WorldWideScience

Sample records for varying surface drag

  1. Bioinspired surfaces for turbulent drag reduction.

    Science.gov (United States)

    Golovin, Kevin B; Gose, James W; Perlin, Marc; Ceccio, Steven L; Tuteja, Anish

    2016-08-06

    In this review, we discuss how superhydrophobic surfaces (SHSs) can provide friction drag reduction in turbulent flow. Whereas biomimetic SHSs are known to reduce drag in laminar flow, turbulence adds many new challenges. We first provide an overview on designing SHSs, and how these surfaces can cause slip in the laminar regime. We then discuss recent studies evaluating drag on SHSs in turbulent flow, both computationally and experimentally. The effects of streamwise and spanwise slip for canonical, structured surfaces are well characterized by direct numerical simulations, and several experimental studies have validated these results. However, the complex and hierarchical textures of scalable SHSs that can be applied over large areas generate additional complications. Many studies on such surfaces have measured no drag reduction, or even a drag increase in turbulent flow. We discuss how surface wettability, roughness effects and some newly found scaling laws can help explain these varied results. Overall, we discuss how, to effectively reduce drag in turbulent flow, an SHS should have: preferentially streamwise-aligned features to enhance favourable slip, a capillary resistance of the order of megapascals, and a roughness no larger than 0.5, when non-dimensionalized by the viscous length scale.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  2. Determination of the surface drag coefficient

    DEFF Research Database (Denmark)

    Mahrt, L.; Vickers, D.; Sun, J.L.

    2001-01-01

    This study examines the dependence of the surface drag coefficient on stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable...... conditions, the drag coefficient does not depend systematically on z/L but decreases with wind speed for fixed intervals of z/L, where L is the Obukhov length. Even though the drag coefficient for weak wind conditions is sensitive to the exact method of calculation and choice of averaging time, the decrease...... of the drag coefficient with wind speed occurs for all of the calculation methods. A classification of flux calculation methods is constructed, which unifies the most common previous approaches. The roughness length corresponding to the usual Monin-Obukhov stability functions decreases with increasing wind...

  3. A hypersonic lift mechanism with decoupled lift and drag surfaces

    Science.gov (United States)

    Xu, YiZhe; Xu, ZhiQi; Li, ShaoGuang; Li, Juan; Bai, ChenYuan; Wu, ZiNiu

    2013-05-01

    In the present study, we propose a novel lift mechanism for which the lifting surface produces only lift. This is achieved by mounting a two-dimensional shock-shock interaction generator below the lifting surface. The shock-shock interaction theory in conjunction with a three dimensional correction and checked with computational fluid dynamics (CFD) is used to analyze the lift and drag forces as function of the geometrical parameters and inflow Mach number. Through this study, though limited to only inviscid flow, we conclude that it is possible to obtain a high lift to drag ratio by suitably arranging the shock interaction generator.

  4. Bag-breakup control of surface drag in hurricanes

    Science.gov (United States)

    Troitskaya, Yuliya; Zilitinkevich, Sergej; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil

    2016-04-01

    Air-sea interaction at extreme winds is of special interest now in connection with the problem of the sea surface drag reduction at the wind speed exceeding 30-35 m/s. This phenomenon predicted by Emanuel (1995) and confirmed by a number of field (e.g., Powell, et al, 2003) and laboratory (Donelan et al, 2004) experiments still waits its physical explanation. Several papers attributed the drag reduction to spume droplets - spray turning off the crests of breaking waves (e.g., Kudryavtsev, Makin, 2011, Bao, et al, 2011). The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the sea spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large sea spray droplets is not adequately described and there are significant uncertainties in estimations of exchange processes in hurricanes. Herewith, it is unknown what is air-sea interface and how water is fragmented to spray at hurricane wind. Using high-speed video, we observed mechanisms of production of spume droplets at strong winds by high-speed video filming, investigated statistics and compared their efficiency. Experiments showed, that the generation of the spume droplets near the wave crest is caused by the following events: bursting of submerged bubbles, generation and breakup of "projections" and "bag breakup". Statistical analysis of results of these experiments showed that the main mechanism of spray-generation is attributed to "bag-breakup mechanism", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film. Using high-speed video, we show that at hurricane winds the main mechanism of spray production is attributed to "bag-breakup", namely, inflating and

  5. Mechanism of drag reduction for circular cylinders with patterned surface

    International Nuclear Information System (INIS)

    Butt, U.; Jehring, L.; Egbers, C.

    2014-01-01

    Highlights: • Reduced drag of patterned cylinders over a wide range of Re numbers. • Hexagonal patterns cannot be characterized as roughness structures. • Hexagonal bumps affect the flow like spherical dimples of smaller k/d ratio do. • Main separation is delayed caused by a partial separation. • Angle of a separation line is not constant over the length of cylinder. -- Abstract: In this paper, the flow over cylinders with a patterned surface (k/d = 1.98 × 10 −2 ) is investigated in a subsonic wind tunnel over Reynolds numbers ranging from 3.14 × 10 4 to 2.77 × 10 5 by measuring drag, flow visualization and measuring velocity profiles above the surface of the cylinders, to observe the effect of hexagonal patterns on the flow of air. These patterns can also be referred as hexagonal dimples or bumps depending on their configuration. The investigations revealed that a patterned cylinder with patterns pressed outwards has a drag coefficient of about 0.65 times of a smooth one. Flow visualization techniques including surface oil-film technique and velocity profile measurement were employed to elucidate this effect, and hence present the mechanism of drag reduction. The measurement of velocity profiles using hot-wire anemometry above the surface reveal that a hexagonal bump cause local separation generating large turbulence intensity along the separating shear layer. Due to this increased turbulence, the flow reattaches to the surface with higher momentum and become able to withstand the pressure gradient delaying the main separation significantly. Besides that, the separation does not appear to occur in a straight line along the length of the cylinder as in case of most passive drag control methods, but follow exactly the hexagonal patterns forming a wave with its crest at 115° and trough at 110°, in contrast to the laminar separation line at 85° for a smooth cylinder

  6. Bioinspired superhydrophobic, self-cleaning and low drag surfaces

    Science.gov (United States)

    Bhushan, Bharat

    2013-09-01

    Nature has evolved objects with desired functionality using commonly found materials. Nature capitalizes on hierarchical structures to achieve functionality. The understanding of the functions provided by objects and processes found in nature can guide us to produce nanomaterials, nanodevices, and processes with desirable functionality. This article provides an overview of four topics: (1) Lotus Effect used to develop superhydrophobic and self-cleaning/antifouling surfaces with low adhesion, (2) Shark Skin Effect to develop surfaces with low fluid drag and anti-fouling characteristics, and (3-4) Rice Leaf and Butterfly Wing Effect to develop superhydrophobic and self-cleaning surfaces with low drag. Rice Leaf and Butterfly Wings combine the Shark Skin and Lotus Effects.

  7. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan

    2011-02-01

    Full Text Available The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.

  8. Effects of spatially varying slip length on friction drag reduction in wall turbulence

    International Nuclear Information System (INIS)

    Hasegawa, Yosuke; Frohnapfel, Bettina; Kasagi, Nobuhide

    2011-01-01

    A series of direct numerical simulation has been made of turbulent flow over hydrophobic surfaces, which are characterized by streamwise periodic micro-grooves. By assuming that the size of micro-grooves is much smaller than the typical length-scale of near-wall turbulent structures, the dynamical boundary condition is expressed by a mobility tensor, which relates the slip velocity and the surface shear stress. Based on the derived mathematical relationship between the friction drag and different dynamical contributions, it is shown how the turbulence contribution can be extracted and analyzed.

  9. Surface correlations of hydrodynamic drag for transitionally rough engineering surfaces

    Science.gov (United States)

    Thakkar, Manan; Busse, Angela; Sandham, Neil

    2017-02-01

    Rough surfaces are usually characterised by a single equivalent sand-grain roughness height scale that typically needs to be determined from laboratory experiments. Recently, this method has been complemented by a direct numerical simulation approach, whereby representative surfaces can be scanned and the roughness effects computed over a range of Reynolds number. This development raises the prospect over the coming years of having enough data for different types of rough surfaces to be able to relate surface characteristics to roughness effects, such as the roughness function that quantifies the downward displacement of the logarithmic law of the wall. In the present contribution, we use simulation data for 17 irregular surfaces at the same friction Reynolds number, for which they are in the transitionally rough regime. All surfaces are scaled to the same physical roughness height. Mean streamwise velocity profiles show a wide range of roughness function values, while the velocity defect profiles show a good collapse. Profile peaks of the turbulent kinetic energy also vary depending on the surface. We then consider which surface properties are important and how new properties can be incorporated into an empirical model, the accuracy of which can then be tested. Optimised models with several roughness parameters are systematically developed for the roughness function and profile peak turbulent kinetic energy. In determining the roughness function, besides the known parameters of solidity (or frontal area ratio) and skewness, it is shown that the streamwise correlation length and the root-mean-square roughness height are also significant. The peak turbulent kinetic energy is determined by the skewness and root-mean-square roughness height, along with the mean forward-facing surface angle and spanwise effective slope. The results suggest feasibility of relating rough-wall flow properties (throughout the range from hydrodynamically smooth to fully rough) to surface

  10. Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows

    Science.gov (United States)

    Raayai-Ardakani, Shabnam; McKinley, Gareth H.

    2017-09-01

    Inspired by the design of the ribbed structure of shark skin, passive drag reduction methods using stream-wise riblet surfaces have previously been developed and tested over a wide range of flow conditions. Such textures aligned in the flow direction have been shown to be able to reduce skin friction drag by 4%-8%. Here, we explore the effects of periodic sinusoidal riblet surfaces aligned in the flow direction (also known as a "wrinkled" texture) on the evolution of a laminar boundary layer flow. Using numerical analysis with the open source Computational Fluid Dynamics solver OpenFOAM, boundary layer flow over sinusoidal wrinkled plates with a range of wavelength to plate length ratios ( λ / L ), aspect ratios ( 2 A / λ ), and inlet velocities are examined. It is shown that in the laminar boundary layer regime, the riblets are able to retard the viscous flow inside the grooves creating a cushion of stagnant fluid that the high-speed fluid above can partially slide over, thus reducing the shear stress inside the grooves and the total integrated viscous drag force on the plate. Additionally, we explore how the boundary layer thickness, local average shear stress distribution, and total drag force on the wrinkled plate vary with the aspect ratio of the riblets as well as the length of the plate. We show that riblets with an aspect ratio of close to unity lead to the highest reduction in the total drag, and that because of the interplay between the local stress distribution on the plate and stream-wise evolution of the boundary layer the plate has to exceed a critical length to give a net decrease in the total drag force.

  11. Wind-Tunnel Investigations of Blunt-Body Drag Reduction Using Forebody Surface Roughness

    Science.gov (United States)

    Whitmore, Stephen A.; Sprague, Stephanie; Naughton, Jonathan W.; Curry, Robert E. (Technical Monitor)

    2001-01-01

    This paper presents results of wind-tunnel tests that demonstrate a novel drag reduction technique for blunt-based vehicles. For these tests, the forebody roughness of a blunt-based model was modified using micomachined surface overlays. As forebody roughness increases, boundary layer at the model aft thickens and reduces the shearing effect of external flow on the separated flow behind the base region, resulting in reduced base drag. For vehicle configurations with large base drag, existing data predict that a small increment in forebody friction drag will result in a relatively large decrease in base drag. If the added increment in forebody skin drag is optimized with respect to base drag, reducing the total drag of the configuration is possible. The wind-tunnel tests results conclusively demonstrate the existence of a forebody dragbase drag optimal point. The data demonstrate that the base drag coefficient corresponding to the drag minimum lies between 0.225 and 0.275, referenced to the base area. Most importantly, the data show a drag reduction of approximately 15% when the drag optimum is reached. When this drag reduction is scaled to the X-33 base area, drag savings approaching 45,000 N (10,000 lbf) can be realized.

  12. Drag reduction in reservoir rock surface: Hydrophobic modification by SiO{sub 2} nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yong-Li, E-mail: yylhill@163.com [College of Chemistry & Chemical Engineering, Xi’an Shiyou University, Xi’an 710065 (China); Cui, Ming-Yue; Jiang, Wei-Dong; He, An-Le; Liang, Chong [Langfang Branch of Research Institute of Petroleum Exploration & Development, Langfang 065007 (China)

    2017-02-28

    Graphical abstract: The micro-nanoscale hierarchical structures at the sandstone core surface are constructed by adsorption of the modified silica nanoparticles, which leads to the effect of drag reduction to improve the low injection rate in ultra-low permeability reservoirs. - Highlights: • A micro-nanoscale hierarchical structure is formed at the reservoir rock surface. • An inversion has happened from hydrophilic into hydrophobic modified by nanofluids. • The effect of drag reduction to improve the low injection rate is realized. • The mechanism of drag reduction induced from the modified core surface was unclosed. - Abstract: Based on the adsorption behavior of modified silica nanoparticles in the sandstone core surface, the hydrophobic surface was constructed, which consists of micro-nanoscale hierarchical structure. This modified core surface presents a property of drag reduction and meets the challenge of high injection pressure and low injection rate in low or ultra-low permeability reservoir. The modification effects on the surface of silica nanoparticles and reservoir cores, mainly concerning hydrophobicity and fine structure, were determined by measurements of contact angle and scanning electron microscopy. Experimental results indicate that after successful modification, the contact angle of silica nanoparticles varies from 19.5° to 141.7°, exhibiting remarkable hydrophobic properties. These modified hydrophobic silica nanoparticles display a good adsorption behavior at the core surface to form micro-nanobinary structure. As for the wettability of these modified core surfaces, a reversal has happened from hydrophilic into hydrophobic and its contact angle increases from 59.1° to 105.9°. The core displacement experiments show that the relative permeability for water has significantly increased by an average of 40.3% via core surface modification, with the effects of reducing injection pressure and improving injection performance of water

  13. Drag reduction in reservoir rock surface: Hydrophobic modification by SiO_2 nanofluids

    International Nuclear Information System (INIS)

    Yan, Yong-Li; Cui, Ming-Yue; Jiang, Wei-Dong; He, An-Le; Liang, Chong

    2017-01-01

    Graphical abstract: The micro-nanoscale hierarchical structures at the sandstone core surface are constructed by adsorption of the modified silica nanoparticles, which leads to the effect of drag reduction to improve the low injection rate in ultra-low permeability reservoirs. - Highlights: • A micro-nanoscale hierarchical structure is formed at the reservoir rock surface. • An inversion has happened from hydrophilic into hydrophobic modified by nanofluids. • The effect of drag reduction to improve the low injection rate is realized. • The mechanism of drag reduction induced from the modified core surface was unclosed. - Abstract: Based on the adsorption behavior of modified silica nanoparticles in the sandstone core surface, the hydrophobic surface was constructed, which consists of micro-nanoscale hierarchical structure. This modified core surface presents a property of drag reduction and meets the challenge of high injection pressure and low injection rate in low or ultra-low permeability reservoir. The modification effects on the surface of silica nanoparticles and reservoir cores, mainly concerning hydrophobicity and fine structure, were determined by measurements of contact angle and scanning electron microscopy. Experimental results indicate that after successful modification, the contact angle of silica nanoparticles varies from 19.5° to 141.7°, exhibiting remarkable hydrophobic properties. These modified hydrophobic silica nanoparticles display a good adsorption behavior at the core surface to form micro-nanobinary structure. As for the wettability of these modified core surfaces, a reversal has happened from hydrophilic into hydrophobic and its contact angle increases from 59.1° to 105.9°. The core displacement experiments show that the relative permeability for water has significantly increased by an average of 40.3% via core surface modification, with the effects of reducing injection pressure and improving injection performance of water

  14. Studies of drag on the nanocomposite superhydrophobic surfaces

    Science.gov (United States)

    Brassard, Jean-Denis; Sarkar, D. K.; Perron, Jean

    2015-01-01

    The nanocomposite thin films of stearic acid (SA)-functionalized ZnO nanoparticles incorporated in epoxy polymer matrix have been achieved. The X-ray diffraction (XRD) studies show the formation of zinc stearate on ZnO nanoparticles as the confirmation of SA-functionalization of ZnO nanoparticles in the thin films. Morphological analyses reveal the presence of micro-holes with the presence of irregular nanoparticles. The measured root mean square (rms) roughness of the thin film is found to be 12 ± 1 μm with the adhesion of 5B on both glass and aluminum substrates. The wetting property shows that the surface of the film is superhydrophobic with the contact angle of water of 156 ± 4° having contact angle hysteresis (CAH) of 4 ± 2°. The average terminal velocity in the water of the as-received glass spheres and superhydrophobic spheres were found to be 0.66 ± 0.01 m/s and 0.72 ± 0.01 m/s respectively. Consequently, the calculated average coefficients of the surface drag of the as-received glass sphere and superhydrophobic glass sphere were 2.30 ± 0.01 and 1.93 ± 0.03, respectively. Hence, the drag reduction on the surface of superhydrophobic glass sphere is found to be approximately 16% lower than as-received glass sphere.

  15. Studies of drag on the nanocomposite superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Brassard, Jean-Denis [Anti-icing Materials International Laboratory (AMIL), Université du Québec à Chicoutimi, 555 Boulevard de l‘Université, Chicoutimi, Québec, Canada G7H 2B1 (Canada); Centre Universitaire de Recherche sur l’Aluminium (CURAL), Université du Québec à Chicoutimi, 555 Boulevard de l‘Université, Chicoutimi, Québec, Canada G7H 2B1 (Canada); Sarkar, D.K., E-mail: dsarkar@uqac.ca [Centre Universitaire de Recherche sur l’Aluminium (CURAL), Université du Québec à Chicoutimi, 555 Boulevard de l‘Université, Chicoutimi, Québec, Canada G7H 2B1 (Canada); Perron, Jean [Anti-icing Materials International Laboratory (AMIL), Université du Québec à Chicoutimi, 555 Boulevard de l‘Université, Chicoutimi, Québec, Canada G7H 2B1 (Canada)

    2015-01-01

    Graphical abstract: - Highlights: • The nanocomposite thin films of stearic acid (SA)-functionalized ZnO nanoparticles incorporated in epoxy polymer matrix have been achieved. • SA-functionalization of ZnO nanoparticles in the thin films was confirmed by XRD and FTIR. • The measured rms roughness of the thin film is found to be 12 ± 1 μm with the adhesion of 5B on glass. • The wetting property shows that the surface of the film is superhydrophobic with the CA of 156 ± 4° and CAH of 4 ± 2°. • The drag reduction on the surface of superhydrophobic glass sphere is 16% lower than as-received glass sphere. - Abstract: The nanocomposite thin films of stearic acid (SA)-functionalized ZnO nanoparticles incorporated in epoxy polymer matrix have been achieved. The X-ray diffraction (XRD) studies show the formation of zinc stearate on ZnO nanoparticles as the confirmation of SA-functionalization of ZnO nanoparticles in the thin films. Morphological analyses reveal the presence of micro-holes with the presence of irregular nanoparticles. The measured root mean square (rms) roughness of the thin film is found to be 12 ± 1 μm with the adhesion of 5B on both glass and aluminum substrates. The wetting property shows that the surface of the film is superhydrophobic with the contact angle of water of 156 ± 4° having contact angle hysteresis (CAH) of 4 ± 2°. The average terminal velocity in the water of the as-received glass spheres and superhydrophobic spheres were found to be 0.66 ± 0.01 m/s and 0.72 ± 0.01 m/s respectively. Consequently, the calculated average coefficients of the surface drag of the as-received glass sphere and superhydrophobic glass sphere were 2.30 ± 0.01 and 1.93 ± 0.03, respectively. Hence, the drag reduction on the surface of superhydrophobic glass sphere is found to be approximately 16% lower than as-received glass sphere.

  16. Studies of drag on the nanocomposite superhydrophobic surfaces

    International Nuclear Information System (INIS)

    Brassard, Jean-Denis; Sarkar, D.K.; Perron, Jean

    2015-01-01

    Graphical abstract: - Highlights: • The nanocomposite thin films of stearic acid (SA)-functionalized ZnO nanoparticles incorporated in epoxy polymer matrix have been achieved. • SA-functionalization of ZnO nanoparticles in the thin films was confirmed by XRD and FTIR. • The measured rms roughness of the thin film is found to be 12 ± 1 μm with the adhesion of 5B on glass. • The wetting property shows that the surface of the film is superhydrophobic with the CA of 156 ± 4° and CAH of 4 ± 2°. • The drag reduction on the surface of superhydrophobic glass sphere is 16% lower than as-received glass sphere. - Abstract: The nanocomposite thin films of stearic acid (SA)-functionalized ZnO nanoparticles incorporated in epoxy polymer matrix have been achieved. The X-ray diffraction (XRD) studies show the formation of zinc stearate on ZnO nanoparticles as the confirmation of SA-functionalization of ZnO nanoparticles in the thin films. Morphological analyses reveal the presence of micro-holes with the presence of irregular nanoparticles. The measured root mean square (rms) roughness of the thin film is found to be 12 ± 1 μm with the adhesion of 5B on both glass and aluminum substrates. The wetting property shows that the surface of the film is superhydrophobic with the contact angle of water of 156 ± 4° having contact angle hysteresis (CAH) of 4 ± 2°. The average terminal velocity in the water of the as-received glass spheres and superhydrophobic spheres were found to be 0.66 ± 0.01 m/s and 0.72 ± 0.01 m/s respectively. Consequently, the calculated average coefficients of the surface drag of the as-received glass sphere and superhydrophobic glass sphere were 2.30 ± 0.01 and 1.93 ± 0.03, respectively. Hence, the drag reduction on the surface of superhydrophobic glass sphere is found to be approximately 16% lower than as-received glass sphere

  17. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev

    2015-07-24

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  18. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev; Chan, Derek Y.  C.; Thoroddsen, Sigurdur T

    2015-01-01

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  19. Influence of Surface Roughness on Polymer Drag Reduction

    National Research Council Canada - National Science Library

    Ceccio, Steven L; Dowling, David R; Perlin, Marc; Solomon, Michael

    2007-01-01

    .... The details of that effort can be found in the final technical report for that project. The purpose of the additional investigation was to examine the physics and engineering of friction drag reduction methods for turbulent boundary layers (TBL...

  20. Surface pressure drag for hydrostatic two-layer flow over axisymmetric mountains

    Energy Technology Data Exchange (ETDEWEB)

    Leutbecher, M.

    2000-07-01

    The effect of partial reflections on surface pressure drag is investigated for hydrostatic gravity waves in two-layer flow with piecewise constant buoyancy frequency. The variation of normalized surface pressure drag with interface height is analyzed for axisymmetric mountains. The results are compared with the familiar solution for infinitely long ridges. The drag for the two-layer flow is normalized with the drag of one-layer flow, which has the buoyancy frequency of the lower layer. An analytical expression for the normalized drag of axisymmetric mountains is derived from linear theory of steady flow. Additionally, two-layer flow over finite-height axisymmetric mountains is simulated numerically for flow with higher stability in the upper layer. The temporal evolution of the surface pressure drag is examined in a series of experiments with different interface and mountain heights. The focus is on the linear regime and the nonlinear regime of nonbreaking gravity waves. The dispersion of gravity waves in flow over isolated mountains prevents that the entire wave spectrum is in resonance at the same interface height, which is the case in hydrostatic flow over infinitely long ridges. In consequence, the oscillation of the normalized drag with interface height is smaller for axisymmetric mountains than for infinitely long ridges. However, even for a reflection coefficient as low as 1/3 the drag of an axisymmetric mountain can be amplified by 50% and reduced by 40%. The nonlinear drag becomes steady in the numerical experiments in which no wave breaking occurs. The steady state nonlinear drag agrees quite well with the prediction of linear theory if the linear drag is computed for a slightly lowered interface. (orig.)

  1. On the Effect of Rigid Swept Surface Waves on Turbulent Drag

    Science.gov (United States)

    Denison, M.; Wilkinson, S. P.; Balakumar, P.

    2015-01-01

    Passive turbulent drag reduction techniques are of interest as a cost effective means to improve air vehicle fuel consumption. In the past, rigid surface waves slanted at an angle from the streamwise direction were deemed ineffective to reduce skin friction drag due to the pressure drag that they generate. A recent analysis seeking similarities to the spanwise shear stress generated by spatial Stokes layers suggested that there may be a range of wavelength, amplitude, and orientation in which the wavy surface would reduce turbulent drag. The present work explores, by experiments and Direct Numerical Simulations (DNS), the effect of swept wavy surfaces on skin friction and pressure drag. Plates with shallow and deep wave patterns were rapid-prototyped and tested using a drag balance in the 7x11 inch Low-Speed Wind Tunnel at the NASA LaRC Research Center. The measured drag o set between the wavy plates and the reference at plate is found to be within the experimental repeatability limit. Oil vapor flow measurements indicate a mean spanwise flow over the deep waves. The turbulent flow in channels with at walls, swept wavy walls and spatial Stokes spanwise velocity forcing was simulated at a friction Reynolds number of two hundred. The time-averaged and dynamic turbulent flow characteristics of the three channel types are compared. The drag obtained for the channel with shallow waves is slightly larger than for the at channel, within the range of the experiments. In the case of the large waves, the simulation over predicts the drag. The shortcomings of the Stokes layer analogy model for the estimation of the spanwise shear stress and drag are discussed.

  2. A Limited Evaluation of Full Scale Control Surface Deflection Drag (Have FUN)

    National Research Council Canada - National Science Library

    Reinhardt, R. B; Celi, Sean A; Geraghty, Jeffrey T; Stahl, James W; Glover, Victor J; Bowman, Geoffrey G

    2007-01-01

    The Have FUN (FUll Scale Numbers) Test Management Project was conducted at the request of the USAF TPS as an investigation into the drag caused by control surface deflection during dynamic soaring techniques...

  3. Modeling complex flow structures and drag around a submerged plant of varied posture

    Science.gov (United States)

    Boothroyd, Richard J.; Hardy, Richard J.; Warburton, Jeff; Marjoribanks, Timothy I.

    2017-04-01

    Although vegetation is present in many rivers, the bulk of past work concerned with modeling the influence of vegetation on flow has considered vegetation to be morphologically simple and has generally neglected the complexity of natural plants. Here we report on a combined flume and numerical model experiment which incorporates time-averaged plant posture, collected through terrestrial laser scanning, into a computational fluid dynamics model to predict flow around a submerged riparian plant. For three depth-limited flow conditions (Reynolds number = 65,000-110,000), plant dynamics were recorded through high-definition video imagery, and the numerical model was validated against flow velocities collected with an acoustic Doppler velocimeter. The plant morphology shows an 18% reduction in plant height and a 14% increase in plant length, compressing and reducing the volumetric canopy morphology as the Reynolds number increases. Plant shear layer turbulence is dominated by Kelvin-Helmholtz type vortices generated through shear instability, the frequency of which is estimated to be between 0.20 and 0.30 Hz, increasing with Reynolds number. These results demonstrate the significant effect that the complex morphology of natural plants has on in-stream drag, and allow a physically determined, species-dependent drag coefficient to be calculated. Given the importance of vegetation in river corridor management, the approach developed here demonstrates the necessity to account for plant motion when calculating vegetative resistance.

  4. Drag penalty due to the asperities in the substrate of super-hydrophobic and liquid infused surfaces

    Science.gov (United States)

    Garcia Cartagena, Edgardo J.; Arenas, Isnardo; Leonardi, Stefano

    2017-11-01

    Direct numerical simulations of two superposed fluids in a turbulent channel with a textured surface made of pinnacles of random height have been performed. The viscosity ratio between the two fluids are N =μo /μi = 50 (μo and μi are the viscosities of outer and inner fluid respectively) mimicking a super-hydrophobic surface (water over air) and N=2.5 (water over heptane) resembling a liquid infused surface. Two set of simulations have been performed varying the Reynolds number, Reτ = 180 and Reτ = 390 . The interface between the two fluids is flat simulating infinite surface tension. The position of the interface between the two fluids has been varied in the vertical direction from the base of the substrate (what would be a rough wall) to the highest point of the roughness. Drag reduction is very sensitive to the position of the interface between the two fluids. Asperities above the interface induce a large form drag and diminish considerably the drag reduction. When the mean height of the surface measured from the interface in the outer fluid is greater than one wall unit, k+ > 1 , the drag increases with respect to a smooth wall. Present results provide a guideline to the accuracy required in manufacturing super-hydrophobic and liquid infused surfaces. This work was supported under ONR MURI Grants N00014-12-0875 and N00014-12- 1-0962, Program Manager Dr. Ki-Han Kim. Numerical simulations were performed on the Texas Advanced Computer Center.

  5. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces

    Science.gov (United States)

    Bixler, Gregory D.; Bhushan, Bharat

    2013-08-01

    Researchers are continually inspired by living nature to solve complex challenges. For example, unique surface characteristics of rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we present an overview of rice leaf and butterfly wing fluid drag and self-cleaning studies. In addition, we examine two other promising aquatic surfaces in nature known for such properties, including fish scales and shark skin. Morphology, drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of wettability, viscosity, and velocity. Liquid repellent coatings are utilized to recreate or combine various effects. Discussion is provided along with conceptual models describing the role of surface structures related to low drag, self-cleaning, and antifouling properties. Modeling provides design guidance when developing novel low drag and self-cleaning surfaces for applications in the medical, marine, and industrial fields.

  6. Drag resistance measurements for newly applied antifouling coatings and welding seams on ship hull surface

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, S. M.; Andres, E.

    Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared in their......Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared...

  7. Drag-reducing performance of obliquely aligned superhydrophobic surface in turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Sho; Fukagata, Koji [Department of Mechanical Engineering, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan); Mamori, Hiroya, E-mail: fukagata@mech.keio.ac.jp [Department of Mechanical Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan)

    2017-04-15

    Friction drag reduction effect by superhydrophobic surfaces in a turbulent channel flow is investigated by means of direct numerical simulation. The simulations are performed under a constant pressure gradient at the friction Reynolds number of 180. A special focus is laid upon the influence of the angle of microridge structure to flow direction, while the gas area fraction on the surface is kept at 50% and the groove width is kept constant at 33.75 wall units. Larger drag reduction effect is observed for a smaller angle: the bulk-mean velocity is increased about 15% when the microridge is parallel to the flow. The drag reduction effect is found to deteriorate rapidly with the microridge angle due to a decrease in the slip velocity. The Reynolds stress budgets show that the modification in each physical effect is qualitatively similar but more pronounced when the microridge is aligned with the stream. (paper)

  8. Design of a High Viscosity Couette Flow Facility for Patterned Surface Drag Measurements

    Science.gov (United States)

    Johnson, Tyler; Lang, Amy

    2009-11-01

    Direct drag measurements can be difficult to obtain with low viscosity fluids such as air or water. In this facility, mineral oil is used as the working fluid to increase the shear stress across the surface of experimental models. A mounted conveyor creates a flow within a plexiglass tank. The experimental model of a flat or patterned surface is suspended above a moving belt. Within the gap between the model and moving belt a Couette flow with a linear velocity profile is created. PIV measurements are used to determine the exact velocities and the Reynolds numbers for each experiment. The model is suspended by bars that connect to the pillow block housing of each bearing. Drag is measured by a force gauge connected to linear roller bearings that slide along steel rods. The patterned surfaces, initially consisting of 2-D cavities, are embedded in a plexiglass plate so as to keep the total surface area constant for each experiment. First, the drag across a flat plate is measured and compared to theoretical values for laminar Couette flow. The drag for patterned surfaces is then measured and compared to a flat plate.

  9. Thickened boundary layer theory for air film drag reduction on a van body surface

    Science.gov (United States)

    Xie, Xiaopeng; Cao, Lifeng; Huang, Heng

    2018-05-01

    To elucidate drag reduction mechanism on a van body surface under air film condition, a thickened boundary layer theory was proposed and a frictional resistance calculation model of the van body surface was established. The frictional resistance on the van body surface was calculated with different parameters of air film thickness. In addition, the frictional resistance of the van body surface under the air film condition was analyzed by computational fluid dynamics (CFD) simulation and different air film states that influenced the friction resistance on the van body surface were discussed. As supported by the CFD simulation results, the thickened boundary layer theory may provide reference for practical application of air film drag reduction on a van body surface.

  10. Method and apparatus for reducing the drag of flows over surfaces

    Science.gov (United States)

    Keefe, Laurence R. (Inventor)

    1998-01-01

    An apparatus, and its accompanying method, for reducing the drag of flows over a surface includes arrays of small disks and sensors. The arrays are embedded in the surface and may extend above, or be depressed below, the surface, provided they remain hydraulically smooth either when operating or when inactive. The disks are arranged in arrays of various shapes, and spaced according to the cruising speed of the vehicle on which the arrays are installed. For drag reduction at speeds of the order of 30 meters/second, preferred embodiments include disks that are 0.2 millimeter in diameter and spaced 0.4 millimeter apart. For drag reduction at speeds of the order of 300 meters/second, preferred embodiments include disks that are 0.045 millimeter in diameter and spaced 0.09 millimeter apart. Smaller and larger dimensions for diameter and spacing are also possible. The disks rotate in the plane of the surface, with their rotation axis substantially perpendicular to the surface. The rotating disks produce velocity perturbations parallel to the surface in the overlying boundary layer. The sensors sense the flow at the surface and connect to control circuitry that adjusts the rotation rates and duty cycles of the disks accordingly. Suction and blowing holes can be interspersed among, or made coaxial with, the disks for creating general three-component velocity perturbations in the near-surface region. The surface can be a flat, planar surface or a nonplanar surface, such as a triangular riblet surface. The present apparatus and method have potential applications in the field of aeronautics for improving performance and efficiency of commercial and military aircraft, and in other industries where drag is an obstacle, including gas and oil delivery through long-haul pipelines.

  11. Modeling drag reduction and meniscus stability of superhydrophobic surfaces comprised of random roughness

    Science.gov (United States)

    Samaha, Mohamed A.; Tafreshi, Hooman Vahedi; Gad-el-Hak, Mohamed

    2011-01-01

    Previous studies dedicated to modeling drag reduction and stability of the air-water interface on superhydrophobic surfaces were conducted for microfabricated coatings produced by placing hydrophobic microposts/microridges arranged on a flat surface in aligned or staggered configurations. In this paper, we model the performance of superhydrophobic surfaces comprised of randomly distributed roughness (e.g., particles or microposts) that resembles natural superhydrophobic surfaces, or those produced via random deposition of hydrophobic particles. Such fabrication method is far less expensive than microfabrication, making the technology more practical for large submerged bodies such as submarines and ships. The present numerical simulations are aimed at improving our understanding of the drag reduction effect and the stability of the air-water interface in terms of the microstructure parameters. For comparison and validation, we have also simulated the flow over superhydrophobic surfaces made up of aligned or staggered microposts for channel flows as well as streamwise or spanwise ridges configurations for pipe flows. The present results are compared with theoretical and experimental studies reported in the literature. In particular, our simulation results are compared with work of Sbragaglia and Prosperetti, and good agreement has been observed for gas fractions up to about 0.9. The numerical simulations indicate that the random distribution of surface roughness has a favorable effect on drag reduction, as long as the gas fraction is kept the same. This effect peaks at about 30% as the gas fraction increases to 0.98. The stability of the meniscus, however, is strongly influenced by the average spacing between the roughness peaks, which needs to be carefully examined before a surface can be recommended for fabrication. It was found that at a given maximum allowable pressure, surfaces with random post distribution produce less drag reduction than those made up of

  12. Stratospheric Impact of Varying Sea Surface Temperatures

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Nielsen, Jon E.; Waugh, Darryn; Pawson, Steven

    2004-01-01

    The Finite-Volume General Circulation Model (FVGCM) has been run in 50 year simulations with the: 1) 1949-1999 Hadley Centre sea surface temperatures (SST), and 2) a fixed annual cycle of SSTs. In this presentation we first show that the 1949-1999 FVGCM simulation produces a very credible stratosphere in comparison to an NCEP/NCAR reanalysis climatology. In particular, the northern hemisphere has numerous major and minor stratospheric warming, while the southern hemisphere has only a few over the 50-year simulation. During the northern hemisphere winter, temperatures are both warmer in the lower stratosphere and the polar vortex is weaker than is found in the mid-winter southern hemisphere. Mean temperature differences in the lower stratosphere are shown to be small (less than 2 K), and planetary wave forcing is found to be very consistent with the climatology. We then will show the differences between our varying SST simulation and the fixed SST simulation in both the dynamics and in two parameterized trace gases (ozone and methane). In general, differences are found to be small, with subtle changes in planetary wave forcing that lead to reduced temperatures in the SH and increased temperatures in the NH.

  13. Drag reduction and thrust generation by tangential surface motion in flow past a cylinder

    Science.gov (United States)

    Mao, Xuerui; Pearson, Emily

    2018-03-01

    Sensitivity of drag to tangential surface motion is calculated in flow past a circular cylinder in both two- and three-dimensional conditions at Reynolds number Re ≤ 1000 . The magnitude of the sensitivity maximises in the region slightly upstream of the separation points where the contour lines of spanwise vorticity are normal to the cylinder surface. A control to reduce drag can be obtained by (negatively) scaling the sensitivity. The high correlation of sensitivities of controlled and uncontrolled flow indicates that the scaled sensitivity is a good approximation of the nonlinear optimal control. It is validated through direct numerical simulations that the linear range of the steady control is much higher than the unsteady control, which synchronises the vortex shedding and induces lock-in effects. The steady control injects angular momentum into the separating boundary layer, stabilises the flow and increases the base pressure significantly. At Re=100 , when the maximum tangential motion reaches 50% of the free-stream velocity, the vortex shedding, boundary-layer separation and recirculation bubbles are eliminated and 32% of the drag is reduced. When the maximum tangential motion reaches 2.5 times of the free-stream velocity, thrust is generated and the power savings ratio, defined as the ratio of the reduced drag power to the control input power, reaches 19.6. The mechanism of drag reduction is attributed to the change of the radial gradient of spanwise vorticity (partial r \\hat{ζ } ) and the subsequent accelerated pressure recovery from the uncontrolled separation points to the rear stagnation point.

  14. Gain-assisted superluminal propagation and rotary drag of photon and surface plasmon polaritons

    Science.gov (United States)

    Khan, Naveed; Amin Bacha, Bakht; Iqbal, Azmat; Ur Rahman, Amin; Afaq, A.

    2017-07-01

    Superluminal propagation of light is a well-established phenomenon and has motivated immense research interest that has led to state-of-the-art knowledge and potential applications in the emerging technology of quantum optics and photonics. This study presents a theoretical analysis of the gain-assisted superluminal light propagation in a four-level N -type atomic system by exploiting the scheme of electromagnetically induced gain and superluminal propagation of surface plasmon polaritons (SPPs) along the gain-assisted atomic-metal interface simultaneously. In addition, a theoretical demonstration is presented on the comparison between Fresnel's rotary photon drag and SPP drag in view of light polarization state rotation by rotating the coherent atomic medium and the atomic-metal interface, respectively. Analogous to photon drag in the superluminal anomalous dispersion region where light polarization rotation occurs opposite the rotation of the gain-assisted atomic medium, the rotation of the atomic-metal interface also rotates the polarization state of SPPs opposite the rotation of the interface. This further confirms the superluminal nature of SPPs propagating along the interface with negative group velocity. Rabi frequencies of the control and pump fields considerably modify both photon and SPP drag coefficients. Metal conductivity also controls SPP propagation.

  15. Measurement of Turbulent Skin Friction Drag Coefficients Produced by Distributed Surface Roughness of Pristine Marine Coatings

    DEFF Research Database (Denmark)

    Zafiryadis, Frederik; Meyer, Knud Erik; Gökhan Ergin, F.

    drag coefficients as well as roughness Reynolds numbers for the various marine coatings across the range of Rex by fitting of the van Driest profile. The results demonstrate sound agreement with the present ITTC method for determining skin friction coefficients for practically smooth surfaces at low...... Reynolds numbers compared to normal operation mode for the antifouling coatings. Thus, better estimates for skin friction of rough hulls can be realised using the proposed method to optimise preliminary vessel design....

  16. Toward understanding whether superhydrophobic surfaces can really decrease fluidic friction drag.

    Science.gov (United States)

    Su, Bin; Li, Mei; Lu, Qinghua

    2010-04-20

    Superhydrophobic surfaces in nature such as legs of water striders can get an extra supporting force from the deformed water surface they contact, leading to an anticipation of using water-repellent surfaces on ship and even submarine hulls to reduce friction drag. Here, we first fabricate superhydrophobic coatings with microstructures on glass balls by introducing hydrophobic silica nanoparticles into a polyethylene terephthalate (PET) film. Then, the movement of a superhydrophobic ball on and below water surface is investigated and compared with that of a highly hydrophilic normal glass ball. The results reveal that a superhydrophobic ball can fall more slowly under water compared with a normal glass ball, because the dense microbubbles trapped at the solid/water interface around the superhydrophobic ball act not as a reducer, but as an enhancer for the friction drag. In contrast, the faster movement of a superhydrophobic ball on the water surface can be mainly attributed to the great reduction of skin friction owing to the increased area of the solid/atmosphere interface.

  17. Bioinspired Surface for Low Drag, Self-Cleaning, and Antifouling: Shark Skin, Butterfly and Rice Leaf Effects

    Science.gov (United States)

    Bixler, Gregroy D.

    In this thesis, first presented is an overview of inorganic-fouling and biofouling which is generally undesirable for many medical, marine, and industrial applications. A survey of nature's flora and fauna are studied in order to discover new antifouling methods that could be mimicked for engineering applications. New antifouling methods will presumably incorporate a combination of physical and chemical controls. Presented are mechanisms and experimental results focusing on laminar and turbulent drag reducing shark skin inspired riblet surfaces. This includes new laser etched and riblet film samples for closed channel drag using water, oil, and air as well as in wind tunnel. Also presented are mechanisms and experimental results focusing on the newly discovered rice and butterfly wing effect surfaces. Morphology, drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of sample geometrical dimensions, wettability, viscosity, and velocity. Hierarchical liquid repellent coatings combining nano- and micro-sized features and particles are utilized to recreate or combine various effects. Such surfaces have been fabricated with photolithography, soft lithography, hot embossing, and coating techniques. Discussion is provided along with new conceptual models describing the role of surface structures related to low drag, self-cleaning, and antifouling properties. Modeling provides design guidance when developing novel low drag and self-cleaning surfaces for medical, marine, and industrial applications.

  18. Scattering of a TEM wave from a time varying surface

    Science.gov (United States)

    Elcrat, Alan R.; Harder, T. Mark; Stonebraker, John T.

    1990-03-01

    A solution is given for reflection of a plane wave with TEM polarization from a planar surface with time varying properties. These properties are given in terms of the currents on the surface. The solution is obtained by numerically solving a system of differential-delay equations in the time domain.

  19. Surface drag effects on simulated wind fields in high-resolution atmospheric forecast model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Kyo Sun; Lim, Jong Myoung; Ji, Young Yong [Environmental Radioactivity Assessment Team,Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Hye Yum [NOAA/Geophysical Fluid Dynamics Laboratory, Princeton (United States); Hong, Jin Kyu [Yonsei University, Seoul (Korea, Republic of)

    2017-04-15

    It has been reported that the Weather Research and Forecasting (WRF) model generally shows a substantial over prediction bias at low to moderate wind speeds and winds are too geostrophic (Cheng and Steenburgh 2005), which limits the application of WRF model in the area that requires the accurate surface wind estimation such as wind-energy application, air-quality studies, and radioactive-pollutants dispersion studies. The surface drag generated by the subgrid-scale orography is represented by introducing a sink term in the momentum equation in their studies. The purpose of our study is to evaluate the simulated meteorological fields in the high-resolution WRF framework, that includes the parameterization of subgrid-scale orography developed by Mass and Ovens (2010), and enhance the forecast skill of low-level wind fields, which plays an important role in transport and dispersion of air pollutants including radioactive pollutants. The positive bias in 10-m wind speed is significantly alleviated by implementing the subgrid-scale orography parameterization, while other meteorological fields including 10-m wind direction are not changed. Increased variance of subgrid- scale orography enhances the sink of momentum and further reduces the bias in 10-m wind speed.

  20. Evaluation of Skin Friction Drag for Liner Applications in Aircraft

    Science.gov (United States)

    Gerhold, Carl H.; Brown, Martha C.; Jasinski, Christopher M.

    2016-01-01

    A parameter that is gaining significance in the evaluation of acoustic liner performance is the skin friction drag induced by air flow over the liner surface. Estimates vary widely regarding the amount of drag the liner induces relative to a smooth wall, from less than a 20% increase to nearly 100%, and parameters such as face sheet perforate hole diameter, percent open area, and sheet thickness are expected to figure prominently in the skin friction drag. Even a small increase in liner drag can impose an economic penalty, and current research is focused on developing 'low drag' liner concepts, with the goal being to approach the skin friction drag of a smooth wall. The issue of skin friction drag takes on greater significance as airframe designers investigate the feasibility of putting sound absorbing liners on the non-lifting surfaces of the wings and fuselage, for the purpose of reducing engine noise reflected and scattered toward observers on the ground. Researchers at the NASA Langley Research Center have embarked on investigations of liner skin friction drag with the aims of: developing a systematic drag measurement capability, establishing the drag of current liners, and developing liners that produce reduced drag without compromising acoustic performance. This paper discusses the experimental procedures that have been developed to calculate the drag coefficient based on the change in momentum thickness and the companion research program being carried out to measure the drag directly using a force balance. Liner samples that are evaluated include a solid wall with known roughness and conventional liners with perforated facesheets of varying hole diameter and percent open area.

  1. Influence of the surface drag coefficient (young waves) on the current structure of the Berre lagoon

    Science.gov (United States)

    Alekseenko, Elena; Roux, Bernard; Kharif, Christian; Sukhinov, Alexander; Kotarba, Richard; Fougere, Dominique; Chen, Paul Gang

    2013-04-01

    Due to the shallowness, currents and hydrodynamics of Berre lagoon (South of France) are closely conditioned by the bottom topography, and wind affects the entire water column, as for many other Mediterranean lagoons (Perez-Ruzafa, 2011). Wind stress, which is caused by moving atmospheric disturbance, is known to have a major influence in lagoon water circulation. According to the numerical simulation for the main directions of the wind: N-NW, S-SE and W (wind speed of 80 km/h) it is observed that the current is maximal alongshore in the wind direction; the bottom nearshore current being larger in shallower area. This fact is coherent with fundamental principle of wind-driven flows in closed or partially closed basins which states that in shallow water the dominant force balance is between surface wind stress and bottom friction, yielding a current in the direction of the wind (Mathieu et al, 2002, Hunter and Hearn, 1987; Hearn and Hunter,1990). A uniform wind stress applied at the surface of a basin of variable depth sets up a circulation pattern characterized by relatively strong barotropic coastal currents in the direction of the wind, with return flow occurring over the deeper regions (Csanady, 1967; Csanady, 1971). One of the key parameters characterizing the wind stress formulation is a surface drag coefficient (Cds). Thus, an effect of a surface drag coefficient, in the range 0.0016 - 0.0032, will be analyzed in this work. The value of surface drag coefficient Cds = 0.0016 used in our previous studies (Alekseenko et al., 2012), would correspond to mature waves (open sea). But, in the case of semi-closed lagoonal ecosystem, it would be more appropriate to consider "young waves" mechanism. A dependency of this coefficient in terms of the wind speed is given by Young (1999) in both cases of mature waves and young waves. For "young waves" generated at a wind speed of 80 km/h, Cds = 0.0032. So, the influence of Cds on the vertical profile of the velocity in the

  2. Atomistic study of drag, surface and inertial effects on edge dislocations in face-centered cubic metals

    International Nuclear Information System (INIS)

    Bitzek, Erik; Gumbsch, Peter

    2004-01-01

    Atomistic simulations of an accelerating edge dislocation were carried out to study the effects of drag and inertia. Using an embedded atom potential for nickel, the Peierls stress, the effective mass and the drag coefficient of an edge dislocation were determined for different temperatures and stresses in a simple slab geometry. The effect of {1 1 1} surfaces on an intersecting edge dislocation were studied by appropriately cutting the slab. A dislocation intersecting a surface step was used as a model system to demonstrate the importance of inertial effects for dynamically overcoming short range obstacles. Significant effects were found even at room temperature. A simple model based on the dislocation-obstacle interaction energies was used to describe the findings

  3. Hydrodynamic Drag Force Measurement Of A Functionalized Surface Exhibiting Superhydrophobic Properties

    Science.gov (United States)

    2016-12-01

    hydrodynamic skin friction is greatly reduced and the water is said to slip over the air layer [12]. A number of direct numerical simulations ( DNS ) [13...practical means of reducing drag. It is therefore important to investigate materials where in the passive state exhibit the desired qualities of

  4. Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow

    Science.gov (United States)

    Bixler, Gregory D.; Bhushan, Bharat

    2013-12-01

    In search of new solutions to complex challenges, researchers are turning to living nature for inspiration. For example, special surface characteristics of rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we study four microstructured surfaces inspired by rice leaves and fabricated with photolithography techniques. We also present a method of creating such surfaces using a hot embossing procedure for scaled-up manufacturing. Fluid drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of sample geometrical dimensions. Conceptual modeling provides design guidance when developing novel low drag, self-cleaning, and potentially antifouling surfaces for medical, marine, and industrial applications.

  5. Air Layer Drag Reduction

    Science.gov (United States)

    Ceccio, Steven; Elbing, Brian; Winkel, Eric; Dowling, David; Perlin, Marc

    2008-11-01

    A set of experiments have been conducted at the US Navy's Large Cavitation Channel to investigate skin-friction drag reduction with the injection of air into a high Reynolds number turbulent boundary layer. Testing was performed on a 12.9 m long flat-plate test model with the surface hydraulically smooth and fully rough at downstream-distance-based Reynolds numbers to 220 million and at speeds to 20 m/s. Local skin-friction, near-wall bulk void fraction, and near-wall bubble imaging were monitored along the length of the model. The instrument suite was used to access the requirements necessary to achieve air layer drag reduction (ALDR). Injection of air over a wide range of air fluxes showed that three drag reduction regimes exist when injecting air; (1) bubble drag reduction that has poor downstream persistence, (2) a transitional regime with a steep rise in drag reduction, and (3) ALDR regime where the drag reduction plateaus at 90% ± 10% over the entire model length with large void fractions in the near-wall region. These investigations revealed several requirements for ALDR including; sufficient volumetric air fluxes that increase approximately with the square of the free-stream speed, slightly higher air fluxes are needed when the surface tension is reduced, higher air fluxes are required for rough surfaces, and the formation of ALDR is sensitive to the inlet condition.

  6. Effect of Surface Roughness on Polymer Drag Reduction with a High-Reynolds-Number Turbulent Boundary Layer

    Science.gov (United States)

    Elbing, Brian; Dowling, David; Solomon, Michael; Bian, Sherry; Ceccio, Steven

    2007-11-01

    A recent experiment at the U.S. Navy's Large Cavitation Channel (LCC) investigated the effect of wall roughness on wall-injection polymer drag reduction (PDR) within a high-Reynolds-number (10^7 to 2x10^8 based on downstream distance) turbulent boundary layer (TBL). Testing was performed in two parts: 1) PDR experiment on a 12.9 m long, 3.05 m wide hydro-dynamically smooth flat plate and 2) PDR experiment on the same model with the entire surface roughened. The roughness was produced by blowing glass beads into epoxy paint that was applied to the entire model. The roughened model had an average roughness height ranging between 307 and 1154 μm. Drag reduction was determined using six, stream-wise located integrated skin-friction balances. In addition to skin-friction measurements, sampling was performed at three stream-wise located ports. The sampling ports were used to determine the amount of degradation, if any, caused by the turbulent flow on the polymer. Both the skin-friction measurements and sampling analysis indicates that wall roughness in a turbulent boundary layer significantly increases degradation of the polymer solution.

  7. Drag reduction through self-texturing compliant bionic materials

    Science.gov (United States)

    Liu, Eryong; Li, Longyang; Wang, Gang; Zeng, Zhixiang; Zhao, Wenjie; Xue, Qunji

    2017-01-01

    Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, semisolid and liquid state all have good adhesion with modified mesh. The states of n-octadecane changed with temperature, thus, the surface contact angle and adhesive force all varies obviously at different state. The contact angle decreases with temperature, the adhesive force shows a lower value at semisolid state. Furthermore, the drag testing results show that the compliant n-octadecane film is more effectively in drag reduction than superhydrophobic ZnO/PDMS film, indicating that the drag reduction mechanism of n-octadecane is significantly different with superhydrophobic film. Further research shows that the water flow leads to self-texturing of semisolid state n-octadecane, which is similar with compliant fish skin. Therefore, the compliant bionic materials of semisolid state n-octadecane with regular bulge plays a major role in the drag reduction.

  8. Surface Relaxation and Electronic States of Pt(111) Surface with Varying Slab Thickness

    International Nuclear Information System (INIS)

    Kaushal, Ashok K.; Mullick, Shanta; Ahluwalia, P. K.

    2011-01-01

    Surface relaxation and electronic DOS's of Pt(111) surface have been studied with varying slab thickness using ab-initio SIESTA method. We found the expansion in the top layer and contraction in the subsurface layers of Pt(111) surface. Our results match with the experimental results. Also observing electronic density of states we found that as we increase the thickness of slab, the PDOS of Pt(111) surface goes towards the bulk density of states and Fermi energy shifts towards the bulk fermi energy.

  9. Performance analysis of PV panel under varying surface temperature

    Directory of Open Access Journals (Sweden)

    Kumar Tripathi Abhishek

    2018-01-01

    Full Text Available The surface temperature of PV panel has an adverse impact on its performance. The several electrical parameters of PV panel, such as open circuit voltage, short circuit current, power output and fill factor depends on the surface temperature of PV panel. In the present study, an experimental work was carried out to investigate the influence of PV panel surface temperature on its electrical parameters. The results obtained from this experimental study show a significant reduction in the performance of PV panel with an increase in panel surface temperature. A 5W PV panel experienced a 0.4% decrease in open circuit voltage for every 1°C increase in panel surface temperature. Similarly, there was 0.6% and 0.32% decrease in maximum power output and in fill factor, respectively, for every 1°C increase in panel surface temperature. On the other hand, the short circuit current increases with the increase in surface temperature at the rate of 0.09%/°C.

  10. Aerodynamic drag on intermodal railcars

    Science.gov (United States)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  11. Drag resistance of ship hulls: Effects of surface roughness of newly applied fouling control coatings, coating water absorption, and welding seams

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, Stefan Møller; Andrés, Eduardo

    2018-01-01

    selected, that a so-called fouling release (FR) coating caused approximately 5.6 % less skin friction (torque) over time than traditional biocide-based antifouling (AF) coatings at a tangential speed of 12 knots. Furthermore, results of immersion experiments and supporting “standard” water absorption......Fouling control coatings (FCCs) and irregularities (e.g. welding seams) on ship hull surfaces have significant effects on the overall drag performance of ships. In this work, skin frictions of four newly applied FCCs were compared using a pilot-scale rotary setup. Particular attention was given...

