media as lossy dielectrics, the membrane thickness set at zero, and the electric resistance of the membrane assumed to be negligible. This work provided the first analytical solutions for the surface charges, electric field, radial pressure, overall translational forces, and rotational torques introduced on a vesicle by the time-varying magnetic field. Frequency responses of these measures were analyzed, particularly the frequency used clinically by transcranial magnetic stimulation (TMS). The induced surface charges interacted with the electric field to produce a biomechanical impact upon the vesicle. The distribution of the induced surface charges depended on the orientation of the coil and field frequency. The densities of these charges were trivial at low frequency ranges, but significant at high frequency ranges. The direction of the radial force on the vesicle was dependent on the conductivity ratio between the vesicle and the medium. At relatively low frequencies (biomechanics under a time-varying magnetic field. Biological effects of clinical TMS are not likely to occur via alteration of the biomechanics of brain
Discriminator/time interval meter system evaluation report
International Nuclear Information System (INIS)
Condreva, K.J.
1976-01-01
The purpose of this report is to discuss the evaluation of a modular prototype Discriminator/Time Interval Meter data acquisition unit as a useful tool in a digital diagnostics system. The characteristics, operation and calibration of each of the hardware components are discussed in some detail. A discussion of the system calibration, operation, and data ingestion and reduction is also given. System test results to date are given and discussed. Finally, recommendations and conclusions concerning the capabilities of the Discriminator/T.I.M. system based on test and calibration results to date are given
Discriminator/time interval meter system evaluation report
Energy Technology Data Exchange (ETDEWEB)
Condreva, K. J.
1976-04-12
The purpose of this report is to discuss the evaluation of a modular prototype Discriminator/Time Interval Meter data acquisition unit as a useful tool in a digital diagnostics system. The characteristics, operation and calibration of each of the hardware components are discussed in some detail. A discussion of the system calibration, operation, and data ingestion and reduction is also given. System test results to date are given and discussed. Finally, recommendations and conclusions concerning the capabilities of the Discriminator/T.I.M. system based on test and calibration results to date are given.
Electron dynamics in solid state via time varying wavevectors
Khaneja, Navin
2018-06-01
In this paper, we study electron wavepacket dynamics in electric and magnetic fields. We rigorously derive the semiclassical equations of electron dynamics in electric and magnetic fields. We do it both for free electron and electron in a periodic potential. We do this by introducing time varying wavevectors k(t). In the presence of magnetic field, our wavepacket reproduces the classical cyclotron orbits once the origin of the Schröedinger equation is correctly chosen to be center of cyclotron orbit. In the presence of both electric and magnetic fields, our equations for wavepacket dynamics differ from classical Lorentz force equations. We show that in a periodic potential, on application of electric field, the electron wave function adiabatically follows the wavefunction of a time varying Bloch wavevector k(t), with its energies suitably shifted with time. We derive the effective mass equation and discuss conduction in conductors and insulators.
Time varying determinants of bond flows to emerging markets
Directory of Open Access Journals (Sweden)
Yasemin Erduman
2016-06-01
Full Text Available This paper investigates the time varying nature of the determinants of bond flows with a focus on the global financial crisis period. We estimate a time varying regression model using Bayesian estimation methods, where the posterior distribution is approximated by Gibbs sampling algorithm. Our findings suggest that the interest rate differential is the most significant pull factor of portfolio bond flows, along with the inflation rate, while the growth rate does not play a significant role. Among the push factors, global liquidity is the most important driver of bond flows. It matters the most, when unconventional monetary easing policies were first announced; and its importance as a determinant of portfolio bond flows decreases over time, starting with the Eurozone crisis, and diminishes with the tapering talk. Global risk appetite and the risk perception towards the emerging countries also have relatively small and stable significant effects on bond flows.
Probing interval timing with scalp-recorded electroencephalography (EEG).
Ng, Kwun Kei; Penney, Trevor B
2014-01-01
Humans, and other animals, are able to easily learn the durations of events and the temporal relationships among them in spite of the absence of a dedicated sensory organ for time. This chapter summarizes the investigation of timing and time perception using scalp-recorded electroencephalography (EEG), a non-invasive technique that measures brain electrical potentials on a millisecond time scale. Over the past several decades, much has been learned about interval timing through the examination of the characteristic features of averaged EEG signals (i.e., event-related potentials, ERPs) elicited in timing paradigms. For example, the mismatch negativity (MMN) and omission potential (OP) have been used to study implicit and explicit timing, respectively, the P300 has been used to investigate temporal memory updating, and the contingent negative variation (CNV) has been used as an index of temporal decision making. In sum, EEG measures provide biomarkers of temporal processing that allow researchers to probe the cognitive and neural substrates underlying time perception.
Directory of Open Access Journals (Sweden)
Luigi Acerbi
Full Text Available Humans have been shown to adapt to the temporal statistics of timing tasks so as to optimize the accuracy of their responses, in agreement with the predictions of Bayesian integration. This suggests that they build an internal representation of both the experimentally imposed distribution of time intervals (the prior and of the error (the loss function. The responses of a Bayesian ideal observer depend crucially on these internal representations, which have only been previously studied for simple distributions. To study the nature of these representations we asked subjects to reproduce time intervals drawn from underlying temporal distributions of varying complexity, from uniform to highly skewed or bimodal while also varying the error mapping that determined the performance feedback. Interval reproduction times were affected by both the distribution and feedback, in good agreement with a performance-optimizing Bayesian observer and actor model. Bayesian model comparison highlighted that subjects were integrating the provided feedback and represented the experimental distribution with a smoothed approximation. A nonparametric reconstruction of the subjective priors from the data shows that they are generally in agreement with the true distributions up to third-order moments, but with systematically heavier tails. In particular, higher-order statistical features (kurtosis, multimodality seem much harder to acquire. Our findings suggest that humans have only minor constraints on learning lower-order statistical properties of unimodal (including peaked and skewed distributions of time intervals under the guidance of corrective feedback, and that their behavior is well explained by Bayesian decision theory.
Directory of Open Access Journals (Sweden)
M. de la Sen
2010-01-01
Full Text Available This paper investigates the stability properties of a class of dynamic linear systems possessing several linear time-invariant parameterizations (or configurations which conform a linear time-varying polytopic dynamic system with a finite number of time-varying time-differentiable point delays. The parameterizations may be timevarying and with bounded discontinuities and they can be subject to mixed regular plus impulsive controls within a sequence of time instants of zero measure. The polytopic parameterization for the dynamics associated with each delay is specific, so that (q+1 polytopic parameterizations are considered for a system with q delays being also subject to delay-free dynamics. The considered general dynamic system includes, as particular cases, a wide class of switched linear systems whose individual parameterizations are timeinvariant which are governed by a switching rule. However, the dynamic system under consideration is viewed as much more general since it is time-varying with timevarying delays and the bounded discontinuous changes of active parameterizations are generated by impulsive controls in the dynamics and, at the same time, there is not a prescribed set of candidate potential parameterizations.
Modeling information diffusion in time-varying community networks
Cui, Xuelian; Zhao, Narisa
2017-12-01
Social networks are rarely static, and they typically have time-varying network topologies. A great number of studies have modeled temporal networks and explored social contagion processes within these models; however, few of these studies have considered community structure variations. In this paper, we present a study of how the time-varying property of a modular structure influences the information dissemination. First, we propose a continuous-time Markov model of information diffusion where two parameters, mobility rate and community attractiveness, are introduced to address the time-varying nature of the community structure. The basic reproduction number is derived, and the accuracy of this model is evaluated by comparing the simulation and theoretical results. Furthermore, numerical results illustrate that generally both the mobility rate and community attractiveness significantly promote the information diffusion process, especially in the initial outbreak stage. Moreover, the strength of this promotion effect is much stronger when the modularity is higher. Counterintuitively, it is found that when all communities have the same attractiveness, social mobility no longer accelerates the diffusion process. In addition, we show that the local spreading in the advantage group has been greatly enhanced due to the agglomeration effect caused by the social mobility and community attractiveness difference, which thus increases the global spreading.
Modelling Time-Varying Volatility in Financial Returns
DEFF Research Database (Denmark)
Amado, Cristina; Laakkonen, Helinä
2014-01-01
The “unusually uncertain” phase in the global financial markets has inspired many researchers to study the effects of ambiguity (or “Knightian uncertainty”) on the decisions made by investors and their implications for the capital markets. We contribute to this literature by using a modified...... version of the time-varying GARCH model of Amado and Teräsvirta (2013) to analyze whether the increasing uncertainty has caused excess volatility in the US and European government bond markets. In our model, volatility is multiplicatively decomposed into two time-varying conditional components: the first...... being captured by a stable GARCH(1,1) process and the second driven by the level of uncertainty in the financial market....
New precession expressions, valid for long time intervals
Vondrák, J.; Capitaine, N.; Wallace, P.
2011-10-01
Context. The present IAU model of precession, like its predecessors, is given as a set of polynomial approximations of various precession parameters intended for high-accuracy applications over a limited time span. Earlier comparisons with numerical integrations have shown that this model is valid only for a few centuries around the basic epoch, J2000.0, while for more distant epochs it rapidly diverges from the numerical solution. In our preceding studies we also obtained preliminary developments for the precessional contribution to the motion of the equator: coordinates X,Y of the precessing pole and precession parameters ψA,ωA, suitable for use over long time intervals. Aims: The goal of the present paper is to obtain upgraded developments for various sets of precession angles that would fit modern observations near J2000.0 and at the same time fit numerical integration of the motions of solar system bodies on scales of several thousand centuries. Methods: We used the IAU 2006 solutions to represent the precession of the ecliptic and of the equator close to J2000.0 and, for more distant epochs, a numerical integration using the Mercury 6 package and solutions by Laskar et al. (1993, A&A, 270, 522) with upgraded initial conditions and constants to represent the ecliptic, and general precession and obliquity, respectively. From them, different precession parameters were calculated in the interval ± 200 millennia from J2000.0, and analytical expressions are found that provide a good fit for the whole interval. Results: Series for the various precessional parameters, comprising a cubic polynomial plus from 8 to 14 periodic terms, are derived that allow precession to be computed with an accuracy comparable to IAU 2006 around the central epoch J2000.0, a few arcseconds throughout the historical period, and a few tenths of a degree at the ends of the ± 200 millennia time span. Computer algorithms are provided that compute the ecliptic and mean equator poles and the
Simple Model with Time-Varying Fine-Structure ``Constant''
Berman, M. S.
2009-10-01
Extending the original version written in colaboration with L.A. Trevisan, we study the generalisation of Dirac's LNH, so that time-variation of the fine-structure constant, due to varying electrical and magnetic permittivities is included along with other variations (cosmological and gravitational ``constants''), etc. We consider the present Universe, and also an inflationary scenario. Rotation of the Universe is a given possibility in this model.
Time-varying linear control for tiltrotor aircraft
Directory of Open Access Journals (Sweden)
Jing ZHANG
2018-04-01
Full Text Available Tiltrotor aircraft have three flight modes: helicopter mode, airplane mode, and transition mode. A tiltrotor has characteristics of highly nonlinear, time-varying flight dynamics and inertial/control couplings in its transition mode. It can transit from the helicopter mode to the airplane mode by tilting its nacelles, and an effective controller is crucial to accomplish tilting transition missions. Longitudinal dynamic characteristics of the tiltrotor are described by a nonlinear Lagrange-form model, which takes into account inertial/control couplings and aerodynamic interferences. Reference commands for airspeed velocity and attitude in the transition mode are calculated dynamically by visiting a command library which is founded in advance by analyzing the flight envelope of the tiltrotor. A Time-Varying Linear (TVL model is obtained using a Taylor-expansion based online linearization technique from the nonlinear model. Subsequently, based on an optimal control concept, an online optimization based control method with input constraints considered is proposed. To validate the proposed control method, three typical tilting transition missions are simulated using the nonlinear model of XV-15 tiltrotor aircraft. Simulation results show that the controller can be used to control the tiltrotor throughout its operating envelop which includes a transition flight, and can also deal with vertical gust disturbances. Keywords: Constrained optimal control, Inertia/control couplings, Tiltrotor aircraft, Time-varying control, Transition mode
Robust stability of interval bidirectional associative memory neural network with time delays.
Liao, Xiaofeng; Wong, Kwok-wo
2004-04-01
In this paper, the conventional bidirectional associative memory (BAM) neural network with signal transmission delay is intervalized in order to study the bounded effect of deviations in network parameters and external perturbations. The resultant model is referred to as a novel interval dynamic BAM (IDBAM) model. By combining a number of different Lyapunov functionals with the Razumikhin technique, some sufficient conditions for the existence of unique equilibrium and robust stability are derived. These results are fairly general and can be verified easily. To go further, we extend our investigation to the time-varying delay case. Some robust stability criteria for BAM with perturbations of time-varying delays are derived. Besides, our approach for the analysis allows us to consider several different types of activation functions, including piecewise linear sigmoids with bounded activations as well as the usual C1-smooth sigmoids. We believe that the results obtained have leading significance in the design and application of BAM neural networks.
Time-varying value of electric energy efficiency
Energy Technology Data Exchange (ETDEWEB)
Mims, Natalie A.; Eckman, Tom; Goldman, Charles
2017-06-30
Electric energy efficiency resources save energy and may reduce peak demand. Historically, quantification of energy efficiency benefits has largely focused on the economic value of energy savings during the first year and lifetime of the installed measures. Due in part to the lack of publicly available research on end-use load shapes (i.e., the hourly or seasonal timing of electricity savings) and energy savings shapes, consideration of the impact of energy efficiency on peak demand reduction (i.e., capacity savings) has been more limited. End-use load research and the hourly valuation of efficiency savings are used for a variety of electricity planning functions, including load forecasting, demand-side management and evaluation, capacity and demand response planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service. This study reviews existing literature on the time-varying value of energy efficiency savings, provides examples in four geographically diverse locations of how consideration of the time-varying value of efficiency savings impacts the calculation of power system benefits, and identifies future research needs to enhance the consideration of the time-varying value of energy efficiency in cost-effectiveness screening analysis. Findings from this study include: -The time-varying value of individual energy efficiency measures varies across the locations studied because of the physical and operational characteristics of the individual utility system (e.g., summer or winter peaking, load factor, reserve margin) as well as the time periods during which savings from measures occur. -Across the four locations studied, some of the largest capacity benefits from energy efficiency are derived from the deferral of transmission and distribution system infrastructure upgrades. However, the deferred cost of such upgrades also exhibited the greatest range
Epidemic spreading in time-varying community networks.
Ren, Guangming; Wang, Xingyuan
2014-06-01
The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold qc. The epidemic will survive when q > qc and die when q epidemic spreading in complex networks with community structure.
Stochastic analysis of epidemics on adaptive time varying networks
Kotnis, Bhushan; Kuri, Joy
2013-06-01
Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an “adaptive threshold,” i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.
Optimization of Allowed Outage Time and Surveillance Test Intervals
Energy Technology Data Exchange (ETDEWEB)
Al-Dheeb, Mujahed; Kang, Sunkoo; Kim, Jonghyun [KEPCO international nuclear graduate school, Ulsan (Korea, Republic of)
2015-10-15
The primary purpose of surveillance testing is to assure that the components of standby safety systems will be operable when they are needed in an accident. By testing these components, failures can be detected that may have occurred since the last test or the time when the equipment was last known to be operational. The probability a system or system component performs a specified function or mission under given conditions at a prescribed time is called availability (A). Unavailability (U) as a risk measure is just the complementary probability to A(t). The increase of U means the risk is increased as well. D and T have an important impact on components, or systems, unavailability. The extension of D impacts the maintenance duration distributions for at-power operations, making them longer. This, in turn, increases the unavailability due to maintenance in the systems analysis. As for T, overly-frequent surveillances can result in high system unavailability. This is because the system may be taken out of service often due to the surveillance itself and due to the repair of test-caused failures of the component. The test-caused failures include those incurred by wear and tear of the component due to the surveillances. On the other hand, as the surveillance interval increases, the component's unavailability will grow because of increased occurrences of time-dependent random failures. In that situation, the component cannot be relied upon, and accordingly the system unavailability will increase. Thus, there should be an optimal component surveillance interval in terms of the corresponding system availability. This paper aims at finding the optimal T and D which result in minimum unavailability which in turn reduces the risk. Applying the methodology in section 2 to find the values of optimal T and D for two components, i.e., safety injection pump (SIP) and turbine driven aux feedwater pump (TDAFP). Section 4 is addressing interaction between D and T. In general
Optimization of Allowed Outage Time and Surveillance Test Intervals
International Nuclear Information System (INIS)
Al-Dheeb, Mujahed; Kang, Sunkoo; Kim, Jonghyun
2015-01-01
The primary purpose of surveillance testing is to assure that the components of standby safety systems will be operable when they are needed in an accident. By testing these components, failures can be detected that may have occurred since the last test or the time when the equipment was last known to be operational. The probability a system or system component performs a specified function or mission under given conditions at a prescribed time is called availability (A). Unavailability (U) as a risk measure is just the complementary probability to A(t). The increase of U means the risk is increased as well. D and T have an important impact on components, or systems, unavailability. The extension of D impacts the maintenance duration distributions for at-power operations, making them longer. This, in turn, increases the unavailability due to maintenance in the systems analysis. As for T, overly-frequent surveillances can result in high system unavailability. This is because the system may be taken out of service often due to the surveillance itself and due to the repair of test-caused failures of the component. The test-caused failures include those incurred by wear and tear of the component due to the surveillances. On the other hand, as the surveillance interval increases, the component's unavailability will grow because of increased occurrences of time-dependent random failures. In that situation, the component cannot be relied upon, and accordingly the system unavailability will increase. Thus, there should be an optimal component surveillance interval in terms of the corresponding system availability. This paper aims at finding the optimal T and D which result in minimum unavailability which in turn reduces the risk. Applying the methodology in section 2 to find the values of optimal T and D for two components, i.e., safety injection pump (SIP) and turbine driven aux feedwater pump (TDAFP). Section 4 is addressing interaction between D and T. In general
The Time Is Up: Compression of Visual Time Interval Estimations of Bimodal Aperiodic Patterns
Duarte, Fabiola; Lemus, Luis
2017-01-01
The ability to estimate time intervals subserves many of our behaviors and perceptual experiences. However, it is not clear how aperiodic (AP) stimuli affect our perception of time intervals across sensory modalities. To address this question, we evaluated the human capacity to discriminate between two acoustic (A), visual (V) or audiovisual (AV) time intervals of trains of scattered pulses. We first measured the periodicity of those stimuli and then sought for correlations with the accuracy and reaction times (RTs) of the subjects. We found that, for all time intervals tested in our experiment, the visual system consistently perceived AP stimuli as being shorter than the periodic (P) ones. In contrast, such a compression phenomenon was not apparent during auditory trials. Our conclusions are: first, the subjects exposed to P stimuli are more likely to measure their durations accurately. Second, perceptual time compression occurs for AP visual stimuli. Lastly, AV discriminations are determined by A dominance rather than by AV enhancement. PMID:28848406
Endogenous time-varying risk aversion and asset returns.
Berardi, Michele
2016-01-01
Stylized facts about statistical properties for short horizon returns in financial markets have been identified in the literature, but a satisfactory understanding for their manifestation is yet to be achieved. In this work, we show that a simple asset pricing model with representative agent is able to generate time series of returns that replicate such stylized facts if the risk aversion coefficient is allowed to change endogenously over time in response to unexpected excess returns under evolutionary forces. The same model, under constant risk aversion, would instead generate returns that are essentially Gaussian. We conclude that an endogenous time-varying risk aversion represents a very parsimonious way to make the model match real data on key statistical properties, and therefore deserves careful consideration from economists and practitioners alike.
Tolerable Time-Varying Overflow on Grass-Covered Slopes
Directory of Open Access Journals (Sweden)
Steven A. Hughes
2015-03-01
Full Text Available Engineers require estimates of tolerable overtopping limits for grass-covered levees, dikes, and embankments that might experience steady overflow. Realistic tolerance estimates can be used for both resilient design and risk assessment. A simple framework is developed for estimating tolerable overtopping on grass-covered slopes caused by slowly-varying (in time overtopping discharge (e.g., events like storm surges or river flood waves. The framework adapts the well-known Hewlett curves of tolerable limiting velocity as a function of overflow duration. It has been hypothesized that the form of the Hewlett curves suggests that the grass erosion process is governed by the flow work on the slope above a critical threshold velocity (referred to as excess work, and the tolerable erosional limit is reached when the cumulative excess work exceeds a given value determined from the time-dependent Hewlett curves. The cumulative excess work is expressed in terms of overflow discharge above a critical discharge that slowly varies in time, similar to a discharge hydrograph. The methodology is easily applied using forecast storm surge hydrographs at specific locations where wave action is minimal. For preliminary planning purposes, when storm surge hydrographs are unavailable, hypothetical equations for the water level and overflow discharge hydrographs are proposed in terms of the values at maximum overflow and the total duration of overflow. An example application is given to illustrate use of the methodology.
Neutron fluctuations in a medium randomly varying in time
Energy Technology Data Exchange (ETDEWEB)
Lenard, Pal [KFKI Atomic Energy Research Institute, Budapest (Hungary); Imre, Pazsit [Chalmers Univ. of Technology, Dept. of Nuclear Engineering, SE, Goteborg (Sweden)
2005-07-01
The master equation approach, which has traditionally been used for the calculation of neutron fluctuations in zero power systems with constant parameters, is extended to a case when the parameters of the system change randomly in time. We consider a forward type master equation for the probability distribution of the number of particles in a multiplying system whose properties jump randomly between two discrete states, both with and without an external source. The first two factorial moments are calculated, including the covariance. This model can be considered the unification of stochastic methods that were used either in a constant multiplying medium via the master equation technique, or in a fluctuating medium via the Langevin technique. In contrast to these methods, the one presented here can calculate the inherent noise in time-varying systems. The results obtained show a much richer characteristics of the zero power noise than that in constant systems. Even the concept of criticality has to be given a probabilistic interpretation. The asymptotic behaviour of the variance will be also qualitatively different from that in constant systems. The covariance of the neutron number in a subcritical system with a source, and the corresponding power spectrum, shows both the inherent and parametrically induced noise components. The results are relevant in medium power subcritical systems where the zero power noise is still significant, but they also have a bearing on all types of branching processes, such as evolution of biological systems, spreading of epidemics etc., which are set in a time-varying environment. (authors)
Neutron fluctuations in a medium randomly varying in time
International Nuclear Information System (INIS)
Lenard, Pal; Imre, Pazsit
2005-01-01
The master equation approach, which has traditionally been used for the calculation of neutron fluctuations in zero power systems with constant parameters, is extended to a case when the parameters of the system change randomly in time. We consider a forward type master equation for the probability distribution of the number of particles in a multiplying system whose properties jump randomly between two discrete states, both with and without an external source. The first two factorial moments are calculated, including the covariance. This model can be considered the unification of stochastic methods that were used either in a constant multiplying medium via the master equation technique, or in a fluctuating medium via the Langevin technique. In contrast to these methods, the one presented here can calculate the inherent noise in time-varying systems. The results obtained show a much richer characteristics of the zero power noise than that in constant systems. Even the concept of criticality has to be given a probabilistic interpretation. The asymptotic behaviour of the variance will be also qualitatively different from that in constant systems. The covariance of the neutron number in a subcritical system with a source, and the corresponding power spectrum, shows both the inherent and parametrically induced noise components. The results are relevant in medium power subcritical systems where the zero power noise is still significant, but they also have a bearing on all types of branching processes, such as evolution of biological systems, spreading of epidemics etc., which are set in a time-varying environment. (authors)
Estimating time-varying RSA to examine psychophysiological linkage of marital dyads.
Gates, Kathleen M; Gatzke-Kopp, Lisa M; Sandsten, Maria; Blandon, Alysia Y
2015-08-01
One of the primary tenets of polyvagal theory dictates that parasympathetic influence on heart rate, often estimated by respiratory sinus arrhythmia (RSA), shifts rapidly in response to changing environmental demands. The current standard analytic approach of aggregating RSA estimates across time to arrive at one value fails to capture this dynamic property within individuals. By utilizing recent methodological developments that enable precise RSA estimates at smaller time intervals, we demonstrate the utility of computing time-varying RSA for assessing psychophysiological linkage (or synchrony) in husband-wife dyads using time-locked data collected in a naturalistic setting. © 2015 Society for Psychophysiological Research.
Time Varying Market Integration and Expected Rteurns in Emerging Markets
Jong, F.C.J.M. de; Roon, F.A. de
2001-01-01
We use a simple model in which the expected returns in emerging markets depend on their systematic risk as measured by their beta relative to the world portfolio as well as on the level of integration in that market.The level of integration is a time-varying variable that depends on the market value of the assets that can be held by domestic investors only versus the market value of the assets that can be traded freely.Our empirical analysis for 30 emerging markets shows that there are strong...
One-dimensional radionuclide transport under time-varying conditions
International Nuclear Information System (INIS)
Gelbard, F.; Olague, N.E.; Longsine, D.E.
1990-01-01
This paper discusses new analytical and numerical solutions presented for one-dimensional radionuclide transport under time-varying fluid-flow conditions including radioactive decay. The analytical solution assumes that all radionuclides have identical retardation factors, and is limited to instantaneous releases. The numerical solution does not have these limitations, but is tested against the limiting case given for the analytical solution. Reasonable agreement between the two solutions was found. Examples are given for the transport of a three-member radionuclide chain transported over distances and flow rates comparable to those reported for Yucca Mountain, the proposed disposal site for high-level nuclear waste
Fault detection for discrete-time LPV systems using interval observers
Zhang, Zhi-Hui; Yang, Guang-Hong
2017-10-01
This paper is concerned with the fault detection (FD) problem for discrete-time linear parameter-varying systems subject to bounded disturbances. A parameter-dependent FD interval observer is designed based on parameter-dependent Lyapunov and slack matrices. The design method is presented by translating the parameter-dependent linear matrix inequalities (LMIs) into finite ones. In contrast to the existing results based on parameter-independent and diagonal Lyapunov matrices, the derived disturbance attenuation, fault sensitivity and nonnegative conditions lead to less conservative LMI characterisations. Furthermore, without the need to design the residual evaluation functions and thresholds, the residual intervals generated by the interval observers are used directly for FD decision. Finally, simulation results are presented for showing the effectiveness and superiority of the proposed method.
Meng, Su; Chen, Jie; Sun, Jian
2017-10-01
This paper investigates the problem of observer-based output feedback control for networked control systems with non-uniform sampling and time-varying transmission delay. The sampling intervals are assumed to vary within a given interval. The transmission delay belongs to a known interval. A discrete-time model is first established, which contains time-varying delay and norm-bounded uncertainties coming from non-uniform sampling intervals. It is then converted to an interconnection of two subsystems in which the forward channel is delay-free. The scaled small gain theorem is used to derive the stability condition for the closed-loop system. Moreover, the observer-based output feedback controller design method is proposed by utilising a modified cone complementary linearisation algorithm. Finally, numerical examples illustrate the validity and superiority of the proposed method.
Pollinator effectiveness varies with experimental shifts in flowering time.
Rafferty, Nicole E; Ives, Anthony R
2012-04-01
The earlier flowering times exhibited by many plant species are a conspicuous sign of climate change. Altered phenologies have caused concern that species could suffer population declines if they flower at times when effective pollinators are unavailable. For two perennial wildflowers, Tradescantia ohiensis and Asclepias incarnata, we used an experimental approach to explore how changing phenology affects the taxonomic composition of the pollinator assemblage and the effectiveness of individual pollinator taxa. After finding in the previous year that fruit set varied with flowering time, we manipulated flowering onset in greenhouses, placed plants in the field over the span of five weeks, and measured pollinator effectiveness as the number of seeds produced after a single visit to a flower. The average effectiveness of pollinators and the expected rates of pollination success were lower for plants of both species flowering earlier than for plants flowering at historical times, suggesting there could be reproductive costs to earlier flowering. Whereas for A. incarnata, differences in average seed set among weeks were due primarily to changes in the composition of the pollinator assemblage, the differences for T. ohiensis were driven by the combined effects of compositional changes and increases over time in the effectiveness of some pollinator taxa. Both species face the possibility of temporal mismatch between the availability of the most effective pollinators and the onset of flowering, and changes in the effectiveness of individual pollinator taxa through time may add an unexpected element to the reproductive consequences of such mismatches.
The extinction probability in systems randomly varying in time
Directory of Open Access Journals (Sweden)
Imre Pázsit
2017-09-01
Full Text Available The extinction probability of a branching process (a neutron chain in a multiplying medium is calculated for a system randomly varying in time. The evolution of the first two moments of such a process was calculated previously by the authors in a system randomly shifting between two states of different multiplication properties. The same model is used here for the investigation of the extinction probability. It is seen that the determination of the extinction probability is significantly more complicated than that of the moments, and it can only be achieved by pure numerical methods. The numerical results indicate that for systems fluctuating between two subcritical or two supercritical states, the extinction probability behaves as expected, but for systems fluctuating between a supercritical and a subcritical state, there is a crucial and unexpected deviation from the predicted behaviour. The results bear some significance not only for neutron chains in a multiplying medium, but also for the evolution of biological populations in a time-varying environment.
Study of selected phenotype switching strategies in time varying environment
Energy Technology Data Exchange (ETDEWEB)
Horvath, Denis, E-mail: horvath.denis@gmail.com [Centre of Interdisciplinary Biosciences, Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 040 01 Košice (Slovakia); Brutovsky, Branislav, E-mail: branislav.brutovsky@upjs.sk [Department of Biophysics, Institute of Physics, P.J. Šafárik University in Košice, Jesenná 5, 040 01 Košice (Slovakia)
2016-03-22
Population heterogeneity plays an important role across many research, as well as the real-world, problems. The population heterogeneity relates to the ability of a population to cope with an environment change (or uncertainty) preventing its extinction. However, this ability is not always desirable as can be exemplified by an intratumor heterogeneity which positively correlates with the development of resistance to therapy. Causation of population heterogeneity is therefore in biology and medicine an intensively studied topic. In this paper the evolution of a specific strategy of population diversification, the phenotype switching, is studied at a conceptual level. The presented simulation model studies evolution of a large population of asexual organisms in a time-varying environment represented by a stochastic Markov process. Each organism disposes with a stochastic or nonlinear deterministic switching strategy realized by discrete-time models with evolvable parameters. We demonstrate that under rapidly varying exogenous conditions organisms operate in the vicinity of the bet-hedging strategy, while the deterministic patterns become relevant as the environmental variations are less frequent. Statistical characterization of the steady state regimes of the populations is done using the Hellinger and Kullback–Leibler functional distances and the Hamming distance. - Highlights: • Relation between phenotype switching and environment is studied. • The Markov chain Monte Carlo based model is developed. • Stochastic and deterministic strategies of phenotype switching are utilized. • Statistical measures of the dynamic heterogeneity reveal universal properties. • The results extend to higher lattice dimensions.
Study of selected phenotype switching strategies in time varying environment
International Nuclear Information System (INIS)
Horvath, Denis; Brutovsky, Branislav
2016-01-01
Population heterogeneity plays an important role across many research, as well as the real-world, problems. The population heterogeneity relates to the ability of a population to cope with an environment change (or uncertainty) preventing its extinction. However, this ability is not always desirable as can be exemplified by an intratumor heterogeneity which positively correlates with the development of resistance to therapy. Causation of population heterogeneity is therefore in biology and medicine an intensively studied topic. In this paper the evolution of a specific strategy of population diversification, the phenotype switching, is studied at a conceptual level. The presented simulation model studies evolution of a large population of asexual organisms in a time-varying environment represented by a stochastic Markov process. Each organism disposes with a stochastic or nonlinear deterministic switching strategy realized by discrete-time models with evolvable parameters. We demonstrate that under rapidly varying exogenous conditions organisms operate in the vicinity of the bet-hedging strategy, while the deterministic patterns become relevant as the environmental variations are less frequent. Statistical characterization of the steady state regimes of the populations is done using the Hellinger and Kullback–Leibler functional distances and the Hamming distance. - Highlights: • Relation between phenotype switching and environment is studied. • The Markov chain Monte Carlo based model is developed. • Stochastic and deterministic strategies of phenotype switching are utilized. • Statistical measures of the dynamic heterogeneity reveal universal properties. • The results extend to higher lattice dimensions.
Epidemic spreading in time-varying community networks
Energy Technology Data Exchange (ETDEWEB)
Ren, Guangming, E-mail: wangxy@dlut.edu.cn, E-mail: ren-guang-ming@163.com [School of Electronic and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xingyuan, E-mail: wangxy@dlut.edu.cn, E-mail: ren-guang-ming@163.com [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China)
2014-06-15
The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold q{sub c}. The epidemic will survive when q > q{sub c} and die when q < q{sub c}. These results can help understanding the impacts of human travel on the epidemic spreading in complex networks with community structure.
Network Coded Cooperation Over Time-Varying Channels
DEFF Research Database (Denmark)
Khamfroush, Hana; Roetter, Daniel Enrique Lucani; Barros, João
2014-01-01
transmissions, e.g., in terms of the rate of packet transmission or the energy consumption. A comprehensive analysis of the MDP solution is carried out under different network conditions to extract optimal rules of packet transmission. Inspired by the extracted rules, we propose two near-optimal heuristics......In this paper, we investigate the optimal design of cooperative network-coded strategies for a three-node wireless network with time-varying, half-duplex erasure channels. To this end, we formulate the problem of minimizing the total cost of transmitting M packets from source to two receivers...... as a Markov Decision Process (MDP). The actions of the MDP model include the source and the type of transmission to be used in a given time slot given perfect knowledge of the system state. The cost of packet transmission is defined such that it can incorporate the difference between broadcast and unicast...
Conditional CAPM: Time-varying Betas in the Brazilian Market
Directory of Open Access Journals (Sweden)
Frances Fischberg Blank
2014-10-01
Full Text Available The conditional CAPM is characterized by time-varying market beta. Based on state-space models approach, beta behavior can be modeled as a stochastic process dependent on conditioning variables related to business cycle and estimated using Kalman filter. This paper studies alternative models for portfolios sorted by size and book-to-market ratio in the Brazilian stock market and compares their adjustment to data. Asset pricing tests based on time-series and cross-sectional approaches are also implemented. A random walk process combined with conditioning variables is the preferred model, reducing pricing errors compared to unconditional CAPM, but the errors are still significant. Cross-sectional test show that book-to-market ratio becomes less relevant, but past returns still capture cross-section variation
Inferring time-varying network topologies from gene expression data.
Rao, Arvind; Hero, Alfred O; States, David J; Engel, James Douglas
2007-01-01
Most current methods for gene regulatory network identification lead to the inference of steady-state networks, that is, networks prevalent over all times, a hypothesis which has been challenged. There has been a need to infer and represent networks in a dynamic, that is, time-varying fashion, in order to account for different cellular states affecting the interactions amongst genes. In this work, we present an approach, regime-SSM, to understand gene regulatory networks within such a dynamic setting. The approach uses a clustering method based on these underlying dynamics, followed by system identification using a state-space model for each learnt cluster--to infer a network adjacency matrix. We finally indicate our results on the mouse embryonic kidney dataset as well as the T-cell activation-based expression dataset and demonstrate conformity with reported experimental evidence.
Epidemic spreading in time-varying community networks
International Nuclear Information System (INIS)
Ren, Guangming; Wang, Xingyuan
2014-01-01
The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold q c . The epidemic will survive when q > q c and die when q c . These results can help understanding the impacts of human travel on the epidemic spreading in complex networks with community structure
Flexible Demand Management under Time-Varying Prices
Liang, Yong
In this dissertation, the problem of flexible demand management under time-varying prices is studied. This generic problem has many applications, which usually have multiple periods in which decisions on satisfying demand need to be made, and prices in these periods are time-varying. Examples of such applications include multi-period procurement problem, operating room scheduling, and user-end demand scheduling in the Smart Grid, where the last application is used as the main motivating story throughout the dissertation. The current grid is experiencing an upgrade with lots of new designs. What is of particular interest is the idea of passing time-varying prices that reflect electricity market conditions to end users as incentives for load shifting. One key component, consequently, is the demand management system at the user-end. The objective of the system is to find the optimal trade-off between cost saving and discomfort increment resulted from load shifting. In this dissertation, we approach this problem from the following aspects: (1) construct a generic model, solve for Pareto optimal solutions, and analyze the robust solution that optimizes the worst-case payoffs, (2) extend to a distribution-free model for multiple types of demand (appliances), for which an approximate dynamic programming (ADP) approach is developed, and (3) design other efficient algorithms for practical purposes of the flexible demand management system. We first construct a novel multi-objective flexible demand management model, in which there are a finite number of periods with time-varying prices, and demand arrives in each period. In each period, the decision maker chooses to either satisfy or defer outstanding demand to minimize costs and discomfort over a certain number of periods. We consider both the deterministic model, models with stochastic demand or prices, and when only partial information about the stochastic demand or prices is known. We first analyze the stochastic
A comparison between brachial and echocardiographic systolic time intervals.
Directory of Open Access Journals (Sweden)
Ho-Ming Su
Full Text Available Systolic time interval (STI is an established noninvasive technique for the assessment of cardiac function. Brachial STIs can be automatically determined by an ankle-brachial index (ABI-form device. The aims of this study are to evaluate whether the STIs measured from ABI-form device can represent those measured from echocardiography and to compare the diagnostic values of brachial and echocardiographic STIs in the prediction of left ventricular ejection fraction (LVEF <50%. A total of 849 patients were included in the study. Brachial pre-ejection period (bPEP and brachial ejection time (bET were measured using an ABI-form device and pre-ejection period (PEP and ejection time (ET were measured from echocardiography. Agreement was assessed by correlation coefficient and Bland-Altman plot. Brachial STIs had a significant correlation with echocardiographic STIs (r = 0.644, P<0.001 for bPEP and PEP; r = 0.850, P<0.001 for bET and ET; r = 0.708, P<0.001 for bPEP/bET and PEP/ET. The disagreement between brachial and echocardiographic STIs (brachial STIs minus echocardiographic STIs was 28.55 ms for bPEP and PEP, -4.15 ms for bET and ET and -0.11 for bPEP/bET and PEP/ET. The areas under the curve for bPEP/bET and PEP/ET in the prediction of LVEF <50% were 0.771 and 0.765, respectively. Brachial STIs were good alternatives to STIs obtained from echocardiography and also helpful in prediction of LVEF <50%. Brachial STIs automatically obtained from an ABI-form device may be helpful for evaluation of left ventricular systolic dysfunction.
Optimizing Time Intervals of Meteorological Data Used with Atmospheric Dose Modeling at SRS
International Nuclear Information System (INIS)
Simpkins, A.A.
1999-01-01
Measured tritium oxide concentrations in air have been compared with calculated values using routine release Gaussian plume models for different time intervals of meteorological data. These comparisons determined an optimum time interval of meteorological data used with atmospheric dose models at the Savannah River Site (SRS). Meteorological data of varying time intervals (1-yr to 10-yr) were used for the comparison. Insignificant differences are seen in using a one-year database as opposed to a five-year database. Use of a ten-year database results in slightly more conservative results. For meteorological databases of length one to five years the mean ratio of predicted to measured tritium oxide concentrations is approximately 1.25 whereas for the ten-year meteorological database the ration is closer to 1.35. Currently at the Savannah River Site a meteorological database of five years duration is used for all dose models. This study suggests no substantially improved accuracy using meteorological files of shorter or longer time intervals
Complexity Variability Assessment of Nonlinear Time-Varying Cardiovascular Control
Valenza, Gaetano; Citi, Luca; Garcia, Ronald G.; Taylor, Jessica Noggle; Toschi, Nicola; Barbieri, Riccardo
2017-02-01
The application of complex systems theory to physiology and medicine has provided meaningful information about the nonlinear aspects underlying the dynamics of a wide range of biological processes and their disease-related aberrations. However, no studies have investigated whether meaningful information can be extracted by quantifying second-order moments of time-varying cardiovascular complexity. To this extent, we introduce a novel mathematical framework termed complexity variability, in which the variance of instantaneous Lyapunov spectra estimated over time serves as a reference quantifier. We apply the proposed methodology to four exemplary studies involving disorders which stem from cardiology, neurology and psychiatry: Congestive Heart Failure (CHF), Major Depression Disorder (MDD), Parkinson’s Disease (PD), and Post-Traumatic Stress Disorder (PTSD) patients with insomnia under a yoga training regime. We show that complexity assessments derived from simple time-averaging are not able to discern pathology-related changes in autonomic control, and we demonstrate that between-group differences in measures of complexity variability are consistent across pathologies. Pathological states such as CHF, MDD, and PD are associated with an increased complexity variability when compared to healthy controls, whereas wellbeing derived from yoga in PTSD is associated with lower time-variance of complexity.
Multivariate Option Pricing with Time Varying Volatility and Correlations
DEFF Research Database (Denmark)
Rombouts, Jeroen V.K.; Stentoft, Lars Peter
In recent years multivariate models for asset returns have received much attention, in particular this is the case for models with time varying volatility. In this paper we consider models of this class and examine their potential when it comes to option pricing. Specifically, we derive the risk...... neutral dynamics for a general class of multivariate heteroskedastic models, and we provide a feasible way to price options in this framework. Our framework can be used irrespective of the assumed underlying distribution and dynamics, and it nests several important special cases. We provide an application...... to options on the minimum of two indices. Our results show that not only is correlation important for these options but so is allowing this correlation to be dynamic. Moreover, we show that for the general model exposure to correlation risk carries an important premium, and when this is neglected option...
Time-varying Capital Requirements and Disclosure Rules
DEFF Research Database (Denmark)
Kragh, Jonas; Rangvid, Jesper
, implying that resilience in the banking system is also increased. The increase in capital ratios is partly due to a modest reduction in lending. Using a policy changes, we show that banks react stronger to changes in capital requirements when these are public. Our results further suggest that the impact......Unique and confidential Danish data allow us to identify how changes in disclosure requirements and bank-specific time-varying capital requirements affect banks' lending and capital accumu-lation decisions. We find that banks increase their capital ratios after capital requirements are increased...... of capital requirements differ for small and large banks. Large banks raise their capital ratios more, reduce lending less, and accumulate more new capital compared to small banks....