  12. Thermospheric density and satellite drag modeling

    Science.gov (United States)

    Mehta, Piyush Mukesh

    The United States depends heavily on its space infrastructure for a vast number of commercial and military applications. Space Situational Awareness (SSA) and Threat Assessment require maintaining accurate knowledge of the orbits of resident space objects (RSOs) and the associated uncertainties. Atmospheric drag is the largest source of uncertainty for low-perigee RSOs. The uncertainty stems from inaccurate modeling of neutral atmospheric mass density and inaccurate modeling of the interaction between the atmosphere and the RSO. In order to reduce the uncertainty in drag modeling, both atmospheric density and drag coefficient (CD) models need to be improved. Early atmospheric density models were developed from orbital drag data or observations of a few early compact satellites. To simplify calculations, densities derived from orbit data used a fixed CD value of 2.2 measured in a laboratory using clean surfaces. Measurements from pressure gauges obtained in the early 1990s have confirmed the adsorption of atomic oxygen on satellite surfaces. The varying levels of adsorbed oxygen along with the constantly changing atmospheric conditions cause large variations in CD with altitude and along the orbit of the satellite. Therefore, the use of a fixed CD in early development has resulted in large biases in atmospheric density models. A technique for generating corrections to empirical density models using precision orbit ephemerides (POE) as measurements in an optimal orbit determination process was recently developed. The process generates simultaneous corrections to the atmospheric density and ballistic coefficient (BC) by modeling the corrections as statistical exponentially decaying Gauss-Markov processes. The technique has been successfully implemented in generating density corrections using the CHAMP and GRACE satellites. This work examines the effectiveness, specifically the transfer of density models errors into BC estimates, of the technique using the CHAMP and

  13. Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge

    NARCIS (Netherlands)

    van Wachem, P.B.; Hogt, A.H.; Beugeling, T.; Feijen, Jan; Bantjes, A.; Detmers, J.P.; van Aken, W.G.

    1987-01-01

    The adhesion of human endothelial cells (HEC) onto a series of well-characterized methacrylate polymer surfaces with varying wettabilities and surface charges was studied either in serum-containing (CMS) or in serum-free (CM) culture medium. HEC adhesion in CMS onto (co)polymers * of hydroxyethyl

  14. Diffusion with Varying Drag; the Runaway Problem.

    Science.gov (United States)

    Rollins, David Kenneth

    We study the motion of electrons in an ionized plasma of electrons and ions in an external electric field. A probability distribution function describes the electron motion and is a solution of a Fokker-Planck equation. In zero field, the solution approaches an equilibrium Maxwellian. For arbitrarily small field, electrons overcome the diffusive effects and are freely accelerated by the field. This is the electron runaway phenomenon. We treat the electric field as a small perturbation. We consider various diffusion coefficients for the one dimensional problem and determine the runaway current as a function of the field strength. Diffusion coefficients, non-zero on a finite interval are examined. Some non-trivial cases of these can be solved exactly in terms of known special functions. The more realistic case where the diffusion coefficient decays with velocity are then considered. To determine the runaway current, the equivalent Schrodinger eigenvalue problem is analysed. The smallest eigenvalue is shown to be equal to the runaway current. Using asymptotic matching a solution can be constructed which is then used to evaluate the runaway current. The runaway current is exponentially small as a function of field strength. This method is used to extract results from the three dimensional problem.

  15. Diffusion with varying drag; the runaway problem

    International Nuclear Information System (INIS)

    Rollins, D.K.

    1986-01-01

    The motion of electrons in an ionized plasma of electrons and ions in an external electric field is studied. A probability distribution function describes the electron motion and is a solution of a Fokker-Planck equation. In zero field, the solution approaches an equilibrium Maxwellian. For arbitrarily small field, electrons overcome the diffusive effects and are freely accelerated by the field. This is the electron-runaway phenomenon. The electric field is treated as a small perturbation. Various diffusion coefficients are considered for the one dimensional problem, and the runaway current is determined as a function of the field strength. Diffusion coefficients, non-zero on a finite interval are examined. Some non-trivial cases of these can be solved exactly in terms of known special functions. The more realistic case where the diffusion coeffient decays with velocity are then considered. To determine the runaway current, the equivalent Schroedinger eigenvalue problem is analyzed. The smallest eigenvalue is shown to be equal to the runaway current. Using asymptotic matching, a solution can be constructed which is then used to evaluate the runaway current. The runaway current is exponentially small as a function of field strength. This method is used to extract results from the three dimensional problem

  16. Small-scale orographic gravity wave drag in stable boundary layers and its impact on synoptic systems and near surface meteorology

    NARCIS (Netherlands)

    Tsiringakis, Aristofanis; Steeneveld, G.J.; Holtslag, A.A.M.

    2017-01-01

    At present atmospheric models for weather and climate use enhanced turbulent drag under stable conditions, because these empirically provide the necessary momentum drag for accurate forecast of synoptic systems. The enhanced mixing (also known as the "long-tail"), introduces drag that can not be

  17. Studies of Aerodynamic Drag.

    Science.gov (United States)

    1982-12-01

    31. Strouhal number vs Reynolds number - Effect of Wind tunnel Blockage. 150- P ecrit 100- 50k- o present d Qta o Mitry (1977) --Shair et ati (1963) 0...forces measured by the balance. 4.12 Final Tests A comprehensive set of drag measurements was taken with the new drag plates, the drag plates being

  18. Vorticity confinement technique for drag prediction

    Science.gov (United States)

    Povitsky, Alex; Snyder, Troy

    2011-11-01

    This work couples wake-integral drag prediction and vorticity confinement technique (VC) for the improved prediction of drag from CFD simulations. Induced drag computations of a thin wing are shown to be more accurate than the more widespread method of surface pressure integration when compared to theoretical lifting-line value. Furthermore, the VC method improves trailing vortex preservation and counteracts the shift from induced drag to numerical entropy drag with increasing distance of Trefftz plane downstream of the wing. Accurate induced drag prediction via the surface integration of pressure barring a sufficiently refined surface grid and increased computation time. Furthermore, the alternative wake-integral technique for drag prediction suffers from numerical dissipation. VC is shown to control the numerical dissipation with very modest computational overhead. The 2-D research code is used to test specific formulations of the VC body force terms and illustrate the computational efficiency of the method compared to a ``brute force'' reduction in spatial step size. For the 3-D wing simulation, ANSYS FLUENT is employed with the VC body force terms added to the solver with user-defined functions (UDFs). VC is successfully implemented to highly unsteady flows typical for Micro Air Vehicles (MAV) producing oscillative drag force either by natural vortex shedding at high angles of attack or by flapping wing motion.

  19. Theoretical analysis of surface stress for a microcantilever with varying widths

    International Nuclear Information System (INIS)

    Li Xianfang; Peng Xulong

    2008-01-01

    A theoretical model of surface stress is developed in this paper for a microcantilever with varying widths, and a method for calculating the surface stress via static deflection, slope angle or radius at curvature of the cantilever beam is presented. This model assumes that surface stresses are uniformly distributed on one surface of the cantilever beam. Based on this stressor model and using the small deformation Euler-Bernoulli beam theory, a fourth-order ordinary differential governing equation with varying coefficients or an equivalent second-order integro-differential equation is derived. A simple approach is then proposed to determine the solution of the resulting equation, and a closed-form approximate solution with high accuracy can be obtained. For rectangular and V-shaped microfabricated cantilevers, the dependences of transverse deflection, slope and curvature of the beam on the surface stresses are given explicitly. The obtained results indicate that the zeroth order approximation of the stressor model reduces to the end force model with a linear curvature for a rectangular cantilever. For larger surface stresses, the curvature exhibits a non-linear behaviour. The predictions through the stressor model give higher accuracy than those from the end moment and end force models and satisfactorily agree with experimental data. The derived closed-form solution can serve as a theoretical benchmark for verifying numerically obtained results for microcantilevers as atomic force microscopy and micromechanical sensors

  20. On the Drag Effect of a Refuelling Pellet

    DEFF Research Database (Denmark)

    Chang, Tinghong; Michelsen, Poul

    1981-01-01

    A refueling pellet is subjected mainly to two kinds of drags: (1) inertial drag caused by the motion of the pellet relative to the surrounding plasma, and (2) ablation drag caused by an uneven ablation rate of the front and the rear surface of the pellet in an inhomogeneous plasma. Computational ...... results showed that for reasonable combinations of pellet size and injection speed, the drag effect is hardly detectable for plasma conditions prevailing in current large tokamaks....

  1. Fractal characterization of the silicon surfaces produced by ion beam irradiation of varying fluences

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, R.P. [Department of Physics, University of Allahabad, Allahabad, UP 211002 (India); Kumar, T. [Department of Physics, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123029 (India); Mittal, A.K. [Department of Physics, University of Allahabad, Allahabad, UP 211002 (India); K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Dwivedi, S., E-mail: suneetdwivedi@gmail.com [K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, PO Box 10502, New Delhi 110 067 (India)

    2015-08-30

    Highlights: • Fractal analysis of Si(1 0 0) surface morphology at varying ion fluences. • Autocorrelation function and height–height correlation function as fractal measures. • Surface roughness and lateral correlation length increases with ion fluence. • Ripple pattern of the surfaces is found at higher ion fluences. • Wavelength of the ripple surfaces is computed for each fluence. - Abstract: Si (1 0 0) is bombarded with 200 keV Ar{sup +} ion beam at oblique incidence with fluences ranging from 3 × 10{sup 17} ions/cm{sup 2} to 3 × 10{sup 18} ions/cm{sup 2}. The surface morphology of the irradiated surfaces is captured by the atomic force microscopy (AFM) for each ion fluence. The fractal analysis is performed on the AFM images. The autocorrelation function and height–height correlation function are used as fractal measures. It is found that the average roughness, interface width, lateral correlation length as well as roughness exponent increase with ions fluence. The analysis reveals the ripple pattern of the surfaces at higher fluences. The wavelength of the ripple surfaces is computed for each ion fluence.

  2. The Fast Simulation of Scattering Characteristics from a Simplified Time Varying Sea Surface

    Directory of Open Access Journals (Sweden)

    Yiwen Wei

    2015-01-01

    Full Text Available This paper aims at applying a simplified sea surface model into the physical optics (PO method to accelerate the scattering calculation from 1D time varying sea surface. To reduce the number of the segments and make further improvement on the efficiency of PO method, a simplified sea surface is proposed. In this simplified sea surface, the geometry of long waves is locally approximated by tilted facets that are much longer than the electromagnetic wavelength. The capillary waves are considered to be sinusoidal line superimposing on the long waves. The wavenumber of the sinusoidal waves is supposed to satisfy the resonant condition of Bragg waves which is dominant in all the scattered short wave components. Since the capillary wave is periodical within one facet, an analytical integration of the PO term can be performed. The backscattering coefficient obtained from a simplified sea surface model agrees well with that obtained from a realistic sea surface. The Doppler shifts and width also agree well with the realistic model since the capillary waves are taken into consideration. The good agreements indicate that the simplified model is reasonable and valid in predicting both the scattering coefficients and the Doppler spectra.

  3. Numerical study on drag reduction and heat transfer enhancement in microchannels with superhydrophobic surfaces for electronic cooling

    International Nuclear Information System (INIS)

    Cheng, Yongpan; Xu, Jinliang; Sui, Yi

    2015-01-01

    Microchannels with superhydrophobic surfaces are a promising candidate for electric cooling with mild frictional penalty. Frictional and thermal performance of laminar liquid-water flow in such microchannels is numerically investigated for various shear-free fractions and Reynolds numbers. The structures on superhydrophobic surfaces include square posts and holes, transverse and longitudinal grooves. Combined frictional and thermal performance of microchannels is evaluated by a goodness factor, and is compared with that of smooth plain channels. It is found that with increasing shear-free fractions, both friction factor and average Nusselt number deteriorate for four surface patterns; however, goodness factor is improved significantly over smooth plain channels. In general, superhydrophobic surfaces containing longitudinal and transverse grooves exhibit the lowest and highest frictional and thermal performance, respectively; however, combined performance of these two are on opposite. Among four surface patterns, longitudinal grooves have the highest goodness factors, except at high shear-free fractions or high Reynolds numbers where overall performance is surpassed by square posts. At very low or high shear-free fractions, frictional and thermal performance of two-dimensional square posts and holes approaches that of one-dimensional longitudinal or transverse grooves. Our study suggests microchannels with superhydrophobic surfaces as promising candidates for efficient cooling devices.

  4. Spatially-varying surface roughness and ground-level air quality in an operational dispersion model

    International Nuclear Information System (INIS)

    Barnes, M.J.; Brade, T.K.; MacKenzie, A.R.; Whyatt, J.D.; Carruthers, D.J.; Stocker, J.; Cai, X.; Hewitt, C.N.

    2014-01-01

    Urban form controls the overall aerodynamic roughness of a city, and hence plays a significant role in how air flow interacts with the urban landscape. This paper reports improved model performance resulting from the introduction of variable surface roughness in the operational air-quality model ADMS-Urban (v3.1). We then assess to what extent pollutant concentrations can be reduced solely through local reductions in roughness. The model results suggest that reducing surface roughness in a city centre can increase ground-level pollutant concentrations, both locally in the area of reduced roughness and downwind of that area. The unexpected simulation of increased ground-level pollutant concentrations implies that this type of modelling should be used with caution for urban planning and design studies looking at ventilation of pollution. We expect the results from this study to be relevant for all atmospheric dispersion models with urban-surface parameterisations based on roughness. -- Highlights: • Spatially variable roughness improved performance of an operational model. • Scenario modelling explored effect of reduced roughness on air pollution. • Reducing surface roughness can increase modelled ground-level pollution. • Damped vertical mixing outweighs increased horizontal advection in model study. • Result should hold for any model with a land-surface coupling based on roughness. -- Spatially varying roughness improves model simulations of urban air pollutant dispersion. Reducing roughness does not always decrease ground-level pollution concentrations

  5. The impact of changes in parameterizations of surface drag and vertical diffusion on the large-scale circulation in the Community Atmosphere Model (CAM5)

    Science.gov (United States)

    Lindvall, Jenny; Svensson, Gunilla; Caballero, Rodrigo

    2017-06-01

    Simulations with the Community Atmosphere Model version 5 (CAM5) are used to analyze the sensitivity of the large-scale circulation to changes in parameterizations of orographic surface drag and vertical diffusion. Many GCMs and NWP models use enhanced turbulent mixing in stable conditions to improve simulations, while CAM5 cuts off all turbulence at high stabilities and instead employs a strong orographic surface stress parameterization, known as turbulent mountain stress (TMS). TMS completely dominates the surface stress over land and reduces the near-surface wind speeds compared to simulations without TMS. It is found that TMS is generally beneficial for the large-scale circulation as it improves zonal wind speeds, Arctic sea level pressure and zonal anomalies of the 500-hPa stream function, compared to ERA-Interim. It also alleviates atmospheric blocking frequency biases in the Northern Hemisphere. Using a scheme that instead allows for a modest increase of turbulent diffusion at higher stabilities only in the planetary boundary layer (PBL) appears to in some aspects have a similar, although much smaller, beneficial effect as TMS. Enhanced mixing throughout the atmospheric column, however, degrades the CAM5 simulation. Evaluating the simulations in comparison with detailed measurements at two locations reveals that TMS is detrimental for the PBL at the flat grassland ARM Southern Great Plains site, giving too strong wind turning and too deep PBLs. At the Sodankylä forest site, the effect of TMS is smaller due to the larger local vegetation roughness. At both sites, all simulations substantially overestimate the boundary layer ageostrophic flow.

  6. Exponentially varying viscosity of magnetohydrodynamic mixed convection Eyring-Powell nanofluid flow over an inclined surface

    Science.gov (United States)

    Khan, Imad; Fatima, Sumreen; Malik, M. Y.; Salahuddin, T.

    2018-03-01

    This paper explores the theoretical study of the steady incompressible two dimensional MHD boundary layer flow of Eyring-Powell nanofluid over an inclined surface. The fluid is considered to be electrically conducting and the viscosity of the fluid is assumed to be varying exponentially. The governing partial differential equations (PDE's) are reduced into ordinary differential equations (ODE's) by applying similarity approach. The resulting ordinary differential equations are solved successfully by using Homotopy analysis method. The impact of pertinent parameters on velocity, concentration and temperature profiles are examined through graphs and tables. Also coefficient of skin friction, Sherwood and Nusselt numbers are illustrated in tabular and graphical form.

  7. Monitoring of 7Be in surface air of varying PM10 concentrations

    International Nuclear Information System (INIS)

    Chao, J.H.; Liu, C.C.; Cho, I.C.; Niu, H.

    2014-01-01

    In this study, beryllium-7 ( 7 Be) concentrations of surface air were monitored throughout a span of 23 years (1992–2012) in the Taiwanese cities Yilan, Taipei, Taichung, and Kaohsiung. During this period, particulate matter (PM) concentrations, in terms of PM 10 , were collected monthly from the nearest air-quality pollutant monitoring stations and compared against 7 Be concentrations. Seasonal monsoons influenced 7 Be concentrations in all cities, resulting in high winter and low summer concentrations. In addition, the meteorological conditions caused seasonal PM 10 variations, yielding distinct patterns among the cities. There was no correlation between 7 Be and PM 10 in the case cities. The average annual 7 Be concentrations varied little among the cities, ranging from 2.9 to 3.5 mBq/m 3 , while the PM 10 concentrations varied significantly from 38 μg/m 3 in Yilan to 92 μg/m 3 in Kaohsiung depending on the degree of air pollution and meteorological conditions. The correlation between the 7 Be concentration and gross-beta activities (A β ) in air implied that the 7 Be was mainly attached to crustal PM and its concentration varied little among the cities, regardless of the increase in anthropogenic PM in air-polluted areas. - Highlights: • Both 7 Be and PM 10 concentrations were monitored in four Taiwanese cities from 1992 to 2012. • Seasonal variations of 7 Be and PM 10 were explained based on on meteorological and pollution conditions. • The annual concentrations of 7 Be varied little among the four cities even in high PM environment. • 7 Be is believed to mainly attach to natural PM in the cities that exhibited varying PM 10 concentrations

  8. Local inertial oscillations in the surface ocean generated by time-varying winds

    Science.gov (United States)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  9. Active aerodynamic drag reduction on morphable cylinders

    Science.gov (United States)

    Guttag, M.; Reis, P. M.

    2017-12-01

    We study a mechanism for active aerodynamic drag reduction on morphable grooved cylinders, whose topography can be modified pneumatically. Our design is inspired by the morphology of the Saguaro cactus (Carnegiea gigantea), which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. Our analog experimental samples comprise a spoked rigid skeleton with axial cavities, covered by a stretched elastomeric film. Decreasing the inner pressure of the sample produces axial grooves, whose depth can be accurately varied, on demand. First, we characterize the relation between groove depth and pneumatic loading through a combination of precision mechanical experiments and finite element simulations. Second, wind tunnel tests are used to measure the aerodynamic drag coefficient (as a function of Reynolds number) of the grooved samples, with different levels of periodicity and groove depths. We focus specifically on the drag crisis and systematically measure the associated minimum drag coefficient and the critical Reynolds number at which it occurs. The results are in agreement with the classic literature of rough cylinders, albeit with an unprecedented level of precision and resolution in varying topography using a single sample. Finally, we leverage the morphable nature of our system to dynamically reduce drag for varying aerodynamic loading conditions. We demonstrate that actively controlling the groove depth yields a drag coefficient that decreases monotonically with Reynolds number and is significantly lower than the fixed sample counterparts. These findings open the possibility for the drag reduction of grooved cylinders to be operated over a wide range of flow conditions.

  10. Racializing white drag.

    Science.gov (United States)

    Rhyne, Ragan

    2004-01-01

    While drag is primarily understood as a performance of gender, other performative categories such as race, class, and sexuality create drag meaning as well. Though other categories of identification are increasingly understood as essential elements of drag by performers of color, whiteness remains an unmarked category in the scholarship on drag performances by white queens. In this paper, I argue that drag by white queens must be understood as a performance of race as well as gender and that codes of gender excess are specifically constructed through the framework of these other axes of identity. This essay asks whether white performance by white queens necessarily reinscribes white supremacy through the performance of an unmarked white femininity, or might drag performance complicate (though not necessarily subvert) categories of race as well as gender? In this essay, I will suggest that camp drag performances, through the deployment of class as a crucial category of performative femininity, might indeed be a key site through which whiteness is denaturalized and its power challenged. Specifically, I will read on camp as a politicized mode of race, class and gender performance, focusing on the intersections of these categories of identity in the drag performance of Divine.

  11. Pipeline Drag Reducers

    International Nuclear Information System (INIS)

    Marawan, H.

    2004-01-01

    Pipeline drag reducers have proven to be an extremely powerful tool in fluid transportation. High molecular weight polymers are used to reduce the frictional pressure loss ratio in crude oil pipelines, refined fuel and aqueous pipelines. Chemical structure of the main used pipeline drag reducers is one of the following polymers and copolymers classified according to the type of fluid to ; low density polyethylene, copolymer of I-hexane cross linked with divinyl benzene, polyacrylamide, polyalkylene oxide polymers and their copolymers, fluorocarbons, polyalkyl methacrylates and terpolymer of styrene, alkyl acrylate and acrylic acid. Drag reduction is the increase in pump ability of a fluid caused by the addition of small amounts of an additive to the fluid. The effectiveness of a drag reducer is normally expressed in terms of percent drag reduction. Frictional pressure loss in a pipeline system is a waste of energy and it costly. The drag reducing additive minimizes the flow turbulence, increases throughput and reduces the energy costs. The Flow can be increased by more than 80 % with existing assets. The effectiveness of the injected drag reducer in Mostorod to Tanta crude oil pipeline achieved 35.4 % drag reduction and 23.2 % flow increase of the actual performance The experimental application of DRA on Arab Petroleum Pipeline Company (Summed) achieved a flow increase ranging from 9-32 %

  12. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev

    2011-05-23

    We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.

  13. Pengaruh variasi lebar alur berbentuk segi empat pada permukaan silinder terhadap koefisien drag

    Directory of Open Access Journals (Sweden)

    Si Putu Gede Gunawan Tista

    2018-01-01

    aspects of human life, for example, fluid flow across a cylinder. In many engineering applications using cylindrical found equipment such as a chimney, a pillar of the bridge, and so on. The equipment is undergoing a puff of air at all times so that the strength of the construction has decreased, this is due to drag him in the direction of flow. Efforts are being made to reduce drag is by manipulating the flow field. Manipulation of the flow field is done by making rectangular-shaped grooves on the surface of the cylinder. The purpose of this study was to analyze the influence of variations in width rectangular-shaped grooves on the surface of the cylinder to the coefficient of drag. This research was conducted in wind tunnel consisting of a blower, pitot pipe, inclined manometer, U manometer, digital scales, and cylinders. The test object in the form of a cylinder diameter of 60 mm and a length of 420 mm is placed vertically in the wind tunnel. The width of the grooves on the surface of the cylinder varied which is 3 mm, 4 mm and 5 mm. The pressure distribution is obtained by measuring the surface pressure cylinders at 36 points with 10o intervals. Drag force testing done using digital scale that records the amount of mass, to get the drag force multiplied by gravity. The results showed a decline in the coefficient of drag on a grooved cylinder compared without grooves. Lowest coefficient values occurred in the magnitude of 4 mm groove width CD = 0.3734. The amount of reduction in drag is 22.3% compared without grooves. Keywords: drag reduction, the width of the groove, rectangular groove, cylindrical

  14. Automated Measurement for Sensitivity Analysis of Runoff-Sediment Load at Varying Surface Gradients

    Directory of Open Access Journals (Sweden)

    Imanogor P.A.

    2015-07-01

    Full Text Available Direct measurement of surface runoff is often associated with errors and inaccuracies which results to unreliable hydrological data. An automatic Runoff-meter using tipping buckets arrangement calibrated to tip 0.14 liter of runoff water per tip with an accuracy of ± 0.001 litre was used to measure surface runoff from a steel bounded soil tray of dimension (1200 mm X 900 mm X 260 mm filled with sand loamy to the depth of 130 mm and inclined at angle (0 0 , 5 0 ,12 0 and 15 0 horizontal to the instrument. The effect of varying angles of inclination on runoff intensity, sediment loss rate and sediment loss is significant at 5 % confidence level, while surface runoff is not significant at 5 % confidence level. Total highest sediment loss of 458.2 g and 313.4 g were observed at angle 15 0 and 12 0 respectively. Total surface runoff of 361.5 mm and 445.8 mm were generated at inclined angle of 0 0 and 5 0 , while at angle 12 0 and 15 0 , 564.3 mm and 590.0 mm of surface runoff were generated. In addition, runoff intensity and sediment loss rate were highest at angle 15 0 , while the lowest values of 1.5mm/min and 5.43 g/min were obtained at angle of inclination 5 0 . The results showed that strong relationship existed among the hydrological variables as a result of subjecting the steel bounded soil tray to different angles of inclination. Such results would provide useful data for the running of physics-based deterministic model of surface runoff and erosion which will be useful for the design of hydrological structures, land use planning and management.

  15. Assessment of a surface-layer parameterization scheme in an atmospheric model for varying meteorological conditions

    Directory of Open Access Journals (Sweden)

    T. J. Anurose

    2014-06-01

    Full Text Available The performance of a surface-layer parameterization scheme in a high-resolution regional model (HRM is carried out by comparing the model-simulated sensible heat flux (H with the concurrent in situ measurements recorded at Thiruvananthapuram (8.5° N, 76.9° E, a coastal station in India. With a view to examining the role of atmospheric stability in conjunction with the roughness lengths in the determination of heat exchange coefficient (CH and H for varying meteorological conditions, the model simulations are repeated by assigning different values to the ratio of momentum and thermal roughness lengths (i.e. z0m/z0h in three distinct configurations of the surface-layer scheme designed for the present study. These three configurations resulted in differential behaviour for the varying meteorological conditions, which is attributed to the sensitivity of CH to the bulk Richardson number (RiB under extremely unstable, near-neutral and stable stratification of the atmosphere.

  16. Calculation of rectal dose surface histograms in the presence of time varying deformations

    International Nuclear Information System (INIS)

    Roeske, John C.; Spelbring, Danny R.; Vijayakumar, S.; Forman, Jeffrey D.; Chen, George T.Y.

    1996-01-01

    Purpose: Dose volume (DVH) and dose surface histograms (DSH) of the bladder and rectum are usually calculated from a single treatment planning scan. These DVHs and DSHs will eventually be correlated with complications to determine parameters for normal tissue complication probabilities (NTCP). However, from day to day, the size and shape of the rectum and bladder may vary. The purpose of this study is to compare a more accurate estimate of the time integrated DVHs and DSHs of the rectum (in the presence of daily variations in rectal shape) to initial DVHs/DSHs. Methods: 10 patients were scanned once per week during the course of fractionated radiotherapy, typically accumulating a total of six scans. The rectum and bladder were contoured on each of the studies. The model used to assess effects of rectal contour deformation is as follows: the contour on a given axial slice (see figure) is boxed within a rectangle. A line drawn parallel to the AP axis through the rectangle equally partitions the box. Starting at the intersection of the vertical line and the rectal contour, points on the contour are marked off representing the same rectal dose point, even in the presence of distortion. Corresponding numbered points are used to sample the dose matrix and create a composite DSH. The model assumes uniform stretching of the rectal contour for any given axial cut, and no twist of the structure or vertical displacement. A similar model is developed for the bladder with spherical symmetry. Results: Normalized DSHs (nDSH) for each CT scan were calculated as well as the time averaged nDSH over all scans. These were compared with the nDSH from the initial planning scan. Individual nDSHs differed by 8% surface area irradiated at the 80% dose level, to as much as 20% surface area in the 70-100% dose range. DSH variations are due to position and shape changes in the rectum during different CT scans. The spatial distribution of dose is highly variable, and depends on the field

  17. Surface and canopy fuels vary widely in 24-yr old postfire lodgepole pine forests

    Science.gov (United States)

    Nelson, K. N.; Turner, M.; Romme, W. H.; Tinker, D. B.

    2013-12-01

    Extreme fire seasons have become common in western North America, and the extent of young postfire forests has grown as fire frequency and annual area burned have increased. These young forests will set the stage for future fires, but an assessment of fuel loads in young forests is lacking. The rate of fuel re-accumulation and fuels variability in postfire forest landscapes is needed to anticipate future fire occurrence and behavior in the American West. We studied fuel characteristics in young lodgepole pine forests that regenerated after the 1988 fires in Yellowstone National Park to address two questions: (1) How do surface fuel characteristics change with time-since-fire? (2) How do canopy and surface fuels vary across the Yellowstone landscape 24 years postfire? During summer 2012, we re-measured surface fuels in 11 plots that were established in 1996 (8 yrs post fire), and we measured surface and canopy fuels in 82 stands (each 0.25 ha) distributed across the Yellowstone post-1988 fire landscape. In the remeasured plots, surface fuel loads generally increased over the last 16 years. One-hr fuels did not change between sample dates, but all other fuel classes (i.e., 10-hr, 100-hr, and 1000-hr) increased by a factor of two or three. Within the sample timeframe, variability of fuel loads within stands decreased significantly. The coefficients of variation decreased for all fuel classes by 23% to 67%. Data from the 82 plots revealed that canopy and surface fuels in 24-year-old stands varied tremendously across the Yellowstone landscape. Live tree densities spanned 0 to 344,067 trees ha-1, producing a mean available canopy fuel load of 7.7 Mg ha-1 and a wide range from 0 to 47 Mg ha-1. Total surface fuel loads averaged 130 Mg ha-1 and ranged from 49 to 229 Mg ha-1, of which 90% was in the 1000-hr fuel class. The mass of fine surface fuels (i.e., litter/duff, 1-hr, 10-hr, and herbaceous fuels) and canopy fuels (i.e., foliage and 1-hr branches) were strongly and

  18. Time-varying surface electromyography topography as a prognostic tool for chronic low back pain rehabilitation.

    Science.gov (United States)

    Hu, Yong; Kwok, Jerry Weilun; Tse, Jessica Yuk-Hang; Luk, Keith Dip-Kei

    2014-06-01

    Nonsurgical rehabilitation therapy is a commonly used strategy to treat chronic low back pain (LBP). The selection of the most appropriate therapeutic options is still a big challenge in clinical practices. Surface electromyography (sEMG) topography has been proposed to be an objective assessment of LBP rehabilitation. The quantitative analysis of dynamic sEMG would provide an objective tool of prognosis for LBP rehabilitation. To evaluate the prognostic value of quantitative sEMG topographic analysis and to verify the accuracy of the performance of proposed time-varying topographic parameters for identifying the patients who have better response toward the rehabilitation program. A retrospective study of consecutive patients. Thirty-eight patients with chronic nonspecific LBP and 43 healthy subjects. The accuracy of the time-varying quantitative sEMG topographic analysis for monitoring LBP rehabilitation progress was determined by calculating the corresponding receiver-operating characteristic (ROC) curves. Physiologic measure was the sEMG during lumbar flexion and extension. Patients who suffered from chronic nonspecific LBP without the history of back surgery and any medical conditions causing acute exacerbation of LBP during the clinical test were enlisted to perform the clinical test during the 12-week physiotherapy (PT) treatment. Low back pain patients were classified into two groups: "responding" and "nonresponding" based on the clinical assessment. The responding group referred to the LBP patients who began to recover after the PT treatment, whereas the nonresponding group referred to some LBP patients who did not recover or got worse after the treatment. The results of the time-varying analysis in the responding group were compared with those in the nonresponding group. In addition, the accuracy of the analysis was analyzed through ROC curves. The time-varying analysis showed discrepancies in the root-mean-square difference (RMSD) parameters between the

  19. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges

    International Nuclear Information System (INIS)

    Batt, Angela L.; Bruce, Ian B.; Aga, Diana S.

    2006-01-01

    Effluents from three wastewater treatment plants with varying wastewater treatment technologies and design were analyzed for six antibiotics and caffeine on three sampling occasions. Sulfamethoxazole, trimethoprim, ciprofloxacin, tetracycline, and clindamycin were detected in the effluents at concentrations ranging from 0.090 to 6.0 μg/L. Caffeine was detected in all effluents at concentrations ranging from 0.19 to 9.9 μg/L. These findings indicate that several conventional wastewater management practices are not effective in the complete removal of antibiotics, and their discharges have a large potential to affect the aquatic environment. To evaluate the persistence of antibiotics coming from the wastewater discharges on the surrounding surface waters, samples were collected from the receiving streams at 10-, 20- and 100-m intervals. Ciprofloxacin, sulfamethoxazole, and clindamycin (0.043 to 0.076 μg/L) were found as far as 100 m from the discharge point, which indicates the persistence of these drugs in surface waters. - This work investigates the extent of antibiotic concentrations in receiving waters from discharges of wastewater treatment plants

  20. The Contribution of Io-Raised Tides to Europa's Diurnally-Varying Surface Stresses

    Science.gov (United States)

    Rhoden, Alyssa Rose; Hurford, Terry A,; Manga, Michael

    2011-01-01

    Europa's icy surface records a rich history of geologic activity, Several features appear to be tectonic in origin and may have formed in response to Europa's daily-varying tidal stress [I]. Strike-slip faults and arcuate features called cycloids have both been linked to the patterns of stress change caused by eccentricity and obliquity [2J[3]. In fact, as Europa's obliquity has not been directly measured, observed tectonic patterns arc currently the best indicators of a theoretically supported [4] non-negligible obliquity. The diurnal tidal stress due to eccentricity is calculated by subtracting the average (or static) tidal shape of Europa generated by Jupiter's gravitational field from the instantaneous shape, which varies as Europa moves through its eccentric orbit [5]. In other words, it is the change of shape away from average that generates tidal stress. One might expect tidal contributions from the other large moons of Jupiter to be negligible given their size and the height of the tides they raise on Europa versus Jupiter's mass and the height of the tide it raises on Europa, However, what matters for tidally-induced stress is not how large the lo-raised bulge is compared to the Jupiter-raised bulge but rather the differences bet\\Veen the instantaneous and static bulges in each case. For example, when Europa is at apocenter, Jupiter raises a tide 30m lower than its static tide. At the same time, 10 raises a tide about 0.5m higher than its static tide. Hence, the change in Io's tidal distortion is about 2% of the change in the Jovian distortion when Europa is at apocenter

  1. Airflow in Gravity Sewers - Determination of Wastewater Drag Coefficient.

    Science.gov (United States)

    Bentzen, Thomas Ruby; Østertoft, Kristian Kilsgaard; Vollertsen, Jes; Fuglsang, Emil Dietz; Nielsen, Asbjørn Haaning

    2016-03-01

    Several experiments have been conducted in order to improve the understanding of the wastewater drag and the wall frictional force acting on the headspace air in gravity sewers. The aim of the study is to improve the data basis for a numerical model of natural sewer ventilation. The results of the study shows that by integrating the top/side wall shear stresses the log-law models for the air velocity distribution along the unwetted perimeter resulted in a good agreement with the friction forces calculated by use of the Colebrook-White formula for hydraulic smooth pipes. Secondly, the water surface drags were found by log-law models of the velocity distribution in turbulent flows to fit velocity profiles measured from the water surface and by integrating the water surface drags along the wetted perimeter, mean water surface drags were found and a measure of the water surface drag coefficient was found.

  2. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  3. Mass Redistribution in the Core and Time-varying Gravity at the Earth's Surface

    Science.gov (United States)

    Kuang, Wei-Jia; Chao, Benjamin F.; Fang, Ming

    2003-01-01

    The Earth's liquid outer core is in convection, as suggested by the existence of the geomagnetic field in much of the Earth's history. One consequence of the convection is the redistribution of mass resulting from relative motion among fluid parcels with slightly different densities. This time dependent mass redistribution inside the core produces a small perturbation on the gravity field of the Earth. With our numerical dynamo solutions, we find that the mass redistribution (and the resultant gravity field) symmetric about the equator is much stronger than that anti-symmetric about the equator. In particular, J(sub 2) component is the strongest. In addition, the gravity field variation increases with the Rayleigh number that measures the driving force for the geodynamo in the core. With reasonable scaling from the current dynamo solutions, we could expect that at the surface of the Earth, the J(sub 2) variation from the core is on the order of l0(exp -16)/year relative to the mean (i.e. spherically symmetric) gravity field of the Earth. The possible shielding effect due to core-mantle boundary pressure variation loading is likely much smaller and is therefore negligible. Our results suggest that time-varying gravity field perturbation due to core mass redistribution may be measured with modem space geodetic observations, which will result a new means of detecting dynamical processes in the Earth's deep interior.

  4. Dosimetric study of varying aperture-surface distance at the Finnish BNCT facility

    International Nuclear Information System (INIS)

    Uusi-Simola, Jouni; Seppaelae, Tiina; Nieminen, Katja; Kotiluoto, Petri; Seren, Tom; Auterinen, Iiro; Kortesniemi, Mika; Savolainen, Sauli

    2006-01-01

    Comparison of experimental and calculated dosimetric values in a water phantom was performed at the Finnish BNCT facility at the FiR 1 research reactor. The purpose was to study the effect of changing aperture to surface distance (ASD) to radiation dose and to verify the accuracy of the treatment planning and to provide data for comparison of the methods. A magnesium ionisation chamber flushed with argon gas was used to measure absorbed photon dose rate. Diluted manganese (Mn) and gold (Au) foils and Mn wires were used to determine Mn and Au activation reaction rates. Computer simulations with both SERA and MCNP programs were used to independently calculate the corresponding values. Photon dose and activation reaction rate depth profiles at beam central axis an axial profiles at 2.5 and 6 cm depths were measured and calculated for 11 and 14 and 17 cm diameter apertures. Depth profiles for activation reaction rates were determined for the clinically used 11 and 14 cm diameter apertures for 0, 5, and 10 cm ASD. In addition, the optional 17 cm beam was characterised at 0 and 5 cm ASD. The beam intensity decreases by approximately 20% and 40% when ASD is increased to 5 cm or 10 cm, respectively. The shape of the 55 Mn activation reaction rate depth profile and photon depth radial profile did not vary more than 5% for the 14 cm beam when the ASD was increased from 0 cm to 10 cm. (author)

  5. Aerodynamic Drag Scoping Work.

    Energy Technology Data Exchange (ETDEWEB)

    Voskuilen, Tyler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Erickson, Lindsay Crowl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knaus, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    This memo summarizes the aerodynamic drag scoping work done for Goodyear in early FY18. The work is to evaluate the feasibility of using Sierra/Low-Mach (Fuego) for drag predictions of rolling tires, particularly focused on the effects of tire features such as lettering, sidewall geometry, rim geometry, and interaction with the vehicle body. The work is broken into two parts. Part 1 consisted of investigation of a canonical validation problem (turbulent flow over a cylinder) using existing tools with different meshes and turbulence models. Part 2 involved calculating drag differences over plate geometries with simple features (ridges and grooves) defined by Goodyear of approximately the size of interest for a tire. The results of part 1 show the level of noise to be expected in a drag calculation and highlight the sensitivity of absolute predictions to model parameters such as mesh size and turbulence model. There is 20-30% noise in the experimental measurements on the canonical cylinder problem, and a similar level of variation between different meshes and turbulence models. Part 2 shows that there is a notable difference in the predicted drag on the sample plate geometries, however, the computational cost of extending the LES model to a full tire would be significant. This cost could be reduced by implementation of more sophisticated wall and turbulence models (e.g. detached eddy simulations - DES) and by focusing the mesh refinement on feature subsets with the goal of comparing configurations rather than absolute predictivity for the whole tire.

  6. Analysis of Drag Reduction Methods and Mechanisms of Turbulent

    Directory of Open Access Journals (Sweden)

    Gu Yunqing

    2017-01-01

    Full Text Available Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected.

  7. Magnon-drag thermopile.

    Science.gov (United States)

    Costache, Marius V; Bridoux, German; Neumann, Ingmar; Valenzuela, Sergio O

    2011-12-18

    Thermoelectric effects in spintronics are gathering increasing attention as a means of managing heat in nanoscale structures and of controlling spin information by using heat flow. Thermal magnons (spin-wave quanta) are expected to play a major role; however, little is known about the underlying physical mechanisms involved. The reason is the lack of information about magnon interactions and of reliable methods to obtain it, in particular for electrical conductors because of the intricate influence of electrons. Here, we demonstrate a conceptually new device that enables us to gather information on magnon-electron scattering and magnon-drag effects. The device resembles a thermopile formed by a large number of pairs of ferromagnetic wires placed between a hot and a cold source and connected thermally in parallel and electrically in series. By controlling the relative orientation of the magnetization in pairs of wires, the magnon drag can be studied independently of the electron and phonon-drag thermoelectric effects. Measurements as a function of temperature reveal the effect on magnon drag following a variation of magnon and phonon populations. This information is crucial to understand the physics of electron-magnon interactions, magnon dynamics and thermal spin transport.

  8. Engineering drag currents in Coulomb coupled quantum dots

    Science.gov (United States)

    Lim, Jong Soo; Sánchez, David; López, Rosa

    2018-02-01

    The Coulomb drag phenomenon in a Coulomb-coupled double quantum dot system is revisited with a simple model that highlights the importance of simultaneous tunneling of electrons. Previously, cotunneling effects on the drag current in mesoscopic setups have been reported both theoretically and experimentally. However, in both cases the sequential tunneling contribution to the drag current was always present unless the drag level position were too far away from resonance. Here, we consider the case of very large Coulomb interaction between the dots, whereby the drag current needs to be assisted by cotunneling events. As a consequence, a quantum coherent drag effect takes place. Further, we demonstrate that by properly engineering the tunneling probabilities using band tailoring it is possible to control the sign of the drag and drive currents, allowing them to flow in parallel or antiparallel directions. We also show that the drag current can be manipulated by varying the drag gate potential and is thus governed by electron- or hole-like transport.

  9. Lift and Drag on Cylinder of Octagonal Cross-Section in a Turbulent Stream

    Directory of Open Access Journals (Sweden)

    Md. Jomir Hossain

    2013-12-01

    Full Text Available An experimental investigation of surface static pressure distributions on octagonal cylinder in uniform and turbulent flows was carried out. The study was performed on both the single cylinder and the group of two cylinders, two cylinders were used, one was at the upstream side, and the other was at the downstream side of the flow. They were placed centrally along the flow direction. The inter-spacing space between the two cylinders was varied at 1D, 2D, 3D, 4D, 5D, 6D, 7D and 8D, where D is the width of the cylinder across the flow direction. The pressure coefficients were calculated from the measured values of the surface static pressure distribution on the cylinder. Then the drag and lift coefficients were obtained from the pressure coefficients by the numerical integration method. It was observed that at various angles of attack, the values of the lift coefficients and drag coefficients were insignificant compared to those for a sharp-edged square cylinder. The strength of the vortex shedding was shown to be reduced as the intensity of the incident turbulence was increased. Measurements of drag at various angles of attack (0° to 40° showed that with increase in turbulence level the minimum drag occurred at smaller values of angle of attack.

  10. Free surface profiles in river flows: Can standard energy-based gradually-varied flow computations be pursued?

    Science.gov (United States)

    Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish

    2015-10-01

    Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.

  11. Dragging of inertial frames.

    Science.gov (United States)

    Ciufolini, Ignazio

    2007-09-06

    The origin of inertia has intrigued scientists and philosophers for centuries. Inertial frames of reference permeate our daily life. The inertial and centrifugal forces, such as the pull and push that we feel when our vehicle accelerates, brakes and turns, arise because of changes in velocity relative to uniformly moving inertial frames. A classical interpretation ascribed these forces to acceleration relative to some absolute frame independent of the cosmological matter, whereas an opposite view related them to acceleration relative to all the masses and 'fixed stars' in the Universe. An echo and partial realization of the latter idea can be found in Einstein's general theory of relativity, which predicts that a spinning mass will 'drag' inertial frames along with it. Here I review the recent measurements of frame dragging using satellites orbiting Earth.

  12. Temporal instability of viscous liquid microjets with spatially varying surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Furlani, E P [Integrated Materials and Microstructures Laboratory, Electronic Imaging Products, Eastman Kodak Company, Rochester, NY 14650-2121 (United States)

    2005-01-07

    A linear theory is developed for the temporal instability of a viscous liquid microjet of Newtonian fluid with a spatially periodic variation of surface tension imposed along its length. The variation of surface tension induces Marangoni flow within the jet that leads to breakup and drop formation. An analytical expression is derived for the behaviour of the free surface of the microjet. This expression is useful for parametric analysis of jet instability and breakup as a function of jet radius, wavelength and fluid properties.

  13. Temporal instability of viscous liquid microjets with spatially varying surface tension

    International Nuclear Information System (INIS)

    Furlani, E P

    2005-01-01

    A linear theory is developed for the temporal instability of a viscous liquid microjet of Newtonian fluid with a spatially periodic variation of surface tension imposed along its length. The variation of surface tension induces Marangoni flow within the jet that leads to breakup and drop formation. An analytical expression is derived for the behaviour of the free surface of the microjet. This expression is useful for parametric analysis of jet instability and breakup as a function of jet radius, wavelength and fluid properties

  14. Pengaruh variasi jarak antar ring berbentuk segi empat pada permukaan silinder terhadap koefisien drag

    Directory of Open Access Journals (Sweden)

    Si Putu Gede Gunawan Tista

    2016-12-01

    cylinder surface on the drag coefficient.This research was conducted in wind tunnel which consists of a blower (forblowing air, pitot pipe, U-tube manometer, inclined manometer, digital balance, cylinder with a rectangular ring. Theresearch was carried out by varying the distance between the ring i.e. 30 mm, 40 mm, 50 mm, 60 mm and 70 mm,respectively. The cylinder is placed in a vertical wind tunnel with a diameter D = 60 mm. The drag force is obtained byusing a digital balance that records the amount of mass, and then multiplied by the acceleration due to gravity. Thepressure distribution is obtained by measuring the pressure in the cylinder surface using inclined manometer on 36points with 10o intervals. The results showed that the greater the distance between the rings increased the dragcoefficient. The lowest drag coefficient was achieved at rhe distance between ring L = 30 mm or L/D = 0.50, with the CDvalue = 0.606352; that is equivalent to 29.3% drag reduction.Keywords: Cylinder, rectangular ring, space between ring, drag coefficient

  15. Drag coefficient Variability and Thermospheric models

    Science.gov (United States)

    Moe, Kenneth

    Satellite drag coefficients depend upon a variety of factors: The shape of the satellite, its altitude, the eccentricity of its orbit, the temperature and mean molecular mass of the ambient atmosphere, and the time in the sunspot cycle. At altitudes where the mean free path of the atmospheric molecules is large compared to the dimensions of the satellite, the drag coefficients can be determined from the theory of free-molecule flow. The dependence on altitude is caused by the concentration of atomic oxygen which plays an important role by its ability to adsorb on the satellite surface and thereby affect the energy loss of molecules striking the surface. The eccentricity of the orbit determines the satellite velocity at perigee, and therefore the energy of the incident molecules relative to the energy of adsorption of atomic oxygen atoms on the surface. The temperature of the ambient atmosphere determines the extent to which the random thermal motion of the molecules influences the momentum transfer to the satellite. The time in the sunspot cycle affects the ambient temperature as well as the concentration of atomic oxygen at a particular altitude. Tables and graphs will be used to illustrate the variability of drag coefficients. Before there were any measurements of gas-surface interactions in orbit, Izakov and Cook independently made an excellent estimate that the drag coefficient of satellites of compact shape would be 2.2. That numerical value, independent of altitude, was used by Jacchia to construct his model from the early measurements of satellite drag. Consequently, there is an altitude dependent bias in the model. From the sparce orbital experiments that have been done, we know that the molecules which strike satellite surfaces rebound in a diffuse angular distribution with an energy loss given by the energy accommodation coefficient. As more evidence accumulates on the energy loss, more realistic drag coefficients are being calculated. These improved drag

  16. Measurements of drag and flow over biofilm

    Science.gov (United States)

    Hartenberger, Joel; Gose, James W.; Perlin, Marc; Ceccio, Steven L.

    2017-11-01

    Microbial `slime' biofilms detrimentally affect the performance of every day systems from medical devices to large ocean-going vessels. In flow applications, the presence of biofilm typically results in a drag increase and may alter the turbulence in the adjacent boundary layer. Recent studies emphasize the severity of the drag penalty associated with soft biofouling and suggest potential mechanisms underlying the increase; yet, fundamental questions remain-such as the role played by compliance and the contribution of form drag to the overall resistance experienced by a fouled system. Experiments conducted on live biofilm and 3D printed rigid replicas in the Skin-Friction Flow Facility at the University of Michigan seek to examine these factors. The hydrodynamic performance of the biofilms grown on test panels was evaluated through pressure drop measurements as well as conventional and microscale PIV. High-resolution, 3D rigid replicas of select cases were generated via additive manufacturing using surface profiles obtained from a laser scanning system. Drag and flow measurements will be presented along with details of the growth process and the surface profile characterization method.

  17. High accuracy satellite drag model (HASDM)

    Science.gov (United States)

    Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent

    The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.

  18. London 2012 Paralympic swimming: passive drag and the classification system.

    Science.gov (United States)

    Oh, Yim-Taek; Burkett, Brendan; Osborough, Conor; Formosa, Danielle; Payton, Carl

    2013-09-01

    The key difference between the Olympic and Paralympic Games is the use of classification systems within Paralympic sports to provide a fair competition for athletes with a range of physical disabilities. In 2009, the International Paralympic Committee mandated the development of new, evidence-based classification systems. This study aims to assess objectively the swimming classification system by determining the relationship between passive drag and level of swimming-specific impairment, as defined by the current swimming class. Data were collected on participants at the London 2012 Paralympic Games. The passive drag force of 113 swimmers (classes 3-14) was measured using an electro-mechanical towing device and load cell. Swimmers were towed on the surface of a swimming pool at 1.5 m/s while holding their most streamlined position. Passive drag ranged from 24.9 to 82.8 N; the normalised drag (drag/mass) ranged from 0.45 to 1.86 N/kg. Significant negative associations were found between drag and the swimming class (τ = -0.41, p < 0.01) and normalised drag and the swimming class (τ = -0.60, p < 0.01). The mean difference in drag between adjacent classes was inconsistent, ranging from 0 N (6 vs 7) to 11.9 N (5 vs 6). Reciprocal Ponderal Index (a measure of slenderness) correlated moderately with normalised drag (r(P) = -0.40, p < 0.01). Although swimmers with the lowest swimming class experienced the highest passive drag and vice versa, the inconsistent difference in mean passive drag between adjacent classes indicates that the current classification system does not always differentiate clearly between swimming groups.

  19. The Effects of Propulsive Jetting on Drag of a Streamlined body

    Science.gov (United States)

    Krieg, Michael; Mohseni, Kamran

    2017-11-01

    Recently an abundance of bioinspired underwater vehicles have emerged to leverage eons of evolution. Our group has developed a propulsion technique inspired by jellyfish and squid. Propulsive jets are generated by ingesting and expelling water from a flexible internal cavity. We have demonstrated thruster capabilities for maneuvering on AUV platforms, where the internal thruster geometry minimized forward drag; however, such a setup cannot characterize propulsive efficiency. Therefore, we created a new streamlined vehicle platform that produces unsteady jets for forward propulsion rather than maneuvering. The streamlined jetting body is placed in a water tunnel and held stationary while jetting frequency and background flow velocity are varied. For each frequency/velocity pair the flow field is measured around the surface and in the wake using PIV. Using the zero jetting frequency as a baseline for each background velocity, the passive body drag is related to the velocity distribution. For cases with active jetting the drag and jetting forces are estimated from the velocity field and compared to the passive case. For this streamlined body, the entrainment of surrounding flow into the propulsive jet can reduce drag forces in addition to the momentum transfer of the jet itself. Office of Naval Research.

  20. Should Ballet Dancers Vary Postures and Underfoot Surfaces When Practicing Postural Balance?

    Science.gov (United States)

    Steinberg, Nili; Waddington, Gordon; Adams, Roger; Karin, Janet; Tirosh, Oren

    2018-01-01

    Postural balance (PB) is an important component skill for professional dancers. However, the effects of different types of postures and different underfoot surfaces on PB have not adequately been addressed. The main aim of this study was to investigate the effect of different conditions of footwear, surfaces, and standing positions on static and dynamic PB ability of young ballet dancers. A total of 36 male and female young professional ballet dancers (aged 14-19 years) completed static and dynamic balance testing, measured by head and lumbar accelerometers, while standing on one leg in the turnout position, under six different conditions: (1) "relaxed" posture; (2) "ballet" posture; (3) barefoot; (4) ballet shoes with textured insoles; (5) barefoot on a textured mat; and (6) barefoot on a spiky mat. A condition effect was found for static and dynamic PB. Static PB was reduced when dancers stood in the ballet posture compared with standing in the relaxed posture and when standing on a textured mat and on a spiky mat (p ballet shoes with textured insoles and when standing on a spiky mat compared with all other conditions (p ballet aligned position, including dance practice on different types of floors and on different types of textured/spiky materials may result in skill transfer to practice on normal floor surfaces, and both static and dynamic PB exercises should be assessed and generalized into practical dance routines.

  1. Molecular simulation insights on the in vacuo adsorption of amino acids on graphene oxide surfaces with varying surface oxygen densities

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, Farzin; Nouranian, Sasan, E-mail: sasan@olemiss.edu; Mahdavi, Mina [University of Mississippi, Department of Chemical Engineering (United States); Al-Ostaz, Ahmed [University of Mississippi, Department of Civil Engineering (United States)

    2016-11-15

    In this fundamental study, a series of molecular dynamics simulations were performed in vacuo to investigate the energetics and select geometries of 20 standard amino acids (AAs) on pristine graphene (PG) and graphene oxide (GO) surfaces as a function of graphene surface oxygen density. These interactions are of key interest to graphene/biomolecular systems. Our results indicate that aromatic AAs exhibit the strongest total interactions with the PG surfaces due to π-π stacking. Tryptophan (Trp) has the highest aromaticity due to its indole side chain and, hence, has the strongest interaction among all AAs (−16.66 kcal/mol). Aliphatic, polar, and charged AAs show various levels of affinity to the PG sheets depending on the strength of their side chain hydrophobic interactions. For example, arginine (Arg) with its guanidinium side chain exhibits the strongest interaction with the PG sheets (−13.81 kcal/mol) following aromatic AAs. Also, glycine (Gly; a polar AA) has the weakest interaction with the PG sheets (−7.29 kcal/mol). When oxygen-containing functional groups are added to the graphene sheets, the π-π stacking in aromatic AAs becomes disrupted and perfect parallelism of the aromatic rings is lost. Moreover, hydrogen bonding and/or electrostatic interactions become more pronounced. Charged AAs exhibit the strongest interactions with the GO surfaces. In general, the AA-GO interactions increase with increasing surface oxygen density, and the effect is more pronounced at higher O/C ratios. This study provides a quantitative measure of AA-graphene interactions for the design and tuning of biomolecular systems suitable for biosensing, drug delivery, and gene delivery applications.

  2. Adaptive fuzzy dynamic surface control of nonlinear systems with input saturation and time-varying output constraints

    Science.gov (United States)

    Edalati, L.; Khaki Sedigh, A.; Aliyari Shooredeli, M.; Moarefianpour, A.

    2018-02-01

    This paper deals with the design of adaptive fuzzy dynamic surface control for uncertain strict-feedback nonlinear systems with asymmetric time-varying output constraints in the presence of input saturation. To approximate the unknown nonlinear functions and overcome the problem of explosion of complexity, a Fuzzy logic system is combined with the dynamic surface control in the backstepping design technique. To ensure the output constraints satisfaction, an asymmetric time-varying Barrier Lyapunov Function (BLF) is used. Moreover, by applying the minimal learning parameter technique, the number of the online parameters update for each subsystem is reduced to 2. Hence, the semi-globally uniformly ultimately boundedness (SGUUB) of all the closed-loop signals with appropriate tracking error convergence is guaranteed. The effectiveness of the proposed control is demonstrated by two simulation examples.

  3. Cell adhesion over two distinct surfaces varied with chemical and mechanical properties

    International Nuclear Information System (INIS)

    Huang, Chih-Ling; Liao, Jiunn-Der; Yang, Chia-Fen; Chang, Chia-Wei; Ju, Ming-Shaung; Lin, Chou-Ching K.