Time-varying risk aversion. An application to energy hedging
Energy Technology Data Exchange (ETDEWEB)
Cotter, John [Centre for Financial Markets, School of Business, University College Dublin, Blackrock, Co. Dublin (Ireland); Hanly, Jim [School of Accounting and Finance, Dublin Institute of Technology, Dublin 2 (Ireland)
2010-03-15
Risk aversion is a key element of utility maximizing hedge strategies; however, it has typically been assigned an arbitrary value in the literature. This paper instead applies a GARCH-in-Mean (GARCH-M) model to estimate a time-varying measure of risk aversion that is based on the observed risk preferences of energy hedging market participants. The resulting estimates are applied to derive explicit risk aversion based optimal hedge strategies for both short and long hedgers. Out-of-sample results are also presented based on a unique approach that allows us to forecast risk aversion, thereby estimating hedge strategies that address the potential future needs of energy hedgers. We find that the risk aversion based hedges differ significantly from simpler OLS hedges. When implemented in-sample, risk aversion hedges for short hedgers outperform the OLS hedge ratio in a utility based comparison. (author)
Time-varying risk aversion. An application to energy hedging
International Nuclear Information System (INIS)
Cotter, John; Hanly, Jim
2010-01-01
Risk aversion is a key element of utility maximizing hedge strategies; however, it has typically been assigned an arbitrary value in the literature. This paper instead applies a GARCH-in-Mean (GARCH-M) model to estimate a time-varying measure of risk aversion that is based on the observed risk preferences of energy hedging market participants. The resulting estimates are applied to derive explicit risk aversion based optimal hedge strategies for both short and long hedgers. Out-of-sample results are also presented based on a unique approach that allows us to forecast risk aversion, thereby estimating hedge strategies that address the potential future needs of energy hedgers. We find that the risk aversion based hedges differ significantly from simpler OLS hedges. When implemented in-sample, risk aversion hedges for short hedgers outperform the OLS hedge ratio in a utility based comparison. (author)
Renormalization group theory for percolation in time-varying networks.
Karschau, Jens; Zimmerling, Marco; Friedrich, Benjamin M
2018-05-22
Motivated by multi-hop communication in unreliable wireless networks, we present a percolation theory for time-varying networks. We develop a renormalization group theory for a prototypical network on a regular grid, where individual links switch stochastically between active and inactive states. The question whether a given source node can communicate with a destination node along paths of active links is equivalent to a percolation problem. Our theory maps the temporal existence of multi-hop paths on an effective two-state Markov process. We show analytically how this Markov process converges towards a memoryless Bernoulli process as the hop distance between source and destination node increases. Our work extends classical percolation theory to the dynamic case and elucidates temporal correlations of message losses. Quantification of temporal correlations has implications for the design of wireless communication and control protocols, e.g. in cyber-physical systems such as self-organized swarms of drones or smart traffic networks.
Time-varying vector fields and their flows
Jafarpour, Saber
2014-01-01
This short book provides a comprehensive and unified treatment of time-varying vector fields under a variety of regularity hypotheses, namely finitely differentiable, Lipschitz, smooth, holomorphic, and real analytic. The presentation of this material in the real analytic setting is new, as is the manner in which the various hypotheses are unified using functional analysis. Indeed, a major contribution of the book is the coherent development of locally convex topologies for the space of real analytic sections of a vector bundle, and the development of this in a manner that relates easily to classically known topologies in, for example, the finitely differentiable and smooth cases. The tools used in this development will be of use to researchers in the area of geometric functional analysis.
Parametric estimation of time varying baselines in airborne interferometric SAR
DEFF Research Database (Denmark)
Mohr, Johan Jacob; Madsen, Søren Nørvang
1996-01-01
A method for estimation of time varying spatial baselines in airborne interferometric synthetic aperture radar (SAR) is described. The range and azimuth distortions between two images acquired with a non-linear baseline are derived. A parametric model of the baseline is then, in a least square...... sense, estimated from image shifts obtained by cross correlation of numerous small patches throughout the image. The method has been applied to airborne EMISAR imagery from the 1995 campaign over the Storstrommen Glacier in North East Greenland conducted by the Danish Center for Remote Sensing. This has...... reduced the baseline uncertainties from several meters to the centimeter level in a 36 km scene. Though developed for airborne SAR the method can easily be adopted to satellite data...
Consumer responses to time varying prices for electricity
International Nuclear Information System (INIS)
Thorsnes, Paul; Williams, John; Lawson, Rob
2012-01-01
We report new experimental evidence of the household response to weekday differentials in peak and off-peak electricity prices. The data come from Auckland, New Zealand, where peak residential electricity consumption occurs in winter for heating. Peak/off-peak price differentials ranged over four randomly selected groups from 1.0 to 3.5. On average, there was no response except in winter. In winter, participant households reduced electricity consumption by at least 10%, took advantage of lower off-peak prices but did not respond to the peak price differentials. Response varied with house and household size, time spent away from home, and whether water was heated with electricity. - Highlights: ► Seasonal effects in winter. ► High conservation effect from information. ► Higher peak prices no effect on peak use. ► Low off-peak prices encourage less conservation off-peak.
On the Anonymity Risk of Time-Varying User Profiles
Directory of Open Access Journals (Sweden)
Silvia Puglisi
2017-04-01
Full Text Available Websites and applications use personalisation services to profile their users, collect their patterns and activities and eventually use this data to provide tailored suggestions. User preferences and social interactions are therefore aggregated and analysed. Every time a user publishes a new post or creates a link with another entity, either another user, or some online resource, new information is added to the user profile. Exposing private data does not only reveal information about single users’ preferences, increasing their privacy risk, but can expose more about their network that single actors intended. This mechanism is self-evident in social networks where users receive suggestions based on their friends’ activities. We propose an information-theoretic approach to measure the differential update of the anonymity risk of time-varying user profiles. This expresses how privacy is affected when new content is posted and how much third-party services get to know about the users when a new activity is shared. We use actual Facebook data to show how our model can be applied to a real-world scenario.
Neutron fluctuations in a multiplying medium randomly varying in time
Energy Technology Data Exchange (ETDEWEB)
Pal, L. [KFKI Atomic Energy Research Inst., Budapest (Hungary); Pazsit, I. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Engineering
2006-07-15
The master equation approach, which has traditionally been used for the calculation of neutron fluctuations in multiplying systems with constant parameters, is extended to a case when the parameters of the system change randomly in time. A forward type master equation is considered for the case of a multiplying system whose properties jump randomly between two discrete states, both with and without a stationary external source. The first two factorial moments are calculated, including the covariance. This model can be considered as the unification of stochastic methods that were used either in a constant multiplying medium via the master equation technique, or in a fluctuating medium via the Langevin technique. The results obtained show a much richer characteristic of the zero power noise than that in constant systems. The results are relevant in medium power subcritical nuclear systems where the zero power noise is still significant, but they also have a bearing on all types of branching processes, such as evolution of biological systems, spreading of epidemics etc, which are set in a time-varying environment.
Neutron fluctuations in a multiplying medium randomly varying in time
International Nuclear Information System (INIS)
Pal, L.; Pazsit, I.
2006-01-01
The master equation approach, which has traditionally been used for the calculation of neutron fluctuations in multiplying systems with constant parameters, is extended to a case when the parameters of the system change randomly in time. A forward type master equation is considered for the case of a multiplying system whose properties jump randomly between two discrete states, both with and without a stationary external source. The first two factorial moments are calculated, including the covariance. This model can be considered as the unification of stochastic methods that were used either in a constant multiplying medium via the master equation technique, or in a fluctuating medium via the Langevin technique. The results obtained show a much richer characteristic of the zero power noise than that in constant systems. The results are relevant in medium power subcritical nuclear systems where the zero power noise is still significant, but they also have a bearing on all types of branching processes, such as evolution of biological systems, spreading of epidemics etc, which are set in a time-varying environment
Monopoly models with time-varying demand function
Cavalli, Fausto; Naimzada, Ahmad
2018-05-01
We study a family of monopoly models for markets characterized by time-varying demand functions, in which a boundedly rational agent chooses output levels on the basis of a gradient adjustment mechanism. After presenting the model for a generic framework, we analytically study the case of cyclically alternating demand functions. We show that both the perturbation size and the agent's reactivity to profitability variation signals can have counterintuitive roles on the resulting period-2 cycles and on their stability. In particular, increasing the perturbation size can have both a destabilizing and a stabilizing effect on the resulting dynamics. Moreover, in contrast with the case of time-constant demand functions, the agent's reactivity is not just destabilizing, but can improve stability, too. This means that a less cautious behavior can provide better performance, both with respect to stability and to achieved profits. We show that, even if the decision mechanism is very simple and is not able to always provide the optimal production decisions, achieved profits are very close to those optimal. Finally, we show that in agreement with the existing empirical literature, the price series obtained simulating the proposed model exhibit a significant deviation from normality and large volatility, in particular when underlying deterministic dynamics become unstable and complex.
Time Interval to Initiation of Contraceptive Methods Following ...
African Journals Online (AJOL)
2018-01-30
Jan 30, 2018 ... interval between a woman's last childbirth and the initiation of contraception. Materials and ..... DF=Degree of freedom; χ2=Chi‑square test ..... practice of modern contraception among single women in a rural and urban ...
Time Interval to Initiation of Contraceptive Methods Following ...
African Journals Online (AJOL)
Objectives: The objectives of the study were to determine factors affecting the interval between a woman's last childbirth and the initiation of contraception. Materials and Methods: This was a retrospective study. Family planning clinic records of the Barau Dikko Teaching Hospital Kaduna from January 2000 to March 2014 ...
A Novel Time-Varying Friction Compensation Method for Servomechanism
Directory of Open Access Journals (Sweden)
Bin Feng
2015-01-01
Full Text Available Friction is an inevitable nonlinear phenomenon existing in servomechanisms. Friction errors often affect their motion and contour accuracies during the reverse motion. To reduce friction errors, a novel time-varying friction compensation method is proposed to solve the problem that the traditional friction compensation methods hardly deal with. This problem leads to an unsatisfactory friction compensation performance and the motion and contour accuracies cannot be maintained effectively. In this method, a trapezoidal compensation pulse is adopted to compensate for the friction errors. A generalized regression neural network algorithm is used to generate the optimal pulse amplitude function. The optimal pulse duration function and the pulse amplitude function can be established by the pulse characteristic parameter learning and then the optimal friction compensation pulse can be generated. The feasibility of friction compensation method was verified on a high-precision X-Y worktable. The experimental results indicated that the motion and contour accuracies were improved greatly with reduction of the friction errors, in different working conditions. Moreover, the overall friction compensation performance indicators were decreased by more than 54% and this friction compensation method can be implemented easily on most of servomechanisms in industry.
Innovation diffusion on time-varying activity driven networks
Rizzo, Alessandro; Porfiri, Maurizio
2016-01-01
Since its introduction in the 1960s, the theory of innovation diffusion has contributed to the advancement of several research fields, such as marketing management and consumer behavior. The 1969 seminal paper by Bass [F.M. Bass, Manag. Sci. 15, 215 (1969)] introduced a model of product growth for consumer durables, which has been extensively used to predict innovation diffusion across a range of applications. Here, we propose a novel approach to study innovation diffusion, where interactions among individuals are mediated by the dynamics of a time-varying network. Our approach is based on the Bass' model, and overcomes key limitations of previous studies, which assumed timescale separation between the individual dynamics and the evolution of the connectivity patterns. Thus, we do not hypothesize homogeneous mixing among individuals or the existence of a fixed interaction network. We formulate our approach in the framework of activity driven networks to enable the analysis of the concurrent evolution of the interaction and individual dynamics. Numerical simulations offer a systematic analysis of the model behavior and highlight the role of individual activity on market penetration when targeted advertisement campaigns are designed, or a competition between two different products takes place.
Time-varying multiplex network: Intralayer and interlayer synchronization
Rakshit, Sarbendu; Majhi, Soumen; Bera, Bidesh K.; Sinha, Sudeshna; Ghosh, Dibakar
2017-12-01
A large class of engineered and natural systems, ranging from transportation networks to neuronal networks, are best represented by multiplex network architectures, namely a network composed of two or more different layers where the mutual interaction in each layer may differ from other layers. Here we consider a multiplex network where the intralayer coupling interactions are switched stochastically with a characteristic frequency. We explore the intralayer and interlayer synchronization of such a time-varying multiplex network. We find that the analytically derived necessary condition for intralayer and interlayer synchronization, obtained by the master stability function approach, is in excellent agreement with our numerical results. Interestingly, we clearly find that the higher frequency of switching links in the layers enhances both intralayer and interlayer synchrony, yielding larger windows of synchronization. Further, we quantify the resilience of synchronous states against random perturbations, using a global stability measure based on the concept of basin stability, and this reveals that intralayer coupling strength is most crucial for determining both intralayer and interlayer synchrony. Lastly, we investigate the robustness of interlayer synchronization against a progressive demultiplexing of the multiplex structure, and we find that for rapid switching of intralayer links, the interlayer synchronization persists even when a large number of interlayer nodes are disconnected.
Long memory of financial time series and hidden Markov models with time-varying parameters
DEFF Research Database (Denmark)
Nystrup, Peter; Madsen, Henrik; Lindström, Erik
Hidden Markov models are often used to capture stylized facts of daily returns and to infer the hidden state of financial markets. Previous studies have found that the estimated models change over time, but the implications of the time-varying behavior for the ability to reproduce the stylized...... facts have not been thoroughly examined. This paper presents an adaptive estimation approach that allows for the parameters of the estimated models to be time-varying. It is shown that a two-state Gaussian hidden Markov model with time-varying parameters is able to reproduce the long memory of squared...... daily returns that was previously believed to be the most difficult fact to reproduce with a hidden Markov model. Capturing the time-varying behavior of the parameters also leads to improved one-step predictions....
Smorenberg, A.; Lust, E.J.; Beishuizen, A.; Meijer, J.H.; Verdaasdonk, R.M.; Groeneveld, A.B.J.
2013-01-01
OBJECTIVES: Haemodynamic parameters for predicting fluid responsiveness in intensive care patients are invasive, technically challenging or not universally applicable. We compared the initial systolic time interval (ISTI), a non-invasive measure of the time interval between the electrical and
International Nuclear Information System (INIS)
Rakkiyappan, R.; Sivasamy, R.; Lakshmanan, S.
2014-01-01
In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about sampling intervals and interval time-varying delays, new Lyapunov—Krasovskii functionals with triple integral terms are introduced. Based on the convex combination technique, two kinds of synchronization criteria are derived in terms of linear matrix inequalities, which can be efficiently solved via standard numerical software. Finally, three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results
Directory of Open Access Journals (Sweden)
Catalin V. Buhusi
2018-06-01
Full Text Available Motor sequence learning, planning and execution of goal-directed behaviors, and decision making rely on accurate time estimation and production of durations in the seconds-to-minutes range. The pathways involved in planning and execution of goal-directed behaviors include cortico-striato-thalamo-cortical circuitry modulated by dopaminergic inputs. A critical feature of interval timing is its scalar property, by which the precision of timing is proportional to the timed duration. We examined the role of medial prefrontal cortex (mPFC in timing by evaluating the effect of its reversible inactivation on timing accuracy, timing precision and scalar timing. Rats were trained to time two durations in a peak-interval (PI procedure. Reversible mPFC inactivation using GABA agonist muscimol resulted in decreased timing precision, with no effect on timing accuracy and scalar timing. These results are partly at odds with studies suggesting that ramping prefrontal activity is crucial to timing but closely match simulations with the Striatal Beat Frequency (SBF model proposing that timing is coded by the coincidental activation of striatal neurons by cortical inputs. Computer simulations indicate that in SBF, gradual inactivation of cortical inputs results in a gradual decrease in timing precision with preservation of timing accuracy and scalar timing. Further studies are needed to differentiate between timing models based on coincidence detection and timing models based on ramping mPFC activity, and clarify whether mPFC is specifically involved in timing, or more generally involved in attention, working memory, or response selection/inhibition.
Timing of multiple overlapping intervals : How many clocks do we have?
van Rijn, Hedderik; Taatgen, Niels A.
2008-01-01
Humans perceive and reproduce short intervals of time (e.g. 1-60 s) relatively accurately, and are capable of timing multiple overlapping intervals if these intervals are presented in different modalities [e.g., Rousseau, L., & Rousseau, RL (1996). Stop-reaction time and the internal clock.
The 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting
International Nuclear Information System (INIS)
Sydnor, R.L.
1990-05-01
Papers presented at the 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting are compiled. The following subject areas are covered: Rb, Cs, and H-based frequency standards and cryogenic and trapped-ion technology; satellite laser tracking networks, GLONASS timing, intercomparison of national time scales and international telecommunications; telecommunications, power distribution, platform positioning, and geophysical survey industries; military communications and navigation systems; and dissemination of precise time and frequency by means of GPS, GLONASS, MIL STAR, LORAN, and synchronous communication satellites
The necessity for a time local dimension in systems with time-varying attractors
DEFF Research Database (Denmark)
Særmark, Knud H; Ashkenazy, Y; Levitan, J
1997-01-01
We show that a simple non-linear system for ordinary differential equations may possess a time-varying attractor dimension. This indicates that it is infeasible to characterize EEG and MEG time series with a single time global dimension. We suggest another measure for the description of non...
Finite-time stability of neutral-type neural networks with random time-varying delays
Ali, M. Syed; Saravanan, S.; Zhu, Quanxin
2017-11-01
This paper is devoted to the finite-time stability analysis of neutral-type neural networks with random time-varying delays. The randomly time-varying delays are characterised by Bernoulli stochastic variable. This result can be extended to analysis and design for neutral-type neural networks with random time-varying delays. On the basis of this paper, we constructed suitable Lyapunov-Krasovskii functional together and established a set of sufficient linear matrix inequalities approach to guarantee the finite-time stability of the system concerned. By employing the Jensen's inequality, free-weighting matrix method and Wirtinger's double integral inequality, the proposed conditions are derived and two numerical examples are addressed for the effectiveness of the developed techniques.
Nonparametric Estimation of Interval Reliability for Discrete-Time Semi-Markov Systems
DEFF Research Database (Denmark)
Georgiadis, Stylianos; Limnios, Nikolaos
2016-01-01
In this article, we consider a repairable discrete-time semi-Markov system with finite state space. The measure of the interval reliability is given as the probability of the system being operational over a given finite-length time interval. A nonparametric estimator is proposed for the interval...
Tracking time-varying parameters with local regression
DEFF Research Database (Denmark)
Joensen, Alfred Karsten; Nielsen, Henrik Aalborg; Nielsen, Torben Skov
2000-01-01
This paper shows that the recursive least-squares (RLS) algorithm with forgetting factor is a special case of a varying-coe\\$cient model, and a model which can easily be estimated via simple local regression. This observation allows us to formulate a new method which retains the RLS algorithm, bu......, but extends the algorithm by including polynomial approximations. Simulation results are provided, which indicates that this new method is superior to the classical RLS method, if the parameter variations are smooth....
Long Memory of Financial Time Series and Hidden Markov Models with Time-Varying Parameters
DEFF Research Database (Denmark)
Nystrup, Peter; Madsen, Henrik; Lindström, Erik
2016-01-01
Hidden Markov models are often used to model daily returns and to infer the hidden state of financial markets. Previous studies have found that the estimated models change over time, but the implications of the time-varying behavior have not been thoroughly examined. This paper presents an adaptive...... to reproduce with a hidden Markov model. Capturing the time-varying behavior of the parameters also leads to improved one-step density forecasts. Finally, it is shown that the forecasting performance of the estimated models can be further improved using local smoothing to forecast the parameter variations....
International Nuclear Information System (INIS)
Chen, S.-F.
2009-01-01
The asymptotic stability problem for discrete-time systems with time-varying delay subject to saturation nonlinearities is addressed in this paper. In terms of linear matrix inequalities (LMIs), a delay-dependent sufficient condition is derived to ensure the asymptotic stability. A numerical example is given to demonstrate the theoretical results.
Stochastic skyline route planning under time-varying uncertainty
DEFF Research Database (Denmark)
Yang, Bin; Guo, Chenjuan; Jensen, Christian S.
2014-01-01
Different uses of a road network call for the consideration of different travel costs: in route planning, travel time and distance are typically considered, and green house gas (GHG) emissions are increasingly being considered. Further, travel costs such as travel time and GHG emissions are time...
Ratio-based lengths of intervals to improve fuzzy time series forecasting.
Huarng, Kunhuang; Yu, Tiffany Hui-Kuang
2006-04-01
The objective of this study is to explore ways of determining the useful lengths of intervals in fuzzy time series. It is suggested that ratios, instead of equal lengths of intervals, can more properly represent the intervals among observations. Ratio-based lengths of intervals are, therefore, proposed to improve fuzzy time series forecasting. Algebraic growth data, such as enrollments and the stock index, and exponential growth data, such as inventory demand, are chosen as the forecasting targets, before forecasting based on the various lengths of intervals is performed. Furthermore, sensitivity analyses are also carried out for various percentiles. The ratio-based lengths of intervals are found to outperform the effective lengths of intervals, as well as the arbitrary ones in regard to the different statistical measures. The empirical analysis suggests that the ratio-based lengths of intervals can also be used to improve fuzzy time series forecasting.
Matosziuk, L.; Hatten, J. A.
2016-12-01
Soil carbon represents a significant component of the global carbon cycle. While fire-based disturbance of forest ecosystems acts as a carbon source, the increased temperatures can initiate molecular changes to forest biomass that convert fast cycling organic carbon into more stable forms such as black carbon (BC), a product of incomplete combustion that contains highly-condensed aromatic structures and very low hydrogen and oxygen content. Such forms of carbon can remain in the soil for hundred to thousands of years, effectively creating a long-term carbon sink. The goal of this project is to understand how specific characteristics of prescribed burns, specifically the season of burn and the interval between burns, affect the formation, structure, and retention of these slowly degrading forms of carbon in the soil. Both O-horizon (forest floor) and mineral soil (0-15 cm cores) samples were collected from a season and interval of burn study in Malheur National Forest. The study area is divided into six replicate units, each of which is sub-divided into four treatment areas and a control. Beginning in 1997, each treatment area was subjected to: i) spring burns at five-year intervals, ii) fall burns at five-year intervals, iii) spring burns at 15-year intervals, or iv) fall burns at 15-year intervals. The bulk density, pH, and C/N content of each soil were measured to assess the effect of the burn treatments on the soil. Additionally, the amount and molecular structure of BC in each sample was quantified using the distribution of specific molecular markers (benzene polycarboxylic acids or BPCAs) that are present in the soil following acid digestion.
Accessing photon number via an atomic time interval
International Nuclear Information System (INIS)
Camparo, J.C.; Coffer, J.G.
2002-01-01
We show that Rabi resonances can be used to assess field strength in terms of time at the atomic level. Rabi resonances are enhancements in the amplitude of atomic population oscillations when the Rabi frequency, Ω, 'matches' a field-modulation frequency, ω m . We demonstrate that Ω=2κω m and find that κ=1.03±0.05. Since Ω is defined by field strength (i.e., photon number) through atomic constants, and ω m may be referenced to an atomic clock, our work shows that Rabi resonances provide a connection between time and photon number
Identification of optimal inspection interval via delay-time concept
Directory of Open Access Journals (Sweden)
Glauco Ricardo Simões Gomes
2016-06-01
Full Text Available This paper presents an application of mathematical modeling aimed at managing maintenance based on the delay-time concept. The study scenario was the manufacturing sector of an industrial unit, which operates 24 hours a day in a continuous flow of production. The main idea was to use the concepts of this approach to determine the optimal time of preventive action by the maintenance department in order to ensure the greatest availability of equipment and facilities at appropriate maintenance costs. After a brief introduction of the subject, the article presents topics that illustrate the importance of mathematical modeling in maintenance management and the delay-time concept. It also describes the characteristics of the company where the study was conducted, as well as the data related to the production process and maintenance actions. Finally, the results obtained after applying the delay-time concept are presented and discussed, as well as the limitations of the article and the proposals for future research.
Working time intervals and total work time on nursing positions in Poland
Directory of Open Access Journals (Sweden)
Danuta Kunecka
2015-06-01
Full Text Available Background: For the last few years a topic of overwork on nursing posts has given rise to strong discussions. The author has set herself a goal of answering the question if it is a result of real overwork of this particular profession or rather commonly assumed frustration of this professional group. The aim of this paper is to conduct the analysis of working time on chosen nursing positions in relation to measures of time being used as intervals in the course of conducting standard professional activities during one working day. Material and Methods: Research material consisted of documentation of work time on chosen nursing workplaces, compiled between 2007–2012 within the framework of a nursing course at the Pomeranian Medical University in Szczecin. As a method of measurement a photograph of a working day has been used. Measurements were performed in institutions located in 6 voivodeships in Poland. Results: Results suggest that only 6.5% of total of surveyed representatives of nurse profession spends proper amount of time (meaning: a time set by the applicable standards on work intervals during a working day. Conclusions: The scale of the phenomenon indicates excessive workload for nursing positions, which along with a longer period of time, longer working hours may cause decrease in efficiency of work and cause a drop in quality of provided services. Med Pr 2015;66,(2:165–172
A Kalman-filter based approach to identification of time-varying gene regulatory networks.
Directory of Open Access Journals (Sweden)
Jie Xiong
Full Text Available MOTIVATION: Conventional identification methods for gene regulatory networks (GRNs have overwhelmingly adopted static topology models, which remains unchanged over time to represent the underlying molecular interactions of a biological system. However, GRNs are dynamic in response to physiological and environmental changes. Although there is a rich literature in modeling static or temporally invariant networks, how to systematically recover these temporally changing networks remains a major and significant pressing challenge. The purpose of this study is to suggest a two-step strategy that recovers time-varying GRNs. RESULTS: It is suggested in this paper to utilize a switching auto-regressive model to describe the dynamics of time-varying GRNs, and a two-step strategy is proposed to recover the structure of time-varying GRNs. In the first step, the change points are detected by a Kalman-filter based method. The observed time series are divided into several segments using these detection results; and each time series segment belonging to two successive demarcating change points is associated with an individual static regulatory network. In the second step, conditional network structure identification methods are used to reconstruct the topology for each time interval. This two-step strategy efficiently decouples the change point detection problem and the topology inference problem. Simulation results show that the proposed strategy can detect the change points precisely and recover each individual topology structure effectively. Moreover, computation results with the developmental data of Drosophila Melanogaster show that the proposed change point detection procedure is also able to work effectively in real world applications and the change point estimation accuracy exceeds other existing approaches, which means the suggested strategy may also be helpful in solving actual GRN reconstruction problem.
Conception intervals and the substitution of fertility over time.
Olsen, R J; Farkas, G
1985-04-01
This paper applies the waiting-time regression methods of Olsen and Wolpin (1983) to an analysis of fertility. A utility maximizing model is set up and used to provide some guidance for an empirical analysis. The data are from an experimental guaranteed job program, the Youth Incentive Entitlement Pilot Project, aimed at young women 16 to 20 years old, from poverty-level families, and not yet high school graduates. The waiting-time regression method of estimation permits the youth in question to be used as her own control revealing how eligibility for the jobs program changes the durations of periods between live-birth conceptions. 3890 women surveyed had 1 birth, 429 had 2, 112 had 3, 26 had 4, and 7 had 5. Without this person specific control described here, the most important factors affecting fertility are number of siblings (negative effect), labor market attachment by parents, especially the father, and the presence of the natural father. With the person specific control, the results predicted from economic theory do emerge: even adolescent and young women consider the economic consequences of fertility reflected in effects of fertility when wages are high in favor of fertility with lower wages. Post program effects (taking place after youths lose eligibility for the program) are a rather rapid making up for foregone fertility, reducing likelihood of net reductions of total fertility.
H∞ state estimation of stochastic memristor-based neural networks with time-varying delays.
Bao, Haibo; Cao, Jinde; Kurths, Jürgen; Alsaedi, Ahmed; Ahmad, Bashir
2018-03-01
This paper addresses the problem of H ∞ state estimation for a class of stochastic memristor-based neural networks with time-varying delays. Under the framework of Filippov solution, the stochastic memristor-based neural networks are transformed into systems with interval parameters. The present paper is the first to investigate the H ∞ state estimation problem for continuous-time Itô-type stochastic memristor-based neural networks. By means of Lyapunov functionals and some stochastic technique, sufficient conditions are derived to ensure that the estimation error system is asymptotically stable in the mean square with a prescribed H ∞ performance. An explicit expression of the state estimator gain is given in terms of linear matrix inequalities (LMIs). Compared with other results, our results reduce control gain and control cost effectively. Finally, numerical simulations are provided to demonstrate the efficiency of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Andersen, P.; Skjærbæk, P. S.; Kirkegaard, Poul Henning
with the smoothed quanties which have been obtained from SARCOF. The results show the usefulness of the technique for identification of a time varying civil engineering structure. It is found that all the techniques give reliable estiates of the frequencies of the two lowest modes and the first mode shape. Only...
Poverty index with time-varying consumption and income distributions
Chattopadhyay, Amit K.; Kumar, T. Krishna; Mallick, Sushanta K.
2017-03-01
Starting from a stochastic agent-based model to represent market exchange in a developing economy, we study time variations of the probability density function of income with simultaneous variation of the consumption deprivation (CD), where CD represents the shortfall in consumption from the saturation level of an essential commodity, cereal. Together, these two models combine income-expenditure-based market dynamics with time variations in consumption due to income. In this new unified theoretical structure, exchange of trade in assets is only allowed when the income exceeds consumption-deprivation while CD itself is endogenously obtained from a separate kinetic model. Our results reveal that the nature of time variation of the CD function leads to a downward trend in the threshold level of consumption of basic necessities, suggesting a possible dietary transition in terms of lower saturation level of food-grain consumption, possibly through an improvement in the level of living. The new poverty index, defined as CD, is amenable to approximate probabilistic prediction within a short time horizon. A major achievement of this work is the intrinsic independence of the poverty index from an exogenous poverty line, making it more objective for policy formulation as opposed to existing poverty indices in the literature.
International Nuclear Information System (INIS)
Zhang Yunong; Li Zhan
2009-01-01
In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving online the time-varying convex quadratic-programming problem subject to time-varying linear-equality constraints. Different from conventional gradient-based neural networks (GNN), such a ZNN model makes full use of the time-derivative information of time-varying coefficient. The resultant ZNN model is theoretically proved to have global exponential convergence to the time-varying theoretical optimal solution of the investigated time-varying convex quadratic program. Computer-simulation results further substantiate the effectiveness, efficiency and novelty of such ZNN model and method.
Finite-Time H∞ Filtering for Linear Continuous Time-Varying Systems with Uncertain Observations
Directory of Open Access Journals (Sweden)
Huihong Zhao
2012-01-01
Full Text Available This paper is concerned with the finite-time H∞ filtering problem for linear continuous time-varying systems with uncertain observations and ℒ2-norm bounded noise. The design of finite-time H∞ filter is equivalent to the problem that a certain indefinite quadratic form has a minimum and the filter is such that the minimum is positive. The quadratic form is related to a Krein state-space model according to the Krein space linear estimation theory. By using the projection theory in Krein space, the finite-time H∞ filtering problem is solved. A numerical example is given to illustrate the performance of the H∞ filter.
Template-Based Estimation of Time-Varying Tempo
Directory of Open Access Journals (Sweden)
Peeters Geoffroy
2007-01-01
Full Text Available We present a novel approach to automatic estimation of tempo over time. This method aims at detecting tempo at the tactus level for percussive and nonpercussive audio. The front-end of our system is based on a proposed reassigned spectral energy flux for the detection of musical events. The dominant periodicities of this flux are estimated by a proposed combination of discrete Fourier transform and frequency-mapped autocorrelation function. The most likely meter, beat, and tatum over time are then estimated jointly using proposed meter/beat subdivision templates and a Viterbi decoding algorithm. The performances of our system have been evaluated on four different test sets among which three were used during the ISMIR 2004 tempo induction contest. The performances obtained are close to the best results of this contest.
Multireceiver Acoustic Communications in Time-Varying Environments
2014-06-01
Conf. on Computer Science and Information Technology (ICCSIT), Chengdu, China , 2010, pp. 606–609, vol. 9. [8] P. Bouvet and A. Loussert, “Capacity...analysis of underwater acoustic MIMO communications,”OCEANS, Sydney, NSW, 2010, pp. 1–8. [9] Wines lab (2013). Wireless networks and embedded... China , 2012, pp. 2059–2063. [17] S. Katwal, R. Nath and G. Murmu, “A simple Kalman channel equalizer using adaptive algorithms for time-variant channel
Acute Exposure Guideline Levels (AEGLs) for Time Varying Toxic Plumes
2014-09-12
loading rates between the density values given as Arho(b-1,k) and Arho(b,k). The line labeled ‘ extrap .’above b = 1 in Table 3 records the derived...exposure times and an inverse quadratic law for densities lower than 8.26 mg/m3. The line labeled ‘ extrap .’ at the bottom of the table gives the...6 (labeled “ extrap .” above) are simply duplicated from the adjacent band b = 5. This exponent is also used to define the lowest density value Brho
Consumption growth and time-varying expected stock returns
DEFF Research Database (Denmark)
Vinther Møller, Stig
2008-01-01
When the consumption growth rate is measured based upon fourth quarter data, it tracks predictable variation in future excess stock returns. Low fourth quarter consumption growth rates predict high future excess stock returns such that expected returns are high at business cycle troughs and low...... of each calendar year, and at possibly random times in between. The consumption growth rate measured based upon fourth quarter data is a much stronger predictive variable than benchmark predictive variables such as the dividend-price ratio, the term spread, and the default spread....
International Nuclear Information System (INIS)
Kostamovaara, J.; Myllylae, R.
1985-01-01
The construction and the performance of a time-to-amplitude converter equipped with constant fraction discriminators is described. The TAC consists of digital and analog parts which are constructed on two printed circuit boards, both of which are located in a single width NIM module. The dead time of the TAC for a start pulse which is not followed by a stop pulse within the time range of the device (proportional100 ns) is only proportional100 ns, which enables one to avoid counting rate saturation even with a high random input signal rate. The differential and integral nonlinearities of the TAC are better than +-1.5% and 0.05%, respectively. The resolution for input timing pulses of constant shape is 20 ps (fwhm), and less than 10 ps (fwhm) with a modification in the digital part. The walk error of the constant fraction timing discriminators is presented and various parameters affecting it are discussed. The effect of the various disturbances in linearity caused by the fast ECL logic and their minimization are also discussed. The time-to-amplitude converter has been used in positron lifetime studies and for laser range finding. (orig.)
Spherical collapse model in time varying vacuum cosmologies
International Nuclear Information System (INIS)
Basilakos, Spyros; Plionis, Manolis; Sola, Joan
2010-01-01
We investigate the virialization of cosmic structures in the framework of flat Friedmann-Lemaitre-Robertson-Walker cosmological models, in which the vacuum energy density evolves with time. In particular, our analysis focuses on the study of spherical matter perturbations, as they decouple from the background expansion, 'turn around', and finally collapse. We generalize the spherical collapse model in the case when the vacuum energy is a running function of the Hubble rate, Λ=Λ(H). A particularly well-motivated model of this type is the so-called quantum field vacuum, in which Λ(H) is a quadratic function, Λ(H)=n 0 +n 2 H 2 , with n 0 ≠0. This model was previously studied by our team using the latest high quality cosmological data to constrain its free parameters, as well as the predicted cluster formation rate. It turns out that the corresponding Hubble expansion history resembles that of the traditional ΛCDM cosmology. We use this Λ(t)CDM framework to illustrate the fact that the properties of the spherical collapse model (virial density, collapse factor, etc.) depend on the choice of the considered vacuum energy (homogeneous or clustered). In particular, if the distribution of the vacuum energy is clustered, then, under specific conditions, we can produce more concentrated structures with respect to the homogeneous vacuum energy case.
Interval-Censored Time-to-Event Data Methods and Applications
Chen, Ding-Geng
2012-01-01
Interval-Censored Time-to-Event Data: Methods and Applications collects the most recent techniques, models, and computational tools for interval-censored time-to-event data. Top biostatisticians from academia, biopharmaceutical industries, and government agencies discuss how these advances are impacting clinical trials and biomedical research. Divided into three parts, the book begins with an overview of interval-censored data modeling, including nonparametric estimation, survival functions, regression analysis, multivariate data analysis, competing risks analysis, and other models for interva
Multi-carrier Communications over Time-varying Acoustic Channels
Aval, Yashar M.
Acoustic communication is an enabling technology for many autonomous undersea systems, such as those used for ocean monitoring, offshore oil and gas industry, aquaculture, or port security. There are three main challenges in achieving reliable high-rate underwater communication: the bandwidth of acoustic channels is extremely limited, the propagation delays are long, and the Doppler distortions are more pronounced than those found in wireless radio channels. In this dissertation we focus on assessing the fundamental limitations of acoustic communication, and designing efficient signal processing methods that cam overcome these limitations. We address the fundamental question of acoustic channel capacity (achievable rate) for single-input-multi-output (SIMO) acoustic channels using a per-path Rician fading model, and focusing on two scenarios: narrowband channels where the channel statistics can be approximated as frequency- independent, and wideband channels where the nominal path loss is frequency-dependent. In each scenario, we compare several candidate power allocation techniques, and show that assigning uniform power across all frequencies for the first scenario, and assigning uniform power across a selected frequency-band for the second scenario, are the best practical choices in most cases, because the long propagation delay renders the feedback information outdated for power allocation based on the estimated channel response. We quantify our results using the channel information extracted form the 2010 Mobile Acoustic Communications Experiment (MACE'10). Next, we focus on achieving reliable high-rate communication over underwater acoustic channels. Specifically, we investigate orthogonal frequency division multiplexing (OFDM) as the state-of-the-art technique for dealing with frequency-selective multipath channels, and propose a class of methods that compensate for the time-variation of the underwater acoustic channel. These methods are based on multiple
Pérez, Oswaldo; Merchant, Hugo
2018-04-03
Extensive research has described two key features of interval timing. The bias property is associated with accuracy and implies that time is overestimated for short intervals and underestimated for long intervals. The scalar property is linked to precision and states that the variability of interval estimates increases as a function of interval duration. The neural mechanisms behind these properties are not well understood. Here we implemented a recurrent neural network that mimics a cortical ensemble and includes cells that show paired-pulse facilitation and slow inhibitory synaptic currents. The network produces interval selective responses and reproduces both bias and scalar properties when a Bayesian decoder reads its activity. Notably, the interval-selectivity, timing accuracy, and precision of the network showed complex changes as a function of the decay time constants of the modeled synaptic properties and the level of background activity of the cells. These findings suggest that physiological values of the time constants for paired-pulse facilitation and GABAb, as well as the internal state of the network, determine the bias and scalar properties of interval timing. Significant Statement Timing is a fundamental element of complex behavior, including music and language. Temporal processing in a wide variety of contexts shows two primary features: time estimates exhibit a shift towards the mean (the bias property) and are more variable for longer intervals (the scalar property). We implemented a recurrent neural network that includes long-lasting synaptic currents, which can not only produce interval selective responses but also follow the bias and scalar properties. Interestingly, only physiological values of the time constants for paired-pulse facilitation and GABAb, as well as intermediate background activity within the network can reproduce the two key features of interval timing. Copyright © 2018 the authors.
Robust Stabilization of Discrete-Time Systems with Time-Varying Delay: An LMI Approach
Directory of Open Access Journals (Sweden)
Valter J. S. Leite
2008-01-01
Full Text Available Sufficient linear matrix inequality (LMI conditions to verify the robust stability and to design robust state feedback gains for the class of linear discrete-time systems with time-varying delay and polytopic uncertainties are presented. The conditions are obtained through parameter-dependent Lyapunov-Krasovskii functionals and use some extra variables, which yield less conservative LMI conditions. Both problems, robust stability analysis and robust synthesis, are formulated as convex problems where all system matrices can be affected by uncertainty. Some numerical examples are presented to illustrate the advantages of the proposed LMI conditions.
More consistent, yet less sensitive : Interval timing in autism spectrum disorders
Falter, Christine M.; Noreika, Valdas; Wearden, John H.; Bailey, Anthony J.
2012-01-01
Even though phenomenological observations and anecdotal reports suggest atypical time processing in individuals with an autism spectrum disorder (ASD), very few psychophysical studies have investigated interval timing, and the obtained results are contradictory. The present study aimed to clarify
Finite-Time Reentry Attitude Control Using Time-Varying Sliding Mode and Disturbance Observer
Directory of Open Access Journals (Sweden)
Xuzhong Wu
2015-01-01
Full Text Available This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods with disturbance observer are integrated with the basic mode in order to enhance the control performance and system robustness. One method is designed based on boundary layer technique and the other is a novel second-order sliding model control method. The finite-time stability analyses of both resultant closed-loop systems are carried out. Furthermore, after attitude controller produces the torque commands, an optimization control allocation approach is introduced to allocate them into aerodynamic surface deflections and on-off reaction control system thrusts. Finally, the numerical simulation results demonstrate that both of the time-varying sliding mode control methods are robust to uncertainties and disturbances without chattering phenomenon. Moreover, the proposed second-order sliding mode control method possesses better control accuracy.
Experimental evidence for amplitude death induced by a time-varying interaction
Energy Technology Data Exchange (ETDEWEB)
Suresh, K. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Shrimali, M.D. [Department of Physics, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer 305 801 (India); Prasad, Awadhesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Thamilmaran, K., E-mail: maran.cnld@gmail.com [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)
2014-08-01
In this paper, we study the time-varying interaction in coupled oscillatory systems. For this purpose, we have designed a novel time-varying resistive network using an analog switch and inverter circuits. We have applied this time-varying resistive network to mutually coupled identical Chua's oscillators. When the resistances are varied in time, we find that amplitude death arises in coupled identical oscillators. This has been observed numerically as well as verified through hardware experiments. - Highlights: • We have implemented the time-varying interaction in coupled oscillatory systems. • We have designed a novel time-varying resistive network using an analog switch and inverter circuits. • When the resistances are varied in time, we find that amplitude death arises in coupled identical oscillators.
[Estimation of the atrioventricular time interval by pulse Doppler in the normal fetal heart].
Hamela-Olkowska, Anita; Dangel, Joanna
2009-08-01
To assess normative values of the fetal atrioventricular (AV) time interval by pulse-wave Doppler methods on 5-chamber view. Fetal echocardiography exams were performed using Acuson Sequoia 512 in 140 singleton fetuses at 18 to 40 weeks of gestation with sinus rhythm and normal cardiac and extracardiac anatomy. Pulsed Doppler derived AV intervals were measured from left ventricular inflow/outflow view using transabdominal convex 3.5-6 MHz probe. The values of AV time interval ranged from 100 to 150 ms (mean 123 +/- 11.2). The AV interval was negatively correlated with the heart rhythm (page of gestation (p=0.007). However, in the same subgroup of the fetal heart rate there was no relation between AV intervals and gestational age. Therefore, the AV intervals showed only the heart rate dependence. The 95th percentiles of AV intervals according to FHR ranged from 135 to 148 ms. 1. The AV interval duration was negatively correlated with the heart rhythm. 2. Measurement of AV time interval is easy to perform and has a good reproducibility. It may be used for the fetal heart block screening in anti-Ro and anti-La positive pregnancies. 3. Normative values established in the study may help obstetricians in assessing fetal abnormalities of the AV conduction.