    2009-01-01

    Chitosan is widely recognized as a natural and proper scaffold material; however, as a base substrate, it shows little promotion effect for the growth of cultured fibroblast cells. In this study, chitosan in a film form was prepared and used as a cell-culturing matrix, followed by patterning the evaporated Au upon it. Micro-scale Au clusters of ∼ 150 μm in diameter and ∼ 20 nm in thickness were then patterned and adhered upon the chitosan matrix. Physical and chemical properties of Au/chitosan were characterized. In particular, nano-indentation with dynamic contact module was applied to measure the nano-hardness of the tailored surfaces on Au/chitosan. Fibroblast cells were thereafter cultured on Au/chitosan. Experimental results demonstrated that as compared with the chitosan matrix, Au clusters and their boundary area exhibited favorable to promote cell adhesion, spreading, and growth. As well, nano-hardness on the boundary area of Au/chitosan significantly enhanced, while the cultured fibroblast cells aggregated upon Au clusters and the boundary area. In combination with the possible chemical and mechanical changes resulted by the evaporation of Au clusters upon the chitosan matrix, a selectively-enhanced Au/chitosan to promote fibroblast cells proliferation was created. Such design is anticipated for enabling a surface for scaffold materials with the cell-guidable function.

  4. Surface fluxes and water balance of spatially varying vegetation within a small mountainous headwater catchment

    Directory of Open Access Journals (Sweden)

    G. N. Flerchinger

    2010-06-01

    Full Text Available Precipitation variability and complex topography often create a mosaic of vegetation communities in mountainous headwater catchments, creating a challenge for measuring and interpreting energy and mass fluxes. Understanding the role of these communities in modulating energy, water and carbon fluxes is critical to quantifying the variability in energy, carbon, and water balances across landscapes. The focus of this paper was: (1 to demonstrate the utility of eddy covariance (EC systems in estimating the evapotranspiration component of the water balance of complex headwater mountain catchments; and (2 to compare and contrast the seasonal surface energy and carbon fluxes across a headwater catchment characterized by large variability in precipitation and vegetation cover. Eddy covariance systems were used to measure surface fluxes over sagebrush (Artemesia arbuscula and Artemesia tridentada vaseyana, aspen (Populus tremuloides and the understory of grasses and forbs beneath the aspen canopy. Peak leaf area index of the sagebrush, aspen, and aspen understory was 0.77, 1.35, and 1.20, respectively. The sagebrush and aspen canopies were subject to similar meteorological forces, while the understory of the aspen was sheltered from the wind. Missing periods of measured data were common and made it necessary to extrapolate measured fluxes to the missing periods using a combination of measured and simulated data. Estimated cumulative evapotranspiratation from the sagebrush, aspen trees, and aspen understory were 384 mm, 314 mm and 185 mm. A water balance of the catchment indicated that of the 699 mm of areal average precipitation, 421 mm was lost to evapotranspiration, and 254 mm of streamflow was measured from the catchment; water balance closure for the catchment was within 22 mm. Fluxes of latent heat and carbon for all sites were minimal through the winter. Growing season fluxes of latent heat and carbon were consistently higher

  5. Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction

    Science.gov (United States)

    Elbing, Brian R.; Winkel, Eric S.; Lay, Keary A.; Ceccio, Steven L.; Dowling, David R.; Perlin, Marc

    To investigate the phenomena of skin-friction drag reduction in a turbulent boundary layer (TBL) at large scales and high Reynolds numbers, a set of experiments has been conducted at the US Navy's William B. Morgan Large Cavitation Channel (LCC). Drag reduction was achieved by injecting gas (air) from a line source through the wall of a nearly zero-pressure-gradient TBL that formed on a flat-plate test model that was either hydraulically smooth or fully rough. Two distinct drag-reduction phenomena were investigated; bubble drag reduction (BDR) and air-layer drag reduction (ALDR).The streamwise distribution of skin-friction drag reduction was monitored with six skin-friction balances at downstream-distance-based Reynolds numbers to 220 million and at test speeds to 20.0msinitial zone1. These results indicated that there are three distinct regions associated with drag reduction with air injection: Region I, BDR; Region II, transition between BDR and ALDR; and Region III, ALDR. In addition, once ALDR was established: friction drag reduction in excess of 80% was observed over the entire smooth model for speeds to 15.3ms1 with the surface fully roughened (though approximately 50% greater volumetric air flux was required); and ALDR was sensitive to the inflow conditions. The sensitivity to the inflow conditions can be mitigated by employing a small faired step (10mm height in the experiment) that helps to create a fixed separation line.

  6. Drag Reducing and Cavitation Resistant Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F.

    2016-12-28

    Client, Green Building Systems (GBS), presented PNNL a coating reported to reduce drag and prevent cavitation damage on marine vessels, turbines and pumps. The composition of the coating remains proprietary but has as constituents including silicon oxides, aliphatic carbon chains, and fluorine rich particles. The coating is spray applied to surfaces. Prior GBS testing and experiments suggest reduction of both drag and cavitation on industrial scale propellers, but the underlying mechanism for these effects remains unclear. Yet, the application is compelling because even modest reductions in drag to marine vessels and cavitation to propellers and turbines present a significant economic and environmental opportunity. To discern among possible mechanisms, PNNL considered possible mechanisms with the client, executed multiple experiments, and completed one theoretical analysis (see appendix). The remainder of this report first considers image analysis to gain insight into drag reduction mechanisms and then exposes the coating to cavitation to explore its response to an intensely cavitating environment. Although further efforts may be warranted to confirm mechanisms, this report presents a first investigation into these coatings within the scope and resources of the technology assistance program (TAP).

  7. Microleakage in conservative cavities varying the preparation method and surface treatment

    Directory of Open Access Journals (Sweden)

    Juliana Abdallah Atoui

    2010-08-01

    Full Text Available OBJECTIVE: To assess microleakage in conservative class V cavities prepared with aluminum-oxide air abrasion or turbine and restored with self-etching or etch-and-rinse adhesive systems. Materials and Methods: Forty premolars were randomly assigned to 4 groups (I and II: air abrasion; III and IV: turbine and class V cavities were prepared on the buccal surfaces. Conditioning approaches were: groups I/III - 37% phosphoric acid; groups II/IV - self-priming etchant (Tyrian-SPE. Cavities were restored with One Step Plus/Filtek Z250. After finishing, specimens were thermocycled, immersed in 50% silver nitrate, and serially sectioned. Microleakage at the occlusal and cervical interfaces was measured in mm and calculated by a software. Data were subjected to ANOVA and Tukey's test (α=0.05. RESULTS: Marginal seal provided by air abrasion was similar to high-speed handpiece, except for group I. There was SIGNIFICANT difference between enamel and dentin/cementum margins for to group I and II: air abrasion. The etch-and-rinse adhesive system promoted a better marginal seal. At enamel and dentin/cementum margins, the highest microleakage values were found in cavities treated with the self-etching adhesive system. At dentin/cementum margins, high-speed handpiece preparations associated with etch-and-rinse system provided the least dye penetration. CONCLUSION: Marginal seal of cavities prepared with aluminum-oxide air abrasion was different from that of conventionally prepared cavities, and the etch-and-rinse system promoted higher marginal seal at both enamel and dentin margins.

  8. Switchable and Tunable Aerodynamic Drag on Cylinders

    Science.gov (United States)

    Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  9. Search for a solute-drag effect in dendritic solidification

    International Nuclear Information System (INIS)

    Eckler, K.; Herlach, D.M.; Aziz, M.J.

    1994-01-01

    The authors report the results of an indirect experimental test for the solute-drag effect in alloy solidification by fitting the data of Eckler et.al. for Ni-B dendrite tip velocities vs undercooling to models in several ways. The unknown equilibrium partition coefficient, k e , was varied as a fitting parameter. When they combine the dendrite growth model of Boettinger et al. with the Continuous Growth Model (CGM) of Aziz and Kaplan with solute drag, they cannot fit the data for any value of k e . When they combine dendrite growth theory with the CGM without solute drag, they obtain a reasonable fit to the data for k e = 4 x 10 -6 . When they combine dendrite growth theory with a new partial-solute-drag interpolation between the with-solute-drag and the without-solute-drag versions of the CGM, they obtain a still better fit to the data for k e = 2.8 x 10 - 4. This result points out the possibility of partial solute-drag during solidification and the importance of an independent determination of k e in order to distinguish between models

  10. Climate Change Impacts on Projections of Excess Mortality at 2030 using Spatially-Varying Ozone-Temperature Risk Surfaces

    Science.gov (United States)

    Wilson, Ander; Reich, Brian J.; Nolte, Christopher G.; Spero, Tanya L.; Hubbell, Bryan; Rappold, Ana G.

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995–2005) and near-future (2025–2035) time period while incorporating a nonlinear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate nonlinear, spatially-varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 ppb (moderate level) and 75 ppb (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 ppb and 1.94°F; however, the results varied by region. Increases in ozone due to climate change result in an increase in ozone-mortality burden. Mortality attributed to ozone exceeding 40 ppb increases by 7.7% (1.6%, 14.2%). Mortality attributed to ozone exceeding 75 ppb increases by 14.2% (1.6%, 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. PMID:27005744

  11. Synthesis of Au@Ag core-shell nanocubes containing varying shaped cores and their localized surface plasmon resonances.

    Science.gov (United States)

    Gong, Jianxiao; Zhou, Fei; Li, Zhiyuan; Tang, Zhiyong

    2012-06-19

    We have synthesized Au@Ag core-shell nanocubes containing Au cores with varying shapes and sizes through modified seed-mediated methods. Bromide ions are found to be crucial in the epitaxial growth of Ag atoms onto Au cores and in the formation of the shell's cubic shape. The Au@Ag core-shell nanocubes exhibit very abundant and distinct localized surface plasmon resonance (LSPR) properties, which are core-shape and size-dependent. With the help of theoretical calculation, the physical origin and the resonance mode profile of each LSPR peak are identified and studied. The core-shell nanocrystals with varying shaped cores offer a new rich category for LSPR control through the plasmonic coupling effect between core and shell materials.

  12. Investigation of Drag Coefficient for Rigid Ballute-like Shapes

    Science.gov (United States)

    Carnasciali, Maria-Isabel; Mastromarino, Anthony

    2014-11-01

    One common method of decelerating an object during atmospheric entry, descent, and landing is the use of parachutes. Another deceleration technology is the ballute - a combination of balloon and parachute. A CFD study was conducted using commercially available software to investigate the flow-field and the coefficient of drag for various rigid ballute-like shapes at varying Reynolds numbers. The impact of size and placement of the burble-fence as well as number, size, and shape of inlets was considered. Recent experimental measurements conducted during NASA's Low-Density Supersonic Decelerator program revealed a much higher coefficient of drag (Cd) for ballutes than previously encountered. Using atmospheric drag to slow down and land reduces the need for heavy fuel and rocket engines and thus, high values of drag are desired. Funding for this work, in part, provided by the CT Space Grant Consortium.

  13. Difference in growth and coalescing patterns of droplets on bi-philic surfaces with varying spatial distribution.

    Science.gov (United States)

    Garimella, Martand Mayukh; Koppu, Sudheer; Kadlaskar, Shantanu Shrikant; Pillutla, Venkata; Abhijeet; Choi, Wonjae

    2017-11-01

    This paper reports the condensation and subsequent motion of water droplets on bi-philic surfaces, surfaces that are patterned with regions of different wettability. Bi-philic surfaces can enhance the water collection efficiency: droplets condensing on hydrophobic regions wick into hydrophilic drain channels when droplets grow to a certain size, renewing the condensation on the dry hydrophobic region. The onset of drain phenomenon can be triggered by multiple events with distinct nature ranging from gravity, direct contact between a droplet and a drain channel, to a mutual coalescence between droplets. This paper focuses on the effect of the length scale of hydrophobic regions on the dynamics of mutual coalescence between droplets and subsequent drainage. The main hypothesis was that, when the drop size is sufficient, the kinetic energy associated with a coalescence of droplets may cause dynamic advancing of a newly formed drop, leading to further coalescence with nearby droplets and ultimately to a chain reaction. We fabricate bi-philic surfaces with hydrophilic and hydrophobic stripes, and the result confirms that coalescing droplets, when the length scale of droplets increases beyond 0.2mm, indeed display dynamic expansion and chain reaction. Multiple droplets can thus migrate to hydrophilic drain simultaneously even when the initial motion of the droplets was not triggered by the direct contact between the droplet and the hydrophilic drain. Efficiency of drain due to mutual coalescence of droplets varies depending on the length scale of bi-philic patterns, and the drain phenomenon reaches its peak when the width of hydrophobic stripes is between 800μm and 1mm. The Ohnesorge number of droplets draining on noted surfaces is between 0.0042 and 0.0037 respectively. The observed length scale of bi-philic patterns matches that on the Stenocara beetle's fog harvesting back surface. This match between length scales suggests that the surface of the insect is optimized

  14. Tuning the wettability of calcite cubes by varying the sizes of the polystyrene nanoparticles attached to their surfaces

    International Nuclear Information System (INIS)

    He Yongjun; Li Tanliang; Yu Xiangyang; Zhao Shiyong; Lu Jianhua; He Jia

    2007-01-01

    The wettability of calcite cubes was tuned by varying the sizes of the polystyrene nanoparticles attached to their surfaces via a dispersion polymerization. The products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersion spectrum (EDS) and Fourier transformation infrared spectrum (FTIR). The results showed that the hydrophobicity of the calcite cubes was enhanced with the increase of the size of the polystyrene nanoparticles attached. Using polystyrene nanoparticle-attached calcite cubes (PNACC) as emulsifiers, stable water-in-tricaprylin Pickering emulsions were produced. By gelling the water droplets of the Pickering emulsions, the hierarchical structures of polystyrene nanoparticle-attached calcite cube-armored microspheres were obtained. The polystyrene nanoparticle-attached calcite cubes were expected to have novel surface properties similar neither to traditional Pickering particles, nor to macroscopically asymmetrical Janus particles

  15. Dragging of inertial frames inside the rotating neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Chandrachur; Modak, Kamakshya Prasad; Bandyopadhyay, Debades, E-mail: chandrachur.chakraborty@saha.ac.in, E-mail: kamakshya.modak@saha.ac.in [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India)

    2014-07-20

    We derive the exact frame-dragging rate inside rotating neutron stars. This formula is applied to show that the frame-dragging rate monotonically decreases from the center to the surface of the neutron star along the pole. In the case of the frame-dragging rate along the equatorial distance, it decreases initially away from the center, becomes negligibly small well before the surface of the neutron star, rises again, and finally approaches to a small value at the surface. The appearance of a local maximum and minimum in this case is the result of the dependence of frame-dragging frequency on the distance and angle. Moving from the equator to the pole, it is observed that this local maximum and minimum in the frame-dragging rate along the equator disappear after crossing a critical angle. It is also noted that the positions of the local maximum and minimum of the frame-dragging rate along the equator depend on the rotation frequency and central energy density of a particular pulsar.

  16. Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature risk surfaces.

    Science.gov (United States)

    Wilson, Ander; Reich, Brian J; Nolte, Christopher G; Spero, Tanya L; Hubbell, Bryan; Rappold, Ana G

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate non-linear, spatially varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 p.p.b. (moderate level) and 75 p.p.b. (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 p.p.b. and 1.94 °F; however, the results varied by region. Increases in ozone because of climate change result in an increase in ozone mortality burden. Mortality attributed to ozone exceeding 40 p.p.b. increases by 7.7% (1.6-14.2%). Mortality attributed to ozone exceeding 75 p.p.b. increases by 14.2% (1.6 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels.

  17. The adult brain tissue response to hollow fiber membranes of varying surface architecture with or without cotransplanted cells

    Science.gov (United States)

    Zhang, Ning

    A variety of biomaterials have been chronically implanted into the central nervous system (CNS) for repair or therapeutic purposes. Regardless of the application, chronic implantation of materials into the CNS induces injury and elicits a wound healing response, eventually leading to the formation of a dense extracellular matrix (ECM)-rich scar tissue that is associated with the segregation of implanted materials from the surrounding normal tissue. Often this reaction results in impaired performance of indwelling CNS devices. In order to enhance the performance of biomaterial-based implantable devices in the CNS, this thesis investigated whether adult brain tissue response to implanted biomaterials could be manipulated by changing biomaterial surface properties or further by utilizing the biology of co-transplanted cells. Specifically, the adult rat brain tissue response to chronically implanted poly(acrylonitrile-vinylchloride) (PAN-PVC) hollow fiber membranes (HFMs) of varying surface architecture were examined temporally at 2, 4, and 12 weeks postimplantation. Significant differences were discovered in the brain tissue response to the PAN-PVC HFMs of varying surface architecture at 4 and 12 weeks. To extend this work, whether the soluble factors derived from a co-transplanted cellular component further affect the brain tissue response to an implanted HFM in a significant way was critically exploited. The cells used were astrocytes, whose ability to influence scar formation process following CNS injury by physical contact with the host tissue had been documented in the literature. Data indicated for the first time that astrocyte-derived soluble factors ameliorate the adult brain tissue reactivity toward HFM implants in an age-dependent manner. While immature astrocytes secreted soluble factors that suppressed the brain tissue reactivity around the implants, mature astrocytes secreted factors that enhanced the gliotic response. These findings prove the feasibility

  18. Drag force and jet propulsion investigation of a swimming squid

    Directory of Open Access Journals (Sweden)

    Tabatabaei Mahdi

    2015-01-01

    Full Text Available In this study, CAD model of a squid was obtained by taking computer tomography images of a real squid. The model later placed into a computational domain to calculate drag force and performance of jet propulsion. The drag study was performed on the CAD model so that drag force subjected to real squid was revealed at squid’s different swimming speeds and comparison has been made with other underwater creatures (e.g., a dolphin, sea lion and penguin. The drag coefficient (referenced to total wetted surface area of squid is 0.0042 at Reynolds number 1.6x106 that is a %4.5 difference from Gentoo penguin. Besides, jet flow of squid was simulated to observe the flow region generated in the 2D domain utilizing dynamic mesh method to mimic the movement of squid’s mantle cavity.

  19. Predicting the Best Fit: A Comparison of Response Surface Models for Midazolam and Alfentanil Sedation in Procedures With Varying Stimulation.

    Science.gov (United States)

    Liou, Jing-Yang; Ting, Chien-Kun; Mandell, M Susan; Chang, Kuang-Yi; Teng, Wei-Nung; Huang, Yu-Yin; Tsou, Mei-Yung

    2016-08-01

    Selecting an effective dose of sedative drugs in combined upper and lower gastrointestinal endoscopy is complicated by varying degrees of pain stimulation. We tested the ability of 5 response surface models to predict depth of sedation after administration of midazolam and alfentanil in this complex model. The procedure was divided into 3 phases: esophagogastroduodenoscopy (EGD), colonoscopy, and the time interval between the 2 (intersession). The depth of sedation in 33 adult patients was monitored by Observer Assessment of Alertness/Scores. A total of 218 combinations of midazolam and alfentanil effect-site concentrations derived from pharmacokinetic models were used to test 5 response surface models in each of the 3 phases of endoscopy. Model fit was evaluated with objective function value, corrected Akaike Information Criterion (AICc), and Spearman ranked correlation. A model was arbitrarily defined as accurate if the predicted probability is effect-site concentrations tested ranged from 1 to 76 ng/mL and from 5 to 80 ng/mL for midazolam and alfentanil, respectively. Midazolam and alfentanil had synergistic effects in colonoscopy and EGD, but additivity was observed in the intersession group. Adequate prediction rates were 84% to 85% in the intersession group, 84% to 88% during colonoscopy, and 82% to 87% during EGD. The reduced Greco and Fixed alfentanil concentration required for 50% of the patients to achieve targeted response Hierarchy models performed better with comparable predictive strength. The reduced Greco model had the lowest AICc with strong correlation in all 3 phases of endoscopy. Dynamic, rather than fixed, γ and γalf in the Hierarchy model improved model fit. The reduced Greco model had the lowest objective function value and AICc and thus the best fit. This model was reliable with acceptable predictive ability based on adequate clinical correlation. We suggest that this model has practical clinical value for patients undergoing procedures

  20. Experimental Study of Drag Resistance using a Laboratory Scale Rotary Set-Up

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Olsen, Kenneth N.; Christoffersen, Martin W.

    2003-01-01

    This work covers an experimental study of the drag resistance of different painted surfaces and simulated large-scale irregularities, viz. dry spraying, weld seams, barnacle fouling and paint remains. A laboratory scale rotary set-up was used to determine the drag resistance, and the surface...

  1. Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential

    Science.gov (United States)

    Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; Davis, J. A.

    2018-01-01

    The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonite edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites ('spillover' effect). A series of U(VI) - Na-montmorillonite batch adsorption experiments was conducted as a function of pH, with variable U(VI), Ca, and dissolved carbonate concentrations. Based on the experimental data, a new type of surface complexation model (SCM) was developed for montmorillonite, that specifically accounts for the spillover effect using the edge surface speciation model by Tournassat et al. (2016a). The SCM allows for a prediction of U(VI) adsorption under varying chemical conditions with a minimum number of fitting parameters, not only for our own experimental results, but also for a number of published data sets. The model agreed well with many of these datasets without introducing a second site type or including the formation of ternary U(VI)-carbonato surface complexes. The model predictions were greatly impacted by utilizing analytical measurements of dissolved inorganic carbon (DIC) concentrations in individual sample solutions rather than assuming solution equilibration with a specific partial pressure of CO2, even when the gas phase was

  2. Modelling of Structural Loads in Drag Augmented Space Debris Removal Concepts

    DEFF Research Database (Denmark)

    Kristensen, Anders Schmidt; Nikolajsen, Jan Ánike; Lauridsen, Peter Riddersholm

    2017-01-01

    A Self-deployable Deorbiting Space Structure (SDSS) is used for drag augmented space debris removal. A highly flexible frame allows for a folding of the structure by bifurcation. This research models the structural loads during the deployment and unfolding of the drag sail in Low Earth Orbit (LEO......). The Spacecraft travels with 7.8 km/s at deployment. As the drag sail unfolds instantaneously the structure must withstand the loads from the unfolding and the drag. Thermal loads are included in the FEA as the temperature varies from -80°C to +80°C during deorbit. The results are used to verify the structural...

  3. Conversion of time-varying Stokes coefficients into mass anomalies at the Earth's surface considering the Earth's oblateness

    Science.gov (United States)

    Ditmar, Pavel

    2018-02-01

    Time-varying Stokes coefficients estimated from GRACE satellite data are routinely converted into mass anomalies at the Earth's surface with the expression proposed for that purpose by Wahr et al. (J Geophys Res 103(B12):30,205-30,229, 1998). However, the results obtained with it represent mass transport at the spherical surface of 6378 km radius. We show that the accuracy of such conversion may be insufficient, especially if the target area is located in a polar region and the signal-to-noise ratio is high. For instance, the peak values of mean linear trends in 2003-2015 estimated over Greenland and Amundsen Sea embayment of West Antarctica may be underestimated in this way by about 15%. As a solution, we propose an updated expression for the conversion of Stokes coefficients into mass anomalies. This expression is based on the assumptions that: (i) mass transport takes place at the reference ellipsoid and (ii) at each point of interest, the ellipsoidal surface is approximated by the sphere with a radius equal to the current radial distance from the Earth's center ("locally spherical approximation"). The updated expression is nearly as simple as the traditionally used one but reduces the inaccuracies of the conversion procedure by an order of magnitude. In addition, we remind the reader that the conversion expressions are defined in spherical (geocentric) coordinates. We demonstrate that the difference between mass anomalies computed in spherical and ellipsoidal (geodetic) coordinates may not be negligible, so that a conversion of geodetic colatitudes into geocentric ones should not be omitted.

  4. Ad/dressing the nation: drag and authenticity in post-apartheid South Africa.

    Science.gov (United States)

    Spruill, Jennifer

    2004-01-01

    This paper examines a style of drag in South Africa that features "traditional African" clothing. In a region in which homosexuality is denigrated as a colonial, European import and "unAfrican," the meaning of "traditional drag" is deeply inflected by the question of cultural authenticity. This dragging practice fits within a distinctly post-colonial production of tradition and its self-conscious display--in the form of attire--of a decidedly "gay" one. Traditional drag also responds to ongoing politics within and between lesbian and gay communities about racial "representivity" and "transformation." The paper focuses on displays of traditional drag at Johannesburg's Gay and Lesbian Pride Parade but also explores the complex politics of publicity and address suggested by varying contexts in which traditional dress and drag are mobilized.

  5. Force and flow at the onset of drag in plowed granular media.

    Science.gov (United States)

    Gravish, Nick; Umbanhowar, Paul B; Goldman, Daniel I

    2014-04-01

    We study the transient drag force FD on a localized intruder in a granular medium composed of spherical glass particles. A flat plate is translated horizontally from rest through the granular medium to observe how FD varies as a function of the medium's initial volume fraction, ϕ. The force response of the granular material differs above and below the granular critical state, ϕc, the volume fraction which corresponds to the onset of grain dilatancy. For ϕϕc, FD rapidly rises to a maximum and then decreases over further displacement. The maximum force for ϕ>ϕc increases with increasing drag velocity. In quasi-two-dimensional drag experiments, we use granular particle image velocimetry (PIV) to measure time resolved strain fields associated with the horizontal motion of a plate started from rest. PIV experiments show that the maxima in FD for ϕ>ϕc are associated with maxima in the spatially averaged shear strain field. For ϕ>ϕc the shear strain occurs in a narrow region in front of the plate, a shear band. For ϕϕc, surface particles move only during the formation of the shear band, coincident with the maxima in FD, after which the particles remain immobile until the sheared region reaches the measurement region.

  6. Drag reduction and improvement of material transport in creeping films

    Energy Technology Data Exchange (ETDEWEB)

    Scholle, M.; Rund, A.; Aksel, N. [University of Bayreuth, Department of Applied Mechanics and Fluid Dynamics, Bayreuth (Germany)

    2006-01-01

    It is widely accepted that for bodies in turbulent flows a reduction of skin friction can be reached if the surface of the body is provided with small ridges aligned in the local flow direction. This surprising and counterintuitive phenomenon is called the shark-skin effect, motivated from the dermal surface morphology of sharks. In the present article we examine the possibility of resistance reduction due to a rippled surface topography in Stokes flow. We especially analyse the influence of wall riblets perpendicular to the flow direction on the mean transport velocity in gravity-driven creeping film flows following the idea that eddies generated in the valleys of the riblets act like fluid roller bearings and hence may reduce drag. Using a theoretical treatment of the Stokes equations with complex function theory, parameter studies with varying flow rate, bottom amplitude and bottom shape are presented. For the given bottom shapes the maximum enhancement of transport velocity is found by optimising the film thickness. (orig.)

  7. Gravitational waves and dragging effects

    Science.gov (United States)

    Bičák, Jiří; Katz, Joseph; Lynden-Bell, Donald

    2008-08-01

    Linear and rotational dragging effects of gravitational waves on local inertial frames are studied in purely vacuum spacetimes. First, the linear dragging caused by a simple cylindrical pulse is investigated. Surprisingly strong transverse effects of the pulse are exhibited. The angular momentum in cylindrically symmetric spacetimes is then defined and confronted with some results in the literature. In the main part, a general procedure is developed for studying weak gravitational waves with translational but not axial symmetry which can carry angular momentum. After a suitable averaging the rotation of local inertial frames due to such rotating waves can be calculated explicitly and illustrated graphically. This is done in detail in the accompanying paper. Finally, the rotational dragging is given for strong cylindrical waves interacting with a rotating cosmic string with a small angular momentum.

  8. Simulation of Time-Varying Spatially Uniform Pressure and Near-Surface Wind Flows on Building Components and Cladding

    Directory of Open Access Journals (Sweden)

    Seraphy Y. Shen

    2017-05-01

    Full Text Available This paper describes a new full-scale (FS testing apparatus for conducting performance evaluations of FS building envelope systems. The simulator can generate spatially uniform, time-varying pressure conditions associated with Saffir–Simpson Hurricane Wind Scale Category 5 winds while compensating for large air leakage through the specimen and also operate a high-speed wind tunnel, both with dynamic control. This paper presents system details, operating characteristics, and an early case study on the performance of large sectional door systems under wind pressure loading. Failure mechanisms are discussed, and finite element modeling is validated for two specimens. It demonstrates successful dynamic load control for large component and cladding systems, as well as simulation of flows near the building surface. These capabilities serve to complement other FS wind tunnel facilities by offering tools to generate ultimate load conditions on portions of the building. Further, the paper successfully demonstrates the utility of combining physical testing and computational analysis as a matter of routine, which underscores the potential of evolving FS testing to encompass cyber–physical approaches.

  9. An MHD simulation model of time-dependent global solar corona with temporally varying solar-surface magnetic field maps

    Science.gov (United States)

    Hayashi, K.

    2013-11-01

    We present a model of a time-dependent three-dimensional magnetohydrodynamics simulation of the sub-Alfvenic solar corona and super-Alfvenic solar wind with temporally varying solar-surface boundary magnetic field data. To (i) accommodate observational data with a somewhat arbitrarily evolving solar photospheric magnetic field as the boundary value and (ii) keep the divergence-free condition, we developed a boundary model, here named Confined Differential Potential Field model, that calculates the horizontal components of the magnetic field, from changes in the vertical component, as a potential field confined in a thin shell. The projected normal characteristic method robustly simulates the solar corona and solar wind, in response to the temporal variation of the boundary Br. We conduct test MHD simulations for two periods, from Carrington Rotation number 2009 to 2010 and from Carrington Rotation 2074 to 2075 at solar maximum and minimum of Cycle 23, respectively. We obtained several coronal features that a fixed boundary condition cannot yield, such as twisted magnetic field lines at the lower corona and the transition from an open-field coronal hole to a closed-field streamer. We also obtained slight improvements of the interplanetary magnetic field, including the latitudinal component, at Earth.

  10. Synthetic Effect of Vivid Shark Skin and Polymer Additive on Drag Reduction Reinforcement

    Directory of Open Access Journals (Sweden)

    Huawei Chen

    2014-06-01

    Full Text Available Natural shark skin has a well-demonstrated drag reduction function, which is mainly owing to its microscopic structure and mucus on the body surface. In order to improve drag reduction, it is necessary to integrate microscopic drag reduction structure and drag reduction agent. In this study, two hybrid approaches to synthetically combine vivid shark skin and polymer additive, namely, long-chain grafting and controllable polymer diffusion, were proposed and attempted to mimic such hierarchical topography of shark skin without waste of polymer additive. Grafting mechanism and optimization of diffusion port were investigated to improve the efficiency of the polymer additive. Superior drag reduction effects were validated, and the combined effect was also clarified through comparison between drag reduction experiments.

  11. Numerical Study of Natural Supercavitation Influenced by Rheological Properties of Turbulent Drag-Reducing Additives

    Directory of Open Access Journals (Sweden)

    Chen-Xing Jiang

    2014-08-01

    Full Text Available Natural supercavitations in water and turbulent drag-reducing solution were numerically simulated using unsteady Reynolds averaged Navier-Stokes (RANS scheme with mixture-multiphase model. The Cross viscosity equation was adopted to represent the fluid property of aqueous solution of drag-reducing additives. The characteristics of natural supercavity configuration and overall resistance of the navigating body were presented, respectively. The numerical simulation results indicated that, at the same cavitation number, the length and diameter of supercavity in drag-reducing solution are larger than those in water, and the drag coefficient of navigating body in solution is smaller than that in water; the surface tension plays an important role in incepting and maintaining the cavity. Turbulent drag-reducing additives have the potential in enhancement of supercavitation, drag reduction, and decrease of turbulent vortex structures. Numerical simulation results are consistent with the available experimental data.

  12. Symmetry breaking for drag minimization

    Science.gov (United States)

    Roper, Marcus; Squires, Todd M.; Brenner, Michael P.

    2005-11-01

    For locomotion at high Reynolds numbers drag minimization favors fore-aft asymmetric slender shapes with blunt noses and sharp trailing edges. On the other hand, in an inertialess fluid the drag experienced by a body is independent of whether it travels forward or backward through the fluid, so there is no advantage to having a single preferred swimming direction. In fact numerically determined minimum drag shapes are known to exhibit almost no fore-aft asymmetry even at moderate Re. We show that asymmetry persists, albeit extremely weakly, down to vanishingly small Re, scaling asymptotically as Re^3. The need to minimize drag to maximize speed for a given propulsive capacity gives one possible mechanism for the increasing asymmetry in the body plans seen in nature, as organisms increase in size and swimming speed from bacteria like E-Coli up to pursuit predator fish such as tuna. If it is the dominant mechanism, then this signature scaling will be observed in the shapes of motile micro-organisms.

  13. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev; Marston, Jeremy O.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T

    2011-01-01

    , we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development

  14. The Role of Rough Topography in Mediating Impacts of Bottom Drag in Eddying Ocean Circulation Models.

    Science.gov (United States)

    Trossman, David S; Arbic, Brian K; Straub, David N; Richman, James G; Chassignet, Eric P; Wallcraft, Alan J; Xu, Xiaobiao

    2017-08-01

    Motivated by the substantial sensitivity of eddies in two-layer quasi-geostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer β -plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough bottom basin simulations in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.

  15. The Effect of Volumetric Porosity on Roughness Element Drag

    Science.gov (United States)

    Gillies, John; Nickling, William; Nikolich, George; Etyemezian, Vicken

    2016-04-01

    Much attention has been given to understanding how the porosity of two dimensional structures affects the drag force exerted by boundary-layer flow on these flow obstructions. Porous structures such as wind breaks and fences are typically used to control the sedimentation of sand and snow particles or create micro-habitats in their lee. Vegetation in drylands also exerts control on sediment transport by wind due to aerodynamic effects and interaction with particles in transport. Recent research has also demonstrated that large spatial arrays of solid three dimensional roughness elements can be used to reduce sand transport to specified targets for control of wind erosion through the effect of drag partitioning and interaction of the moving sand with the large (>0.3 m high) roughness elements, but porous elements may improve the effectiveness of this approach. A thorough understanding of the role porosity plays in affecting the drag force on three-dimensional forms is lacking. To provide basic understanding of the relationship between the porosity of roughness elements and the force of drag exerted on them by fluid flow, we undertook a wind tunnel study that systematically altered the porosity of roughness elements of defined geometry (cubes, rectangular cylinders, and round cylinders) and measured the associated change in the drag force on the elements under similar Reynolds number conditions. The elements tested were of four basic forms: 1) same sized cubes with tubes of known diameter milled through them creating three volumetric porosity values and increasing connectivity between the tubes, 2) cubes and rectangular cylinders constructed of brass screen that nested within each other, and 3) round cylinders constructed of brass screen that nested within each other. The two-dimensional porosity, defined as the ratio of total surface area of the empty space to the solid surface area of the side of the element presented to the fluid flow was conserved at 0.519 for

  16. Foam Core Particleboards with Intumescent FRT Veneer: Cone Calorimeter Testing With Varying Adhesives, Surface Layer Thicknesses, and Processing Conditions

    Science.gov (United States)

    Mark A. Dietenberger; Johannes Welling; Ali Shalbafan

    2014-01-01

    Intumescent FRT Veneers adhered to the surface of foam core particleboard to provide adequate fire protection were evaluated by means of cone calorimeter tests (ASTM E1354). The foam core particleboards were prepared with variations in surface layer treatment, adhesives, surface layer thicknesses, and processing conditions. Ignitability, heat release rate profile, peak...

  17. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...

  18. Control of Nonlinear Coupled Electromagnetic Actuators for Active Drag Reduction in Turbulent Flow

    OpenAIRE

    Seidler, Florian; Trabert, Julius; Dück, Marcel; van Waasen, Stefan; Schiek, Michael; Abel, Dirk; Castelan, E. B.

    2016-01-01

    The research group FOR1779 “active drag reduction via wavy surface oscillations” develops robust methods for reduction of turbulent friction drag by flow control. The planned concentration on unsteady flow conditions requires a control of the electromagnetic actuator system for generation of transversal surface waves. The bars are positioned in parallel and coupled with an aluminum surface to generate a travelling wave perpendicular to the flow field. The actuator system can be approximately ...

  19. An experimental determination of the drag coefficient of a Mens 8+ racing shell.

    Science.gov (United States)

    Buckmann, James G; Harris, Samuel D

    2014-01-01

    This study centered around an experimental analysis of a Mens Lightweight Eight racing shell and, specifically, determining an approximation for the drag coefficient. A testing procedure was employed that used a Global Positioning System (GPS) unit in order to determine the acceleration and drag force on the shell, and through calculations yield a drag coefficient. The testing was run over several days in numerous conditions, and a 95% confidence interval was established to capture the results. The results obtained, over these varying trials, maintained a successful level of consistency. The significance of this study transcends the determination an approximation for the drag coefficient of the racing shell; it defined a successful means of quantifying performance of the shell itself. The testing procedures outlined in the study represent a uniform means of evaluating the factors that influence drag on the shell, and thus influence speed.

  20. On the variability of sea drag in finite water depth

    Science.gov (United States)

    Toffoli, A.; Loffredo, L.; Le Roy, P.; LefèVre, J.-M.; Babanin, A. V.

    2012-11-01

    The coupling between the atmospheric boundary layer and the ocean surface in large-scale models is usually parameterized in terms of the sea drag coefficient, which is routinely estimated as a function of mean wind speed. The scatter of data around such parametric dependencies, however, is very significant and imposes a serious limitation on the forecasts and predictions that make use of sea surface drag parameterizations. The analysis of an atmospheric and wave data set collected in finite water depth at the Lake George measurement site (Australia) suggests that this variability relates to a number of parameters at the air-sea interface other than wind speed alone. In particular, results indicate that the sea drag depends on water depth and wave steepness, which make the wave profile more vertically asymmetric, and the concentration of water vapor in the air, which modifies air density and friction velocity. These dependencies are used to derive parametric functions based on the combined contribution of wind, waves and relative humidity. A standard statistical analysis confirms a substantial improvement in the prediction of the drag coefficient and sea surface roughness when additional parameters are taken into account.

  1. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means, such as th......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means......, such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states. which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...

  2. Skin-friction drag reduction in turbulent channel flow based on streamwise shear control

    International Nuclear Information System (INIS)

    Kim, Jung Hoon; Lee, Jae Hwa

    2017-01-01

    Highlights: • We perform DNSs of fully developed turbulent channel flows to explore an active flow control concept using streamwise velocity shear control at the wall. • The structural spacing and wall amplitude parameters are systematically changed to achieve a high-efficient drag reduction rate for longitudinal control surface. • Significant drag reduction is observed with an increase in the two parameters with an accompanying reduction of the Reynolds stresses and vorticity fluctuations. • The generation and evolution of the turbulent vortices in the absence of velocity shear and how they contribute to DR have been examined. - Abstract: It is known that stretching and intensification of a hairpin vortex by mean shear play an important role to create a hairpin vortex packet, which generates the large Reynolds shear stress associated with skin-friction drag in wall-bounded turbulent flows. In order to suppress the mean shear at the wall for high efficient drag reduction (DR), in the present study, we explore an active flow control concept using streamwise shear control (SSC) at the wall. The longitudinal control surface is periodically spanwise-arranged with no-control surface while varying the structural spacing, and an amplitude parameter for imposing the strength of the actuating streamwise velocity at the wall is introduced to further enhance the skin-friction DR. Significant DR is observed with an increase in the two parameters with an accompanying reduction of the Reynolds stresses and vorticity fluctuations, although a further increase in the parameters amplifies the turbulence activity in the near-wall region. In order to study the direct relationship between turbulent vortical structures and DR under the SSC, temporal evolution with initial eddies extracted by conditional averages for Reynolds-stress-maximizing Q2 events are examined. It is shown that the generation of new vortices is dramatically inhibited with an increase in the parameters

  3. Generation of synthetic surface electromyography signals under fatigue conditions for varying force inputs using feedback control algorithm.

    Science.gov (United States)

    Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S

    2017-11-01

    Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.

  4. Dancing droplets: Contact angle, drag, and confinement

    Science.gov (United States)

    Benusiglio, Adrien; Cira, Nate; Prakash, Manu

    2015-11-01

    When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.

  5. Assessments of Bubble Dynamics Model and Influential Parameters in Microbubble Drag Reduction

    National Research Council Canada - National Science Library

    Skudarnov, P. V; Lin, C. X

    2006-01-01

    .... The effects of mixture density variation, free stream turbulence intensity, free stream velocity, and surface roughness on the microbubble drag reduction were studied using a single phase model based...

  6. Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids

    KAUST Repository

    Vakarelski, Ivan Uriev

    2016-09-08

    The drag coefficient CD of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re∼3×105. A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can occur over a wide range of Re, from as low as ∼600 to 105. The Navier slip model with a viscosity dependent slip length can fit the observed drag reduction and wake shape. © 2016 American Physical Society.

  7. Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids

    KAUST Repository

    Vakarelski, Ivan Uriev; Berry, Joseph D.; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2016-01-01

    The drag coefficient CD of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re∼3×105. A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can occur over a wide range of Re, from as low as ∼600 to 105. The Navier slip model with a viscosity dependent slip length can fit the observed drag reduction and wake shape. © 2016 American Physical Society.

  8. Superhydrophobic and polymer drag reduction in turbulent Taylor-Couette flow

    Science.gov (United States)

    Rajappan, Anoop; McKinley, Gareth H.

    2017-11-01

    We use a custom-built Taylor-Couette apparatus (radius ratio η = 0.75) to study frictional drag reduction by dilute polymer solutions and superhydrophobic (SH) surfaces in turbulent flows for 15000 analysis. We also investigate drag reduction by dilute polymer solutions, and show that natural biopolymers from plant mucilage can be an inexpensive and effective alternative to synthetic polymers in drag reduction applications, approaching the same maximum drag reduction asymptote. Finally we explore combinations of the two methods - one arising from wall slip and the other due to changes in turbulence dynamics in the bulk flow - and find that the two effects are not additive; interestingly, the effectiveness of polymer drag reduction is drastically reduced in the presence of an SH coating on the wall. This study was financially supported by the Office of Naval Research (ONR) through Contract No. 3002453814.

  9. Drag Reduction by Riblets & Sharkskin Denticles: A Numerical Study

    Science.gov (United States)

    Boomsma, Aaron

    . For comparison, turbulent flow over drag-reducing scalloped riblets is also simulated with similar flow conditions and with the same numerical method. Although the denticles resemble riblets, both sharkskin arrangements increase total drag by 44-50%, while the riblets reduce drag by 5%. Analysis of the simulated flow fields shows that the turbulent flow around denticles is highly three-dimensional and separated, with 25% of the total drag being form drag. The complex three-dimensional shape of the denticles gives rise to a mean flow dominated by strong secondary flows in sharp contrast with the mean flow generated by riblets, which is largely two-dimensional. The so resulting three-dimensionality of sharkskin flows leads to an increase in the magnitude of the turbulence statistics near the denticles, which further contributes to increasing the total drag. The simulations also show that, at least for the simulated arrangements, sharkskin, in sharp contrast with drag-reducing riblets, is unable to isolate high shear stress near denticle ridges causing a significant portion of the denticle surface to be exposed to high mean shear. Lastly, it has been theorized that sharkskin might act similarly to vortex generators and prevent separation. In order to test this theory, we have conducted simulations with and without sharkskin upstream of a steady separation bubble. Using large eddy simulation, our study shows that sharkskin worsened the weak separation region and enlarged the separation bubble's boundaries. The cause was shown to originate due to the denticles acting as blockages, rather than vortex generators. In fact, our results showed that separation occurred just after the second row of denticles and that the turbulent flow was unable to recover its lost momentum. Streamwise turbulence intensities were decreased compared to the baseline case. Finally, in the present case, the sharkskin induced reversed flow within the denticles---something that was not observed with

  10. Drag and drop display & builder

    Energy Technology Data Exchange (ETDEWEB)

    Bolshakov, Timofei B.; Petrov, Andrey D.; /Fermilab

    2007-12-01

    The Drag and Drop (DnD) Display & Builder is a component-oriented system that allows users to create visual representations of data received from data acquisition systems. It is an upgrade of a Synoptic Display mechanism used at Fermilab since 2002. Components can be graphically arranged and logically interconnected in the web-startable Project Builder. Projects can be either lightweight AJAX- and SVG-based web pages, or they can be started as Java applications. The new version was initiated as a response to discussions between the LHC Controls Group and Fermilab.

  11. Effects of biofouling development on drag forces of hull coatings for ocean-going ships: a review

    DEFF Research Database (Denmark)

    Lindholdt, Asger; Dam-Johansen, Kim; Olsen, S. M.

    2015-01-01

    This review presents a systematic overview of the literature and describes the experimental methods used to quantify the drag of hull coatings. It also summarizes the findings of hull coating's drag performance and identifies the main parameters impacting it. The advantages and disadvantages...... of the reported methods listed in this review provide an assessment of the most efficient methods to quantify the drag performance of hull coatings. This review determines that drag performance of hull coating technology varies depending on whether the coating condition is newly applied, after dynamic or static...... seawater exposure. The summarized data reveal that, while several methods have attempted to quantify drag performance of hull coatings, other methods must be explored in order to accurately measure the long-term drag performance of hull coatings in conditions mimicking those that ship hulls encounter...

  12. Effect of structure height on the drag reduction performance using rotating disk apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Rashed, Musaab K; Salleh, Mohamad Amran Mohd; Ismail, M Halim Shah [Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia (Malaysia); Abdulbari, Hayder A, E-mail: hayder.bari@gmail.com [Center of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang (Malaysia)

    2017-02-15

    The drag reduction characteristics in a rotating disk apparatus were investigated by using structured disks with different riblet types and dimensions. Two disk types were fabricated with right angle triangular (RAT) grooves and space v-shape (SV) grooves, with six dimensions for each type. A high-accuracy rotating disk apparatus was fabricated and then used to investigate the turbulent drag reduction characterization of the disk in diesel fuel. In this work, the effects of several parameters are investigated; riblet types, riblet dimensions, and rotational disk speed (rpm) on the drag reduction performance. It was found that the surface structure of the disk reduced the drag, this was clearly seen from the comparison of torque values of smooth and structured disks. Drag reduction for structured disks was higher than that for smooth disks, and SV-grooves showed better drag reduction performance than RAT-grooves. In addition, it was observed that the drag reduction performance increased with decreasing groove height for both groove types. The maximum drag reduction achieved in this study was 37.368% for SV-groove at 1000 rpm, compared with 30% for RAT-groove, at the same rotational speed. (paper)

  13. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...

  14. DOE Project on Heavy Vehicle Aerodynamic Drag

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag

  15. Improvements of evaporation drag model

    International Nuclear Information System (INIS)

    Li Xiaoyan; Yang Yanhua; Xu Jijun

    2004-01-01

    A special observable experiment facility has been established, and a series of experiments have been carried out on this facility by pouring one or several high-temperature particles into a water pool. The experiment has verified the evaporation drag model, which believe the non-symmetric profile of the local evaporation rate and the local density of the vapor would bring about a resultant force on the hot particle so as to resist its motion. However, in Yang's evaporation drag model, radiation heat transfer is taken as the only way to transfer heat from hot particle to the vapor-liquid interface and all of the radiation energy is deposited on the vapor-liquid interface, thus contributing to the vaporization rate and mass balance of the vapor film. So, the heat conduction and the heat convection are taken into account in improved model. At the same time, the improved model given by this paper presented calculations of the effect of hot particles temperature on the radiation absorption behavior of water

  16. Experimental approach to controllably vary protein oxidation while minimizing electrode adsorption for boron-doped diamond electrochemical surface mapping applications.

    Science.gov (United States)

    McClintock, Carlee S; Hettich, Robert L

    2013-01-02

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent (i.e., hydroxyl radicals) for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate the oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins.

  17. Infection Dynamics Vary between Symbiodinium Types and Cell Surface Treatments during Establishment of Endosymbiosis with Coral Larvae

    Directory of Open Access Journals (Sweden)

    Bette Lynn Willis

    2011-07-01

    Full Text Available Symbioses between microbes and higher organisms underpin high diversity in many ecosystems, including coral reefs, however mechanisms underlying the early establishment of symbioses remain unclear. Here we examine the roles of Symbiodinium type and cell surface recognition in the establishment of algal endosymbiosis in the reef-building coral, Acropora tenuis. We found 20–70% higher infection success (proportion of larvae infected and five-fold higher Symbiodinium abundance in larvae exposed to ITS-1 type C1 compared to ITS-1 type D in the first 96 h following exposure. The highest abundance of Symbiodinium within larvae occurred when C1-type cells were treated with enzymes that modified the 40–100 kD glycome, including glycoproteins and long chain starch residues. Our finding of declining densities of Symbiodinium C1 through time in the presence of intact cell surface molecules supports a role for cell surface recognition molecules in controlling post-phagocytosis processes, leading to rejection of some Symbiodinium types in early ontogeny. Reductions in the densities of unmodified C1 symbionts after 96 h, in contrast to increases in D symbionts may suggest the early initiation of a winnowing process contributing to the establishment of Symbiodinium D as the dominant type in one-month old juveniles of A. tenuis.

  18. Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

    International Nuclear Information System (INIS)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-01-01

    In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time. (paper)

  19. Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

    Science.gov (United States)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-08-01

    In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.

  20. Discovery of riblets in a bird beak (Rynchops) for low fluid drag.

    Science.gov (United States)

    Martin, Samuel; Bhushan, Bharat

    2016-08-06

    Riblet structures found on fast-swimming shark scales, such as those found on a mako shark, have been shown to reduce fluid drag. In previous experimental and modelling studies, riblets have been shown to provide drag reduction by lifting vortices formed in turbulent flow, decreasing overall shear stresses. Skimmer birds (Rynchops) are the only birds to catch fish in flight by flying just above the water surface with a submerged beak to fish for food. Because they need to quickly catch prey, reducing drag on their beak is advantageous. For the first time, riblet structures found on the beak of the skimmer bird have been studied experimentally and computationally for low fluid drag properties. In this study, skimmer replicas were studied for drag reduction through pressure drop in closed-channel, turbulent water flow. Pressure drop measurements are compared for black and yellow skimmer beaks in two configurations, and mako shark skin. In addition, two configurations of skimmer beak were modelled to compare drag properties and vortex structures. Results are discussed, and a conceptual model is presented to explain a possible drag reduction mechanism in skimmers.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  1. Uranium and coexisting element behaviour in surface waters and associated sediments with varied sampling techniques used for uranium exploration

    International Nuclear Information System (INIS)

    Wenrich-Verbeek, K.J.

    1977-01-01

    Optimum sampling methods in surface water and associated sediments for use in uranium exploration are being studied at thirty sites in Colorado, New Mexico, Arizona and Utah. For water samples, filtering is recommended to increase sample homogeneity and reproducibility because for most elements studied water samples which were allowed to remain unfiltered until time of analysis contained higher concentrations than field-filtered samples of the same waters. Acidification of unfiltered samples resulted in still higher concentrations. This is predominantly because of leaching of the elements from the suspended fraction. U in water correslates directly with Ca, Mg, Na, K, Ba, B, Li and As. In stream sediments, U and other trace elements are concentrated in the finer size fractions. Accordingly, in prospecting, grain size fractions less than 90 μm (170 mesh) should be analyzed for U. A greater number of elements (21) show a significant positive correlation with U in stream sediments than in water. Results have revealed that anomalous concentrations of U found in water may not be detected in associated sediments and vice versa. Hence, sampling of both surface water and coexisting sediment is strongly recommended

  2. Assessing thermal conductivity of composting reactor with attention on varying thermal resistance between compost and the inner surface.

    Science.gov (United States)

    Wang, Yongjiang; Niu, Wenjuan; Ai, Ping

    2016-12-01

    Dynamic estimation of heat transfer through composting reactor wall was crucial for insulating design and maintaining a sanitary temperature. A model, incorporating conductive, convective and radiative heat transfer mechanisms, was developed in this paper to provide thermal resistance calculations for composting reactor wall. The mechanism of thermal transfer from compost to inner surface of structural layer, as a first step of heat loss, was important for improving insulation performance, which was divided into conduction and convection and discussed specifically in this study. It was found decreasing conductive resistance was responsible for the drop of insulation between compost and reactor wall. Increasing compost porosity or manufacturing a curved surface, decreasing the contact area of compost and the reactor wall, might improve the insulation performance. Upon modeling of heat transfers from compost to ambient environment, the study yielded a condensed and simplified model that could be used to conduct thermal resistance analysis for composting reactor. With theoretical derivations and a case application, the model was applicable for both dynamic estimation and typical composting scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A numerical study of diurnally varying surface temperature on flow patterns and pollutant dispersion in street canyons

    Science.gov (United States)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-03-01

    The impacts of the diurnal variation of surface temperature on street canyon flow pattern and pollutant dispersion are investigated based on a two-dimensional street canyon model under different thermal stratifications. Uneven distributed street temperature conditions and a user-defined wall function representing the heat transfer between the air and the street canyon are integrated into the current numerical model. The prediction accuracy of this model is successfully validated against a published wind tunnel experiment. Then, a series of numerical simulations representing four time scenarios (Morning, Afternoon, Noon and Night) are performed at different Bulk Richardson number (Rb). The results demonstrate that uneven distributed street temperature conditions significantly alters street canyon flow structure and pollutant dispersion characteristics compared with conventional uniform street temperature assumption, especially for the morning event. Moreover, air flow patterns and pollutant dispersion are greatly influenced by diurnal variation of surface temperature under unstable stratification conditions. Furthermore, the residual pollutant in near-ground-zone decreases as Rb increases in noon, afternoon and night events under all studied stability conditions.

  4. Electrowetting of liquid polymer on petal-mimetic microbowl-array surfaces for formation of microlens array with varying focus on a single substrate

    Science.gov (United States)

    Li, Xiangmeng; Shao, Jinyou; Li, Xiangming; Tian, Hongmiao

    2015-03-01

    In this paper, microlens array with varying focal lengths were fabricated on a single microbowl-array textured substrate. The solid microbowl-arrayed NOA61 (kind of polyurethane-based polymer with UV curablity) surface was resulted from nanoimprinting by polydimethylsiloxane (PDMS) mold. The PDMS mold was replicated from an SU-8 master which was generated by electron beam lithography. Such microbowl-arrayed surfaces demonstrate petal-mimetic highly adhesive hydrophobic wetting properties, which can promote an irreversible electrowetting (EW) effect and a dereased contact angle of water droplets as well as other liquid droplets by applying direct current (DC) voltage. To fabricate a microlens array with varying focal-lengths, liquid NOA61 was supplied from a syringe on the solid NOA61 microtextured film and DC voltage was applied succesively. After removing the DC voltage, these liquid NOA61 microdrops deposited on the solid microtextured NOA61 surface on tin-indium-oxide coated substrate could be solidified via UV irradiation, thus leading to microlens array with uneven numerical apertures on a single substrate. Numerical simulation was also done to verify the EW effect. Finally, optical imaging characterization was performed to confirm the varied focus of the NOA61 microdrops.

  5. Thermal response of an aeroassisted orbital-transfer vehicle with a conical drag brake

    Science.gov (United States)

    Pitts, W. C.; Murbach, M. S.

    1984-01-01

    As an aeroassisted orbital-transfer vehicle (AOTV) goes through an aerobraking maneuver, a significant amount of heat is generated. In this paper, the thermal response of a specific AOTV to this aerobrake heating is examined. The vehicle has a 70 deg, conical drag-brake heat shield attached to a cylindrical body which contains the payload. The heat shield is made of silica fabric. The heat-shield thickness is varied from that of a thin cloth to a 1.5-cm blanket. The fabric thickness, the radiation absorptivity of the vehicle surface materials, and radiation from the wake are all significant parameters in the thermal response to the heating produced by the braking maneuver. The maximum temperatures occur in the vicinity of the interface between the body and the conical heat shield.

  6. Thermal Response of an Aeroassisted Orbital Transfer Vehicle with a Conical Drag Brake

    Science.gov (United States)

    Pitts, W. C.; Murbach, M. S.

    1985-01-01

    As an aeroassisted orbital transfer vehicle (AOTV) goes through an aerobraking maneuver a significant amount of heat is generated. In this paper, the thermal response of a specific AOTV to this aerobrake heating is examined. The vehicle has a 70-deg, Conical drag-brake heat shield attached to a cylindrical body which contains the payload. The heat shield is made of ceramic fabric its thickness is varied from that of a thin cloth to a 1.5-cm blanket. The fabric thickness, the radiation absorptivity of the vehicle surface materials, and radiation from the wake are all significant parameters in the thermal response to the heating produced by the braking maneuver. The maximum temperatures occur In the vicinity of the interface between the body and the conical heat shield.

  7. Modification of near-wall coherent structures in polymer drag reduced flow: simulation

    Science.gov (United States)

    Dubief, Yves; White, Christopher; Shaqfeh, Eric; Moin, Parviz; Lele, Sanjiva

    2002-11-01

    Polymer drag reduced flows are investigated through direct numerical simulations of viscoelastic flows. The solver for the viscoelastic model (FENE-P) is based on higher-order finite difference schemes and a novel implicit time integration method. Its robustness allows the simulation of all drag reduction (DR) regimes from the onset to the maximum drag reduction (MDR). It also permits the use of realistic polymer length and concentration. The maximum polymer extension in our simulation matches that of a polystyrene molecule of 10^6 molecular weight. Two distinct regimes of polymer drag reduced flows are observed: at low drag reduction (LDR, DR< 40-50%), the near-wall structure is essentially similar to Newtonian wall turbulence whereas the high drag reduction regime (HDR, DR from 40-50% to MDR) shows significant differences in the organization of the coherent structures. The 3D information provided by numerical simulations allows the determination of the interaction of polymers and near-wall coherent structures. To isolate the contribution of polymers in the viscous sublayer, the buffer and the outer region of the flow, numerical experiments are performed where the polymer concentration is varied in the wall-normal direction. Finally a mechanism of polymer drag reduction derived from our results and PIV measurements is discussed.

  8. Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and aerosol direct radiative forcing

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2012-12-01

    Full Text Available This study develops an algorithm for representing detailed spectral features of vegetation albedo based on Moderate Resolution Imaging Spectrometer (MODIS observations at 7 discrete channels, referred to as the MODIS Enhanced Vegetation Albedo (MEVA algorithm. The MEVA algorithm empirically fills spectral gaps around the vegetation red edge near 0.7 μm and vegetation water absorption features at 1.48 and 1.92 μm which cannot be adequately captured by the MODIS 7 channels. We then assess the effects of applying MEVA in comparison to four other traditional approaches to calculate solar fluxes and aerosol direct radiative forcing (DRF at the top of atmosphere (TOA based on the MODIS discrete reflectance bands. By comparing the DRF results obtained through the MEVA method with the results obtained through the other four traditional approaches, we show that filling the spectral gap of the MODIS measurements around 0.7 μm based on the general spectral behavior of healthy green vegetation leads to significant improvement in the instantaneous aerosol DRF at TOA (up to 3.02 W m−2 difference or 48% fraction of the aerosol DRF, −6.28 W m−2, calculated for high spectral resolution surface reflectance from 0.3 to 2.5 μm for deciduous vegetation surface. The corrections of the spectral gaps in the vegetation spectrum in the near infrared, again missed by the MODIS reflectances, also contributes to improving TOA DRF calculations but to a much lower extent (less than 0.27 W m−2, or about 4% of the instantaneous DRF.

    Compared to traditional approaches, MEVA also improves the accuracy of the outgoing solar flux between 0.3 to 2.5 μm at TOA by over 60 W m−2 (for aspen 3 surface and aerosol DRF by over 10 W m−2 (for dry grass. Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol radiative forcing in the spectral range of 0.3 to 2.5 μm at

  9. Drag on a slip spherical particle moving in a couple stress fluid

    Directory of Open Access Journals (Sweden)

    E.A. Ashmawy

    2016-06-01

    Full Text Available The creeping motion of a rigid slip sphere in an unbounded couple stress fluid is investigated. The linear slip boundary condition and the vanishing couple stress condition are applied on the surface of the sphere. A simple formula for the drag force acting on a slip sphere translating in an unbounded couple stress fluid is obtained. Special cases of the deduced drag formula are concluded and compared with analogous results in the literature. The normalized drag force experienced by the fluid on the slip sphere is represented graphically and the effects of slip parameter and viscosity coefficients are discussed.

  10. Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study

    DEFF Research Database (Denmark)

    Lunde, Anders Mathias; Flensborg, Karsten; Jauho, Antti-Pekka

    2005-01-01

    We calculate the intershell resistance R-21 in a multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F) (e.g., a gate voltage), varying the chirality of the inner and outer tubes. This is done in a so-called Coulomb drag setup, where a current I-1 in one shell induces...... a voltage drop V-2 in another shell by the screened Coulomb interaction between the shells neglecting the intershell tunneling. We provide benchmark results for R-21 = V2/I-1 within the Fermi liquid theory using Boltzmann equations. The band structure gives rise to strongly chirality-dependent suppression...... effects for the Coulomb drag between different tubes due to selection rules combined with mismatching of wave vector and crystal angular momentum conservation near the Fermi level. This gives rise to orders of magnitude changes in R-21 and even the sign of R-21 can change depending on the chirality...

  11. Effect of truncated cone roughness element density on hydrodynamic drag

    Science.gov (United States)

    Womack, Kristofer; Schultz, Michael; Meneveau, Charles

    2017-11-01

    An experimental study was conducted on rough-wall, turbulent boundary layer flow with roughness elements whose idealized shape model barnacles that cause hydrodynamic drag in many applications. Varying planform densities of truncated cone roughness elements were investigated. Element densities studied ranged from 10% to 79%. Detailed turbulent boundary layer velocity statistics were recorded with a two-component LDV system on a three-axis traverse. Hydrodynamic roughness length (z0) and skin-friction coefficient (Cf) were determined and compared with the estimates from existing roughness element drag prediction models including Macdonald et al. (1998) and other recent models. The roughness elements used in this work model idealized barnacles, so implications of this data set for ship powering are considered. This research was supported by the Office of Naval Research and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  12. Drag reduction of a reverse-engineered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Lecrivain, G.; Slaouti, A.; Kennedy, I. [Manchester Metropolitan Univ., Manchester (United Kingdom). Dept. of Engineering and Technology

    2007-08-09

    The aerodynamic performance of a hand-made sports car was numerically assessed using computational fluid dynamics (CFD) analysis of various shape modifications. The purpose was to achieve a lower drag design. Reverse-engineering was used to create a virtual model of complex 3D shapes for which no computer-aided drawings (CAD) data existed. From the predicted flow, the body could be redesigned for better performance prior to its remanufacturing. This paper described the multidisciplinary procedure involving reverse-engineering and CAD that was used to recreate a suitable watertight model of the sports car. The different errors embedded in the successive stages leading to the final model were accurately assessed and minimized. The whole vehicle was remodelled for drag reduction. Surface reconstruction was carried out, an an accurate set of high quality Non-Uniform Rational B-Spline (NURBS) surfaces was produced over the polygonal mesh resulting in a fine visual surface finish with smooth lines and contours, as required in the automotive industry. Further modifications were implemented for the purpose of drag reduction and to improve its aerodynamic performance. The application described in this paper can be extended to any other similarly intricate vehicle or industrial component. 12 refs., 1 tab., 11 figs.

  13. Airfoil Drag Reduction using Controlled Trapped Vorticity Concentrations

    Science.gov (United States)

    Desalvo, Michael; Glezer, Ari

    2017-11-01

    The aerodynamic performance of a lifting surface at low angles of attack (when the base flow is fully attached) is improved through fluidic modification of its ``apparent'' shape by superposition of near-surface trapped vorticity concentrations. In the present wind tunnel investigations, a controlled trapped vorticity concentration is formed on the pressure surface of an airfoil (NACA 4415) using a hybrid actuator comprising a passive obstruction of scale O(0.01c) and an integral synthetic jet actuator. The jet actuation frequency [Stact O(10)] is selected to be at least an order of magnitude higher than the characteristic unstable frequency of the airfoil wake, thereby decoupling the actuation from the global instabilities of the base flow. Regulation of vorticity accumulation in the vicinity of the actuator by the jet effects changes in the local pressure, leading in turn to changes in the airfoil's drag and lift. Trapped vorticity can lead to a significant reduction in drag and reduced lift (owing to the sense of the vorticity), e.g. at α =4° and Re = 6.7 .105 the drag and lift reductions are 14% and 2%, respectively. PIV measurements show the spatial variation in the distribution of vorticity concentrations and yield estimates of the corresponding changes in circulation.

  14. A mesocosm study using four native Hawaiian plants to assess nitrogen accumulation under varying surface water nitrogen concentrations.

    Science.gov (United States)

    Unser, C U; Bruland, G L; Hood, A; Duin, K

    2010-01-01

    Accumulation of nitrogen (N) by native Hawaiian riparian plants from surface water was measured under a controlled experimental mesocosm setting. Four species, Cladium jamaicense, Cyperus javanicus, Cyperus laevigatus, and Cyperus polystachyos were tested for their ability to survive in coconut fiber coir log media with exposure to differing N concentrations. It was hypothesized that the selected species would have significantly different tissue total nitrogen (TN) concentrations, aboveground biomass, and TN accumulation rates because of habitat preference and physiological growth differences. A general linear model (GLM) analysis of variance (ANOVA) determined that species differences accounted for the greatest proportion of variance in tissue TN concentration, aboveground biomass growth, and accumulation rates, when compared with the other main effects (i.e. N concentration, time) and their interactions. A post hoc test of means demonstrated that C. jamaicense had significantly higher tissue TN concentration, aboveground biomass growth, and accumulation rates than the other species under all N concentrations. It was also hypothesized that tissue TN concentrations and biomass growth would increase in plants exposed to elevated N concentrations, however data did not support this hypothesis. Nitrogen accumulation rates by species were controlled by differences in plant biomass growth.

  15. Direct numerical simulations of drag reduction in turbulent channel flow over bio-inspired herringbone riblet-texture

    NARCIS (Netherlands)

    Benschop, H.O.G.; Westerweel, J.; Breugem, W.P.

    2015-01-01

    The use of drag reducing surface textures is a promising passive method to reduce fuel consumption. Probably most wellknown is the utilisation of shark-skin inspired ridges or riblets parallel to the mean flow. They can reduce drag up to 10%. Recently another bio-inspired texture based on bird

  16. Buoyancy increase and drag-reduction through a simple superhydrophobic coating.

    Science.gov (United States)

    Hwang, Gi Byoung; Patir, Adnan; Page, Kristopher; Lu, Yao; Allan, Elaine; Parkin, Ivan P

    2017-06-08

    A superhydrophobic paint was fabricated using 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES), TiO 2 nanoparticles and ethanol. The paint has potential for aquatic application of a superhydrophobic coating as it induces increased buoyancy and drag reduction. Buoyance testing showed that the reduction of surface energy by superhydrophobic coating made it feasible that glass, a high density material, was supported by the surface tension of water. In a miniature boat sailing test, it was shown that the low energy surface treatment decreased the adhesion of water molecules to the surface of the boat resulting in a reduction of the drag force. Additionally, a robust superhydrophobic surface was fabricated through layer-by-layer coating using adhesive double side tape and the paint, and after a 100 cm abrasion test with sand paper, the surface still retained its water repellency, enhanced buoyancy and drag reduction.

  17. Evaluation of WRF Simulations With Different Selections of Subgrid Orographic Drag Over the Tibetan Plateau

    Science.gov (United States)

    Zhou, X.; Beljaars, A.; Wang, Y.; Huang, B.; Lin, C.; Chen, Y.; Wu, H.

    2017-09-01

    Weather Research and Forecasting (WRF) simulations with different selections of subgrid orographic drag over the Tibetan Plateau have been evaluated with observation and ERA-Interim reanalysis. Results show that the subgrid orographic drag schemes, especially the turbulent orographic form drag (TOFD) scheme, efficiently reduce the 10 m wind speed bias and RMS error with respect to station measurements. With the combination of gravity wave, flow blocking and TOFD schemes, wind speed is simulated more realistically than with the individual schemes only. Improvements are also seen in the 2 m air temperature and surface pressure. The gravity wave drag, flow blocking drag, and TOFD schemes combined have the smallest station mean bias (-2.05°C in 2 m air temperature and 1.27 hPa in surface pressure) and RMS error (3.59°C in 2 m air temperature and 2.37 hPa in surface pressure). Meanwhile, the TOFD scheme contributes more to the improvements than the gravity wave drag and flow blocking schemes. The improvements are more pronounced at low levels of the atmosphere than at high levels due to the stronger drag enhancement on the low-level flow. The reduced near-surface cold bias and high-pressure bias over the Tibetan Plateau are the result of changes in the low-level wind components associated with the geostrophic balance. The enhanced drag directly leads to weakened westerlies but also enhances the a-geostrophic flow in this case reducing (enhancing) the northerlies (southerlies), which bring more warm air across the Himalaya Mountain ranges from South Asia (bring less cold air from the north) to the interior Tibetan Plateau.

  18. No Winglets: What a Drag...Argument for Adding Winglets to Large Air Force Aircraft

    Science.gov (United States)

    2008-01-01

    prices have once again brought improving aircraft aerodynamic efficiencies to the forefront of the energy conservation debate. Displaying how winglets ... winglet . Winglets are small, nearly vertical aerodynamic surfaces mounted on aircraft wingtips. Engineers design them with the same careful attention to...total drag.6 Since winglets , designed as small airfoils, reduce the aerodynamic drag associated with vortices by minimizing the amount of energy used

  19. Parameterizing Subgrid-Scale Orographic Drag in the High-Resolution Rapid Refresh (HRRR) Atmospheric Model

    Science.gov (United States)

    Toy, M. D.; Olson, J.; Kenyon, J.; Smirnova, T. G.; Brown, J. M.

    2017-12-01

    The accuracy of wind forecasts in numerical weather prediction (NWP) models is improved when the drag forces imparted on atmospheric flow by subgrid-scale orography are included. Without such parameterizations, only the terrain resolved by the model grid, along with the small-scale obstacles parameterized by the roughness lengths can have an effect on the flow. This neglects the impacts of subgrid-scale terrain variations, which typically leads to wind speeds that are too strong. Using statistical information about the subgrid-scale orography, such as the mean and variance of the topographic height within a grid cell, the drag forces due to flow blocking, gravity wave drag, and turbulent form drag are estimated and distributed vertically throughout the grid cell column. We recently implemented the small-scale gravity wave drag paramterization of Steeneveld et al. (2008) and Tsiringakis et al. (2017) for stable planetary boundary layers, and the turbulent form drag parameterization of Beljaars et al. (2004) in the High-Resolution Rapid Refresh (HRRR) NWP model developed at the National Oceanic and Atmospheric Administration (NOAA). As a result, a high surface wind speed bias in the model has been reduced and small improvement to the maintenance of stable layers has also been found. We present the results of experiments with the subgrid-scale orographic drag parameterization for the regional HRRR model, as well as for a global model in development at NOAA, showing the direct and indirect impacts.

  20. Wingtip Vortices and Free Shear Layer Interaction in the Vicinity of Maximum Lift to Drag Ratio Lift Condition

    Science.gov (United States)

    Memon, Muhammad Omar

    between the lift induced drag (wingtip vortices) and parasite drag (free shear layer) can have a significant impact. Particle Image Velocimetry (PIV) experiments were performed at a) a water tunnel at ILR Aachen, Germany, and b) at the University of Dayton Low Speed Wind Tunnel in the near wake of an AR 6 wing with a Clark-Y airfoil to investigate the characteristics of the wingtip vortex and free shear layer at angles of attack in the vicinity of maximum aerodynamic efficiency for the wing. The data was taken 1.5 and 3 chord lengths downstream of the wing at varying free-stream velocities. A unique exergy-based technique was introduced to quantify distinct changes in the wingtip vortex axial core flow. The existence of wingtip vortex axial core flow transformation from wake-like (velocity less-than the freestream) to jet-like (velocity greater-than the freestream) behavior in the vicinity of the maximum (L/D) angles was observed. The exergy-based technique was able to identify the change in the out of plane profile and corresponding changes in the L/D performance. The resulting velocity components in and around the free shear layer in the wing wake showed counter flow in the cross-flow plane presumably corresponding to behavior associated with the flow over the upper and lower surfaces of the wing. Even though the velocity magnitudes in the free shear layer in cross-flow plane are a small fraction of the freestream velocity ( 10%), significant directional flow was observed. An indication of the possibility of the transfer of momentum (from inboard to outboard of the wing) was identified through spanwise flow corresponding to the upper and lower surfaces through the free shear layer in the wake. A transition from minimal cross flow in the free shear layer to a well-established shear flow in the spanwise direction occurs in the vicinity of maximum lift-to-drag ratio (max L/D) angle of attack. A distinctive balance between the lift induced drag and parasite drag was

  1. Drag Coefficient Estimation in Orbit Determination

    Science.gov (United States)

    McLaughlin, Craig A.; Manee, Steve; Lichtenberg, Travis

    2011-07-01

    Drag modeling is the greatest uncertainty in the dynamics of low Earth satellite orbits where ballistic coefficient and density errors dominate drag errors. This paper examines fitted drag coefficients found as part of a precision orbit determination process for Stella, Starlette, and the GEOSAT Follow-On satellites from 2000 to 2005. The drag coefficients for the spherical Stella and Starlette satellites are assumed to be highly correlated with density model error. The results using MSIS-86, NRLMSISE-00, and NRLMSISE-00 with dynamic calibration of the atmosphere (DCA) density corrections are compared. The DCA corrections were formulated for altitudes of 200-600 km and are found to be inappropriate when applied at 800 km. The yearly mean fitted drag coefficients are calculated for each satellite for each year studied. The yearly mean drag coefficients are higher for Starlette than Stella, where Starlette is at a higher altitude. The yearly mean fitted drag coefficients for all three satellites decrease as solar activity decreases after solar maximum.

  2. 5th Drag Reduction in Engineering Flows Meeting

    CERN Document Server

    1991-01-01

    The European Drag Reduction Meeting has been held on 15th and 16th November 1990 in London. This was the fifth of the annual European meetings on drag reduction in engineering flows. The main objective of this meeting was to discuss up-to-date results of drag reduction research carried out in Europe. The organiser has adopted the philosophy of discussing the yesterday's results rather than the last year's results. No written material has therefore been requested for the meeting. It was only after the meeting the submission of papers was requested to the participants, from which 16 papers were selected for this proceedings volume. The meeting has attracted a record number of participants with a total of 52 researchers from seven European countries, U. K. , France, Germany, the Netherlands, Italy, Switzerland and U. S. S. R. as well as from Japan, Canada and Australia. The subjects covered in this proceedings volume include riblets, LEBUs (Large Eddy Break-Up device), surface roughness, compliant surfaces and p...

  3. Drag reduction by dimples? - A complementary experimental/numerical investigation

    International Nuclear Information System (INIS)

    Lienhart, Hermann; Breuer, Michael; Koeksoy, Cagatay

    2008-01-01

    The paper is concerned with an experimental and numerical investigation of the turbulent flow over dimpled surfaces. Shallow dimples distributed regularly over the wall of a plane channel with large aspect ratio are used to study their effect on the friction drag. The resulting pressure drop in the channel was measured for smooth and dimpled walls. In addition to these investigations on internal flows, an external flow study was performed and boundary-layer profiles were measured using a Pitot-tube rake. Complementary to the measurements, direct numerical simulations for the internal flow configuration with and without dimples were carried out for two different grid resolutions and analyzed in detail. The objective was to clarify whether or not dimples cause reduction of the skin-friction drag

  4. Modelling of Aerodynamic Drag in Alpine Skiing

    OpenAIRE

    Elfmark, Ola

    2017-01-01

    Most of the breaking force in the speed disciplines in alpine skiing is caused by the aerodynamic drag, and a better knowledge of the drag force is therefore desirable to gain time in races. In this study a complete database of how the drag area (CDA) changes, with respect to the different body segments, was made and used to explain a complete body motion in alpine skiing. Three experiments were performed in the wind tunnel at NTNU, Trondheim. The database from a full body measurement on an a...

  5. Drag and Torque on Locked Screw Propeller

    Directory of Open Access Journals (Sweden)

    Tomasz Tabaczek

    2014-09-01

    Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.

  6. Aerodynamic drag control by pulsed jets on simplified car geometry

    Science.gov (United States)

    Gilliéron, Patrick; Kourta, Azeddine

    2013-02-01

    Aerodynamic drag control by pulsed jets is tested in a wind tunnel around a simplified car geometry named Ahmed body with a rear slant angle of 35°. Pulsed jet actuators are located 5 × 10-3 m from the top of the rear window. These actuators are produced by a pressure difference ranging from 1.5 to 6.5 × 105 Pa. Their excitation frequency can vary between 10 and 550 Hz. The analysis of the control effects is based on wall visualizations, aerodynamic drag coefficient measurements, and the velocity fields obtained by 2D PIV measurements. The maximum drag reduction is 20 % and is obtained for the excitation frequency F j = 500 Hz and for the pressure difference ∆ P = 1.5 × 105 Pa. This result is linked with a substantial reduction in the transverse development of the longitudinal vortex structures coming from the left and right lateral sides of the rear window, with a displacement of the vortex centers downstream and with a decrease in the transverse rotational absolute values of these structures.

  7. Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water

    KAUST Repository

    Vakarelski, Ivan Uriev; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2014-01-01

    We investigate the dynamic effects of a Leidenfrost vapour layer sustained on the surface of heated steel spheres during free fall in water. We find that a stable vapour layer sustained on the textured superhydrophobic surface of spheres falling through 95 °C water can reduce the hydrodynamic drag by up to 75% and stabilize the sphere trajectory for the Reynolds number between 104 and 106, spanning the drag crisis in the absence of the vapour layer. For hydrophilic spheres under the same conditions, the transition to drag reduction and trajectory stability occurs abruptly at a temperature different from the static Leidenfrost point. The observed drag reduction effects are attributed to the disruption of the viscous boundary layer by the vapour layer whose thickness depends on the water temperature. Both the drag reduction and the trajectory stabilization effects are expected to have significant implications for development of sustainable vapour layer based technologies. © the Partner Organisations 2014.

  8. Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Xiaojing Sun

    2016-01-01

    Full Text Available Compared with a drag-type vertical axis wind turbines, one of the greatest advantages for a lift-type vertical axis wind turbines is its higher power coefficient (Cp. However, the lift-type vertical axis wind turbines is not a self-starting turbine as its starting torque is very low. In order to combine the advantage of both the drag-type and the lift-type vertical axis wind turbines, a lift drag hybrid vertical axis wind turbines was designed in this article and its aerodynamics and starting performance was studied in detail with the aid of computational fluid dynamics simulations. Numerical results indicate that the power coefficient of this lift drag hybrid vertical axis wind turbines declines when the distance between its drag-type blades and the center of rotation of the turbine rotor increases, whereas its starting torque can be significantly improved. Studies also show that unlike the lift-type vertical axis wind turbines, this lift drag hybrid-type vertical axis wind turbines could be able to solve the problem of low start-up torque. However, the installation position of the drag blade is very important. If the drag blade is mounted very close to the spindle, the starting torque of the lift drag hybrid-type vertical axis wind turbines may not be improved at all. In addition, it has been found that the power coefficient of the studied vertical axis wind turbines is not as good as expected and possible reasons have been provided in this article after the pressure distribution along the surfaces of the airfoil-shaped blades of the hybrid turbine was analyzed.

  9. Thermal lift generation and drag reduction in rarefied aerodynamics

    Science.gov (United States)

    Pekardan, Cem; Alexeenko, Alina

    2016-11-01

    With the advent of the new technologies in low pressure environments such as Hyperloop and helicopters designed for Martian applications, understanding the aerodynamic behavior of airfoils in rarefied environments are becoming more crucial. In this paper, verification of rarefied ES-BGK solver and ideas such as prediction of the thermally induced lift and drag reduction in rarefied aerodynamics are investigated. Validation of the rarefied ES-BGK solver with Runge-Kutta discontinous Galerkin method with experiments in transonic regime with a Reynolds number of 73 showed that ES-BGK solver is the most suitable solver in near slip transonic regime. For the quantification of lift generation, A NACA 0012 airfoil is studied with a high temperature surface on the bottom for the lift creation for different Knudsen numbers. It was seen that for lower velocities, continuum solver under predicts the lift generation when the Knudsen number is 0.00129 due to local velocity gradients reaching slip regime although lift coefficient is higher with the Boltzmann ES-BGK solutions. In the second part, the feasibility of using thermal transpiration for drag reduction is studied. Initial study in drag reduction includes an application of a thermal gradient at the upper surface of a NACA 0012 airfoil near trailing edge at a 12-degree angle of attack and 5 Pa pressure. It was seen that drag is reduced by 4 percent and vortex shedding frequency is reduced due to asymmetry introduced in the flow due to temperature gradient causing reverse flow due to thermal transpiration phenomena.

  10. Management of Tooth Surface Loss of Varying Etiology with Full Mouth all Ceramic Computer-Aided Design/Computer-Aided Manufacture Restorations.

    Science.gov (United States)

    Bettie, Nirmal Famila; Kandasamy, Saravanan; Prasad, Venkat

    2017-11-01

    The anatomical form of a tooth can undergo changes leading to loss of tooth form. The loss of tooth surface can be due to varying etiology. Dental caries, attrition, abrasion, erosion, involving any surface of the tooth can lead to loss of tooth structure. The rate of tooth destruction may proceed to such an extent that the esthetics, function and comfort may be lost. The role of a practioner lies in identification and screening of such case and motivate for oral rehabilitation that includes habit cessation. Computerized dentistry has raised the bar as far as esthetic restorations are concerned. Demanding esthetics has made zirconia crowns as the material of choice in full mouth rehabilitations. However, appropriate treatment planning with scientific evidence and a recommended treatment protocol with careful implementation results in successful restorations and satisfied patients.

  11. Microblowing Technique for Drag Reduction, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA seeks to develop technologies for aircraft drag reduction which contribute to improved aerodynamic efficiency in support of national goals for reducing fuel...

  12. The physics of orographic gravity wave drag

    Directory of Open Access Journals (Sweden)

    Miguel A C Teixeira

    2014-07-01

    Full Text Available The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.

  13. Satellite Formation Control Using Atmospheric Drag

    National Research Council Canada - National Science Library

    Hajovsky, Blake B

    2007-01-01

    This study investigates the use of a linear quadratic terminal controller to reconfigure satellite formations using atmospheric drag actuated control while minimizing the loss of energy of the formation...

  14. Investigation of surface roughness and tool wear length with varying combination of depth of cut and feed rate of Aluminium alloy and P20 steel machining

    International Nuclear Information System (INIS)

    Varmma Suparmaniam, Madan; Yusoff, Ahmad Razlan

    2016-01-01

    High-speed milling technique is often used in many industries to boost productivity of the manufacturing of high-technology components. The occurrence of wear highly limits the efficiency and accuracy of high- speed milling operations. In this paper, analysis of high-speed milling process parameters such as material removal rate, cutting speed, feed rate and depth of cut carried out by implemented to conventional milling. This experiment investigate the effects of varying combination of depth of cut and feed rate to tool wear rate length using metallurgical microscope and surface roughness using portable surface roughness tester after end milling of Aluminium and P20 steel. Results showed that feed rate significantly influences the surface roughness value while depth of cut does not as the surface roughness value keep increasing with the increase of feed rate and decreasing depth of cut. Whereas, tool wear rate almost remain unchanged indicates that material removal rate strongly contribute the wear rate. It believe that with no significant tool wear rate the results of this experiment are useful by showing that HSM technique is possible to be applied in conventional machine with extra benefits of high productivity, eliminating semi-finishing operation and reducing tool load for finishing. (paper)

  15. Measurement of drag and its cancellation

    Energy Technology Data Exchange (ETDEWEB)

    DeBra, D B; Conklin, J W, E-mail: johnwc@stanford.edu [Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305-4035 (United States)

    2011-05-07

    The design of drag cancellation missions of the future will take advantage of the technology experience of the past. The importance of data for modeling of the atmosphere led to at least six types of measurement: (a) balloon flights, (b) missile-launched falling spheres, (c) the 'cannonball' satellites of Ken Champion with accelerometers for low-altitude drag measurement (late 1960s and early 1970s), (d) the Agena flight of LOGACS (1967), a Bell MESA accelerometer mounted on a rotating platform to spectrally shift low-frequency errors in the accelerometer, (e) a series of French low-level accelerometers (e.g. CACTUS, 1975), and (f) correction of differential accelerations for drag errors in measuring gravity gradient on a pair of satellites (GRACE, 2002). The independent invention of the drag-free satellite concept by Pugh and Lange (1964) to cancel external disturbance added implementation opportunities. Its first flight application was for ephemeris prediction improvement with the DISCOS flight (1972)-still the only extended free test mass flight. Then successful flights for reduced disturbance environment for science measurement with gyros on GP-B (2004) and for improved accuracy in geodesy and ocean studies (GOCE, 2009) each using accelerometer measurements to control the drag-canceling thrust. LISA, DECIGO, BBO and other gravity wave-measuring satellite systems will push the cancellation of drag to new levels.

  16. Measurement of drag and its cancellation

    International Nuclear Information System (INIS)

    DeBra, D B; Conklin, J W

    2011-01-01

    The design of drag cancellation missions of the future will take advantage of the technology experience of the past. The importance of data for modeling of the atmosphere led to at least six types of measurement: (a) balloon flights, (b) missile-launched falling spheres, (c) the 'cannonball' satellites of Ken Champion with accelerometers for low-altitude drag measurement (late 1960s and early 1970s), (d) the Agena flight of LOGACS (1967), a Bell MESA accelerometer mounted on a rotating platform to spectrally shift low-frequency errors in the accelerometer, (e) a series of French low-level accelerometers (e.g. CACTUS, 1975), and (f) correction of differential accelerations for drag errors in measuring gravity gradient on a pair of satellites (GRACE, 2002). The independent invention of the drag-free satellite concept by Pugh and Lange (1964) to cancel external disturbance added implementation opportunities. Its first flight application was for ephemeris prediction improvement with the DISCOS flight (1972)-still the only extended free test mass flight. Then successful flights for reduced disturbance environment for science measurement with gyros on GP-B (2004) and for improved accuracy in geodesy and ocean studies (GOCE, 2009) each using accelerometer measurements to control the drag-canceling thrust. LISA, DECIGO, BBO and other gravity wave-measuring satellite systems will push the cancellation of drag to new levels.

  17. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  18. Correlation of cell surface proteins of distinct Beauveria bassiana cell types and adaption to varied environment and interaction with the host insect.

    Science.gov (United States)

    Yang, Zhi; Jiang, Hongyan; Zhao, Xin; Lu, Zhuoyue; Luo, Zhibing; Li, Xuebing; Zhao, Jing; Zhang, Yongjun

    2017-02-01

    The insect fungal pathogen Beauveria bassiana produces a number of distinct cell types that include aerial conidia, blastospores and haemolymph-derived cells, termed hyphal bodies, to adapt varied environment niches and within the host insect. These cells display distinct biochemical properties and surface structures, and a highly ordered outermost brush-like structure uniquely present on hyphal bodies, but not on any in vitro cells. Here, we found that the outermost structure on the hyphal bodies mainly consisted of proteins associated to structural wall components in that most of it could be removed by dithiothreitol (DTT) or proteinase K. DTT-treatment also caused delayed germination, decreased tolerance to ultraviolet irradiation and virulence of conidia or blastospores, with decreased adherence and alternated carbohydrate epitopes, suggesting involvement in fungal development, stress responses and virulence. To characterize these cell surface molecules, proteins were released from the living cells using DTT, and identified and quantitated using label-free quantitative mass spectrometry. Thereafter, a series of bioinformatics programs were used to predict cell surface-associated proteins (CSAPs), and 96, 166 and 54 CSAPs were predicted from the identified protein pools of conidia, blastospores and hyphal bodies, respectively, which were involved in utilization of carbohydrate, nitrogen, and lipid, detoxification, pathogen-host interaction, and likely other cellular processes. Thirteen, sixty-nine and six CSAPs were exclusive in conidia, blastospores and hyphal bodies, respectively, which were verified by eGFP-tagged proteins at their N-terminus. Our data provide a crucial cue to understand mechanism of B. bassiana to adapt to varied environment and interaction with insect host. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Pengaruh Variasi Jarak Penghalang Segitiga di depan Silinder Arah Vertikal terhadap Drag

    Directory of Open Access Journals (Sweden)

    I Putu Gede Gunawan Tista

    2018-04-01

    manipulating the field of fluid flow. The stream manipulation can be done passively, for example, by attaching a fin at the bluff body, by making a hole on the bluff body, enhancing spiral at the bluff body and placing a smaller barrier, on front of bluff body. The experiment was done by placing a triangle rod on front of the cylinder. In the present research the experiment was conducted in a wind tunnel, which consisted of a blower, a pitot pipe, a manometer, a main cylinder pipe, and a triangle rod. The triangle was variation vertical positioned at y = 0 mm, y = 5 mm, y = 10 mm, y = 15 mm. while the position of barrier in the horizontal direction at 60 mm distance towards the cylinder with the triangle side length was 8 mm. Pressure distribution was measured on 36 points at the cylinder surface with an interval of 100. The measured data was the pressure of cylinder surface, the static pressure, and the airflow speed.The research results showed that the triangle rod could decrease the drag of the main cylinder. The Coefficient drag for the cylinder without the triangle rod was 0, 1276 while the variation of barrier in the vertical direction obtained the biggest decrease of the coefficient of the drag with the triangle rod happened at position y = 0, which was 0, 0186. The magnitude of the drag reduction in this position was 85, 45% compared without barrier.

  20. The influence of longitudinal micro grooves on hydrodynamic friction drag of a plate

    Directory of Open Access Journals (Sweden)

    В.І. Коробов

    2005-01-01

    Full Text Available  Weight measurements in a water tunnel have shown that there exist a range of parameters of longitudinally fine-ribbed surface such that turbulent friction in flow over the surface is less than that over a smooth flat plane of the same projected area. Maximum drag reduction due to ribbing is up to 16%.

  1. Identification of a time-varying point source in a system of two coupled linear diffusion-advection- reaction equations: application to surface water pollution

    International Nuclear Information System (INIS)

    Hamdi, Adel

    2009-01-01

    This paper deals with the identification of a point source (localization of its position and recovering the history of its time-varying intensity function) that constitutes the right-hand side of the first equation in a system of two coupled 1D linear transport equations. Assuming that the source intensity function vanishes before reaching the final control time, we prove the identifiability of the sought point source from recording the state relative to the second coupled transport equation at two observation points framing the source region. Note that at least one of the two observation points should be strategic. We establish an identification method that uses these records to identify the source position as the root of a continuous and strictly monotonic function. Whereas the source intensity function is recovered using a recursive formula without any need of an iterative process. Some numerical experiments on a variant of the surface water pollution BOD–OD coupled model are presented

  2. Drag Reduction by Laminar Flow Control

    Directory of Open Access Journals (Sweden)

    Nils Beck

    2018-01-01

    Full Text Available The Energy System Transition in Aviation research project of the Aeronautics Research Center Niedersachsen (NFL searches for potentially game-changing technologies to reduce the carbon footprint of aviation by promoting and enabling new propulsion and drag reduction technologies. The greatest potential for aerodynamic drag reduction is seen in laminar flow control by boundary layer suction. While most of the research so far has been on partial laminarization by application of Natural Laminar Flow (NLF and Hybrid Laminar Flow Control (HLFC to wings, complete laminarization of wings, tails and fuselages promises much higher gains. The potential drag reduction and suction requirements, including the necessary compressor power, are calculated on component level using a flow solver with viscid/inviscid coupling and a 3D Reynolds-Averaged Navier-Stokes (RANS solver. The effect on total aircraft drag is estimated for a state-of-the-art mid-range aircraft configuration using preliminary aircraft design methods, showing that total cruise drag can be halved compared to today’s turbulent aircraft.

  3. UO2 Grain Growth: Developing Phase Field Models for Pore Dragging, Solute Dragging and Anisotropic Grain Boundary Energies

    International Nuclear Information System (INIS)

    Ahmed, K.; Tonks, M.; Zhang, Y.; Biner, B.

    2016-01-01

    A detailed phase field model for the effect of pore drag on grain growth kinetics was implemented in MARMOT. The model takes into consideration both the curvature-driven grain boundary motion and pore migration by surface diffusion. As such, the model accounts for the interaction between pore and grain boundary kinetics, which tends to retard the grain growth process. Our 2D and 3D simulations demonstrate that the model capture all possible pore-grain boundary interactions proposed in theoretical models. For high enough surface mobility, the pores move along with the migrating boundary as a quasi-rigid-body, albeit hindering its migration rate compared to the pore-free case. For less mobile pores, the migrating boundary can separate from the pores. For the pore-controlled grain growth kinetics, the model predicts a strong dependence of the growth rate on the number of pores, pore size, and surface diffusivity in agreement with theroretical models. An evolution equation for the grain size that includes these parameters was derived and showed to agree well with numerical solution. It shows a smooth transition from boundary-controlled kinetics to pore-controlled kinetics as the surface diffusivity decreases or the number of pores or their size increases. This equation can be utilized in BISON to give accurate estimate for the grain size evolution. This will be accomplished in the near future. The effect of solute drag and anisotropy of grain boundary on grain growth will be investigated in future studies.

  4. Aerodynamic drag of modern soccer balls.

    Science.gov (United States)

    Asai, Takeshi; Seo, Kazuya

    2013-12-01

    Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls have not yet been verified. Now, the Adidas Tango 12, having 32 panels, has been developed for use at tournaments; therefore, it is necessary to understand its aerodynamic characteristics. Through a wind tunnel test and ball trajectory simulations, this study shows that the aerodynamic resistance of the new 32-panel soccer ball is larger in the high-speed region and lower in the middle-speed region than that of the previous 14- and 8-panel balls. The critical Reynolds number of the Roteiro, Teamgeist II, Jabulani, and Tango 12 was ~2.2 × 10(5) (drag coefficient, C d  ≈ 0.12), ~2.8 × 10(5) (C d  ≈ 0.13), ~3.3 × 10(5) (C d  ≈ 0.13), and ~2.4 × 10(5) (C d  ≈ 0.15), respectively. The flight trajectory simulation suggested that the Tango 12, one of the newest soccer balls, has less air resistance in the medium-speed region than the Jabulani and can thus easily acquire large initial velocity in this region. It is considered that the critical Reynolds number of a soccer ball, as considered within the scope of this experiment, depends on the extended total distance of the panel bonds rather than the small designs on the panel surfaces.

  5. Drag Reduction trough Special paints Coated on the hull

    OpenAIRE

    Izaguirre Alza, Patricia; Pérez Rojas, Luis; Núñez Basáñez, José Fernando

    2010-01-01

    The economic recession, the environmental impact as well as the continuous fossil fuel consumption encourage actions that focus on saving energy. In the vessels sector, one of the main objectives has always been to reach a hydro-dynamically optimum hull which gave the desired speed with minimum power. Hydrodynamic drag is basically divided into two parts: a) the friction between the water and the hull, and b) the wave generation due to the free-surface air-water. Presented in this paper...

  6. Geodetic precession or dragging of inertial frames?

    International Nuclear Information System (INIS)

    Ashby, N.; Shahid-Saless, B.

    1990-01-01

    In metric theories of gravity the principle of general covariance allows one to describe phenomena by means of any convenient choice of coordinate system. In this paper it is shown that in an appropriately chosen coordinate system, geodetic precession of a gyroscope orbiting a spherically symmetric, spinning mass can be recast as a Lense-Thirring frame-dragging effect without invoking spatial curvature. The origin of this reference frame moves around the source but the frame axes point in fixed directions. The drag can be interpreted to arise from the orbital angular momentum of the source around the origin of the reference frame. In this reference frame the effects of geodetic precession and Lense-Thirring drag due to intrinsic angular momentum of the source have the same origin, namely, gravitomagnetism

  7. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21...

  8. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling......) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multi-electron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters...... on Coulomb drag in CQD systems....

  9. The effect of sodium hydroxide on drag reduction using banana peel as a drag reduction agent

    Science.gov (United States)

    Kaur, H.; Jaafar, A.

    2018-02-01

    Drag reduction is observed as reduced frictional pressure losses under turbulent flow conditions. Drag reduction agent such as polymers can be introduced to increase the flowrate of water flowing and reduce the water accumulation in the system. Currently used polymers are synthetic polymers, which will harm our environment in excessive use of accumulation. A more environmentally-friendly drag reduction agent such as the polymer derived from natural sources or biopolymer, is then required for such purpose. As opposed to the synthetic polymers, the potential of biopolymers as drag reduction agents, especially those derived from a local plant source are not extensively explored. The drag reduction of a polymer produced from a local plant source within the turbulent regime was explored and assessed in this study using a rheometer, where a reduced a torque produced was perceived as a reduction of drag. This method proposed is less time consuming and is more practical which is producing carboxymethylcellulose from the banana peel. The cellulose powder was converted to carboxymethylcellulose (CMC) by etherification process. The carboxymethylation reaction during the synthesizing process was then optimized against the reaction temperature, reaction time and solubility. The biopolymers were then rheologically characterized, where the viscoelastic effects and the normal stresses produced by these biopolymers were utilized to further relate and explain the drag reduction phenomena. The research was structured to focus on producing the biopolymer and to assess the drag reduction ability of the biopolymer produced. The rheological behavior of the biopolymers was then analyzed based on the ability of reducing drag. The results are intended to expand the currently extremely limited experimental database. Based on the results, the biopolymer works as a good DRA.

  10. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water

    KAUST Repository

    Jetly, Aditya

    2018-01-22

    We investigate the effect of thin air layers naturally sustained on superhydrophobic surfaces on the terminal velocity and drag force of metallic spheres free falling in water. The surface of 20 mm to 60 mm steel or tungsten-carbide spheres is rendered superhydrophobic by a simple coating process that uses commercially available hydrophobic agent. By comparing the free fall of unmodified spheres and superhydrophobic spheres in a 2.5 meters tall water tank, It is demonstrated that even a very thin air layer (~ 1 – 2 μm) that covers the freshly dipped superhydrophobic sphere, can reduce the drag force on the spheres by up to 80 %, at Reynolds numbers 105 - 3×105 , owing to an early drag crisis transition. This study complements prior investigations on the drag reduction efficiency of model gas layers sustained on heated metal spheres falling in liquid by the Leidenfrost effect. The drag reduction effects are expected to have significant implication for the development of sustainable air-layer-based energy saving technologies.

  11. SU-E-T-196: Comparative Analysis of Surface Dose Measurements Using MOSFET Detector and Dose Predicted by Eclipse - AAA with Varying Dose Calculation Grid Size

    Energy Technology Data Exchange (ETDEWEB)

    Badkul, R; Nejaiman, S; Pokhrel, D; Jiang, H; Kumar, P [University of Kansas Medical Center, Kansas City, KS (United States)

    2015-06-15

    Purpose: Skin dose can be the limiting factor and fairly common reason to interrupt the treatment, especially for treating head-and-neck with Intensity-modulated-radiation-therapy(IMRT) or Volumetrically-modulated - arc-therapy (VMAT) and breast with tangentially-directed-beams. Aim of this study was to investigate accuracy of near-surface dose predicted by Eclipse treatment-planning-system (TPS) using Anisotropic-Analytic Algorithm (AAA)with varying calculation grid-size and comparing with metal-oxide-semiconductor-field-effect-transistors(MOSFETs)measurements for a range of clinical-conditions (open-field,dynamic-wedge, physical-wedge, IMRT,VMAT). Methods: QUASAR™-Body-Phantom was used in this study with oval curved-surfaces to mimic breast, chest wall and head-and-neck sites.A CT-scan was obtained with five radio-opaque markers(ROM) placed on the surface of phantom to mimic the range of incident angles for measurements and dose prediction using 2mm slice thickness.At each ROM, small structure(1mmx2mm) were contoured to obtain mean-doses from TPS.Calculations were performed for open-field,dynamic-wedge,physical-wedge,IMRT and VMAT using Varian-21EX,6&15MV photons using twogrid-sizes:2.5mm and 1mm.Calibration checks were performed to ensure that MOSFETs response were within ±5%.Surface-doses were measured at five locations and compared with TPS calculations. Results: For 6MV: 2.5mm grid-size,mean calculated doses(MCD)were higher by 10%(±7.6),10%(±7.6),20%(±8.5),40%(±7.5),30%(±6.9) and for 1mm grid-size MCD were higher by 0%(±5.7),0%(±4.2),0%(±5.5),1.2%(±5.0),1.1% (±7.8) for open-field,dynamic-wedge,physical-wedge,IMRT,VMAT respectively.For 15MV: 2.5mm grid-size,MCD were higher by 30%(±14.6),30%(±14.6),30%(±14.0),40%(±11.0),30%(±3.5)and for 1mm grid-size MCD were higher by 10% (±10.6), 10%(±9.8),10%(±8.0),30%(±7.8),10%(±3.8) for open-field, dynamic-wedge, physical-wedge, IMRT, VMAT respectively.For 6MV, 86% and 56% of all measured values

  12. Magnetic Viscous Drag for Friction Labs

    Science.gov (United States)

    Gaffney, Chris; Catching, Adam

    2016-01-01

    The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…

  13. Judicial civil procedure dragging out in Kosovo

    Directory of Open Access Journals (Sweden)

    Rrustem Qehaja

    2016-03-01

    Full Text Available This article tends to deal with one of the most worrying issues in the judicial system of Kosovo the problem of judicial civil procedure dragging out. The article analyses the reasons of these dragging outs of the judicial civil procedure focusing on the context of one of the basic procedural principles in civil procedure-the principle of economy or efficiency in the courts. Dragging out of civil procedure in Kosovo has put in question not only the basic principles of civil procedure, but it also challenges the general principles related to human rights and freedoms sanctioned not only by the highest legal act of the country, but also with international treaties. The article tends to give a reflection to the most important reasons that effect and influence in these dragging outs of civil procedure, as well as, at the same time aims to give the necessary alternatives to pass through them by identifying dilemmas within the judicial practice. As a result, the motives of this scientific paper are exactly focused at the same time on identifying the dilemmas, as well as presenting ideas, to overstep them, including the judicial practice of the European Court of Human Rights on Article 6 of the European Convention on Human Rights, by which it is given the possibility to offering people efficient and within a reasonable time legal protection of their rights before national courts. For these reasons, the paper elaborates this issue based on both, the legal theory and judicial practice.

  14. Robust Synchronization of Fractional-Order Chaotic Systems at a Pre-Specified Time Using Sliding Mode Controller with Time-Varying Switching Surfaces

    International Nuclear Information System (INIS)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-01-01

    A main problem associated with the synchronization of two chaotic systems is that the time in which complete synchronization will occur is not specified. Synchronization time is either infinitely large or is finite but only its upper bound is known and this bound depends on the systems' initial conditions. In this paper we propose a method for synchronizing of two chaotic systems precisely at a time which we want. To this end, time-varying switching surfaces sliding mode control is used and the control law based on Lyapunov stability theorem is derived which is able to synchronize two fractional-order chaotic systems precisely at a pre specified time without concerning about their initial conditions. Moreover, by eliminating the reaching phase in the proposed synchronization scheme, robustness against existence of uncertainties and exogenous disturbances is obtained. Because of the existence of fractional integral of the sign function instead of the sign function in the control equation, the necessity for infinitely fast switching be obviated in this method. To show the effectiveness of the proposed method the illustrative examples under different situations are provided and the simulation results are reported.

  15. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.

    Science.gov (United States)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-05-13

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.

  16. Significance of relative velocity in drag force or drag power estimation for a tethered float

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Sastry, J.S.

    There is difference in opinion regarding the use of relative velocity instead of particle velocity alone in the estimation of drag force or power. In the present study, a tethered spherical float which undergoes oscillatory motion in regular waves...

  17. Drag reduction in silica nanochannels induced by graphitic wall coatings

    Science.gov (United States)

    Wagemann, Enrique; Walther, J. H.; Zambrano, Harvey A.

    2017-11-01

    Transport of water in hydrophilic nanopores is of significant technological and scientific interest. Water flow through hydrophilic nanochannels is known to experience enormous hydraulic resistance. Therefore, drag reduction is essential for the development of highly efficient nanofluidic devices. In this work, we propose the use of graphitic materials as wall coatings in hydrophilic silica nanopores. Specifically, by conducting atomistic simulations, we investigate the flow inside slit and cylindrical silica channels with walls coated with graphene (GE) layers and carbon nanotubes (CNTs), respectively. We develop realistic force fields to simulate the systems of interest and systematically, compare flow rates in coated and uncoated nanochannels under different pressure gradients. Moreover, we assess the effect that GE and CNT translucencies to wettability have on water hydrodynamics in the nanochannels. The influence of channel size is investigated by systematically varying channel heights and nanopore diameters. In particular, we present the computed water density and velocity profiles, volumetric flow rates, slip lengths and flow enhancements, to clearly demonstrate the drag reduction capabilities of graphitic wall coatings. We wish to thank partial funding from CRHIAM Conicyt/ Fondap Project 15130015 and computational support from DTU and NLHPC (Chile).

  18. A diagnostic model to estimate winds and small-scale drag from Mars Observer PMIRR data

    Science.gov (United States)

    Barnes, J. R.

    1993-01-01

    Theoretical and modeling studies indicate that small-scale drag due to breaking gravity waves is likely to be of considerable importance for the circulation in the middle atmospheric region (approximately 40-100 km altitude) on Mars. Recent earth-based spectroscopic observations have provided evidence for the existence of circulation features, in particular, a warm winter polar region, associated with gravity wave drag. Since the Mars Observer PMIRR experiment will obtain temperature profiles extending from the surface up to about 80 km altitude, it will be extensively sampling middle atmospheric regions in which gravity wave drag may play a dominant role. Estimating the drag then becomes crucial to the estimation of the atmospheric winds from the PMIRR-observed temperatures. An interative diagnostic model based upon one previously developed and tested with earth satellite temperature data will be applied to the PMIRR measurements to produce estimates of the small-scale zonal drag and three-dimensional wind fields in the Mars middle atmosphere. This model is based on the primitive equations, and can allow for time dependence (the time tendencies used may be based upon those computed in a Fast Fourier Mapping procedure). The small-scale zonal drag is estimated as the residual in the zonal momentum equation; the horizontal winds having first been estimated from the meridional momentum equation and the continuity equation. The scheme estimates the vertical motions from the thermodynamic equation, and thus needs estimates of the diabatic heating based upon the observed temperatures. The latter will be generated using a radiative model. It is hoped that the diagnostic scheme will be able to produce good estimates of the zonal gravity wave drag in the Mars middle atmosphere, estimates that can then be used in other diagnostic or assimilation efforts, as well as more theoretical studies.

  19. Drag force, drag torque, and Magnus force coefficients of rotating spherical particle moving in fluid

    Czech Academy of Sciences Publication Activity Database

    Lukerchenko, Nikolay; Kvurt, Y.; Keita, Ibrahima; Chára, Zdeněk; Vlasák, Pavel

    2012-01-01

    Roč. 30, č. 1 (2012), s. 55-67 ISSN 0272-6351 R&D Projects: GA AV ČR IAA200600603; GA ČR GA103/09/1718 Institutional research plan: CEZ:AV0Z20600510 Keywords : drag force * drag torque * Magnus force * Reynolds number * rotational Reynolds number Subject RIV: BK - Fluid Dynamics Impact factor: 0.435, year: 2012

  20. A unified viscous theory of lift and drag of 2-D thin airfoils and 3-D thin wings

    Science.gov (United States)

    Yates, John E.

    1991-01-01

    A unified viscous theory of 2-D thin airfoils and 3-D thin wings is developed with numerical examples. The viscous theory of the load distribution is unique and tends to the classical inviscid result with Kutta condition in the high Reynolds number limit. A new theory of 2-D section induced drag is introduced with specific applications to three cases of interest: (1) constant angle of attack; (2) parabolic camber; and (3) a flapped airfoil. The first case is also extended to a profiled leading edge foil. The well-known drag due to absence of leading edge suction is derived from the viscous theory. It is independent of Reynolds number for zero thickness and varies inversely with the square root of the Reynolds number based on the leading edge radius for profiled sections. The role of turbulence in the section induced drag problem is discussed. A theory of minimum section induced drag is derived and applied. For low Reynolds number the minimum drag load tends to the constant angle of attack solution and for high Reynolds number to an approximation of the parabolic camber solution. The parabolic camber section induced drag is about 4 percent greater than the ideal minimum at high Reynolds number. Two new concepts, the viscous induced drag angle and the viscous induced separation potential are introduced. The separation potential is calculated for three 2-D cases and for a 3-D rectangular wing. The potential is calculated with input from a standard doublet lattice wing code without recourse to any boundary layer calculations. Separation is indicated in regions where it is observed experimentally. The classical induced drag is recovered in the 3-D high Reynolds number limit with an additional contribution that is Reynold number dependent. The 3-D viscous theory of minimum induced drag yields an equation for the optimal spanwise and chordwise load distribution. The design of optimal wing tip planforms and camber distributions is possible with the viscous 3-D wing theory.

  1. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    Science.gov (United States)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  2. Ocean's response to Hurricane Frances and its implications for drag coefficient parameterization at high wind speeds

    KAUST Repository

    Zedler, S. E.

    2009-04-25

    The drag coefficient parameterization of wind stress is investigated for tropical storm conditions using model sensitivity studies. The Massachusetts Institute of Technology (MIT) Ocean General Circulation Model was run in a regional setting with realistic stratification and forcing fields representing Hurricane Frances, which in early September 2004 passed east of the Caribbean Leeward Island chain. The model was forced with a NOAA-HWIND wind speed product after converting it to wind stress using four different drag coefficient parameterizations. Respective model results were tested against in situ measurements of temperature profiles and velocity, available from an array of 22 surface drifters and 12 subsurface floats. Changing the drag coefficient parameterization from one that saturated at a value of 2.3 × 10 -3 to a constant drag coefficient of 1.2 × 10-3 reduced the standard deviation difference between the simulated minus the measured sea surface temperature change from 0.8°C to 0.3°C. Additionally, the standard deviation in the difference between simulated minus measured high pass filtered 15-m current speed reduced from 15 cm/s to 5 cm/s. The maximum difference in sea surface temperature response when two different turbulent mixing parameterizations were implemented was 0.3°C, i.e., only 11% of the maximum change of sea surface temperature caused by the storm. Copyright 2009 by the American Geophysical Union.

  3. ISM-induced erosion and gas-dynamical drag in the Oort Cloud

    International Nuclear Information System (INIS)

    Stern, S.A.

    1990-01-01

    The model presently used to examine the physical interactions between the ISM and the Oort Cloud can account for sputtering, sticking, and grain-impact erosion, as well as gas drag, by envisioning the ISM as a multiphase medium with distinct atomic and molecular cloud-phase regimes and coronal and warm/ambient gas-phase regimes. Erosion, which reduces the effectiveness of the thermal and radiation-damage processes acting on cometary surfaces in the Oort cloud, is found to be the dominant ISM interaction; ISM drag effects were found to efficiently remove submicron particles from the Cloud. 67 refs

  4. ISM-induced erosion and gas-dynamical drag in the Oort Cloud

    Science.gov (United States)

    Stern, S. Alan

    1990-01-01

    The model presently used to examine the physical interactions between the ISM and the Oort Cloud can account for sputtering, sticking, and grain-impact erosion, as well as gas drag, by envisioning the ISM as a multiphase medium with distinct atomic and molecular cloud-phase regimes and coronal and warm/ambient gas-phase regimes. Erosion, which reduces the effectiveness of the thermal and radiation-damage processes acting on cometary surfaces in the Oort cloud, is found to be the dominant ISM interaction; ISM drag effects were found to efficiently remove submicron particles from the Cloud.