The time-varying role of the family in student time use and achievement
Directory of Open Access Journals (Sweden)
Marie C. Hull
2017-10-01
Full Text Available Abstract In this paper, I use a unique dataset linking administrative school data with birth records to quantify the importance of time-varying family factors for child achievement and time use. Specifically, I take a model of academic achievement commonly used in the test score literature, and I augment it to include a family-year effect. Identification comes from the large number of sibling pairs observed in the same year. While prior literature has focused on specific shocks, such as job loss, I capture the full set of innovations that are shared across siblings in a given year. The distributions of fixed effects reveal that annual family innovations, relative to what was expected based on the previous year, are more important than teacher assignment for student achievement and also play a substantial role in the time students spend on homework, free reading, and television. JEL Classification I21, J13, J24
Discrete-time recurrent neural networks with time-varying delays: Exponential stability analysis
International Nuclear Information System (INIS)
Liu, Yurong; Wang, Zidong; Serrano, Alan; Liu, Xiaohui
2007-01-01
This Letter is concerned with the analysis problem of exponential stability for a class of discrete-time recurrent neural networks (DRNNs) with time delays. The delay is of the time-varying nature, and the activation functions are assumed to be neither differentiable nor strict monotonic. Furthermore, the description of the activation functions is more general than the recently commonly used Lipschitz conditions. Under such mild conditions, we first prove the existence of the equilibrium point. Then, by employing a Lyapunov-Krasovskii functional, a unified linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the DRNNs to be globally exponentially stable. It is shown that the delayed DRNNs are globally exponentially stable if a certain LMI is solvable, where the feasibility of such an LMI can be easily checked by using the numerically efficient Matlab LMI Toolbox. A simulation example is presented to show the usefulness of the derived LMI-based stability condition
Wei, Ruoyu; Cao, Jinde; Alsaedi, Ahmed
2018-02-01
This paper investigates the finite-time synchronization and fixed-time synchronization problems of inertial memristive neural networks with time-varying delays. By utilizing the Filippov discontinuous theory and Lyapunov stability theory, several sufficient conditions are derived to ensure finite-time synchronization of inertial memristive neural networks. Then, for the purpose of making the setting time independent of initial condition, we consider the fixed-time synchronization. A novel criterion guaranteeing the fixed-time synchronization of inertial memristive neural networks is derived. Finally, three examples are provided to demonstrate the effectiveness of our main results.
A new criterion for global robust stability of interval neural networks with discrete time delays
International Nuclear Information System (INIS)
Li Chuandong; Chen Jinyu; Huang Tingwen
2007-01-01
This paper further studies global robust stability of a class of interval neural networks with discrete time delays. By introducing an equivalent transformation of interval matrices, a new criterion on global robust stability is established. In comparison with the results reported in the literature, the proposed approach leads to results with less restrictive conditions. Numerical examples are also worked through to illustrate our results
A Class of Prediction-Correction Methods for Time-Varying Convex Optimization
Simonetto, Andrea; Mokhtari, Aryan; Koppel, Alec; Leus, Geert; Ribeiro, Alejandro
2016-09-01
This paper considers unconstrained convex optimization problems with time-varying objective functions. We propose algorithms with a discrete time-sampling scheme to find and track the solution trajectory based on prediction and correction steps, while sampling the problem data at a constant rate of $1/h$, where $h$ is the length of the sampling interval. The prediction step is derived by analyzing the iso-residual dynamics of the optimality conditions. The correction step adjusts for the distance between the current prediction and the optimizer at each time step, and consists either of one or multiple gradient steps or Newton steps, which respectively correspond to the gradient trajectory tracking (GTT) or Newton trajectory tracking (NTT) algorithms. Under suitable conditions, we establish that the asymptotic error incurred by both proposed methods behaves as $O(h^2)$, and in some cases as $O(h^4)$, which outperforms the state-of-the-art error bound of $O(h)$ for correction-only methods in the gradient-correction step. Moreover, when the characteristics of the objective function variation are not available, we propose approximate gradient and Newton tracking algorithms (AGT and ANT, respectively) that still attain these asymptotical error bounds. Numerical simulations demonstrate the practical utility of the proposed methods and that they improve upon existing techniques by several orders of magnitude.
Across-province standardization and comparative analysis of time-to-care intervals for cancer
Directory of Open Access Journals (Sweden)
Nugent Zoann
2007-10-01
Full Text Available Abstract Background A set of consistent, standardized definitions of intervals and populations on which to report across provinces is needed to inform the Provincial/Territorial Deputy Ministries of Health on progress of the Ten-Year Plan to Strengthen Health Care. The objectives of this project were to: 1 identify a set of criteria and variables needed to create comparable measures of important time-to-cancer-care intervals that could be applied across provinces and 2 use the measures to compare time-to-care across participating provinces for lung and colorectal cancer patients diagnosed in 2004. Methods A broad-based group of stakeholders from each of the three participating cancer agencies was assembled to identify criteria for time-to-care intervals to standardize, evaluate possible intervals and their corresponding start and end time points, and finalize the selection of intervals to pursue. Inclusion/exclusion criteria were identified for the patient population and the selected time points to reduce potential selection bias. The provincial 2004 colorectal and lung cancer data were used to illustrate across-province comparisons for the selected time-to-care intervals. Results Criteria identified as critical for time-to-care intervals and corresponding start and end points were: 1 relevant to patients, 2 relevant to clinical care, 3 unequivocally defined, and 4 currently captured consistently across cancer agencies. Time from diagnosis to first radiation or chemotherapy treatment and the smaller components, time from diagnosis to first consult with an oncologist and time from first consult to first radiation or chemotherapy treatment, were the only intervals that met all four criteria. Timeliness of care for the intervals evaluated was similar between the provinces for lung cancer patients but significant differences were found for colorectal cancer patients. Conclusion We identified criteria important for selecting time-to-care intervals
Identification of Time-Varying Pilot Control Behavior in Multi-Axis Control Tasks
Zaal, Peter M. T.; Sweet, Barbara T.
2012-01-01
Recent developments in fly-by-wire control architectures for rotorcraft have introduced new interest in the identification of time-varying pilot control behavior in multi-axis control tasks. In this paper a maximum likelihood estimation method is used to estimate the parameters of a pilot model with time-dependent sigmoid functions to characterize time-varying human control behavior. An experiment was performed by 9 general aviation pilots who had to perform a simultaneous roll and pitch control task with time-varying aircraft dynamics. In 8 different conditions, the axis containing the time-varying dynamics and the growth factor of the dynamics were varied, allowing for an analysis of the performance of the estimation method when estimating time-dependent parameter functions. In addition, a detailed analysis of pilots adaptation to the time-varying aircraft dynamics in both the roll and pitch axes could be performed. Pilot control behavior in both axes was significantly affected by the time-varying aircraft dynamics in roll and pitch, and by the growth factor. The main effect was found in the axis that contained the time-varying dynamics. However, pilot control behavior also changed over time in the axis not containing the time-varying aircraft dynamics. This indicates that some cross coupling exists in the perception and control processes between the roll and pitch axes.
Monitoring molecular interactions using photon arrival-time interval distribution analysis
Laurence, Ted A [Livermore, CA; Weiss, Shimon [Los Angels, CA
2009-10-06
A method for analyzing/monitoring the properties of species that are labeled with fluorophores. A detector is used to detect photons emitted from species that are labeled with one or more fluorophores and located in a confocal detection volume. The arrival time of each of the photons is determined. The interval of time between various photon pairs is then determined to provide photon pair intervals. The number of photons that have arrival times within the photon pair intervals is also determined. The photon pair intervals are then used in combination with the corresponding counts of intervening photons to analyze properties and interactions of the molecules including brightness, concentration, coincidence and transit time. The method can be used for analyzing single photon streams and multiple photon streams.
Efficient Estimation for Diffusions Sampled at High Frequency Over a Fixed Time Interval
DEFF Research Database (Denmark)
Jakobsen, Nina Munkholt; Sørensen, Michael
Parametric estimation for diffusion processes is considered for high frequency observations over a fixed time interval. The processes solve stochastic differential equations with an unknown parameter in the diffusion coefficient. We find easily verified conditions on approximate martingale...
Baeten; Bruggeman; Paepen; Carchon
2000-03-01
The non-destructive quantification of transuranic elements in nuclear waste management or in safeguards verifications is commonly performed by passive neutron assay techniques. To minimise the number of unknown sample-dependent parameters, Neutron Multiplicity Counting (NMC) is applied. We developed a new NMC-technique, called Time Interval Correlation Spectroscopy (TICS), which is based on the measurement of Rossi-alpha time interval distributions. Compared to other NMC-techniques, TICS offers several advantages.
An Explicit MOT-TD-VIE Solver for Time Varying Media
Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan
2016-01-01
An explicit marching on-in-time (MOT) scheme for solving the time domain electric field integral equation enforced on volumes with time varying dielectric permittivity is proposed. Unknowns of the integral equation and the constitutive relation, i
Kamran, Haroon; Salciccioli, Louis; Pushilin, Sergei; Kumar, Paraag; Carter, John; Kuo, John; Novotney, Carol; Lazar, Jason M
2011-01-01
Nonhuman primates are used frequently in cardiovascular research. Cardiac time intervals derived by phonocardiography have long been used to assess left ventricular function. Electronic stethoscopes are simple low-cost systems that display heart sound signals. We assessed the use of an electronic stethoscope to measure cardiac time intervals in 48 healthy bonnet macaques (age, 8 ± 5 y) based on recorded heart sounds. Technically adequate recordings were obtained from all animals and required 1.5 ± 1.3 min. The following cardiac time intervals were determined by simultaneously recording acoustic and single-lead electrocardiographic data: electromechanical activation time (QS1), electromechanical systole (QS2), the time interval between the first and second heart sounds (S1S2), and the time interval between the second and first sounds (S2S1). QS2 was correlated with heart rate, mean arterial pressure, diastolic blood pressure, and left ventricular ejection time determined by using echocardiography. S1S2 correlated with heart rate, mean arterial pressure, diastolic blood pressure, left ventricular ejection time, and age. S2S1 correlated with heart rate, mean arterial pressure, diastolic blood pressure, systolic blood pressure, and left ventricular ejection time. QS1 did not correlate with any anthropometric or echocardiographic parameter. The relation S1S2/S2S1 correlated with systolic blood pressure. On multivariate analyses, heart rate was the only independent predictor of QS2, S1S2, and S2S1. In conclusion, determination of cardiac time intervals is feasible and reproducible by using an electrical stethoscope in nonhuman primates. Heart rate is a major determinant of QS2, S1S2, and S2S1 but not QS1; regression equations for reference values for cardiac time intervals in bonnet macaques are provided. PMID:21439218
International Nuclear Information System (INIS)
Paulino, Arnold C.; Thakkar, Bharat; Henderson, William G.
1997-01-01
Purpose: To determine whether the time interval to development of second tumor is a prognostic factor for overall survival in children with metachronous bilateral Wilms' tumor and to give a recommendation regarding screening of the contralateral kidney in patients with Wilms' tumor. Materials and Management: A literature search using MEDLINE was performed of manuscripts in the English language from 1950-1996 and identified 108 children with metachronous bilateral Wilms' tumor. Children were classified according to time interval to development of a contralateral Wilms' tumor ( 78 mos (2), 78 - < 84 mos (1), 84 - < 90 mos (0), 90 - < 96 mos (1), ≥ 96 mos (0). Analysis of overall survival in patients with a time interval of < 18 months and ≥ 18 months showed a 10 year survival of 39.6% and 55.2%, respectively (p = 0.024, log-rank test). Conclusions: Children with metachronous bilateral Wilms' tumor who develop a contralateral tumor at a time interval of ≥ 18 months from the initial Wilms' tumor had a better overall survival than children with a time interval of < 18 months. Screening by abdominal ultrasound of the contralateral kidney for more than 5 years after initial diagnosis of Wilms' tumor may not be necessary since 102/106 (96.2%) of children had a time interval to second tumor of < 60 months
Solution to the monoenergetic time-dependent neutron transport equation with a time-varying source
International Nuclear Information System (INIS)
Ganapol, B.D.
1986-01-01
Even though fundamental time-dependent neutron transport problems have existed since the inception of neutron transport theory, it has only been recently that a reliable numerical solution to one of the basic problems has been obtained. Experience in generating numerical solutions to time-dependent transport equations has indicated that the multiple collision formulation is the most versatile numerical technique for model problems. The formulation coupled with a moment reconstruction of each collided flux component has led to benchmark-quality (four- to five-digit accuracy) numerical evaluation of the neutron flux in plane infinite geometry for any degree of scattering anisotropy and for both pulsed isotropic and beam sources. As will be shown in this presentation, this solution can serve as a Green's function, thus extending the previous results to more complicated source situations. Here we will be concerned with a time-varying source at the center of an infinite medium. If accurate, such solutions have both pedagogical and practical uses as benchmarks against which other more approximate solutions designed for a wider class of problems can be compared
The time-varying association between perceived stress and hunger within and between days.
Huh, Jimi; Shiyko, Mariya; Keller, Stefan; Dunton, Genevieve; Schembre, Susan M
2015-06-01
Examine the association between perceived stress and hunger continuously over a week in free-living individuals. Forty five young adults (70% women, 30% overweight/obese) ages 18 to 24 years (Mean = 20.7, SD = 1.5), with BMI between 17.4 and 36.3 kg/m(2) (Mean = 23.6, SD = 4.0) provided between 513 and 577 concurrent ratings of perceived stress and hunger for 7 days via hourly, text messaging assessments and real-time eating records. Time-varying effect modeling was used to explore whether the within-day fluctuations in stress are related to perceived hunger assessed on a momentary basis. A generally positive stress-hunger relationship was confirmed, but we found that the strength of the relationship was not linear. Rather, the magnitude of the association between perceived stress and hunger changed throughout the day such that only during specific time intervals were stress and hunger significantly related. Specifically, the strength of the positive association peaked during late afternoon hours on weekdays (β = 0.31, p hunger associations that peak in the afternoon or evening hours. While we are unable to infer causality from these analyses, our findings provide empirical evidence for a potentially high-risk time of day for stress-induced eating. Replication of these findings in larger, more diverse samples will aid with the design and implementation of real-time intervention studies aimed at reducing stress-eating. Copyright © 2015 Elsevier Ltd. All rights reserved.
Paciello, Rossana; Coviello, Irina; Filizzola, Carolina; Genzano, Nicola; Lisi, Mariano; Mazzeo, Giuseppe; Pergola, Nicola; Sileo, Giancanio; Tramutoli, Valerio
2014-05-01
In environmental studies the integration of heterogeneous and time-varying data, is a very common requirement for investigating and possibly visualize correlations among physical parameters underlying the dynamics of complex phenomena. Datasets used in such kind of applications has often different spatial and temporal resolutions. In some case superimposition of asynchronous layers is required. Traditionally the platforms used to perform spatio-temporal visual data analyses allow to overlay spatial data, managing the time using 'snapshot' data model, each stack of layers being labeled with different time. But this kind of architecture does not incorporate the temporal indexing neither the third spatial dimension which is usually given as an independent additional layer. Conversely, the full representation of a generic environmental parameter P(x,y,z,t) in the 4D space-time domain could allow to handle asynchronous datasets as well as less traditional data-products (e.g. vertical sections, punctual time-series, etc.) . In this paper we present the 4 Dimensions Environmental Observation Platform (4-DEOS), a system based on a web services architecture Client-Broker-Server. This platform is a new open source solution for both a timely access and an easy integration and visualization of heterogeneous (maps, vertical profiles or sections, punctual time series, etc.) asynchronous, geospatial products. The innovative aspect of the 4-DEOS system is that users can analyze data/products individually moving through time, having also the possibility to stop the display of some data/products and focus on other parameters for better studying their temporal evolution. This platform gives the opportunity to choose between two distinct display modes for time interval or for single instant. Users can choose to visualize data/products in two ways: i) showing each parameter in a dedicated window or ii) visualize all parameters overlapped in a single window. A sliding time bar, allows
DEFF Research Database (Denmark)
Asayama, Kei; Thijs, Lutgarde; Li, Yan
2014-01-01
Outcome-driven recommendations about time intervals during which ambulatory blood pressure should be measured to diagnose white-coat or masked hypertension are lacking. We cross-classified 8237 untreated participants (mean age, 50.7 years; 48.4% women) enrolled in 12 population studies, using ≥14...
Cardiac time intervals by tissue Doppler imaging M-mode echocardiography
DEFF Research Database (Denmark)
Biering-Sørensen, Tor
2016-01-01
for myocardial myocytes to achieve an LV pressure equal to that of aorta increases, resulting in a prolongation of the isovolumic contraction time (IVCT). Furthermore, the ability of myocardial myocytes to maintain the LV pressure decreases, resulting in reduction in the ejection time (ET). As LV diastolic...... of whether the LV is suffering from impaired systolic or diastolic function. A novel method of evaluating the cardiac time intervals has recently evolved. Using tissue Doppler imaging (TDI) M-mode through the mitral valve (MV) to estimate the cardiac time intervals may be an improved method reflecting global...
A new variable interval schedule with constant hazard rate and finite time range.
Bugallo, Mehdi; Machado, Armando; Vasconcelos, Marco
2018-05-27
We propose a new variable interval (VI) schedule that achieves constant probability of reinforcement in time while using a bounded range of intervals. By sampling each trial duration from a uniform distribution ranging from 0 to 2 T seconds, and then applying a reinforcement rule that depends linearly on trial duration, the schedule alternates reinforced and unreinforced trials, each less than 2 T seconds, while preserving a constant hazard function. © 2018 Society for the Experimental Analysis of Behavior.
Stabilization of the Wave Equation with Boundary Time-Varying Delay
Directory of Open Access Journals (Sweden)
Hao Li
2014-01-01
Full Text Available We study the stabilization of the wave equation with variable coefficients in a bounded domain and a time-varying delay term in the time-varying, weakly nonlinear boundary feedbacks. By the Riemannian geometry methods and a suitable assumption of nonlinearity, we obtain the uniform decay of the energy of the closed loop system.
Lu, Wenlian; Zheng, Ren; Chen, Tianping
2016-03-01
In this paper, we discuss outer-synchronization of the asymmetrically connected recurrent time-varying neural networks. By using both centralized and decentralized discretization data sampling principles, we derive several sufficient conditions based on three vector norms to guarantee that the difference of any two trajectories starting from different initial values of the neural network converges to zero. The lower bounds of the common time intervals between data samples in centralized and decentralized principles are proved to be positive, which guarantees exclusion of Zeno behavior. A numerical example is provided to illustrate the efficiency of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Forecast Accuracy and Economic Gains from Bayesian Model Averaging using Time Varying Weights
L.F. Hoogerheide (Lennart); R.H. Kleijn (Richard); H.K. van Dijk (Herman); M.J.C.M. Verbeek (Marno)
2009-01-01
textabstractSeveral Bayesian model combination schemes, including some novel approaches that simultaneously allow for parameter uncertainty, model uncertainty and robust time varying model weights, are compared in terms of forecast accuracy and economic gains using financial and macroeconomic time
Shi, Lei; Yao, Bo; Zhao, Lei; Liu, Xiaotong; Yang, Min; Liu, Yanming
2018-01-01
The plasma sheath-surrounded hypersonic vehicle is a dynamic and time-varying medium and it is almost impossible to calculate time-varying physical parameters directly. The in-fight detection of the time-varying degree is important to understand the dynamic nature of the physical parameters and their effect on re-entry communication. In this paper, a constant envelope zero autocorrelation (CAZAC) sequence based on time-varying frequency detection and channel sounding method is proposed to detect the plasma sheath electronic density time-varying property and wireless channel characteristic. The proposed method utilizes the CAZAC sequence, which has excellent autocorrelation and spread gain characteristics, to realize dynamic time-varying detection/channel sounding under low signal-to-noise ratio in the plasma sheath environment. Theoretical simulation under a typical time-varying radio channel shows that the proposed method is capable of detecting time-variation frequency up to 200 kHz and can trace the channel amplitude and phase in the time domain well under -10 dB. Experimental results conducted in the RF modulation discharge plasma device verified the time variation detection ability in practical dynamic plasma sheath. Meanwhile, nonlinear phenomenon of dynamic plasma sheath on communication signal is observed thorough channel sounding result.
Asayama, Kei; Thijs, Lutgarde; Li, Yan; Gu, Yu-Mei; Hara, Azusa; Liu, Yan-Ping; Zhang, Zhenyu; Wei, Fang-Fei; Lujambio, Inés; Mena, Luis J; Boggia, José; Hansen, Tine W; Björklund-Bodegård, Kristina; Nomura, Kyoko; Ohkubo, Takayoshi; Jeppesen, Jørgen; Torp-Pedersen, Christian; Dolan, Eamon; Stolarz-Skrzypek, Katarzyna; Malyutina, Sofia; Casiglia, Edoardo; Nikitin, Yuri; Lind, Lars; Luzardo, Leonella; Kawecka-Jaszcz, Kalina; Sandoya, Edgardo; Filipovský, Jan; Maestre, Gladys E; Wang, Jiguang; Imai, Yutaka; Franklin, Stanley S; O'Brien, Eoin; Staessen, Jan A
2014-11-01
Outcome-driven recommendations about time intervals during which ambulatory blood pressure should be measured to diagnose white-coat or masked hypertension are lacking. We cross-classified 8237 untreated participants (mean age, 50.7 years; 48.4% women) enrolled in 12 population studies, using ≥140/≥90, ≥130/≥80, ≥135/≥85, and ≥120/≥70 mm Hg as hypertension thresholds for conventional, 24-hour, daytime, and nighttime blood pressure. White-coat hypertension was hypertension on conventional measurement with ambulatory normotension, the opposite condition being masked hypertension. Intervals used for classification of participants were daytime, nighttime, and 24 hours, first considered separately, and next combined as 24 hours plus daytime or plus nighttime, or plus both. Depending on time intervals chosen, white-coat and masked hypertension frequencies ranged from 6.3% to 12.5% and from 9.7% to 19.6%, respectively. During 91 046 person-years, 729 participants experienced a cardiovascular event. In multivariable analyses with normotension during all intervals of the day as reference, hazard ratios associated with white-coat hypertension progressively weakened considering daytime only (1.38; P=0.033), nighttime only (1.43; P=0.0074), 24 hours only (1.21; P=0.20), 24 hours plus daytime (1.24; P=0.18), 24 hours plus nighttime (1.15; P=0.39), and 24 hours plus daytime and nighttime (1.16; P=0.41). The hazard ratios comparing masked hypertension with normotension were all significant (Pcoat hypertension requires setting thresholds simultaneously to 24 hours, daytime, and nighttime blood pressure. Although any time interval suffices to diagnose masked hypertension, as proposed in current guidelines, full 24-hour recordings remain standard in clinical practice. © 2014 American Heart Association, Inc.
Asayama, Kei; Thijs, Lutgarde; Li, Yan; Gu, Yu-Mei; Hara, Azusa; Liu, Yan-Ping; Zhang, Zhenyu; Wei, Fang-Fei; Lujambio, Inés; Mena, Luis J.; Boggia, José; Hansen, Tine W.; Björklund-Bodegård, Kristina; Nomura, Kyoko; Ohkubo, Takayoshi; Jeppesen, Jørgen; Torp-Pedersen, Christian; Dolan, Eamon; Stolarz-Skrzypek, Katarzyna; Malyutina, Sofia; Casiglia, Edoardo; Nikitin, Yuri; Lind, Lars; Luzardo, Leonella; Kawecka-Jaszcz, Kalina; Sandoya, Edgardo; Filipovský, Jan; Maestre, Gladys E.; Wang, Jiguang; Imai, Yutaka; Franklin, Stanley S.; O’Brien, Eoin; Staessen, Jan A.
2015-01-01
Outcome-driven recommendations about time intervals during which ambulatory blood pressure should be measured to diagnose white-coat or masked hypertension are lacking. We cross-classified 8237 untreated participants (mean age, 50.7 years; 48.4% women) enrolled in 12 population studies, using ≥140/≥90, ≥130/≥80, ≥135/≥85, and ≥120/≥70 mm Hg as hypertension thresholds for conventional, 24-hour, daytime, and nighttime blood pressure. White-coat hypertension was hypertension on conventional measurement with ambulatory normotension, the opposite condition being masked hypertension. Intervals used for classification of participants were daytime, nighttime, and 24 hours, first considered separately, and next combined as 24 hours plus daytime or plus nighttime, or plus both. Depending on time intervals chosen, white-coat and masked hypertension frequencies ranged from 6.3% to 12.5% and from 9.7% to 19.6%, respectively. During 91 046 person-years, 729 participants experienced a cardiovascular event. In multivariable analyses with normotension during all intervals of the day as reference, hazard ratios associated with white-coat hypertension progressively weakened considering daytime only (1.38; P=0.033), nighttime only (1.43; P=0.0074), 24 hours only (1.21; P=0.20), 24 hours plus daytime (1.24; P=0.18), 24 hours plus nighttime (1.15; P=0.39), and 24 hours plus daytime and nighttime (1.16; P=0.41). The hazard ratios comparing masked hypertension with normotension were all significant (Phypertension requires setting thresholds simultaneously to 24 hours, daytime, and nighttime blood pressure. Although any time interval suffices to diagnose masked hypertension, as proposed in current guidelines, full 24-hour recordings remain standard in clinical practice. PMID:25135185
Taatgen, Niels A.; van Rijn, Hedderik; Anderson, John
2007-01-01
A theory of prospective time perception is introduced and incorporated as a module in an integrated theory of cognition, thereby extending existing theories and allowing predictions about attention and learning. First, a time perception module is established by fitting existing datasets (interval estimation and bisection and impact of secondary…
Count-to-count time interval distribution analysis in a fast reactor
International Nuclear Information System (INIS)
Perez-Navarro Gomez, A.
1973-01-01
The most important kinetic parameters have been measured at the zero power fast reactor CORAL-I by means of the reactor noise analysis in the time domain, using measurements of the count-to-count time intervals. (Author) 69 refs
Tonic and Phasic Dopamine Fluctuations as Reflected in Beta-power Predict Interval Timing Behavior
Kononowicz, Tadeusz; van Rijn, Hedderik
It has been repeatedly shown that dopamine impacts interval timing in humans and animals (for a review, see Coull, Cheng, & Meck, 2012). Particularly, administration of dopamine agonists or antagonists speeds-up or slows down internal passage of time, respectively (Meck, 1996). This co-variations in
Taatgen, Niels A.; van Rijn, Hedderik; Anderson, John
A theory of prospective time perception is introduced and incorporated as a module in an integrated theory of cognition, thereby extending existing theories and allowing predictions about attention and learning. First, a time perception module is established by fitting existing datasets (interval
Nonparametric estimation in an "illness-death" model when all transition times are interval censored
DEFF Research Database (Denmark)
Frydman, Halina; Gerds, Thomas; Grøn, Randi
2013-01-01
We develop nonparametric maximum likelihood estimation for the parameters of an irreversible Markov chain on states {0,1,2} from the observations with interval censored times of 0 → 1, 0 → 2 and 1 → 2 transitions. The distinguishing aspect of the data is that, in addition to all transition times ...
On the synchronization of neural networks containing time-varying delays and sector nonlinearity
International Nuclear Information System (INIS)
Yan, J.-J.; Lin, J.-S.; Hung, M.-L.; Liao, T.-L.
2007-01-01
We present a systematic design procedure for synchronization of neural networks subject to time-varying delays and sector nonlinearity in the control input. Based on the drive-response concept and the Lyapunov stability theorem, a memoryless decentralized control law is proposed which guarantees exponential synchronization even when input nonlinearity is present. The supplementary requirement that the time-derivative of time-varying delays must be smaller than one is released for the proposed control scheme. A four-dimensional Hopfield neural network with time-varying delays is presented as the illustrative example to demonstrate the effectiveness of the proposed synchronization scheme
Cardiac Time Intervals Measured by Tissue Doppler Imaging M-mode
DEFF Research Database (Denmark)
Biering-Sørensen, Tor; Møgelvang, Rasmus; Schnohr, Peter
2016-01-01
function was evaluated in 1915 participants by using both conventional echocardiography and tissue Doppler imaging (TDI). The cardiac time intervals, including the isovolumic relaxation time (IVRT), isovolumic contraction time (IVCT), and ejection time (ET), were obtained by TDI M-mode through the mitral......). Additionally, they displayed a significant dose-response relationship, between increasing severity of elevated blood pressure and increasing left ventricular mass index (P
Krishnan, M.; Bhowmik, B.; Hazra, B.; Pakrashi, V.
2018-02-01
In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using Recursive Principal Component Analysis (RPCA) in conjunction with Time Varying Auto-Regressive Modeling (TVAR) is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal components online using rank-one perturbation method, followed by TVAR modeling of the first transformed response, to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/non-linear-states that indicate damage. Most of the works available in the literature deal with algorithms that require windowing of the gathered data owing to their data-driven nature which renders them ineffective for online implementation. Algorithms focussed on mathematically consistent recursive techniques in a rigorous theoretical framework of structural damage detection is missing, which motivates the development of the present framework that is amenable for online implementation which could be utilized along with suite experimental and numerical investigations. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. TVAR modeling on the principal component explaining maximum variance is utilized and the damage is identified by tracking the TVAR coefficients. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data without requiring any baseline data. Numerical simulations performed on a 5-dof nonlinear system under white noise excitation and El Centro (also known as 1940 Imperial Valley earthquake) excitation, for different damage scenarios, demonstrate the robustness of the proposed algorithm. The method is further validated on results obtained from case studies involving
Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval.
Sumbre, Germán; Muto, Akira; Baier, Herwig; Poo, Mu-ming
2008-11-06
The ability to process temporal information is fundamental to sensory perception, cognitive processing and motor behaviour of all living organisms, from amoebae to humans. Neural circuit mechanisms based on neuronal and synaptic properties have been shown to process temporal information over the range of tens of microseconds to hundreds of milliseconds. How neural circuits process temporal information in the range of seconds to minutes is much less understood. Studies of working memory in monkeys and rats have shown that neurons in the prefrontal cortex, the parietal cortex and the thalamus exhibit ramping activities that linearly correlate with the lapse of time until the end of a specific time interval of several seconds that the animal is trained to memorize. Many organisms can also memorize the time interval of rhythmic sensory stimuli in the timescale of seconds and can coordinate motor behaviour accordingly, for example, by keeping the rhythm after exposure to the beat of music. Here we report a form of rhythmic activity among specific neuronal ensembles in the zebrafish optic tectum, which retains the memory of the time interval (in the order of seconds) of repetitive sensory stimuli for a duration of up to approximately 20 s. After repetitive visual conditioning stimulation (CS) of zebrafish larvae, we observed rhythmic post-CS activities among specific tectal neuronal ensembles, with a regular interval that closely matched the CS. Visuomotor behaviour of the zebrafish larvae also showed regular post-CS repetitions at the entrained time interval that correlated with rhythmic neuronal ensemble activities in the tectum. Thus, rhythmic activities among specific neuronal ensembles may act as an adjustable 'metronome' for time intervals in the order of seconds, and serve as a mechanism for the short-term perceptual memory of rhythmic sensory experience.
A comparison of systolic time intervals measured by impedance cardiography and carotid pulse tracing
DEFF Research Database (Denmark)
Mehlsen, J; Bonde, J; Rehling, Michael
1990-01-01
The purpose of this study was to compare the systolic time intervals (STI) obtained by impedance cardiography and by the conventional carotid technique. This comparison was done with respect to: 1) correlations between variables obtained by the two methods, 2) ability to reflect drug-induced chan......The purpose of this study was to compare the systolic time intervals (STI) obtained by impedance cardiography and by the conventional carotid technique. This comparison was done with respect to: 1) correlations between variables obtained by the two methods, 2) ability to reflect drug...
Yuasa, Kenichi; Yotsumoto, Yuko
2015-01-01
When an object is presented visually and moves or flickers, the perception of its duration tends to be overestimated. Such an overestimation is called time dilation. Perceived time can also be distorted when a stimulus is presented aurally as an auditory flutter, but the mechanisms and their relationship to visual processing remains unclear. In the present study, we measured interval timing perception while modulating the temporal characteristics of visual and auditory stimuli, and investigated whether the interval times of visually and aurally presented objects shared a common mechanism. In these experiments, participants compared the durations of flickering or fluttering stimuli to standard stimuli, which were presented continuously. Perceived durations for auditory flutters were underestimated, while perceived durations of visual flickers were overestimated. When auditory flutters and visual flickers were presented simultaneously, these distortion effects were cancelled out. When auditory flutters were presented with a constantly presented visual stimulus, the interval timing perception of the visual stimulus was affected by the auditory flutters. These results indicate that interval timing perception is governed by independent mechanisms for visual and auditory processing, and that there are some interactions between the two processing systems.
Hwang-Gu, Shoou-Lian; Gau, Susan Shur-Fen
2015-01-01
The literature has suggested timing processing as a potential endophenotype for attention deficit/hyperactivity disorder (ADHD); however, whether the subjective internal clock speed presented by verbal estimation and limited attention capacity presented by time reproduction could be endophenotypes for ADHD is still unknown. We assessed 223 youths with DSM-IV ADHD (age range: 10-17 years), 105 unaffected siblings, and 84 typically developing (TD) youths using psychiatric interviews, intelligence tests, verbal estimation and time reproduction tasks (single task and simple and difficult dual tasks) at 5-second, 12-second, and 17-second intervals. We found that youths with ADHD tended to overestimate time in verbal estimation more than their unaffected siblings and TD youths, implying that fast subjective internal clock speed might be a characteristic of ADHD, rather than an endophenotype for ADHD. Youths with ADHD and their unaffected siblings were less precise in time reproduction dual tasks than TD youths. The magnitude of estimated errors in time reproduction was greater in youths with ADHD and their unaffected siblings than in TD youths, with an increased time interval at the 17-second interval and with increased task demands on both simple and difficult dual tasks versus the single task. Increased impaired time reproduction in dual tasks with increased intervals and task demands were shown in youths with ADHD and their unaffected siblings, suggesting that time reproduction deficits explained by limited attention capacity might be a useful endophenotype of ADHD. PMID:25992899
Synchronization of uncertain time-varying network based on sliding mode control technique
Lü, Ling; Li, Chengren; Bai, Suyuan; Li, Gang; Rong, Tingting; Gao, Yan; Yan, Zhe
2017-09-01
We research synchronization of uncertain time-varying network based on sliding mode control technique. The sliding mode control technique is first modified so that it can be applied to network synchronization. Further, by choosing the appropriate sliding surface, the identification law of uncertain parameter, the adaptive law of the time-varying coupling matrix element and the control input of network are designed, it is sure that the uncertain time-varying network can synchronize effectively the synchronization target. At last, we perform some numerical simulations to demonstrate the effectiveness of the proposed results.
Directory of Open Access Journals (Sweden)
Mingzhu Song
2016-01-01
Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.
Robustness Analysis of Hybrid Stochastic Neural Networks with Neutral Terms and Time-Varying Delays
Directory of Open Access Journals (Sweden)
Chunmei Wu
2015-01-01
Full Text Available We analyze the robustness of global exponential stability of hybrid stochastic neural networks subject to neutral terms and time-varying delays simultaneously. Given globally exponentially stable hybrid stochastic neural networks, we characterize the upper bounds of contraction coefficients of neutral terms and time-varying delays by using the transcendental equation. Moreover, we prove theoretically that, for any globally exponentially stable hybrid stochastic neural networks, if additive neutral terms and time-varying delays are smaller than the upper bounds arrived, then the perturbed neural networks are guaranteed to also be globally exponentially stable. Finally, a numerical simulation example is given to illustrate the presented criteria.
Modeling of Electricity Demand for Azerbaijan: Time-Varying Coefficient Cointegration Approach
Directory of Open Access Journals (Sweden)
Jeyhun I. Mikayilov
2017-11-01
Full Text Available Recent literature has shown that electricity demand elasticities may not be constant over time and this has investigated using time-varying estimation methods. As accurate modeling of electricity demand is very important in Azerbaijan, which is a transitional country facing significant change in its economic outlook, we analyze whether the response of electricity demand to income and price is varying over time in this economy. We employed the Time-Varying Coefficient cointegration approach, a cutting-edge time-varying estimation method. We find evidence that income elasticity demonstrates sizeable variation for the period of investigation ranging from 0.48% to 0.56%. The study has some useful policy implications related to the income and price aspects of the electricity consumption in Azerbaijan.
Identification of time-varying nonlinear systems using differential evolution algorithm
DEFF Research Database (Denmark)
Perisic, Nevena; Green, Peter L; Worden, Keith
2013-01-01
(DE) algorithm for the identification of time-varying systems. DE is an evolutionary optimisation method developed to perform direct search in a continuous space without requiring any derivative estimation. DE is modified so that the objective function changes with time to account for the continuing......, thus identification of time-varying systems with nonlinearities can be a very challenging task. In order to avoid conventional least squares and gradient identification methods which require uni-modal and double differentiable objective functions, this work proposes a modified differential evolution...... inclusion of new data within an error metric. This paper presents results of identification of a time-varying SDOF system with Coulomb friction using simulated noise-free and noisy data for the case of time-varying friction coefficient, stiffness and damping. The obtained results are promising and the focus...
Cerebellar Roles in Self-Timing for Sub- and Supra-Second Intervals.
Ohmae, Shogo; Kunimatsu, Jun; Tanaka, Masaki
2017-03-29
Previous studies suggest that the cerebellum and basal ganglia are involved in sub-second and supra-second timing, respectively. To test this hypothesis at the cellular level, we examined the activity of single neurons in the cerebellar dentate nucleus in monkeys performing the oculomotor version of the self-timing task. Animals were trained to report the passage of time of 400, 600, 1200, or 2400 ms following a visual cue by making self-initiated memory-guided saccades. We found a sizeable preparatory neuronal activity before self-timed saccades across delay intervals, while the time course of activity correlated with the trial-by-trial variation of saccade latency in different ways depending on the length of the delay intervals. For the shorter delay intervals, the ramping up of neuronal firing rate started just after the visual cue and the rate of rise of neuronal activity correlated with saccade timing. In contrast, for the longest delay (2400 ms), the preparatory activity started late during the delay period, and its onset time correlated with self-timed saccade latency. Because electrical microstimulation applied to the recording sites during saccade preparation advanced self-timed but not reactive saccades, regardless of their directions, the signals in the cerebellum may have a causal role in self-timing. We suggest that the cerebellum may regulate timing in both sub-second and supra-second ranges, although its relative contribution might be greater for sub-second than for supra-second time intervals. SIGNIFICANCE STATEMENT How we decide the timing of self-initiated movement is a fundamental question. According to the prevailing hypothesis, the cerebellum plays a role in monitoring sub-second timing, whereas the basal ganglia are important for supra-second timing. To verify this, we explored neuronal signals in the monkey cerebellum while animals reported the passage of time in the range 400-2400 ms by making eye movements. Contrary to our expectations, we
Electric power demand forecasting using interval time series. A comparison between VAR and iMLP
International Nuclear Information System (INIS)
Garcia-Ascanio, Carolina; Mate, Carlos
2010-01-01
Electric power demand forecasts play an essential role in the electric industry, as they provide the basis for making decisions in power system planning and operation. A great variety of mathematical methods have been used for demand forecasting. The development and improvement of appropriate mathematical tools will lead to more accurate demand forecasting techniques. In order to forecast the monthly electric power demand per hour in Spain for 2 years, this paper presents a comparison between a new forecasting approach considering vector autoregressive (VAR) forecasting models applied to interval time series (ITS) and the iMLP, the multi-layer perceptron model adapted to interval data. In the proposed comparison, for the VAR approach two models are fitted per every hour, one composed of the centre (mid-point) and radius (half-range), and another one of the lower and upper bounds according to the interval representation assumed by the ITS in the learning set. In the case of the iMLP, only the model composed of the centre and radius is fitted. The other interval representation composed of the lower and upper bounds is obtained from the linear combination of the two. This novel approach, obtaining two bivariate models each hour, makes possible to establish, for different periods in the day, which interval representation is more accurate. Furthermore, the comparison between two different techniques adapted to interval time series allows us to determine the efficiency of these models in forecasting electric power demand. It is important to note that the iMLP technique has been selected for the comparison, as it has shown its accuracy in forecasting daily electricity price intervals. This work shows the ITS forecasting methods as a potential tool that will lead to a reduction in risk when making power system planning and operational decisions. (author)
Positive Almost Periodic Solutions for a Time-Varying Fishing Model with Delay
Directory of Open Access Journals (Sweden)
Xia Li
2011-01-01
Full Text Available This paper is concerned with a time-varying fishing model with delay. By means of the continuation theorem of coincidence degree theory, we prove that it has at least one positive almost periodic solution.
Automatic, time-interval traffic counts for recreation area management planning
D. L. Erickson; C. J. Liu; H. K. Cordell
1980-01-01
Automatic, time-interval recorders were used to count directional vehicular traffic on a multiple entry/exit road network in the Red River Gorge Geological Area, Daniel Boone National Forest. Hourly counts of entering and exiting traffic differed according to recorder location, but an aggregated distribution showed a delayed peak in exiting traffic thought to be...
Experiments were established in controlled and field environment to evaluate the effect of time intervals between cereal rye cover crop termination and corn planting on corn seedling disease, corn growth, and grain yield in 2014 and 2015. Rye termination dates ranged from 25 days before planting (DB...
Forced solitary Rossby waves under the influence of slowly varying topography with time
International Nuclear Information System (INIS)
Yang Hong-Wei; Yin Bao-Shu; Yang De-Zhou; Xu Zhen-Hua
2011-01-01
By using a weakly nonlinear and perturbation method, the generalized inhomogeneous Korteweg—de Vries (KdV)—Burgers equation is derived, which governs the evolution of the amplitude of Rossby waves under the influence of dissipation and slowly varying topography with time. The analysis indicates that dissipation and slowly varying topography with time are important factors in causing variation in the mass and energy of solitary waves. (general)
Wavelet ridge diagnosis of time-varying elliptical signals with application to an oceanic eddy
Lilly , J. M.; Gascard , Jean-Claude
2006-01-01
International audience; A method for diagnosing the physical properties of a time-varying ellipse is presented. This essentially involves extending the notion of instantaneous frequency to the bivariate case. New complications, and possibilities, arise from the fact that there are several meaningful forms in which a time-varying ellipse may be represented. A perturbation analysis valid for the near-circular case clarifies these issues. Diagnosis of the ellipse properties may then be performed...
Global stabilization of linear continuous time-varying systems with bounded controls
International Nuclear Information System (INIS)
Phat, V.N.
2004-08-01
This paper deals with the problem of global stabilization of a class of linear continuous time-varying systems with bounded controls. Based on the controllability of the nominal system, a sufficient condition for the global stabilizability is proposed without solving any Riccati differential equation. Moreover, we give sufficient conditions for the robust stabilizability of perturbation/uncertain linear time-varying systems with bounded controls. (author)
Global exponential stability of uncertain fuzzy BAM neural networks with time-varying delays
International Nuclear Information System (INIS)
Syed Ali, M.; Balasubramaniam, P.