  5. Wake-Model Effects on Induced Drag Prediction of Staggered Boxwings

    Directory of Open Access Journals (Sweden)

    Julian Schirra

    2018-01-01

    Full Text Available For staggered boxwings the predictions of induced drag that rely on common potential-flow methods can be of limited accuracy. For example, linear, freestream-fixed wake models cannot resolve effects related to wake deflection and roll-up, which can have significant affects on the induced drag projection of these systems. The present work investigates the principle impact of wake modelling on the accuracy of induced drag prediction of boxwings with stagger. The study compares induced drag predictions of a higher-order potential-flow method that uses fixed and relaxed-wake models, and of an Euler-flow method. Positive-staggered systems at positive angles of attack are found to be particularly prone to higher-order wake effects due to vertical contraction of wakes trajectories, which results in smaller effective height-to-span ratios than compared with negative stagger and thus closer interactions between trailing wakes and lifting surfaces. Therefore, when trying to predict induced drag of positive staggered boxwings, only a potential-flow method with a fully relaxed-wake model will provide the high-degree of accuracy that rivals that of an Euler method while being computationally significantly more efficient.

  6. Experimental and Numerical Study of Water Entry Supercavity Influenced by Turbulent Drag-Reducing Additives

    Directory of Open Access Journals (Sweden)

    Chen-Xing Jiang

    2014-04-01

    Full Text Available The configurational and dynamic characteristics of water entry supercavities influenced by turbulent drag-reducing additives were studied through supercavitating projectile approach, experimentally and numerically. The projectile was projected vertically into water and aqueous solution of CTAC with weight concentrations of 100, 500, and 1000 ppm, respectively, using a pneumatic nail gun. The trajectories of the projectile and the supercavity configuration were recorded by a high-speed CCD camera. Besides, water entry supercavities in water and CTAC solution were numerically simulated based on unsteady RANS scheme, together with application of VOF multiphase model. The Cross viscosity model was adopted to represent the fluid property of CTAC solution. It was obtained that the numerical simulation results are in consistence with experimental data. Numerical and experimental results all show that the length and diameter of supercavity in drag-reducing solution are larger than those in water, and the drag coefficient is smaller than that in water; the maintaining time of supercavity is longer in solution as well. The surface tension plays an important role in maintaining the cavity. Turbulent drag-reducing additives have the potential in enhancement of supercavitation and drag reduction.

  7. Hydrodynamic flows of non-Fermi liquids: Magnetotransport and bilayer drag

    Science.gov (United States)

    Patel, Aavishkar A.; Davison, Richard A.; Levchenko, Alex

    2017-11-01

    We consider a hydrodynamic description of transport for generic two-dimensional electron systems that lack Galilean invariance and do not fall into the category of Fermi liquids. We study magnetoresistance and show that it is governed only by the electronic viscosity provided that the wavelength of the underlying disorder potential is large compared to the microscopic equilibration length. We also derive the Coulomb drag transresistance for double-layer non-Fermi-liquid systems in the hydrodynamic regime. As an example, we consider frictional drag between two quantum Hall states with half-filled lowest Landau levels, each described by a Fermi surface of composite fermions coupled to a U (1 ) gauge field. We contrast our results to prior calculations of drag of Chern-Simons composite particles and place our findings in the context of available experimental data.

  8. Biomimetic structures for fluid drag reduction in laminar and turbulent flows

    International Nuclear Information System (INIS)

    Jung, Yong Chae; Bhushan, Bharat

    2010-01-01

    Biomimetics allows one to mimic nature to develop materials and devices of commercial interest for engineers. Drag reduction in fluid flow is one of the examples found in nature. In this study, nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated. Drag reduction efficiency studies on the surfaces were systematically carried out using water flow. An experimental flow channel was used to measure the pressure drop in laminar and turbulent flows, and the trends were explained in terms of the measured and predicted values by using fluid dynamics models. The slip length for various surfaces in laminar flow was also investigated based on the measured pressure drop. For comparison, the pressure drop for various surfaces was also measured using air flow.

  9. Time-varying BRDFs.

    Science.gov (United States)

    Sun, Bo; Sunkavalli, Kalyan; Ramamoorthi, Ravi; Belhumeur, Peter N; Nayar, Shree K

    2007-01-01

    The properties of virtually all real-world materials change with time, causing their bidirectional reflectance distribution functions (BRDFs) to be time varying. However, none of the existing BRDF models and databases take time variation into consideration; they represent the appearance of a material at a single time instance. In this paper, we address the acquisition, analysis, modeling, and rendering of a wide range of time-varying BRDFs (TVBRDFs). We have developed an acquisition system that is capable of sampling a material's BRDF at multiple time instances, with each time sample acquired within 36 sec. We have used this acquisition system to measure the BRDFs of a wide range of time-varying phenomena, which include the drying of various types of paints (watercolor, spray, and oil), the drying of wet rough surfaces (cement, plaster, and fabrics), the accumulation of dusts (household and joint compound) on surfaces, and the melting of materials (chocolate). Analytic BRDF functions are fit to these measurements and the model parameters' variations with time are analyzed. Each category exhibits interesting and sometimes nonintuitive parameter trends. These parameter trends are then used to develop analytic TVBRDF models. The analytic TVBRDF models enable us to apply effects such as paint drying and dust accumulation to arbitrary surfaces and novel materials.

  10. Aerodynamic drag reduction by vertical splitter plates

    Science.gov (United States)

    Gilliéron, Patrick; Kourta, Azeddine

    2010-01-01

    The capacity of vertical splitter plates placed at the front or the rear of a simplified car geometry to reduce drag, with and without skew angle, is investigated for Reynolds numbers between 1.0 × 106 and 1.6 × 106. The geometry used is a simplified geometry to represent estate-type vehicles, for the rear section, and MPV-type vehicle. Drag reductions of nearly 28% were obtained for a zero skew angle with splitter plates placed at the front of models of MPV or utility vehicles. The results demonstrate the advantage of adapting the position and orientation of the splitter plates in the presence of a lateral wind. All these results confirm the advantage of this type of solution, and suggest that this expertise should be used in the automotive field to reduce consumption and improve dynamic stability of road vehicles.

  11. Aerodynamic drag reduction by vertical splitter plates

    Energy Technology Data Exchange (ETDEWEB)

    Gillieron, Patrick [Renault Group, Research Division, Fluid Mechanics and Aerodynamics, Guyancourt (France); Kourta, Azeddine [Polytech' Orleans, Institut PRISME, ESA, Orleans (France)

    2010-01-15

    The capacity of vertical splitter plates placed at the front or the rear of a simplified car geometry to reduce drag, with and without skew angle, is investigated for Reynolds numbers between 1.0 x 10{sup 6} and 1.6 x 10{sup 6}. The geometry used is a simplified geometry to represent estate-type vehicles, for the rear section, and MPV-type vehicle. Drag reductions of nearly 28% were obtained for a zero skew angle with splitter plates placed at the front of models of MPV or utility vehicles. The results demonstrate the advantage of adapting the position and orientation of the splitter plates in the presence of a lateral wind. All these results confirm the advantage of this type of solution, and suggest that this expertise should be used in the automotive field to reduce consumption and improve dynamic stability of road vehicles. (orig.)

  12. Bluff-body drag reduction using a deflector

    Energy Technology Data Exchange (ETDEWEB)

    Fourrie, Gregoire; Keirsbulck, Laurent; Labraga, Larbi [Univ Lille Nord de France, Lille (France); UVHC, TEMPO, Valenciennes (France); Gillieron, Patrick [Fluid Mechanics and Aerodynamics, Renault Group, Research Division, Guyancourt (France)

    2011-02-15

    A passive flow control on a generic car model was experimentally studied. This control consists of a deflector placed on the upper edge of the model rear window. The study was carried out in a wind tunnel at Reynolds numbers based on the model height of 3.1 x 10{sup 5} and 7.7 x 10{sup 5}. The flow was investigated via standard and stereoscopic particle image velocimetry, Kiel pressure probes and surface flow visualization. The aerodynamic drag was measured using an external balance and calculated using a wake survey method. Drag reductions up to 9% were obtained depending on the deflector angle. The deflector increases the separated region on the rear window. The results show that when this separated region is wide enough, it disrupts the development of the counter-rotating longitudinal vortices appearing on the lateral edges of the rear window. The current study suggests that flow control on such geometries should consider all the flow structures that contribute to the model wake flow. (orig.)

  13. Bluff-body drag reduction using a deflector

    Science.gov (United States)

    Fourrié, Grégoire; Keirsbulck, Laurent; Labraga, Larbi; Gilliéron, Patrick

    2011-02-01

    A passive flow control on a generic car model was experimentally studied. This control consists of a deflector placed on the upper edge of the model rear window. The study was carried out in a wind tunnel at Reynolds numbers based on the model height of 3.1 × 105 and 7.7 × 105. The flow was investigated via standard and stereoscopic particle image velocimetry, Kiel pressure probes and surface flow visualization. The aerodynamic drag was measured using an external balance and calculated using a wake survey method. Drag reductions up to 9% were obtained depending on the deflector angle. The deflector increases the separated region on the rear window. The results show that when this separated region is wide enough, it disrupts the development of the counter-rotating longitudinal vortices appearing on the lateral edges of the rear window. The current study suggests that flow control on such geometries should consider all the flow structures that contribute to the model wake flow.

  14. Self-determined shapes and velocities of giant near-zero drag gas cavities

    KAUST Repository

    Vakarelski, Ivan Uriev

    2017-09-09

    Minimizing the retarding force on a solid moving in liquid is the canonical problem in the quest for energy saving by friction and drag reduction. For an ideal object that cannot sustain any shear stress on its surface, theory predicts that drag force will fall to zero as its speed becomes large. However, experimental verification of this prediction has been challenging. We report the construction of a class of self-determined streamlined structures with this free-slip surface, made up of a teardrop-shaped giant gas cavity that completely encloses a metal sphere. This stable gas cavity is formed around the sphere as it plunges at a sufficiently high speed into the liquid in a deep tank, provided that the sphere is either heated initially to above the Leidenfrost temperature of the liquid or rendered superhydrophobic in water at room temperature. These sphere-in-cavity structures have residual drag coefficients that are typically less than Embedded Image those of solid objects of the same dimensions, which indicates that they experienced very small drag forces. The self-determined shapes of the gas cavities are shown to be consistent with the Bernoulli equation of potential flow applied on the cavity surface. The cavity fall velocity is not arbitrary but is uniquely predicted by the sphere density and cavity volume, so larger cavities have higher characteristic velocities.

  15. Drag Measurements over Embedded Cavities in a Low Reynolds Number Couette Flow

    Science.gov (United States)

    Gilmer, Caleb; Lang, Amy; Jones, Robert

    2010-11-01

    Recent research has revealed that thin-walled, embedded cavities in low Reynolds number flow have the potential to reduce the net viscous drag force acting on the surface. This reduction is due to the formation of embedded vortices allowing the outer flow to pass over the surface via a roller bearing effect. It is also hypothesized that the scales found on butterfly wings may act in a similar manner to cause a net increase in flying efficiency. In this experimental study, rectangular embedded cavities were designed as a means of successfully reducing the net drag across surfaces in a low Reynolds number flow. A Couette flow was generated via a rotating conveyor belt immersed in a tank of high viscosity mineral oil above which the plates with embedded cavities were placed. Drag induced on the plate models was measured using a force gauge and compared directly to measurements acquired over a flat plate. Various cavity aspect ratios and gap heights were tested in order to determine the conditions under which the greatest drag reductions occurred.

  16. Simulating Electrophoresis with Discrete Charge and Drag

    Science.gov (United States)

    Mowitz, Aaron J.; Witten, Thomas A.

    A charged asymmetric rigid cluster of colloidal particles in saline solution can respond in exotic ways to an electric field: it may spin or move transversely. These distinctive motions arise from the drag force of the neutralizing countercharge surrounding the cluster. Because of this drag, calculating the motion of arbitrary asymmetric objects with nonuniform charge is impractical by conventional methods. Here we present a new method of simulating electrophoresis, in which we replace the continuous object and the surrounding countercharge with discrete point-draggers, called Stokeslets. The balance of forces imposes a linear, self-consistent relation among the drag and Coulomb forces on the Stokeslets, which allows us to easily determine the object's motion via matrix inversion. By explicitly enforcing charge+countercharge neutrality, the simulation recovers the distinctive features of electrophoretic motion to few-percent accuracy using as few as 1000 Stokeslets. In particular, for uniformly charged objects, we observe the characteristic Smoluchowski independence of mobility on object size and shape. We then discuss electrophoretic motion of asymmetric objects, where our simulation method is particularly advantageous. This work is supported by a Grant from the US-Israel Binational Science Foundation.

  17. Drag reduction by a polymeric aluminium soap

    Energy Technology Data Exchange (ETDEWEB)

    Rodriquez, F.

    1971-04-12

    The pressure drop per unit length of pipe during the turbulent flow of liquids is reduced by certain additives. Most such drag reducing or friction-reducing agents are polymers of very high molecular weight. Some time ago, aluminum soaps were described as reducing drag in organic solvents, but the viscosity in laminar flow of such solutions was much higher than that of the solvents. More recently, it was found that aluminum dioleate and aluminum palmitate did not reduce turbulent friction until the solute concentration reached 0.75%. The viscosity at this concentration was 2 or 3 times that of the solvent, benzene. Exploratory work with aluminum di-2-ethylhexanoate indicates that it is an effective drag-reducing agent at concentrations which increase the viscosity of toluene by less than 10%. The dependence of the effectiveness on concentration is similar to that of most polymers. Taking into account the normal change in friction factor with Reynolds number together with end effects in the apparatus, the maximum effectiveness (x = 54 cm) corresponds to a a decrease in friction factor to less than a quarter of the original value for toluene alone. (13 refs.)

  18. Effect of surface roughness on the aerodynamic characteristics of a symmetrical airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Chakroun, W.; Al-Mesri, I.; Al-Fahad, S.

    2005-07-01

    The objective of this study is to investigate the effect of surface roughness by varying the roughness size and location on the aerodynamic characteristics of the airfoil. Test were conducted on the symmetrical airfoil models NACA 0012 in which the nature of the surface was varied from smooth to very rough and at a chord Reynolds number of 1.5*10{sup 5}. Different airfoil models with various roughness sizes and roughness locations were tested for different angles of attack. Lift, drag and pressure coefficients were measured and velocity profiles were determined for the smooth and grit 36 roughened models. It is shown that as the surface roughness increases, the minimum drag also increases due to the increase of the skin friction and the lift decreases. Surface roughness is seen to delay the stall angle and also increase the lift in the stall region. The airfoil model with the roughness located at the trailing edge shows minimum drag and maximum lift up to the stall angle compared to the other cases of different roughness locations. It is confirmed that, for the rough surface, a turbulent boundary layer exists where the laminar boundary layer is encountered for the smooth surface at the same Reynolds number. The measured skin friction for the rough surface is larger than that for the smooth surface. (author)

  19. Buoyancy increase and drag-reduction through a simple superhydrophobic coating

    OpenAIRE

    Hwang, G. B.; Patir, A.; Page, K.; Lu, Y.; Allan, E.; Parkin, I. P.

    2017-01-01

    A superhydrophobic paint was fabricated using 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES), TiO2 nanoparticles and ethanol. The paint has potential for aquatic application of a superhydrophobic coating as it induces increased buoyancy and drag reduction. Buoyance testing showed that the reduction of surface energy by superhydrophobic coating made it feasible that glass, a high density material, was supported by the surface tension of water. In a miniature boat sailing test, it was shown...

  20. Application and numerical simulation research on biomimetic drag-reducing technology for gas pipelining

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Deyuan; Luo Yuehao; Chen Huawei [Beihang Univ., Beijing (China). School of Mechanical Engineering and Automation

    2011-06-15

    For the purpose of increasing the transmission capacity of gas pipelines, the internal coating technology has been vastly put into application, and a remarkable benefit has been achieved so far. However, with the reduction of wall roughness, the small convex parts are all completely submerged in the viscous sublayer, the gas pipeline becomes a 'hydraulic smooth pipe', even by smoothing the coating surface further, it is difficult to reduce wall friction. Therefore, in order to increase the transportation capacity on the basis of internal coating, the new methods and technologies should be researched and investigated, and perhaps, the biomimetic drag-reducing technology is a good approach. In this paper, according to the planning parameters of the second pipeline of the West-to-East gas transmission project, the best drag reducing effect grooves are calculated and designed, and based on the characteristics and properties of internal coating (AW-01 epoxy resin), the Pre-Cured Micro- Rolling Technology (PCMRT) is discussed and presented, the rolling equipment is also designed and analyzed, the rolling process can be easily added on the available production line. Aiming at the field operating parameters of the gas pipeline in China, and the drag-reducing effect of the grooved surface is analyzed and discussed comprehensively. In addition, the economic benefit of adopting the biomimetic drag reduction technology is investigated. (orig.)

  1. Thermal design of AOTV heatshields for a conical drag brake

    Science.gov (United States)

    Pitts, W. C.; Murbach, M. S.

    1985-01-01

    Results are presented from an on-going study of the thermal performance of thermal protection systems for a conical drag brake type AOTV. Three types of heatshield are considered: rigid ceramic insulation, flexible ceramic blankets, and ceramic cloths. The results for the rigid insulation apply to other types of AOTV as well. Charts are presented in parametric form so that they may be applied to a variety of missions and vehicle configurations. The parameters considered include: braking maneuver heat flux and total heat load, heatshield material and thickness, heatshield thermal mass and conductivity, absorptivity and emissivity of surfaces, thermal mass of support structure, and radiation transmission through thin heatshields. Results of temperature calculations presented show trends with and sensitivities to these parameters. The emphasis is on providing information that will be useful in estimating the minimum required mass of these heatshield materials.

  2. Cell Adhesion on RGD-Displaying Knottins with Varying Numbers of Tryptophan Amino Acids to Tune the Affinity for Assembly on Cucurbit[8]uril Surfaces.

    Science.gov (United States)

    Sankaran, Shrikrishnan; Cavatorta, Emanuela; Huskens, Jurriaan; Jonkheijm, Pascal

    2017-09-05

    Cell adhesion is studied on multivalent knottins, displaying RGD ligands with a high affinity for integrin receptors, that are assembled on CB[8]-methylviologen-modified surfaces. The multivalency in the knottins stems from the number of tryptophan amino acid moieties, between 0 and 4, that can form a heteroternary complex with cucurbit[8]uril (CB[8]) and surface-tethered methylviologen (MV 2+ ). The binding affinity of the knottins with CB[8] and MV 2+ surfaces was evaluated using surface plasmon resonance spectroscopy. Specific binding occurred, and the affinity increased with the valency of tryptophans on the knottin. Additionally, increased multilayer formation was observed, attributed to homoternary complex formation between tryptophan residues of different knottins and CB[8]. Thus, we were able to control the surface coverage of the knottins by valency and concentration. Cell experiments with mouse myoblast (C2C12) cells on the self-assembled knottin surfaces showed specific integrin recognition by the RGD-displaying knottins. Moreover, cells were observed to elongate more on the supramolecular knottin surfaces with a higher valency, and in addition, more pronounced focal adhesion formation was observed on the higher-valency knottin surfaces. We attribute this effect to the enhanced coverage and the enhanced affinity of the knottins in their interaction with the CB[8] surface. Collectively, these results are promising for the development of biomaterials including knottins via CB[8] ternary complexes for tunable interactions with cells.

  3. Numerical Characterisation of Active Drag and Lift Control for a Circular Cylinder in Cross-Flow

    Directory of Open Access Journals (Sweden)

    Philip McDonald

    2017-11-01

    Full Text Available Synthetic jet actuators have shown promise to control drag and lift for a bluff body in cross-flow. Using unsteady RANS CFD modelling, a significant modification of the drag coefficient for a circular cylinder in cross-flow at R e = 3900 is achieved by varying the actuation frequency. The variation in actuation frequency corresponds to a range in Stokes number of 2.4 < S t o < 6.4. The trends in drag coefficient modification largely agree with the findings of past publications, achieving a maximum drag reduction at S t o = 4.9 for a fixed jet Reynolds number of the synthetic jet of R e U ¯ o = 12. A decrease in the adverse pressure gradient near the jet orifice correlated with a momentum increase in the viscous sublayer and stronger vortical structures at the rear of the cylinder. In these same conditions, a decrease in turbulence intensity was observed in the far field wake, which is a relevant finding in the context of wind and tidal turbine arrays.

  4. Fuel Savings and Aerodynamic Drag Reduction from Rail Car Covers

    Science.gov (United States)

    Storms, Bruce; Salari, Kambiz; Babb, Alex

    2008-01-01

    The potential for energy savings by reducing the aerodynamic drag of rail cars is significant. A previous study of aerodynamic drag of coal cars suggests that a 25% reduction in drag of empty cars would correspond to a 5% fuel savings for a round trip [1]. Rail statistics for the United States [2] report that approximately 5.7 billion liters of diesel fuel were consumed for coal transportation in 2002, so a 5% fuel savings would total 284 million liters. This corresponds to 2% of Class I railroad fuel consumption nationwide. As part of a DOE-sponsored study, the aerodynamic drag of scale rail cars was measured in a wind tunnel. The goal of the study was to measure the drag reduction of various rail-car cover designs. The cover designs tested yielded an average drag reduction of 43% relative to empty cars corresponding to an estimated round-trip fuel savings of 9%.

  5. Fathoms Below: Propagation of Deep Water-driven Fractures and Implications for Surface Expression and Temporally-varying Activity at Europa

    Science.gov (United States)

    Walker, C. C.; Craft, K.; Schmidt, B. E.

    2015-12-01

    The fracture and failure of Europa's icy shell are not only observable scars of variable stress and activity throughout its evolution, they also serve key as mechanisms in the interaction of surface and subsurface material, and thus crucial aspects of the study of crustal overturn and ice shell habitability. Galileo images, our best and only reasonable-resolution views of Europa until the Europa Multiple Flyby Mission arrives in the coming decades, illustrates a single snapshot in time in Europa's history from which we deduce many temporally-based hypotheses. One of those hypotheses, which we investigate here, is that sub-surface water-both in the form of Great Lake-sized perched water pockets in the near-surface and the larger global ocean below-drives the deformation, fracture, and failure of the surface. Using Galileo's snapshot in time, we use a 2D/3D hydraulic fracturing model to investigate the propagation of vertical fractures upward into the ice shell, motion of water within and between fractures, and the subsequent break-up of ice over shallow water, forming the chaos regions and other smaller surface features. We will present results from a cohesive fragmentation model to determine the time over which chaos formation occurs, and use a fracking model to determine the time interval required to allow water to escape from basal fractures in the ice shell. In determining the style, energy, and timescale of these processes, we constrain temporal variability in observable activity and topography at the surface. Finally, we compare these results to similar settings on Earth-Antarctica-where we have much higher resolution imagery and observations to better understand how sub-surface water can affect ice surface morphology, which most certainly have implications for future flyby and surface lander exploration.

  6. Drag reduction through self-texturing compliant bionic materials

    OpenAIRE

    Eryong Liu; Longyang Li; Gang Wang; Zhixiang Zeng; Wenjie Zhao; Qunji Xue

    2017-01-01

    Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, sem...

  7. On the origin of the drag force on golf balls

    Science.gov (United States)

    Balaras, Elias; Beratlis, Nikolaos; Squires, Kyle

    2017-11-01

    It is well establised that dimples accelerate the drag-crisis on a sphere. The result of the early drag-crisis is a reduction of the drag coefficient by more than a factor of two when compared to a smooth sphere at the same Reynolds number. However, when the drag coefficients for smooth and dimpled spheres in the supercritical regime are compared, the latter is higher by a factor of two to three. To understand the origin of this behavior we conducted direct numerical simulations of the flow around a dimpled sphere, which is similar to commercially available golf balls, in the supercritical regime. By comparing the results to those for a smooth sphere it is found that dimples, although effective in accelerating the drag crisis, impose a local drag-penalty, which contributes significantly to the overall drag force. This finding challenges the broadly accepted view, that the dimples only indirectly affect the drag force on a golf ball by manipulating the structure of the turbulent boundary layer near the wall and consequently affect global separation. Within this view, typically the penalty on the drag force imposed by the dimples is assumed to be small and coming primarily from skin friction. The direct numerical simulations we will report reveal a very different picture.

  8. Drag Reduction Through Distributed Electric Propulsion

    Science.gov (United States)

    Stoll, Alex M.; Bevirt, JoeBen; Moore, Mark D.; Fredericks, William J.; Borer, Nicholas K.

    2014-01-01

    One promising application of recent advances in electric aircraft propulsion technologies is a blown wing realized through the placement of a number of electric motors driving individual tractor propellers spaced along each wing. This configuration increases the maximum lift coefficient by providing substantially increased dynamic pressure across the wing at low speeds. This allows for a wing sized near the ideal area for maximum range at cruise conditions, imparting the cruise drag and ride quality benefits of this smaller wing size without decreasing takeoff and landing performance. A reference four-seat general aviation aircraft was chosen as an exemplary application case. Idealized momentum theory relations were derived to investigate tradeoffs in various design variables. Navier-Stokes aeropropulsive simulations were performed with various wing and propeller configurations at takeoff and landing conditions to provide insight into the effect of different wing and propeller designs on the realizable effective maximum lift coefficient. Similar analyses were performed at the cruise condition to ensure that drag targets are attainable. Results indicate that this configuration shows great promise to drastically improve the efficiency of small aircraft.

  9. Effects of Increasing Drag on Conjunction Assessment

    Science.gov (United States)

    Frigm, Ryan Clayton; McKinley, David P.

    2010-01-01

    Conjunction Assessment Risk Analysis relies heavily on the computation of the Probability of Collision (Pc) and the understanding of the sensitivity of this calculation to the position errors as defined by the covariance. In Low Earth Orbit (LEO), covariance is predominantly driven by perturbations due to atmospheric drag. This paper describes the effects of increasing atmospheric drag through Solar Cycle 24 on Pc calculations. The process of determining these effects is found through analyzing solar flux predictions on Energy Dissipation Rate (EDR), historical relationship between EDR and covariance, and the sensitivity of Pc to covariance. It is discovered that while all LEO satellites will be affected by the increase in solar activity, the relative effect is more significant in the LEO regime around 700 kilometers in altitude compared to 400 kilometers. Furthermore, it is shown that higher Pc values can be expected at larger close approach miss distances. Understanding these counter-intuitive results is important to setting Owner/Operator expectations concerning conjunctions as solar maximum approaches.

  10. On the development of lift and drag in a rotating and translating cylinder

    Science.gov (United States)

    Martin-Alcantara, Antonio; Sanmiguel-Rojas, Enrique; Fernandez-Feria, Ramon

    2014-11-01

    The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number, based on the cylinder diameter and steady free-stream speed, considered is Re = 200 , while the non-dimensional rotation rate (ratio of the surface speed and free-stream speed) selected were α = 1 and 3. For α = 1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α = 3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. Special attention is paid to explaining the mechanisms of vortex shedding suppression for high rotation (when α = 3) and its relation to the mechanisms by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.

  11. Monte Carlo simulations in CT for the study of the surface air kerma and energy imparted to phantoms of varying size and position

    Science.gov (United States)

    Avilés Lucas, P.; Dance, D. R.; Castellano, I. A.; Vañó, E.

    2004-04-01

    A Monte Carlo computational model of CT has been developed and used to investigate the effect of various physical factors on the surface air kerma length product, the peak surface air kerma, the air kerma length product within a phantom and the energy imparted. The factors investigated were the bow-tie filter and the size, shape and position of a phantom which simulates the patient. The calculations show that the surface air kerma length product and the maximum surface air kerma are mainly dependent on phantom position and decrease along the vertical axis of the CT plane as the phantom surface moves away from the isocentre along this axis. As a result, measurements using standard body dosimetry phantoms may underestimate the skin dose for real patients. This result is specially important for CT fluoroscopic procedures: for an adult patient the peak skin dose can be 37% higher than that estimated with a standard measurement on the body AAPM (American Association of Physicists in Medicine) phantom. The results also show that the energy imparted to a phantom is mainly influenced by phantom size and is nearly independent of phantom position (within 3%) and shape (up to 5% variation). However, variations of up to 30% were found for the air kerma to regions within the AAPM body phantom when it is moved vertically. This highlights the importance of calculating doses to organs taking into account their size and position within the gantry.

  12. The 3D CFD study of gliding swimmer on passive hydrodynamics drag

    Directory of Open Access Journals (Sweden)

    Vishveshwar Rajendra Mantha

    2014-04-01

    Full Text Available The aim of this study was to analyze the effect of depth on the hydrodynamic drag coefficient during the passive underwater gliding after the starts and turns. The swimmer hydrodynamics performance was studied by the application of computational fluid dynamics (CFD method. The steady-state CFD simulations were performed by the application of k - omega turbulent model and volume of fluid method to obtain two-phase flow around a three-dimensional swimmer model when gliding near water surface and at different depths from the water surface. The simulations were conducted for four different swimming pool size, each with different depth, i.e., 1.0, 1.5, 2.0 and 3.0 m for three different velocities, i.e., 1.5, 2.0 and 2.5 m/s, with swimmer gliding at different depths with intervals of 0.25 m, each starting from the water surface, respectively. The numerical results of pressure drag and total coefficients at individual average race velocities were obtained. The results showed that the drag coefficient decreased as depth increased, with a trend toward reduced fluctuation after 0.5m depth from the water surface. The selection of the appropriate depth during the gliding phase should be a main concern of swimmers and coaches.

  13. Diffusion of drag-reducing polymer solutions within a rough-walled turbulent boundary layer

    Science.gov (United States)

    Elbing, Brian R.; Dowling, David R.; Perlin, Marc; Ceccio, Steven L.

    2010-04-01

    The influence of surface roughness on diffusion of wall-injected, drag-reducing polymer solutions within a turbulent boundary layer was studied with a 0.94 m long flat-plate test model at speeds of up to 10.6 m s-1 and Reynolds numbers of up to 9×106. The surface was hydraulically smooth, transitionally rough, or fully rough. Mean concentration profiles were acquired with planar laser induced fluorescence, which was the primary flow diagnostic. Polymer concentration profiles with high injection concentrations (≥1000 wppm) had the peak concentration shifted away from the wall, which was partially attributed to a lifting phenomenon. The diffusion process was divided into three zones—initial, intermediate, and final. Studies of polymer injection into a polymer ocean at concentrations sufficient for maximum drag reduction indicated that the maximum initial zone length is of the order of 100 boundary layer thicknesses. The intermediate zone results indicate that friction velocity and roughness height are important scaling parameters in addition to flow and injection conditions. Lastly, the current results were combined with those in Petrie et al. ["Polymer drag reduction with surface roughness in flat-plate turbulent boundary layer flow," Exp. Fluids 35, 8 (2003)] to demonstrate that the influence of polymer degradation increases with increased surface roughness.

  14. Cell Adhesion on RGD-Displaying Knottins with Varying Numbers of Tryptophan Amino Acids to Tune the Affinity for Assembly on Cucurbit[8]uril Surfaces

    NARCIS (Netherlands)

    Sankaran, Shrikrishnan; Cavatorta, Emanuela; Huskens, Jurriaan; Jonkheijm, Pascal

    2017-01-01

    Cell adhesion is studied on multivalent knottins, displaying RGD ligands with a high affinity for integrin receptors, that are assembled on CB[8]-methylviologen-modified surfaces. The multivalency in the knottins stems from the number of tryptophan amino acid moieties, between 0 and 4, that can form

  15. Effects of spinal cord injury-induced changes in muscle activation on foot drag in a computational rat ankle model.

    Science.gov (United States)

    Hillen, Brian K; Jindrich, Devin L; Abbas, James J; Yamaguchi, Gary T; Jung, Ranu

    2015-04-01

    Spinal cord injury (SCI) can lead to changes in muscle activation patterns and atrophy of affected muscles. Moderate levels of SCI are typically associated with foot drag during the swing phase of locomotion. Foot drag is often used to assess locomotor recovery, but the causes remain unclear. We hypothesized that foot drag results from inappropriate muscle coordination preventing flexion at the stance-to-swing transition. To test this hypothesis and to assess the relative contributions of neural and muscular changes on foot drag, we developed a two-dimensional, one degree of freedom ankle musculoskeletal model with gastrocnemius and tibialis anterior muscles. Anatomical data collected from sham-injured and incomplete SCI (iSCI) female Long-Evans rats as well as physiological data from the literature were used to implement an open-loop muscle dynamics model. Muscle insertion point motion was calculated with imposed ankle trajectories from kinematic analysis of treadmill walking in sham-injured and iSCI animals. Relative gastrocnemius deactivation and tibialis anterior activation onset times were varied within physiologically relevant ranges based on simplified locomotor electromyogram profiles. No-atrophy and moderate muscle atrophy as well as normal and injured muscle activation profiles were also simulated. Positive moments coinciding with the transition from stance to swing phase were defined as foot swing and negative moments as foot drag. Whereas decreases in activation delay caused by delayed gastrocnemius deactivation promote foot drag, all other changes associated with iSCI facilitate foot swing. Our results suggest that even small changes in the ability to precisely deactivate the gastrocnemius could result in foot drag after iSCI. Copyright © 2015 the American Physiological Society.

  16. Skin friction measurements of systematically-varied roughness: Probing the role of roughness amplitude and skewness

    Science.gov (United States)

    Barros, Julio; Flack, Karen; Schultz, Michael

    2017-11-01

    Real-world engineering systems which feature either external or internal wall-bounded turbulent flow are routinely affected by surface roughness. This gives rise to performance degradation in the form of increased drag or head loss. However, at present there is no reliable means to predict these performance losses based upon the roughness topography alone. This work takes a systematic approach by generating random surface roughness in which the surface statistics are closely controlled. Skin friction and roughness function results will be presented for two groups of these rough surfaces. The first group is Gaussian (i.e. zero skewness) in which the root-mean-square roughness height (krms) is varied. The second group has a fixed krms, and the skewness is varied from approximately -1 to +1. The effect of the roughness amplitude and skewness on the skin friction will be discussed. Particular attention will be paid to the effect of these parameters on the roughness function in the transitionally-rough flow regime. For example, the role these parameters play in the monotonic or inflectional nature of the roughness function will be addressed. Future research into the details of the turbulence structure over these rough surfaces will also be outlined. Research funded by U.S. Office of Naval Research (ONR).

  17. Anisotropic stokes drag and dynamic lift on cylindrical colloids in a nematic liquid crystal.

    Science.gov (United States)

    Rovner, Joel B; Lapointe, Clayton P; Reich, Daniel H; Leheny, Robert L

    2010-11-26

    We have measured the Stokes drag on magnetic nanowires suspended in the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB). The effective drag viscosity for wires moving perpendicular to the nematic director differs from that for motion parallel to the director by factors of 0.88 to 2.4, depending on the orientation of the wires and their surface anchoring. When the force on the wires is applied at an oblique angle to the director, the wires move at an angle to the force, demonstrating the existence of a lift force on particles moving in a nematic. This dynamic lift is significantly larger for wires with homeotropic anchoring than with longitudinal anchoring in the experiments, suggesting the lift force as a mechanism for sorting particles according to their surface properties.

  18. Reynolds number dependence of drag reduction by rodlike polymers

    NARCIS (Netherlands)

    Amarouchene, Y.; Bonn, D.; Kellay, H.; Lo, T.-S.; L'vov, V.S.; Procaccia, I.

    2008-01-01

    We present experimental and theoretical results addressing the Reynolds number (Re) dependence of drag reduction by sufficiently large concentrations of rodlike polymers in turbulent wall-bounded flows. It is shown that when Re is small the drag is enhanced. On the other hand, when Re increases, the

  19. Determination of the Drag Resistance Coefficients of Different Vehicles

    Science.gov (United States)

    Fahsl, Christoph; Vogt, Patrik

    2018-01-01

    While it has been demonstrated how air resistance could be analyzed by using mobile devices, this paper demonstrates a method of how to determine the drag resistance coefficient "c" of a commercial automobile by using the acceleration sensor of a smartphone or tablet. In an academic context, the drag resistance is often mentioned, but…

  20. EFFECTIVENESS OF NYLON DRAG STRAPS FOR BRAKING MONORAIL SLEDS.

    Science.gov (United States)

    Velocity versus coast distance measurements on two monorail rocket sleds were conducted on the Holloman track to obtain numerical information on the...sleds and the drag straps. The straps as described are shown to increase the effective drag area of the monorail sleds used by approximately one square

  1. Spin-transfer mechanism for magnon-drag thermopower

    NARCIS (Netherlands)

    Lucassen, M.E.|info:eu-repo/dai/nl/314406913; Wong, C.H.; Duine, R.A.|info:eu-repo/dai/nl/304830127; Tserkovnyak, Y.

    2011-01-01

    We point out a relation between the dissipative spin-transfer-torque parameter β and the contribution of magnon drag to the thermoelectric power in conducting ferromagnets. Using this result, we estimate β in iron at low temperatures, where magnon drag is believed to be the dominant contribution to

  2. Frictional drag between quantum wells mediated by phonon exchange

    DEFF Research Database (Denmark)

    Bønsager, M.C.; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1998-01-01

    We use the Kubo formalism to evaluate the contribution of acoustic-phonon exchange to the frictional drag between nearby two-dimensional electron systems. In the case of free phonons, we find a divergent drag rate (tau(D)(-l)). However, tau(D)(-l) becomes finite when phonon scattering from either...

  3. Electron drag by solitons in superlattices in an external magnetic field

    International Nuclear Information System (INIS)

    Vyazovskii, M.V.; Syrodoev, G.A.

    1996-01-01

    The soliton-electric effect accompanying the propagation of an electromagnetic soliton along an axis of a superlattice in an external magnetic field directed along the magnetic field of the soliton is studied. It is assumed that the duration γ-1 of the soliton pulse is much shorter than the free flight time of an electron. It is shown that in the absence of a constant magnetic field the drag current varies as sin(αsech2γt) (α is a constant determined by the parameters of the superlattice). In the presence of a constant magnetic field of intensity H0>>Hs, where Hs is the amplitude of the soliton field, the drag current oscillates

  4. Drag Induced by Flat-Plate Imperfections in Compressible Turbulent Flow Regimes

    OpenAIRE

    Molton , Pascal; Hue , David; Bur , Reynald

    2014-01-01

    International audience; This paper presents the results of a coupled experimental and numerical study aimed at evaluating the influence of typical aircraft surface imperfections on the flat-plate drag production in fully turbulent conditions. A test campaign involving high-level measurement techniques, such as microdrag evaluation, near-wall laser Doppler velocimetry, and oil-film interferometry, has been carried out at several Mach numbers from 0.5 to 1.3 to quantify the impact of a large ra...

  5. Analytical Ballistic Trajectories with Approximately Linear Drag

    Directory of Open Access Journals (Sweden)

    Giliam J. P. de Carpentier

    2014-01-01

    Full Text Available This paper introduces a practical analytical approximation of projectile trajectories in 2D and 3D roughly based on a linear drag model and explores a variety of different planning algorithms for these trajectories. Although the trajectories are only approximate, they still capture many of the characteristics of a real projectile in free fall under the influence of an invariant wind, gravitational pull, and terminal velocity, while the required math for these trajectories and planners is still simple enough to efficiently run on almost all modern hardware devices. Together, these properties make the proposed approach particularly useful for real-time applications where accuracy and performance need to be carefully balanced, such as in computer games.

  6. Future Drag Measurements from Venus Express

    Science.gov (United States)

    Keating, Gerald; Mueller-Wodarg, Ingo; Forbes, Jeffrey M.; Yelle, Roger; Bruinsma, Sean; Withers, Paul; Lopez-Valverde, Miguel Angel; Theriot, Res. Assoc. Michael; Bougher, Stephen

    Beginning in July 2008 during the Venus Express Extended Mission, the European Space Agency will dramatically drop orbital periapsis from near 250km to near 180km above the Venus North Polar Region. This will allow orbital decay measurements of atmospheric densities to be made near the Venus North Pole by the VExADE (Venus Express Atmospheric Drag Experiment) whose team leader is Ingo Mueller-Wodarg. VExADE consists of two parts VExADE-ODA (Orbital Drag Analysis from radio tracking data) and VExADE-ACC (Accelerometer in situ atmospheric density measurements). Previous orbital decay measurements of the Venus thermosphere were obtained by Pioneer Venus from the 1970's into the 1990's and from Magellan in the 1990's. The major difference is that the Venus Express will provide measurements in the North Polar Region on the day and night sides, while the earlier measurements were obtained primarily near the equator. The periapsis will drift upwards in altitude similar to the earlier spacecraft and then be commanded down to its lower original values. This cycle in altitude will allow estimates of vertical structure and thus thermospheric temperatures in addition to atmospheric densities. The periapsis may eventually be lowered even further so that accelerometers can more accurately obtain density measurements of the polar atmosphere as a function of altitude, latitude, longitude, local solar time, pressure, Ls, solar activity, and solar wind on each pass. Bias in accelerometer measurements will be determined and corrected for by accelerometer measurements obtained above the discernable atmosphere on each pass. The second experiment, VExADE-ACC, is similar to the accelerometer experiments aboard Mars Global Surveyor, Mars Odyssey, and Mars Reconnaissance Orbiter that carried similar accelerometers in orbit around Mars. The risk involved in the orbital decay and accelerometer measurements is minimal. We have not lost any spacecraft orbiting Venus or Mars due to unexpected

  7. An Experimental Approach to Controllably Vary Protein Oxidation While Minimizing Electrode Adsorption for Boron-Doped Diamond Electrochemical Surface Mapping Applications

    Science.gov (United States)

    McClintock, Carlee S; Hettich, Robert L.

    2012-01-01

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent – hydroxyl radicals – for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins. PMID:23210708

  8. Friction and drag forces on spheres propagating down inclined planes

    Science.gov (United States)

    Tee, Yi Hui; Longmire, Ellen

    2017-11-01

    When a submerged sphere propagates along an inclined wall at terminal velocity, it experiences gravity, drag, lift, and friction forces. In the related equations of motion, the drag, lift and friction coefficients are unknown. Experiments are conducted to determine the friction and drag coefficients of the sphere over a range of Reynolds numbers. Through high speed imaging, translational and rotational velocities of spheres propagating along a glass plate are determined in liquids with several viscosities. The onset of sliding motion is identified by computing the dimensionless rotation rate of the sphere. Using drag and lift coefficients for Re friction coefficients are calculated for several materials. The friction coefficients are then employed to estimate the drag coefficient for 350 frictional force over this Re range. Supported by NSF (CBET-1510154).

  9. Electron drag in ferromagnetic structures separated by an insulating interface

    Science.gov (United States)

    Kozub, V. I.; Muradov, M. I.; Galperin, Y. M.

    2018-06-01

    We consider electron drag in a system of two ferromagnetic layers separated by an insulating interface. The source of it is expected to be magnon-electron interactions. Namely, we assume that the external voltage is applied to the "active" layer stimulating electric current through this layer. In its turn, the scattering of the current-carrying electrons by magnons leads to a magnon drag current within this layer. The 3-magnons interactions between magnons in the two layers (being of non-local nature) lead to magnon drag within the "passive" layer which, correspondingly, produce electron drag current via processes of magnon-electron scattering. We estimate the drag current and compare it to the phonon-induced one.

  10. Improved Orbit Determination and Forecasts with an Assimilative Tool for Atmospheric Density and Satellite Drag Specification

    Science.gov (United States)

    Crowley, G.; Pilinski, M.; Sutton, E. K.; Codrescu, M.; Fuller-Rowell, T. J.; Matsuo, T.; Fedrizzi, M.; Solomon, S. C.; Qian, L.; Thayer, J. P.

    2016-12-01

    Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by the variability in density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of LEO satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. We describe ongoing work to build a comprehensive nowcast and forecast system for specifying the neutral atmospheric state related to orbital drag conditions. The system outputs include neutral density, winds, temperature, composition, and the satellite drag derived from these parameters. This modeling tool is based on several state-of-the-art coupled models of the thermosphere-ionosphere as well as several empirical models running in real-time and uses assimilative techniques to produce a thermospheric nowcast. This software will also produce 72 hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition and using near real-time and predicted space weather data and indices as the inputs. Features of this technique include: • Satellite drag specifications with errors lower than current models • Altitude coverage up to 1000km • Background state representation using both first principles and empirical models • Assimilation of satellite drag and other datatypes • Real time capability • Ability to produce 72-hour forecasts of the atmospheric state In this paper, we will summarize the model design and assimilative architecture, and present preliminary validation results. Validation results will be presented in the context of satellite orbit errors and compared with several leading atmospheric models including the High Accuracy Satellite Drag Model, which is currently used

  11. Assessment and characterization of degradation effect for the varied degrees of ultra-violet radiation onto the collagen-bonded polypropylene non-woven fabric surfaces.

    Science.gov (United States)

    Tyan, Yu-Chang; Liao, Jiunn-Der; Klauser, Ruth; Wu, Ie-Der; Weng, Chih-Chiang

    2002-01-01

    Exposure to ultra-violet (UV)-C radiation is a frequently used method to prevent bacteria from invasion of blood-contact biomedical products. Potential damage induced by UV radiation to collagen is of concern due to the decay of bioactivity, considerably correlated with structural alterations. Our current investigation studies the collagen-bonded non-woven polypropylene (PP) fabric surface. In this experiment, antenna-coupling microwave plasma is utilized to activate PP fabric and then the sample is grafted with acrylic acid (AAc). Type III collagen is immobilized by using water soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as coupling agent. The collagen-bonded samples with sample temperature ca. 4 degrees C are then exposed to UV-254nm radiation for different time intervals. By using fourier-transformed infrared with attenuated total reflection (FTIR-ATR) and XPS (X-ray photoelectron spectroscopy), we examine the chemical structures of samples with different treatments. Coomassie brilliant blue G250 method is utilized to quantify the immobilized collagen on the PP fabric surfaces. Blood-clotting effects are evaluated by activated partial thromboplastin time, thrombin time, and fibrinogen concentration tests. By means of cell counter and scanning electron microscopy we count red blood cells and platelets adhesion in the modified porous matrix. Our experimental results have demonstrated that with pAAc-grafting of ca. 173 microg cm(-2) and immobilized collagen of 80.5+/-4.7 microg cm(-2), for human plasma incubated samples of various intervals of UV-254 nm radiation, fibrinogen concentration decreases in human plasma, while platelets and red blood cells adhesions increase before UV radiation. However, the required time for thrombination shows significant change for UV radiation exposure of less than 20 h (alpha = 0.05). The decay of bioactivity for the UV-irradiated, collagen-bonded surfaces is thus evaluated. Surface analyses indicate that the decrease of

  12. Experimental evaluation of the drag force and drag torque acting on a rotating spherical particle moving in fluid

    Czech Academy of Sciences Publication Activity Database

    Lukerchenko, Nikolay; Kvurt, Y.; Kharlamov, Alexander; Chára, Zdeněk; Vlasák, Pavel

    2008-01-01

    Roč. 56, č. 2 (2008), s. 88-94 ISSN 0042-790X R&D Projects: GA AV ČR IAA200600603 Institutional research plan: CEZ:AV0Z20600510 Keywords : drag force * drag torque * spherical particle * rotational movement * translational movement Subject RIV: DA - Hydrology ; Limnology

  13. Heat transfer and forces on concave surfaces in free molecule flow.

    Science.gov (United States)

    Fan, C.

    1971-01-01

    A Monte Carlo modeling technique is described for mathematically simulating free molecular flows over a concave spherical surface and a concave cylindrical surface of finite length. The half-angle of the surfaces may vary from 0 to 90 degrees, and the incident flow may have an arbitrary speed ratio and an arbitrary angle of attack. Partial diffuse reflection and imperfect energy accommodation for molecules colliding with the surfaces are also considered. Results of heat transfer, drag and lift coefficients are presented for a variety of flow conditions. The present Monte Carlo results are shown to be in very good agreement with certain available theoretical solutions.

  14. Cortical thickness, surface area, and folding alterations in male youths with conduct disorder and varying levels of callous-unemotional traits.

    Science.gov (United States)

    Fairchild, Graeme; Toschi, Nicola; Hagan, Cindy C; Goodyer, Ian M; Calder, Andrew J; Passamonti, Luca

    2015-01-01

    Previous studies have reported changes in gray matter volume in youths with conduct disorder (CD), although these differences are difficult to interpret as they may have been driven by alterations in cortical thickness, surface area (SA), or folding. The objective of this study was to use surface-based morphometry (SBM) methods to compare male youths with CD and age and sex-matched healthy controls (HCs) in cortical thickness, SA, and folding. We also tested for structural differences between the childhood-onset and adolescence-onset subtypes of CD and performed regression analyses to assess for relationships between CD symptoms and callous-unemotional (CU) traits and SBM-derived measures. We acquired structural neuroimaging data from 20 HCs and 36 CD participants (18 with childhood-onset CD and 18 with adolescence-onset CD) and analyzed the data using FreeSurfer. Relative to HCs, youths with CD showed reduced cortical thickness in the superior temporal gyrus, reduced SA in the orbitofrontal cortex (OFC), and increased cortical folding in the insula. There were no significant differences between the childhood-onset and adolescence-onset CD subgroups in cortical thickness or SA, but several frontal and temporal regions showed increased cortical folding in childhood-onset relative to adolescence-onset CD participants. Both CD subgroups also showed increased cortical folding relative to HCs. CD symptoms were negatively correlated with OFC SA whereas CU traits were positively correlated with insula folding. Cortical thinning in the superior temporal gyrus may contribute to the social cognitive impairments displayed by youths with CD, whereas reduced OFC SA may lead to impairments in emotion regulation and reward processing in youths with CD. The increased cortical folding observed in the insula may reflect a maturational delay in this region and could mediate the link between CU traits and empathy deficits. Altered cortical folding was observed in childhood-onset and

  15. Drag reduction statistics in a channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Bernal, Jose A. [Instituto Politecnico Nacional, LABINTHAP-SEPI-ESIME, Edif. 5, 3er piso Col. Lindavista, Mexico DF 07738 (Mexico); Hassan, Yassin A.; Gutierrez-Torres, Claudia del C. [Nuclear Engineering Department, Texas A and M University, College Station, TX 77843-3123 (United States)

    2005-07-01

    Full text of publication follows: Methods to reduce the drag have been studied for many years because of the promising payoffs that can be attained. In this investigation, the evaluation of statistics such as skewness, flatness, spectra of the stream-wise velocity fluctuations is performed for single phase flow and for two phase flow. Micro-bubbles with an average diameter of 30 {mu}m and a local void fraction of 4.8 % were produced by electrolysis and injected inside the boundary layer. This value of void fraction produced a 38.45 % decrease of the drag. The experiments were conducted in a channel flow at a Reynolds number Re 5128 (considering half height of the channel, the bulk velocity and the kinematics viscosity of the water). The channel was made of acrylic due to the optical properties of this material; its dimensions are 3.85 m long, 0.206 m wide and 0.056 m high. A pressure transducer that ranges from 0 to 35 Pa is located in the test station to measure the pressure drop in single phase flow; this pressure value is used to calculate the shear wall stress. The shear wall stress of two phase flow was measured from the velocity fields obtained from Particle Image Velocimetry (PIV) technique. PIV was utilized to measure instantaneous velocity fields in the stream-wise-normal (x-y) plane. The use of low-local values of void fraction caused a reduction of undesirable speckles effects and an absence of extreme brightness provoked by high bubble saturation. The measurements were carried out in the upper wall of the channel at 3.15 m downstream the inlet's channel. The PIV system is formed by a CCD camera with a resolution of 1008 x 1018 pixels and a double pulse laser with a maximum power 400 mJ and a wavelength of 532 nm (green light). The laser beam was transformed into a sheet of light by an array of cylindrical lenses. Two hundred frames with an area of 1.28 cm{sup 2} were recorded to obtain one hundred velocity fields. The time separation between

  16. Drag reduction statistics in a channel flow

    International Nuclear Information System (INIS)

    Jimenez-Bernal, Jose A.; Hassan, Yassin A.; Gutierrez-Torres, Claudia del C.

    2005-01-01

    Full text of publication follows: Methods to reduce the drag have been studied for many years because of the promising payoffs that can be attained. In this investigation, the evaluation of statistics such as skewness, flatness, spectra of the stream-wise velocity fluctuations is performed for single phase flow and for two phase flow. Micro-bubbles with an average diameter of 30 μm and a local void fraction of 4.8 % were produced by electrolysis and injected inside the boundary layer. This value of void fraction produced a 38.45 % decrease of the drag. The experiments were conducted in a channel flow at a Reynolds number Re 5128 (considering half height of the channel, the bulk velocity and the kinematics viscosity of the water). The channel was made of acrylic due to the optical properties of this material; its dimensions are 3.85 m long, 0.206 m wide and 0.056 m high. A pressure transducer that ranges from 0 to 35 Pa is located in the test station to measure the pressure drop in single phase flow; this pressure value is used to calculate the shear wall stress. The shear wall stress of two phase flow was measured from the velocity fields obtained from Particle Image Velocimetry (PIV) technique. PIV was utilized to measure instantaneous velocity fields in the stream-wise-normal (x-y) plane. The use of low-local values of void fraction caused a reduction of undesirable speckles effects and an absence of extreme brightness provoked by high bubble saturation. The measurements were carried out in the upper wall of the channel at 3.15 m downstream the inlet's channel. The PIV system is formed by a CCD camera with a resolution of 1008 x 1018 pixels and a double pulse laser with a maximum power 400 mJ and a wavelength of 532 nm (green light). The laser beam was transformed into a sheet of light by an array of cylindrical lenses. Two hundred frames with an area of 1.28 cm 2 were recorded to obtain one hundred velocity fields. The time separation between consecutive pulses

  17. Drag of ballistic electrons by an ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, V. L.; Muradov, M. I., E-mail: mag.muradov@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2015-12-15

    Drag of electrons of a one-dimensional ballistic nanowire by a nearby one-dimensional beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity V. The ratio of the drag current to the primary current carried by the ion beam is calculated. The drag current turns out to be a nonmonotonic function of velocity V. It has a sharp maximum for V near v{sub nF}/2, where n is the number of the uppermost electron miniband (channel) taking part in conduction and v{sub nF} is the corresponding Fermi velocity. This means that the phenomenon of ion beam drag can be used for investigation of the electron spectra of ballistic nanostructures. We note that whereas observation of the Coulomb drag between two parallel quantum wires may in general be complicated by phenomena such as tunneling and phonon drag, the Coulomb drag of electrons of a one-dimensional ballistic nanowire by an ion beam is free of such spurious effects.