2009-01-01
In this paper, the Takagi-Sugeno (TS) fuzzy model representation is extended to the stability analysis for uncertain Bidirectional Associative Memory (BAM) neural networks with time-varying delays using linear matrix inequality (LMI) theory. A novel LMI-based stability criterion is obtained by LMI optimization algorithms to guarantee the exponential stability of uncertain BAM neural networks with time-varying delays which are represented by TS fuzzy models. Finally, the proposed stability conditions are demonstrated with numerical examples.
Exponential stability of fuzzy cellular neural networks with constant and time-varying delays
International Nuclear Information System (INIS)
Liu Yanqing; Tang Wansheng
2004-01-01
In this Letter, the global stability of delayed fuzzy cellular neural networks (FCNN) with either constant delays or time varying delays is proposed. Firstly, we give the existence and uniqueness of the equilibrium point by using the theory of topological degree and the properties of nonsingular M-matrix and the sufficient conditions for ascertaining the global exponential stability by constructing a suitable Lyapunov functional. Secondly, the criteria for guaranteeing the global exponential stability of FCNN with time varying delays are given and the estimation of exponential convergence rate with regard to speed of vary of delays is presented by constructing a suitable Lyapunov functional
Directory of Open Access Journals (Sweden)
Shu-Min Lu
2017-01-01
Full Text Available An adaptive neural network control problem is addressed for a class of nonlinear hydraulic servo-systems with time-varying state constraints. In view of the low precision problem of the traditional hydraulic servo-system which is caused by the tracking errors surpassing appropriate bound, the previous works have shown that the constraint for the system is a good way to solve the low precision problem. Meanwhile, compared with constant constraints, the time-varying state constraints are more general in the actual systems. Therefore, when the states of the system are forced to obey bounded time-varying constraint conditions, the high precision tracking performance of the system can be easily realized. In order to achieve this goal, the time-varying barrier Lyapunov function (TVBLF is used to prevent the states from violating time-varying constraints. By the backstepping design, the adaptive controller will be obtained. A radial basis function neural network (RBFNN is used to estimate the uncertainties. Based on analyzing the stability of the hydraulic servo-system, we show that the error signals are bounded in the compacts sets; the time-varying state constrains are never violated and all singles of the hydraulic servo-system are bounded. The simulation and experimental results show that the tracking accuracy of system is improved and the controller has fast tracking ability and strong robustness.
Zhou, Hua; Su, Yang; Wang, Rong; Zhu, Yong; Shen, Huiping; Pu, Tao; Wu, Chuanxin; Zhao, Jiyong; Zhang, Baofu; Xu, Zhiyong
2017-10-01
Online reconstruction of a time-variant quantum state from the encoding/decoding results of quantum communication is addressed by developing a method of evolution reconstruction from a single measurement record with random time intervals. A time-variant two-dimensional state is reconstructed on the basis of recovering its expectation value functions of three nonorthogonal projectors from a random single measurement record, which is composed from the discarded qubits of the six-state protocol. The simulated results prove that our method is robust to typical metro quantum channels. Our work extends the Fourier-based method of evolution reconstruction from the version for a regular single measurement record with equal time intervals to a unified one, which can be applied to arbitrary single measurement records. The proposed protocol of evolution reconstruction runs concurrently with the one of quantum communication, which can facilitate the online quantum tomography.
Kheifets, Aaron; Freestone, David; Gallistel, C R
2017-07-01
In three experiments with mice ( Mus musculus ) and rats (Rattus norvigicus), we used a switch paradigm to measure quantitative properties of the interval-timing mechanism. We found that: 1) Rodents adjusted the precision of their timed switches in response to changes in the interval between the short and long feed latencies (the temporal goalposts). 2) The variability in the timing of the switch response was reduced or unchanged in the face of large trial-to-trial random variability in the short and long feed latencies. 3) The adjustment in the distribution of switch latencies in response to changes in the relative frequency of short and long trials was sensitive to the asymmetry in the Kullback-Leibler divergence. The three results suggest that durations are represented with adjustable precision, that they are timed by multiple timers, and that there is a trial-by-trial (episodic) record of feed latencies in memory. © 2017 Society for the Experimental Analysis of Behavior.
Dead-time corrections on long-interval measurements of short-lived activities
International Nuclear Information System (INIS)
Irfan, M.
1977-01-01
A method has been proposed to make correction for counting losses due to dead time where the counting interval is comparable to or larger than the half-life of the activity under investigation. Counts due to background and any long-lived activity present in the source have been taken into consideration. The method is, under certain circumstances, capable of providing a valuable check on the accuracy of the dead time of the counting system. (Auth.)
Estimation of sojourn time in chronic disease screening without data on interval cases.
Chen, T H; Kuo, H S; Yen, M F; Lai, M S; Tabar, L; Duffy, S W
2000-03-01
Estimation of the sojourn time on the preclinical detectable period in disease screening or transition rates for the natural history of chronic disease usually rely on interval cases (diagnosed between screens). However, to ascertain such cases might be difficult in developing countries due to incomplete registration systems and difficulties in follow-up. To overcome this problem, we propose three Markov models to estimate parameters without using interval cases. A three-state Markov model, a five-state Markov model related to regional lymph node spread, and a five-state Markov model pertaining to tumor size are applied to data on breast cancer screening in female relatives of breast cancer cases in Taiwan. Results based on a three-state Markov model give mean sojourn time (MST) 1.90 (95% CI: 1.18-4.86) years for this high-risk group. Validation of these models on the basis of data on breast cancer screening in the age groups 50-59 and 60-69 years from the Swedish Two-County Trial shows the estimates from a three-state Markov model that does not use interval cases are very close to those from previous Markov models taking interval cancers into account. For the five-state Markov model, a reparameterized procedure using auxiliary information on clinically detected cancers is performed to estimate relevant parameters. A good fit of internal and external validation demonstrates the feasibility of using these models to estimate parameters that have previously required interval cancers. This method can be applied to other screening data in which there are no data on interval cases.
Modal Vibration Control in Periodic Time-Varying Structures with Focus on Rotor Blade Systems
DEFF Research Database (Denmark)
Christensen, Rene Hardam; Santos, Ilmar
2004-01-01
of active modal controllers. The main aim is to reduce vibrations in periodic time-varying structures. Special emphasis is given to vibration control of coupled bladed rotor systems. A state feedback modal control law is developed based on modal analysis in periodic time-varying structures. The first step...... in the procedure is a transformation of the model into a time-invariant modal form by applying the modal matrices, which are also periodic time-variant. Due to coupled rotor and blade motions complex vibration modes occur in the modal transformed state space model. This implies that the modal transformed model...
Modeling polar cap F-region patches using time varying convection
International Nuclear Information System (INIS)
Sojka, J.J.; Bowline, M.D.; Schunk, R.W.; Decker, D.T.; Valladares, C.E.; Sheehan, R.; Anderson, D.N.; Heelis, R.A.
1993-01-01
Here the authors present the results of computerized simulations of the polar cap regions which were able to model the formation of polar cap patches. They used the Utah State University Time-Dependent Ionospheric Model (TDIM) and the Phillips Laboratory (PL) F-region models in this work. By allowing a time varying magnetospheric electric field in the models, they were able to generate the patches. This time varying field generates a convection in the ionosphere. This convection is similar to convective changes observed in the ionosphere at times of southward pointing interplanetary magnetic field, due to changes in the B y component of the IMF
Jia, Xingyu; Liu, Zhigang; Tao, Long; Deng, Zhongwen
2017-10-16
Frequency scanning interferometry (FSI) with a single external cavity diode laser (ECDL) and time-invariant Kalman filtering is an effective technique for measuring the distance of a dynamic target. However, due to the hysteresis of the piezoelectric ceramic transducer (PZT) actuator in the ECDL, the optical frequency sweeps of the ECDL exhibit different behaviors, depending on whether the frequency is increasing or decreasing. Consequently, the model parameters of Kalman filter appear time varying in each iteration, which produces state estimation errors with time-invariant filtering. To address this, in this paper, a time-varying Kalman filter is proposed to model the instantaneous movement of a target relative to the different optical frequency tuning durations of the ECDL. The combination of the FSI method with the time-varying Kalman filter was theoretically analyzed, and the simulation and experimental results show the proposed method greatly improves the performance of dynamic FSI measurements.
Effect of a data buffer on the recorded distribution of time intervals for random events
Energy Technology Data Exchange (ETDEWEB)
Barton, J C [Polytechnic of North London (UK)
1976-03-15
The use of a data buffer enables the distribution of the time intervals between events to be studied for times less than the recording system dead-time but the usual negative exponential distribution for random events has to be modified. The theory for this effect is developed for an n-stage buffer followed by an asynchronous recorder. Results are evaluated for the values of n from 1 to 5. In the language of queueing theory the system studied is of type M/D/1/n+1, i.e. with constant service time and a finite number of places.
Embodiment and the origin of interval timing: kinematic and electromyographic data.
Addyman, Caspar; Rocha, Sinead; Fautrelle, Lilian; French, Robert M; Thomas, Elizabeth; Mareschal, Denis
2017-03-01
Recent evidence suggests that interval timing (the judgment of durations lasting from approximately 500 ms. to a few minutes) is closely coupled to the action control system. We used surface electromyography (EMG) and motion capture technology to explore the emergence of this coupling in 4-, 6-, and 8-month-olds. We engaged infants in an active and socially relevant arm-raising task with seven cycles and response period. In one condition, cycles were slow (every 4 s); in another, they were fast (every 2 s). In the slow condition, we found evidence of time-locked sub-threshold EMG activity even in the absence of any observed overt motor responses at all three ages. This study shows that EMGs can be a more sensitive measure of interval timing in early development than overt behavior.
International Nuclear Information System (INIS)
Gómez de León, F C; Meroño Pérez, P A
2010-01-01
The traditional method for measuring the velocity and the angular vibration in the shaft of rotating machines using incremental encoders is based on counting the pulses at given time intervals. This method is generically called the time interval measurement system (TIMS). A variant of this method that we have developed in this work consists of measuring the corresponding time of each pulse from the encoder and sampling the signal by means of an A/D converter as if it were an analog signal, that is to say, in discrete time. For this reason, we have denominated this method as the discrete time interval measurement system (DTIMS). This measurement system provides a substantial improvement in the precision and frequency resolution compared with the traditional method of counting pulses. In addition, this method permits modification of the width of some pulses in order to obtain a mark-phase on every lap. This paper explains the theoretical fundamentals of the DTIMS and its application for measuring the angular vibrations of rotating machines. It also displays the required relationship between the sampling rate of the signal, the number of pulses of the encoder and the rotating velocity in order to obtain the required resolution and to delimit the methodological errors in the measurement
International Nuclear Information System (INIS)
Meijer, Jan H; Boesveldt, Sanne; Elbertse, Eskeline; Berendse, H W
2008-01-01
The time difference between the electrocardiogram and impedance cardiogram can be considered as a measure for the time delay between the electrical and mechanical activities of the heart. This time interval, characterized by the pre-ejection period (PEP), is related to the sympathetic autonomous nervous control of cardiac activity. PEP, however, is difficult to measure in practice. Therefore, a novel parameter, the initial systolic time interval (ISTI), is introduced to provide a more practical measure. The use of ISTI instead of PEP was evaluated in three groups: young healthy subjects, patients with Parkinson's disease, and a group of elderly, healthy subjects of comparable age. PEP and ISTI were studied under two conditions: at rest and after an exercise stimulus. Under both conditions, PEP and ISTI behaved largely similarly in the three groups and were significantly correlated. It is concluded that ISTI can be used as a substitute for PEP and, therefore, to evaluate autonomic neuropathy both in clinical and extramural settings. Measurement of ISTI can also be used to non-invasively monitor the electromechanical cardiac time interval, and the associated autonomic activity, under physiological circumstances
Yoon, Heonjun; Kim, Miso; Park, Choon-Su; Youn, Byeng D.
2018-01-01
Piezoelectric vibration energy harvesting (PVEH) has received much attention as a potential solution that could ultimately realize self-powered wireless sensor networks. Since most ambient vibrations in nature are inherently random and nonstationary, the output performances of PVEH devices also randomly change with time. However, little attention has been paid to investigating the randomly time-varying electroelastic behaviors of PVEH systems both analytically and experimentally. The objective of this study is thus to make a step forward towards a deep understanding of the time-varying performances of PVEH devices under nonstationary random vibrations. Two typical cases of nonstationary random vibration signals are considered: (1) randomly-varying amplitude (amplitude modulation; AM) and (2) randomly-varying amplitude with randomly-varying instantaneous frequency (amplitude and frequency modulation; AM-FM). In both cases, this study pursues well-balanced correlations of analytical predictions and experimental observations to deduce the relationships between the time-varying output performances of the PVEH device and two primary input parameters, such as a central frequency and an external electrical resistance. We introduce three correlation metrics to quantitatively compare analytical prediction and experimental observation, including the normalized root mean square error, the correlation coefficient, and the weighted integrated factor. Analytical predictions are in an excellent agreement with experimental observations both mechanically and electrically. This study provides insightful guidelines for designing PVEH devices to reliably generate electric power under nonstationary random vibrations.
Evaluating Protocol Lifecycle Time Intervals in HIV/AIDS Clinical Trials
Schouten, Jeffrey T.; Dixon, Dennis; Varghese, Suresh; Cope, Marie T.; Marci, Joe; Kagan, Jonathan M.
2014-01-01
Background Identifying efficacious interventions for the prevention and treatment of human diseases depends on the efficient development and implementation of controlled clinical trials. Essential to reducing the time and burden of completing the clinical trial lifecycle is determining which aspects take the longest, delay other stages, and may lead to better resource utilization without diminishing scientific quality, safety, or the protection of human subjects. Purpose In this study we modeled time-to-event data to explore relationships between clinical trial protocol development and implementation times, as well as identify potential correlates of prolonged development and implementation. Methods We obtained time interval and participant accrual data from 111 interventional clinical trials initiated between 2006 and 2011 by NIH’s HIV/AIDS Clinical Trials Networks. We determined the time (in days) required to complete defined phases of clinical trial protocol development and implementation. Kaplan-Meier estimates were used to assess the rates at which protocols reached specified terminal events, stratified by study purpose (therapeutic, prevention) and phase group (pilot/phase I, phase II, and phase III/ IV). We also examined several potential correlates to prolonged development and implementation intervals. Results Even though phase grouping did not determine development or implementation times of either therapeutic or prevention studies, overall we observed wide variation in protocol development times. Moreover, we detected a trend toward phase III/IV therapeutic protocols exhibiting longer developmental (median 2 ½ years) and implementation times (>3years). We also found that protocols exceeding the median number of days for completing the development interval had significantly longer implementation. Limitations The use of a relatively small set of protocols may have limited our ability to detect differences across phase groupings. Some timing effects
Vector-field statistics for the analysis of time varying clinical gait data.
Donnelly, C J; Alexander, C; Pataky, T C; Stannage, K; Reid, S; Robinson, M A
2017-01-01
In clinical settings, the time varying analysis of gait data relies heavily on the experience of the individual(s) assessing these biological signals. Though three dimensional kinematics are recognised as time varying waveforms (1D), exploratory statistical analysis of these data are commonly carried out with multiple discrete or 0D dependent variables. In the absence of an a priori 0D hypothesis, clinicians are at risk of making type I and II errors in their analyis of time varying gait signatures in the event statistics are used in concert with prefered subjective clinical assesment methods. The aim of this communication was to determine if vector field waveform statistics were capable of providing quantitative corroboration to practically significant differences in time varying gait signatures as determined by two clinically trained gait experts. The case study was a left hemiplegic Cerebral Palsy (GMFCS I) gait patient following a botulinum toxin (BoNT-A) injection to their left gastrocnemius muscle. When comparing subjective clinical gait assessments between two testers, they were in agreement with each other for 61% of the joint degrees of freedom and phases of motion analysed. For tester 1 and tester 2, they were in agreement with the vector-field analysis for 78% and 53% of the kinematic variables analysed. When the subjective analyses of tester 1 and tester 2 were pooled together and then compared to the vector-field analysis, they were in agreement for 83% of the time varying kinematic variables analysed. These outcomes demonstrate that in principle, vector-field statistics corroborates with what a team of clinical gait experts would classify as practically meaningful pre- versus post time varying kinematic differences. The potential for vector-field statistics to be used as a useful clinical tool for the objective analysis of time varying clinical gait data is established. Future research is recommended to assess the usefulness of vector-field analyses
Beat-to-beat systolic time-interval measurement from heart sounds and ECG
International Nuclear Information System (INIS)
Paiva, R P; Carvalho, P; Couceiro, R; Henriques, J; Antunes, M; Quintal, I; Muehlsteff, J
2012-01-01
Systolic time intervals are highly correlated to fundamental cardiac functions. Several studies have shown that these measurements have significant diagnostic and prognostic value in heart failure condition and are adequate for long-term patient follow-up and disease management. In this paper, we investigate the feasibility of using heart sound (HS) to accurately measure the opening and closing moments of the aortic heart valve. These moments are crucial to define the main systolic timings of the heart cycle, i.e. pre-ejection period (PEP) and left ventricular ejection time (LVET). We introduce an algorithm for automatic extraction of PEP and LVET using HS and electrocardiogram. PEP is estimated with a Bayesian approach using the signal's instantaneous amplitude and patient-specific time intervals between atrio-ventricular valve closure and aortic valve opening. As for LVET, since the aortic valve closure corresponds to the start of the S2 HS component, we base LVET estimation on the detection of the S2 onset. A comparative assessment of the main systolic time intervals is performed using synchronous signal acquisitions of the current gold standard in cardiac time-interval measurement, i.e. echocardiography, and HS. The algorithms were evaluated on a healthy population, as well as on a group of subjects with different cardiovascular diseases (CVD). In the healthy group, from a set of 942 heartbeats, the proposed algorithm achieved 7.66 ± 5.92 ms absolute PEP estimation error. For LVET, the absolute estimation error was 11.39 ± 8.98 ms. For the CVD population, 404 beats were used, leading to 11.86 ± 8.30 and 17.51 ± 17.21 ms absolute PEP and LVET errors, respectively. The results achieved in this study suggest that HS can be used to accurately estimate LVET and PEP. (paper)
Changes in crash risk following re-timing of traffic signal change intervals.
Retting, Richard A; Chapline, Janella F; Williams, Allan F
2002-03-01
More than I million motor vehicle crashes occur annually at signalized intersections in the USA. The principal method used to prevent crashes associated with routine changes in signal indications is employment of a traffic signal change interval--a brief yellow and all-red period that follows the green indication. No universal practice exists for selecting the duration of change intervals, and little is known about the influence of the duration of the change interval on crash risk. The purpose of this study was to estimate potential crash effects of modifying the duration of traffic signal change intervals to conform with values associated with a proposed recommended practice published by the Institute of Transportation Engineers. A sample of 122 intersections was identified and randomly assigned to experimental and control groups. Of 51 eligible experimental sites, 40 (78%) needed signal timing changes. For the 3-year period following implementation of signal timing changes, there was an 8% reduction in reportable crashes at experimental sites relative to those occurring at control sites (P = 0.08). For injury crashes, a 12% reduction at experimental sites relative to those occurring at control sites was found (P = 0.03). Pedestrian and bicycle crashes at experimental sites decreased 37% (P = 0.03) relative to controls. Given these results and the relatively low cost of re-timing traffic signals, modifying the duration of traffic signal change intervals to conform with values associated with the Institute of Transportation Engineers' proposed recommended practice should be strongly considered by transportation agencies to reduce the frequency of urban motor vehicle crashes.
Time-Varying Biased Proportional Guidance with Seeker’s Field-of-View Limit
Yang, Zhe; Wang, Hui; Lin, Defu
2016-01-01
Traditional guidance laws with range-to-go information or time-to-go estimation may not be implemented in passive homing missiles since passive seekers cannot measure relative range directly. A time-varying biased proportional guidance law, which only uses line-of-sight (LOS) rate and look angle information, is proposed to satisfy both impact angle constraint and seeker’s field-of-view (FOV) limit. In the proposed guidance law, two time-varying bias terms are applied to divide the trajectory ...
International Nuclear Information System (INIS)
Barrera, M. C.; Recondo, J. A.; Aperribay, M.; Gervas, C.; Fernandez, E.; Alustiza, J. M.
2003-01-01
To evaluate the efficiency of magnetic resonance (MR) in the diagnosis of knee lesions and how the results are influenced by the time interval between MR and arthroscopy. 248 knees studied by MR were retrospectively analyzed, as well as those which also underwent arthroscopy. Arthroscopy was considered to be the gold standard, MR diagnostic capacity was evaluated for both meniscal and cruciate ligament lesions. Sensitivity, specificity and Kappa index were calculated for the set of all knees included in the study (248), for those in which the time between MR and arthroscopy was less than or equal to three months (134) and for those in which the time between both procedures was less than or equal to one month. Sensitivity, specificity and Kappa index of the MR had global values of 96.5%, 70% and 71%, respectively. When the interval between MR and arthroscopy was less than or equal to three months, sensitivity, specificity and Kappa index were 95.5%, 75% and 72%, respectively. When it was less than or equal to one month, sensitivity was 100%, specificity was 87.5% and Kappa index was 91%. MR is an excellent tool for the diagnosis of knee lesions. Higher MR values of sensitivity, specificity and Kappa index are obtained when the time interval between both procedures is kept to a minimum. (Author) 11 refs
29TH Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting
National Research Council Canada - National Science Library
1998-01-01
...) Applications of PTTI technology to evolving military navigation and communication systems; geodesy; aviation; and pulsars; 4) Dissemination of precise time and frequency by means of GPS, geosynchronous communication satellites, and computer networks.
Sojourn time asymptotics in Processor Sharing queues with varying service rate
Egorova, R.; Mandjes, M.R.H.; Zwart, B.
2007-01-01
Abstract This paper addresses the sojourn time asymptotics for a GI/GI/⋅ queue operating under the Processor Sharing (PS) discipline with stochastically varying service rate. Our focus is on the logarithmic estimates of the tail of sojourn-time distribution, under the assumption that the job-size
The time-varying shortest path problem with fuzzy transit costs and speedup
Directory of Open Access Journals (Sweden)
Rezapour Hassan
2016-08-01
Full Text Available In this paper, we focus on the time-varying shortest path problem, where the transit costs are fuzzy numbers. Moreover, we consider this problem in which the transit time can be shortened at a fuzzy speedup cost. Speedup may also be a better decision to find the shortest path from a source vertex to a specified vertex.
A new time-varying harmonic decomposition structure based on recursive hanning window
Martins, C.H.; Silva, L.R.M.; Duque, C.A.; Cerqueira, A.S.; Teixeira, E.C.; Ribeiro, P.F.
2012-01-01
Analysis of power quality phenomena under time-varying conditions has become an important subject as the complexity of the grid increases. As a consequence, several methods have been developed/applied also to study power quality parameters during transient conditions such as time-frequency methods.
Directory of Open Access Journals (Sweden)
Beatriz Vaz de Melo Mendes
2005-12-01
Full Text Available It is now widespread the use of Value-at-Risk (VaR as a canonical measure at risk. Most accurate VaR measures make use of some volatility model such as GARCH-type models. However, the pattern of volatility dynamic of a portfolio follows from the (univariate behavior of the risk assets, as well as from the type and strength of the associations among them. Moreover, the dependence structure among the components may change conditionally t past observations. Some papers have attempted to model this characteristic by assuming a multivariate GARCH model, or by considering the conditional correlation coefficient, or by incorporating some possibility for switches in regimes. In this paper we address this problem using time-varying copulas. Our modeling strategy allows for the margins to follow some FIGARCH type model while the copula dependence structure changes over time.
Directory of Open Access Journals (Sweden)
Maode Yan
2008-01-01
Full Text Available This paper considers the problem of robust discrete-time sliding-mode control (DT-SMC design for a class of uncertain linear systems with time-varying delays. By applying a descriptor model transformation and Moon's inequality for bounding cross terms, a delay-dependent sufficient condition for the existence of stable sliding surface is given in terms of linear matrix inequalities (LMIs. Based on this existence condition, the synthesized sliding mode controller can guarantee the sliding-mode reaching condition of the specified discrete-time sliding surface for all admissible uncertainties and time-varying delays. An illustrative example verifies the effectiveness of the proposed method.
Dimensional Stability of Two Polyvinyl Siloxane Impression Materials in Different Time Intervals
Directory of Open Access Journals (Sweden)
Aalaei Sh
2015-12-01
Full Text Available Statement of the Problem: Dental prosthesis is usually made indirectly; there- fore dimensional stability of the impression material is very important. Every few years, new impression materials with different manufacturers’ claims regarding their better properties are introduced to the dental markets which require more research to evaluate their true dimensional changes. Objectives: The aim of this study was to evaluate dimensional stability of additional silicone impression material (Panasil® and Affinis® in different time intervals. Materials and Methods: In this experimental study, using two additional silicones (Panasil® and Affinis®, we made sixty impressions of standard die in similar conditions of 23 °C and 59% relative humidity by a special tray. The die included three horizontal and two vertical lines that were parallel. The vertical line crossed the horizontal ones at a point that served as reference for measurement. All impressions were poured with high strength dental stone. The dimensions were measured by stereo-microscope by two examiners in three interval storage times (1, 24 and 168 hours.The data were statistically analyzed using t-test and ANOVA. Results: All of the stone casts were larger than the standard die. Dimensional changes of Panasil and Affinis were 0.07%, 0.24%, 0.27% and 0.02%, 0.07%, 0.16% after 1, 24 and 168 hours, respectively. Dimensional change for two impression materials wasn’t significant in the interval time, expect for Panasil after one week (p = 0.004. Conclusions: According to the limitations of this study, Affinis impressions were dimensionally more stable than Panasil ones, but it was not significant. Dimensional change of Panasil impression showed a statistically significant difference after one week. Dimensional changes of both impression materials were based on ADA standard limitation in all time intervals (< 0.5%; therefore, dimensional stability of this impression was accepted at least
Myszkowska-Ryciak, J.; Keller, J.S.; Bujko, J.; Stankiewicz-Ciupa, J.; Koopmanschap, R.E.; Schreurs, V.V.A.M.
2015-01-01
Postprandial oxidative losses of egg white-bound [1-^{13}C]-leucine were studied as ^{13}C recovery in the breath of rats in relation to different time intervals between two meals. Male Wistar rats (n = 48; 68.3 ±5.9 g) divided into 4 groups (n = 12) were fed two meals a day (9:00
Procedure prediction from symbolic Electronic Health Records via time intervals analytics.
Moskovitch, Robert; Polubriaginof, Fernanda; Weiss, Aviram; Ryan, Patrick; Tatonetti, Nicholas
2017-11-01
Prediction of medical events, such as clinical procedures, is essential for preventing disease, understanding disease mechanism, and increasing patient quality of care. Although longitudinal clinical data from Electronic Health Records provides opportunities to develop predictive models, the use of these data faces significant challenges. Primarily, while the data are longitudinal and represent thousands of conceptual events having duration, they are also sparse, complicating the application of traditional analysis approaches. Furthermore, the framework presented here takes advantage of the events duration and gaps. International standards for electronic healthcare data represent data elements, such as procedures, conditions, and drug exposures, using eras, or time intervals. Such eras contain both an event and a duration and enable the application of time intervals mining - a relatively new subfield of data mining. In this study, we present Maitreya, a framework for time intervals analytics in longitudinal clinical data. Maitreya discovers frequent time intervals related patterns (TIRPs), which we use as prognostic markers for modelling clinical events. We introduce three novel TIRP metrics that are normalized versions of the horizontal-support, that represents the number of TIRP instances per patient. We evaluate Maitreya on 28 frequent and clinically important procedures, using the three novel TIRP representation metrics in comparison to no temporal representation and previous TIRPs metrics. We also evaluate the epsilon value that makes Allen's relations more flexible with several settings of 30, 60, 90 and 180days in comparison to the default zero. For twenty-two of these procedures, the use of temporal patterns as predictors was superior to non-temporal features, and the use of the vertically normalized horizontal support metric to represent TIRPs as features was most effective. The use of the epsilon value with thirty days was slightly better than the zero
Robustness analysis of the Zhang neural network for online time-varying quadratic optimization
International Nuclear Information System (INIS)
Zhang Yunong; Ruan Gongqin; Li Kene; Yang Yiwen
2010-01-01
A general type of recurrent neural network (termed as Zhang neural network, ZNN) has recently been proposed by Zhang et al for the online solution of time-varying quadratic-minimization (QM) and quadratic-programming (QP) problems. Global exponential convergence of the ZNN could be achieved theoretically in an ideal error-free situation. In this paper, with the normal differentiation and dynamics-implementation errors considered, the robustness properties of the ZNN model are investigated for solving these time-varying problems. In addition, linear activation functions and power-sigmoid activation functions could be applied to such a perturbed ZNN model. Both theoretical-analysis and computer-simulation results demonstrate the good ZNN robustness and superior performance for online time-varying QM and QP problem solving, especially when using power-sigmoid activation functions.
Some properties of zero power neutron noise in a time-varying medium with delayed neutrons
International Nuclear Information System (INIS)
Kitamura, Y.; Pal, L.; Pazsit, I.; Yamamoto, A.; Yamane, Y.
2008-01-01
The temporal evolution of the distribution of the number of neutrons in a time-varying multiplying system, producing only prompt neutrons, was treated recently with the master equation technique by some of the present authors. Such a treatment gives account of both the so-called zero power reactor noise and the power reactor noise simultaneously. In particular, the first two moments of the neutron number, as well as the concept of criticality for time-varying systems, were investigated and discussed. The present paper extends these investigations to the case when delayed neutrons are also taken into account. Due to the complexity of the description, only the expectation of the neutron number is calculated. The concept of criticality of a time-varying system is also generalized to systems with delayed neutrons. The temporal behaviour of the expectation of the number of neutrons and its asymptotic properties are displayed and discussed
Fang, Jing; Yan, Weihong; Jiang, Guo-Xin; Li, Wei; Cheng, Qi
2011-02-01
To observe the time interval between stroke onset and hospital arrival (time-to-hospital) in acute ischemic stroke patients and analyze its putatively associated factors. During the period from November 1, 2006 to August 31, 2008, patients with acute ischemic stroke admitted consecutively to the Department of Neurology, Ninth Hospital, Shanghai, were enrolled in the study. Information of the patients was registered including the time-to-hospital, demographic data, history of stroke, season at attack, neurological symptom at onset, etc. Characteristics of the patients were analyzed and logistic regression analyses were conducted to identify factors associated with the time-to-hospital. There were 536 patients in the study, 290 (54.1%) males and 246 (45.9%) females. The median time-to-hospital was 8h (ranged from 0.1 to 300 h) for all patients. Within 3h after the onset of stroke, 162 patients (30.2%) arrived at our hospital; and within 6h, 278 patients (51.9%). Patients with a history of stroke, unconsciousness at onset, or a high NIHSS score at admission had significantly less time-to-hospital. The time interval between stroke onset and hospital arrival was importance of seeking immediate medical help after stroke onset of patients and their relatives could significantly influence their actions. Copyright © 2010 Elsevier B.V. All rights reserved.
Semiparametric regression analysis of failure time data with dependent interval censoring.
Chen, Chyong-Mei; Shen, Pao-Sheng
2017-09-20
Interval-censored failure-time data arise when subjects are examined or observed periodically such that the failure time of interest is not examined exactly but only known to be bracketed between two adjacent observation times. The commonly used approaches assume that the examination times and the failure time are independent or conditionally independent given covariates. In many practical applications, patients who are already in poor health or have a weak immune system before treatment usually tend to visit physicians more often after treatment than those with better health or immune system. In this situation, the visiting rate is positively correlated with the risk of failure due to the health status, which results in dependent interval-censored data. While some measurable factors affecting health status such as age, gender, and physical symptom can be included in the covariates, some health-related latent variables cannot be observed or measured. To deal with dependent interval censoring involving unobserved latent variable, we characterize the visiting/examination process as recurrent event process and propose a joint frailty model to account for the association of the failure time and visiting process. A shared gamma frailty is incorporated into the Cox model and proportional intensity model for the failure time and visiting process, respectively, in a multiplicative way. We propose a semiparametric maximum likelihood approach for estimating model parameters and show the asymptotic properties, including consistency and weak convergence. Extensive simulation studies are conducted and a data set of bladder cancer is analyzed for illustrative purposes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Frequency variations of gravity waves interacting with a time-varying tide
Energy Technology Data Exchange (ETDEWEB)
Huang, C.M.; Zhang, S.D.; Yi, F.; Huang, K.M.; Gan, Q.; Gong, Y. [Wuhan Univ., Hubei (China). School of Electronic Information; Ministry of Education, Wuhan, Hubei (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan, Hubei (China); Zhang, Y.H. [Nanjing Univ. of Information Science and Technology (China). College of Hydrometeorolgy
2013-11-01
Using a nonlinear, 2-D time-dependent numerical model, we simulate the propagation of gravity waves (GWs) in a time-varying tide. Our simulations show that when aGW packet propagates in a time-varying tidal-wind environment, not only its intrinsic frequency but also its ground-based frequency would change significantly. The tidal horizontal-wind acceleration dominates the GW frequency variation. Positive (negative) accelerations induce frequency increases (decreases) with time. More interestingly, tidal-wind acceleration near the critical layers always causes the GW frequency to increase, which may partially explain the observations that high-frequency GW components are more dominant in the middle and upper atmosphere than in the lower atmosphere. The combination of the increased ground-based frequency of propagating GWs in a time-varying tidal-wind field and the transient nature of the critical layer induced by a time-varying tidal zonal wind creates favorable conditions for GWs to penetrate their originally expected critical layers. Consequently, GWs have an impact on the background atmosphere at much higher altitudes than expected, which indicates that the dynamical effects of tidal-GW interactions are more complicated than usually taken into account by GW parameterizations in global models.
Dual Extended Kalman Filter for the Identification of Time-Varying Human Manual Control Behavior
Popovici, Alexandru; Zaal, Peter M. T.; Pool, Daan M.
2017-01-01
A Dual Extended Kalman Filter was implemented for the identification of time-varying human manual control behavior. Two filters that run concurrently were used, a state filter that estimates the equalization dynamics, and a parameter filter that estimates the neuromuscular parameters and time delay. Time-varying parameters were modeled as a random walk. The filter successfully estimated time-varying human control behavior in both simulated and experimental data. Simple guidelines are proposed for the tuning of the process and measurement covariance matrices and the initial parameter estimates. The tuning was performed on simulation data, and when applied on experimental data, only an increase in measurement process noise power was required in order for the filter to converge and estimate all parameters. A sensitivity analysis to initial parameter estimates showed that the filter is more sensitive to poor initial choices of neuromuscular parameters than equalization parameters, and bad choices for initial parameters can result in divergence, slow convergence, or parameter estimates that do not have a real physical interpretation. The promising results when applied to experimental data, together with its simple tuning and low dimension of the state-space, make the use of the Dual Extended Kalman Filter a viable option for identifying time-varying human control parameters in manual tracking tasks, which could be used in real-time human state monitoring and adaptive human-vehicle haptic interfaces.
Lyapunov Functions to Caputo Fractional Neural Networks with Time-Varying Delays
Directory of Open Access Journals (Sweden)
Ravi Agarwal
2018-05-01
Full Text Available One of the main properties of solutions of nonlinear Caputo fractional neural networks is stability and often the direct Lyapunov method is used to study stability properties (usually these Lyapunov functions do not depend on the time variable. In connection with the Lyapunov fractional method we present a brief overview of the most popular fractional order derivatives of Lyapunov functions among Caputo fractional delay differential equations. These derivatives are applied to various types of neural networks with variable coefficients and time-varying delays. We show that quadratic Lyapunov functions and their Caputo fractional derivatives are not applicable in some cases when one studies stability properties. Some sufficient conditions for stability of equilibrium of nonlinear Caputo fractional neural networks with time dependent transmission delays, time varying self-regulating parameters of all units and time varying functions of the connection between two neurons in the network are obtained. The cases of time varying Lipschitz coefficients as well as nonLipschitz activation functions are studied. We illustrate our theory on particular nonlinear Caputo fractional neural networks.
New results on global exponential stability of recurrent neural networks with time-varying delays
International Nuclear Information System (INIS)
Xu Shengyuan; Chu Yuming; Lu Junwei
2006-01-01
This Letter provides new sufficient conditions for the existence, uniqueness and global exponential stability of the equilibrium point of recurrent neural networks with time-varying delays by employing Lyapunov functions and using the Halanay inequality. The time-varying delays are not necessarily differentiable. Both Lipschitz continuous activation functions and monotone nondecreasing activation functions are considered. The derived stability criteria are expressed in terms of linear matrix inequalities (LMIs), which can be checked easily by resorting to recently developed algorithms solving LMIs. Furthermore, the proposed stability results are less conservative than some previous ones in the literature, which is demonstrated via some numerical examples
H ∞ synchronization of the coronary artery system with input time-varying delay
International Nuclear Information System (INIS)
Li Xiao-Meng; Zhao Zhan-Shan; Sun Lian-Kun; Zhang Jing
2016-01-01
This paper investigates the H ∞ synchronization of the coronary artery system with input delay and disturbance. We focus on reducing the conservatism of existing synchronization strategies. Base on the triple integral forms of the Lyapunov–Krasovskii functional (LKF), we utilize single and double integral forms of Wirtinger-based inequality to guarantee that the synchronization feedback controller has good performance against time-varying delay and external disturbance. The effectiveness of our strategy can be exhibited by simulations under the different time-varying delays and different disturbances. (paper)
Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay
International Nuclear Information System (INIS)
Mei, Sun; Chang-Yan, Zeng; Li-Xin, Tian
2009-01-01
Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand–supply of energy resource in some regions of China
Time-varying long term memory in the European Union stock markets
Sensoy, Ahmet; Tabak, Benjamin M.
2015-10-01
This paper proposes a new efficiency index to model time-varying inefficiency in stock markets. We focus on European stock markets and show that they have different degrees of time-varying efficiency. We observe that the 2008 global financial crisis has an adverse effect on almost all EU stock markets. However, the Eurozone sovereign debt crisis has a significant adverse effect only on the markets in France, Spain and Greece. For the late members, joining EU does not have a uniform effect on stock market efficiency. Our results have important implications for policy makers, investors, risk managers and academics.
International Nuclear Information System (INIS)
Zhang Qun-Jiao; Zhao Jun-Chan
2012-01-01
This paper mainly investigates the exponential synchronization of an inner time-varying complex network with coupling delay. Firstly, the synchronization of complex networks is decoupled into the stability of the corresponding dynamical systems. Based on the Lyapunov function theory, some sufficient conditions to guarantee its stability with any given convergence rate are derived, thus the synchronization of the networks is achieved. Finally, the results are illustrated by a simple time-varying network model with a coupling delay. All involved numerical simulations verify the correctness of the theoretical analysis. (general)
New results on global exponential stability of recurrent neural networks with time-varying delays
Energy Technology Data Exchange (ETDEWEB)
Xu Shengyuan [Department of Automation, Nanjing University of Science and Technology, Nanjing 210094 (China)]. E-mail: syxu02@yahoo.com.cn; Chu Yuming [Department of Mathematics, Huzhou Teacher' s College, Huzhou, Zhejiang 313000 (China); Lu Junwei [School of Electrical and Automation Engineering, Nanjing Normal University, 78 Bancang Street, Nanjing, 210042 (China)
2006-04-03
This Letter provides new sufficient conditions for the existence, uniqueness and global exponential stability of the equilibrium point of recurrent neural networks with time-varying delays by employing Lyapunov functions and using the Halanay inequality. The time-varying delays are not necessarily differentiable. Both Lipschitz continuous activation functions and monotone nondecreasing activation functions are considered. The derived stability criteria are expressed in terms of linear matrix inequalities (LMIs), which can be checked easily by resorting to recently developed algorithms solving LMIs. Furthermore, the proposed stability results are less conservative than some previous ones in the literature, which is demonstrated via some numerical examples.
Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay
Sun, Mei; Zeng, Chang-Yan; Tian, Li-Xin
2009-01-01
Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand-supply of energy resource in some regions of China.
A Method of Time-Varying Rayleigh Channel Tracking in MIMO Radio System
Institute of Scientific and Technical Information of China (English)
GONG Yan-fei; HE Zi-shu; HAN Chun-lin
2005-01-01
A method of MIMO channel tracking based on Kalman filter and MMSE-DFE is proposed. The Kalman filter tracks the time-varying channel by using the MMSE-DFE decision and the MMSE-DFE conducts the next decision by using the channel estimates produced by the Kalman filter. Polynomial fitting is used to bridge the gap between the channel estimates produced by the Kalman filter and those needed for the DFE decision. Computer simulation demonstrates that this method can track the MIMO time-varying channel effectively.
Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays
Syed Ali, M.; Balasubramaniam, P.
2008-07-01
In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB.
Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays
International Nuclear Information System (INIS)
Syed Ali, M.; Balasubramaniam, P.
2008-01-01
In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB
Optimal critic learning for robot control in time-varying environments.
Wang, Chen; Li, Yanan; Ge, Shuzhi Sam; Lee, Tong Heng
2015-10-01
In this paper, optimal critic learning is developed for robot control in a time-varying environment. The unknown environment is described as a linear system with time-varying parameters, and impedance control is employed for the interaction control. Desired impedance parameters are obtained in the sense of an optimal realization of the composite of trajectory tracking and force regulation. Q -function-based critic learning is developed to determine the optimal impedance parameters without the knowledge of the system dynamics. The simulation results are presented and compared with existing methods, and the efficacy of the proposed method is verified.
Properties of Asymmetric Detrended Fluctuation Analysis in the time series of RR intervals
Piskorski, J.; Kosmider, M.; Mieszkowski, D.; Krauze, T.; Wykretowicz, A.; Guzik, P.
2018-02-01
Heart rate asymmetry is a phenomenon by which the accelerations and decelerations of heart rate behave differently, and this difference is consistent and unidirectional, i.e. in most of the analyzed recordings the inequalities have the same directions. So far, it has been established for variance and runs based types of descriptors of RR intervals time series. In this paper we apply the newly developed method of Asymmetric Detrended Fluctuation Analysis, which so far has mainly been used with economic time series, to the set of 420 stationary 30 min time series of RR intervals from young, healthy individuals aged between 20 and 40. This asymmetric approach introduces separate scaling exponents for rising and falling trends. We systematically study the presence of asymmetry in both global and local versions of this method. In this study global means "applying to the whole time series" and local means "applying to windows jumping along the recording". It is found that the correlation structure of the fluctuations left over after detrending in physiological time series shows strong asymmetric features in both magnitude, with α+ physiological data after shuffling or with a group of symmetric synthetic time series.
International Nuclear Information System (INIS)
Brown, Forrest B.; Martin, William R.
2001-01-01
We have investigated Monte Carlo schemes for analyzing particle transport through media with exponentially varying time-dependent cross sections. For such media, the cross sections are represented in the form Σ(t) = Σ 0 e -at (1) or equivalently as Σ(x) = Σ 0 e -bx (2) where b = av and v is the particle speed. For the following discussion, the parameters a and b may be either positive, for exponentially decreasing cross sections, or negative, for exponentially increasing cross sections. For most time-dependent Monte Carlo applications, the time and spatial variations of the cross-section data are handled by means of a stepwise procedure, holding the cross sections constant for each region over a small time interval Δt, performing the Monte Carlo random walk over the interval Δt, updating the cross sections, and then repeating for a series of time intervals. Continuously varying spatial- or time-dependent cross sections can be treated in a rigorous Monte Carlo fashion using delta-tracking, but inefficiencies may arise if the range of cross-section variation is large. In this paper, we present a new method for sampling collision distances directly for cross sections that vary exponentially in space or time. The method is exact and efficient and has direct application to Monte Carlo radiation transport methods. To verify that the probability density function (PDF) is correct and that the random-sampling procedure yields correct results, numerical experiments were performed using a one-dimensional Monte Carlo code. The physical problem consisted of a beam source impinging on a purely absorbing infinite slab, with a slab thickness of 1 cm and Σ 0 = 1 cm -1 . Monte Carlo calculations with 10 000 particles were run for a range of the exponential parameter b from -5 to +20 cm -1 . Two separate Monte Carlo calculations were run for each choice of b, a continuously varying case using the random-sampling procedures described earlier, and a 'conventional' case where the
Model for the respiratory modulation of the heart beat-to-beat time interval series
Capurro, Alberto; Diambra, Luis; Malta, C. P.
2005-09-01
In this study we present a model for the respiratory modulation of the heart beat-to-beat interval series. The model consists of a set of differential equations used to simulate the membrane potential of a single rabbit sinoatrial node cell, excited with a periodic input signal with added correlated noise. This signal, which simulates the input from the autonomous nervous system to the sinoatrial node, was included in the pacemaker equations as a modulation of the iNaK current pump and the potassium current iK. We focus at modeling the heart beat-to-beat time interval series from normal subjects during meditation of the Kundalini Yoga and Chi techniques. The analysis of the experimental data indicates that while the embedding of pre-meditation and control cases have a roughly circular shape, it acquires a polygonal shape during meditation, triangular for the Kundalini Yoga data and quadrangular in the case of Chi data. The model was used to assess the waveshape of the respiratory signals needed to reproduce the trajectory of the experimental data in the phase space. The embedding of the Chi data could be reproduced using a periodic signal obtained by smoothing a square wave. In the case of Kundalini Yoga data, the embedding was reproduced with a periodic signal obtained by smoothing a triangular wave having a rising branch of longer duration than the decreasing branch. Our study provides an estimation of the respiratory signal using only the heart beat-to-beat time interval series.
A New Time-varying Concept of Risk in a Changing Climate.
Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P
2016-10-20
In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.
A New Time-varying Concept of Risk in a Changing Climate
Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P.
2016-10-01
In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.
A network of spiking neurons that can represent interval timing: mean field analysis.
Gavornik, Jeffrey P; Shouval, Harel Z
2011-04-01
Despite the vital importance of our ability to accurately process and encode temporal information, the underlying neural mechanisms are largely unknown. We have previously described a theoretical framework that explains how temporal representations, similar to those reported in the visual cortex, can form in locally recurrent cortical networks as a function of reward modulated synaptic plasticity. This framework allows networks of both linear and spiking neurons to learn the temporal interval between a stimulus and paired reward signal presented during training. Here we use a mean field approach to analyze the dynamics of non-linear stochastic spiking neurons in a network trained to encode specific time intervals. This analysis explains how recurrent excitatory feedback allows a network structure to encode temporal representations.
International Nuclear Information System (INIS)
Ganapol, B.D.
1987-01-01
For almost 20 yr, the main thrust of the author's research has been the generation of as many benchmark solutions to the time-dependent monoenergetic neutron transport equation as possible. The major motivation behind this effort has been to provide code developers with highly accurate numerical solutions to serve as standards in the assessment of numerical transport algorithms. In addition, these solutions provide excellent educational tools since the important physical features of neutron transport are still present even though the problems solved are idealized. A secondary motivation, though of equal importance, is the intellectual stimulation and understanding provided by the combination of the analytical, numerical, and computational techniques required to obtain these solutions. Therefore, to further the benchmark development, the added complication of time-dependent cross sections in the one-group transport equation is considered here
Time-varying parameter models for catchments with land use change: the importance of model structure
Pathiraja, Sahani; Anghileri, Daniela; Burlando, Paolo; Sharma, Ashish; Marshall, Lucy; Moradkhani, Hamid
2018-05-01
Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2) in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD) that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors) contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.
Time-varying parameter models for catchments with land use change: the importance of model structure
Directory of Open Access Journals (Sweden)
S. Pathiraja
2018-05-01
Full Text Available Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2 in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.
Time-varying Concurrent Risk of Extreme Droughts and Heatwaves in California
Sarhadi, A.; Diffenbaugh, N. S.; Ausin, M. C.
2016-12-01
Anthropogenic global warming has changed the nature and the risk of extreme climate phenomena such as droughts and heatwaves. The concurrent of these nature-changing climatic extremes may result in intensifying undesirable consequences in terms of human health and destructive effects in water resources. The present study assesses the risk of concurrent extreme droughts and heatwaves under dynamic nonstationary conditions arising from climate change in California. For doing so, a generalized fully Bayesian time-varying multivariate risk framework is proposed evolving through time under dynamic human-induced environment. In this methodology, an extreme, Bayesian, dynamic copula (Gumbel) is developed to model the time-varying dependence structure between the two different climate extremes. The time-varying extreme marginals are previously modeled using a Generalized Extreme Value (GEV) distribution. Bayesian Markov Chain Monte Carlo (MCMC) inference is integrated to estimate parameters of the nonstationary marginals and copula using a Gibbs sampling method. Modelled marginals and copula are then used to develop a fully Bayesian, time-varying joint return period concept for the estimation of concurrent risk. Here we argue that climate change has increased the chance of concurrent droughts and heatwaves over decades in California. It is also demonstrated that a time-varying multivariate perspective should be incorporated to assess realistic concurrent risk of the extremes for water resources planning and management in a changing climate in this area. The proposed generalized methodology can be applied for other stochastic nature-changing compound climate extremes that are under the influence of climate change.
Controllable deterioration rate for time-dependent demand and time-varying holding cost
Directory of Open Access Journals (Sweden)
Mishra Vinod Kumar
2014-01-01
Full Text Available In this paper, we develop an inventory model for non-instantaneous deteriorating items under the consideration of the facts: deterioration rate can be controlled by using the preservation technology (PT during deteriorating period, and holding cost and demand rate both are linear function of time, which was treated as constant in most of the deteriorating inventory models. So in this paper, we developed a deterministic inventory model for non-instantaneous deteriorating items in which both demand rate and holding cost are a linear function of time, deterioration rate is constant, backlogging rate is variable and depend on the length of the next replenishment, shortages are allowed and partially backlogged. The model is solved analytically by minimizing the total cost of the inventory system. The model can be applied to optimizing the total inventory cost of non-instantaneous deteriorating items inventory for the business enterprises, where the preservation technology is used to control the deterioration rate, and demand & holding cost both are a linear function of time.
International Nuclear Information System (INIS)
Liu Bingwen
2008-01-01
In this Letter, we consider a class of delayed cellular neural networks with time-varying coefficients. By applying Lyapunov functional method and differential inequality techniques, we establish new results to ensure that all solutions of the networks converge exponentially to zero point
A comparison of time-varying covariates in two smoking cessation interventions for cardiac patients
Prenger, Hendrikje Cornelia; Pieterse, Marcel E.; Braakman-Jansen, Louise Marie Antoinette; Bolman, Catherine; Ruitenbeek-Wiggers, L.; de Vries, H.
2013-01-01
The aim of the study was to explore the time-varying contribution of social cognitive determinants of smoking cessation following an intervention on cessation. Secondary analyses were performed on data from two comparable randomized controlled trials on brief smoking cessation interventions for
Time-varying coefficient estimation in SURE models. Application to portfolio management
DEFF Research Database (Denmark)
Casas, Isabel; Ferreira, Eva; Orbe, Susan
This paper provides a detailed analysis of the asymptotic properties of a kernel estimator for a Seemingly Unrelated Regression Equations model with time-varying coefficients (tv-SURE) under very general conditions. Theoretical results together with a simulation study differentiates the cases...
Time-varying market integration and expected returns in emerging mrkets
de Jong, F.C.J.M.; de Roon, F.
2001-01-01
We use a simple model in which the expected returns in emerging markets depend on their systematicrisk as measured by their beta relative to the world portfolio as well as on the level ofintegration in that market. The level of integration is a time-varying variable that depends on themarket value
Time-Varying Networks of Inter-Ictal Discharging Reveal Epileptogenic Zone.
Zhang, Luyan; Liang, Yi; Li, Fali; Sun, Hongbin; Peng, Wenjing; Du, Peishan; Si, Yajing; Song, Limeng; Yu, Liang; Xu, Peng
2017-01-01
The neuronal synchronous discharging may cause an epileptic seizure. Currently, most of the studies conducted to investigate the mechanism of epilepsy are based on EEGs or functional magnetic resonance imaging (fMRI) recorded during the ictal discharging or the resting-state, and few studies have probed into the dynamic patterns during the inter-ictal discharging that are much easier to record in clinical applications. Here, we propose a time-varying network analysis based on adaptive directed transfer function to uncover the dynamic brain network patterns during the inter-ictal discharging. In addition, an algorithm based on the time-varying outflow of information derived from the network analysis is developed to detect the epileptogenic zone. The analysis performed revealed the time-varying network patterns during different stages of inter-ictal discharging; the epileptogenic zone was activated prior to the discharge onset then worked as the source to propagate the activity to other brain regions. Consistence between the epileptogenic zones detected by our proposed approach and the actual epileptogenic zones proved that time-varying network analysis could not only reveal the underlying neural mechanism of epilepsy, but also function as a useful tool in detecting the epileptogenic zone based on the EEGs in the inter-ictal discharging.
Bank loan components and the time-varying effects of monetary policy shocks
den Haan, W.J.; Sumner, S.W.; Yamashiro, G.M.
2011-01-01
The impulse response function (IRF) of an aggregate variable is time-varying if the IRFs of its components are different from each other and the relative magnitudes of the components are not constant—two conditions likely to be true in practice. We model the behaviour of loan components and document
Rate Control for Network-Coded Multipath Relaying with Time-Varying Connectivity
2010-12-10
Armen Babikyan, Nathaniel M. Jones, Thomas H. Shake, and Andrew P. Worthen MIT Lincoln Laboratory 244 Wood Street Lexington, MA 02420 DDRE, 1777...delay U U U U SAR 11 Zach Sweet 781-981-5997 1 Rate Control for Network-Coded Multipath Relaying with Time-Varying Connectivity Brooke Shrader, Armen
Delay-dependent exponential stability of cellular neural networks with time-varying delays
International Nuclear Information System (INIS)
Zhang Qiang; Wei Xiaopeng; Xu Jin
2005-01-01
The global exponential stability of cellular neural networks (CNNs) with time-varying delays is analyzed. Two new sufficient conditions ensuring global exponential stability for delayed CNNs are obtained. The conditions presented here are related to the size of delay. The stability results improve the earlier publications. Two examples are given to demonstrate the effectiveness of the obtained results
Exponential stability of switched linear systems with time-varying delay
Directory of Open Access Journals (Sweden)
Satiracoo Pairote
2007-11-01
Full Text Available We use a Lyapunov-Krasovskii functional approach to establish the exponential stability of linear systems with time-varying delay. Our delay-dependent condition allows to compute simultaneously the two bounds that characterize the exponential stability rate of the solution. A simple procedure for constructing switching rule is also presented.
Effects of varying feeding times on fertility and hatchability of broiler ...
African Journals Online (AJOL)
Effects of varying feeding times on fertility and hatchability of broiler chicken breeders in a tropical environment. ... Journal Home > Vol 65, No 4 (2017) > ... Prior to the eighth week data collection, the birds were allowed to get accustomed to ...
DEFF Research Database (Denmark)
Callot, Laurent; Kristensen, Johannes Tang
the monetary policy response to inflation and business cycle fluctuations in the US by estimating a parsimoniously time varying parameter Taylor rule.We document substantial changes in the policy response of the Fed in the 1970s and 1980s, and since 2007, but also document the stability of this response...
Analysis of nonlinear systems with time varying inputs and its application to gain scheduling
Directory of Open Access Journals (Sweden)
J.-T. Lim
1996-01-01
Full Text Available An analytical framework for analysis of a class of nonlinear systems with time varying inputs is presented. It is shown that the trajectories of the transformed nonlinear systems are uniformly bounded with an ultimate bound under certain conditions shown in this paper. The result obtained is useful for applications, in particular, analysis and design of gain scheduling.
DEFF Research Database (Denmark)
Pittalà, Fabio; Msallem, Majdi; Hauske, Fabian N.
2012-01-01
We propose a non-weighted feed-forward equalization method with filter update by averaging channel estimations based on short CAZAC sequences. Three averaging methods are presented and tested by simulations in a time-varying 2×2 MIMO optical system....
Global exponential stability of BAM neural networks with time-varying delays and diffusion terms
International Nuclear Information System (INIS)
Wan Li; Zhou Qinghua
2007-01-01
The stability property of bidirectional associate memory (BAM) neural networks with time-varying delays and diffusion terms are considered. By using the method of variation parameter and inequality technique, the delay-independent sufficient conditions to guarantee the uniqueness and global exponential stability of the equilibrium solution of such networks are established
Global exponential stability of BAM neural networks with time-varying delays and diffusion terms
Wan, Li; Zhou, Qinghua
2007-11-01
The stability property of bidirectional associate memory (BAM) neural networks with time-varying delays and diffusion terms are considered. By using the method of variation parameter and inequality technique, the delay-independent sufficient conditions to guarantee the uniqueness and global exponential stability of the equilibrium solution of such networks are established.
Etienne, Xiaoli L.; Trujillo-Barrera, Andrés; Hoffman, Linwood A.
2017-01-01
We find distiller's dried grains with solubles (DDGS) prices to be positively correlated with both corn and soybean meal prices in the long run. However, neither corn nor soybean meal prices respond to deviations from this long-run relationship. We also identify strong time-varying dynamic
Scalable Video Streaming Adaptive to Time-Varying IEEE 802.11 MAC Parameters
Lee, Kyung-Jun; Suh, Doug-Young; Park, Gwang-Hoon; Huh, Jae-Doo
This letter proposes a QoS control method for video streaming service over wireless networks. Based on statistical analysis, the time-varying MAC parameters highly related to channel condition are selected to predict available bitrate. Adaptive bitrate control of scalably-encoded video guarantees continuity in streaming service even if the channel condition changes abruptly.
Overlapping quadratic optimal control of linear time-varying commutative systems
Czech Academy of Sciences Publication Activity Database
Bakule, Lubomír; Rodellar, J.; Rossell, J. M.
2002-01-01
Roč. 40, č. 5 (2002), s. 1611-1627 ISSN 0363-0129 R&D Projects: GA AV ČR IAA2075802 Institutional research plan: CEZ:AV0Z1075907 Keywords : overlapping * optimal control * linear time-varying systems Subject RIV: BC - Control Systems Theory Impact factor: 1.441, year: 2002
Paunonen, Matti
1993-01-01
A method for compensating for the effect of the varying travel time of a transmitted laser pulse to a satellite is described. The 'observed minus predicted' range differences then appear to be linear, which makes data screening or use in range gating more effective.
Perfect fluid Bianchi Type-I cosmological models with time varying G ...
Indian Academy of Sciences (India)
Abstract. Bianchi Type-I cosmological models containing perfect fluid with time vary- ing G and Λ have been presented. The solutions obtained represent an expansion scalar θ bearing a constant ratio to the anisotropy in the direction of space-like unit vector λi. Of the two models obtained, one has negative vacuum energy ...
Energy Technology Data Exchange (ETDEWEB)
Sugrue, D.D.; Dickie, S.; Newman, H.; Myers, M.J.; Lavender, J.P.; McKenna, W.J. (Royal Postgraduate Medical School, London (UK))
1984-10-01
A comparison has been made of the equilibrium radionuclide and contrast angiographic estimates of normalized peak rates of ejection (PER) and filling (PFR) and their time intervals in twenty-one patients with cardiac disorders. Contrast angiographic and radionuclide measurements of left ventricular ejection fraction (LVEF), PER and PFR correlated well but time intervals correlated poorly. Mean values for radionuclide LVEF, PER and PFR were significantly lower and radionuclide time intervals were significantly longer compared to contrast angiography measurements.
Directory of Open Access Journals (Sweden)
Cheng Liu
2010-01-01
Full Text Available Time-varying coherence is a powerful tool for revealing functional dynamics between different regions in the brain. In this paper, we address ways of estimating evolutionary spectrum and coherence using the general Cohen's class distributions. We show that the intimate connection between the Cohen's class-based spectra and the evolutionary spectra defined on the locally stationary time series can be linked by the kernel functions of the Cohen's class distributions. The time-varying spectra and coherence are further generalized with the Stockwell transform, a multiscale time-frequency representation. The Stockwell measures can be studied in the framework of the Cohen's class distributions with a generalized frequency-dependent kernel function. A magnetoencephalography study using the Stockwell coherence reveals an interesting temporal interaction between contralateral and ipsilateral motor cortices under the multisource interference task.
Assessing cardiac preload by the Initial Systolic Time Interval obtained from impedance cardiography
Directory of Open Access Journals (Sweden)
Jan H Meijer
2010-01-01
Full Text Available The Initial Systolic Time Interval (ISTI, obtained from the electrocardiogram (ECG and impedance cardiogram (ICG, is considered to be a measure for the time delay between the electrical and mechanical activity of the heart and reflects an early active period of the cardiac cycle. The clinical relevance of this time interval is subject of study. This paper presents preliminary results of a pilot study investigating the use of ISTI in evaluating and predicting the circulatory response to fluid administration in patients after coronary artery bypass graft surgery, by comparing ISTI with cardiac output (CO responsiveness. Also the use of the pulse transit time (PTT, earlier recommended for this purpose, is investigated. The results show an inverse relationship between ISTI and CO at all moments of fluid administration and also an inverse relationship between the changes ΔISTI and ΔCO before and after full fluid administration. No relationships between PTT and CO or ΔPTT and ΔCO were found. It is concluded that ISTI is dependent upon preload, and that ISTI has the potential to be used as a clinical parameter assessing preload.
Testing for Change in Mean of Independent Multivariate Observations with Time Varying Covariance
Directory of Open Access Journals (Sweden)
Mohamed Boutahar
2012-01-01
Full Text Available We consider a nonparametric CUSUM test for change in the mean of multivariate time series with time varying covariance. We prove that under the null, the test statistic has a Kolmogorov limiting distribution. The asymptotic consistency of the test against a large class of alternatives which contains abrupt, smooth and continuous changes is established. We also perform a simulation study to analyze the size distortion and the power of the proposed test.
Time-Varying Dynamic Properties of Offshore Wind Turbines Evaluated by Modal Testing
DEFF Research Database (Denmark)
Damgaard, Mads; Andersen, J. K. F.; Ibsen, Lars Bo
2014-01-01
resonance of the wind turbine structure. In this paper, free vibration tests and a numerical Winkler type approach are used to evaluate the dynamic properties of a total of 30 offshore wind turbines located in the North Sea. Analyses indicate time-varying eigenfrequencies and damping ratios of the lowest...... structural eigenmode. Isolating the oscillation oil damper performance, moveable seabed conditions may lead to the observed time dependency....
Global exponential stability of BAM neural networks with time-varying delays: The discrete-time case
Raja, R.; Marshal Anthoni, S.
2011-02-01
This paper deals with the problem of stability analysis for a class of discrete-time bidirectional associative memory (BAM) neural networks with time-varying delays. By employing the Lyapunov functional and linear matrix inequality (LMI) approach, a new sufficient conditions is proposed for the global exponential stability of discrete-time BAM neural networks. The proposed LMI based results can be easily checked by LMI control toolbox. Moreover, an example is also provided to demonstrate the effectiveness of the proposed method.
Local inertial oscillations in the surface ocean generated by time-varying winds
Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing
2015-12-01
A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.
Robust L2-L∞ Filtering of Time-Delay Jump Systems with Respect to the Finite-Time Interval
Directory of Open Access Journals (Sweden)
Shuping He
2011-01-01
Full Text Available This paper studied the problem of stochastic finite-time boundedness and disturbance attenuation for a class of linear time-delayed systems with Markov jumping parameters. Sufficient conditions are provided to solve this problem. The L2-L∞ filters are, respectively, designed for time-delayed Markov jump linear systems with/without uncertain parameters such that the resulting filtering error dynamic system is stochastically finite-time bounded and has the finite-time interval disturbance attenuation γ for all admissible uncertainties, time delays, and unknown disturbances. By using stochastic Lyapunov-Krasovskii functional approach, it is shown that the filter designing problem is in terms of the solutions of a set of coupled linear matrix inequalities. Simulation examples are included to demonstrate the potential of the proposed results.
Musa, Sarah; Supadi, Siti Suzlin; Omar, Mohd
2014-07-01
Rework is one of the solutions to some of the main issues in reverse logistic and green supply chain as it reduces production cost and environmental problem. Many researchers focus on developing rework model, but to the knowledge of the author, none of them has developed a model for time-varying demand rate. In this paper, we extend previous works and develop multiple batch production system for time-varying demand rate with rework. In this model, the rework is done within the same production cycle.
Multimodal Pilot Behavior in Multi-Axis Tracking Tasks with Time-Varying Motion Cueing Gains
Zaal, P. M. T; Pool, D. M.
2014-01-01
In a large number of motion-base simulators, adaptive motion filters are utilized to maximize the use of the available motion envelope of the motion system. However, not much is known about how the time-varying characteristics of such adaptive filters affect pilots when performing manual aircraft control. This paper presents the results of a study investigating the effects of time-varying motion filter gains on pilot control behavior and performance. An experiment was performed in a motion-base simulator where participants performed a simultaneous roll and pitch tracking task, while the roll and/or pitch motion filter gains changed over time. Results indicate that performance increases over time with increasing motion gains. This increase is a result of a time-varying adaptation of pilots' equalization dynamics, characterized by increased visual and motion response gains and decreased visual lead time constants. Opposite trends are found for decreasing motion filter gains. Even though the trends in both controlled axes are found to be largely the same, effects are less significant in roll. In addition, results indicate minor cross-coupling effects between pitch and roll, where a cueing variation in one axis affects the behavior adopted in the other axis.
The delayed reproduction of long time intervals defined by innocuous thermal sensation.
Khoshnejad, Mina; Martinu, Kristina; Grondin, Simon; Rainville, Pierre
2016-04-01
The presence of discrete events during an interval to be estimated generally causes a dilation of perceived duration (event-filling effect). Here, we investigated this phenomenon in the thermal modality using multi-seconds (19 s) innocuous cool stimuli that were either constant (continuous interval) or fluctuating to create three discrete sensory events (segmented interval). Moreover, we introduced a delay following stimulus offset, before the reproduction phase, to allow for a direct comparison with our recent study showing an underestimation of duration in a delayed reproduction task of heat pain sensations (Khoshnejad et al. in Pain 155:581-590, 2014. doi: 10.1016/j.pain.2013.12.015 ). The event-filling effect was tested by comparing the delayed reproduction of the segmented and the continuous stimuli in experimental conditions asking participants to (1) reproduce the dynamics of the sensation (i.e., changes in sensory intensity over time) or (2) reproduce only the interval duration (i.e., sensation onset-to-offset). A perceptual (control) condition required participants to report changes in sensation concurrently with the stimulus. Results of the dynamic task confirmed the underestimation of duration in the delayed reproduction task, but this effect was only found with the continuous and not with the segmented stimulus. This implies that the dilation of duration produced by segmentation might compensate for the underestimation of duration in this delayed reproduction task. However, this temporal dilation effect was only observed when participants were required to attend and reproduce the dynamics of sensation. These results suggest that the event-filling effect can be observed in the thermal sensory modality and that attention directed toward changes in sensory intensity might contribute to this effect.
Surapaneni, Sushama; S, Rajkumar; Reddy A, Vijaya Bhaskar
2013-05-01
To find out the significance of the Perforation-Operation Interval (POI) with respect to an early prognosis, in patients with peritonitis which is caused by peptic ulcer perforation. Case series. Place and Duration of the Study: Department of General Surgery, Konaseema Institute of Medical Sciences and RF Amalapuram, Andhra Pradesh, India from 2008-2011. This study included 150 patients with generalized peritonitis, who were diagnosed to have Perforated Peptic Ulcers (PPUs). The diagnosis of the PPUs was established on the basis of the history , the clinical examination and the radiological findings. The perforation-operation interval was calculated from the time of onset of the symptoms like severe abdominal pain or vomiting till the time the patient was operated. Out of the 150 patients 134 were males and 16 were females, with a male : female ratio of 9:1. Their ages ranged between 25-70 years. Out of the 150 patients, 65 patients (43.3%) presented within 24 hours of the onset of severe abdominal pain (Group A), 27 patients (18%) presented between 24-48 hours of the onset of severe abdominal pain (Group B) and 58 patients (38.6%) presented after 48 hours. There was no mortality in Group A and the morbidity was more in Group B and Group C. There were 15 deaths in Group C. The problem of peptic ulcer perforation with its complication, can be decreased by decreasing the perforation -operation time interval, which as per our study, appeared to be the single most important mortality and morbidity indicator in peptic ulcer perforation.
Hughes, Daniel; Nair, Sunil; Harvey, John N
2017-12-01
Objectives To determine the necessary screening interval for retinopathy in diabetic patients with no retinopathy based on time to laser therapy and to assess long-term visual outcome following screening. Methods In a population-based community screening programme in North Wales, 2917 patients were followed until death or for approximately 12 years. At screening, 2493 had no retinopathy; 424 had mostly minor degrees of non-proliferative retinopathy. Data on timing of first laser therapy and visual outcome following screening were obtained from local hospitals and ophthalmology units. Results Survival analysis showed that very few of the no retinopathy at screening group required laser therapy in the early years compared with the non-proliferative retinopathy group ( p retinopathy at screening group required laser therapy, and at three years 0.2% (cumulative), lower rates of treatment than have been suggested by analyses of sight-threatening retinopathy determined photographically. At follow-up (mean 7.8 ± 4.6 years), mild to moderate visual impairment in one or both eyes due to diabetic retinopathy was more common in those with retinopathy at screening (26% vs. 5%, p diabetes occurred in only 1 in 1000. Conclusions Optimum screening intervals should be determined from time to active treatment. Based on requirement for laser therapy, the screening interval for diabetic patients with no retinopathy can be extended to two to three years. Patients who attend for retinal screening and treatment who have no or non-proliferative retinopathy now have a very low risk of eventual blindness from diabetes.
Takahashi, Masashi; Kohsaka, Shun; Miyata, Hiroaki; Yoshikawa, Tsutomu; Takagi, Atsutoshi; Harada, Kazumasa; Miyamoto, Takamichi; Sakai, Tetsuo; Nagao, Ken; Sato, Naoki; Takayama, Morimasa
2011-09-01
Acute heart failure (AHF) is one of the most frequently encountered cardiovascular conditions that can seriously affect the patient's prognosis. However, the importance of early triage and treatment initiation in the setting of AHF has not been recognized. The Tokyo Cardiac Care Unit Network Database prospectively collected information of emergency admissions to acute cardiac care facilities in 2005-2007 from 67 participating hospitals in the Tokyo metropolitan area. We analyzed records of 1,218 AHF patients transported to medical centers via emergency medical services (EMS). AHF was defined as rapid onset or change in the signs and symptoms of heart failure, resulting in the need for urgent therapy. Patients with acute coronary syndrome were excluded from this analysis. Logistic regression analysis was performed to calculate the risk-adjusted in-hospital mortality. A majority of the patients were elderly (76.1 ± 11.5 years old) and male (54.1%). The overall in-hospital mortality rate was 6.0%. The median time interval between symptom onset and EMS arrival (response time) was 64 minutes (interquartile range [IQR] 26-205 minutes), and that between EMS arrival and ER arrival (transportation time) was 27 minutes (IQR 9-78 minutes). The risk-adjusted mortality increased with transportation time, but did not correlate with the response time. Those who took >45 minutes to arrive at the medical centers were at a higher risk for in-hospital mortality (odds ratio 2.24, 95% confidence interval 1.17-4.31; P = .015). Transportation time correlated with risk-adjusted mortality, and steps should be taken to reduce the EMS transfer time to improve the outcome in AHF patients. Copyright © 2011 Elsevier Inc. All rights reserved.
A study on assessment methodology of surveillance test interval and allowed outage time
International Nuclear Information System (INIS)
Che, Moo Seong; Cheong, Chang Hyeon; Lee, Byeong Cheol
1996-07-01
The objectives of this study is the development of methodology by which assessing the optimizes Surveillance Test Interval(STI) and Allowed Outage Time(AOT) using PSA method that can supplement the current deterministic methods and the improvement of Korea nuclear power plants safety. In the first year of this study, the survey about the assessment methodologies, modeling and results performed by domestic and international researches is performed as the basic step before developing the assessment methodology of this study. The assessment methodology that supplement the revealed problems in many other studies is presented and the application of new methodology into the example system assures the feasibility of this method
A study on assessment methodology of surveillance test interval and allowed outage time
Energy Technology Data Exchange (ETDEWEB)
Che, Moo Seong; Cheong, Chang Hyeon; Lee, Byeong Cheol [Seoul Nationl Univ., Seoul (Korea, Republic of)] (and others)
1996-07-15
The objectives of this study is the development of methodology by which assessing the optimizes Surveillance Test Interval(STI) and Allowed Outage Time(AOT) using PSA method that can supplement the current deterministic methods and the improvement of Korea nuclear power plants safety. In the first year of this study, the survey about the assessment methodologies, modeling and results performed by domestic and international researches is performed as the basic step before developing the assessment methodology of this study. The assessment methodology that supplement the revealed problems in many other studies is presented and the application of new methodology into the example system assures the feasibility of this method.
Jithesh, C; Venkataramana, V; Penumatsa, Narendravarma; Reddy, S N; Poornima, K Y; Rajasigamani, K
2015-08-01
To determine and compare the potential difference of nickel release from three different orthodontic brackets, in different artificial pH, in different time intervals. Twenty-seven samples of three different orthodontic brackets were selected and grouped as 1, 2, and 3. Each group was divided into three subgroups depending on the type of orthodontic brackets, salivary pH and the time interval. The Nickel release from each subgroup were analyzed by using inductively coupled plasma-Atomic Emission Spectrophotometer (Perkin Elmer, Optima 2100 DV, USA) model. Quantitative analysis of nickel was performed three times, and the mean value was used as result. ANOVA (F-test) was used to test the significant difference among the groups at 0.05 level of significance (P brackets have the highest at all 4.2 pH except in 120 h. The study result shows that the nickel release from the recycled stainless steel brackets is highest. Metal slot ceramic bracket release significantly less nickel. So, recycled stainless steel brackets should not be used for nickel allergic patients. Metal slot ceramic brackets are advisable.
Directory of Open Access Journals (Sweden)
Zhinong Jiang
2018-01-01
Full Text Available Under frequently time-varying operating conditions, equipment with dual rotors like gas turbines is influenced by two rotors with different rotating speeds. Alarm methods of fixed threshold are unable to consider the influences of time-varying operating conditions. Hence, those methods are not suitable for monitoring dual-rotor equipment. An early warning method for dual-rotor equipment under time-varying operating conditions is proposed in this paper. The influences of time-varying rotating speeds of dual rotors on alarm thresholds have been considered. Firstly, the operating conditions are divided into several limited intervals according to rotating speeds of dual rotors. Secondly, the train data within each interval is processed by SVDD and the allowable ranges (i.e., the alarm threshold of the vibration are determined. The alarm threshold of each interval of operating conditions is obtained. The alarm threshold can be expressed as a sphere, whose controlling parameters are the coordinate of the center and the radius. Then, the cluster center of the test data, whose alarm state is to be judged, can be extracted through K-means. Finally, the alarm state can be obtained by comparing the cluster center with the corresponding sphere. Experiments are conducted to validate the proposed method.
Modelling Conditional and Unconditional Heteroskedasticity with Smoothly Time-Varying Structure
DEFF Research Database (Denmark)
Amado, Christina; Teräsvirta, Timo
multiplier type misspecification tests. Finite-sample properties of these procedures and tests are examined by simulation. An empirical application to daily stock returns and another one to daily exchange rate returns illustrate the functioning and properties of our modelling strategy in practice......In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the conditional variance to have a smooth time-varying structure of either ad- ditive or multiplicative type. The suggested parameterizations describe both nonlinearity and structural change...... in the conditional and unconditional variances where the transition between regimes over time is smooth. A modelling strategy for these new time-varying parameter GARCH models is developed. It relies on a sequence of Lagrange multiplier tests, and the adequacy of the estimated models is investigated by Lagrange...
Models of quality-adjusted life years when health varies over time
DEFF Research Database (Denmark)
Hansen, Kristian Schultz; Østerdal, Lars Peter Raahave
2006-01-01
Qualityadjusted life year (QALY) models are widely used for economic evaluation in the health care sector. In the first part of the paper, we establish an overview of QALY models where health varies over time and provide a theoretical analysis of model identification and parameter estimation from...... time tradeoff (TTO) and standard gamble (SG) scores. We investigate deterministic and probabilistic models and consider five different families of discounting functions in all. The second part of the paper discusses four issues recurrently debated in the literature. This discussion includes questioning...... of these two can be used to disentangle risk aversion from discounting. We find that caution must be taken when drawing conclusions from models with chronic health states to situations where health varies over time. One notable difference is that in the former case, risk aversion may be indistinguishable from...
Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Arunkumar, A.
2013-09-01
This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov-Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results.
International Nuclear Information System (INIS)
Vadivel, P; Sakthivel, R; Mathiyalagan, K; Arunkumar, A
2013-01-01
This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov–Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results. (paper)
Cole, David A; Martin, Joan M; Jacquez, Farrah M; Tram, Jane M; Zelkowitz, Rachel; Nick, Elizabeth A; Rights, Jason D
2017-07-01
The longitudinal structure of depression in children and adolescents was examined by applying a Trait-State-Occasion structural equation model to 4 waves of self, teacher, peer, and parent reports in 2 age groups (9 to 13 and 13 to 16 years old). Analyses revealed that the depression latent variable consisted of 2 longitudinal factors: a time-invariant dimension that was completely stable over time and a time-varying dimension that was not perfectly stable over time. Different sources of information were differentially sensitive to these 2 dimensions. Among adolescents, self- and parent reports better reflected the time-invariant aspects. For children and adolescents, peer and teacher reports better reflected the time-varying aspects. Relatively high cross-informant agreement emerged for the time-invariant dimension in both children and adolescents. Cross-informant agreement for the time-varying dimension was high for adolescents but very low for children. Implications emerge for theoretical models of depression and for its measurement, especially when attempting to predict changes in depression in the context of longitudinal studies. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Time-varying economic dominance in financial markets: A bistable dynamics approach
He, Xue-Zhong; Li, Kai; Wang, Chuncheng
2018-05-01
By developing a continuous-time heterogeneous agent financial market model of multi-assets traded by fundamental and momentum investors, we provide a potential mechanism for generating time-varying dominance between fundamental and non-fundamental in financial markets. We show that investment constraints lead to the coexistence of a locally stable fundamental steady state and a locally stable limit cycle around the fundamental, characterized by a Bautin bifurcation. This provides a mechanism for market prices to switch stochastically between the two persistent but very different market states, leading to the coexistence and time-varying dominance of seemingly controversial efficient market and price momentum over different time periods. The model also generates other financial market stylized facts, such as spillover effects in both momentum and volatility, market booms, crashes, and correlation reduction due to cross-sectional momentum trading. Empirical evidence based on the U.S. market supports the main findings. The mechanism developed in this paper can be used to characterize time-varying economic dominance in economics and finance in general.
Time-varying metamaterials based on graphene-wrapped microwires: Modeling and potential applications
Salary, Mohammad Mahdi; Jafar-Zanjani, Samad; Mosallaei, Hossein
2018-03-01
The successful realization of metamaterials and metasurfaces requires the judicious choice of constituent elements. In this paper, we demonstrate the implementation of time-varying metamaterials in the terahertz frequency regime by utilizing graphene-wrapped microwires as building blocks and modulation of graphene conductivity through exterior electrical gating. These elements enable enhancement of light-graphene interaction by utilizing optical resonances associated with Mie scattering, yielding a large tunability and modulation depth. We develop a semianalytical framework based on transition-matrix formulation for modeling and analysis of periodic and aperiodic arrays of such time-varying building blocks. The proposed method is validated against full-wave numerical results obtained using the finite-difference time-domain method. It provides an ideal tool for mathematical synthesis and analysis of space-time gradient metamaterials, eliminating the need for computationally expensive numerical models. Moreover, it allows for a wider exploration of exotic space-time scattering phenomena in time-modulated metamaterials. We apply the method to explore the role of modulation parameters in the generation of frequency harmonics and their emerging wavefronts. Several potential applications of such platforms are demonstrated, including frequency conversion, holographic generation of frequency harmonics, and spatiotemporal manipulation of light. The presented results provide key physical insights to design time-modulated functional metadevices using various building blocks and open up new directions in the emerging paradigm of time-modulated metamaterials.
Xiao, Lin; Liao, Bolin; Li, Shuai; Chen, Ke
2018-02-01
In order to solve general time-varying linear matrix equations (LMEs) more efficiently, this paper proposes two nonlinear recurrent neural networks based on two nonlinear activation functions. According to Lyapunov theory, such two nonlinear recurrent neural networks are proved to be convergent within finite-time. Besides, by solving differential equation, the upper bounds of the finite convergence time are determined analytically. Compared with existing recurrent neural networks, the proposed two nonlinear recurrent neural networks have a better convergence property (i.e., the upper bound is lower), and thus the accurate solutions of general time-varying LMEs can be obtained with less time. At last, various different situations have been considered by setting different coefficient matrices of general time-varying LMEs and a great variety of computer simulations (including the application to robot manipulators) have been conducted to validate the better finite-time convergence of the proposed two nonlinear recurrent neural networks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ophem, S. van; Berkhoff, A.P.
2012-01-01
Tracking behavior and the rate of convergence are critical properties in active noise control applications with time-varying disturbance spectra. As compared to the standard filtered-reference Least Mean Square (LMS) algorithm, improved convergence can be obtained with schemes based on
Stagewise pseudo-value regression for time-varying effects on the cumulative incidence
DEFF Research Database (Denmark)
Zöller, Daniela; Schmidtmann, Irene; Weinmann, Arndt
2016-01-01
In a competing risks setting, the cumulative incidence of an event of interest describes the absolute risk for this event as a function of time. For regression analysis, one can either choose to model all competing events by separate cause-specific hazard models or directly model the association...... for time-varying effects. This is implemented by coupling variable selection between the grid times, but determining estimates separately. The effect estimates are regularized to also allow for model fitting with a low to moderate number of observations. This technique is illustrated in an application...
Projective synchronization of time-varying delayed neural network with adaptive scaling factors
International Nuclear Information System (INIS)
Ghosh, Dibakar; Banerjee, Santo
2013-01-01
Highlights: • Projective synchronization in coupled delayed neural chaotic systems with modulated delay time is introduced. • An adaptive rule for the scaling factors is introduced. • This scheme is highly applicable in secure communication. -- Abstract: In this work, the projective synchronization between two continuous time delayed neural systems with time varying delay is investigated. A sufficient condition for synchronization for the coupled systems with modulated delay is presented analytically with the help of the Krasovskii–Lyapunov approach. The effect of adaptive scaling factors on synchronization are also studied in details. Numerical simulations verify the effectiveness of the analytic results
Multi-disciplinary techniques for understanding time-varying space-based imagery
Casasent, D.; Sanderson, A.; Kanade, T.
1984-06-01
A multidisciplinary program for space-based image processing is reported. This project combines optical and digital processing techniques and pattern recognition, image understanding and artificial intelligence methodologies. Time change image processing was recognized as the key issue to be addressed. Three time change scenarios were defined based on the frame rate of the data change. This report details the recent research on: various statistical and deterministic image features, recognition of sub-pixel targets in time varying imagery, and 3-D object modeling and recognition.
Observation of time-varying photoconductivity and persistent photoconductivity in porous silicon
DEFF Research Database (Denmark)
Frello, T.; Veje, E.; Leistiko, Otto
1996-01-01
We have observed time-varying photoconductivity and persistent photoconductivity in porous silicon, both with time-evolution scales of the order of several minutes or hours. The time evolutions depend on the wavelength and the intensity of the illuminating light. The data indicate the presence...... of at least two competing mechanisms, one is tentatively related to photoinduced creation of charge carriers in the silicon substrate followed by diffusion into the porous silicon layer, and the other is tentatively related to desorption of hydrogen from the porous silicon. ©1996 American Institute of Physics....
State space modeling of time-varying contemporaneous and lagged relations in connectivity maps.
Molenaar, Peter C M; Beltz, Adriene M; Gates, Kathleen M; Wilson, Stephen J
2016-01-15
Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network parameters are constant across time), but this assumption does not always hold true. The authors provide a description of a new approach for simultaneously detecting time-varying (or dynamic) contemporaneous and lagged relations in brain connectivity maps. Specifically, they use a novel raw data likelihood estimation technique (involving a second-order extended Kalman filter/smoother embedded in a nonlinear optimizer) to determine the variances of the random walks associated with state space model parameters and their autoregressive components. The authors illustrate their approach with simulated and blood oxygen level-dependent functional magnetic resonance imaging data from 30 daily cigarette smokers performing a verbal working memory task, focusing on seven regions of interest (ROIs). Twelve participants had dynamic directed functional connectivity maps: Eleven had one or more time-varying contemporaneous ROI state loadings, and one had a time-varying autoregressive parameter. Compared to smokers without dynamic maps, smokers with dynamic maps performed the task with greater accuracy. Thus, accurate detection of dynamic brain processes is meaningfully related to behavior in a clinical sample. Published by Elsevier Inc.
A Tentative Application Of Morphological Filters To Time-Varying Images
Billard, D.; Poquillon, B.
1989-03-01
In this paper, morphological filters, which are commonly used to process either 2D or multidimensional static images, are generalized to the analysis of time-varying image sequence. The introduction of the time dimension induces then interesting prop-erties when designing such spatio-temporal morphological filters. In particular, the specification of spatio-temporal structuring ele-ments (equivalent to time-varying spatial structuring elements) can be adjusted according to the temporal variations of the image sequences to be processed : this allows to derive specific morphological transforms to perform noise filtering or moving objects discrimination on dynamic images viewed by a non-stationary sensor. First, a brief introduction to the basic principles underlying morphological filters will be given. Then, a straightforward gener-alization of these principles to time-varying images will be pro-posed. This will lead us to define spatio-temporal opening and closing and to introduce some of their possible applications to process dynamic images. At last, preliminary results obtained us-ing a natural forward looking infrared (FUR) image sequence are presented.