  18. Resolvent-based feedback control for turbulent friction drag reduction

    Science.gov (United States)

    Kawagoe, Aika; Nakashima, Satoshi; Luhar, Mitul; Fukagata, Koji

    2017-11-01

    Suboptimal control for turbulent friction drag reduction has been studied extensively. Nakashima et al. (accepted) extended resolvent analysis to suboptimal control, and for the control where the streamwise wall shear stress is used as an input (Case ST), they revealed the control effect across spectral space is mixed: there are regions of drag increase as well as reduction. This suggests that control performance may be improved if the control is applied for selective wavelengths, or if a new law is designed to suppress the spectral region leading to drag increase. In the present study, we first assess the effect of suboptimal control for selective wavelengths via DNS. The friction Reynolds number is set at 180. For Case ST, resolvent analysis predicts drag reduction at long streamwise wavelengths. DNS with control applied only for this spectral region, however, did not result in drag reduction. Then, we seek an effective control law using resolvent analysis and propose a new law. DNS results for this law are consistent with predictions from resolvent analysis, and about 10% drag reduction is attained. Further, we discuss how this law reduces the drag from a dynamical and theoretical point of view. This work was supported through Grant-in-Aid for Scientic Research (C) (No. 25420129) by Japan Society for the Promotion of Science (JSPS).

  19. Determination of eight pesticides of varying polarity in surface waters using solid phase extraction with multiwalled carbon nanotubes and liquid chromatography-linear ion trap mass spectrometry

    International Nuclear Information System (INIS)

    Dahane, Soraya; Derdour, Aicha; García, María Dolores Gil; Moreno, Ana Uclés; Galera, María Martínez; Viciana, María del Mar Socías

    2015-01-01

    We describe a MWCNT-based method for the solid-phase extraction of eight pesticides from environmental water samples. The analytes are extracted from 100 mL samples at pH 5.0 (containing 5 mmol L −1 of KCl) by passing the solution through a column filled with 20 mg of multiwalled carbon nanotubes. Following elution, the pesticides were determined by LC and electrospray ionization hybrid quadrupole linear ion trap MS. Two selected reaction monitoring transitions were monitored per compound, the most intense one being used for quantification and the second one for confirmation. In addition, an information-dependent acquisition experiment was performed for unequivocal confirmation of positive findings. Matrix effect was not found in real waters and therefore the quantitation was carried out with calibration graphs built with solvent based standards. Except for cymoxanil, the detection and quantitation limits in surface waters are in the range from 0.3 to 9.5 ng L −1 and 1.6 to 45.2 ng L −1 , respectively. Recoveries from spiked ultrapure water are ∼100 %, except for the most polar pesticides methomyl and cymoxanil. The same behavior is found for real water samples (except for phosalone). The relative standard deviation is <10 % in all cases. (author)

  20. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics

    Directory of Open Access Journals (Sweden)

    Liu Chunbao

    2016-01-01

    Full Text Available Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader.

  1. Drag of a growing bubble at rectilinear accelerated ascension in pure liquids and binary solutions

    Directory of Open Access Journals (Sweden)

    Ašković Radomir

    2003-01-01

    Full Text Available The problem of predicting the drag coefficient of a growing bubble at rectilinear accelerated ascension in uniformly super­heated pure liquids and in binary solutions with a non-volatile solute at large Reynolds and Peclet numbers is discussed. In the case of pure liquids, the general solution for the drag coefficient of an accelerated growing bubble from its inception at the critical radius and through the surface-tension-, inertia-, and heat-diffusion-controlled regimes is established, as well as some necessary adaptations in the case of binary solutions with a non-volatile solute. Two particular limiting regimes in the case of pure liquids, inertia-controlled and heat-diffusion-controlled regimes, respectively, are analyzed in details, with satisfactory results. .

  2. Accounting for Laminar Run & Trip Drag in Supersonic Cruise Performance Testing

    Science.gov (United States)

    Goodsell, Aga M.; Kennelly, Robert A.

    1999-01-01

    An improved laminar run and trip drag correction methodology for supersonic cruise performance testing was derived. This method required more careful analysis of the flow visualization images which revealed delayed transition particularly on the inboard upper surface, even for the largest trip disks. In addition, a new code was developed to estimate the laminar run correction. Once the data were corrected for laminar run, the correct approach to the analysis of the trip drag became evident. Although the data originally appeared confusing, the corrected data are consistent with previous results. Furthermore, the modified approach, which was described in this presentation, extends prior historical work by taking into account the delayed transition caused by the blunt leading edges.

  3. Bilateral macular colobomata: Temporal dragging of optic disc

    Directory of Open Access Journals (Sweden)

    David J Mathew

    2015-01-01

    Full Text Available A 13-year-old male presented with decreased vision and squint from childhood. He had bilateral large colobomata at the macula in each eye, the one on the right being larger than the left. The disc was dragged temporally with straightening of the temporal retinal vessels. This is a case report of bilateral large macular coloboma and serves to report its association with a temporally dragged disc and straightened temporal retinal vessels. A dragged disc if present with a colobomatous defect at the macula may strengthen the case for diagnosis of macular coloboma and help exclude other differentials.

  4. Oscillating Sign of Drag in High Landau Levels

    International Nuclear Information System (INIS)

    von Oppen, Felix; Simon, Steven H.; Stern, Ady

    2001-01-01

    Motivated by experiments, we study the sign of the Coulomb drag voltage in a double layer system in a strong magnetic field. We show that the commonly used Fermi golden rule approach implicitly assumes a linear dependence of intralayer conductivity on density, and is thus inadequate in strong magnetic fields. Going beyond this approach, we show that the drag voltage commonly changes sign with density difference between the layers. We find that, in the quantum Hall regime, the Hall and longitudinal drag resistivities may be comparable. Our results are also relevant for pumping and acoustoelectric experiments

  5. Effect of guideway discontinuities on magnetic levitation and drag forces

    International Nuclear Information System (INIS)

    Rossing, T.D.; Korte, R.; Hull, J.R.

    1991-01-01

    Transients in the lift and drag forces on a NdFeB permanent magnet were observed as the magnet passed over various discontinuities in a rotating aluminum disk at velocities of 4 to 25 m/s. For full cuts in the disk, the amplitude of the lift and drag transients and the wave form of the drag transient depend on the width, and the amplitudes are much larger than for partial cuts. The use of a backing plate to join two cut segments is ineffective

  6. The effect of drainage channels on the hydrodynamic drag of non-colloidal spheres down an inclined plane

    Science.gov (United States)

    Ryu, Brian; Dhong, Charles; Frechette, Joelle

    While it is well known that surface asperities and roughness alter the hydrodynamic drag of a non-colloidal sphere down an inclined plane, less is known about how the hydrodynamic drag is modified if the asperities and roughness are connected through a network of drainage channels, which allows the movement of fluid between asperities. We investigate the rotational and translation motion of spheres on several pairs of surfaces that have the same porosity and asperity size, but one surface has interconnected drainage channels whereas the other does not. These can have direct relevance to lubricated surfaces such as ball bearings in industrial settings, or biological relevance of leucocyte movement across rough surfaces. Provost's Undergraduate Research Awards, Office of Naval Research, National Science Foundation.

  7. Estimation of the drag coefficient from the upper ocean response to a hurricane: A variational data assimilation approach

    KAUST Repository

    Zedler, Sarah

    2013-08-01

    We seek to determine whether a small number of measurements of upper ocean temperature and currents can be used to make estimates of the drag coefficient that have a smaller range of uncertainty than previously found. We adopt a numerical approach in an inverse problem setup using an ocean model and its adjoint, to assimilate data and to adjust the drag coefficient parameterization (here the free parameter) with wind speed that corresponds to the minimum of a model minus data misfit or cost function. Pseudo data are generated from a reference forward simulation, and are perturbed with different levels of Gaussian distributed noise. It is found that it is necessary to assimilate both surface current speed and temperature data to obtain improvement over previous estimates of the drag coefficient. When data is assimilated without any smoothing or constraints on the solution, the drag coefficient is overestimated at low wind speeds and there are unrealistic, high frequency oscillations in the adjusted drag coefficient curve. When second derivatives of the drag coefficient curve are penalized and the solution is constrained to experimental values at low wind speeds, the adjusted drag coefficient is within 10% of its target value. This result is robust to the addition of realistic random noise meant to represent turbulence due to the presence of mesoscale background features in the assimilated data, or to the wind speed time series to model its unsteady and gusty character. When an eddy is added to the background flow field in both the initial condition and the assimilated data time series, the target and adjusted drag coefficient are within 10% of one another, regardless of whether random noise is added to the assimilated data. However, when the eddy is present in the assimilated data but is not in the initial conditions, the drag coefficient is overestimated by as much as 30%. This carries the implication that when real data is assimilated, care needs to be taken in

  8. Drag Reduction through Pulsed Plasma Actuators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Drag reduction is a fundamental necessity in all aerodynamic designs, as it directly affects aircraft fuel efficiency which in turn affects endurance, range, and...

  9. Experimental study of drag reduction in flumes and spillway tunnels

    Directory of Open Access Journals (Sweden)

    Ying-kui Wang

    2010-06-01

    Full Text Available Experiments in an open flume model and spillway tunnel model were carried out using drag reduction techniques. Two drag reduction techniques were adopted in the experiments: polymer addition and coating. The drag reduction effect of a polyacrylamide (PAM solution and dimethyl silicone oil coating were studied in the flume model experiments, and the results were analyzed. Experiments were then carried out with a model of the Xiluodu Hydropower Station, the second largest dam in China. In order to reduce the resistance, the spillway tunnels were internally coated with dimethyl silicone oil. This is the first time that these drag reduction techniques have been applied to so large a hydraulic model. The experimental results show that the coating technique can effectively increase flood discharge. The outlet velocity and the jet trajectory distance are also increased, which enhances the energy dissipation of the spillway tunnel.

  10. Wall temperature control of low-speed body drag

    Science.gov (United States)

    Lin, J. C.; Ash, R. L.

    1986-01-01

    The use of thermal means to control drag under turbulent boundary layer conditions is examined. Numerical calculations are presented for both skin friction and (unseparated) pressure drag for turbulent boundary-layer flows over a fuselage-like body with wall heat transfer. In addition, thermal control of separation on a bluff body is investigated. It is shown that a total drag reduction of up to 20 percent can be achieved for wall heating with a wall-to-total-freestream temperature ratio of 2. For streamlined slender bodies, partial wall heating of the forebody can produce almost the same order of total drag reduction as the full body heating case. For bluff bodies, the separation delay from partial wall cooling of the afterbody is approximately the same as for the fully cooled body.

  11. Atomistically informed solute drag in Al–Mg

    International Nuclear Information System (INIS)

    Zhang, F; Curtin, W A

    2008-01-01

    Solute drag in solute-strengthened alloys, caused by diffusion of solute atoms around moving dislocations, controls the stress at deformation rates and temperatures useful for plastic forming processes. In the technologically important Al–Mg alloys, the solute drag stresses predicted by classical theories are much larger than experiments, which is resolved in general by eliminating the singularity of the dislocation core via Peierls–Nabarro-type models. Here, the drag stress versus dislocation velocity is computed numerically using a realistic dislocation core structure obtained from an atomistic model to investigate the role of the core and obtain quantitative stresses for comparison with experiment. The model solves a discrete diffusion equation in a reference frame moving with the dislocation, with input solute enthalpies and diffusion activation barriers in the core computed by or estimated from atomistic studies. At low dislocation velocities, the solute drag stress is controlled by bulk solute diffusion because the core diffusion occurs too quickly. In this regime, the drag stress can be obtained using a Peierls–Nabarro model with a core spreading parameter tuned to best match the atomistic models. At intermediate velocities, both bulk and core diffusion can contribute to the drag, leading to a complex stress–velocity relationship showing two peaks in stress. At high velocities, the drag stress is controlled solely by diffusion within and across the core. Like the continuum models, the drag stress is nearly linear in solute concentration. The Orowan relationship is used to connect dislocation velocity to deformation strain rate. Accounting for the dependence of mobile dislocation density on stress, the simulations are in good agreement with experiments on Al–Mg alloys over a range of concentrations and temperatures

  12. Drag force in a D-instanton background

    Science.gov (United States)

    Zhang, Zi-qiang; Luo, Zhong-jie; Hou, De-fu

    2018-06-01

    We study the drag force and diffusion coefficient with respect to a moving heavy quark in a D-instanton background, which corresponds to the Yang-Mills theory in the deconfining, high-temperature phase. It is shown that the presence of the D-instanton density tends to increase the drag force and decrease the diffusion coefficient, reverse to the effects of the velocity and the temperature. Moreover, the inclusion of the D-instanton density makes the medium less viscous.

  13. Thermal Transport and Drag Force in Improved Holographic QCD

    CERN Document Server

    Gürsoy, Umut; Michalogiorgakis, Georgios; Nitti, Francesco; 10.1088

    2009-01-01

    We calculate the bulk viscosity, drag force and jet quenching parameter in Improved Holographic QCD. We find that the bulk viscosity rises near the phase transition but does not exceed the shear viscosity. The drag force shows the effects of asymptotic freedom both as a function of velocity and temperature. It indicates diffusion times of heavy quarks in rough agreement with data. The jet quenching parameter values computed via the light-like Wilson loop are in the lower range suggested by data.

  14. Progress towards a Drag-free SmallSat

    Science.gov (United States)

    Saraf, Shailendhar

    The net force acting on a drag-free satellite is purely gravitational as all other forces, mainly atmospheric drag and solar radiation pressure, are canceled out. In order to achieve this, a free floating reference (test mass) inside the satellite is shielded against all forces but gravity and a system of thrusters is commanded by a control algorithm such that the relative displacement between the reference and the satellite stays constant. The main input to that control algorithm is the output of a sensor which measures the relative displacement between the satellite and the test mass. Internal disturbance forces such as electrostatic or magnetic forces cannot be canceled out his way and have to be minimized by a careful design of the satellite. A drag-free technology package is under development at Stanford since 2004. It includes an optical displacement sensor to measure the relative position of the test mass inside the satellite, a caging mechanism to lock the test mass during launch, a UV LED based charge management system to minimize the effect of electrostatic forces, a thermal enclosure, and the drag-free control algorithms. Possible applications of drag-free satellites in fundamental physics (Gravity Probe B, LISA), geodesy (GOCE), and navigation (TRIAD I). In this presentation we will highlight the progress of the technology development towards a drag-free mission. The planned mission on a SaudiSat bus will demonstrate drag-free technology on a small spacecraft at a fraction of the cost of previous drag-free missions. The target acceleration noise is 10-12 m/sec2. With multiple such satellites a GRACE-like mission with improved sensitivity and potentially improved spatial and temporal resolution can be achieved.

  15. Determination of balloon gas mass and revised estimates of drag and virtual mass coefficients

    Science.gov (United States)

    Robbins, E.; Martone, M.

    1993-01-01

    In support of the NASA Balloon Program, small-scale balloons were flown with varying lifting gas and total system mass. Instrument packages were developed to measure and record acceleration and temperature data during these tests. Top fitting and instrument payload accelerations were measured from launch to steady state ascent and through ballast drop transients. The development of the small lightweight self-powered Stowaway Special instrument packages is discussed along with mathematical models developed to determine gas mass, drag and virtual mass coefficients.

  16. Navier slip model of drag reduction by Leidenfrost vapor layers

    KAUST Repository

    Berry, Joseph D.; Vakarelski, Ivan Uriev; Chan, Derek Y. C.; Thoroddsen, Sigurdur T

    2017-01-01

    Recent experiments found that a hot solid sphere that is able to sustain a stable Leidenfrost vapor layer in a liquid exhibits significant drag reduction during free fall. The variation of the drag coefficient with Reynolds number deviates substantially from the characteristic drag crisis behavior at high Reynolds numbers. Measurements based on liquids of different viscosities show that the onset of the drag crisis depends on the viscosity ratio of the vapor to the liquid. Here we attempt to characterize the complexity of the Leidenfrost vapor layer with respect to its variable thickness and possible vapor circulation within, in terms of the Navier slip model that is defined by a slip length. Such a model can facilitate tangential flow and thereby alter the behavior of the boundary layer. Direct numerical and large eddy simulations of flow past a sphere at moderate to high Reynolds numbers (102≤Re≤4×104) are employed to quantify comparisons with experimental results, including the drag coefficient and the form of the downstream wake on the sphere. This provides a simple one parameter characterization of the drag reduction phenomenon due to a stable vapor layer that envelops a solid body.

  17. Navier slip model of drag reduction by Leidenfrost vapor layers

    KAUST Repository

    Berry, Joseph D.

    2017-10-17

    Recent experiments found that a hot solid sphere that is able to sustain a stable Leidenfrost vapor layer in a liquid exhibits significant drag reduction during free fall. The variation of the drag coefficient with Reynolds number deviates substantially from the characteristic drag crisis behavior at high Reynolds numbers. Measurements based on liquids of different viscosities show that the onset of the drag crisis depends on the viscosity ratio of the vapor to the liquid. Here we attempt to characterize the complexity of the Leidenfrost vapor layer with respect to its variable thickness and possible vapor circulation within, in terms of the Navier slip model that is defined by a slip length. Such a model can facilitate tangential flow and thereby alter the behavior of the boundary layer. Direct numerical and large eddy simulations of flow past a sphere at moderate to high Reynolds numbers (102≤Re≤4×104) are employed to quantify comparisons with experimental results, including the drag coefficient and the form of the downstream wake on the sphere. This provides a simple one parameter characterization of the drag reduction phenomenon due to a stable vapor layer that envelops a solid body.

  18. Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles

    Science.gov (United States)

    Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.

  19. The hydrodynamic drag and the mobilisation of sediment into the water column of towed fishing gear components

    Science.gov (United States)

    O'Neill, F. G.; Summerbell, Keith David

    2016-12-01

    The hydrodynamic drag of towed fishing gears leads to direct impacts on the benthic environment, and can play a major role in the overall economic efficiency of the fishing operation and emissions of nitrogen oxides, sulphur oxides and greenhouse gases such as CO2. Here we investigate some of the underpinning processes which govern these issues and make direct hydrodynamic drag measurements and calculate the hydrodynamic drag coefficients for a range of well-defined gear components that, when fished, are in contact with the seabed. We measure the concentration and particle size distribution of the sediment mobilised into the water column in the wake of these gear elements, at a range of towing speeds, and demonstrate that as the hydrodynamic drag increases the amount of sediment mobilised also increases. We also vary the weight of the elements and show that this does not influence the amount of sediment put into the water column. These results provide a better understanding of the physical and mechanical processes that take place when a towed fishing gear interacts with the seabed. They will permit the development of more fuel efficient gears and gears of reduced benthic impact and will improve the empirical modelling of the sediment mobilised into the turbulent wake behind towed fishing gears which will lead to better assessments of the environmental and ecological impact of fishing gears.

  20. Nation Drag: Uses of the Exotic

    Directory of Open Access Journals (Sweden)

    Micol Seigel

    2009-02-01

    Full Text Available

    In Uneven Encounters, the forthcoming book from which this article is excerpted, Micol Seigel chronicles the exchange of popular culture between Brazil and the United States in the years between the World Wars, and she demonstrates how that exchange affected ideas of race and nation in both countries. From Americans interpreting advertisements for Brazilian coffee or dancing the Brazilian maxixe, to Rio musicians embracing the “foreign” qualities of jazz, Seigel traces a lively, cultural back-and-forth. Along the way, she shows how race and nation are constructed together, by both non-elites and elites, and gleaned from global cultural and intellectual currents as well as local, regional, and national ones. Seigel explores the circulation of images of Brazilian coffee and of maxixe in the United States during the period just after the imperial expansions of the early twentieth century. Exoticist interpretations structured North Americans’ paradoxical sense of self as productive “consumer citizens.” Some people, however, could not simply assume the privileges of citizenship. In their struggles against racism, Afro-descended citizens living in the cities of Rio de Janeiro, São Paulo, New York, and Chicago encountered images and notions of each other, and found them useful. Seigel introduces readers to cosmopolitan Afro-Brazilians and African Americans who rarely traveled far but who absorbed ideas from abroad nonetheless. African American vaudeville artists saw the utility of pretending to “be” Brazilian to cross the color line on stage. Putting on “nation drag,” they passed not from one race to another but out of familiar racial categories entirely. Afro-Brazilian journalists reported intensively on foreign, particularly North American, news and eventually entered into conversation with the U.S. black press in a collaborative but still conflictual dialogue. Seigel suggests that projects comparing U.S. and

  1. Nation Drag: Uses of the Exotic

    Directory of Open Access Journals (Sweden)

    Micol Seigel

    2009-02-01

    Full Text Available In Uneven Encounters, the forthcoming book from which this article is excerpted, Micol Seigel chronicles the exchange of popular culture between Brazil and the United States in the years between the World Wars, and she demonstrates how that exchange affected ideas of race and nation in both countries. From Americans interpreting advertisements for Brazilian coffee or dancing the Brazilian maxixe, to Rio musicians embracing the “foreign” qualities of jazz, Seigel traces a lively, cultural back-and-forth. Along the way, she shows how race and nation are constructed together, by both non-elites and elites, and gleaned from global cultural and intellectual currents as well as local, regional, and national ones. Seigel explores the circulation of images of Brazilian coffee and of maxixe in the United States during the period just after the imperial expansions of the early twentieth century. Exoticist interpretations structured North Americans’ paradoxical sense of self as productive “consumer citizens.” Some people, however, could not simply assume the privileges of citizenship. In their struggles against racism, Afro-descended citizens living in the cities of Rio de Janeiro, São Paulo, New York, and Chicago encountered images and notions of each other, and found them useful. Seigel introduces readers to cosmopolitan Afro-Brazilians and African Americans who rarely traveled far but who absorbed ideas from abroad nonetheless. African American vaudeville artists saw the utility of pretending to “be” Brazilian to cross the color line on stage. Putting on “nation drag,” they passed not from one race to another but out of familiar racial categories entirely. Afro-Brazilian journalists reported intensively on foreign, particularly North American, news and eventually entered into conversation with the U.S. black press in a collaborative but still conflictual dialogue. Seigel suggests that projects comparing U.S. and Brazilian racial

  2. Effect of trailing edge ramp on cavity flow structures and pressure drag

    International Nuclear Information System (INIS)

    Pey, Yin Yin; Chua, Leok Poh; Siauw, Wei Long

    2014-01-01

    Highlights: • Trailing edge ramps were used to reduce unsteadiness and pressure drag of a cavity. • Proper Orthogonal Decomposition was used to educe the coherent structures. • The 30° ramp was successful in redistributing the energy content within the cavity. • The 30° ramp guides the flow smoothly out of the cavity, reducing flow impingement. • A substantial reduction of pressure drag was achieved by the 30° ramp. -- Abstract: The effects of trailing edge ramp modifications on time-averaged velocity and pressure distributions within a cavity with a length to depth ratio of 2, at a speed of 15 m/s were investigated. The ramp angles were varied at 30°, 45° and 60° and ramp heights were varied at 0.25 times and 0.5 times of cavity depth. The mean flow within the cavity differed significantly from the baseline case when ramp angle was 30° and 45° with ramp height 0.5 times of cavity depth. At these 2 configurations, moment about the center of the cavity floor was reduced significantly. These could be attributed to the more steady flow within the cavity as compared to the baseline case. Spatial correlation of velocity in the cavity of ramp angle 30° showed that internal cavity flow was less sensitive to flow changes in the shear layer as compared to the baseline case. In the same cavity, snapshot Proper Orthogonal Decomposition revealed a redistribution of energy content where energetic structures exist only in the shear layer as opposed to energetic structures in both the shear layer and internal cavity for the baseline case. A reduction of pressure drag was also observed as the gentle ramp angle of 30° guides the flow smoothly out of the cavity and reduces trailing edge impingement

  3. Disturbances to Air-Layer Skin-Friction Drag Reduction at High Reynolds Numbers

    Science.gov (United States)

    Dowling, David; Elbing, Brian; Makiharju, Simo; Wiggins, Andrew; Perlin, Marc; Ceccio, Steven

    2009-11-01

    Skin friction drag on a flat surface may be reduced by more than 80% when a layer of air separates the surface from a flowing liquid compared to when such an air layer is absent. Past large-scale experiments utilizing the US Navy's Large Cavitation Channel and a flat-plate test model 3 m wide and 12.9 m long have demonstrated air layer drag reduction (ALDR) on both smooth and rough surfaces at water flow speeds sufficient to reach downstream-distance-based Reynolds numbers exceeding 100 million. For these experiments, the incoming flow conditions, surface orientation, air injection geometry, and buoyancy forces all favored air layer formation. The results presented here extend this prior work to include the effects that vortex generators and free stream flow unsteadiness have on ALDR to assess its robustness for application to ocean-going ships. Measurements include skin friction, static pressure, airflow rate, video of the flow field downstream of the injector, and profiles of the flowing air-water mixture when the injected air forms bubbles, when it is in transition to an air layer, and when the air layer is fully formed. From these, and the prior measurements, ALDR's viability for full-scale applications is assessed.

  4. Progress report on INEL full flow drag screen

    International Nuclear Information System (INIS)

    Arave, A.E.; Colson, J.B.; Fincke, J.R.

    1977-01-01

    The objective in developing a full flow drag screen is to obtain a total momentum flux measurement which when combined with a suitable independent velocity or density measurement will yield a total mass flux. The major design considerations are predicated by the fact that an accurate momentum flux measurement must be made over a wide range of flow conditions. The device should exhibit a constant calibration regardless of Reynolds number, void fraction, slip ratio, or flow regime. The dynamics of drag devices are well understood in single-phase flows. This is not true for two-phase flows. The present development program is directed toward gaining an understanding of the dynamics of drag devices which sample the total area of a pipe in two-phase flow and developing a method for deducing mass flow rate using such a device. Various geometric arrangements are to be investigated. Testing to date has shown excellent results using a round wire mesh screen in the Semiscale air/water loop. Future air/water testing will include perforated plates and wire meshes with both rectangular and diamond shaped cross sections. Analytical models of the hydrodynamics of the drag screen as well as the associated density or velocity measuring device are being used to select the optimum configuration. Alternate force sensing methods are also being considered. These include single and multiple transducer arrangements. Multistage springs and pressure drop across the body are to be evaluated for extending the dynamic range of the drag body

  5. The Overall Drag Losses For A Combination of Bodies

    Directory of Open Access Journals (Sweden)

    Sabah Al-Janabi

    2013-05-01

    Full Text Available The objective of this work is to obtain better understanding of the flow over a combination of bluff bodies in close enough proximity to strongly interact with each other. This interaction is often beneficial in that the drag of the overall system is reduced. Proto-types for this problem come from tractor- trailer and missiles, and from various add-on devices designed to reduce their drag. Thus, an experimental investigation was carried out by placing  conical frontal bodies having a base diameter of 0.65 cylinder diameter with different vertex angles (30°, 50°, 70°, and 90°. It was found that, the bluffer cone with 90° vertex angle gives the best minimum drag, which is 31% lower than the drag of the isolated cylinder. Also an interesting phenomenon was observed in that, the minimum drags for all combinations are obtained at the same gap ratio (i.e.at g/d2= 0.365.

  6. A Conventional Liner Acoustic/Drag Interaction Benchmark Database

    Science.gov (United States)

    Howerton, Brian M.; Jones, Michael G.

    2017-01-01

    The aerodynamic drag of acoustic liners has become a significant topic in the design of such for aircraft noise applications. In order to evaluate the benefits of concepts designed to reduce liner drag, it is necessary to establish the baseline performance of liners employing the typical design features of conventional configurations. This paper details a set of experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of a number of perforate-over-honeycomb liner configurations at flow speeds of M=0.3 and 0.5. These conventional liners are investigated to determine their resistance factors using a static pressure drop approach. Comparison of the resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 Hz at source sound pressure levels of 140 and 150 dB. Educed impedance and attenuation spectra are used to determine the interaction between acoustic performance and drag.

  7. Relativistic Gas Drag on Dust Grains and Implications

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Korea University of Science and Technology, Daejeon, 34113 (Korea, Republic of)

    2017-09-20

    We study the drag force on grains moving at relativistic velocities through interstellar gas and explore its application. First, we derive a new analytical formula of the drag force at high energies and find that it is significantly reduced compared to the classical model. Second, we apply the obtained drag force to calculate the terminal velocities of interstellar grains by strong radiation sources such as supernovae and active galactic nuclei (AGNs). We find that grains can be accelerated to relativistic velocities by very luminous AGNs. We then quantify the deceleration of relativistic spacecraft proposed by the Breakthrough Starshot initiative due to gas drag on a relativistic lightsail. We find that the spacecraft’s decrease in speed is negligible because of the suppression of gas drag at relativistic velocities, suggesting that the lightsail may be open for communication during its journey to α Centauri without causing a considerable delay. Finally, we show that the damage to relativistic thin lightsails by interstellar dust is a minor effect.

  8. Drag reduction in channel flow using nonlinear control

    Science.gov (United States)

    Keefe, Laurence R.

    1993-01-01

    Two nonlinear control schemes have been applied to the problem of drag reduction in channel flow. Both schemes have been tested using numerical simulations at a mass flux Reynolds numbers of 4408, utilizing 2D nonlinear neutral modes for goal dynamics. The OGY-method, which requires feedback, reduces drag to 60-80 percent of the turbulent value at the same Reynolds number, and employs forcing only within a thin region near the wall. The H-method, or model-based control, fails to achieve any drag reduction when starting from a fully turbulent initial condition, but shows potential for suppressing or retarding laminar-to-turbulent transition by imposing instead a transition to a low drag, nonlinear traveling wave solution to the Navier-Stokes equation. The drag in this state corresponds to that achieved by the OGY-method. Model-based control requires no feedback, but in experiments to date has required the forcing be imposed within a thicker layer than the OGY-method. Control energy expenditures in both methods are small, representing less than 0.1 percent of the uncontrolled flow's energy.

  9. Creating drag and lift curves from soccer trajectories

    Science.gov (United States)

    Goff, John Eric; Kelley, John; Hobson, Chad M.; Seo, Kazuya; Asai, Takeshi; Choppin, S. B.

    2017-07-01

    Trajectory analysis is an alternative to using wind tunnels to measure a soccer ball’s aerodynamic properties. It has advantages over wind tunnel testing such as being more representative of game play. However, previous work has not presented a method that produces complete, speed-dependent drag and lift coefficients. Four high-speed cameras in stereo-calibrated pairs were used to measure the spatial co-ordinates for 29 separate soccer trajectories. Those trajectories span a range of launch speeds from 9.3 to 29.9 m s-1. That range encompasses low-speed laminar flow of air over a soccer ball, through the drag crises where air flow is both laminar and turbulent, and up to high-speed turbulent air flow. Results from trajectory analysis were combined to give speed-dependent drag and lift coefficient curves for the entire range of speeds found in the 29 trajectories. The average root mean square error between the measured and modelled trajectory was 0.028 m horizontally and 0.034 m vertically. The drag and lift crises can be observed in the plots of drag and lift coefficients respectively.

  10. Theory of Coulomb drag for massless Dirac fermions

    International Nuclear Information System (INIS)

    Carrega, M; Principi, A; Polini, M; Tudorovskiy, T; Katsnelson, M I

    2012-01-01

    Coulomb drag between two unhybridized graphene sheets separated by a dielectric spacer has recently attracted considerable theoretical interest. We first review, for the sake of completeness, the main analytical results which have been obtained by other authors. We then illustrate pedagogically the minimal theory of Coulomb drag between two spatially separated two-dimensional systems of massless Dirac fermions which are both away from the charge-neutrality point. This relies on second-order perturbation theory in the screened interlayer interaction and on Boltzmann-transport theory. In this theoretical framework and in the low-temperature limit, we demonstrate that, to leading (i.e. quadratic) order in temperature, the drag transresistivity is completely insensitive to the precise intralayer momentum-relaxation mechanism (i.e. to the functional dependence of the transport scattering time on energy). We also provide analytical results for the low-temperature drag transresistivity for both cases of ‘thick’ and ‘thin’ spacers and for arbitrary values of the dielectric constants of the media surrounding the two Dirac-fermion layers. Finally, we present numerical results for the low-temperature drag transresistivity for the case when one of the media surrounding the Dirac-fermion layers has a frequency-dependent dielectric constant. We conclude by suggesting an experiment that can potentially allow for the observation of departures from the canonical quadratic-in-temperature behavior of the transresistivity. (paper)

  11. Storm surge and wave simulations in the Gulf of Mexico using a consistent drag relation for atmospheric and storm surge models

    Directory of Open Access Journals (Sweden)

    D. Vatvani

    2012-07-01

    Full Text Available To simulate winds and water levels, numerical weather prediction (NWP and storm surge models generally use the traditional bulk relation for wind stress, which is characterized by a wind drag coefficient. A still commonly used drag coefficient in those models, some of them were developed in the past, is based on a relation, according to which the magnitude of the coefficient is either constant or increases monotonically with increasing surface wind speed (Bender, 2007; Kim et al., 2008; Kohno and Higaki, 2006. The NWP and surge models are often tuned independently from each other in order to obtain good results. Observations have indicated that the magnitude of the drag coefficient levels off at a wind speed of about 30 m s−1, and then decreases with further increase of the wind speed. Above a wind speed of approximately 30 m s−1, the stress above the air-sea interface starts to saturate. To represent the reducing and levelling off of the drag coefficient, the original Charnock drag formulation has been extended with a correction term.

    In line with the above, the Delft3D storm surge model is tested using both Charnock's and improved Makin's wind drag parameterization to evaluate the improvements on the storm surge model results, with and without inclusion of the wave effects. The effect of waves on storm surge is included by simultaneously simulating waves with the SWAN model on identical model grids in a coupled mode. However, the results presented here will focus on the storm surge results that include the wave effects.

    The runs were carried out in the Gulf of Mexico for Katrina and Ivan hurricane events. The storm surge model was initially forced with H*wind data (Powell et al., 2010 to test the effect of the Makin's wind drag parameterization on the storm surge model separately. The computed wind, water levels and waves are subsequently compared with observation data. Based on the good

  12. Large photon drag effect of intrinsic graphene induced by plasmonic evanescent field

    Science.gov (United States)

    Luo, Ma; Li, Zhibing

    2016-12-01

    A large photon drag effect of the massless Dirac fermions in intrinsic graphene is predicted for a graphene-on-plasmonic-layer system. The surface plasmons in the plasmonic layer enlarge the wave number of the photon hundreds times more than in vacuum. The evanescent field of the surface plasmons generates a directional motion of carriers in the intrinsic graphene because of the large momentum transfer from the surface plasmon to the excited carriers. A model Hamiltonian is developed on the assumption that the in-plane wavelength of the surface plasmons is much smaller than the mean free path of the carriers. The time evolution of the density matrix is solved by perturbation method as well as numerical integration. The nondiagonal density matrix elements with momentum transfer lead to a gauge current, which is an optically driven macroscopic direct current. The dependence of the macroscopic direct current on the incident direction and intensity of the laser field is studied.

  13. Fabrication Development and Flow Testing of Underwater Superhydrophobic Films for Drag Reduction

    Science.gov (United States)

    2017-03-21

    water tunnel experiment (December 15, 2015) • Encountered gross water leakage • Ran up to 2 m/s and confirmed the sensing accuracy when measured The 2nd...monitored and found persistent (a surprise) • Encountered water leakage at high flow speeds • Drag data of smooth surface did not match theory well Smooth...well- controlled Towing tank at Stevens Institute of Technology: • 313 ft long and 16 ft wide, and can support water depths as high as 8 ft • Speeds

  14. Drag and drop simulation: from pictures to full three-dimensional simulations

    Science.gov (United States)

    Bergmann, Michel; Iollo, Angelo

    2014-11-01

    We present a suite of methods to achieve ``drag and drop'' simulation, i.e., to fully automatize the process to perform thee-dimensional flow simulations around a bodies defined by actual images of moving objects. The overall approach requires a skeleton graph generation to get level set function from pictures, optimal transportation to get body velocity on the surface and then flow simulation thanks to a cartesian method based on penalization. We illustrate this paradigm simulating the swimming of a mackerel fish.

  15. Soil transference patterns on bras: Image processing and laboratory dragging experiments.

    Science.gov (United States)

    Murray, Kathleen R; Fitzpatrick, Robert W; Bottrill, Ralph S; Berry, Ron; Kobus, Hilton

    2016-01-01

    In a recent Australian homicide, trace soil on the victim's clothing suggested she was initially attacked in her front yard and not the park where her body was buried. However the important issue that emerged during the trial was how soil was transferred to her clothing. This became the catalyst for designing a range of soil transference experiments (STEs) to study, recognise and classify soil patterns transferred onto fabric when a body is dragged across a soil surface. Soil deposits of interest in this murder were on the victim's bra and this paper reports the results of anthropogenic soil transfer to bra-cups and straps caused by dragging. Transfer patterns were recorded by digital photography and photomicroscopy. Eight soil transfer patterns on fabric, specific to dragging as the transfer method, appeared consistently throughout the STEs. The distinctive soil patterns were largely dependent on a wide range of soil features that were measured and identified for each soil tested using X-ray Diffraction and Non-Dispersive Infra-Red analysis. Digital photographs of soil transfer patterns on fabric were analysed using image processing software to provide a soil object-oriented classification of all soil objects with a diameter of 2 pixels and above transferred. Although soil transfer patterns were easily identifiable by naked-eye alone, image processing software provided objective numerical data to support this traditional (but subjective) interpretation. Image software soil colour analysis assigned a range of Munsell colours to identify and compare trace soil on fabric to other trace soil evidence from the same location; without requiring a spectrophotometer. Trace soil from the same location was identified by linking soils with similar dominant and sub-dominant Munsell colour peaks. Image processing numerical data on the quantity of soil transferred to fabric, enabled a relationship to be discovered between soil type, clay mineralogy (smectite), particle size and

  16. Acoustic Liner Drag: Measurements on Novel Facesheet Perforate Geometries

    Science.gov (United States)

    Howerton, Brian M.; Jones, Michael G.

    2016-01-01

    Interest in characterization of the aerodynamic drag of acoustic liners has increased in the past several years. This paper details experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of several perforate-over-honeycomb liner configurations at flow speeds of centerline flow Mach number equals 0.3 and 0.5. Various perforate geometries and orientations are investigated to determine their resistance factors using a static pressure drop approach. Comparison of these resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 hertz at source sound pressure levels of 140 and 150 decibels. Educed impedance and attenuation spectra are used to determine the impact of variations in perforate geometry on acoustic performance.

  17. On the energy economics of air lubrication drag reduction

    Directory of Open Access Journals (Sweden)

    Simo A. Mäkiharju

    2012-12-01

    Full Text Available Air lubrication techniques for frictional drag reduction on ships have been proposed by numerous researchers since the 19th century. However, these techniques have not been widely adopted as questions persist about their drag reduction performance beyond the laboratory, as well as energy and economic cost-benefit. This paper draws on data from the literature to consider the suitability of air lubrication for large ocean going and U.S. Great Lakes ships, by establishing the basic energy economic calculations and presenting results for a hypothetical air lubricated ship. All the assumptions made in the course of the analysis are clearly stated so that they can be refined when considering application of air lubrication to a specific ship. The analysis suggests that, if successfully implemented, both air layer and partial cavity drag reduction could lead to net energy savings of 10 to 20%, with corresponding reductions in emissions.

  18. Flexural phonon limited phonon drag thermopower in bilayer graphene

    Science.gov (United States)

    Ansari, Mohd Meenhaz; Ashraf, SSZ

    2018-05-01

    We investigate the phonon drag thermopower from flexural phonons as a function of electron temperature and carrier concentration in the Bloch-Gruneisen regime in non-strained bilayer graphene using Boltzmann transport equation approach. The flexural phonons are expected to be the major source of intrinsic scattering mechanism in unstrained bilayer graphene due to their large density. The flexural phonon modes dispersion relation is quadratic so these low energy flexural phonons abound at room temperature and as a result deform the bilayer graphene sheet in the out of plane direction and affects the transport properties. We also produce analytical result for phonon-drag thermopower from flexural phonons and find that phonon-drag thermopower depicts T2 dependence on temperature and n-1 on carrier concentration.

  19. Spanwise drag variation on low Re wings -- revisited

    Science.gov (United States)

    Yang, Shanling; Spedding, Geoffrey

    2011-11-01

    Aerodynamic performance measurement and prediction of airfoils and wings at chord Reynolds numbers below 105 is both difficult and increasingly important in application to small-scale aircraft. Not only are the aerodynamics strongly affected by the dynamics of the unstable laminar boundary layer but the flow is decreasingly likely to be two-dimensional as Re decreases. The spanwise variation of the flow along a two-dimensional geometry is often held to be responsible for the large variations in measured profile drag coefficient. Here we measure local two-dimensional drag coefficients along a finite wing using non-intrusive PIV methods. Variations in Cd (y) can be related to local flow variations on the wing itself. Integrated values can be compared with force balance data, and the proper description of drag components at low Re will be discussed.

  20. The contact drag of towed demersal fishing gear components

    Science.gov (United States)

    O'Neill, F. G.; Summerbell, K.; Ivanović, A.

    2018-01-01

    The contact demersal towed fishing gears make with the seabed can lead to penetration of the substrate, lateral displacement of the sediment and a pressure field transmitted through the sediment. It will also contribute to the overall drag of the fishing gear. Consequently, there can be environmental effects such as habitat alteration and benthic mortality, and impacts to the fuel efficiency of the fishing operation which will affect emissions of nitrogen oxides, sulphur oxides and greenhouse gases such as CO2. Here we present the results of experimental trials that measure the contact drag of a range of elements that represent some of the components of towed demersal gears that are in contact with the seabed. We show that the contact drag of the gear components depends on their weight, geometry, the type of sediment on which they are towed and whether they are rolling or not. As expected, the contact drag of each gear component increases as its weight increases and the drag of fixed elements is greater than that of the rolling ones. The dependence on aspect ratio is more complex and the drag (per unit area) of narrow cylinders is less than that of wider ones when they roll on the finer sediment or are fixed (not permitted to roll) on the coarser sediment. When they roll on the coarse sediment there is no dependence on aspect ratio. Our results also suggest that fixed components may penetrate the seabed to a lesser depth when they are towed at higher speeds but when they roll there is no such relationship.

  1. Implement a Sub-grid Turbulent Orographic Form Drag in WRF and its application to Tibetan Plateau

    Science.gov (United States)

    Zhou, X.; Yang, K.; Wang, Y.; Huang, B.

    2017-12-01

    Sub-grid-scale orographic variation exerts turbulent form drag on atmospheric flows. The Weather Research and Forecasting model (WRF) includes a turbulent orographic form drag (TOFD) scheme that adds the stress to the surface layer. In this study, another TOFD scheme has been incorporated in WRF3.7, which exerts an exponentially decaying drag on each model layer. To investigate the effect of the new scheme, WRF with the old and new one was used to simulate the climate over the complex terrain of the Tibetan Plateau. The two schemes were evaluated in terms of the direct impact (on wind) and the indirect impact (on air temperature, surface pressure and precipitation). Both in winter and summer, the new TOFD scheme reduces the mean bias in the surface wind, and clearly reduces the root mean square error (RMSEs) in comparisons with the station measurements (Figure 1). Meanwhile, the 2-m air temperature and surface pressure is also improved (Figure 2) due to the more warm air northward transport across south boundary of TP in winter. The 2-m air temperature is hardly improved in summer but the precipitation improvement is more obvious, with reduced mean bias and RMSEs. This is due to the weakening of water vapor flux (at low-level flow with the new scheme) crossing the Himalayan Mountains from South Asia.

  2. Locus of the apices of projectile trajectories under constant drag

    Science.gov (United States)

    Hernández-Saldaña, H.

    2017-11-01

    Using the hodograph method, we present an analytical solution for projectile coplanar motion under constant drag, parametrised by the velocity angle. We find the locus formed by the apices of the projectile trajectories, and discuss its implementation for the motion of a particle on an inclined plane in presence of Coulomb friction. The range and time of flight are obtained numerically, and we find that the optimal launching angle is smaller than in the drag-free case. This is a good example of a problem with constant dissipation of energy that includes curvature; it is appropriate for intermediate courses of mechanics.

  3. The effects of Poynting–Robertson drag on solar sails

    Directory of Open Access Journals (Sweden)

    F.A. Abd El-Salam

    2018-06-01

    Full Text Available In the present work, the concept of solar sailing and its developing spacecraft are presented. The effects of Poynting–Robertson drag on solar sails are considered. Some analytical control laws with some mentioned input constraints for optimizing solar sails dynamics in heliocentric orbit using Lagrange’s planetary equations are obtained. Optimum force vector in a required direction is maximized by deriving optimal sail cone angle. New control laws that maximize thrust to obtain certain required maximization in some particular orbital element are obtained. Keywords: Poynting–Robertson drag, Solar sail, Control laws, Optimal sail, Cone angle

  4. Development of drag disk and turbines at the INEL

    International Nuclear Information System (INIS)

    Goodrich, L.D.; Edson, J.L.; Averill, R.H.

    1984-01-01

    One of the parameters that must be measured in nuclear safety research is mass flow rate. The reactor environment associated with two-phase flow makes this measurement difficult. To accomplish this at the Idaho National Engineering Laboratory, a drag disk and turbine transducer conbination was developed. These transducers can withstand >2000 h of continuous operation in the reactor environment. Mechanical problems have been solved with these transducers to the point where the electrical coils are now the limiting factor on lifetime. This paper presents the results of the development of the drag disk and turbine with problems and solutions pointed out

  5. Drag force in a strongly coupled anisotropic plasma

    Science.gov (United States)

    Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego

    2012-08-01

    We calculate the drag force experienced by an infinitely massive quark propagating at constant velocity through an anisotropic, strongly coupled {N} = 4 plasma by means of its gravity dual. We find that the gluon cloud trailing behind the quark is generally misaligned with the quark velocity, and that the latter is also misaligned with the force. The drag coefficient μ can be larger or smaller than the corresponding isotropic value depending on the velocity and the direction of motion. In the ultra-relativistic limit we find that generically μ ∝ p. We discuss the conditions under which this behaviour may extend to more general situations.

  6. Control of the electromagnetic drag using fluctuating light fields

    Science.gov (United States)

    Pastor, Víctor J. López; Marqués, Manuel I.

    2018-05-01

    An expression for the electromagnetic drag force experienced by an electric dipole in a light field consisting of a monochromatic plane wave with polarization and phase randomly fluctuating is obtained. The expression explicitly considers the transformations of the field and frequency due to the Doppler shift and the change of the polarizability response of the electric dipole. The conditions to be fulfilled by the polarizability of the dipole in order to obtain a positive, a null, and a negative drag coefficient are analytically determined and checked against numerical simulations for the dynamics of a silver nanoparticle. The theoretically predicted diffusive, superdiffusive, and exponentially accelerated dynamical regimes are numerically confirmed.

  7. Determination of the drag resistance coefficients of different vehicles

    Science.gov (United States)

    Fahsl, Christoph; Vogt, Patrik

    2018-05-01

    While it has been demonstrated how air resistance could be analyzed by using mobile devices, this paper demonstrates a method of how to determine the drag resistance coefficient c of a commercial automobile by using the acceleration sensor of a smartphone or tablet. In an academic context, the drag resistance is often mentioned, but little attention is paid to quantitative measurements. This experiment was driven by the fact that this physical value is most certainly neglected because of its difficult measurability. In addition to that, this experiment gives insights on how the aerodynamic factor of an automobile affects the energy dissipation and thus how much power is required by automobile transportation.

  8. Method to estimate drag coefficient at the air/ice interface over drifting open pack ice from remotely sensed data

    Science.gov (United States)

    Feldman, U.

    1984-01-01

    A knowledge in near real time, of the surface drag coefficient for drifting pack ice is vital for predicting its motions. And since this is not routinely available from measurements it must be replaced by estimates. Hence, a method for estimating this variable, as well as the drag coefficient at the water/ice interface and the ice thickness, for drifting open pack ice was developed. These estimates were derived from three-day sequences of LANDSAT-1 MSS images and surface weather charts and from the observed minima and maxima of these variables. The method was tested with four data sets in the southeastern Beaufort sea. Acceptable results were obtained for three data sets. Routine application of the method depends on the availability of data from an all-weather air or spaceborne remote sensing system, producing images with high geometric fidelity and high resolution.

  9. Coulomb drag in multiwall armchair carbon nanotubes

    DEFF Research Database (Denmark)

    Lunde, A.M.; Jauho, Antti-Pekka

    2004-01-01

    surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...

  10. Patterns produced when soil is transferred to bras by placing and dragging actions: The application of digital photography and image processing to support visible observations.

    Science.gov (United States)

    Murray, Kathleen R; Fitzpatrick, Robert W; Bottrill, Ralph; Kobus, Hilton

    2017-07-01

    A series of soil transference experiments (STEs) were undertaken to determine whether patterns identified in laboratory experiments could also be recognised at a simulated crime scene in the field. A clothed 55kg human rescue dummy dressed in a padded bra was either dragged or merely placed on a soil surface at sites with natural and anthropogenic soil types under both wet and dry soil conditions. Transfer patterns produced by dragging compared favourably with those of laboratory experiments. Twelve patterns were identified when a clothed human rescue dummy was dragged across the two soil types in the field. This expanded the original set of eight soil transfer patterns identified from dragging weighted fabric across soil samples in the laboratory. Soil transferred by placing the human rescue dummy resulted in a set of six transfer patterns that were different to those produced by dragging. By comparing trace soil patterns transferred to bras using each transfer method, it was revealed that certain transfer patterns on bras could indicate how the fabric had made contact with a soil surface. A photographic method was developed for crime scene examiners to capture this often subtle soil evidence before a body is transported or the clothing removed. This improved understanding of the dynamics of soil transference to bras and related clothing fabric may assist forensic investigators reconstruct the circumstances of a variety of forensic events. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Study of the Drag Characteristics and Polymer Diffusion in the Boundary Layer of an Axisymmetric Body

    Science.gov (United States)

    1976-03-12

    Reduction in Pipe Flow at R =14xl03 (from Hoyt (1972)) Guar Gum Karaya Polyox WSR 301 400 850 10 Polyacrylamide, Polyhall-250 20 21 ■.I...shown to be effec- tive drag reducers. Polysaccharides ( Guar ), polyethylene oxide, polyacrylamides, and sodium carboxymethyl...sifting the premeasured polyox powder onto the surface of the carefully weighed water which was being slowly stirred by a magnetic mixing bar. After a

  12. Metal-organic framework superhydrophobic coating on Kevlar fabric with efficient drag reduction and wear resistance

    Science.gov (United States)

    Li, Deke; Guo, Zhiguang

    2018-06-01

    Superhydrophobic layers are extremely essential for protecting material surface in various applications. In this study, a stable superhydrophobic mixed matrix surface with a 152.2° contact angle can be fabricated through the technology of layer-by-layer hot-pressing (HoP), and then modified by 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES) on the ZIF-8@Kevlar fabric surface. The morphology and chemical composition were analyzed by the means of SEM, XRD and FTIR. The obtained superhydrophobic coatings showed excellent antiwear performance and drag reduction under desired working conditions. Moreover, we successfully applied superhydrophobic F-ZIF-8@Kevlar fabric in the alcohol adsorbent with high removal capacity, and it can be reused for several times without serious efficiency loss.

  13. Measurements of the Drag Coefficient of Simulated Micrometeoroids

    Science.gov (United States)

    DeLuca, M.; Munsat, T.; Sternovsky, Z.

    2017-12-01

    The dust accelerator facility operated at the University of Colorado is used to simulate meteoric ablation, including measuring the ionization efficiency over a wide range of velocities (e.g., DeLuca et al., Planet. Space Sci., submitted, 2017). This presentation reports on the most recent experimental measurements of the drag coefficient that determines the particles' slowdown from their frictional interaction with the atmosphere. The measurements indicate that meteors experience considerably more slowdown than usually assumed. The simulated meteors consisted of submicron sized aluminum particles shot into an air chamber held at 200 mTorr pressure at velocities between 1 - 10 km/s using the dust accelerator and meteor ablation facility. The slowdown is calculated from precise timing measurements made using pickup tube detectors placed upstream and near the entrance to the air chamber, and an impact detector inside the air chamber at the downstream end of the chamber. Supporting modeling calculations show that the particles have little or no mass loss during their interaction with air and thus constant radius can be assumed. Preliminary results for the drag coefficient calculated from these timing measurements reveal that the aluminum particles have a drag coefficient of 1.51 ± 0.24 in air, which is higher than typically assumed in meteoric ablation models (usually 0.5 to 1), indicating that meteors may experience more air drag than previously assumed. More detailed measurements over a wider parameter range are underway.

  14. Investigation of drag effect using the field signature method

    International Nuclear Information System (INIS)

    Wan, Zhengjun; Liao, Junbi; Tian, Gui Yun; Cheng, Liang

    2011-01-01

    The potential drop (PD) method is an established non-destructive evaluation (NDE) technique. The monitoring of internal corrosion, erosion and cracks in piping systems, based on electrical field mapping or direct current potential drop array, is also known as the field signature method (FSM). The FSM has been applied in the field of submarine pipe monitoring and land-based oil and gas transmission pipes and containers. In the experimental studies, to detect and calculate the degree of pipe corrosion, the FSM analyses the relationships between the electrical resistance and pipe thickness using an electrode matrix. The relevant drag effect or trans-resistance will cause a large margin of error in the application of resistance arrays. It is the first time that the drag effect in the paper is investigated and analysed in resistance networks with the help of the FSM. Subsequently, a method to calculate the drag factors and eliminate its errors is proposed and presented. Theoretical analysis, simulation and experimental results show that the measurement accuracy can be improved by eliminating the errors caused by the drag effect

  15. Plasmon-mediated Coulomb drag between graphene waveguides

    DEFF Research Database (Denmark)

    Shylau, Artsem A.; Jauho, Antti-Pekka

    2014-01-01

    We analyze theoretically charge transport in Coulomb coupled graphene waveguides (GWGs). The GWGs are defined using antidot lattices, and the lateral geometry bypasses many technological challenges of earlier designs. The drag resistivity ρD, which is a measure of the many-particle interactions...

  16. Drag reduction of dense fine-grained slurries

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk; Štern, Petr

    2010-01-01

    Roč. 58, č. 4 (2010), s. 261-270 ISSN 0042-790X R&D Projects: GA ČR(CZ) GAP105/10/1574 Institutional research plan: CEZ:AV0Z20600510 Keywords : kaolin slurry * drag reduction * experimental investigation * peptization * slurry rheology Subject RIV: BK - Fluid Dynamics Impact factor: 0.553, year: 2010

  17. Aerodynamic drag reduction tests on a box-shaped vehicle

    Science.gov (United States)

    Peterson, R. L.; Sandlin, D. R.

    1981-01-01

    The intent of the present experiment is to define a near optimum value of drag coefficient for a high volume type of vehicle through the use of a boattail, on a vehicle already having rounded front corners and an underbody seal, or fairing. The results of these tests will constitute a baseline for later follow-on studies to evaluate candidate methods of obtaining afterbody drag coefficients approaching the boattail values, but without resorting to such impractical afterbody extensions. The current modifications to the box-shaped vehicle consisted of a full and truncated boattail in conjunction with the faired and sealed underbody. Drag results from these configurations are compared with corresponding wind tunnel results of a 1/10 scale model. Test velocities ranged up to 96.6 km/h (60 mph) and the corresponding Reynolds numbers ranged up to 1.3 x 10 to the 7th power based on the vehicles length which includes the boattail. A simple coast-down technique was used to define drag.

  18. Experimental investigation of drag reduction by forward facing high ...

    Indian Academy of Sciences (India)

    Substantial aerodynamic drag, while flying at hypersonic Mach number, due to the presence of strong ... atmospheric flight of hypersonic vehicles, large-angle blunt-cone configurations are preferred at the cost of .... This paper is dedicated to Dr P R Viswanath for his contributions to experimental research in aerodynamics.

  19. Drag power kite with very high lift coefficient

    NARCIS (Netherlands)

    Bauer, F.; Kennel, R.M.; Hackl, C.M.; Campagnolo, F.; Patt, M.; Schmehl, R.

    2018-01-01

    As an alternative to conventional wind turbines, this study considered kites with onboard wind turbines driven by a high airspeed due to crosswind flight (“drag power”). The hypothesis of this study was, that if the kite's lift coefficient is maximized, then the power, energy yield, allowed costs

  20. Design and performance of the drag-disc turbine transducer

    International Nuclear Information System (INIS)

    Averill, R.H.; Goodrich, L.D.; Ford, R.E.

    1979-01-01

    Mass flow rates at the Loss-of-Fluid Test (LOFT) facility, EG and G Idaho, Inc., at the Idaho National Engineering Laboratory, are measured with the drag-disc turbine transducer (DTT). Operational description of the DTT and the developmental effort are discussed. Performance data and experiences with this transducer have been evaluated and are presented in this paper

  1. Investigation into the Mechanism of Polymer Thread Drag Reduction

    Science.gov (United States)

    1990-01-01

    They conducted experiments in a 3.75 cm diameter pipe, Re = 85,000, where they injected drag reducing solutions of guar gum and polyacrylamide, P-295 a...manufactured by Dow Chemical. Concentrations of 5000 ppm and 466 ppm based on weight were used in the experiments. The dry powder was suspended in 300

  2. Separability of drag and thrust in undulatory animals and machines

    Science.gov (United States)

    Bale, Rahul; Shirgaonkar, Anup A.; Neveln, Izaak D.; Bhalla, Amneet Pal Singh; Maciver, Malcolm A.; Patankar, Neelesh A.

    2014-12-01

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal-istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation framework helps to predict the observed height of the ribbon fin of electric knifefish, a diverse group of neotropical fish which are an important model system in sensory neurobiology. We also show how drag-thrust separation leads to models that can predict the swimming velocity of an organism or a robotic vehicle.

  3. Deconstructing Hub Drag. Part 2. Computational Development and Anaysis

    Science.gov (United States)

    2013-09-30

    leveraged a Vertical Lift Consortium ( VLC )-funded hub drag scaling research effort. To confirm this objective, correlations are performed with the...Technology™ Demonstrator aircraft using an unstructured computational solver. These simpler faired elliptical geome- tries can prove to be challenging ...possible. However, additional funding was obtained from the Vertical Lift Consortium ( VLC ) to perform this study. This analysis is documented in

  4. Clock transport synchronisation and the dragging of inertial frames

    International Nuclear Information System (INIS)

    Rosenblum, Arnold

    1987-01-01

    It is shown that it is possible, by using the lack of synchronisation of clocks by clock transport synchronisation in circular orbits, to test for the dragging of inertial frames in Einstein's theory of general relativity. Possible experiments are discussed. (author)

  5. Sensitivity test of parameterizations of subgrid-scale orographic form drag in the NCAR CESM1

    Science.gov (United States)

    Liang, Yishuang; Wang, Lanning; Zhang, Guang Jun; Wu, Qizhong

    2017-05-01

    Turbulent drag caused by subgrid orographic form drag has significant effects on the atmosphere. It is represented through parameterization in large-scale numerical prediction models. An indirect parameterization scheme, the Turbulent Mountain Stress scheme (TMS), is currently used in the National Center for Atmospheric Research Community Earth System Model v1.0.4. In this study we test a direct scheme referred to as BBW04 (Beljaars et al. in Q J R Meteorol Soc 130:1327-1347, 10.1256/qj.03.73), which has been used in several short-term weather forecast models and earth system models. Results indicate that both the indirect and direct schemes increase surface wind stress and improve the model's performance in simulating low-level wind speed over complex orography compared to the simulation without subgrid orographic effect. It is shown that the TMS scheme produces a more intense wind speed adjustment, leading to lower wind speed near the surface. The low-level wind speed by the BBW04 scheme agrees better with the ERA-Interim reanalysis and is more sensitive to complex orography as a direct method. Further, the TMS scheme increases the 2-m temperature and planetary boundary layer height over large areas of tropical and subtropical Northern Hemisphere land.

  6. Lift to Drag Ratio Analysis in Magnetic Levitation with an Electrodynamic Wheel

    Science.gov (United States)

    Gutarra-Leon, Angel; Cordrey, Vincent; Majewski, Walerian

    Our experiments explored inductive magnetic levitation (MagLev) using simple permanent magnets and conductive tracks. Our investigations used a circular Halbach array with a 1 Tesla variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above or below a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields, which interact with the magnets of the EDW. We constructed a four-inch diameter Electrodynamic Wheel using twelve Neodymium permanent magnets and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW. These forces can be used for levitation and propulsion of the EDW to produce magnetic levitation without coils and complex control circuitry. We achieved full levitation of the non-magnetic aluminum and copper plates. Our results confirm the expected behavior of lift to drag ratio as proportional to (L/R) ω, with L and R being the inductance and resistance of the track plate, and ω being the angular velocity of the magnetic flux. Supported by grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.

  7. Drag reduction of nata de coco suspensions in circular pipe flow

    Science.gov (United States)

    Warashina, J.; Ogata, S.

    2015-04-01

    Reducing pipe friction by adding a drag-reducing agent has attracted interest as a means to reduce energy consumption. In addition to reducing drag, these agents are required to have a low environmental load and conserve natural resources. However, no drag-reducing agent currently satisfies both these conditions. We focused on nata de coco and found that the nata de coco fiber reduced drag by up to 25%. With respect to the mechanism of drag reduction by nata de coco fiber, the relationship between drag-reduction phenomena and the fiber form of nata de coco was investigated by visualization. We also found that the drag-reduction effect appeared to be due to the formation of networks of tangled fibers of nata de coco. However, drag reduction did not occur in the case in which fibers of nata de coco did not form networks.

  8. An Aerodynamic Database for the Mk 82 General Purpose Low Drag Bomb

    National Research Council Canada - National Science Library

    Krishnamoorthy, L

    1997-01-01

    The drag database of the Mk 82 General Purpose Low Drag bomb, the primary gravity weapon in the RAAF inventory, has some shortcomings in the quality and traceability of data, and in the variations due...

  9. Quantifying drag on wellbore casings in moving salt sheets

    Science.gov (United States)

    Weijermars, R.; Jackson, M. P. A.; Dooley, T. P.

    2014-08-01

    Frontier hydrocarbon development projects in the deepwater slopes of the Gulf of Mexico Basin, Santos Basin and Lower Congo Basin all require wells to cross ductile layers of autochthonous or allochthonous salt moving at peak rates of 100 mm yr-1. The Couette-Poiseuille number is introduced here to help pinpoint the depth of shear stress reversal in such salt layers. For any well-planned through salt, the probable range of creep forces of moving salt needs to be taken into account when designing safety margins and load-factor tolerance of the well casing. Drag forces increase with wellbore diameter, but more significantly with effective viscosity and speed of the creeping salt layer. The potential drag forces on cased wellbores in moving salt sheets are estimated analytically using a range of salt viscosities (1015-1019 Pa s) and creep rates (0-10 mm yr-1). Drag on perfectly rigid casing of infinite strength may reach up to 13 Giga Newton per meter wellbore length in salt having a viscosity of 1019 Pa s. Well designers may delay stress accumulations due to salt drag when flexible casing accommodates some of the early displacement and strain. However, all creeping salt could displace, fracture and disconnect well casing, eventually. The shear strength of typical heavy duty well casing (about 1000 MPa) can be reached due to drag by moving salt. Internal flow of salt will then fracture the casing near salt entry and exit points, but the structural damage is likely to remain unnoticed early in the well-life when the horizontal shift of the wellbore is still negligibly small (at less than 1 cm yr-1). Disruption of casing and production flow lines within the anticipated service lifetime of a well remains a significant risk factor within distinct zones of low-viscosity salt which may reach ultrafast creep rates of 100 mm yr-1.

  10. Reducing drag of a commuter train, using engine exhaust momentum

    Science.gov (United States)

    Ha, Dong Keun

    The objective of this thesis was to perform numerical investigations of two different methods of injecting fluid momentum into the air flow above a commuter train to reduce its drag. Based on previous aerodynamic modifications of heavy duty trucks in improving fuel efficiency, two structural modifications were designed and applied to a Metrolink Services commuter train in the Los Angeles (LA) County area to reduce its drag and subsequently improve fuel efficiency. The first modification was an L-shaped channel, added to the exhaust cooling fan above the locomotive roof to divert and align the exhaust gases in the axial direction. The second modification was adding an airfoil shaped lid over the L-shape channel, to minimize the drag of the perturbed structure, and thus reduce the overall drag. The computational fluid dynamic (CFD) software CCM+ from CD-Adapco with the ?-? turbulence model was used for the simulations. A single train set which consists of three vehicles: one locomotive, one trailer car and one cab car were used. All the vehicles were modeled based on the standard Metrolink fleet train size. The wind speed was at 90 miles per hour (mph), which is the maximum speed for the Orange County Metrolink line. Air was used as the exhaust gas in the simulation. The temperature of the exhausting air emitting out of the cooling fan on the roof was 150 F and the average fan speed was 120 mph. Results showed that with the addition of the lid, momentum injection results in reduced flow separation and pressure recovery behind the locomotive, which reduces the overall drag by at least 30%.

  11. Implementation of a turbulent orographic form drag scheme in WRF and its application to the Tibetan Plateau

    Science.gov (United States)

    Zhou, Xu; Yang, Kun; Wang, Yan

    2018-04-01

    Sub-grid-scale orographic variation (smaller than 5 km) exerts turbulent form drag on atmospheric flows and significantly retards the wind speed. The Weather Research and Forecasting model (WRF) includes a turbulent orographic form drag (TOFD) scheme that adds the drag to the surface layer. In this study, another TOFD scheme has been incorporated in WRF3.7, which exerts an exponentially decaying drag from the surface layer to upper layers. To investigate the effect of the new scheme, WRF with the old scheme and with the new one was used to simulate the climate over the complex terrain of the Tibetan Plateau from May to October 2010. The two schemes were evaluated in terms of the direct impact (on wind fields) and the indirect impact (on air temperature and precipitation). The new TOFD scheme alleviates the mean bias in the surface wind components, and clearly reduces the root mean square error (RMSEs) in seasonal mean wind speed (from 1.10 to 0.76 m s-1), when referring to the station observations. Furthermore, the new TOFD scheme also generally improves the simulation of wind profile, as characterized by smaller biases and RMSEs than the old one when referring to radio sounding data. Meanwhile, the simulated precipitation with the new scheme is improved, with reduced mean bias (from 1.34 to 1.12 mm day-1) and RMSEs, which is due to the weakening of water vapor flux at low-level atmosphere with the new scheme when crossing the Himalayan Mountains. However, the simulation of 2-m air temperature is little improved.

  12. A unified view of energetic efficiency in active drag reduction, thrust generation and self-propulsion through a loss coefficient with some applications

    Science.gov (United States)

    Arakeri, Jaywant H.; Shukla, Ratnesh K.

    2013-08-01

    An analysis of the energy budget for the general case of a body translating in a stationary fluid under the action of an external force is used to define a power loss coefficient. This universal definition of power loss coefficient gives a measure of the energy lost in the wake of the translating body and, in general, is applicable to a variety of flow configurations including active drag reduction, self-propulsion and thrust generation. The utility of the power loss coefficient is demonstrated on a model bluff body flow problem concerning a two-dimensional elliptical cylinder in a uniform cross-flow. The upper and lower boundaries of the elliptic cylinder undergo continuous motion due to a prescribed reflectionally symmetric constant tangential surface velocity. It is shown that a decrease in drag resulting from an increase in the strength of tangential surface velocity leads to an initial reduction and eventual rise in the power loss coefficient. A maximum in energetic efficiency is attained for a drag reducing tangential surface velocity which minimizes the power loss coefficient. The effect of the tangential surface velocity on drag reduction and self-propulsion of both bluff and streamlined bodies is explored through a variation in the thickness ratio (ratio of the minor and major axes) of the elliptical cylinders.

  13. Stokes drag on a disc with a Navier slip condition near a plane wall

    International Nuclear Information System (INIS)

    Sherwood, J D

    2013-01-01

    The Stokes drag and couple acting on a disc moving through incompressible Newtonian fluid are investigated for the case when the fluid obeys a Navier slip condition, with slip length b, on the surface of the disc. The fluid is bounded by an infinite plane wall on which there is no slip. The disc, of zero thickness and radius a, is parallel to the wall and distance h from it. Analyses are presented for the limits h ≫ a and h ≪ a; results for intermediate values of the separation h are obtained numerically by means of Tranter's method. The resistance coefficients for translation normal to the disc surface, and for rotation about a diameter, are unaffected by slip when the disc lies in unbounded fluid, but all resistance coefficients depend upon the slip length b when the disc is close to the wall. Their dependence on h becomes weak when b ≫ a. (paper)

  14. Average Skin-Friction Drag Coefficients from Tank Tests of a Parabolic Body of Revolution (NACA RM-10)

    Science.gov (United States)

    Mottard, Elmo J; Loposer, J Dan

    1954-01-01

    Average skin-friction drag coefficients were obtained from boundary-layer total-pressure measurements on a parabolic body of revolution (NACA rm-10, basic fineness ratio 15) in water at Reynolds numbers from 4.4 x 10(6) to 70 x 10(6). The tests were made in the Langley tank no. 1 with the body sting-mounted at a depth of two maximum body diameters. The arithmetic mean of three drag measurements taken around the body was in good agreement with flat-plate results, but, apparently because of the slight surface wave caused by the body, the distribution of the boundary layer around the body was not uniform over part of the Reynolds number range.

  15. Mid-Lift-to-Drag Ratio Rigid Vehicle Control System Design and Simulation for Human Mars Entry

    Science.gov (United States)

    Johnson, Breanna J.; Cerimele, Christopher J.; Stachowiak, Susan J.; Sostaric, Ronald R.; Matz, Daniel A.; Lu, Ping

    2018-01-01

    The Mid-Lift-to-Drag Ratio Rigid Vehicle (MRV) is a proposed candidate in the NASA Evolvable Mars Campaign's (EMC) Pathfinder Entry, Descent, and Landing (EDL) architecture study. The purpose of the study is to design a mission and vehicle capable of transporting a 20mt payload to the surface of Mars. The MRV is unique in its rigid, asymmetrical lifting-body shape which enables a higher lift-to-drag ratio (L/D) than the typical robotic Mars entry capsule vehicles that carry much less mass. This paper presents the formulation and six-degree-of-freedom (6DOF) performance of the MRV's control system, which uses both aerosurfaces and a propulsive reaction control system (RCS) to affect longitudinal and lateral directional behavior.

  16. Moffies, artists, and queens: race and the production of South African gay male drag.

    Science.gov (United States)

    Swarr, Amanda Lock

    2004-01-01

    This article draws on seventeen months of ethnographic fieldwork in South Africa to explore the experiences of urban and township drag performers. I show that two distinct sex-gender-sexuality systems have emerged based in the sociopolitical history of South Africa, and I argue that urban drag produces race oppositionally and examine how township femininity creates raced forms of gender, sex, and sexuality. Contemporary South African drag foregrounds the performativity and constitution of race and gender. My analysis attempts to challenge definitions of "drag" and "audience," suggesting the necessity for an integrated reconceptualization of drag studies.

  17. Experimental Investigation of the Fresnel Drag Effect in RF Coaxial Cables

    Directory of Open Access Journals (Sweden)

    Brotherton D.

    2011-01-01

    Full Text Available An experiment that confirms the Fresnel drag formalism in RF coaxial cables is reported. The Fresnel "drag" in bulk dielectrics and in optical fibers has previously been well established. An explanation for this formalism is given, and it is shown that there is no actual drag phenomenon, rather that the Fresnel drag effect is merely the consequence of a simplified description of EM scattering within a dielectric in motion wrt the dynamical 3-space. The Fresnel drag effect plays a critical role in the design of various light-speed anisotropy detectors.

  18. Intelligent Control for Drag Reduction on the X-48B Vehicle

    Science.gov (United States)

    Griffin, Brian Joseph; Brown, Nelson Andrew; Yoo, Seung Yeun

    2011-01-01

    This paper focuses on the development of an intelligent control technology for in-flight drag reduction. The system is integrated with and demonstrated on the full X-48B nonlinear simulation. The intelligent control system utilizes a peak-seeking control method implemented with a time-varying Kalman filter. Performance functional coordinate and magnitude measurements, or independent and dependent parameters respectively, are used by the Kalman filter to provide the system with gradient estimates of the designed performance function which is used to drive the system toward a local minimum in a steepestdescent approach. To ensure ease of integration and algorithm performance, a single-input single-output approach was chosen. The framework, specific implementation considerations, simulation results, and flight feasibility issues related to this platform are discussed.

  19. Experimental Results from a Flat Plate, Turbulent Boundary Layer Modified for the Purpose of Drag Reduction

    Science.gov (United States)

    Elbing, Brian R.

    2006-11-01

    Recent experiments on a flat plate, turbulent boundary layer at high Reynolds numbers (>10^7) were performed to investigate various methods of reducing skin friction drag. The methods used involved injecting either air or a polymer solution into the boundary layer through a slot injector. Two slot injectors were mounted on the model with one located 1.4 meters downstream of the nose and the second located 3.75 meters downstream. This allowed for some synergetic experiments to be performed by varying the injections from each slot and comparing the skin friction along the plate. Skin friction measurements were made with 6 shear stress sensors flush mounted along the stream-wise direction of the model.

  20. Controlling turbulent drag across electrolytes using electric fields.

    Science.gov (United States)

    Ostilla-Mónico, Rodolfo; Lee, Alpha A

    2017-07-01

    Reversible in operando control of friction is an unsolved challenge that is crucial to industrial tribology. Recent studies show that at low sliding velocities, this control can be achieved by applying an electric field across electrolyte lubricants. However, the phenomenology at high sliding velocities is yet unknown. In this paper, we investigate the hydrodynamic friction across electrolytes under shear beyond the transition to turbulence. We develop a novel, highly parallelised numerical method for solving the coupled Navier-Stokes Poisson-Nernst-Planck equation. Our results show that turbulent drag cannot be controlled across dilute electrolytes using static electric fields alone. The limitations of the Poisson-Nernst-Planck formalism hint at ways in which turbulent drag could be controlled using electric fields.

  1. Wave drag reduction due to a self-aligning aerodisk

    Science.gov (United States)

    Schnepf, Ch.; Wysocki, O.; Schülein, E.

    2015-06-01

    The effect of a self-aligning aerodisk on the wave drag of a blunt slender body in a pitching maneuver has been numerically investigated. The self-alignment was realized by a coupling of the flow solver and a flight mechanics tool. The slender body was pitched with high repetition rate between α = 0° and 20° at M = 1.41. Even at high α, the concept could align the aerodisk to the oncoming flow. In comparison to the reference body without a self-aligning aerodisk, a distinct drag reduction is achieved. A comparison with existing experimental data shows a qualitatively good agreement considering the shock and separation structure and the kinematics of the aerodisk.

  2. Collisionless ion drag force on a spherical grain

    International Nuclear Information System (INIS)

    Hutchinson, I H

    2006-01-01

    The ion drag force on a spherical grain situated in a flowing collisionless plasma is obtained from the specialized coordinate electrostatic particle and thermals in cell simulation code (SCEPTIC) (Hutchinson 2002 Plasma Phys. Control. Fusion 44 1953, Hutchinson 2003 Plasma Phys. Control. Fusion 45 1477, Hutchinson 2005 Plasma Phys. Control. Fusion 47 71) and compared with recent analytic approximate treatments in the interesting and relevant case when the Debye length is only moderately larger than the sphere radius. There is a substantial complex structure in the results for transonic flows, which is explained in terms of the details of ion orbits. Naturally the prior analytic approximations miss this structure, and as a result they seriously underestimate the drag for speeds near the sound speed. An easy-to-evaluate expression for force is provided that fits the comprehensive results of the code. This expression, with minor modification, also fits the results even for Debye length much smaller than the sphere radius

  3. Suboptimal control for drag reduction in turbulent pipe flow

    International Nuclear Information System (INIS)

    Choi, Jung Il; Sung, Hyung Jin; Xu, Chun Xiao

    2001-01-01

    A suboptimal control law in turbulent pipe flow is derived and tested. Two sensing variables ∂ρ/∂θ / w and ∂ν θ /∂r / w are applied with two actuations φ θ and φ γ . To test the suboptimal control law, direct numerical simulations of turbulent pipe flow at Re τ =150 are performed. When the control law is applied, a 13∼23% drag reduction is achieved. The most effective drag reduction is made at the pair of ∂υ θ /∂r / w and φ γ . An impenetrable virtual wall concept is useful for analyzing the near-wall suction and blowing. The virtual wall concept is useful for analyzing the near-wall behavior of the controlled flow. Comparison of the present suboptimal control with that of turbulent channel flow reveals that the curvature effect is insignificant

  4. Simultaneous drag and flow measurements of Olympic skeleton athletes

    Science.gov (United States)

    Moon, Yae Eun; Digiulio, David; Peters, Steve; Wei, Timothy

    2009-11-01

    The Olympic sport of skeleton involves an athlete riding a small sled face first down a bobsled track at speeds up to 130 km/hr. In these races, the difference between gold and missing the medal stand altogether can be hundredths of a second per run. As such, reducing aerodynamic drag through proper body positioning is of first order importance. To better study the flow behavior and to improve the performance of the athletes, we constructed a static force balance system on a mock section of a bobsled track. Athlete and the sled are placed on the force balance system which is positioned at the exit of an open loop wind tunnel. Simultaneous drag force and DPIV velocity field measurements were made along with video recordings of body position to aid the athletes in determining their optimal aerodynamic body position.

  5. Physics and control of wall turbulence for drag reduction.

    Science.gov (United States)

    Kim, John

    2011-04-13

    Turbulence physics responsible for high skin-friction drag in turbulent boundary layers is first reviewed. A self-sustaining process of near-wall turbulence structures is then discussed from the perspective of controlling this process for the purpose of skin-friction drag reduction. After recognizing that key parts of this self-sustaining process are linear, a linear systems approach to boundary-layer control is discussed. It is shown that singular-value decomposition analysis of the linear system allows us to examine different approaches to boundary-layer control without carrying out the expensive nonlinear simulations. Results from the linear analysis are consistent with those observed in full nonlinear simulations, thus demonstrating the validity of the linear analysis. Finally, fundamental performance limit expected of optimal control input is discussed.

  6. Drag reduction of a car model by linear genetic programming control

    Science.gov (United States)

    Li, Ruiying; Noack, Bernd R.; Cordier, Laurent; Borée, Jacques; Harambat, Fabien

    2017-08-01

    We investigate open- and closed-loop active control for aerodynamic drag reduction of a car model. Turbulent flow around a blunt-edged Ahmed body is examined at ReH≈ 3× 105 based on body height. The actuation is performed with pulsed jets at all trailing edges (multiple inputs) combined with a Coanda deflection surface. The flow is monitored with 16 pressure sensors distributed at the rear side (multiple outputs). We apply a recently developed model-free control strategy building on genetic programming in Dracopoulos and Kent (Neural Comput Appl 6:214-228, 1997) and Gautier et al. (J Fluid Mech 770:424-441, 2015). The optimized control laws comprise periodic forcing, multi-frequency forcing and sensor-based feedback including also time-history information feedback and combinations thereof. Key enabler is linear genetic programming (LGP) as powerful regression technique for optimizing the multiple-input multiple-output control laws. The proposed LGP control can select the best open- or closed-loop control in an unsupervised manner. Approximately 33% base pressure recovery associated with 22% drag reduction is achieved in all considered classes of control laws. Intriguingly, the feedback actuation emulates periodic high-frequency forcing. In addition, the control identified automatically the only sensor which listens to high-frequency flow components with good signal to noise ratio. Our control strategy is, in principle, applicable to all multiple actuators and sensors experiments.

  7. Implementations of non-drag interfacial forces into the CUPID code

    International Nuclear Information System (INIS)

    Park, I.K.; Cho, H.K.; Kim, J.; Yoon, H.Y.; Jeong, J.J.

    2009-01-01

    A component-scale thermal-hydraulics analysis module, the CUPID code has been being developed for a transient three-dimensional two-phase flow analysis of nuclear reactor components. The CUPID is based on a two-fluid, three-field model, which is solved by using an unstructured finite volume method. In the two-fluid momentum equation, the most important term to be modeled is the interfacial surface force. The simplest way to model this force is to formulate as the linear combination of various known interfacial forces such as the standard drag force, the virtual mass force, the Basset force, the lift force, the wall lift force, and the turbulent dispersion force. The standard drag force and the virtual mass force, which is essential for two-fluid computational models, are already considered in the CUPID code. In this paper, the wall lubrication force, the lift force, and the turbulent dispersion force including turbulence models, which play an important role on a radial distribution of the void in a two-phase flow, were implemented into the CUPID code, and the effect of these forces were verified qualitatively. (author)

  8. Local and nonlocal advected invariants and helicities in magnetohydrodynamics and gas dynamics I: Lie dragging approach

    International Nuclear Information System (INIS)

    Webb, G M; Dasgupta, B; McKenzie, J F; Hu, Q; Zank, G P

    2014-01-01

    In this paper advected invariants and conservation laws in ideal magnetohydrodynamics (MHD) and gas dynamics are obtained using Lie dragging techniques. There are different classes of invariants that are advected or Lie dragged with the flow. Simple examples are the advection of the entropy S (a 0-form), and the conservation of magnetic flux (an invariant 2-form advected with the flow). The magnetic flux conservation law is equivalent to Faraday's equation. The gauge condition for the magnetic helicity to be advected with the flow is determined. Different variants of the helicity in ideal fluid dynamics and MHD including: fluid helicity, cross helicity and magnetic helicity are investigated. The fluid helicity conservation law and the cross-helicity conservation law in MHD are derived for the case of a barotropic gas. If the magnetic field lies in the constant entropy surface, then the gas pressure can depend on both the entropy and the density. In these cases the conservation laws are local conservation laws. For non-barotropic gases, we obtain nonlocal conservation laws for fluid helicity and cross helicity by using Clebsch variables. These nonlocal conservation laws are the main new results of the paper. Ertel's theorem and potential vorticity, the Hollman invariant, and the Godbillon–Vey invariant for special flows for which the magnetic helicity is zero are also discussed. (paper)

  9. Aerodynamic drag reduction of a simplified squareback vehicle using steady blowing

    Energy Technology Data Exchange (ETDEWEB)

    Littlewood, R.P. [LaVisionUK Ltd, Grove, Oxon (United Kingdom); Passmore, M.A. [Loughborough University, Department of Aeronautical and Automotive Engineering, Loughborough (United Kingdom)

    2012-08-15

    A large contribution to the aerodynamic drag of a vehicle arises from the failure to fully recover pressure in the wake region, especially on squareback configurations. A degree of base pressure recovery can be achieved through careful shape optimisation, but the freedom of an automotive aerodynamicist to implement significant shape changes is limited by a variety of additional factors such styling, ergonomics and loading capacity. Active flow control technologies present the potential to create flow field modifications without the need for external shape changes and have received much attention in previous years within the aeronautical industry and, more recently, within the automotive industry. In this work the influence of steady blowing applied at a variety of angles on the roof trailing edge of a simplified 1/4 scale squareback style vehicle has been investigated. Hot-wire anemometry, force balance measurements, surface pressure measurements and PIV have been used to investigate the effects of the steady blowing on the vehicle wake structures and the resulting body forces. The energy consumption of the steady jet is calculated and is used to deduce an aerodynamic drag power change. Results show that overall gains can be achieved; however, the large mass flow rate required restricts the applicability of the technique to road vehicles. Means by which the mass flow rate requirements of the jet may be reduced are discussed and suggestions for further work put forward. (orig.)

  10. Reducing Aerodynamic Drag on Empty Open Cargo Vehicles

    Science.gov (United States)

    Ross, James C.; Storms, Bruce L.; Dzoan, Dan

    2009-01-01

    Some simple structural modifications have been demonstrated to be effective in reducing aerodynamic drag on vehicles that have empty open cargo bays. The basic idea is to break up the airflow in a large open cargo bay by inserting panels to divide the bay into a series of smaller bays. In the case of a coal car, this involves inserting a small number (typically between two and four) of vertical full-depth or partial-depth panels.

  11. The effects of Poynting-Robertson drag on solar sails

    Science.gov (United States)

    Abd El-Salam, F. A.

    2018-06-01

    In the present work, the concept of solar sailing and its developing spacecraft are presented. The effects of Poynting-Robertson drag on solar sails are considered. Some analytical control laws with some mentioned input constraints for optimizing solar sails dynamics in heliocentric orbit using Lagrange's planetary equations are obtained. Optimum force vector in a required direction is maximized by deriving optimal sail cone angle. New control laws that maximize thrust to obtain certain required maximization in some particular orbital element are obtained.

  12. Stokes’ and Lamb's viscous drag laws

    International Nuclear Information System (INIS)

    Eames, I; Klettner, C A

    2017-01-01

    Since Galileo used his pulse to measure the time period of a swinging chandelier in the 17th century, pendulums have fascinated scientists. It was not until Stokes' (1851 Camb. Phil. Soc. 9 8–106) (whose interest was spurred by the pendulur time pieces of the mid 19th century) treatise on viscous flow that a theoretical framework for the drag on a sphere at low Reynolds number was laid down. Stokes' famous drag law has been used to determine two fundamental physical constants—the charge on an electron and Avogadro's constant—and has been used in theories which have won three Nobel prizes. Considering its illustrious history it is then not surprising that the flow past a sphere and its two-dimensional analog, the flow past a cylinder, form the starting point of teaching flow past a rigid body in undergraduate level fluid mechanics courses. Usually starting with the two-dimensional potential flow past a cylinder, students progress to the three-dimensional potential flow past a sphere. However, when the viscous flow past rigid bodies is taught, the three-dimensional example of a sphere is first introduced, and followed by (but not often), the two-dimensional viscous flow past a cylinder. The reason why viscous flow past a cylinder is generally not taught is because it is usually explained from an asymptotic analysis perspective. In fact, this added mathematical complexity is why the drag on a cylinder was only solved in 1911, 60 years after the drag on a sphere. In this note, we show that the viscous flow past a cylinder can be explained without the need to introduce any asymptotic analysis while still capturing all the physical insight of this classic fluid mechanics problem. (paper)

  13. The influence of numerical models on determining the drag coefficient

    Directory of Open Access Journals (Sweden)

    Dobeš Josef

    2014-03-01

    Full Text Available The paper deals with numerical modelling of body aerodynamic drag coefficient in the transition from laminar to turbulent flow regimes, where the selection of a suitable numerical model is problematic. On the basic problem of flow around a simple body – sphere selected computational models are tested. The values obtained by numerical simulations of drag coefficients of each model are compared with the graph of dependency of the drag coefficient vs. Reynolds number for a sphere. Next the dependency of Strouhal number vs. Reynolds number is evaluated, where the vortex shedding frequency values for given speed are obtained numerically and experimentally and then the values are compared for each numerical model and experiment. The aim is to specify trends for the selection of appropriate numerical model for flow around bodies problem in which the precise description of the flow field around the obstacle is used to define the acoustic noise source. Numerical modelling is performed by finite volume method using CFD code.

  14. Drag reduction: enticing turbulence, and then an industry.

    Science.gov (United States)

    Spalart, Philippe R; McLean, J Douglas

    2011-04-13

    We examine drag-reduction proposals, as presented in this volume and in general, first with concrete examples of how to bridge the distance from pure science through engineering to what makes inventions go into service; namely, the value to the public. We point out that the true drag reduction can be markedly different from an estimate based simply on the difference between turbulent and laminar skin friction over the laminarized region, or between the respective skin frictions of the baseline and the riblet-treated flow. In some situations, this difference is favourable, and is due to secondary differences in pressure drag. We reiterate that the benefit of riblets, if it is expressed as a percentage in skin-friction reduction, is unfortunately lower at full-size Reynolds numbers than in a small-scale experiment or simulation. The Reynolds number-independent measure of such benefits is a shift of the logarithmic law, or 'ΔU(+)'. Anticipating the design of a flight test and then a product, we note the relative ease in representing riblets or laminarization in computational fluid dynamics, in contrast with the huge numerical and turbulence-modelling challenge of resolving active flow control systems in a calculation of the full flow field. We discuss in general terms the practical factors that have limited applications of concepts that would appear more than ready after all these years, particularly riblets and laminar-flow control.

  15. The elaborate plumage in peacocks is not such a drag.

    Science.gov (United States)

    Askew, Graham N

    2014-09-15

    One of the classic examples of an exaggerated sexually selected trait is the elaborate plumage that forms the train in male peafowl Pavo cristatus (peacock). Such ornaments are thought to reduce locomotor performance as a result of their weight and aerodynamic drag, but this cost is unknown. Here, the effect that the train has on take-off flight in peacocks was quantified as the sum of the rates of change of the potential and kinetic energies of the body (P(CoM)) in birds with trains and following the train's removal. There was no significant difference between P(CoM) in birds with and without a train. The train incurs drag during take-off; however, while this produces a twofold increase in parasite drag, parasite power only accounts for 0.1% of the total aerodynamic power. The train represented 6.9% of body weight and is expected to increase induced power. The absence of a detectable effect on take-off performance does not necessarily mean that there is no cost associated with possessing such ornate plumage; rather, it suggests that given the variation in take-off performance per se, the magnitude of any effect of the train has little meaningful functional relevance. © 2014. Published by The Company of Biologists Ltd.

  16. Coordination of multiple appendages in drag-based swimming.

    Science.gov (United States)

    Alben, Silas; Spears, Kevin; Garth, Stephen; Murphy, David; Yen, Jeannette

    2010-11-06

    Krill are aquatic crustaceans that engage in long distance migrations, either vertically in the water column or horizontally for 10 km (over 200,000 body lengths) per day. Hence efficient locomotory performance is crucial for their survival. We study the swimming kinematics of krill using a combination of experiment and analysis. We quantify the propulsor kinematics for tethered and freely swimming krill in experiments, and find kinematics that are very nearly metachronal. We then formulate a drag coefficient model which compares metachronal, synchronous and intermediate motions for a freely swimming body with two legs. With fixed leg velocity amplitude, metachronal kinematics give the highest average body speed for both linear and quadratic drag laws. The same result holds for five legs with the quadratic drag law. When metachronal kinematics is perturbed towards synchronous kinematics, an analysis shows that the velocity increase on the power stroke is outweighed by the velocity decrease on the recovery stroke. With fixed time-averaged work done by the legs, metachronal kinematics again gives the highest average body speed, although the advantage over synchronous kinematics is reduced.

  17. Role of Elasto-Inertial Turbulence in Polymer Drag Reduction

    Science.gov (United States)

    Dubief, Yves; Sid, Samir; Terrapon, Vincent

    2017-11-01

    Elasto-Inertial Turbulence (EIT) is a peculiar state of turbulence found in dilute polymer solutions flowing in parallel wall flows over a wide range of Reynolds numbers. At subcritical Reynolds numbers, appropriate boundary conditions trigger EIT, a self-sustaining cycle of energy transfers between thin sheets of stretched polymers and velocity perturbations, which translates into an increase of friction drag. For critical and supercritical Reynolds numbers, polymer additives may lead to significant drag reduction, bounded by the asymptotic state known as Maximum Drag Reduction (MDR). The present research investigates the role of EIT in the dynamics of critical and supercritical Reynolds number wall flows. Using high-fidelity direct numerical simulations of channel flows and the FENE-P model, we establish that (i) EIT is two-dimensional, (ii) the scales essential to the existence of EIT are sub-Kolmogorov, and (iii) EIT drives MDR at low and possibly moderate Reynolds number turbulent flows. These findings were validated in two different codes and using unprecedented resolutions for polymer flows. YD is grateful for the support of Binational Science Foundation. SS and VT acknowledges Fonds de la Recherche Scientifique (FNRS), MarieCurie Career Integration Grant and computing allocation from University of Liege and PRACE.

  18. Perturbed Partial Cavity Drag Reduction at High Reynolds Numbers

    Science.gov (United States)

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    Ventilated partial cavities were investigated at Reynolds numbers to 80 million. These cavities could be suitable for friction drag reduction on ocean going vessels and thereby lead to environmental and economical benefits. The test model was a 3.05 m wide by 12.9 m long flat plate, with a 0.18 m backward-facing step and a cavity-terminating beach, which had an adjustable slope, tilt and height. The step and beach trapped a ventilated partial cavity over the longitudinal mid-section of the model. Large-scale flow perturbations, mimicking the effect of ambient ocean waves were investigated. For the conditions tested a cavity could be maintained under perturbed flow conditions when the gas flux supplied was greater than the minimum required to maintain a cavity under steady conditions, with larger perturbations requiring more excess gas flux to maintain the cavity. High-speed video was used to observe the unsteady three dimensional cavity closure, the overall cavity shape, and the cavity oscillations. Cavities with friction drag reduction exceeding 95% were attained at optimal conditions. A simplified energy cost-benefit analysis of partial cavity drag reduction was also performed. The results suggest that PCDR could potentially lead to energy savings.

  19. Sazonalidade de variáveis biofísicas em regiões semiáridas pelo emprego do sensoriamento remoto Biophysics variables seasonality on surface in semiarid regions by using remote sensing

    Directory of Open Access Journals (Sweden)

    Joseilson O. Rodrigues

    2009-09-01

    Full Text Available Para investigar alterações no albedo, no Índice de Vegetação por Diferença Normalizada (NDVI, no saldo de radiação e no fluxo de calor no solo, em decorrência do regime pluviométrico no semiárido cearense, desenvolveu-se um estudo na bacia do Rio Trussu - Ceará, empregando-se sensoriamento remoto. Foram utilizadas duas imagens Landsat 7 ETM+, datadas de 25-10-2000 e 24-7-2001, sendo as variáveis estimadas pelo emprego do algoritmo SEBAL (Surface Energy Balance Algorithms for Land. Os resultados mostraram que as variáveis investigadas apresentaram alterações entre as duas estações, sendo os maiores valores de albedo registrados na estação seca. O NDVI apresentou maior sensibilidade ao regime hídrico, mostrando alto potencial de recuperação da vegetação ao efeito da precipitação. As margens do Rio Trussu apresentaram NDVI superior a 0,39, sendo indicativo de preservação da mata ciliar. A vegetação da bacia mostrou alto poder resiliente expresso pelo incremento nos valores de NDVI para o ano de 2001. A estação chuvosa exerceu também influência marcante sobre o saldo de radiação e fluxo de calor no solo, confirmando o efeito da estação climática na modificação do balanço de energia sobre a bacia.To investigate the rainfall regime effects over the albedo, NDVI (normalized difference vegetation index, net radiation and soil heat flux in a semiarid region (Northeast of Brazil, a study in the Trussu watershed was developed by using remote sensing. The study focuses on two images (Landsat 7 ETM+ provided by Instituto Nacional de Pesquisas Espaciais (INPE, from October 25, 2000 and July 24, 2001, each of them having a different rainfall regime (dry and wet seasons. The images were analyzed by using the SEBAL algorithm (surface energy balance algorithm for land. The results showed that the amount of rainfall affected the investigated variables, and the highest values of albedo were registered during the dry season

  20. The surface learned from nature

    Science.gov (United States)

    Lim, H.; Kim, W. D.

    2010-07-01

    In this work, I would like to introduce the emerging surface of nature. The surface in nature, has the multi and optimized function with well organized structure. There are so many examples that we learn and apply to technology. First example is self-cleaning surface. Some plants (such as lotus leaf, taro leaf) and the wings of many large-winged insects (such as moth, butterfly, dragonfly) remain their surface clean in the very dirty environment. This self cleaning effect is accomplished by the superhydrophobic surfaces which exhibit the water contact angle of more than 150° with low sliding angle. Generally, the superhydrophobic surface is made up the two factors. One is the surface composition having the low surface tension energy. The other is the surface morphology of hierarchical structure of micro and nano size. Because almost nature surface have the hierarchical structures range from macro to nano size, their topography strength their function to adjust the life in nature environment. The other example is the surface to use for drag reduction. The skin friction drag causes eruptions of air or water resulting in greater drag as the speed is increased. This drag requires more energy to overcome. The shark skin having the fine sharp-edged grooves about 0.1 mm wide known riblet reduces in skin friction drag by being far away the vortex. Among a lot of fuctional surface, the most exciting surface the back of stenocara a kind of desert beetles. Stenocara use the micrometre-sized patterns of hydrophobic, wax-coated and hydrophilic, non-waxy regions on their backs to capture water from fog. This fog-collecting structure improves the water collection of fog-capture film, condenser, engine, and future building. Here, the efforts to realize these emerging functional surfaces in nature on technology are reported with the fabrication method and their properties, especially for the control of surface wettability.

  1. An investigation into the mechanisms of drag reduction of a boat tailed base cavity on a blunt based body

    Science.gov (United States)

    Kehs, Joshua Paul

    It is well documented in the literature that boat-tailed base cavities reduce the drag on blunt based bodies. The majority of the previous work has been focused on the final result, namely reporting the resulting drag reduction or base pressure increase without examining the methods in which such a device changes the fluid flow to enact such end results. The current work investigates the underlying physical means in which these devices change the flow around the body so as to reduce the overall drag. A canonical model with square cross section was developed for the purpose of studying the flow field around a blunt based body. The boat-tailed base cavity tested consisted of 4 panels of length equal to half the width of the body extending from the edges of the base at an angle towards the models center axis of 12°. Drag and surface pressure measurements were made at Reynolds numbers based on width from 2.3x105 to 3.6x10 5 in the Clarkson University high-speed wind tunnel over a range of pitch and yaw angles. Cross-stream hotwire wake surveys were used to identify wake width and turbulence intensities aft of the body at Reynolds numbers of 2.3x105 to 3.0x105. Particle Image Velocimetry (PIV) was used to quantify the flow field in the wake of the body, including the mean flow, vorticity, and turbulence measurements. The results indicated that the boat-tailed aft cavity decreases the drag significantly due to increased pressure on the base. Hotwire measurements indicated a reduction in wake width as well as a reduction in turbulence in the wake. PIV measurements indicated a significant reduction in wake turbulence and revealed that there exists a co-flowing stream that exits the cavity parallel to the free stream, reducing the shear in the flow at the flow separation point. The reduction in shear at the separation point indicated the method by which the turbulence was reduced. The reduction in turbulence combined with the reduction in wake size provided the mechanism

  2. Oral cavity hydrodynamics and drag production in Balaenid whale suspension feeding.

    Directory of Open Access Journals (Sweden)

    Jean Potvin

    Full Text Available Balaenid whales feed on large aggregates of small and slow-moving prey (predominantly copepods through a filtration process enabled by baleen. These whales exhibit continuous filtration, namely, with the mouth kept partially opened and the baleen exposed to oncoming prey-laden waters while fluking. The process is an example of crossflow filtration (CFF in which most of the particulates (prey are separated from the substrate (water without ever coming into contact with the filtering surface (baleen. This paper discusses the simulation of baleen filtration hydrodynamics based on a type of hydraulic circuit modeling commonly used in microfluidics, but adapted to the much higher Reynolds number flows typical of whale hydrodynamics. This so-called Baleen Hydraulic Circuit (BHC model uses as input the basic characteristics of the flows moving through a section of baleen observed in a previous flume study by the authors. The model has low-spatial resolution but incorporates the effects of fluid viscosity, which doubles or more a whale's total body drag in comparison to non-feeding travel. Modeling viscous friction is crucial here since exposing the baleen system to the open ocean ends up tripling a whale's total wetted surface area. Among other findings, the BHC shows how CFF is enhanced by a large filtration surface and hence large body size; how it is carried out via the establishment of rapid anteroposterior flows transporting most of the prey-water slurry towards the oropharyngeal wall; how slower intra-baleen flows manage to transfer most of the substrate out of the mouth, all the while contributing only a fraction to overall oral cavity drag; and how these anteroposterior and intra-baleen flows lose speed as they approach the oropharyngeal wall.

  3. Oral cavity hydrodynamics and drag production in Balaenid whale suspension feeding.

    Science.gov (United States)

    Potvin, Jean; Werth, Alexander J

    2017-01-01

    Balaenid whales feed on large aggregates of small and slow-moving prey (predominantly copepods) through a filtration process enabled by baleen. These whales exhibit continuous filtration, namely, with the mouth kept partially opened and the baleen exposed to oncoming prey-laden waters while fluking. The process is an example of crossflow filtration (CFF) in which most of the particulates (prey) are separated from the substrate (water) without ever coming into contact with the filtering surface (baleen). This paper discusses the simulation of baleen filtration hydrodynamics based on a type of hydraulic circuit modeling commonly used in microfluidics, but adapted to the much higher Reynolds number flows typical of whale hydrodynamics. This so-called Baleen Hydraulic Circuit (BHC) model uses as input the basic characteristics of the flows moving through a section of baleen observed in a previous flume study by the authors. The model has low-spatial resolution but incorporates the effects of fluid viscosity, which doubles or more a whale's total body drag in comparison to non-feeding travel. Modeling viscous friction is crucial here since exposing the baleen system to the open ocean ends up tripling a whale's total wetted surface area. Among other findings, the BHC shows how CFF is enhanced by a large filtration surface and hence large body size; how it is carried out via the establishment of rapid anteroposterior flows transporting most of the prey-water slurry towards the oropharyngeal wall; how slower intra-baleen flows manage to transfer most of the substrate out of the mouth, all the while contributing only a fraction to overall oral cavity drag; and how these anteroposterior and intra-baleen flows lose speed as they approach the oropharyngeal wall.

  4. Solar and Drag Sail Propulsion: From Theory to Mission Implementation

    Science.gov (United States)

    Johnson, Les; Alhorn, Dean; Boudreaux, Mark; Casas, Joe; Stetson, Doug; Young, Roy

    2014-01-01

    Solar and drag sail technology is entering the mainstream for space propulsion applications within NASA and around the world. Solar sails derive propulsion by reflecting sunlight from a large, mirror- like sail made of a lightweight, reflective material. The continuous sunlight pressure provides efficient primary propulsion, without the expenditure of propellant or any other consumable, allowing for very high V maneuvers and long-duration deep space exploration. Drag sails increase the aerodynamic drag on Low Earth Orbit (LEO) spacecraft, providing a lightweight and relatively inexpensive approach for end-of-life deorbit and reentry. Since NASA began investing in the technology in the late 1990's, significant progress has been made toward their demonstration and implementation in space. NASA's Marshall Space Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the interim, NASA MSFC funded the NanoSail-D, a subscale drag sail system designed for small spacecraft applications. The NanoSail-D flew aboard the Fast Affordable Science and Technology SATellite (FASTSAT) in 2010, also developed by MSFC

  5. Influence of drag closures and inlet conditions on bubble dynamics and flow behavior inside a bubble column

    Directory of Open Access Journals (Sweden)

    Amjad Asad

    2017-01-01

    Full Text Available In this paper, the hydrodynamics of a bubble column is investigated numerically using the discrete bubble model, which tracks the dispersed bubbles individually in a liquid column. The discrete bubble model is combined with the volume of fluid approach to account for a proper free surface boundary condition at the liquid–gas interface. This improves describing the backflow region, which takes place close to the wall region. The numerical simulation is conducted by means of the open source computational fluid dynamics library OpenFOAM®. In order to validate the numerical model, experimental results of a bubble column are used. The numerical prediction shows an overall good agreement compared to the experimental data. The effect of injection conditions and the influence of the drag closures on bubble dynamics are investigated in the current paper. Here, the significant effect of injection boundary conditions on bubble dynamics and flow velocity in the studied cavity is revealed. Moreover, the impact of the choice of the drag closure on the liquid velocity field and on bubble behavior is indicated by comparing three drag closures derived from former studies.

  6. varying elastic parameters distributions

    KAUST Repository

    Moussawi, Ali

    2014-12-01

    The experimental identication of mechanical properties is crucial in mechanics for understanding material behavior and for the development of numerical models. Classical identi cation procedures employ standard shaped specimens, assume that the mechanical elds in the object are homogeneous, and recover global properties. Thus, multiple tests are required for full characterization of a heterogeneous object, leading to a time consuming and costly process. The development of non-contact, full- eld measurement techniques from which complex kinematic elds can be recorded has opened the door to a new way of thinking. From the identi cation point of view, suitable methods can be used to process these complex kinematic elds in order to recover multiple spatially varying parameters through one test or a few tests. The requirement is the development of identi cation techniques that can process these complex experimental data. This thesis introduces a novel identi cation technique called the constitutive compatibility method. The key idea is to de ne stresses as compatible with the observed kinematic eld through the chosen class of constitutive equation, making possible the uncoupling of the identi cation of stress from the identi cation of the material parameters. This uncoupling leads to parametrized solutions in cases where 5 the solution is non-unique (due to unknown traction boundary conditions) as demonstrated on 2D numerical examples. First the theory is outlined and the method is demonstrated in 2D applications. Second, the method is implemented within a domain decomposition framework in order to reduce the cost for processing very large problems. Finally, it is extended to 3D numerical examples. Promising results are shown for 2D and 3D problems.

  7. Preliminary measurement of the drag force on a porous cylinder with fluid evolution under conditions relevant to pulverised-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Dijan Supramono; Graham J. Nathan; Peter J. Ashman; Peter J. Mullinger [University of Adelaide, Adelaide, SA (Australia). Cooperative Research Centre for Clean Power from Lignite, Schools of Chemical Engineering and Mechanical Engineering

    2003-07-01

    The trajectories of the particles in pulverised coal combustion systems determine their residence times and reaction environments, and hence coal burnout and flame length. The trajectories, in turn, depend upon the drag coefficient of the particle. The effect of the evolution of fluid from the surface of the particle on this coefficient has never been measured before, particularly at the low particle Reynolds numbers that apply during coal combustion. Therefore mathematical models must rely on assumed sphere drag coefficients, which do not account for the effect of fluid evolving from the surface. A technique of using a porous cylinder mounted on a pendulum, instead of a sphere, through which fluid can be forced to evolve, simulating fluid evolution in coal devolatilisation and char burning, is used. The pendulum is capable of measuring drag forces of the order of 10-5 to 10-6 Newton, at Reynolds numbers similar to that experienced by coal particles. This paper presents preliminary measurements of drag force at relevant conditions. The working fluid is water in the first instance, although it will be extended to diluted glycerine in the future. The cross flow is provided by a water tunnel and the ejected fluid is induced by a separate pump. Both the Reynolds number and the ratio of evolution velocity to free-stream velocity are chosen to span conditions relevant to pulverised coal combustion. 16 refs., 5 figs., 2 tabs.

  8. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    Science.gov (United States)

    Peng, Shiqiu; Li, Yineng

    2015-01-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models. PMID:26499262

  9. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    Science.gov (United States)

    Peng, Shiqiu; Li, Yineng

    2015-10-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models.

  10. Drag Reduction by Laser-Plasma Energy Addition in Hypersonic Flow

    International Nuclear Information System (INIS)

    Oliveira, A. C.; Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr; Myrabo, L. N.

    2008-01-01

    An experimental study was conducted to investigate the drag reduction by laser-plasma energy addition in a low density Mach 7 hypersonic flow. The experiments were conducted in a shock tunnel and the optical beam of a high power pulsed CO 2 TEA laser operating with 7 J of energy and 30 MW peak power was focused to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The non-intrusive schlieren optical technique was used to visualize the effects of the energy addition to hypersonic flow, from the plasma generation until the mitigation of the shock wave profile over the model surface. Aside the optical technique, a piezoelectric pressure transducer was used to measure the impact pressure at stagnation point of the hemispherical model and the pressure reduction could be observed

  11. Entry, Descent, and Landing Performance for a Mid-Lift-to-Drag Ratio Vehicle at Mars

    Science.gov (United States)

    Johnson, Breanna J.; Braden, Ellen M.; Sostaric, Ronald R.; Cerimele, Christopher J.; Lu, Ping

    2018-01-01

    In an effort to mature the design of the Mid-Lift-to-Drag ratio Rigid Vehicle (MRV) candidate of the NASA Evolvable Mars Campaign (EMC) architecture study, end-to-end six-degree-of-freedom (6DOF) simulations are needed to ensure a successful entry, descent, and landing (EDL) design. The EMC study is assessing different vehicle and mission architectures to determine which candidate would be best to deliver a 20 metric ton payload to the surface of Mars. Due to the large mass payload and the relatively low atmospheric density of Mars, all candidates of the EMC study propose to use Supersonic Retro-Propulsion (SRP) throughout the descent and landing phase, as opposed to parachutes, in order to decelerate to a subsonic touchdown. This paper presents a 6DOF entry-to-landing performance and controllability study with sensitivities to dispersions, particularly in the powered descent and landing phases.

  12. A Mission-Adaptive Variable Camber Flap Control System to Optimize High Lift and Cruise Lift-to-Drag Ratios of Future N+3 Transport Aircraft

    Science.gov (United States)

    Urnes, James, Sr.; Nguyen, Nhan; Ippolito, Corey; Totah, Joseph; Trinh, Khanh; Ting, Eric

    2013-01-01

    Boeing and NASA are conducting a joint study program to design a wing flap system that will provide mission-adaptive lift and drag performance for future transport aircraft having light-weight, flexible wings. This Variable Camber Continuous Trailing Edge Flap (VCCTEF) system offers a lighter-weight lift control system having two performance objectives: (1) an efficient high lift capability for take-off and landing, and (2) reduction in cruise drag through control of the twist shape of the flexible wing. This control system during cruise will command varying flap settings along the span of the wing in order to establish an optimum wing twist for the current gross weight and cruise flight condition, and continue to change the wing twist as the aircraft changes gross weight and cruise conditions for each mission segment. Design weight of the flap control system is being minimized through use of light-weight shape memory alloy (SMA) actuation augmented with electric actuators. The VCCTEF program is developing better lift and drag performance of flexible wing transports with the further benefits of lighter-weight actuation and less drag using the variable camber shape of the flap.

  13. Analysis of Satellite Drag Coefficient Based on Wavelet Transform

    Science.gov (United States)

    Liu, Wei; Wang, Ronglan; Liu, Siqing

    Abstract: Drag coefficient sequence was obtained by solving Tiangong1 continuous 55days GPS orbit data with different arc length. The same period solar flux f10.7 and geomagnetic index Ap ap series were high and low frequency multi-wavelet decomposition. Statistical analysis results of the layers sliding correlation between space environmental parameters and decomposition of Cd, showed that the satellite drag coefficient sequence after wavelet decomposition and the corresponding level of f10.7 Ap sequence with good lag correlation. It also verified that the Cd prediction is feasible. Prediction residuals of Cd with different regression models and different sample length were analysed. The results showed that the case was best when setting sample length 20 days and f10.7 regression model were used. It also showed that NRLMSIS-00 model's response in the region of 350km (Tiangong's altitude) and low-middle latitude (Tiangong's inclination) is excessive in ascent stage of geomagnetic activity Ap and is inadequate during fall off segment. Additionally, the low-frequency decomposition components NRLMSIS-00 model's response is appropriate in f10.7 rising segment. High frequency decomposition section, Showed NRLMSIS-00 model's response is small-scale inadequate during f10.7 ascent segment and is reverse in decline of f10.7. Finally, the potential use of a summary and outlook were listed; This method has an important reference value to improve the spacecraft orbit prediction accuracy. Key words: wavelet transform; drag coefficient; lag correlation; Tiangong1;space environment

  14. Resistive Heating and Ion Drag in Saturn's Thermosphere

    Science.gov (United States)

    Vriesema, Jess William; Koskinen, Tommi; Yelle, Roger V.