International Nuclear Information System (INIS)
Lin, Chang Sheng; Tseng, Tse Chuan
2014-01-01
Modal Identification from response data only is studied for structural systems under nonstationary ambient vibration. The topic of this paper is the estimation of modal parameters from nonstationary ambient vibration data by applying the random decrement algorithm with time-varying threshold level. In the conventional random decrement algorithm, the threshold level for evaluating random dec signatures is defined as the standard deviation value of response data of the reference channel. The distortion of random dec signatures may be, however, induced by the error involved in noise from the original response data in practice. To improve the accuracy of identification, a modification of the sampling procedure in random decrement algorithm is proposed for modal-parameter identification from the nonstationary ambient response data. The time-varying threshold level is presented for the acquisition of available sample time history to perform averaging analysis, and defined as the temporal root-mean-square function of structural response, which can appropriately describe a wide variety of nonstationary behaviors in reality, such as the time-varying amplitude (variance) of a nonstationary process in a seismic record. Numerical simulations confirm the validity and robustness of the proposed modal-identification method from nonstationary ambient response data under noisy conditions.
Tracking control of time-varying knee exoskeleton disturbed by interaction torque.
Li, Zhan; Ma, Wenhao; Yin, Ziguang; Guo, Hongliang
2017-11-01
Knee exoskeletons have been increasingly applied as assistive devices to help lower-extremity impaired people to make their knee joints move through providing external movement compensation. Tracking control of knee exoskeletons guided by human intentions often encounters time-varying (time-dependent) issues and the disturbance interaction torque, which may dramatically put an influence up on their dynamic behaviors. Inertial and viscous parameters of knee exoskeletons can be estimated to be time-varying due to unexpected mechanical vibrations and contact interactions. Moreover, the interaction torque produced from knee joint of wearers has an evident disturbance effect on regular motions of knee exoskeleton. All of these points can increase difficultly of accurate control of knee exoskeletons to follow desired joint angle trajectories. This paper proposes a novel control strategy for controlling knee exoskeleton with time-varying inertial and viscous coefficients disturbed by interaction torque. Such designed controller is able to make the tracking error of joint angle of knee exoskeletons exponentially converge to zero. Meanwhile, the proposed approach is robust to guarantee the tracking error bounded when the interaction torque exists. Illustrative simulation and experiment results are presented to show efficiency of the proposed controller. Additionally, comparisons with gradient dynamic (GD) approach and other methods are also presented to demonstrate efficiency and superiority of the proposed control strategy for tracking joint angle of knee exoskeleton. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Two-dimensional phononic crystals with time-varying properties: a multiple scattering analysis
International Nuclear Information System (INIS)
Wright, D W; Cobbold, R S C
2010-01-01
Multiple scattering theory is a versatile two- and three-dimensional method for characterizing the acoustic wave transmission through many scatterers. It provides analytical solutions to wave propagation in scattering structures, and its computational complexity grows logarithmically with the number of scatterers. In this paper we show how the 2D method can be adapted to include the effects of time-varying material parameters. Specifically, a new T-matrix is defined to include the effects of frequency modulation that occurs in time-varying phononic crystals. Solutions were verified against finite difference time domain (FDTD) simulations and showed excellent agreement. This new method enables fast characterization of time-varying phononic crystals without the need to resort to lengthy FDTD simulations. Also, the method of combining T-matrices to form the T-supermatrix remains unchanged provided that the new matrix definitions are used. The method is quite compatible with existing implementations of multiple scattering theory and could be readily extended to three-dimensional multiple scattering theory
A hepatitis C virus infection model with time-varying drug effectiveness: solution and analysis.
Directory of Open Access Journals (Sweden)
Jessica M Conway
2014-08-01
Full Text Available Simple models of therapy for viral diseases such as hepatitis C virus (HCV or human immunodeficiency virus assume that, once therapy is started, the drug has a constant effectiveness. More realistic models have assumed either that the drug effectiveness depends on the drug concentration or that the effectiveness varies over time. Here a previously introduced varying-effectiveness (VE model is studied mathematically in the context of HCV infection. We show that while the model is linear, it has no closed-form solution due to the time-varying nature of the effectiveness. We then show that the model can be transformed into a Bessel equation and derive an analytic solution in terms of modified Bessel functions, which are defined as infinite series, with time-varying arguments. Fitting the solution to data from HCV infected patients under therapy has yielded values for the parameters in the model. We show that for biologically realistic parameters, the predicted viral decay on therapy is generally biphasic and resembles that predicted by constant-effectiveness (CE models. We introduce a general method for determining the time at which the transition between decay phases occurs based on calculating the point of maximum curvature of the viral decay curve. For the parameter regimes of interest, we also find approximate solutions for the VE model and establish the asymptotic behavior of the system. We show that the rate of second phase decay is determined by the death rate of infected cells multiplied by the maximum effectiveness of therapy, whereas the rate of first phase decline depends on multiple parameters including the rate of increase of drug effectiveness with time.
Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.
Li, Shuai; Li, Yangming
2013-10-28
The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.
Detection of abnormal item based on time intervals for recommender systems.
Gao, Min; Yuan, Quan; Ling, Bin; Xiong, Qingyu
2014-01-01
With the rapid development of e-business, personalized recommendation has become core competence for enterprises to gain profits and improve customer satisfaction. Although collaborative filtering is the most successful approach for building a recommender system, it suffers from "shilling" attacks. In recent years, the research on shilling attacks has been greatly improved. However, the approaches suffer from serious problem in attack model dependency and high computational cost. To solve the problem, an approach for the detection of abnormal item is proposed in this paper. In the paper, two common features of all attack models are analyzed at first. A revised bottom-up discretized approach is then proposed based on time intervals and the features for the detection. The distributions of ratings in different time intervals are compared to detect anomaly based on the calculation of chi square distribution (χ(2)). We evaluated our approach on four types of items which are defined according to the life cycles of these items. The experimental results show that the proposed approach achieves a high detection rate with low computational cost when the number of attack profiles is more than 15. It improves the efficiency in shilling attacks detection by narrowing down the suspicious users.
Detection of Abnormal Item Based on Time Intervals for Recommender Systems
Directory of Open Access Journals (Sweden)
Min Gao
2014-01-01
Full Text Available With the rapid development of e-business, personalized recommendation has become core competence for enterprises to gain profits and improve customer satisfaction. Although collaborative filtering is the most successful approach for building a recommender system, it suffers from “shilling” attacks. In recent years, the research on shilling attacks has been greatly improved. However, the approaches suffer from serious problem in attack model dependency and high computational cost. To solve the problem, an approach for the detection of abnormal item is proposed in this paper. In the paper, two common features of all attack models are analyzed at first. A revised bottom-up discretized approach is then proposed based on time intervals and the features for the detection. The distributions of ratings in different time intervals are compared to detect anomaly based on the calculation of chi square distribution (χ2. We evaluated our approach on four types of items which are defined according to the life cycles of these items. The experimental results show that the proposed approach achieves a high detection rate with low computational cost when the number of attack profiles is more than 15. It improves the efficiency in shilling attacks detection by narrowing down the suspicious users.
Heuristic algorithms for the minmax regret flow-shop problem with interval processing times.
Ćwik, Michał; Józefczyk, Jerzy
2018-01-01
An uncertain version of the permutation flow-shop with unlimited buffers and the makespan as a criterion is considered. The investigated parametric uncertainty is represented by given interval-valued processing times. The maximum regret is used for the evaluation of uncertainty. Consequently, the minmax regret discrete optimization problem is solved. Due to its high complexity, two relaxations are applied to simplify the optimization procedure. First of all, a greedy procedure is used for calculating the criterion's value, as such calculation is NP-hard problem itself. Moreover, the lower bound is used instead of solving the internal deterministic flow-shop. The constructive heuristic algorithm is applied for the relaxed optimization problem. The algorithm is compared with previously elaborated other heuristic algorithms basing on the evolutionary and the middle interval approaches. The conducted computational experiments showed the advantage of the constructive heuristic algorithm with regards to both the criterion and the time of computations. The Wilcoxon paired-rank statistical test confirmed this conclusion.
Directory of Open Access Journals (Sweden)
Guadalupe de la Lanza Espino
2012-07-01
Full Text Available The diverse management of river water in Mexico has been unequal due to the different anthropological activities, and it is associated with inter-annual changes in the climate and runoff patterns, leading to a loss of the ecosystem integrity. However, nowadays there are different methods to assess the water volume that is necessary to conserve the environment, among which are hydrological methods, such as those applied here, that are based on information on water volumes recorded over decades, which are not always available in the country. For this reason, this study compares runoff records for different time ranges: minimum of 10 years, medium of 20 years, and more than 50 years, to quantify the environmental flow. These time intervals provided similar results, which mean that not only for the Acaponeta river, but possibly for others lotic systems as well, a 10-year interval may be used satisfactorily. In this river, the runoff water that must be kept for environmental purposes is: for 10 years 70.1%, for 20 years 78.1% and for >50 years 68.8%, with an average of 72.3% of the total water volume or of the average annual runoff.
Delay-Dependent Exponential Stability for Discrete-Time BAM Neural Networks with Time-Varying Delays
Directory of Open Access Journals (Sweden)
Yonggang Chen
2008-01-01
Full Text Available This paper considers the delay-dependent exponential stability for discrete-time BAM neural networks with time-varying delays. By constructing the new Lyapunov functional, the improved delay-dependent exponential stability criterion is derived in terms of linear matrix inequality (LMI. Moreover, in order to reduce the conservativeness, some slack matrices are introduced in this paper. Two numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.
A simple analytical model for dynamics of time-varying target leverage ratios
Lo, C. F.; Hui, C. H.
2012-03-01
In this paper we have formulated a simple theoretical model for the dynamics of the time-varying target leverage ratio of a firm under some assumptions based upon empirical observations. In our theoretical model the time evolution of the target leverage ratio of a firm can be derived self-consistently from a set of coupled Ito's stochastic differential equations governing the leverage ratios of an ensemble of firms by the nonlinear Fokker-Planck equation approach. The theoretically derived time paths of the target leverage ratio bear great resemblance to those used in the time-dependent stationary-leverage (TDSL) model [Hui et al., Int. Rev. Financ. Analy. 15, 220 (2006)]. Thus, our simple model is able to provide a theoretical foundation for the selected time paths of the target leverage ratio in the TDSL model. We also examine how the pace of the adjustment of a firm's target ratio, the volatility of the leverage ratio and the current leverage ratio affect the dynamics of the time-varying target leverage ratio. Hence, with the proposed dynamics of the time-dependent target leverage ratio, the TDSL model can be readily applied to generate the default probabilities of individual firms and to assess the default risk of the firms.
Dziak, John J; Li, Runze; Tan, Xianming; Shiffman, Saul; Shiyko, Mariya P
2015-12-01
Behavioral scientists increasingly collect intensive longitudinal data (ILD), in which phenomena are measured at high frequency and in real time. In many such studies, it is of interest to describe the pattern of change over time in important variables as well as the changing nature of the relationship between variables. Individuals' trajectories on variables of interest may be far from linear, and the predictive relationship between variables of interest and related covariates may also change over time in a nonlinear way. Time-varying effect models (TVEMs; see Tan, Shiyko, Li, Li, & Dierker, 2012) address these needs by allowing regression coefficients to be smooth, nonlinear functions of time rather than constants. However, it is possible that not only observed covariates but also unknown, latent variables may be related to the outcome. That is, regression coefficients may change over time and also vary for different kinds of individuals. Therefore, we describe a finite mixture version of TVEM for situations in which the population is heterogeneous and in which a single trajectory would conceal important, interindividual differences. This extended approach, MixTVEM, combines finite mixture modeling with non- or semiparametric regression modeling, to describe a complex pattern of change over time for distinct latent classes of individuals. The usefulness of the method is demonstrated in an empirical example from a smoking cessation study. We provide a versatile SAS macro and R function for fitting MixTVEMs. (c) 2015 APA, all rights reserved).
Artificial Intelligence In Processing A Sequence Of Time-Varying Images
Siler, W.; Tucker, D.; Buckley, J.; Hess, R. G.; Powell, V. G.
1985-04-01
A computer system is described for unsupervised analysis of five sets of ultrasound images of the heart. Each set consists of 24 frames taken at 33 millisecond intervals. The images are acquired in real time with computer control of the ultrasound apparatus. After acquisition the images are segmented by a sequence of image-processing programs; features are extracted and stored in a version of the Carnegie- Mellon Blackboard. Region classification is accomplished by a fuzzy logic expert system FLOPS based on OPS5. Preliminary results are given.
An estimation of U.S. gasoline demand. A smooth time-varying cointegration approach
International Nuclear Information System (INIS)
Park, Sung Y.; Zhao, Guochang
2010-01-01
In this paper the U.S. gasoline demand from 1976 to 2008 is estimated using a time-varying cointegrating regression. We find that price elasticity increased rapidly during the late 1970s and then decreased until 1987. After a relatively small-scaled 'increase-decrease' cycle from 1987 to 2000, the price elasticity rose again after 2000. The time-varying change of the elasticities may be explained by the proportion of gasoline consumption to income and fluctuation of the degree of necessity. The result of the error correction model shows that a deviation from a long-run equilibrium is corrected quickly, and the welfare analysis illustrates there may be a gain by shifting the tax scheme from income tax to gasoline tax. (author)
H∞ Control for a Networked Control Model of Systems with Two Additive Time-Varying Delays
Directory of Open Access Journals (Sweden)
Hanyong Shao
2014-01-01
Full Text Available This paper is concerned with H∞ control for a networked control model of systems with two additive time-varying delays. A new Lyapunov functional is constructed to make full use of the information of the delays, and for the derivative of the Lyapunov functional a novel technique is employed to compute a tighter upper bound, which is dependent on the two time-varying delays instead of the upper bounds of them. Then the convex polyhedron method is proposed to check the upper bound of the derivative of the Lyapunov functional. The resulting stability criteria have fewer matrix variables but less conservatism than some existing ones. The stability criteria are applied to designing a state feedback controller, which guarantees that the closed-loop system is asymptotically stable with a prescribed H∞ disturbance attenuation level. Finally examples are given to show the advantages of the stability criteria and the effectiveness of the proposed control method.
Robust stabilisation of time-varying delay systems with probabilistic uncertainties
Jiang, Ning; Xiong, Junlin; Lam, James
2016-09-01
For robust stabilisation of time-varying delay systems, only sufficient conditions are available to date. A natural question is as follows: if the existing sufficient conditions are not satisfied, and hence no controllers can be found, what can one do to improve the stability performance of time-varying delay systems? This question is addressed in this paper when there is a probabilistic structure on the parameter uncertainty set. A randomised algorithm is proposed to design a state-feedback controller, which stabilises the system over the uncertainty domain in a probabilistic sense. The capability of the designed controller is quantified by the probability of stability of the resulting closed-loop system. The accuracy of the solution obtained from the randomised algorithm is also analysed. Finally, numerical examples are used to illustrate the effectiveness and advantages of the developed controller design approach.
Achieving Synchronization in Arrays of Coupled Differential Systems with Time-Varying Couplings
Directory of Open Access Journals (Sweden)
Xinlei Yi
2013-01-01
Full Text Available We study complete synchronization of the complex dynamical networks described by linearly coupled ordinary differential equation systems (LCODEs. Here, the coupling is timevarying in both network structure and reaction dynamics. Inspired by our previous paper (Lu et al. (2007-2008, the extended Hajnal diameter is introduced and used to measure the synchronization in a general differential system. Then we find that the Hajnal diameter of the linear system induced by the time-varying coupling matrix and the largest Lyapunov exponent of the synchronized system play the key roles in synchronization analysis of LCODEs with identity inner coupling matrix. As an application, we obtain a general sufficient condition guaranteeing directed time-varying graph to reach consensus. Example with numerical simulation is provided to show the effectiveness of the theoretical results.
Estimation of time-varying reactivity by the H∞ optimal linear filter
International Nuclear Information System (INIS)
Suzuki, Katsuo; Shimazaki, Junya; Watanabe, Koiti
1995-01-01
The problem of estimating the time-varying net reactivity from flux measurements is solved for a point reactor kinetics model using a linear filtering technique in an H ∞ settings. In order to sue this technique, an appropriate dynamical model of the reactivity is constructed that can be embedded into the reactor model as one of its variables. A filter, which minimizes the H ∞ norm of the estimation error power spectrum, operates on neutron density measurements corrupted by noise and provides an estimate of the dynamic net reactivity. Computer simulations are performed to reveal the basic characteristics of the H ∞ optimal filter. The results of the simulation indicate that the filter can be used to determine the time-varying reactivity from neutron density measurements that have been corrupted by noise
Directory of Open Access Journals (Sweden)
Da Sun
2016-01-01
Full Text Available A novel control algorithm based on the modified wave-variable controllers is proposed to achieve accurate position synchronization and reasonable force tracking of the nonlinear single-master-multiple-slave teleoperation system and simultaneously guarantee overall system’s stability in the presence of large time-varying delays. The system stability in different scenarios of human and environment situations has been analyzed. The proposed method is validated through experimental work based on the 3-DOF trilateral teleoperation system consisting of three different manipulators. The experimental results clearly demonstrate the feasibility of the proposed algorithm to achieve high transparency and robust stability in nonlinear single-master-multiple-slave teleoperation system in the presence of time-varying delays.
International Nuclear Information System (INIS)
Franzè, Giuseppe; Lucia, Walter; Tedesco, Francesco
2014-01-01
This paper proposes a Model Predictive Control (MPC) strategy to address regulation problems for constrained polytopic Linear Parameter Varying (LPV) systems subject to input and state constraints in which both plant measurements and command signals in the loop are sent through communication channels subject to time-varying delays (Networked Control System (NCS)). The results here proposed represent a significant extension to the LPV framework of a recent Receding Horizon Control (RHC) scheme developed for the so-called robust case. By exploiting the parameter availability, the pre-computed sequences of one- step controllable sets inner approximations are less conservative than the robust counterpart. The resulting framework guarantees asymptotic stability and constraints fulfilment regardless of plant uncertainties and time-delay occurrences. Finally, experimental results on a laboratory two-tank test-bed show the effectiveness of the proposed approach
International Nuclear Information System (INIS)
Pyragas, V.; Pyragas, K.
2011-01-01
We propose a simple adaptive delayed feedback control algorithm for stabilization of unstable periodic orbits with unknown periods. The state dependent time delay is varied continuously towards the period of controlled orbit according to a gradient-descent method realized through three simple ordinary differential equations. We demonstrate the efficiency of the algorithm with the Roessler and Mackey-Glass chaotic systems. The stability of the controlled orbits is proven by computation of the Lyapunov exponents of linearized equations. -- Highlights: → A simple adaptive modification of the delayed feedback control algorithm is proposed. → It enables the control of unstable periodic orbits with unknown periods. → The delay time is varied continuously according to a gradient descend method. → The algorithm is embodied by three simple ordinary differential equations. → The validity of the algorithm is proven by computation of the Lyapunov exponents.
Structural nested mean models for assessing time-varying effect moderation.
Almirall, Daniel; Ten Have, Thomas; Murphy, Susan A
2010-03-01
This article considers the problem of assessing causal effect moderation in longitudinal settings in which treatment (or exposure) is time varying and so are the covariates said to moderate its effect. Intermediate causal effects that describe time-varying causal effects of treatment conditional on past covariate history are introduced and considered as part of Robins' structural nested mean model. Two estimators of the intermediate causal effects, and their standard errors, are presented and discussed: The first is a proposed two-stage regression estimator. The second is Robins' G-estimator. The results of a small simulation study that begins to shed light on the small versus large sample performance of the estimators, and on the bias-variance trade-off between the two estimators are presented. The methodology is illustrated using longitudinal data from a depression study.
Compensating Unknown Time-Varying Delay in Opto-Electronic Platform Tracking Servo System
Directory of Open Access Journals (Sweden)
Ruihong Xie
2017-05-01
Full Text Available This paper investigates the problem of compensating miss-distance delay in opto-electronic platform tracking servo system. According to the characteristic of LOS (light-of-sight motion, we setup the Markovian process model and compensate this unknown time-varying delay by feed-forward forecasting controller based on robust H∞ control. Finally, simulation based on double closed-loop PI (Proportion Integration control system indicates that the proposed method is effective for compensating unknown time-varying delay. Tracking experiments on the opto-electronic platform indicate that RMS (root-mean-square error is 1.253 mrad when tracking 10° 0.2 Hz signal.
International Nuclear Information System (INIS)
Yang Dong-Sheng; Liu Zhen-Wei; Liu Zhao-Bing; Zhao Yan
2012-01-01
The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time-varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method. (general)
Estimating time-varying conditional correlations between stock and foreign exchange markets
Tastan, Hüseyin
2006-02-01
This study explores the dynamic interaction between stock market returns and changes in nominal exchange rates. Many financial variables are known to exhibit fat tails and autoregressive variance structure. It is well-known that unconditional covariance and correlation coefficients also vary significantly over time and multivariate generalized autoregressive model (MGARCH) is able to capture the time-varying variance-covariance matrix for stock market returns and changes in exchange rates. The model is applied to daily Euro-Dollar exchange rates and two stock market indexes from the US economy: Dow-Jones Industrial Average Index and S&P500 Index. The news impact surfaces are also drawn based on the model estimates to see the effects of idiosyncratic shocks in respective markets.
An estimation of U.S. gasoline demand. A smooth time-varying cointegration approach
Energy Technology Data Exchange (ETDEWEB)
Park, Sung Y. [Department of Economics, University of Illinois, Urbana, IL 61801 (United States); The Wang Yanan Institute for Studies in Economics, Xiamen University, Xiamen, Fujian 361005 (China); Zhao, Guochang [Research School of Economics, College of Business and Economics, The Australian National University, Canberra, ACT 2601 (Australia)
2010-01-15
In this paper the U.S. gasoline demand from 1976 to 2008 is estimated using a time-varying cointegrating regression. We find that price elasticity increased rapidly during the late 1970s and then decreased until 1987. After a relatively small-scaled 'increase-decrease' cycle from 1987 to 2000, the price elasticity rose again after 2000. The time-varying change of the elasticities may be explained by the proportion of gasoline consumption to income and fluctuation of the degree of necessity. The result of the error correction model shows that a deviation from a long-run equilibrium is corrected quickly, and the welfare analysis illustrates there may be a gain by shifting the tax scheme from income tax to gasoline tax. (author)
Cao, Jinde; Song, Qiankun
2006-07-01
In this paper, the exponential stability problem is investigated for a class of Cohen-Grossberg-type bidirectional associative memory neural networks with time-varying delays. By using the analysis method, inequality technique and the properties of an M-matrix, several novel sufficient conditions ensuring the existence, uniqueness and global exponential stability of the equilibrium point are derived. Moreover, the exponential convergence rate is estimated. The obtained results are less restrictive than those given in the earlier literature, and the boundedness and differentiability of the activation functions and differentiability of the time-varying delays are removed. Two examples with their simulations are given to show the effectiveness of the obtained results.
Directory of Open Access Journals (Sweden)
Widowati
2012-07-01
Full Text Available The applicability of parameter varying reduced order controllers to aircraft model is proposed. The generalization of the balanced singular perturbation method of linear time invariant (LTI system is used to reduce the order of linear parameter varying (LPV system. Based on the reduced order model the low-order LPV controller is designed by using synthesis technique. The performance of the reduced order controller is examined by applying it to lateral-directional control of aircraft model having 20th order. Furthermore, the time responses of the closed loop system with reduced order LPV controllers and reduced order LTI controller is compared. From the simulation results, the 8th order LPV controller can maintain stability and to provide the same level of closed-loop systems performance as the full-order LPV controller. It is different with the reduced-order LTI controller that cannot maintain stability and performance for all allowable parameter trajectories.
Applications, dosimetry and biological interactions of static and time-varying magnetic fields
International Nuclear Information System (INIS)
Tenforde, T.S.
1988-08-01
The primary topics of this presentation include: (1) the applications of magnetic fields in research, industry, and medical technologies; (2) mechanisms of interaction of static and time-varying magnetic fields with living systems; (3) human health effects of exposure to static and time-varying magnetic fields in occupational, medical, and residential settings; and (4) recent advances in the dosimetry of extremely-low-frequency electromagnetic fields. The discussion of these topics is centered about two issues of considerable contemporary interest: (1) potential health effects of the fields used in magnetic resonance imaging and in vivo spectroscopy, and (2) the controversial issue of whether exposure to extremely-low-frequency (ELF) electromagnetic fields in the home and workplace leads to an elevated risk of cancer. 11 refs
Almirall, Daniel; Griffin, Beth Ann; McCaffrey, Daniel F.; Ramchand, Rajeev; Yuen, Robert A.; Murphy, Susan A.
2014-01-01
This article considers the problem of examining time-varying causal effect moderation using observational, longitudinal data in which treatment, candidate moderators, and possible confounders are time varying. The structural nested mean model (SNMM) is used to specify the moderated time-varying causal effects of interest in a conditional mean model for a continuous response given time-varying treatments and moderators. We present an easy-to-use estimator of the SNMM that combines an existing regression-with-residuals (RR) approach with an inverse-probability-of-treatment weighting (IPTW) strategy. The RR approach has been shown to identify the moderated time-varying causal effects if the time-varying moderators are also the sole time-varying confounders. The proposed IPTW+RR approach provides estimators of the moderated time-varying causal effects in the SNMM in the presence of an additional, auxiliary set of known and measured time-varying confounders. We use a small simulation experiment to compare IPTW+RR versus the traditional regression approach and to compare small and large sample properties of asymptotic versus bootstrap estimators of the standard errors for the IPTW+RR approach. This article clarifies the distinction between time-varying moderators and time-varying confounders. We illustrate the methodology in a case study to assess if time-varying substance use moderates treatment effects on future substance use. PMID:23873437
Internet Teleoperation of a Robot with Streaming Buffer System under Varying Time Delays
Park, Jahng-Hyon; Shin, Wanjae
It is known that existence of irregular transmission time delay is a major bottleneck for application of advanced robot control schemes to internet telerobotic systems. In the internet teleoperation system, the irregular transmission time delay causes a critical problem, which includes instability and inaccuracy. This paper suggests a practical internet teleoperation system with streaming buffer system, which consists of a buffer, a buffer manager, and a control timer. The proposed system converts the irregular transmission time delay to a constant. So, the system effectively transmits the control input to a remote site to operate a robot stably and accurately. This feature enables short control input intervals. That means the entire system has a large control bandwidth. The validity of the proposed method is demonstrated by experiments of teleoperation from USC (University of Southern California in U. S.A.) to HYU (Hanyang Univ. in Korea) through the Internet. The proposed method is also demonstrated by experiments of teleoperation through the wireless internet.
Estimation and Properties of a Time-Varying GQARCH(1,1-M Model
Directory of Open Access Journals (Sweden)
Sofia Anyfantaki
2011-01-01
analysis of these models computationally infeasible. This paper outlines the issues and suggests to employ a Markov chain Monte Carlo algorithm which allows the calculation of a classical estimator via the simulated EM algorithm or a simulated Bayesian solution in only ( computational operations, where is the sample size. Furthermore, the theoretical dynamic properties of a time-varying GQARCH(1,1-M are derived. We discuss them and apply the suggested Bayesian estimation to three major stock markets.
Adaptive Synchronization between Two Different Complex Networks with Time-Varying Delay Coupling
International Nuclear Information System (INIS)
Jian-Rui, Chen; Li-Cheng, Jiao; Jian-She, Wu; Xiao-Hua, Wang
2009-01-01
A new general network model for two complex networks with time-varying delay coupling is presented. Then we investigate its synchronization phenomena. The two complex networks of the model differ in dynamic nodes, the number of nodes and the coupling connections. By using adaptive controllers, a synchronization criterion is derived. Numerical examples are given to demonstrate the effectiveness of the obtained synchronization criterion. This study may widen the application range of synchronization, such as in chaotic secure communication. (general)
Unbiasedness and time varying risk premia in the crude oil futures market
International Nuclear Information System (INIS)
Moosa, I.A.; Al-Loughani, N.E.
1994-01-01
This paper presents some empirical evidence on market efficiency and unbiasedness in the crude oil futures market and some related issues. On the basis of monthly observations on spot and futures prices of the West Texas Intermediate (WTI) crude oil, several tests are carried out on the relevant hypotheses. The evidence suggests that futures prices are neither unbiased nor efficient forecasters of spot prices. Furthermore, a GARCH-M(1,1) model reveals the existence of a time varying risk premium. (author)
Robust convergence of Cohen-Grossberg neural networks with time-varying delays
International Nuclear Information System (INIS)
Xiong Wenjun; Ma Deyi; Liang Jinling
2009-01-01
In this paper, robust convergence is studied for the Cohen-Grossberg neural networks (CGNNs) with time-varying delays. By applying the differential inequality and the Lyapunov method, some delay-independent conditions are derived ensuring the robust CGNNs to converge, globally, uniformly and exponentially, to a ball in the state space with a pre-specified convergence rate. Finally, the effectiveness of our results are verified by an illustrative example.
International Nuclear Information System (INIS)
Tu Fenghua; Liao Xiaofeng
2005-01-01
We study the problem of estimating the exponential convergence rate and exponential stability for neural networks with time-varying delay. Some criteria for exponential stability are derived by using the linear matrix inequality (LMI) approach. They are less conservative than the existing ones. Some analytical methods are employed to investigate the bounds on the interconnection matrix and activation functions so that the systems are exponentially stable
Time-Varying Estimation of Crop Insurance Program in Altering North Dakota Farm Economic Structure
Coleman, Jane A.; Shaik, Saleem
2009-01-01
This study examines how federal farm policies, specifically crop insurance, have affected the farm economic structure of North Dakota’s agriculture sector. The system of derived input demand equations is estimated to quantify the changes in North Dakota farmers’ input use when they purchase crop insurance. Further, the cumulative rolling regression technique is applied to capture the varying effects of the farm policies over time. Empirical results from the system of input demand functions in...
Delay-Dependent Asymptotic Stability of Cohen-Grossberg Models with Multiple Time-Varying Delays
Directory of Open Access Journals (Sweden)
Xiaofeng Liao
2007-01-01
Full Text Available Dynamical behavior of a class of Cohen-Grossberg models with multiple time-varying delays is studied in detail. Sufficient delay-dependent criteria to ensure local and global asymptotic stabilities of the equilibrium of this network are derived by constructing suitable Lyapunov functionals. The obtained conditions are shown to be less conservative and restrictive than those reported in the known literature. Some numerical examples are included to demonstrate our results.
On global exponential stability of high-order neural networks with time-varying delays
International Nuclear Information System (INIS)
Zhang Baoyong; Xu Shengyuan; Li Yongmin; Chu Yuming
2007-01-01
This Letter investigates the problem of stability analysis for a class of high-order neural networks with time-varying delays. The delays are bounded but not necessarily differentiable. Based on the Lyapunov stability theory together with the linear matrix inequality (LMI) approach and the use of Halanay inequality, sufficient conditions guaranteeing the global exponential stability of the equilibrium point of the considered neural networks are presented. Two numerical examples are provided to demonstrate the effectiveness of the proposed stability criteria
On global exponential stability of high-order neural networks with time-varying delays
Energy Technology Data Exchange (ETDEWEB)
Zhang Baoyong [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China)]. E-mail: baoyongzhang@yahoo.com.cn; Xu Shengyuan [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China)]. E-mail: syxu02@yahoo.com.cn; Li Yongmin [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China) and Department of Mathematics, Huzhou Teacher' s College, Huzhou 313000, Zhejiang (China)]. E-mail: ymlwww@163.com; Chu Yuming [Department of Mathematics, Huzhou Teacher' s College, Huzhou 313000, Zhejiang (China)
2007-06-18
This Letter investigates the problem of stability analysis for a class of high-order neural networks with time-varying delays. The delays are bounded but not necessarily differentiable. Based on the Lyapunov stability theory together with the linear matrix inequality (LMI) approach and the use of Halanay inequality, sufficient conditions guaranteeing the global exponential stability of the equilibrium point of the considered neural networks are presented. Two numerical examples are provided to demonstrate the effectiveness of the proposed stability criteria.
Magnetohydrodynamic flow of a rarefied gas near a time-varying accelerated plate
International Nuclear Information System (INIS)
Mishra, S.P.; Mohapatra, Priti
1975-01-01
The flow of an electrically conducting rarefied gas due to the time-varying motion of an infinite flat plate has been studied in the presence of a uniform magnetic field. The magnetic lines of force are taken to be fixed relative to the fluid. General expressions of the velocity and the skin friction have been compared by means of some qraphs and tables. (author)
A note on "Multicriteria adaptive paths in stochastic, time-varying networks"
DEFF Research Database (Denmark)
Pretolani, Daniele; Nielsen, Lars Relund; Andersen, Kim Allan
In a recent paper, Opasanon and Miller-Hooks study multicriteria adaptive paths in stochastic time-varying networks. They propose a label correcting algorithm for finding the full set of efficient strategies. In this note we show that their algorithm is not correct, since it is based on a property...... that does not hold in general. Opasanon and Miller-Hooks also propose an algorithm for solving a parametric problem. We give a simplified algorithm which is linear in the input size....
International Nuclear Information System (INIS)
Liang Jinling; Cao Jinde
2003-01-01
Employing general Halanay inequality, we analyze the global exponential stability of a class of reaction-diffusion recurrent neural networks with time-varying delays. Several new sufficient conditions are obtained to ensure existence, uniqueness and global exponential stability of the equilibrium point of delayed reaction-diffusion recurrent neural networks. The results extend and improve the earlier publications. In addition, an example is given to show the effectiveness of the obtained result
Some new results for recurrent neural networks with varying-time coefficients and delays
International Nuclear Information System (INIS)
Jiang Haijun; Teng Zhidong
2005-01-01
In this Letter, we consider the recurrent neural networks with varying-time coefficients and delays. By constructing new Lyapunov functional, introducing ingeniously many real parameters and applying the technique of Young inequality, we establish a series of criteria on the boundedness, global exponential stability and the existence of periodic solutions. In these criteria, we do not require that the response functions are differentiable, bounded and monotone nondecreasing. Some previous works are improved and extended
Uwate, Y; Nishio, Y; Stoop, R
2009-01-01
We explore the synchronization and switching behavior of a system of two identical van der Pol oscillators coupled by a stochastically timevarying resistor. Triggered by the time-varying resistor, the system of oscillators switches between synchronized and anti-synchronized behavior. We find that the preference of the synchronized/antisynchronized state is determined by the ratio of the probabilities of the two resistor states. The length of the phases of maintained resistor states, however, ...
Reliable Memory Feedback Design for a Class of Nonlinear Fuzzy Systems with Time-varying Delay
Institute of Scientific and Technical Information of China (English)
You-Qing Wang; Dong-Hua Zhou; Li-Heng Liu
2007-01-01
This paper is concerned with the robust reliable memory controller design for a class of fuzzy uncertain systems with time-varying delay. The system under consideration is more general than those in other existent works. The controller, which is dependent on the magnitudes and derivative of the delay, is proposed in terms of linear matrix inequality (LMI). The closed-loop system is asymptotically stable for all admissible uncertainties as well as actuator faults. A numerical example is presented for illustration.
International Nuclear Information System (INIS)
Park, Ju H.; Lee, S.M.; Kwon, O.M.
2009-01-01
For bidirectional associate memory neural networks with time-varying delays, the problems of determining the exponential stability and estimating the exponential convergence rate are investigated by employing the Lyapunov functional method and linear matrix inequality (LMI) technique. A novel criterion for the stability, which give information on the delay-dependent property, is derived. A numerical example is given to demonstrate the effectiveness of the obtained results.
Global exponential stability of fuzzy BAM neural networks with time-varying delays
International Nuclear Information System (INIS)
Zhang Qianhong; Luo Wei
2009-01-01
In this paper, a class of fuzzy bidirectional associated memory (BAM) neural networks with time-varying delays are studied. Employing fixed point theorem, matrix theory and inequality analysis, some sufficient conditions are established for the existence, uniqueness and global exponential stability of equilibrium point. The sufficient conditions are easy to verify at pattern recognition and automatic control. Finally, an example is given to show feasibility and effectiveness of our results.
Passivity of memristive BAM neural networks with leakage and additive time-varying delays
Wang, Weiping; Wang, Meiqi; Luo, Xiong; Li, Lixiang; Zhao, Wenbing; Liu, Linlin; Ping, Yuan
2018-02-01
This paper investigates the passivity of memristive bidirectional associate memory neural networks (MBAMNNs) with leakage and additive time-varying delays. Based on some useful inequalities and appropriate Lyapunov-Krasovskii functionals (LKFs), several delay-dependent conditions for passivity performance are obtained in linear matrix inequalities (LMIs). Moreover, the leakage delays as well as additive delays are considered separately. Finally, numerical simulations are provided to demonstrate the feasibility of the theoretical results.
International Nuclear Information System (INIS)
Lou, X.; Cui, B.
2008-01-01
In this paper we consider the problem of exponential stability for recurrent neural networks with multiple time varying delays and reaction-diffusion terms. The activation functions are supposed to be bounded and globally Lipschitz continuous. By means of Lyapunov functional, sufficient conditions are derived, which guarantee global exponential stability of the delayed neural network. Finally, a numerical example is given to show the correctness of our analysis. (author)
Specification and testing of Multiplicative Time-Varying GARCH models with applications
DEFF Research Database (Denmark)
Amado, Cristina; Teräsvirta, Timo
2017-01-01
In this article, we develop a specification technique for building multiplicative time-varying GARCH models of Amado and Teräsvirta (2008, 2013). The variance is decomposed into an unconditional and a conditional component such that the unconditional variance component is allowed to evolve smooth...... is illustrated in practice with two real examples: an empirical application to daily exchange rate returns and another one to daily coffee futures returns....
Assessment of time interval between tramadol intake and seizure and second drug-induced attack
Directory of Open Access Journals (Sweden)
Bahareh Abbasi
2015-11-01
Full Text Available Background: Tramadol is a synthetic drug which is prescribed in moderate and severe pain. Tramadol overdose can induce severe complications such as consciousness impairment and convulsions. This study was done to determine the convulsions incidence after tramadol use until one week after hospital discharge. Methods: This prospective study was done in tramadol overdose patients without uncontrolled epilepsy and head injury history. All cases admitted in Loghman and Rasol Akram Hospitals, Tehran, Iran from 1, April 2011 to 1, April 2012 were included and observed for at least 12 hours. Time interval between tramadol intake and first seizure were record. Then, patients with second drug-induced seizure were recognized and log time between the first and second seizure was analyzed. The patients were transferred to the intensive care unit (ICU if clinical worsening status observed. One week after hospital discharge, telephone follow-up was conducted. Results: A total of 150 patients with a history of tramadol induced seizures (141 men, 9 women, age: 23.23±5.94 years were enrolled in this study. Convulsion was seen in 104 patients (69.3%. In 8 out of 104 patients (7.6% two or more convulsion was seen. Time interval between tramadol use and the onset of the first and second seizure were 0.93±0.17 and 2.5±0.75 hours, respectively. Tramadol induced seizures are more likely to occur in males and patients with a history of drug abuse. Finally, one hundred forty nine patients (99.3% were discharged with good condition and the only one patient died from tramadol overdose. Conclusion: The results of the study showed tramadol induced seizure most frequently occurred within the first 4 hours of tramadol intake. The chance of experiencing a second seizure exists in the susceptible population. Thus, 4 hours after drug intake is the best time for patients to be hospital discharged.
Adaptive Changes After 2 Weeks of 10-s Sprint Interval Training With Various Recovery Times
Directory of Open Access Journals (Sweden)
Robert A. Olek
2018-04-01
Full Text Available Purpose: The aim of this study was to compare the effect of applying two different rest recovery times in a 10-s sprint interval training session on aerobic and anaerobic capacities as well as skeletal muscle enzyme activities.Methods: Fourteen physically active but not highly trained male subjects (mean maximal oxygen uptake 50.5 ± 1.0 mlO2·kg−1·min−1 participated in the study. The training protocol involved a series of 10-s sprints separated by either 1-min (SIT10:1 or 4-min (SIT10:4 of recovery. The number of sprints progressed from four to six over six sessions separated by 1–2 days rest. Pre and post intervention anthropometric measurements, assessment of aerobic, anaerobic capacity and muscle biopsy were performed. In the muscle samples maximal activities of citrate synthase (CS, 3-hydroxyacylCoA dehydrogenase (HADH, carnitine palmitoyl-transferase (CPT, malate dehydrogenase (MDH, and its mitochondrial form (mMDH, as well as lactate dehydrogenase (LDH were determined. Analysis of variance was performed to determine changes between conditions.Results: Maximal oxygen uptake improved significantly in both training groups, by 13.6% in SIT10:1 and 11.9% in SIT10:4, with no difference between groups. Wingate anaerobic test results indicated main effect of time for total work, peak power output and mean power output, which increased significantly and similarly in both groups. Significant differences between training groups were observed for end power output, which increased by 10.8% in SIT10:1, but remained unchanged in SIT10:4. Both training protocols induced similar increase in CS activity (main effect of time p < 0.05, but no other enzymes.Conclusion: Sprint interval training protocols induce metabolic adaptation over a short period of time, and the reduced recovery between bouts may attenuate fatigue during maximal exercise.
Relay selection in cooperative communication systems over continuous time-varying fading channel
Directory of Open Access Journals (Sweden)
Ke Geng
2017-02-01
Full Text Available In this paper, we study relay selection under outdated channel state information (CSI in a decode-and-forward (DF cooperative system. Unlike previous researches on cooperative communication under outdated CSI, we consider that the channel varies continuously over time, i.e., the channel not only changes between relay selection and data transmission but also changes during data transmission. Thus the level of accuracy of the CSI used in relay selection degrades with data transmission. We first evaluate the packet error rate (PER of the cooperative system under continuous time-varying fading channel, and find that the PER performance deteriorates more seriously under continuous time-varying fading channel than when the channel is assumed to be constant during data transmission. Then, we propose a repeated relay selection (RRS strategy to improve the PER performance, in which the forwarded data is divided into multiple segments and relay is reselected before the transmission of each segment based on the updated CSI. Finally, we propose a combined relay selection (CRS strategy which takes advantage of three different relay selection strategies to further mitigate the impact of outdated CSI.
A behavioral asset pricing model with a time-varying second moment
International Nuclear Information System (INIS)
Chiarella, Carl; He Xuezhong; Wang, Duo
2006-01-01
We develop a simple behavioral asset pricing model with fundamentalists and chartists in order to study price behavior in financial markets when chartists estimate both conditional mean and variance by using a weighted averaging process. Through a stability, bifurcation, and normal form analysis, the market impact of the weighting process and time-varying second moment are examined. It is found that the fundamental price becomes stable (unstable) when the activities from both types of traders are balanced (unbalanced). When the fundamental price becomes unstable, the weighting process leads to different price dynamics, depending on whether the chartists act as either trend followers or contrarians. It is also found that a time-varying second moment of the chartists does not change the stability of the fundamental price, but it does influence the stability of the bifurcations. The bifurcation becomes stable (unstable) when the chartists are more (less) concerned about the market risk characterized by the time-varying second moment. Different routes to complicated price dynamics are also observed. The analysis provides an analytical foundation for the statistical analysis of the corresponding stochastic version of this type of behavioral model
The Scalp Time-Varying Networks of N170: Reference, Latency, and Information Flow
Directory of Open Access Journals (Sweden)
Yin Tian
2018-04-01
Full Text Available Using the scalp time-varying network method, the present study is the first to investigate the temporal influence of the reference on N170, a negative event-related potential component (ERP appeared about 170 ms that is elicited by facial recognition, in the network levels. Two kinds of scalp electroencephalogram (EEG references, namely, AR (average of all recording channels and reference electrode standardization technique (REST, were comparatively investigated via the time-varying processing of N170. Results showed that the latency and amplitude of N170 were significantly different between REST and AR, with the former being earlier and smaller. In particular, the information flow from right temporal-parietal P8 to left P7 in the time-varying network was earlier in REST than that in AR, and this phenomenon was reproduced by simulation, in which the performance of REST was closer to the true case at source level. These findings indicate that reference plays a crucial role in ERP data interpretation, and importantly, the newly developed approximate zero-reference REST would be a superior choice for precise evaluation of the scalp spatio-temporal changes relating to various cognitive events.
Joint optimization of green vehicle scheduling and routing problem with time-varying speeds
Zhang, Dezhi; Wang, Xin; Ni, Nan; Zhang, Zhuo
2018-01-01
Based on an analysis of the congestion effect and changes in the speed of vehicle flow during morning and evening peaks in a large- or medium-sized city, the piecewise function is used to capture the rules of the time-varying speed of vehicles, which are very important in modelling their fuel consumption and CO2 emission. A joint optimization model of the green vehicle scheduling and routing problem with time-varying speeds is presented in this study. Extra wages during nonworking periods and soft time-window constraints are considered. A heuristic algorithm based on the adaptive large neighborhood search algorithm is also presented. Finally, a numerical simulation example is provided to illustrate the optimization model and its algorithm. Results show that, (1) the shortest route is not necessarily the route that consumes the least energy, (2) the departure time influences the vehicle fuel consumption and CO2 emissions and the optimal departure time saves on fuel consumption and reduces CO2 emissions by up to 5.4%, and (3) extra driver wages have significant effects on routing and departure time slot decisions. PMID:29466370
International Nuclear Information System (INIS)
Noraisyah Yusof; Noriah Jamal; Rahimah Abdul Rahim; Juliana Mahamad Napiah
2010-01-01
The International Atomic Energy Agency (IAEA) has recommended that incubation time for the hypotonic treatment of lymphocytes in dicentric assay technique to be between 15 to 20 minutes. Incubation time will effect the hypotonic treatment of lymphocytes and thus, the breakage of cytoplasmic membrane. The objective of this study is to examine the effect of varying incubation times for hypotonic treatment of lymphocytes in dicentric assay technique. In this study, we choose to use our standard protocol for dicentric assay technique. However, for the hypotonic treatment of lymphocytes, the incubation times were varied from 10, 15, 20, 25 and 30 minutes respectively. Lymphocytes were then fixed and stained with Giemsa. The cells were then analyzed for clear background that indicates good metaphases. We found that incubation time of 30 minutes gives the best metaphase images. This incubation time is longer than what has been recommended by the IAEA. This maybe explained by the fact that our country's climate is of higher humidity compared with the European countries. (author)
A Comparison of Evolutionary Algorithms for Tracking Time-Varying Recursive Systems
Directory of Open Access Journals (Sweden)
White Michael S
2003-01-01
Full Text Available A comparison is made of the behaviour of some evolutionary algorithms in time-varying adaptive recursive filter systems. Simulations show that an algorithm including random immigrants outperforms a more conventional algorithm using the breeder genetic algorithm as the mutation operator when the time variation is discontinuous, but neither algorithm performs well when the time variation is rapid but smooth. To meet this deficit, a new hybrid algorithm which uses a hill climber as an additional genetic operator, applied for several steps at each generation, is introduced. A comparison is made of the effect of applying the hill climbing operator a few times to all members of the population or a larger number of times solely to the best individual; it is found that applying to the whole population yields the better results, substantially improved compared with those obtained using earlier methods.
An Explicit MOT-TD-VIE Solver for Time Varying Media
Sayed, Sadeed Bin
2016-03-15
An explicit marching on-in-time (MOT) scheme for solving the time domain electric field integral equation enforced on volumes with time varying dielectric permittivity is proposed. Unknowns of the integral equation and the constitutive relation, i.e., flux density and field intensity, are discretized using full and half Schaubert-Wilton-Glisson functions in space. Temporal interpolation is carried out using band limited approximate prolate spherical wave functions. The discretized coupled system of integral equation and constitutive relation is integrated in time using a PE(CE)m type linear multistep scheme. Unlike the existing MOT methods, the resulting explicit MOT scheme allows for straightforward incorporation of the time variation in the dielectric permittivity.
Emergence of synchronization and regularity in firing patterns in time-varying neural hypernetworks
Rakshit, Sarbendu; Bera, Bidesh K.; Ghosh, Dibakar; Sinha, Sudeshna
2018-05-01
We study synchronization of dynamical systems coupled in time-varying network architectures, composed of two or more network topologies, corresponding to different interaction schemes. As a representative example of this class of time-varying hypernetworks, we consider coupled Hindmarsh-Rose neurons, involving two distinct types of networks, mimicking interactions that occur through the electrical gap junctions and the chemical synapses. Specifically, we consider the connections corresponding to the electrical gap junctions to form a small-world network, while the chemical synaptic interactions form a unidirectional random network. Further, all the connections in the hypernetwork are allowed to change in time, modeling a more realistic neurobiological scenario. We model this time variation by rewiring the links stochastically with a characteristic rewiring frequency f . We find that the coupling strength necessary to achieve complete neuronal synchrony is lower when the links are switched rapidly. Further, the average time required to reach the synchronized state decreases as synaptic coupling strength and/or rewiring frequency increases. To quantify the local stability of complete synchronous state we use the Master Stability Function approach, and for global stability we employ the concept of basin stability. The analytically derived necessary condition for synchrony is in excellent agreement with numerical results. Further we investigate the resilience of the synchronous states with respect to increasing network size, and we find that synchrony can be maintained up to larger network sizes by increasing either synaptic strength or rewiring frequency. Last, we find that time-varying links not only promote complete synchronization, but also have the capacity to change the local dynamics of each single neuron. Specifically, in a window of rewiring frequency and synaptic coupling strength, we observe that the spiking behavior becomes more regular.
Fluctuating interaction network and time-varying stability of a natural fish community
Ushio, Masayuki; Hsieh, Chih-Hao; Masuda, Reiji; Deyle, Ethan R.; Ye, Hao; Chang, Chun-Wei; Sugihara, George; Kondoh, Michio
2018-02-01
Ecological theory suggests that large-scale patterns such as community stability can be influenced by changes in interspecific interactions that arise from the behavioural and/or physiological responses of individual species varying over time. Although this theory has experimental support, evidence from natural ecosystems is lacking owing to the challenges of tracking rapid changes in interspecific interactions (known to occur on timescales much shorter than a generation time) and then identifying the effect of such changes on large-scale community dynamics. Here, using tools for analysing nonlinear time series and a 12-year-long dataset of fortnightly collected observations on a natural marine fish community in Maizuru Bay, Japan, we show that short-term changes in interaction networks influence overall community dynamics. Among the 15 dominant species, we identify 14 interspecific interactions to construct a dynamic interaction network. We show that the strengths, and even types, of interactions change with time; we also develop a time-varying stability measure based on local Lyapunov stability for attractor dynamics in non-equilibrium nonlinear systems. We use this dynamic stability measure to examine the link between the time-varying interaction network and community stability. We find seasonal patterns in dynamic stability for this fish community that broadly support expectations of current ecological theory. Specifically, the dominance of weak interactions and higher species diversity during summer months are associated with higher dynamic stability and smaller population fluctuations. We suggest that interspecific interactions, community network structure and community stability are dynamic properties, and that linking fluctuating interaction networks to community-level dynamic properties is key to understanding the maintenance of ecological communities in nature.
Vero, S E; Ibrahim, T G; Creamer, R E; Grant, J; Healy, M G; Henry, T; Kramers, G; Richards, K G; Fenton, O
2014-12-01
The true efficacy of a programme of agricultural mitigation measures within a catchment to improve water quality can be determined only after a certain hydrologic time lag period (subsequent to implementation) has elapsed. As the biophysical response to policy is not synchronous, accurate estimates of total time lag (unsaturated and saturated) become critical to manage the expectations of policy makers. The estimation of the vertical unsaturated zone component of time lag is vital as it indicates early trends (initial breakthrough), bulk (centre of mass) and total (Exit) travel times. Typically, estimation of time lag through the unsaturated zone is poor, due to the lack of site specific soil physical data, or by assuming saturated conditions. Numerical models (e.g. Hydrus 1D) enable estimates of time lag with varied levels of input data. The current study examines the consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates using simulated and actual soil profiles. Results indicated that: greater temporal resolution (from daily to hourly) of meteorological data was more critical as the saturated hydraulic conductivity of the soil decreased; high clay content soils failed to converge reflecting prevalence of lateral component as a contaminant pathway; elucidation of soil hydraulic properties was influenced by the complexity of soil physical data employed (textural menu, ROSETTA, full and partial soil water characteristic curves), which consequently affected time lag ranges; as the importance of the unsaturated zone increases with respect to total travel times the requirements for high complexity/resolution input data become greater. The methodology presented herein demonstrates that decisions made regarding input data and landscape position will have consequences for the estimated range of vertical travel times. Insufficiencies or inaccuracies regarding such input data can therefore mislead policy makers regarding
Distributed Event-Triggered Control of Multiagent Systems with Time-Varying Topology
Directory of Open Access Journals (Sweden)
Jingwei Ma
2014-01-01
Full Text Available This paper studies the consensus of first-order discrete-time multiagent systems, where the interaction topology is time-varying. The event-triggered control is used to update the control input of each agent, and the event-triggering condition is designed based on the combination of the relative states of each agent to its neighbors. By applying the common Lyapunov function method, a sufficient condition for consensus, which is expressed as a group of linear matrix inequalities, is obtained and the feasibility of these linear matrix inequalities is further analyzed. Simulation examples are provided to explain the effectiveness of the theoretical results.
Time-varying exchange rate pass-through: experiences of some industrial countries
Toshitaka Sekine
2006-01-01
This paper estimates exchange rate pass-through of six major industrial countries using a time-varying parameter with stochastic volatility model. Exchange rate pass-through is divided into impacts of exchange rate fluctuations to import prices (first-stage pass-through) and those of import price movements to consumer prices (second-stage pass-through). The paper finds that both stages of pass-through have declined over time for all the sample countries. The decline in second-stage pass-throu...
Scalar Aharonov–Bohm Phase in Ramsey Atom Interferometry under Time-Varying Potential
Directory of Open Access Journals (Sweden)
Atsuo Morinaga
2016-08-01
Full Text Available In a Ramsey atom interferometer excited by two electromagnetic fields, if atoms are under a time-varying scalar potential during the interrogation time, the phase of the Ramsey fringes shifts owing to the scalar Aharonov–Bohm effect. The phase shift was precisely examined using a Ramsey atom interferometer with a two-photon Raman transition under the second-order Zeeman potential, and a formula for the phase shift was derived. Using the derived formula, the frequency shift due to the scalar Aharonov–Bohm effect in the frequency standards utilizing the Ramsey atom interferometer was discussed.
End-of-the-year economic growth and time-varying expected returns
DEFF Research Database (Denmark)
Møller, Stig V.; Rangvid, Jesper
2015-01-01
We show that macroeconomic growth at the end of the year (fourth quarter or December) strongly influences expected returns on risky financial assets, whereas economic growth during the rest of the year does not. We find this pattern for many different asset classes, across different time periods......, and for US and international data. We also show that movements in the surplus consumption ratio of Campbell and Cochrane (1999) , a theoretically well-founded measure of time-varying risk aversion linked to macroeconomic growth, influence expected returns stronger during the fourth quarter than the other...
Optimal Consumption and Investment under Time-Varying Relative Risk Aversion
DEFF Research Database (Denmark)
Steffensen, Mogens
2011-01-01
We consider the continuous time consumption-investment problem originally formalized and solved by Merton in case of constant relative risk aversion. We present a complete solution for the case where relative risk aversion with respect to consumption varies with time, having in mind an investor...... with age-dependent risk aversion. This provides a new motivation for life-cycle investment rules. We study the optimal consumption and investment rules, in particular in the case where the relative risk aversion with respect to consumption is increasing with age....
Computing and visualizing time-varying merge trees for high-dimensional data
Energy Technology Data Exchange (ETDEWEB)
Oesterling, Patrick [Univ. of Leipzig (Germany); Heine, Christian [Univ. of Kaiserslautern (Germany); Weber, Gunther H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morozov, Dmitry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Scheuermann, Gerik [Univ. of Leipzig (Germany)
2017-06-03
We introduce a new method that identifies and tracks features in arbitrary dimensions using the merge tree -- a structure for identifying topological features based on thresholding in scalar fields. This method analyzes the evolution of features of the function by tracking changes in the merge tree and relates features by matching subtrees between consecutive time steps. Using the time-varying merge tree, we present a structural visualization of the changing function that illustrates both features and their temporal evolution. We demonstrate the utility of our approach by applying it to temporal cluster analysis of high-dimensional point clouds.
Hu, Yong; Kwok, Jerry Weilun; Tse, Jessica Yuk-Hang; Luk, Keith Dip-Kei
2014-06-01
Nonsurgical rehabilitation therapy is a commonly used strategy to treat chronic low back pain (LBP). The selection of the most appropriate therapeutic options is still a big challenge in clinical practices. Surface electromyography (sEMG) topography has been proposed to be an objective assessment of LBP rehabilitation. The quantitative analysis of dynamic sEMG would provide an objective tool of prognosis for LBP rehabilitation. To evaluate the prognostic value of quantitative sEMG topographic analysis and to verify the accuracy of the performance of proposed time-varying topographic parameters for identifying the patients who have better response toward the rehabilitation program. A retrospective study of consecutive patients. Thirty-eight patients with chronic nonspecific LBP and 43 healthy subjects. The accuracy of the time-varying quantitative sEMG topographic analysis for monitoring LBP rehabilitation progress was determined by calculating the corresponding receiver-operating characteristic (ROC) curves. Physiologic measure was the sEMG during lumbar flexion and extension. Patients who suffered from chronic nonspecific LBP without the history of back surgery and any medical conditions causing acute exacerbation of LBP during the clinical test were enlisted to perform the clinical test during the 12-week physiotherapy (PT) treatment. Low back pain patients were classified into two groups: "responding" and "nonresponding" based on the clinical assessment. The responding group referred to the LBP patients who began to recover after the PT treatment, whereas the nonresponding group referred to some LBP patients who did not recover or got worse after the treatment. The results of the time-varying analysis in the responding group were compared with those in the nonresponding group. In addition, the accuracy of the analysis was analyzed through ROC curves. The time-varying analysis showed discrepancies in the root-mean-square difference (RMSD) parameters between the
Continuous-time interval model identification of blood glucose dynamics for type 1 diabetes
Kirchsteiger, Harald; Johansson, Rolf; Renard, Eric; del Re, Luigi
2014-07-01
While good physiological models of the glucose metabolism in type 1 diabetic patients are well known, their parameterisation is difficult. The high intra-patient variability observed is a further major obstacle. This holds for data-based models too, so that no good patient-specific models are available. Against this background, this paper proposes the use of interval models to cover the different metabolic conditions. The control-oriented models contain a carbohydrate and insulin sensitivity factor to be used for insulin bolus calculators directly. Available clinical measurements were sampled on an irregular schedule which prompts the use of continuous-time identification, also for the direct estimation of the clinically interpretable factors mentioned above. An identification method is derived and applied to real data from 28 diabetic patients. Model estimation was done on a clinical data-set, whereas validation results shown were done on an out-of-clinic, everyday life data-set. The results show that the interval model approach allows a much more regular estimation of the parameters and avoids physiologically incompatible parameter estimates.
Berendrecht, W.L.; Heemink, A.W.; Geer, F.C. van; Gehrels, J.C.
2003-01-01
A state-space representation of the transfer function-noise (TFN) model allows the choice of a modeling (input) interval that is smaller than the measuring interval of the output variable. Since in geohydrological applications the interval of the available input series (precipitation excess) is
Asymptotic theory of time varying networks with burstiness and heterogeneous activation patterns
Burioni, Raffaella; Ubaldi, Enrico; Vezzani, Alessandro
2017-05-01
The recent availability of large-scale, time-resolved and high quality digital datasets has allowed for a deeper understanding of the structure and properties of many real-world networks. The empirical evidence of a temporal dimension prompted the switch of paradigm from a static representation of networks to a time varying one. In this work we briefly review the framework of time-varying-networks in real world social systems, especially focusing on the activity-driven paradigm. We develop a framework that allows for the encoding of three generative mechanisms that seem to play a central role in the social networks’ evolution: the individual’s propensity to engage in social interactions, its strategy in allocate these interactions among its alters and the burstiness of interactions amongst social actors. The functional forms and probability distributions encoding these mechanisms are typically data driven. A natural question arises if different classes of strategies and burstiness distributions, with different local scale behavior and analogous asymptotics can lead to the same long time and large scale structure of the evolving networks. We consider the problem in its full generality, by investigating and solving the system dynamics in the asymptotic limit, for general classes of ties allocation mechanisms and waiting time probability distributions. We show that the asymptotic network evolution is driven by a few characteristics of these functional forms, that can be extracted from direct measurements on large datasets.
Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay
Chunodkar, Apurva A.; Akella, Maruthi R.
2013-12-01
This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.
Chung, Tammy; Maisto, Stephen A
2016-06-01
An important goal of addictions treatment is to develop a positive association between high levels of confidence and motivation to abstain from substance use. This study modeled the time-varying association between confidence and motivation to abstain from marijuana use among youth in treatment, and the time-varying effect of pre-treatment covariates (marijuana abstinence goal and perceived peer marijuana use) on motivation to abstain. 150 adolescents (75% male, 83% White) in community-based intensive outpatient treatment in Pennsylvania completed a pre-treatment assessment of abstinence goal, perceived peer marijuana use, and motivation and confidence to abstain from marijuana. Ratings of motivation and confidence to abstain also were collected after each session. A time-varying effect model (TVEM) was used to characterize changes in the association between confidence and motivation to abstain (lagged), and included covariates representing pre-treatment abstinence goal and perceived peer marijuana use. Confidence and motivation to abstain from marijuana generally increased during treatment. The association between confidence and motivation strengthened across sessions 1-4, and was maintained through later sessions. Pre-treatment abstinence goal had an early time-limited effect (through session 6) on motivation to abstain. Pre-treatment perception of peer marijuana use had a significant effect on motivation to abstain only at session 2. Early treatment sessions represent a critical period during which the association between confidence and motivation to abstain generally increased. The time-limited effects of pre-treatment characteristics suggest the importance of early sessions in addressing abstinence goal and peer substance use that may impact motivation to abstain from marijuana. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modeling the time--varying subjective quality of HTTP video streams with rate adaptations.
Chen, Chao; Choi, Lark Kwon; de Veciana, Gustavo; Caramanis, Constantine; Heath, Robert W; Bovik, Alan C
2014-05-01
Newly developed hypertext transfer protocol (HTTP)-based video streaming technologies enable flexible rate-adaptation under varying channel conditions. Accurately predicting the users' quality of experience (QoE) for rate-adaptive HTTP video streams is thus critical to achieve efficiency. An important aspect of understanding and modeling QoE is predicting the up-to-the-moment subjective quality of a video as it is played, which is difficult due to hysteresis effects and nonlinearities in human behavioral responses. This paper presents a Hammerstein-Wiener model for predicting the time-varying subjective quality (TVSQ) of rate-adaptive videos. To collect data for model parameterization and validation, a database of longer duration videos with time-varying distortions was built and the TVSQs of the videos were measured in a large-scale subjective study. The proposed method is able to reliably predict the TVSQ of rate adaptive videos. Since the Hammerstein-Wiener model has a very simple structure, the proposed method is suitable for online TVSQ prediction in HTTP-based streaming.
Online Support Vector Regression with Varying Parameters for Time-Dependent Data
International Nuclear Information System (INIS)
Omitaomu, Olufemi A.; Jeong, Myong K.; Badiru, Adedeji B.
2011-01-01
Support vector regression (SVR) is a machine learning technique that continues to receive interest in several domains including manufacturing, engineering, and medicine. In order to extend its application to problems in which datasets arrive constantly and in which batch processing of the datasets is infeasible or expensive, an accurate online support vector regression (AOSVR) technique was proposed. The AOSVR technique efficiently updates a trained SVR function whenever a sample is added to or removed from the training set without retraining the entire training data. However, the AOSVR technique assumes that the new samples and the training samples are of the same characteristics; hence, the same value of SVR parameters is used for training and prediction. This assumption is not applicable to data samples that are inherently noisy and non-stationary such as sensor data. As a result, we propose Accurate On-line Support Vector Regression with Varying Parameters (AOSVR-VP) that uses varying SVR parameters rather than fixed SVR parameters, and hence accounts for the variability that may exist in the samples. To accomplish this objective, we also propose a generalized weight function to automatically update the weights of SVR parameters in on-line monitoring applications. The proposed function allows for lower and upper bounds for SVR parameters. We tested our proposed approach and compared results with the conventional AOSVR approach using two benchmark time series data and sensor data from nuclear power plant. The results show that using varying SVR parameters is more applicable to time dependent data.
Effect of time-varying humidity on the performance of a polymer electrolyte membrane fuel cells
Energy Technology Data Exchange (ETDEWEB)
Noorani, Shamsuddin [Department of Mechanical Engineering, University of Michigan-Dearborn (United States); Shamim, Tariq [Mechanical Engineering, Masdar Institute of Science and Technology (United Arab Emirates)], E-mail: tshamim@masdar.ac.ae
2011-07-01
In the energy sector, fuel cells constitute a promising solution for the future due to their energy-efficient and environment-friendly characteristics. However, the performance of fuel cells is very much affected by the humidification level of the reactants, particularly in hot regions. The aim of this paper is to develop a better understanding of the effect of driving conditions on the performance of fuel cells. A macroscopic single-fuel-cell-based, one dimensional, isothermal model was used on a polymer electrolyte membrane fuel cell to carry out a computational study of the impact of humidity conditions which vary over time. It was found that the variation of humidity has a significant effect on water distribution but a much lower impact on power and current densities. This paper provided useful information on fuel cells' performance under varying conditions which could be used to improve their design for mobile applications.
CMOS direct time interval measurement of long-lived luminescence lifetimes.
Yao, Lei; Yung, Ka Yi; Cheung, Maurice C; Chodavarapu, Vamsy P; Bright, Frank V
2011-01-01
We describe a Complementary Metal-Oxide Semiconductor (CMOS) Direct Time Interval Measurement (DTIM) Integrated Circuit (IC) to detect the decay (fall) time of the luminescence emission when analyte-sensitive luminophores are excited with an optical pulse. The CMOS DTIM IC includes 14 × 14 phototransistor array, transimpedance amplifier, regulated gain amplifier, fall time detector, and time-to-digital convertor. We examined the DTIM system to measure the emission lifetime of oxygen-sensitive luminophores tris(4,7-diphenyl-1, 10-phenanthroline) ruthenium(II) ([Ru(dpp)(3)](2+)) encapsulated in sol-gel derived xerogel thin-films. The DTIM system fabricated using TSMC 0.35 μm process functions to detect lifetimes from 4 μs to 14.4 μs but can be tuned to detect longer lifetimes. The system provides 8-bit digital output proportional to lifetimes and consumes 4.5 mW of power with 3.3 V DC supply. The CMOS system provides a useful platform for the development of reliable, robust, and miniaturized optical chemical sensors.
Reasoning about real-time systems with temporal interval logic constraints on multi-state automata
Gabrielian, Armen
1991-01-01
Models of real-time systems using a single paradigm often turn out to be inadequate, whether the paradigm is based on states, rules, event sequences, or logic. A model-based approach to reasoning about real-time systems is presented in which a temporal interval logic called TIL is employed to define constraints on a new type of high level automata. The combination, called hierarchical multi-state (HMS) machines, can be used to model formally a real-time system, a dynamic set of requirements, the environment, heuristic knowledge about planning-related problem solving, and the computational states of the reasoning mechanism. In this framework, mathematical techniques were developed for: (1) proving the correctness of a representation; (2) planning of concurrent tasks to achieve goals; and (3) scheduling of plans to satisfy complex temporal constraints. HMS machines allow reasoning about a real-time system from a model of how truth arises instead of merely depending of what is true in a system.
Clark, Carol Lynn; Berman, Aaron D; McHugh, Ann; Roe, Edward Jedd; Boura, Judith; Swor, Robert A
2012-01-01
To assess the relationship of emergency medical services (EMS) intervals and internal hospital intervals to the rapid reperfusion of patients with ST-segment elevation myocardial infarction (STEMI). We performed a secondary analysis of a prospectively collected database of STEMI patients transported to a large academic community hospital between January 1, 2004, and December 31, 2009. EMS and hospital data intervals included EMS scene time, transport time, hospital arrival to myocardial infarction (MI) team activation (D2Page), page to catheterization laboratory arrival (P2Lab), and catheterization laboratory arrival to reperfusion (L2B). We used two outcomes: EMS scene arrival to reperfusion (S2B) ≤90 minutes and hospital arrival to reperfusion (D2B) ≤90 minutes. Means and proportions are reported. Pearson chi-square and multivariate regression were used for analysis. During the study period, we included 313 EMS-transported STEMI patients with 298 (95.2%) MI team activations. Of these STEMI patients, 295 (94.2%) were taken to the cardiac catheterization laboratory and 244 (78.0%) underwent percutaneous coronary intervention (PCI). For the patients who underwent PCI, 127 (52.5%) had prehospital EMS activation, 202 (82.8%) had D2B ≤90 minutes, and 72 (39%) had S2B ≤90 minutes. In a multivariate analysis, hospital processes EMS activation (OR 7.1, 95% CI 2.7, 18.4], Page to Lab [6.7, 95% CI 2.3, 19.2] and Lab arrival to Reperfusion [18.5, 95% CI 6.1, 55.6]) were the most important predictors of Scene to Balloon ≤ 90 minutes. EMS scene and transport intervals also had a modest association with rapid reperfusion (OR 0.85, 95% CI 0.78, 0.93 and OR 0.89, 95% CI 0.83, 0.95, respectively). In a secondary analysis, Hospital processes (Door to Page [OR 44.8, 95% CI 8.6, 234.4], Page 2 Lab [OR 5.4, 95% CI 1.9, 15.3], and Lab arrival to Reperfusion [OR 14.6 95% CI 2.5, 84.3]), but not EMS scene and transport intervals were the most important predictors D2B ≤90
International Nuclear Information System (INIS)
Yu, Chang Sik; Kim, Tae Won; Kim, Jong Hoon; Choi, Won Sik; Kim, Hee Cheol; Chang, Heung Moon; Ryu, Min Hee; Jang, Se Jin; Ahn, Seung Do; Lee, Sang-wook; Shin, Seong Soo; Choi, Eun Kyung; Kim, Jin Cheon
2007-01-01
Purpose: Capecitabine and its metabolites reach peak plasma concentrations 1 to 2 hours after a single oral administration, and concentrations rapidly decrease thereafter. We performed a retrospective analysis to find the optimal time interval between capecitabine administration and radiotherapy for rectal cancer. Methods and Materials: The time interval between capecitabine intake and radiotherapy was measured in patients who were treated with preoperative radiotherapy and concurrent capecitabine for rectal cancer. Patients were classified into the following groups. Group A1 included patients who took capecitabine 1 hour before radiotherapy, and Group B1 included all other patients. Group B1 was then subdivided into Group A2 (patients who took capecitabine 2 hours before radiotherapy) and Group B2. Group B2 was further divided into Group A3 and Group B3 with the same method. Total mesorectal excision was performed 6 weeks after completion of chemoradiation and the pathologic response was evaluated. Results: A total of 200 patients were enrolled in this study. Pathologic examination showed that Group A1 had higher rates of complete regression of primary tumors in the rectum (23.5% vs. 9.6%, p = 0.01), good response (44.7% vs. 25.2%, p = 0.006), and lower T stages (p = 0.021) compared with Group B1; however, Groups A2 and A3 did not show any improvement compared with Groups B2 and B3. Multivariate analysis showed that increases in primary tumors in the rectum and good response were only significant when capecitabine was administered 1 hour before radiotherapy. Conclusion: In preoperative chemoradiotherapy for rectal cancer, the pathologic response could be improved by administering capecitabine 1 hour before radiotherapy
PCA-based detection of damage in time-varying systems
Bellino, A.; Fasana, A.; Garibaldi, L.; Marchesiello, S.
2010-10-01
When performing Structural Health Monitoring, it is well known that the natural frequencies do not depend only on the damage but also on environmental conditions, such as temperature and humidity. The Principal Component Analysis is used to take this problem into account, because it allows eliminating the effect of external factors. The purpose of the present work is to show that this technique can be successfully used not only for time-invariant systems, but also for time-varying ones. Referring to the latter, one of the most studied systems which shows these characteristics is the bridge with crossing loads, such as the case of the railway bridge studied in present paper; in this case, the mass and the velocity of the train can be considered as "environmental" factors.This paper, after a brief description of the PCA method and one example of its application on time-invariant systems, presents the great potentialities of the methodology when applied to time-varying systems. The results show that this method is able to better detect the presence of damage and also to properly distinguish among different levels of crack depths.
Bit-level plane image encryption based on coupled map lattice with time-varying delay
Lv, Xiupin; Liao, Xiaofeng; Yang, Bo
2018-04-01
Most of the existing image encryption algorithms had two basic properties: confusion and diffusion in a pixel-level plane based on various chaotic systems. Actually, permutation in a pixel-level plane could not change the statistical characteristics of an image, and many of the existing color image encryption schemes utilized the same method to encrypt R, G and B components, which means that the three color components of a color image are processed three times independently. Additionally, dynamical performance of a single chaotic system degrades greatly with finite precisions in computer simulations. In this paper, a novel coupled map lattice with time-varying delay therefore is applied in color images bit-level plane encryption to solve the above issues. Spatiotemporal chaotic system with both much longer period in digitalization and much excellent performances in cryptography is recommended. Time-varying delay embedded in coupled map lattice enhances dynamical behaviors of the system. Bit-level plane image encryption algorithm has greatly reduced the statistical characteristics of an image through the scrambling processing. The R, G and B components cross and mix with one another, which reduces the correlation among the three components. Finally, simulations are carried out and all the experimental results illustrate that the proposed image encryption algorithm is highly secure, and at the same time, also demonstrates superior performance.
Time-varying mixed logit model for vehicle merging behavior in work zone merging areas.
Weng, Jinxian; Du, Gang; Li, Dan; Yu, Yao
2018-08-01
This study aims to develop a time-varying mixed logit model for the vehicle merging behavior in work zone merging areas during the merging implementation period from the time of starting a merging maneuver to that of completing the maneuver. From the safety perspective, vehicle crash probability and severity between the merging vehicle and its surrounding vehicles are regarded as major factors influencing vehicle merging decisions. Model results show that the model with the use of vehicle crash risk probability and severity could provide higher prediction accuracy than previous models with the use of vehicle speeds and gap sizes. It is found that lead vehicle type, through lead vehicle type, through lag vehicle type, crash probability of the merging vehicle with respect to the through lag vehicle, crash severities of the merging vehicle with respect to the through lead and lag vehicles could exhibit time-varying effects on the merging behavior. One important finding is that the merging vehicle could become more and more aggressive in order to complete the merging maneuver as quickly as possible over the elapsed time, even if it has high vehicle crash risk with respect to the through lead and lag vehicles. Copyright © 2018 Elsevier Ltd. All rights reserved.
Testing and estimating time-varying elasticities of Swiss gasoline demand
International Nuclear Information System (INIS)
Neto, David
2012-01-01
This paper is intended to test and estimate time-varying elasticities for gasoline demand in Switzerland. For this purpose, a smooth time-varying cointegrating parameters model is investigated in order to describe smooth mutations of the Swiss gasoline demand. The methodology, based on Chebyshev polynomials, is rigorously outlined. Our empirical finding states that the time-invariance assumption does not hold for long-run price and income elasticities. Furthermore they highlight that gasoline demand passed through some periods of sensitivity and non sensitivity with respect to the price. Our empirical statements are of great importance to assess the performance of a gasoline tax as an instrument for CO 2 reduction policy. Indeed, such an instrument can contribute to reduce emissions of greenhouse gases only if the demand is not fully inelastic with respect to the price. Our results suggest that such a carbon-tax would not be always suitable since the price elasticity is found not stable over time and not always significant.
Quantum theory for magnons and phonons interactions under time-varying magnetic fields
International Nuclear Information System (INIS)
Guerreiro, S.C.
1971-01-01
The magnon-fonon interaction in a ferromagnetic material submited to a time-varying magnetic field is studied by quantum methods. This problem has already been solved by semi-classical methods, and one of its results is that under certain conditions a state of lattice vibrations may be completely converted into spin oscillations. The main proporties of magnetoelastic waves in static magnetic fields and extend the quantum treatment for the time varying magnetic field case is revised. Field operators whose equations of motion are analogous to the classical ones are introduced. Their equations, which appear as a linear system of first order coupled equations, are converted into equations for complex functions by an expansion of the field operators in a time t as linear combinations of the same operators in a time t 0 prior to the variation of the magnetic field. The quantity g vector obtained from the classical solution is quantized and shown to be the linear momentum density of the magnetoelastic system, the quantum field spin density operator is deduced for the two interacting fields, and finally the results are used to study the magnetization and lattice displacement vector fields in the case of a system described by a coherent state of one of its normal modes
Garcia-Belmonte, Germà
2017-06-01
Spatial visualization is a well-established topic of education research that has allowed improving science and engineering students' skills on spatial relations. Connections have been established between visualization as a comprehension tool and instruction in several scientific fields. Learning about dynamic processes mainly relies upon static spatial representations or images. Visualization of time is inherently problematic because time can be conceptualized in terms of two opposite conceptual metaphors based on spatial relations as inferred from conventional linguistic patterns. The situation is particularly demanding when time-varying signals are recorded using displaying electronic instruments, and the image should be properly interpreted. This work deals with the interplay between linguistic metaphors, visual thinking and scientific instrument mediation in the process of interpreting time-varying signals displayed by electronic instruments. The analysis draws on a simplified version of a communication system as example of practical signal recording and image visualization in a physics and engineering laboratory experience. Instrumentation delivers meaningful signal representations because it is designed to incorporate a specific and culturally favored time view. It is suggested that difficulties in interpreting time-varying signals are linked with the existing dual perception of conflicting time metaphors. The activation of specific space-time conceptual mapping might allow for a proper signal interpretation. Instruments play then a central role as visualization mediators by yielding an image that matches specific perception abilities and practical purposes. Here I have identified two ways of understanding time as used in different trajectories through which students are located. Interestingly specific displaying instruments belonging to different cultural traditions incorporate contrasting time views. One of them sees time in terms of a dynamic metaphor
Errors in 'BED'-derived estimates of HIV incidence will vary by place, time and age.
Directory of Open Access Journals (Sweden)
Timothy B Hallett
2009-05-01
Full Text Available The BED Capture Enzyme Immunoassay, believed to distinguish recent HIV infections, is being used to estimate HIV incidence, although an important property of the test--how specificity changes with time since infection--has not been not measured.We construct hypothetical scenarios for the performance of BED test, consistent with current knowledge, and explore how this could influence errors in BED estimates of incidence using a mathematical model of six African countries. The model is also used to determine the conditions and the sample sizes required for the BED test to reliably detect trends in HIV incidence.If the chance of misclassification by BED increases with time since infection, the overall proportion of individuals misclassified could vary widely between countries, over time, and across age-groups, in a manner determined by the historic course of the epidemic and the age-pattern of incidence. Under some circumstances, changes in BED estimates over time can approximately track actual changes in incidence, but large sample sizes (50,000+ will be required for recorded changes to be statistically significant.The relationship between BED test specificity and time since infection has not been fully measured, but, if it decreases, errors in estimates of incidence could vary by place, time and age-group. This means that post-assay adjustment procedures using parameters from different populations or at different times may not be valid. Further research is urgently needed into the properties of the BED test, and the rate of misclassification in a wide range of populations.
An Efficient Format for Nearly Constant-Time Access to Arbitrary Time Intervals in Large Trace Files
Directory of Open Access Journals (Sweden)
Anthony Chan
2008-01-01
Full Text Available A powerful method to aid in understanding the performance of parallel applications uses log or trace files containing time-stamped events and states (pairs of events. These trace files can be very large, often hundreds or even thousands of megabytes. Because of the cost of accessing and displaying such files, other methods are often used that reduce the size of the tracefiles at the cost of sacrificing detail or other information. This paper describes a hierarchical trace file format that provides for display of an arbitrary time window in a time independent of the total size of the file and roughly proportional to the number of events within the time window. This format eliminates the need to sacrifice data to achieve a smaller trace file size (since storage is inexpensive, it is necessary only to make efficient use of bandwidth to that storage. The format can be used to organize a trace file or to create a separate file of annotations that may be used with conventional trace files. We present an analysis of the time to access all of the events relevant to an interval of time and we describe experiments demonstrating the performance of this file format.
Molero-Chamizo, Andrés; Alameda Bailén, José R; Garrido Béjar, Tamara; García López, Macarena; Jaén Rodríguez, Inmaculada; Gutiérrez Lérida, Carolina; Pérez Panal, Silvia; González Ángel, Gloria; Lemus Corchero, Laura; Ruiz Vega, María J; Nitsche, Michael A; Rivera-Urbina, Guadalupe N
2018-02-01
Anodal transcranial direct current stimulation (tDCS) induces long-term potentiation-like plasticity, which is associated with long-lasting effects on different cognitive, emotional, and motor performances. Specifically, tDCS applied over the motor cortex is considered to improve reaction time in simple and complex tasks. The timing of tDCS relative to task performance could determine the efficacy of tDCS to modulate performance. The aim of this study was to compare the effects of a single session of anodal tDCS (1.5 mA, for 15 min) applied over the left primary motor cortex (M1) versus sham stimulation on performance of a go/no-go simple reaction-time task carried out at three different time points after tDCS-namely, 0, 30, or 60 min after stimulation. Performance zero min after anodal tDCS was improved during the whole course of the task. Performance 30 min after anodal tDCS was improved only in the last block of the reaction-time task. Performance 60 min after anodal tDCS was not significantly different throughout the entire task. These findings suggest that the motor cortex excitability changes induced by tDCS can improve motor responses, and these effects critically depend on the time interval between stimulation and task performance.
Initial Systolic Time Interval (ISTI) as a Predictor of Intradialytic Hypotension (IDH)
International Nuclear Information System (INIS)
Biesheuvel, J D; Verdaasdonk, R M; Meijer, JH; Vervloet, M G
2013-01-01
In haemodialysis treatment the clearance and volume control by the kidneys of a patient are partially replaced by intermittent haemodialysis. Because this artificial process is performed on a limited time scale, unphysiological imbalances in the fluid compartments of the body occur, that can lead to intradialytic hypotensions (IDH). An IDH endangers the efficacy of the haemodialysis session and is associated with dismal clinical endpoints, including mortality. A diagnostic method that predicts the occurrence of these drops in blood pressure could facilitate timely measures for the prevention of IDH. The present study investigates whether the Initial Systolic Time Interval (ISTI) can provide such a diagnostic method. The ISTI is defined as the time difference between the R-peak in the electrocardiogram (ECG) and the C-wave in the impedance cardiogram (ICG) and is considered to be a non-invasive assessment of the time delay between the electrical and mechanical activity of the heart. This time delay has previously been found to depend on autonomic nervous function as well as preload of the heart. Therefore, it can be expected that ISTI may predict an imminent IDH caused by a low circulating blood volume. This ongoing observational clinical study investigates the relationship between changes in ISTI and subsequent drops in blood pressure during haemodialysis. A registration of a complicated dialysis showed a significant correlation between a drop in blood pressure, a decrease in relative blood volume and a substantial increase in ISTI. An uncomplicated dialysis, in which also a considerable amount of fluid was removed, showed no correlations. Both, blood pressure and ISTI remained stable. In conclusion, the preliminary results of the present study show a substantial response of ISTI to haemodynamic instability, indicating an application in optimization and individualisation of the dialysis process.
International Nuclear Information System (INIS)
Hashimoto, Tetsuo; Sanada, Yukihisa; Uezu, Yasuhiro
2004-01-01
A delayed coincidence method, time-interval analysis (TIA), has been applied to successive α-α decay events on the millisecond time-scale. Such decay events are part of the 220 Rn→ 216 Po (T 1/2 145 ms) (Th-series) and 219 Rn→ 215 Po (T 1/2 1.78 ms) (Ac-series). By using TIA in addition to measurement of 226 Ra (U-series) from α-spectrometry by liquid scintillation counting (LSC), two natural decay series could be identified and separated. The TIA detection efficiency was improved by using the pulse-shape discrimination technique (PSD) to reject β-pulses, by solvent extraction of Ra combined with simple chemical separation, and by purging the scintillation solution with dry N 2 gas. The U- and Th-series together with the Ac-series were determined, respectively, from alpha spectra and TIA carried out immediately after Ra-extraction. Using the 221 Fr→ 217 At (T 1/2 32.3 ms) decay process as a tracer, overall yields were estimated from application of TIA to the 225 Ra (Np-decay series) at the time of maximum growth. The present method has proven useful for simultaneous determination of three radioactive decay series in environmental samples. (orig.)
Brain response during the M170 time interval is sensitive to socially relevant information.
Arviv, Oshrit; Goldstein, Abraham; Weeting, Janine C; Becker, Eni S; Lange, Wolf-Gero; Gilboa-Schechtman, Eva
2015-11-01
Deciphering the social meaning of facial displays is a highly complex neurological process. The M170, an event related field component of MEG recording, like its EEG counterpart N170, was repeatedly shown to be associated with structural encoding of faces. However, the scope of information encoded during the M170 time window is still being debated. We investigated the neuronal origin of facial processing of integrated social rank cues (SRCs) and emotional facial expressions (EFEs) during the M170 time interval. Participants viewed integrated facial displays of emotion (happy, angry, neutral) and SRCs (indicated by upward, downward, or straight head tilts). We found that the activity during the M170 time window is sensitive to both EFEs and SRCs. Specifically, highly prominent activation was observed in response to SRC connoting dominance as compared to submissive or egalitarian head cues. Interestingly, the processing of EFEs and SRCs appeared to rely on different circuitry. Our findings suggest that vertical head tilts are processed not only for their sheer structural variance, but as social information. Exploring the temporal unfolding and brain localization of non-verbal cues processing may assist in understanding the functioning of the social rank biobehavioral system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Individual Case Analysis of Postmortem Interval Time on Brain Tissue Preservation.
Directory of Open Access Journals (Sweden)
Jeffrey A Blair
Full Text Available At autopsy, the time that has elapsed since the time of death is routinely documented and noted as the postmortem interval (PMI. The PMI of human tissue samples is a parameter often reported in research studies and comparable PMI is preferred when comparing different populations, i.e., disease versus control patients. In theory, a short PMI may alleviate non-experimental protein denaturation, enzyme activity, and other chemical changes such as the pH, which could affect protein and nucleic acid integrity. Previous studies have compared PMI en masse by looking at many different individual cases each with one unique PMI, which may be affected by individual variance. To overcome this obstacle, in this study human hippocampal segments from the same individuals were sampled at different time points after autopsy creating a series of PMIs for each case. Frozen and fixed tissue was then examined by Western blot, RT-PCR, and immunohistochemistry to evaluate the effect of extended PMI on proteins, nucleic acids, and tissue morphology. In our results, immunostaining profiles for most proteins remained unchanged even after PMI of over 50 h, yet by Western blot distinctive degradation patterns were observed in different protein species. Finally, RNA integrity was lower after extended PMI; however, RNA preservation was variable among cases suggesting antemortem factors may play a larger role than PMI in protein and nucleic acid integrity.
Optimal protocol for maximum work extraction in a feedback process with a time-varying potential
Kwon, Chulan
2017-12-01
The nonequilibrium nature of information thermodynamics is characterized by the inequality or non-negativity of the total entropy change of the system, memory, and reservoir. Mutual information change plays a crucial role in the inequality, in particular if work is extracted and the paradox of Maxwell's demon is raised. We consider the Brownian information engine where the protocol set of the harmonic potential is initially chosen by the measurement and varies in time. We confirm the inequality of the total entropy change by calculating, in detail, the entropic terms including the mutual information change. We rigorously find the optimal values of the time-dependent protocol for maximum extraction of work both for the finite-time and the quasi-static process.
Invariant operator theory for the single-photon energy in time-varying media
International Nuclear Information System (INIS)
Jeong-Ryeol, Choi
2010-01-01
After the birth of quantum mechanics, the notion in physics that the frequency of light is the only factor that determines the energy of a single photon has played a fundamental role. However, under the assumption that the theory of Lewis–Riesenfeld invariants is applicable in quantum optics, it is shown in the present work that this widely accepted notion is valid only for light described by a time-independent Hamiltonian, i.e., for light in media satisfying the conditions, ε(i) = ε(0), μ(t) = μ(0), and σ(t) = 0 simultaneously. The use of the Lewis–Riesenfeld invariant operator method in quantum optics leads to a marvelous result: the energy of a single photon propagating through time-varying linear media exhibits nontrivial time dependence without a change of frequency. (general)
Time-varying predictability in crude-oil markets: the case of GCC countries
International Nuclear Information System (INIS)
El Hedi Arouri, Mohamed; Thanh Huong Dinh; Duc Khuong Nguyen
2010-01-01
This paper uses a time-varying parameter model with generalized autoregressive conditional heteroscedasticity effects to examine the dynamic behavior of crude-oil prices for the period February 7, 1997-January 8, 2010. Using data from four countries of the Gulf Cooperation Council, we find evidence of short-term predictability in oil-price changes over time, except for several short sub-periods. However, the hypothesis of convergence towards weak-form informational efficiency is rejected for all markets. In addition, we explore the possibility of structural breaks in the time-paths of the estimated predictability indices and detect only one breakpoint, for the oil markets in Qatar and the United Arab Emirates. Our empirical results therefore call for new empirical research to further gauge the predictability characteristics and the determinants of oil-price changes.
Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis.
Chiba, Tomoaki; Hino, Hideitsu; Akaho, Shotaro; Murata, Noboru
2017-01-01
In a product market or stock market, different products or stocks compete for the same consumers or purchasers. We propose a method to estimate the time-varying transition matrix of the product share using a multivariate time series of the product share. The method is based on the assumption that each of the observed time series of shares is a stationary distribution of the underlying Markov processes characterized by transition probability matrices. We estimate transition probability matrices for every observation under natural assumptions. We demonstrate, on a real-world dataset of the share of automobiles, that the proposed method can find intrinsic transition of shares. The resulting transition matrices reveal interesting phenomena, for example, the change in flows between TOYOTA group and GM group for the fiscal year where TOYOTA group's sales beat GM's sales, which is a reasonable scenario.
Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis.
Directory of Open Access Journals (Sweden)
Tomoaki Chiba
Full Text Available In a product market or stock market, different products or stocks compete for the same consumers or purchasers. We propose a method to estimate the time-varying transition matrix of the product share using a multivariate time series of the product share. The method is based on the assumption that each of the observed time series of shares is a stationary distribution of the underlying Markov processes characterized by transition probability matrices. We estimate transition probability matrices for every observation under natural assumptions. We demonstrate, on a real-world dataset of the share of automobiles, that the proposed method can find intrinsic transition of shares. The resulting transition matrices reveal interesting phenomena, for example, the change in flows between TOYOTA group and GM group for the fiscal year where TOYOTA group's sales beat GM's sales, which is a reasonable scenario.
Parameter Estimation of a Closed Loop Coupled Tank Time Varying System using Recursive Methods
International Nuclear Information System (INIS)
Basir, Siti Nora; Yussof, Hanafiah; Shamsuddin, Syamimi; Selamat, Hazlina; Zahari, Nur Ismarrubie
2013-01-01
This project investigates the direct identification of closed loop plant using discrete-time approach. The uses of Recursive Least Squares (RLS), Recursive Instrumental Variable (RIV) and Recursive Instrumental Variable with Centre-Of-Triangle (RIV + COT) in the parameter estimation of closed loop time varying system have been considered. The algorithms were applied in a coupled tank system that employs covariance resetting technique where the time of parameter changes occur is unknown. The performances of all the parameter estimation methods, RLS, RIV and RIV + COT were compared. The estimation of the system whose output was corrupted with white and coloured noises were investigated. Covariance resetting technique successfully executed when the parameters change. RIV + COT gives better estimates than RLS and RIV in terms of convergence and maximum overshoot
Weighted H∞ Filtering for a Class of Switched Linear Systems with Additive Time-Varying Delays
Directory of Open Access Journals (Sweden)
Li-li Li
2015-01-01
Full Text Available This paper is concerned with the problem of weighted H∞ filtering for a class of switched linear systems with two additive time-varying delays, which represent a general class of switched time-delay systems with strong practical background. Combining average dwell time (ADT technique with piecewise Lyapunov functionals, sufficient conditions are established to guarantee the exponential stability and weighted H∞ performance for the filtering error systems. The parameters of the designed switched filters are obtained by solving linear matrix inequalities (LMIs. A modification of Jensen integral inequality is exploited to derive results with less theoretical conservatism and computational complexity. Finally, two examples are given to demonstrate the effectiveness of the proposed method.
Tracking time-varying cerebral autoregulation in response to changes in respiratory PaCO2
International Nuclear Information System (INIS)
Liu, Jia; Simpson, M David; Allen, Robert; Yan, Jingyu
2010-01-01
Cerebral autoregulation has been studied by linear filter systems, with arterial blood pressure (ABP) as the input and cerebral blood flow velocity (CBFV—from transcranial Doppler Ultrasound) as the output. The current work extends this by using adaptive filters to investigate the dynamics of time-varying cerebral autoregulation during step-wise changes in arterial PaCO 2 . Cerebral autoregulation was transiently impaired in 11 normal adult volunteers, by switching inspiratory air to a CO 2 /air mixture (5% CO 2 , 30% O 2 and 65% N 2 ) for approximately 2 min and then back to the ambient air, causing step-wise changes in end-tidal CO 2 (EtCO 2 ). Simultaneously, ABP and CBFV were recorded continuously. Simulated data corresponding to the same protocol were also generated using an established physiological model, in order to refine the signal analysis methods. Autoregulation was quantified by the time-varying phase lead, estimated from the adaptive filter model. The adaptive filter was able to follow rapid changes in autoregulation, as was confirmed in the simulated data. In the recorded signals, there was a slow decrease in autoregulatory function following the step-wise increase in PaCO 2 (but this did not reach a steady state within approximately 2 min of recording), with a more rapid change in autoregulation on return to normocapnia. Adaptive filter modelling was thus able to demonstrate time-varying autoregulation. It was further noted that impairment and recovery of autoregulation during transient increases in EtCO 2 occur in an asymmetric manner, which should be taken into account when designing experimental protocols for the study of autoregulation
The relationship between global oil price shocks and China's output: A time-varying analysis
International Nuclear Information System (INIS)
Cross, Jamie; Nguyen, Bao H.
2017-01-01
We employ a class of time-varying Bayesian vector autoregressive (VAR) models on new standard dataset of China's GDP constructed by to examine the relationship between China's economic growth and global oil market fluctuations between 1992Q1 and 2015Q3. We find that: (1) the time varying parameter VAR with stochastic volatility provides a better fit as compared to it's constant counterparts; (2) the impacts of intertemporal global oil price shocks on China's output are often small and temporary in nature; (3) oil supply and specific oil demand shocks generally produce negative movements in China's GDP growth whilst oil demand shocks tend to have positive effects; (4) domestic output shocks have no significant impact on price or quantity movements within the global oil market. The results are generally robust to three commonly employed indicators of global economic activity: Kilian's global real economic activity index, the metal price index and the global industrial production index, and two alternative oil price metrics: the US refiners' acquisition cost for imported crude oil and the West Texas Intermediate price of crude oil. - Highlights: • A class of time-varying BVARs is used to examine the relationship between China's economic growth and global oil market fluctuations. • The impacts of intertemporal global oil price shocks on China's output are often small and temporary in nature. • Oil supply and specific oil demand shocks generally produce negative movements in China's GDP growth while oil demand shocks tend to have positive effects. • Domestic output shocks have no significant impact on price or quantity movements within the global oil market.
Zhang, Shangbin; Lu, Siliang; He, Qingbo; Kong, Fanrang
2016-09-01
For rotating machines, the defective faults of bearings generally are represented as periodic transient impulses in acquired signals. The extraction of transient features from signals has been a key issue for fault diagnosis. However, the background noise reduces identification performance of periodic faults in practice. This paper proposes a time-varying singular value decomposition (TSVD) method to enhance the identification of periodic faults. The proposed method is inspired by the sliding window method. By applying singular value decomposition (SVD) to the signal under a sliding window, we can obtain a time-varying singular value matrix (TSVM). Each column in the TSVM is occupied by the singular values of the corresponding sliding window, and each row represents the intrinsic structure of the raw signal, namely time-singular-value-sequence (TSVS). Theoretical and experimental analyses show that the frequency of TSVS is exactly twice that of the corresponding intrinsic structure. Moreover, the signal-to-noise ratio (SNR) of TSVS is improved significantly in comparison with the raw signal. The proposed method takes advantages of the TSVS in noise suppression and feature extraction to enhance fault frequency for diagnosis. The effectiveness of the TSVD is verified by means of simulation studies and applications to diagnosis of bearing faults. Results indicate that the proposed method is superior to traditional methods for bearing fault diagnosis.
Nonlinear systems time-varying parameter estimation: Application to induction motors
Energy Technology Data Exchange (ETDEWEB)
Kenne, Godpromesse [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, IUT FOTSO Victor, Universite de Dschang, B.P. 134 Bandjoun (Cameroon); Ahmed-Ali, Tarek [Ecole Nationale Superieure des Ingenieurs des Etudes et Techniques d' Armement (ENSIETA), 2 Rue Francois Verny, 29806 Brest Cedex 9 (France); Lamnabhi-Lagarrigue, F. [Laboratoire des Signaux et Systemes (L2S), C.N.R.S-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Arzande, Amir [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)
2008-11-15
In this paper, an algorithm for time-varying parameter estimation for a large class of nonlinear systems is presented. The proof of the convergence of the estimates to their true values is achieved using Lyapunov theories and does not require that the classical persistent excitation condition be satisfied by the input signal. Since the induction motor (IM) is widely used in several industrial sectors, the algorithm developed is potentially useful for adjusting the controller parameters of variable speed drives. The method proposed is simple and easily implementable in real-time. The application of this approach to on-line estimation of the rotor resistance of IM shows a rapidly converging estimate in spite of measurement noise, discretization effects, parameter uncertainties (e.g. inaccuracies on motor inductance values) and modeling inaccuracies. The robustness analysis for this IM application also revealed that the proposed scheme is insensitive to the stator resistance variations within a wide range. The merits of the proposed algorithm in the case of on-line time-varying rotor resistance estimation are demonstrated via experimental results in various operating conditions of the induction motor. The experimental results obtained demonstrate that the application of the proposed algorithm to update on-line the parameters of an adaptive controller (e.g. IM and synchronous machines adaptive control) can improve the efficiency of the industrial process. The other interesting features of the proposed method include fault detection/estimation and adaptive control of IM and synchronous machines. (author)
Dynamic IQC-Based Control of Uncertain LFT Systems With Time-Varying State Delay.
Yuan, Chengzhi; Wu, Fen
2016-12-01
This paper presents a new exact-memory delay control scheme for a class of uncertain systems with time-varying state delay under the integral quadratic constraint (IQC) framework. The uncertain system is described as a linear fractional transformation model including a state-delayed linear time-invariant (LTI) system and time-varying structured uncertainties. The proposed exact-memory delay controller consists of a linear state-feedback control law and an additional term that captures the delay behavior of the plant. We first explore the delay stability and the L 2 -gain performance using dynamic IQCs incorporated with quadratic Lyapunov functions. Then, the design of exact-memory controllers that guarantee desired L 2 -gain performance is examined. The resulting delay control synthesis conditions are formulated in terms of linear matrix inequalities, which are convex on all design variables including the scaling matrices associated with the IQC multipliers. The IQC-based exact-memory control scheme provides a novel approach for delay control designs via convex optimization, and advances existing control methods in two important ways: 1) better controlled performance and 2) simplified design procedure with less computational cost. The effectiveness and advantages of the proposed approach have been demonstrated through numerical studies.
Reusable Launch Vehicle Attitude Control Using a Time-Varying Sliding Mode Control Technique
Shtessel, Yuri B.; Zhu, J. Jim; Daniels, Dan; Jackson, Scott (Technical Monitor)
2002-01-01
In this paper we present a time-varying sliding mode control (TVSMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC ascent and descent designs are currently being tested with high fidelity, 6-DOF dispersion simulations. The test results will be presented in the final version of this paper.
Simulations of hybrid system varying solar radiation and microturbine response time
Directory of Open Access Journals (Sweden)
Yolanda Fernández Ribaya
2015-07-01
Full Text Available Hybrid power systems, such as combinations of renewable power sources with intermittent power production and non-renewable power sources, theoretically increase the reliability and thus integration of renewable sources in the electrical system. However, a recent increase in the number of hybrid installations has sparked interest in the effects of their connection to the grid, especially in remote areas. This paper analyses a photovoltaic-gas microturbine hybrid system dimensioned to be installed in La Paz (Mexico.The research presented in this paper studies and quantifies the effects on the total electric power produced, varying both the solar radiation and the gas microturbine response time. The gas microturbine and the photovoltaic panels are modelled using Matlab/Simulink software, obtaining a platform where different tests to simulate real conditions have been executed. They consist of diverse ramps of irradiance that replicate solar radiation variations, and different microturbine response times reproduced by the time constants of a first order transfer function that models the microturbine dynamic response. The results obtained show that when radiation varies quickly it does not produce significant differences in the power guarantee or the microturbine gas consumption, to any microturbine response time. However, these two parameters are highly variable with smooth radiance variations. The maximum total power variation decreases greatly as the radiation variation gets lower. In addition, by decreasing the microturbine response time, it is possible to appreciably increase the power guarantee although the maximum power variation and gas consumption increase. Only in cases of low radiation variation is there no appreciable difference in the maximum power variation obtained by the different turbine response times.
Simulations of hybrid system varying solar radiation and microturbine response time
Energy Technology Data Exchange (ETDEWEB)
Fernández Ribaya, Yolanda, E-mail: fernandezryolanda@uniovi.es; Álvarez, Eduardo; Paredes Sánchez, José Pablo; Xiberta Bernat, Jorge [Department of Energy E.I.M.E.M., University of Oviedo. 13 Independencia Street 2" n" d floor, 36004, Oviedo (Spain)
2015-07-15
Hybrid power systems, such as combinations of renewable power sources with intermittent power production and non-renewable power sources, theoretically increase the reliability and thus integration of renewable sources in the electrical system. However, a recent increase in the number of hybrid installations has sparked interest in the effects of their connection to the grid, especially in remote areas. This paper analyses a photovoltaic-gas microturbine hybrid system dimensioned to be installed in La Paz (Mexico).The research presented in this paper studies and quantifies the effects on the total electric power produced, varying both the solar radiation and the gas microturbine response time. The gas microturbine and the photovoltaic panels are modelled using Matlab/Simulink software, obtaining a platform where different tests to simulate real conditions have been executed. They consist of diverse ramps of irradiance that replicate solar radiation variations, and different microturbine response times reproduced by the time constants of a first order transfer function that models the microturbine dynamic response. The results obtained show that when radiation varies quickly it does not produce significant differences in the power guarantee or the microturbine gas consumption, to any microturbine response time. However, these two parameters are highly variable with smooth radiance variations. The maximum total power variation decreases greatly as the radiation variation gets lower. In addition, by decreasing the microturbine response time, it is possible to appreciably increase the power guarantee although the maximum power variation and gas consumption increase. Only in cases of low radiation variation is there no appreciable difference in the maximum power variation obtained by the different turbine response times.
H∞ Consensus for Multiagent Systems with Heterogeneous Time-Varying Delays
Directory of Open Access Journals (Sweden)
Beibei Wang
2013-01-01
Full Text Available We apply the linear matrix inequality method to consensus and H∞ consensus problems of the single integrator multiagent system with heterogeneous delays in directed networks. To overcome the difficulty caused by heterogeneous time-varying delays, we rewrite the multiagent system into a partially reduced-order system and an integral system. As a result, a particular Lyapunov function is constructed to derive sufficient conditions for consensus of multiagent systems with fixed (switched topologies. We also apply this method to the H∞ consensus of multiagent systems with disturbances and heterogeneous delays. Numerical examples are given to illustrate the theoretical results.
Ponderomotive force of a uniform electromagnetic wave in a time varying dielectric medium
International Nuclear Information System (INIS)
Mori, W.B.; Katsouleas, T.
1992-01-01
A ponderomotive force associated with a uniform electromagnetic wave propagating in a medium with time varying dielectric properties [e.g., ε=ε(x-v 0 t)] is identified. In particular, when a laser ionizes a gas through which it propagates, a force is exerted on the medium at the ionization front that is proportional to (∇ε)E 2 rather than the usual (ε-1)∇E 2 . This force excites a wake in the plasma medium behind the ionization front. The ponderomotive force and wake amplitude are derived and tested with 1D particle-in-cell simulations
Directory of Open Access Journals (Sweden)
Lun Zhai
2014-01-01
Full Text Available A parametric learning based robust iterative learning control (ILC scheme is applied to the time varying delay multiple-input and multiple-output (MIMO linear systems. The convergence conditions are derived by using the H∞ and linear matrix inequality (LMI approaches, and the convergence speed is analyzed as well. A practical identification strategy is applied to optimize the learning laws and to improve the robustness and performance of the control system. Numerical simulations are illustrated to validate the above concepts.
Gold as an Infl ation Hedge in a Time-Varying Coefficient Framework
Beckmann, Joscha; Czudaj, Robert
2012-01-01
This study analyzes the question whether gold provides the ability of hedging against inflation from a new perspective. Using data for four major economies, namely the USA, the UK, the Euro Area, and Japan, we allow for nonlinearity and discriminate between long-run and time-varying short-run dynamics. Thus, we conduct a Markov-switching vector error correction model (MS-VECM) approach for a sample period ranging from January 1970 to December 2011. Our main findings are threefold: First, we s...
Gold as an Infl ation Hedge in a Time-Varying Coeffi cient Framework
Joscha Beckmann; Robert Czudaj
2012-01-01
This study analyzes the question whether gold provides the ability of hedging against inflation from a new perspective. Using data for four major economies, namely the USA, the UK, the Euro Area, and Japan, we allow for nonlinearity and discriminate between long-run and time-varying short-run dynamics. Thus, we conduct a Markov-switching vector error correction model (MS-VECM) approach for a sample period ranging from January 1970 to December 2011. Our main findings are threefold: First, we s...
Time-Varying Market Integration and Expected Returns in Emerging Markets
de Jong, Frank; de Roon, Frans
2001-01-01
We use a simple model in which the expected returns in emerging markets depend on their systematic risk as measured by their beta relative to the world portfolio as well as on the level of integration in that market. The level of integration is a time-varying variable that depends on the market value of the assets that can be held by domestic investors only versus the market value of the assets that can be traded freely. Our empirical analysis for 30 emerging markets shows that there are stro...
Combined time-varying forecast based on the proper scoring approach for wind power generation
DEFF Research Database (Denmark)
Chen, Xingying; Jiang, Yu; Yu, Kun
2017-01-01
Compared with traditional point forecasts, combined forecast have been proposed as an effective method to provide more accurate forecasts than individual model. However, the literature and research focus on wind-power combined forecasts are relatively limited. Here, based on forecasting error...... distribution, a proper scoring approach is applied to combine plausible models to form an overall time-varying model for the next day forecasts, rather than weights-based combination. To validate the effectiveness of the proposed method, real data of 3 years were used for testing. Simulation results...... demonstrate that the proposed method improves the accuracy of overall forecasts, even compared with a numerical weather prediction....
Analysis on Passivity for Uncertain Neural Networks with Time-Varying Delays
Directory of Open Access Journals (Sweden)
O. M. Kwon
2014-01-01
Full Text Available The problem of passivity analysis for neural networks with time-varying delays and parameter uncertainties is considered. By the consideration of newly constructed Lyapunov-Krasovskii functionals, improved sufficient conditions to guarantee the passivity of the concerned networks are proposed with the framework of linear matrix inequalities (LMIs, which can be solved easily by various efficient convex optimization algorithms. The enhancement of the feasible region of the proposed criteria is shown via two numerical examples by the comparison of maximum allowable delay bounds.
International Nuclear Information System (INIS)
Liang Jinling; Cao Jinde
2003-01-01
In this Letter, the problems of boundedness and stability for a general class of non-autonomous recurrent neural networks with variable coefficients and time-varying delays are analyzed via employing Young inequality technique and Lyapunov method. Some simple sufficient conditions are given for boundedness and stability of the solutions for the recurrent neural networks. These results generalize and improve the previous works, and they are easy to check and apply in practice. Two illustrative examples and their numerical simulations are also given to demonstrate the effectiveness of the proposed results
International Nuclear Information System (INIS)
Zhu Xunlin; Wang Youyi
2009-01-01
This Letter studies the exponential stability for a class of neural networks (NNs) with both discrete and distributed time-varying delays. Under weaker assumptions on the activation functions, by defining a more general type of Lyapunov functionals and developing a new convex combination technique, new less conservative and less complex stability criteria are established to guarantee the global exponential stability of the discussed NNs. The obtained conditions are dependent on both discrete and distributed delays, are expressed in terms of linear matrix inequalities (LMIs), and contain fewer decision variables. Numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed conditions.
Gong, Shuqing; Yang, Shaofu; Guo, Zhenyuan; Huang, Tingwen
2018-06-01
The paper is concerned with the synchronization problem of inertial memristive neural networks with time-varying delay. First, by choosing a proper variable substitution, inertial memristive neural networks described by second-order differential equations can be transformed into first-order differential equations. Then, a novel controller with a linear diffusive term and discontinuous sign term is designed. By using the controller, the sufficient conditions for assuring the global exponential synchronization of the derive and response neural networks are derived based on Lyapunov stability theory and some inequality techniques. Finally, several numerical simulations are provided to substantiate the effectiveness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Yueyang Li
2014-01-01
Full Text Available This paper investigates the H∞ fixed-lag fault estimator design for linear discrete time-varying (LDTV systems with intermittent measurements, which is described by a Bernoulli distributed random variable. Through constructing a novel partially equivalent dynamic system, the fault estimator design is converted into a deterministic quadratic minimization problem. By applying the innovation reorganization technique and the projection formula in Krein space, a necessary and sufficient condition is obtained for the existence of the estimator. The parameter matrices of the estimator are derived by recursively solving two standard Riccati equations. An illustrative example is provided to show the effectiveness and applicability of the proposed algorithm.
Adaptive control of chaotic systems with stochastic time varying unknown parameters
Energy Technology Data Exchange (ETDEWEB)
Salarieh, Hassan [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: aalasti@sharif.edu
2008-10-15
In this paper based on the Lyapunov stability theorem, an adaptive control scheme is proposed for stabilizing the unstable periodic orbits (UPO) of chaotic systems. It is assumed that the chaotic system has some linearly dependent unknown parameters which are stochastically time varying. The stochastic parameters are modeled through the Weiner process derivative. To demonstrate the effectiveness of the proposed technique it has been applied to the Lorenz, Chen and Rossler dynamical systems, as some case studies. Simulation results indicate that the proposed adaptive controller has a high performance in stabilizing the UPO of chaotic systems in noisy environment.
Online Estimation of Time-Varying Volatility Using a Continuous-Discrete LMS Algorithm
Directory of Open Access Journals (Sweden)
Jacques Oksman
2008-09-01
Full Text Available The following paper addresses a problem of inference in financial engineering, namely, online time-varying volatility estimation. The proposed method is based on an adaptive predictor for the stock price, built from an implicit integration formula. An estimate for the current volatility value which minimizes the mean square prediction error is calculated recursively using an LMS algorithm. The method is then validated on several synthetic examples as well as on real data. Throughout the illustration, the proposed method is compared with both UKF and offline volatility estimation.
Globally exponential stability condition of a class of neural networks with time-varying delays
International Nuclear Information System (INIS)
Liao, T.-L.; Yan, J.-J.; Cheng, C.-J.; Hwang, C.-C.
2005-01-01
In this Letter, the globally exponential stability for a class of neural networks including Hopfield neural networks and cellular neural networks with time-varying delays is investigated. Based on the Lyapunov stability method, a novel and less conservative exponential stability condition is derived. The condition is delay-dependent and easily applied only by checking the Hamiltonian matrix with no eigenvalues on the imaginary axis instead of directly solving an algebraic Riccati equation. Furthermore, the exponential stability degree is more easily assigned than those reported in the literature. Some examples are given to demonstrate validity and excellence of the presented stability condition herein
Resonant e+e- production by time-varying electromagnetic field
International Nuclear Information System (INIS)
Farakos, K.; Koutsoumbas, G.; Tiktopoulos, G.
1990-01-01
As pointed out by Cornwall and Tiktopoulos (CT) strong, time-varying electric fields may produce e + e - pairs in a resonant fashion. This effect could be related to the sharp peaks in the e + e - spectrum observed in the GSI heavy-ion collision experiments. We attempt to go beyond the case of spatially uniform fields discussed by CT. We find that resonant e + e - production indeed takes place for electric fields derived from four-potentials of the form A 1 =A 2 =A 0 =0, A 3 =δ(t)b(x 3 ) provided by b(x) has discontinuities with a jump at least equal to π. (orig.)
Vande Vusse, Lisa K; Caldwell, Ellen; Tran, Edward; Hogl, Laurie; Dinwiddie, Steven; López, José A; Maier, Ronald V; Watkins, Timothy R
2015-09-01
Research that applies an unreliable definition for transfusion-related acute lung injury (TRALI) may draw false conclusions about its risk factors and biology. The effectiveness of preventive strategies may decrease as a consequence. However, the reliability of the consensus TRALI definition is unknown. To prospectively study the effect of applying two plausible definitions of acute respiratory distress syndrome onset time on TRALI epidemiology. We studied 316 adults admitted to the intensive care unit and transfused red blood cells within 24 hours of blunt trauma. We identified patients with acute respiratory distress syndrome, and defined acute respiratory distress syndrome onset time two ways: (1) the time at which the first radiographic or oxygenation criterion was met, and (2) the time both criteria were met. We categorized two corresponding groups of TRALI cases transfused in the 6 hours before acute respiratory distress syndrome onset. We used Cohen's kappa to measure agreement between the TRALI cases and implicated blood components identified by the two acute respiratory distress syndrome onset time definitions. In a nested case-control study, we examined potential risk factors for each group of TRALI cases, including demographics, injury severity, and characteristics of blood components transfused in the 6 hours before acute respiratory distress syndrome onset. Forty-two of 113 patients with acute respiratory distress syndrome were TRALI cases per the first acute respiratory distress syndrome onset time definition and 63 per the second definition. There was slight agreement between the two groups of TRALI cases (κ = 0.16; 95% confidence interval, -0.01 to 0.33) and between the implicated blood components (κ = 0.15, 95% confidence interval, 0.11-0.20). Age, Injury Severity Score, high plasma-volume components, and transfused plasma volume were risk factors for TRALI when applying the second acute respiratory distress syndrome onset time definition
International Nuclear Information System (INIS)
Denecke, B.; Jonge, S. de
1998-01-01
An electronic device to measure interval time density distributions of subsequent pulses in nuclear detectors and their electronics is described. The device has a pair-pulse resolution of 10 ns and 25 ns for 3 subsequent input signals. The conversion range is 4096 channels and the lowest channel width is 10 ns. Counter dead times, single and in series were studied and compared with the statistical model. True count rates were obtained from an exponential fit through the interval-time distribution
Multi-Step Time Series Forecasting with an Ensemble of Varied Length Mixture Models.
Ouyang, Yicun; Yin, Hujun
2018-05-01
Many real-world problems require modeling and forecasting of time series, such as weather temperature, electricity demand, stock prices and foreign exchange (FX) rates. Often, the tasks involve predicting over a long-term period, e.g. several weeks or months. Most existing time series models are inheritably for one-step prediction, that is, predicting one time point ahead. Multi-step or long-term prediction is difficult and challenging due to the lack of information and uncertainty or error accumulation. The main existing approaches, iterative and independent, either use one-step model recursively or treat the multi-step task as an independent model. They generally perform poorly in practical applications. In this paper, as an extension of the self-organizing mixture autoregressive (AR) model, the varied length mixture (VLM) models are proposed to model and forecast time series over multi-steps. The key idea is to preserve the dependencies between the time points within the prediction horizon. Training data are segmented to various lengths corresponding to various forecasting horizons, and the VLM models are trained in a self-organizing fashion on these segments to capture these dependencies in its component AR models of various predicting horizons. The VLM models form a probabilistic mixture of these varied length models. A combination of short and long VLM models and an ensemble of them are proposed to further enhance the prediction performance. The effectiveness of the proposed methods and their marked improvements over the existing methods are demonstrated through a number of experiments on synthetic data, real-world FX rates and weather temperatures.
Rapid determination of long-lived artificial alpha radionuclides using time interval analysis
International Nuclear Information System (INIS)
Uezu, Yasuhiro; Koarashi, Jun; Sanada, Yukihisa; Hashimoto, Tetsuo
2003-01-01
It is important to monitor long lived alpha radionuclides as plutonium ( 238 Pu, 239+240 Pu) in the field of working area and environment of nuclear fuel cycle facilities, because it is well known that potential risks of cancer-causing from alpha radiation is higher than gamma radiations. Thus, these monitoring are required high sensitivity, high resolution and rapid determination in order to measure a very low-level concentration of plutonium isotopes. In such high sensitive monitoring, natural radionuclides, including radon ( 222 Rn or 220 Rn) and their progenies, should be eliminated as low as possible. In this situation, a sophisticated discrimination method between Pu and progenies of 222 Rn or 220 Rn using time interval analysis (TIA), which was able to subtract short-lived radionuclides using the time interval distributions calculation of successive alpha and beta decay events within millisecond or microsecond orders, was designed and developed. In this system, alpha rays from 214 Po, 216 Po and 212 Po are extractable. TIA measuring system composes of Silicon Surface Barrier Detector (SSD), an amplifier, an Analog to Digital Converter (ADC), a Multi-Channel Analyzer (MCA), a high-resolution timer (TIMER), a multi-parameter collector and a personal computer. In ADC, incidental alpha and beta pulses are sent to the MCA and the TIMER simultaneously. Pulses from them are synthesized by the multi-parameter collector. After measurement, natural radionuclides are subtracted. Airborne particles were collected on membrane filter for 60 minutes at 100 L/min. Small Pu particles were added on the surface of it. Alpha and beta rays were measured and natural radionuclides were subtracted within 5 times of 145 msec. by TIA. As a result of it, the hidden Pu in natural background could be recognized clearly. The lower limit of determination of 239 Pu is calculated as 6x10 -9 Bq/cm 3 . This level is satisfied with the derived air concentration (DAC) of 239 Pu (8x10 -9 Bq/cm 3
Calculation of rectal dose surface histograms in the presence of time varying deformations
International Nuclear Information System (INIS)
Roeske, John C.; Spelbring, Danny R.; Vijayakumar, S.; Forman, Jeffrey D.; Chen, George T.Y.
1996-01-01
Purpose: Dose volume (DVH) and dose surface histograms (DSH) of the bladder and rectum are usually calculated from a single treatment planning scan. These DVHs and DSHs will eventually be correlated with complications to determine parameters for normal tissue complication probabilities (NTCP). However, from day to day, the size and shape of the rectum and bladder may vary. The purpose of this study is to compare a more accurate estimate of the time integrated DVHs and DSHs of the rectum (in the presence of daily variations in rectal shape) to initial DVHs/DSHs. Methods: 10 patients were scanned once per week during the course of fractionated radiotherapy, typically accumulating a total of six scans. The rectum and bladder were contoured on each of the studies. The model used to assess effects of rectal contour deformation is as follows: the contour on a given axial slice (see figure) is boxed within a rectangle. A line drawn parallel to the AP axis through the rectangle equally partitions the box. Starting at the intersection of the vertical line and the rectal contour, points on the contour are marked off representing the same rectal dose point, even in the presence of distortion. Corresponding numbered points are used to sample the dose matrix and create a composite DSH. The model assumes uniform stretching of the rectal contour for any given axial cut, and no twist of the structure or vertical displacement. A similar model is developed for the bladder with spherical symmetry. Results: Normalized DSHs (nDSH) for each CT scan were calculated as well as the time averaged nDSH over all scans. These were compared with the nDSH from the initial planning scan. Individual nDSHs differed by 8% surface area irradiated at the 80% dose level, to as much as 20% surface area in the 70-100% dose range. DSH variations are due to position and shape changes in the rectum during different CT scans. The spatial distribution of dose is highly variable, and depends on the field
Fredman, Lisa; Lyons, Jennifer G; Cauley, Jane A; Hochberg, Marc; Applebaum, Katie M
2015-09-01
Previous studies have shown inconsistent associations between caregiving and mortality. This may be due to analyzing caregiver status at baseline only, and that better health is probably related to taking on caregiving responsibilities and continuing in that role. The latter is termed The Healthy Caregiver Hypothesis, similar to the Healthy Worker Effect in occupational epidemiology. We applied common approaches from occupational epidemiology to evaluate the association between caregiving and mortality, including treating caregiving as time-varying and lagging exposure up to 5 years. Caregiving status among 1,068 women (baseline mean age = 81.0 years; 35% caregivers) participating in the Caregiver-Study of Osteoporotic Fractures study was assessed at five interviews conducted between 1999 and 2009. Mortality was determined through January 2012. Cox proportional hazards models were used to estimate adjusted hazard ratios and 95% confidence intervals adjusted for sociodemographics, perceived stress, and functional limitations. A total of 483 participants died during follow-up (38.8% and 48.7% of baseline caregivers and noncaregivers, respectively). Using baseline caregiving status, the association with mortality was 0.77, 0.62-0.95. Models of time-varying caregiving status showed a more pronounced reduction in mortality in current caregivers (hazard ratios = 0.54, 0.38-0.75), which diminished with longer lag periods (3-year lag hazard ratio = 0.68, 0.52-0.88, 5-year lag hazard ratios = 0.76, 0.60-0.95). Overall, caregivers had lower mortality rates than noncaregivers in all analyses. These associations were sensitive to the lagged period, indicating that the timing of leaving caregiving does influence this relationship and should be considered in future investigations. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Noise level estimation in weakly nonlinear slowly time-varying systems
International Nuclear Information System (INIS)
Aerts, J R M; Dirckx, J J J; Lataire, J; Pintelon, R
2008-01-01
Recently, a method using multisine excitation was proposed for estimating the frequency response, the nonlinear distortions and the disturbing noise of weakly nonlinear time-invariant systems. This method has been demonstrated on the measurement of nonlinear distortions in the vibration of acoustically driven systems such as a latex membrane, which is a good example of a time-invariant system [1]. However, not all systems are perfectly time invariant, e.g. biomechanical systems. This time variation can be misinterpreted as an elevated noise floor, and the classical noise estimation method gives a wrong result. Two improved methods to retrieve the correct noise information from the measurements are presented. Both of them make use of multisine excitations. First, it is demonstrated that the improved methods give the same result as the classical noise estimation method when applied to a time-invariant system (high-quality microphone membrane). Next, it is demonstrated that the new methods clearly give an improved estimate of the noise level on time-varying systems. As an application example results for the vibration response of an eardrum are shown
Modeling Nonstationary Emotion Dynamics in Dyads using a Time-Varying Vector-Autoregressive Model.
Bringmann, Laura F; Ferrer, Emilio; Hamaker, Ellen L; Borsboom, Denny; Tuerlinckx, Francis
2018-01-01
Emotion dynamics are likely to arise in an interpersonal context. Standard methods to study emotions in interpersonal interaction are limited because stationarity is assumed. This means that the dynamics, for example, time-lagged relations, are invariant across time periods. However, this is generally an unrealistic assumption. Whether caused by an external (e.g., divorce) or an internal (e.g., rumination) event, emotion dynamics are prone to change. The semi-parametric time-varying vector-autoregressive (TV-VAR) model is based on well-studied generalized additive models, implemented in the software R. The TV-VAR can explicitly model changes in temporal dependency without pre-existing knowledge about the nature of change. A simulation study is presented, showing that the TV-VAR model is superior to the standard time-invariant VAR model when the dynamics change over time. The TV-VAR model is applied to empirical data on daily feelings of positive affect (PA) from a single couple. Our analyses indicate reliable changes in the male's emotion dynamics over time, but not in the female's-which were not predicted by her own affect or that of her partner. This application illustrates the usefulness of using a TV-VAR model to detect changes in the dynamics in a system.
Using the Initial Systolic Time Interval to assess cardiac autonomic function in Parkinson’s disease
Directory of Open Access Journals (Sweden)
Jan H. Meijer
2011-12-01
Full Text Available The Initial Systolic Time Interval (ISTI has been defined as the time difference between the peak electrical and peak mechanical activity of the heart. ISTI is obtained from the electro-cardiogram and the impedance cardiogram. The response of ISTI while breathing at rest and to a deep breathing stimulus was studied in a group of patients suffering from Parkinson's disease (PD and a group of healthy control subjects. ISTI showed substantial variability during these manoeuvres. The tests showed that the variability of RR and ISTI was substantially different between PD patients and controls. It is hypothesized that in PD patients the sympathetic system compensates for the loss of regulatory control function of the blood-pressure by the parasympathetic system. It is concluded that ISTI is a practical, additional and independent parameter that can be used to assist other tests in evaluating autonomic control of the heart in PD patients.doi:10.5617/jeb.216 J Electr Bioimp, vol. 2, pp. 98-101, 2011
Hybrid neuro-heuristic methodology for simulation and control of dynamic systems over time interval.
Woźniak, Marcin; Połap, Dawid
2017-09-01
Simulation and positioning are very important aspects of computer aided engineering. To process these two, we can apply traditional methods or intelligent techniques. The difference between them is in the way they process information. In the first case, to simulate an object in a particular state of action, we need to perform an entire process to read values of parameters. It is not very convenient for objects for which simulation takes a long time, i.e. when mathematical calculations are complicated. In the second case, an intelligent solution can efficiently help on devoted way of simulation, which enables us to simulate the object only in a situation that is necessary for a development process. We would like to present research results on developed intelligent simulation and control model of electric drive engine vehicle. For a dedicated simulation method based on intelligent computation, where evolutionary strategy is simulating the states of the dynamic model, an intelligent system based on devoted neural network is introduced to control co-working modules while motion is in time interval. Presented experimental results show implemented solution in situation when a vehicle transports things over area with many obstacles, what provokes sudden changes in stability that may lead to destruction of load. Therefore, applied neural network controller prevents the load from destruction by positioning characteristics like pressure, acceleration, and stiffness voltage to absorb the adverse changes of the ground. Copyright © 2017 Elsevier Ltd. All rights reserved.
Costa, Cátia; Durão, David; Belo, Adriana; Domingues, Kevin; Santos, Beatriz; Leal, Margarida
2016-11-01
Percutaneous coronary intervention (PCI) is currently considered the gold-standard treatment of acute coronary syndromes with ST-segment elevation (STEMI). However, this is not the reality of many European centers, where thrombolysis is performed as primary therapy. To determine, in a STEMI population that performed successful fibrinolytic treatment, if the performance of coronary angiography after the first 24h was associated with more hospital complications, including higher mortality, compared with its performance in the recommended time. Retrospective study, including 1065 patients with STEMI, who performed successful thrombolysis. The population was divided in three groups: A, patients who didn't undergo coronary angiography after successful thrombolysis (n=278; 26.1%); B, patients who underwent coronary angiography in the first 24h after successful thrombolysis (n=127; 11.9%); and C, patients who underwent angiography after the first 24h (n=660; 62.0%). Groups were compared regarding their characteristics and in-hospital complications. Groups B and C had more male patients and had younger patients than group A. Group A presented higher Killip classes at admission, more severe left ventricle dysfunction and a higher number of complications during hospitalization. Logistic regression revealed that: 1) the non-performance of coronary angiography after thrombolysis was an independent predictor of in-hospital mortality; and 2) the performance of angiography after the recommended time wasn't associated with higher mortality. Coronary angiography after thrombolysis constitutes an important strategy, whose non-performance carries worse prognosis. The time interval currently recommended of 24h seems clinically acceptable; however, its realization outside the recommended time doesn't seem to lead to higher mortality. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Qian, S.; Dunham, M.E.
1996-11-12
A system and method are disclosed for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos(2{pi}{phi}(t)) and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {phi}{prime}(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series. The joint time-frequency transformation represents the analyzed signal energy at time t and frequency f, P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function {phi}{prime}(t) which best fits the multivalued function f(t). Integrating {phi}{prime}(t) along t yields {phi}{prime}(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template. 7 figs.