    2017-10-01

    One of the most puzzling observations of the jovian planets is that the thermospheres of Jupiter, Saturn, Uranus and Neptune are all several times hotter than solar heating can account for (Strobel and Smith 1973; Yelle and Miller 2004; Muller-Wodarg et al. 2006). On Saturn, resistive heating appears sufficient to explain these temperatures in auroral regions, but the particular mechanism(s) responsible for heating the lower latitudes remains unclear. The most commonly proposed heating mechanisms are breaking gravity waves and auroral heating at the poles followed by redistribution of energy to mid-and low latitudes. Both of these energy sources are potentially important but also come with significant problems. Wave heating would have to be continuous and global to produce consistently elevated temperatures and the strong Coriolis forces coupled with polar ion drag appear to hinder redistribution of auroral energy (see Strobel et al. 2016 for review). Here we explore an alternative: wind-driven electrodynamics that can alter circulation and produce substantial heating outside of the auroral region. Smith (2013) showed this in-situ mechanism to be potentially significant in Jupiter’s thermosphere. We present new results from an axisymmetric, steady-state model that calculates resistive (Joule) heating rates through rigorous solutions of the electrodynamic equations for the coupled neutral atmosphere and ionosphere of Saturn. At present, we assume a dipole magnetic field and neglect any contributions from the magnetosphere. We use ion mixing ratios from the model of Kim et al. (2014) and the observed temperature-pressure profile from Koskinen et al. (2015) to calculate the generalized conductivity tensor as described by Koskinen et al. (2014). We calculate the current density under the assumption that it has no divergence and use it to calculate the resistive heating rates and ion drag. Our results suggest that resistive heating and ion drag at low latitudes likely

  15. Satellite Orbit Under Influence of a Drag - Analytical Approach

    Science.gov (United States)

    Martinović, M. M.; Šegan, S. D.

    2017-12-01

    The report studies some changes in orbital elements of the artificial satellites of Earth under influence of atmospheric drag. In order to develop possibilities of applying the results in many future cases, an analytical interpretation of the orbital element perturbations is given via useful, but very long expressions. The development is based on the TD88 air density model, recently upgraded with some additional terms. Some expressions and formulae were developed by the computer algebra system Mathematica and tested in some hypothetical cases. The results have good agreement with iterative (numerical) approach.

  16. Air Flows in Gravity Sewers - Determination of Wastewater Drag Coefficient

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Østertoft, Kristian; Vollertsen, Jes

    2016-01-01

    Several experiments have been conducted in order to improve the understanding of the wastewater drag and the wall frictional force acting on the headspace air in gravity sewers. The aim of the study is to improve the data basis for a numerical model of natural sewer ventilation. The results...... of the study shows that by integrating the top/side wall shear stresses the log-law models for the air velocity distribution along the unwetted perimeter resulted in a good agreement with the friction forces calculated by use of the Colebrook-White formula for hydraulic smooth pipes. Secondly, the water...

  17. Drag prediction for blades at high angle of attack using CFD

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Michelsen, J.A.

    2004-01-01

    In the present paper it is first demonstrated that state of the art 3D CFD codes are. capable of predicting the correct dependency of the integrated drag of a flat plate placed perpendicular to the flow. This is in strong contrast to previous 2D investigations of infinite plates, where computations...... are known to severely overpredict drag. We then demonstrate that the computed drag distribution along the plate span deviate from the general expectation of 2D behavior at the central part of the plate, an important finding in connection with the theoretical estimation of drag behavior on wind turbine...... blades. The computations additionally indicate that a tip effect is present that produces increased drag near the end of the plate, which is opposite of the assumptions generally used in drag estimation for blades. Following this several wind turbine blades are analyzed, ranging from older blades...

  18. Nonuniform charging effects on ion drag force in drifting dusty plasmas

    International Nuclear Information System (INIS)

    Chang, Dong-Man; Chang, Won-Seok; Jung, Young-Dae

    2006-01-01

    The nonuniform polarization charging effects on the ion drag force are investigated in drifting dusty plasmas. The ion drag force due to the ion-dust grain interaction is obtained as a function of the dust charge, ion charge, plasma temperature, Mach number, Debye length, and collision energy. The result shows that the nonuniform charging effects enhance the momentum transfer cross section as well as the ion drag force. It is found that the momentum transfer cross section and the ion drag force including nonuniform polarization charging effects increase with increasing the Mach number and also the ion drag force increases with increasing the temperature. In addition, it is found that the ion drag force is slightly decreasing with an increase of the Debye length

  19. Frictional Magneto-Coulomb Drag in Graphene Double-Layer Heterostructures.

    Science.gov (United States)

    Liu, Xiaomeng; Wang, Lei; Fong, Kin Chung; Gao, Yuanda; Maher, Patrick; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Dean, Cory; Kim, Philip

    2017-08-04

    Coulomb interaction between two closely spaced parallel layers of conductors can generate the frictional drag effect by interlayer Coulomb scattering. Employing graphene double layers separated by few-layer hexagonal boron nitride, we investigate density tunable magneto- and Hall drag under strong magnetic fields. The observed large magnetodrag and Hall-drag signals can be related with Laudau level filling status of the drive and drag layers. We find that the sign and magnitude of the drag resistivity tensor can be quantitatively correlated to the variation of magnetoresistivity tensors in the drive and drag layers, confirming a theoretical formula for magnetodrag in the quantum Hall regime. The observed weak temperature dependence and ∼B^{2} dependence of the magnetodrag are qualitatively explained by Coulomb scattering phase-space argument.

  20. Aerodynamic Efficiency Analysis on Modified Drag Generator of Tanker-Ship Using Symmetrical Airfoil

    Science.gov (United States)

    Moranova, Starida; Rahmat Hadiyatul A., S. T.; Indra Permana S., S. T.

    2018-04-01

    Time reduction of tanker ship spent in the sea should be applied for solving problems occured in oil and gas distribution, such as the unpunctuality of the distribution and oil spilling. The aerodynamic design for some parts that considered as drag generators is presumed to be one of the solution, utilizing our demand of the increasing speed. This paper suggests two examples of the more-aerodynamic design of a part in the tanker that is considered a drag generator, and reports the value of drag generated from the basic and the suggested aerodynamic designs. The new designs are made by adding the NACA airfoil to the cross section of the drag generator. The scenario is assumed with a 39 km/hour speed of tanker, neglecting the hydrodynamic effects occured in the tanker by cutting it at the waterline which separated the drag between air and water. The results of produced drag in each design are calculated by Computational Fluid Dynamic method.

  1. Hypersonic wave drag reduction performance of cylinders with repetitive laser energy depositions

    International Nuclear Information System (INIS)

    Fang, J; Hong, Y J; Li, Q; Huang, H

    2011-01-01

    It has been widely research that wave drag reduction on hypersonic vehicle by laser energy depositions. Using laser energy to reduce wave drag can improve vehicle performance. A second order accurate scheme based on finite-difference method and domain decomposition of structural grid is used to compute the drag performance of cylinders in a hypersonic flow of Mach number 2 at altitude of 15km with repetitive energy depositions. The effects of frequency on drag reduction are studied. The calculated results show: the recirculation zone is generated due to the interaction between bow shock over the cylinder and blast wave produced by energy deposition, and a virtual spike which is supported by an axis-symmetric recirculation, is formed in front of the cylinder. By increasing the repetitive frequency, the drag is reduced and the oscillation of the drag is decreased; however, the energy efficiency decreases by increasing the frequency.

  2. CFD Prediction of Airfoil Drag in Viscous Flow Using the Entropy Generation Method

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2018-01-01

    Full Text Available A new aerodynamic force of drag prediction approach was developed to compute the airfoil drag via entropy generation rate in the flow field. According to the momentum balance, entropy generation and its relationship to drag were derived for viscous flow. Model equations for the calculation of the local entropy generation in turbulent flows were presented by extending the RANS procedure to the entropy balance equation. The accuracy of algorithm and programs was assessed by simulating the pressure coefficient distribution and dragging coefficient of different airfoils under different Reynolds number at different attack angle. Numerical data shows that the total entropy generation rate in the flow field and the drag coefficient of the airfoil can be related by linear equation, which indicates that the total drag could be resolved into entropy generation based on its physical mechanism of energy loss.

  3. On the influence of drag effect on acoustic modes in two-condensate relativistic superfluid systems

    International Nuclear Information System (INIS)

    Vil'chinskij, S.I.

    1999-01-01

    Equations of velocities of acoustic excitations in a relativistic two-condensate superfluid system are derived with due account of reciprocal drag of superfluid motion (drag effect). The influence of the drag effect on acoustic modes in the system is considered. It is shown that the effect does not influence the nature of acoustic excitation oscillations but produces changes in the velocities of the second, third and fourth sounds

  4. Aerodynamic Drag Analysis of 3-DOF Flex-Gimbal GyroWheel System in the Sense of Ground Test

    Science.gov (United States)

    Huo, Xin; Feng, Sizhao; Liu, Kangzhi; Wang, Libin; Chen, Weishan

    2016-01-01

    GyroWheel is an innovative device that combines the actuating capabilities of a control moment gyro with the rate sensing capabilities of a tuned rotor gyro by using a spinning flex-gimbal system. However, in the process of the ground test, the existence of aerodynamic disturbance is inevitable, which hinders the improvement of the specification performance and control accuracy. A vacuum tank test is a possible candidate but is sometimes unrealistic due to the substantial increase in costs and complexity involved. In this paper, the aerodynamic drag problem with respect to the 3-DOF flex-gimbal GyroWheel system is investigated by simulation analysis and experimental verification. Concretely, the angular momentum envelope property of the spinning rotor system is studied and its integral dynamical model is deduced based on the physical configuration of the GyroWheel system with an appropriately defined coordinate system. In the sequel, the fluid numerical model is established and the model geometries are checked with FLUENT software. According to the diversity and time-varying properties of the rotor motions in three-dimensions, the airflow field around the GyroWheel rotor is analyzed by simulation with respect to its varying angular velocity and tilt angle. The IPC-based experimental platform is introduced, and the properties of aerodynamic drag in the ground test condition are obtained through comparing the simulation with experimental results. PMID:27941602

  5. Experimental and numerical investigation of low-drag intervals in turbulent boundary layer

    Science.gov (United States)

    Park, Jae Sung; Ryu, Sangjin; Lee, Jin

    2017-11-01

    It has been widely investigated that there is a substantial intermittency between high and low drag states in wall-bounded shear flows. Recent experimental and computational studies in a turbulent channel flow have identified low-drag time intervals based on wall shear stress measurements. These intervals are a weak turbulence state characterized by low-speed streaks and weak streamwise vortices. In this study, the spatiotemporal dynamics of low-drag intervals in a turbulent boundary layer is investigated using experiments and simulations. The low-drag intervals are monitored based on the wall shear stress measurement. We show that near the wall conditionally-sampled mean velocity profiles during low-drag intervals closely approach that of a low-drag nonlinear traveling wave solution as well as that of the so-called maximum drag reduction asymptote. This observation is consistent with the channel flow studies. Interestingly, the large spatial stretching of the streak is very evident in the wall-normal direction during low-drag intervals. Lastly, a possible connection between the mean velocity profile during the low-drag intervals and the Blasius profile will be discussed. This work was supported by startup funds from the University of Nebraska-Lincoln.

  6. Further development of drag bodies for the measurement of mass flow rates during blowdown experiments

    International Nuclear Information System (INIS)

    Brockmann, E.; John, H.; Reimann, J.

    1983-01-01

    Drag bodies have already been used for sometime for the measurement of mass flow rates in blowdown experiments. Former research concerning the drag body behaviour in non-homogeneous two-phase flows frequently dealt with special effects by means of theoretical models only. For pipe flows most investigations were conducted for ratios of drag plate area to pipe cross section smaller 0.02. The present paper gives the results of experiments with drag bodies in a horizontal, non-homogeneous two-phase pipe flow with slip, which were carried through under the sponsorship of the German Ministry for Research and Technology (BMFT). Special interest was layed on the behaviour of the drag coefficient in stationary flows and at various cross sectional ratios. Both design and response of various drag bodies, which were developed at the Battelle-Institut, were tested in stationary and instationary two-phase flows. The influences of density and velocity profiles as well as the drag body position were studied. The results demonstrate, that the drag body is capable of measuring mass flow rates in connection with a gamma densitometer also in non-homogeneous two-phase flows. Satisfying results could be obtained, using simply the drag coefficient which was determined from single-phase flow calibrations

  7. Concentrated energy addition for active drag reduction in hypersonic flow regime

    Science.gov (United States)

    Ashwin Ganesh, M.; John, Bibin

    2018-01-01

    Numerical optimization of hypersonic drag reduction technique based on concentrated energy addition is presented in this study. A reduction in wave drag is realized through concentrated energy addition in the hypersonic flowfield upstream of the blunt body. For the exhaustive optimization presented in this study, an in-house high precision inviscid flow solver has been developed. Studies focused on the identification of "optimum energy addition location" have revealed the existence of multiple minimum drag points. The wave drag coefficient is observed to drop from 0.85 to 0.45 when 50 Watts of energy is added to an energy bubble of 1 mm radius located at 74.7 mm upstream of the stagnation point. A direct proportionality has been identified between energy bubble size and wave drag coefficient. Dependence of drag coefficient on the upstream added energy magnitude is also revealed. Of the observed multiple minimum drag points, the energy deposition point (EDP) that offers minimum wave drag just after a sharp drop in drag is proposed as the most optimum energy addition location.

  8. Monte Carlo calculations of the free-molecule drag on chains of uniform spheres

    International Nuclear Information System (INIS)

    Dahneke, B.; Chan, P.

    1980-01-01

    Monte Carlo calculations of the free-molecule drag on straight chains of uniform spheres are presented. The drag on a long chain is expressed in terms of the drag on a basic chain unit (two hemispheres touching at their poles) multiplied by the number of spheres in the chain. Since there is no interaction between the basic chain units, it is argued that the results also apply as a good approximation to the drag on kinked and branched chains covering a broad range of geometries. Experimental data are cited which support this claim

  9. Experimental Investigation of the Fresnel Drag Effect in RF Coaxial Cables

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2011-01-01

    Full Text Available An experiment that confirms the Fresnel drag formalism in RF coaxial cables is re- ported. The Fresnel ‘drag’ in bulk dielectrics and in optical fibers has previously been well established. An explanation for this formalism is given, and it is shown that there is no actual drag phenomenon, rather that the Fresnel drag effect is merely the conse- quence of a simplified description of EM scattering within a dielectric in motion wrt the dynamical 3-space. The Fresnel drag effect plays a critical role in the design of various light-speed anisotropy detectors.

  10. Incorporating modelled subglacial hydrology into inversions for basal drag

    Directory of Open Access Journals (Sweden)

    C. P. Koziol

    2017-12-01

    Full Text Available A key challenge in modelling coupled ice-flow–subglacial hydrology is initializing the state and parameters of the system. We address this problem by presenting a workflow for initializing these values at the start of a summer melt season. The workflow depends on running a subglacial hydrology model for the winter season, when the system is not forced by meltwater inputs, and ice velocities can be assumed constant. Key parameters of the winter run of the subglacial hydrology model are determined from an initial inversion for basal drag using a linear sliding law. The state of the subglacial hydrology model at the end of winter is incorporated into an inversion of basal drag using a non-linear sliding law which is a function of water pressure. We demonstrate this procedure in the Russell Glacier area and compare the output of the linear sliding law with two non-linear sliding laws. Additionally, we compare the modelled winter hydrological state to radar observations and find that it is in line with summer rather than winter observations.

  11. CAPTURE OF PLANETESIMALS BY GAS DRAG FROM CIRCUMPLANETARY DISKS

    International Nuclear Information System (INIS)

    Fujita, Tetsuya; Ohtsuki, Keiji; Suetsugu, Ryo; Tanigawa, Takayuki

    2013-01-01

    Growing giant planets have circumplanetary disks around them in the late stage of their formation if their mass is sufficiently large. We examine capture of relatively large planetesimals that are decoupled from the gas inflow, due to gas drag from a circumplanetary disk of a growing giant planet. Assuming that the structure of the circumplanetary disk is axisymmetric, and solving the three-body problem including gas drag, we perform analytic and numerical calculations for capture of planetesimals. When planetesimal random velocity is small, planetesimals approaching in the retrograde direction are more easily captured, owing to their larger velocity relative to the gas. Planetesimals with large orbital inclinations interact with the disk for a short period of time and show lower capture rates. The effect of ablation on capture rates seems insignificant, although mass loss due to ablation would be significant in the case of high random velocity. We also examine the effect of non-uniform radial distribution of planetesimals in the protoplanetary disk due to gap opening by the planet. When the random velocity of planetesimals is small, the planetesimal capture rate decreases rapidly as the half width of the gap in the planetesimal disk increases from two planetary Hill radii to three planetary Hill radii; planetesimals with low random velocities cannot approach the planet in the case of a sufficiently wide gap. Our results show that the radial distribution and random velocity of planetesimals in the protoplanetary disk are essentially important for the understanding of capture of planetesimals by circumplanetary disks

  12. Vertical, radial and drag force analysis of superconducting magnetic bearings

    International Nuclear Information System (INIS)

    Cansiz, Ahmet

    2009-01-01

    The behavior of the force between a permanent magnet (PM) and a high temperature superconductor (HTS) was tested with the frozen-image model based on flux pinning. It was found that the associated dipole moment assumptions of the method of the frozen image underestimate the force somewhat; thus a quadrupole moment analysis is proposed. The radial and drag forces associated with the rotation of the PM levitated above the HTS were measured by using a force transducer and by means of a cantilevered beam technique. The radial force was found not to be dependent on the radial direction, and the least radial force was found to be periodic with an angular displacement during the slow rotation of the PM relative to the HTS. The periodicity behavior of the force is attributed to the geometric eccentricity from the magnetization distribution of the PM and HTS. The drag force associated with the torsional stiffness of the levitated PM during the low and high rotational speeds was incorporated with the data from the literature.

  13. Drag reduction of a rapid vehicle in supercavitating flow

    Directory of Open Access Journals (Sweden)

    D. Yang

    2017-01-01

    Full Text Available Supercavitation is one of the most attractive technologies to achieve high speed for underwater vehicles. However, the multiphase flow with high-speed around the supercavitating vehicle (SCV is difficult to simulate accurately. In this paper, we use modified the turbulent viscosity formula in the Standard K-Epsilon (SKE turbulent model to simulate the supercavitating flow. The numerical results of flow over several typical cavitators are in agreement with the experimental data and theoretical prediction. In the last part, a flying SCV was studied by unsteady numerical simulation. The selected computation setup corresponds to an outdoor supercavitating experiment. Only very limited experimental data was recorded due to the difficulties under the circumstance of high-speed underwater condition. However, the numerical simulation recovers the whole scenario, the results are qualitatively reasonable by comparing to the experimental observations. The drag reduction capacity of supercavitation is evaluated by comparing with a moving vehicle launching at the same speed but without supercavitation. The results show that the supercavitation reduces the drag of the vehicle dramatically.

  14. Do spinors give rise to a frame-dragging effect?

    International Nuclear Information System (INIS)

    Randono, Andrew

    2010-01-01

    We investigate the effect of the intrinsic spin of a fundamental spinor field on the surrounding spacetime geometry. We show that despite the lack of a rotating stress-energy source (and despite claims to the contrary) the intrinsic spin of a spin-half fermion gives rise to a frame-dragging effect analogous to that of orbital angular momentum, even in Einstein-Hilbert gravity where torsion is constrained to be zero. This resolves a paradox regarding the counter-force needed to restore Newton's third law in the well-known spin-orbit interaction. In addition, the frame-dragging effect gives rise to a long-range gravitationally mediated spin-spin dipole interaction coupling the internal spins of two sources. We argue that despite the weakness of the interaction, the spin-spin interaction will dominate over the ordinary inverse square Newtonian interaction in any process of sufficiently high energy for quantum field theoretical effects to be non-negligible.

  15. Using the power balance model to simulate cross-country skiing on varying terrain

    Directory of Open Access Journals (Sweden)

    Moxnes JF

    2014-05-01

    Full Text Available John F Moxnes,1 Øyvind Sandbakk,2 Kjell Hausken31Department for Protection, Norwegian Defence Research Establishment, Kjeller, Norway; 2Center for Elite Sports Research, Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; 3Faculty of Social Sciences, University of Stavanger, Stavanger, NorwayAbstract: The current study adapts the power balance model to simulate cross-country skiing on varying terrain. We assumed that the skier’s locomotive power at a self-chosen pace is a function of speed, which is impacted by friction, incline, air drag, and mass. An elite male skier’s position along the track during ski skating was simulated and compared with his experimental data. As input values in the model, air drag and friction were estimated from the literature based on the skier's mass, snow conditions, and speed. We regard the fit as good, since the difference in racing time between simulations and measurements was 2 seconds of the 815 seconds racing time, with acceptable fit both in uphill and downhill terrain. Using this model, we estimated the influence of changes in various factors such as air drag, friction, and body mass on performance. In conclusion, the power balance model with locomotive power as a function of speed was found to be a valid tool for analyzing performance in cross-country skiing.Keywords: air drag, efficiency, friction coefficient, speed, locomotive power

  16. Gliding flight: drag and torque of a hawk and a falcon with straight and turned heads, and a lower value for the parasite drag coefficient.

    Science.gov (United States)

    Tucker, V A

    2000-12-01

    Raptors - falcons, hawks and eagles in this study - such as peregrine falcons (Falco peregrinus) that attack distant prey from high-speed dives face a paradox. Anatomical and behavioral measurements show that raptors of many species must turn their heads approximately 40 degrees to one side to see the prey straight ahead with maximum visual acuity, yet turning the head would presumably slow their diving speed by increasing aerodynamic drag. This paper investigates the aerodynamic drag part of this paradox by measuring the drag and torque on wingless model bodies of a peregrine falcon and a red-tailed hawk (Buteo jamaicensis) with straight and turned heads in a wind tunnel at a speed of 11.7 m s(-)(1). With a turned head, drag increased more than 50 %, and torque developed that tended to yaw the model towards the direction in which the head pointed. Mathematical models for the drag required to prevent yawing showed that the total drag could plausibly more than double with head-turning. Thus, the presumption about increased drag in the paradox is correct. The relationships between drag, head angle and torque developed here are prerequisites to the explanation of how a raptor could avoid the paradox by holding its head straight and flying along a spiral path that keeps its line of sight for maximum acuity pointed sideways at the prey. Although the spiral path to the prey is longer than the straight path, the raptor's higher speed can theoretically compensate for the difference in distances; and wild peregrines do indeed approach prey by flying along curved paths that resemble spirals. In addition to providing data that explain the paradox, this paper reports the lowest drag coefficients yet measured for raptor bodies (0.11 for the peregrine and 0.12 for the red-tailed hawk) when the body models with straight heads were set to pitch and yaw angles for minimum drag. These values are markedly lower than value of the parasite drag coefficient (C(D,par)) of 0.18 previously

  17. A study of performance parameters on drag and heat flux reduction efficiency of combinational novel cavity and opposing jet concept in hypersonic flows

    Science.gov (United States)

    Sun, Xi-wan; Guo, Zhen-yun; Huang, Wei; Li, Shi-bin; Yan, Li

    2017-02-01

    The drag reduction and thermal protection system applied to hypersonic re-entry vehicles have attracted an increasing attention, and several novel concepts have been proposed by researchers. In the current study, the influences of performance parameters on drag and heat reduction efficiency of combinational novel cavity and opposing jet concept has been investigated numerically. The Reynolds-average Navier-Stokes (RANS) equations coupled with the SST k-ω turbulence model have been employed to calculate its surrounding flowfields, and the first-order spatially accurate upwind scheme appears to be more suitable for three-dimensional flowfields after grid independent analysis. Different cases of performance parameters, namely jet operating conditions, freestream angle of attack and physical dimensions, are simulated based on the verification of numerical method, and the effects on shock stand-off distance, drag force coefficient, surface pressure and heat flux distributions have been analyzed. This is the basic study for drag reduction and thermal protection by multi-objective optimization of the combinational novel cavity and opposing jet concept in hypersonic flows in the future.

  18. Flow over riblet curved surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, J B R; Freire, A P Silva, E-mail: atila@mecanica.ufrj.br [Mechanical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), C.P. 68503, 21.941-972, Rio de Janeiro, RJ (Brazil)

    2011-12-22

    The present work studies the mechanics of turbulent drag reduction over curved surfaces by riblets. The effects of surface modification on flow separation over steep and smooth curved surfaces are investigated. Four types of two-dimensional surfaces are studied based on the morphometric parameters that describe the body of a blue whale. Local measurements of mean velocity and turbulence profiles are obtained through laser Doppler anemometry (LDA) and particle image velocimetry (PIV).

  19. Effects of a piezoelectric substrate on phonon-drag thermopower in monolayer graphene

    Science.gov (United States)

    Bhargavi, K. S.; Kubakaddi, S. S.; Ford, C. J. B.

    2017-06-01

    The phonon-drag thermopower is studied in a monolayer graphene on a piezoelectric substrate. The phonon-drag contribution S\\text{PA}\\text{g} from the extrinsic potential of piezoelectric surface acoustic (PA) phonons of a piezoelectric substrate (GaAs) is calculated as a function of temperature T and electron concentration n s. At a very low temperature, S\\text{PA}\\text{g} is found to be much greater than S\\text{DA}\\text{g} of the intrinsic deformation potential of acoustic (DA) phonons of the graphene. There is a crossover of S\\text{PA}\\text{g} and S\\text{DA}\\text{g} at around ~5 K. In graphene samples of about  >10 µm size, we predict S g ~ 20 µV at 10 K, which is much greater than the diffusion component of the thermopower and can be experimentally observed. In the Bloch-Gruneisen (BG) regime T and n s dependence are, respectively, given by the power laws S\\text{PA}\\text{g} (S\\text{DA}\\text{g} ) ~ T 2(T 3) and S\\text{PA}\\text{g} , S\\text{DA}\\text{g} ~ n\\text{s}-1/2 . The T(n s) dependence is the manifestation of the 2D phonons (Dirac phase of the electrons). The effect of the screening is discussed. Analogous to Herring’s law (S g μ p ~ T -1), we predict a new relation S g μ p ~ n\\text{s}0 , where μ p is the phonon-limited mobility. We suggest that the n s dependent measurements will play a more significant role in identifying the Dirac phase and the effect of screening.

  20. Comparison of superhydrophobic drag reduction between turbulent pipe and channel flows

    Science.gov (United States)

    Im, Hyung Jae; Lee, Jae Hwa

    2017-09-01

    It has been known over several decades that canonical wall-bounded internal flows of a pipe and channel share flow similarities, in particular, close to the wall due to the negligible curvature effect. In the present study, direct numerical simulations of fully developed turbulent pipe and channel flows are performed to investigate the influence of the superhydrophobic surfaces (SHSs) on the turbulence dynamics and the resultant drag reduction (DR) of the flows under similar conditions. SHSs at the wall are modeled in spanwise-alternating longitudinal regions with a boundary with no-slip and shear-free conditions, and the two parameters of the spanwise periodicity (P/δ) and SHS fraction (GF) within a pitch are considered. It is shown, in agreement with previous investigations in channels, that the turbulent drag for the pipe and channel flows over SHSs is continuously decreased with increases in P/δ and GF. However, the DR rate in the pipe flows is greater than that in the channel flows with an accompanying reduction of the Reynolds stress. The enhanced performance of the DR for the pipe flow is attributed to the increased streamwise slip and weakened Reynolds shear stress contributions. In addition, a mathematical analysis of the spanwise mean vorticity equation suggests that the presence of a strong secondary flow due to the increased spanwise slip of the pipe flows makes a greater negative contribution of advective vorticity transport than the channel flows, resulting in a higher DR value. Finally, an inspection of the origin of the mean secondary flow in turbulent flows over SHSs based on the spatial gradients of the turbulent kinetic energy demonstrates that the secondary flow is both driven and sustained by spatial gradients in the Reynolds stress components, i.e., Prandtl's secondary flow of the second kind.

  1. The surface roughness and planetary boundary layer

    Science.gov (United States)

    Telford, James W.

    1980-03-01

    of widely varying sizes are combined this paper shows how the surface roughness parameter, z 0, can be calculated for an ideal case of a random distribution of vertical cylinders of the same height. To treat a water surface, with various sized waves, such an approach modified to treat the surface by the superposition of various sized roughness elements, is likely to be helpful. Such a theory is particularly desirable when such a surface is changing, as the ocean does when the wind varies. The formula, 2 24_2004_Article_BF00877766_TeX2GIFE2.gif {0.118}/{a_s C_D }< z_0< {0.463}/{a_s C_D (u^* )} is the result derived here. It applies to cylinders of radius, r, and number, m, per unit boundary area, where a s = 2rm, is the area of the roughness elements, per unit area perpendicular to the wind, per unit distance downwind. The drag coefficient of the cylinders is C D . The smaller value of z o is for large Reynolds numbers where the larger scale turbulence at the surface dominates, and the drag coefficient is about constant. Here the flow between the cylinders is intermittent. When the Reynolds number is small enough then the intermittent nature of the turbulence is reduced and this results in the average velocity at each level determining the drag. In this second case the larger limit for z 0 is more appropriate.

  2. Drag De-Orbit Device: A New Standard Re-Entry Actuator for CubeSats

    Science.gov (United States)

    Guglielmo, David; Omar, Sanny R.; Bevilacqua, Riccardo

    2017-01-01

    With the advent of CubeSats, research in Low Earth Orbit (LEO) becomes possible for universities and small research groups. Only a handful of launch sites can be used, due to geographical and political restrictions. As a result, common orbits in LEO are becoming crowded due to the additional launches made possible by low-cost access to space. CubeSat design principles require a maximum of a 25-year orbital lifetime in an effort to reduce the total number of spacecraft in orbit at any time. Additionally, since debris may survive re-entry, it is ideal to de-orbit spacecraft over unpopulated areas to prevent casualties. The Drag Deorbit Device (D3) is a self-contained targeted re-entry subsystem intended for CubeSats. By varying the cross-wind area, the atmospheric drag can be varied in such a way as to produce desired maneuvers. The D3 is intended to be used to remove spacecraft from orbit to reach a desired target interface point. Additionally, attitude stabilization is performed by the D3 prior to deployment and can replace a traditional ADACS on many missions.This paper presents the hardware used in the D3 and operation details. Four stepper-driven, repeatedly retractable booms are used to modify the cross-wind area of the D3 and attached spacecraft. Five magnetorquers (solenoids) over three axes are used to damp rotational velocity. This system is expected to be used to improve mission flexibility and allow additional launches by reducing the orbital lifetime of spacecraft.The D3 can be used to effect a re-entry to any target interface point, with the orbital inclination limiting the maximum latitude. In the chance that the main spacecraft fails, a timer will automatically deploy the booms fully, ensuring the spacecraft will at the minimum reenter the atmosphere in the minimum possible time, although not necessarily at the desired target interface point. Although this does not reduce the risk of casualties, the 25-year lifetime limit is still respected, allowing

  3. The Effect of Sodium Hydroxide on Drag Reduction using a Biopolymer.

    Directory of Open Access Journals (Sweden)

    Singh Harvin Kaur A/P Gurchran

    2014-07-01

    Full Text Available Drag reduction is observed as reduced frictional pressure losses under turbulent flow conditions and hence, substantially increases the flowrate of the fluid. Practical application includes water flooding system, pipeline transport and drainage system. Drag reduction agent, such as polymers, can be introduced to increase the flowrate of water flowing, reducing the water accumulation in the system and subsequently lesser possibility of heavy flooding. Currently used polymer as drag reduction agents is carboxymethylcellulose, to name one. This is a synthetic polymer which will seep into the ground and further harm our environment in excessive use of accumulation. A more environmentally-friendly drag reduction agent, such as the polymer derived from natural sources or biopolymer, is then required for such purpose. As opposed to the synthetic polymers, the potential of biopolymers as drag reduction agents, especially those derived from a local plant source, are not extensively explored. The drag reduction of a polymer produced from a local plant source within the turbulent regime will be explored and assessed in this study using a rheometer where a reduced a torque produced can be perceived as a reduction of drag. The cellulose powder was converted to carboxymethylcellulose (CMC by etherification process using sodium monochloroacetate and sodium hydroxide. The carboxymethylation reaction then was optimized against concentration of NaOH. The research is structured to focus on producing the biopolymer and also assess the drag reduction ability of the biopolymer produced against concentration of sodium hydroxide.

  4. Toy Model of Frame-Dragging Magnetosphere for the M87 Jet

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Toy Model of Frame-Dragging Magnetosphere for the M87 Jet ... The outermost layer of jet is driven by the frame-dragging effect in the Kerr ... All these have helped shorten the publication time and have improved the visibility ...

  5. Coulomb Drag as a Probe of Coupled Plasmon Modes in Parallel Quantum Wells

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Hu, Ben Yu-Kuang

    1994-01-01

    parameters. The acoustic mode causes a sharp upturn in the scaled drag rate with increasing temperature at T≈0.2TF. Other experimental signatures of the plasmon-dominated drag rate are a d-3 dependence on the well separation d and a peak as a function of relative densities at matched Fermi velocities....

  6. Can Hall drag be observed in Coulomb coupled quantum wells in a magnetic field?

    DEFF Research Database (Denmark)

    Hu, Ben Yu-Kuang

    1997-01-01

    We study the transresistivity rho(21) (or equivalently, the drag rate) of two Coulomb-coupled quantum wells in the presence of a perpendicular magnetic field, using semi-classical transport theory. Elementary arguments seem to preclude any possibility of observation of ''Hall drag'' (i.e., a non...

  7. Flow Patterns and Thermal Drag in a One-Dimensional Inviscid Channel with Heating or Cooling

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    In this paper investigations on the flow patterns and the thermal drag phenomenon in one -dimensional inviscid channel flow with heating or cooling are described and discussed:expressions of flow rate ratio and thermal drag coefficient for different flow patterns and its physical mechanism are presented.

  8. Magnon-drag thermopower and Nernst coefficient in Fe, Co, and Ni

    NARCIS (Netherlands)

    Watzman, Sarah J.; Duine, Rembert A.|info:eu-repo/dai/nl/304830127; Tserkovnyak, Yaroslav; Boona, Stephen R.; Jin, Hyungyu; Prakash, Arati; Zheng, Yuanhua; Heremans, Joseph P.

    2016-01-01

    Magnon-drag is shown to dominate the thermopower of elemental Fe from 2 to 80 K and of elemental Co from 150 to 600 K; it is also shown to contribute to the thermopower of elemental Ni from 50 to 500 K. Two theoretical models are presented for magnon-drag thermopower. One is a hydrodynamic theory

  9. Magnon-drag thermopower and Nernst coefficient in Fe, Co and Ni

    NARCIS (Netherlands)

    Watzman, S.J.; Duine, R.A.; Tserkovnyak, Y.; Jin, H.; Prakash, A.; Zheng, Y.; Heremans, J.P.

    2016-01-01

    Magnon drag is shown to dominate the thermopower of elemental Fe from 2 to 80 K and of elemental Co from 150 to 600 K; it is also shown to contribute to the thermopower of elemental Ni from 50 to 500 K. Two theoretical models are presented for magnon-drag thermopower. One is a hydrodynamic theory

  10. Design and development of drag-disc flowmeter for measurement of transient two-phase flow

    International Nuclear Information System (INIS)

    Sreenivas Rao, G.; Kukreja, V.; Dolas, P.K.; Venkat Raj, V.

    1990-01-01

    Experiments have been carried out to test the suitability of drag-disc flowmeter for measuring two-phase flow. Calibration tests carried out under single-phase and two-phase flow conditions have confirmed the suitability of the drag-disc flowmeter. The experimental work and the results obtained are presented and discussed in the paper. (author). 3 refs., 6 figs

  11. Optical-phonon-induced frictional drag in coupled two-dimensional electron gases

    DEFF Research Database (Denmark)

    Hu, Ben Yu-Kuang

    1998-01-01

    The role of optical phonons in frictional drag between two adjacent but electrically isolated two-dimensional electron gases is investigated. Since the optical phonons in III-V materials have a considerably larger coupling to electrons than acoustic phonons (which are the dominant drag mechanism ...

  12. Superfluid drag in the two-component Bose-Hubbard model

    Science.gov (United States)

    Sellin, Karl; Babaev, Egor

    2018-03-01

    In multicomponent superfluids and superconductors, co- and counterflows of components have, in general, different properties. A. F. Andreev and E. P. Bashkin [Sov. Phys. JETP 42, 164 (1975)] discussed, in the context of He3/He4 superfluid mixtures, that interparticle interactions produce a dissipationless drag. The drag can be understood as a superflow of one component induced by phase gradients of the other component. Importantly, the drag can be both positive (entrainment) and negative (counterflow). The effect is known to have crucial importance for many properties of diverse physical systems ranging from the dynamics of neutron stars and rotational responses of Bose mixtures of ultracold atoms to magnetic responses of multicomponent superconductors. Although substantial literature exists that includes the drag interaction phenomenologically, only a few regimes are covered by quantitative studies of the microscopic origin of the drag and its dependence on microscopic parameters. Here we study the microscopic origin and strength of the drag interaction in a quantum system of two-component bosons on a lattice with short-range interaction. By performing quantum Monte Carlo simulations of a two-component Bose-Hubbard model we obtain dependencies of the drag strength on the boson-boson interactions and properties of the optical lattice. Of particular interest are the strongly correlated regimes where the ratio of coflow and counterflow superfluid stiffnesses can diverge, corresponding to the case of saturated drag.

  13. Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics

    Science.gov (United States)

    Bushnell, Dennis M.

    2000-01-01

    This paper discusses Advanced Aircraft configurational approaches across the speed range, which are either enabled, or greatly enhanced, by clever Flow Control. Configurations considered include Channel Wings with circulation control for VTOL (but non-hovering) operation with high cruise speed, strut-braced CTOL transports with wingtip engines and extensive ('natural') laminar flow control, a midwing double fuselage CTOL approach utilizing several synergistic methods for drag-due-to-lift reduction, a supersonic strut-braced configuration with order of twice the L/D of current approaches and a very advanced, highly engine flow-path-integrated hypersonic cruise machine. This paper indicates both the promise of synergistic flow control approaches as enablers for 'Revolutions' in aircraft performance and fluid mechanic 'areas of ignorance' which impede their realization and provide 'target-rich' opportunities for Fluids Research.

  14. LISA Pathfinder drag-free control and system implications

    International Nuclear Information System (INIS)

    Fichter, Walter; Gath, Peter; Vitale, Stefano; Bortoluzzi, Daniele

    2005-01-01

    The top-level requirement of the LISA Pathfinder mission is the verification of pure relative free fall between two test masses with an accuracy of about 3 x 10 -14 m s -2 Hz -1/2 in a measurement bandwidth between 1 mHz and 30 mHz. The drag-free control system is one of the key technology elements that shall be verified. Its design is strongly connected to the overall system and experimental design, in particular, via the following issues: the differential test mass motion and thus the science measurements depend on the control system; design constraints, such as negative stiffness of test masses and electrostatic actuation cross-talk, have an impact on science and control system performance; derived requirements for control system components, in particular, the micro-propulsion system, must be within reasonable and feasible limits. In this paper, the control design approach is outlined and the system-related issues are addressed

  15. Drag Reduction of an Airfoil Using Deep Learning

    Science.gov (United States)

    Jiang, Chiyu; Sun, Anzhu; Marcus, Philip

    2017-11-01

    We reduced the drag of a 2D airfoil by starting with a NACA-0012 airfoil and used deep learning methods. We created a database which consists of simulations of 2D external flow over randomly generated shapes. We then developed a machine learning framework for external flow field inference given input shapes. Past work which utilized machine learning in Computational Fluid Dynamics focused on estimations of specific flow parameters, but this work is novel in the inference of entire flow fields. We further showed that learned flow patterns are transferable to cases that share certain similarities. This study illustrates the prospects of deeper integration of data-based modeling into current CFD simulation frameworks for faster flow inference and more accurate flow modeling.

  16. Drag Effect in Double-Layer Dipolar Fermi Gases

    International Nuclear Information System (INIS)

    Tanatar, B; Renklioglu, B; Oktel, M O

    2014-01-01

    We consider two parallel layers of two-dimensional spin-polarized dipolar Fermi gas without any tunneling between the layers. The effective interactions describing screening and correlation effects between the dipoles in a single layer (intra-layer) and across the layers (interlayer) are modeled within the Hubbard approximation. We calculate the rate of momentum transfer between the layers when the gas in one layer has a steady flow. The momentum transfer induces a steady flow in the second layer which is assumed initially at rest. This is the drag effect familiar from double-layer semiconductor and graphene structures. Our calculations show that the momentum relaxation time has temperature dependence similar to that in layers with charged particles which we think is related to the contributions from the collective modes of the system

  17. Helicopter fuselage drag - combined computational fluid dynamics and experimental studies

    Science.gov (United States)

    Batrakov, A.; Kusyumov, A.; Mikhailov, S.; Pakhov, V.; Sungatullin, A.; Valeev, M.; Zherekhov, V.; Barakos, G.

    2015-06-01

    In this paper, wind tunnel experiments are combined with Computational Fluid Dynamics (CFD) aiming to analyze the aerodynamics of realistic fuselage configurations. A development model of the ANSAT aircraft and an early model of the AKTAI light helicopter were employed. Both models were tested at the subsonic wind tunnel of KNRTU-KAI for a range of Reynolds numbers and pitch and yaw angles. The force balance measurements were complemented by particle image velocimetry (PIV) investigations for the cases where the experimental force measurements showed substantial unsteadiness. The CFD results were found to be in fair agreement with the test data and revealed some flow separation at the rear of the fuselages. Once confidence on the CFD method was established, further modifications were introduced to the ANSAT-like fuselage model to demonstrate drag reduction via small shape changes.

  18. Ontogeny of lift and drag production in ground birds.

    Science.gov (United States)

    Heers, Ashley M; Tobalske, Bret W; Dial, Kenneth P

    2011-03-01

    The juvenile period is often a crucial interval for selective pressure on locomotor ability. Although flight is central to avian biology, little is known about factors that limit flight performance during development. To improve understanding of flight ontogeny, we used a propeller (revolving wing) model to test how wing shape and feather structure influence aerodynamic performance during development in the precocial chukar partridge (Alectoris chukar, 4 to >100 days post hatching). We spun wings in mid-downstroke posture and measured lift (L) and drag (D) using a force plate upon which the propeller assembly was mounted. Our findings demonstrate a clear relationship between feather morphology and aerodynamic performance. Independent of size and velocity, older wings with stiffer and more asymmetrical feathers, high numbers of barbicels and a high degree of overlap between barbules generate greater L and L:D ratios than younger wings with flexible, relatively symmetrical and less cohesive feathers. The gradual transition from immature feathers and drag-based performance to more mature feathers and lift-based performance appears to coincide with ontogenetic transitions in locomotor capacity. Younger birds engage in behaviors that require little aerodynamic force and that allow D to contribute to weight support, whereas older birds may expand their behavioral repertoire by flapping with higher tip velocities and generating greater L. Incipient wings are, therefore, uniquely but immediately functional and provide flight-incapable juveniles with access to three-dimensional environments and refugia. Such access may have conferred selective advantages to theropods with protowings during the evolution of avian flight.

  19. On the Fetch Dependent Drag Coefficient over Coastal and Inland Seas

    DEFF Research Database (Denmark)

    Geernaert, G. L.; Smith, J. A.

    a maximum when the phase speed of the dominant wind wave has a value near 7 u*, where u* is the friction velocity. This corresponds to a maximum near 2 km fetch during moderate windspeed, and the maximum value of the drag coefficient corresponds to an increased fetch of 13 km for windspeeds of 20 m/sec. We......The drag coefficient has been postulated by many investigators to depend on fetch. For constant windspeed and stability, laboratory data generally show an increasing drag coefficient with fetch while field observations show a decreasing dependence. In this study, we show that if one combines...... the spectral form of the roughness length proposed by Kitaigorodskii with the JONSWAP wave spectrum and extrapolate to very short fetch, then the predicted drag coefficient exhibits a behaviour which coarsely reproduces field and laboratory observations. The results indicate that the drag coefficient exhibits...

  20. Effect of Polymer Type and Mixing of Polymers on Drag Reduction in Turbulent Pipe Flow

    Directory of Open Access Journals (Sweden)

    Salam Hadi Hussein

    2017-05-01

    Full Text Available The paper reports on studies on effect of the type of polymer on drag reduction. The study conducted through circular pipe using Carboxy Methyl Cellulose (CMC, Xanthan gum (XG and their mixing in equal ratios as additives in pipe of diameter 0.0381m. The study covered range of parameters like concentration, mean velocity and angle of inclination of pipe. The maximum drag reduction observed was about 58%, 46% and 46% for the three polymers respectively. It is found that the drag reduction for the mixture is close to the drag reduction for XG polymer. The SPSS program has been used for correlate the data that have been obtained. The drag reduction percentage is correlated in terms of Reynolds number Re, additive concentration C (ppm and angle of inclination of pipe (deg, and the relations obtained is mentioned.

  1. Large Fizeau's light-dragging effect in a moving electromagnetically induced transparent medium.

    Science.gov (United States)

    Kuan, Pei-Chen; Huang, Chang; Chan, Wei Sheng; Kosen, Sandoko; Lan, Shau-Yu

    2016-10-03

    As one of the most influential experiments on the development of modern macroscopic theory from Newtonian mechanics to Einstein's special theory of relativity, the phenomenon of light dragging in a moving medium has been discussed and observed extensively in different types of systems. To have a significant dragging effect, the long duration of light travelling in the medium is preferred. Here we demonstrate a light-dragging experiment in an electromagnetically induced transparent cold atomic ensemble and enhance the dragging effect by at least three orders of magnitude compared with the previous experiments. With a large enhancement of the dragging effect, we realize an atom-based velocimeter that has a sensitivity two orders of magnitude higher than the velocity width of the atomic medium used. Such a demonstration could pave the way for motional sensing using the collective state of atoms in a room temperature vapour cell or solid state material.

  2. Effects of stern-foil submerged elevation on the lift and drag of a hydrofoil craft

    Science.gov (United States)

    Suastika, K.; Apriansyah

    2018-03-01

    Effects of the stern-foil submerged elevation on the lift and drag of a hydrofoil craft are studied by using computational fluid dynamics (CFD) and by considering three alternative stern-foil submerged elevations. The submerged elevation of the front foil is kept constant in all the alternatives. From among the alternatives, the deepest stern-foil placement results in the highest stern-foil lift with the highest foil’s lift-to-drag ratio. However, considering the lift-to-drag ratio of the whole foil-strut-hull system, the shallowest stern-foil placement results in the highest lift-to-drag ratio. The struts and the foil’s submerged elevation significantly affects the drag of the whole foil-strut-hull system.

  3. Wave drag as the objective function in transonic fighter wing optimization

    Science.gov (United States)

    Phillips, P. S.

    1984-01-01

    The original computational method for determining wave drag in a three dimensional transonic analysis method was replaced by a wave drag formula based on the loss in momentum across an isentropic shock. This formula was used as the objective function in a numerical optimization procedure to reduce the wave drag of a fighter wing at transonic maneuver conditions. The optimization procedure minimized wave drag through modifications to the wing section contours defined by a wing profile shape function. A significant reduction in wave drag was achieved while maintaining a high lift coefficient. Comparisons of the pressure distributions for the initial and optimized wing geometries showed significant reductions in the leading-edge peaks and shock strength across the span.

  4. Preliminary Theoretical Interpretation of the Tajmar Frame Dragging Effect Through the GEM Theory

    International Nuclear Information System (INIS)

    Brandenburg, John

    2009-01-01

    A preliminary theoretical explanation for the large amplitude frame dragging effect seen by Tajmar et al.(2007) is proposed. A simple theory of quantum photon fields mediating electrodynamics is derived based on concepts from QED. These are then expressed as quantum wave functions for rotating EM systems. Based on the GEM theory, it is proposed that gravitational frame dragging relies on similar photon wave functions. The constructive interference of the frame dragging fields with co-rotating EM photon fields coupled to Bose-Einstein components in matter at low temperatures results in a large frame dragging term due to a mixed gravity-EM term that is larger by a factor of approximately 10 20 than ordinary frame dragging.

  5. Low-Lift Drag of the Grumman F9F-9 Airplane as Obtained by a 1/7.5-Scale Rocket-Boosted Model and by Three 1/45.85-Scale Equivalent-Body Models between Mach Numbers of 0.8 and 1.3, TED No. NACA DE 391

    Science.gov (United States)

    Stevens, Joseph E.

    1955-01-01

    Low-lift drag data are presented herein for one 1/7.5-scale rocket-boosted model and three 1/45.85-scale equivalent-body models of the Grumman F9F-9 airplane, The data were obtained over a Reynolds number range of about 5 x 10(exp 6) to 10 x 10(exp 6) based on wing mean aerodynamic chord for the rocket model and total body length for the equivalent-body models. The rocket-boosted model showed a drag rise of about 0,037 (based on included wing area) between the subsonic level and the peak supersonic drag coefficient at the maximum Mach number of this test. The base drag coefficient measured on this model varied from a value of -0,0015 in the subsonic range to a maximum of about 0.0020 at a Mach number of 1.28, Drag coefficients for the equivalent-body models varied from about 0.125 (based on body maximum area) in the subsonic range to about 0.300 at a Mach number of 1.25. Increasing the total fineness ratio by a small amount raised the drag-rise Mach number slightly.

  6. Rocket-Model Investigation of the Longitudinal Stability, Drag, and Duct Performance Characteristics of the North American MX-770 (X-10) Missile at Mach Numbers from 0.80 to 1.70

    Science.gov (United States)

    Bond, Aleck C.; Swanson, Andrew G.

    1953-01-01

    A free-flight 0.12-scale rocket-boosted model of the North American MX-770 (X-10) missile has been tested in flight by the Pilotless Aircraft Research Division of the Langley Aeronautical Laboratory. Drag, longitudinal stability, and duct performance data were obtained at Mach numbers from 0.8 to 1.7 covering a Reynolds number range of about 9 x 10(exp 6) to 24 x 10(exp 6) based on wing mean aerodynamic chord. The lift-curve slope, static stability, and damping-in-pitch derivatives showed similar variations with Mach number, the parameters increasing from subsonic values in the transonic region and decreasing in the supersonic region. The variations were for the most part fairly smooth. The aerodynamic center of the configuration shifted rearward in the transonic region and moved forward gradually in the supersonic region. The pitching effectiveness of the canard control surfaces was maintained throughout the flight speed range, the supersonic values being somewhat greater than the subsonic. Trim values of angle of attack and lift coefficient changed abruptly in the transonic region, the change being associated with variations in the out-of-trim pitching moment, control effectiveness, and aerodynamic-center travel in this speed range. Duct total-pressure recovery decreased with increase in free-stream Mach number and the values were somewhat less than normal-shock recovery. Minimum drag data indicated a supersonic drag coefficient about twice the subsonic drag coefficient and a drag-rise Mach number of approximately 0.90. Base drag was small subsonically but was about 25 percent of the minimum drag of the configuration supersonically.

  7. Drag and Lift Estimation from 3-D Velocity Field Data Measured by Multi-Plane Stereo PIV

    OpenAIRE

    加藤, 裕之; 松島, 紀佐; 上野, 真; 小池, 俊輔; 渡辺, 重哉; Kato, Hiroyuki; Matsushima, Kisa; Ueno, Makoto; Koike, Shunsuke; Watanabe, Shigeya

    2013-01-01

    For airplane design, it is crucial to have tools that can accurately predict airplane drag and lift. Usually drag and lift prediction methods are force measurement using wind tunnel balance. Unfortunately, balance data do not provide information contribution of airplane to components to drag and lift for more precise and competitive airplane design. To obtain such information, a wake integration method for use drag and lift estimation was developed for use in wake survey data analysis. Wake s...

  8. Modeling the Exo-Brake and the Development of Strategies for De-Orbit Drag Modulation

    Science.gov (United States)

    Murbach, M. S.; Papadopoulos, P.; Glass, C.; Dwyer-Cianciolo, A.; Powell, R. W.; Dutta, S.; Guarneros-Luna, A.; Tanner, F. A.; Dono, A.

    2016-01-01

    The Exo-Brake is a simple, non-propulsive means of de-orbiting small payloads from orbital platforms such as the International Space Station (ISS). Two de-orbiting experiments with fixed surface area Exo-Brakes have been successfully conducted in the last two years on the TechEdSat-3 and -4 nano-satellite missions. The development of the free molecular flow aerodynamic data-base is presented in terms of angle of attack, projected front surface area variation, and altitude. Altitudes are considered ranging from the 400km ISS jettison altitude to 90km. Trajectory tools are then used to predict de-orbit/entry corridors with the inclusion of the key atmospheric and geomagnetic uncertainties. Control system strategies are discussed which will be applied to the next two planned TechEdSat-5 and -6 nano-satellite missions - thus increasing the targeting accuracy at the Von Karman altitude through the proposed drag modulation technique.

  9. Ensemble Assimilation Using Three First-Principles Thermospheric Models as a Tool for 72-hour Density and Satellite Drag Forecasts

    Science.gov (United States)

    Hunton, D.; Pilinski, M.; Crowley, G.; Azeem, I.; Fuller-Rowell, T. J.; Matsuo, T.; Fedrizzi, M.; Solomon, S. C.; Qian, L.; Thayer, J. P.; Codrescu, M.

    2014-12-01

    Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by variability in the density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. As the population of satellites in Earth orbit grows, higher space-weather prediction accuracy is required for critical missions, such as accurate catalog maintenance, collision avoidance for manned and unmanned space flight, reentry prediction, satellite lifetime prediction, defining on-board fuel requirements, and satellite attitude dynamics. We describe ongoing work to build a comprehensive nowcast and forecast system for neutral density, winds, temperature, composition, and satellite drag. This modeling tool will be called the Atmospheric Density Assimilation Model (ADAM). It will be based on three state-of-the-art coupled models of the thermosphere-ionosphere running in real-time, using assimilative techniques to produce a thermospheric nowcast. It will also produce, in realtime, 72-hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition. We will review the requirements for the ADAM system, the underlying full-physics models, the plethora of input options available to drive the models, a feasibility study showing the performance of first-principles models as it pertains to satellite-drag operational needs, and review challenges in designing an assimilative space-weather prediction model. The performance of the ensemble assimilative model is expected to exceed the performance of current empirical and assimilative density models.

  10. The effect of plasma actuator on the depreciation of the aerodynamic drag on box model

    Science.gov (United States)

    Harinaldi, Budiarso, Julian, James; Rabbani M., N.

    2016-06-01

    Recent active control research advances have provided many benefits some of which in the field of transportation by land, sea as well as by air. Flow engineering by using active control has proven advantages in energy saving significantly. One of the active control equipment that is being developed, especially in the 21st century, is a plasma actuator, with the ability to modify the flow of fluid by the approach of ion particles makes these actuators a very powerful and promising tool. This actuator can be said to be better to the previously active control such as suction, blowing and synthetic jets because it is easier to control, more flexible because it has no moving parts, easy to be manufactured and installed, and consumes a small amount of energy with maximum capability. Plasma actuator itself is the composition of a material composed of copper and a dielectric sheet, where the copper sheets act as an electricity conductor and the dielectric sheet as electricity insulator. Products from the plasma actuators are ion wind which is the result of the suction of free air around the actuator to the plasma zone. This study investigates the ability of plasma actuators in lowering aerodynamic drag which is commonly formed in the models of vehicles by varying the shape of geometry models and the flow speed.

  11. Effect of Various Modifications on Drag and Longitudinal Stability and Control Characteristics at Transonic Speeds of a Model of the XF7U-1 Tailless Airplane: NACA Wing-FLow Method, TED No. NACA DE 307

    Science.gov (United States)

    Sawyer, Richard H.; Trant, James P., Jr.

    1950-01-01

    An investigation was made by the NACA wing-flow method to determine the drag, pitching-moment, lift, and angle-of-attack characteristics at transonic speeds of various configurations of a semispan model of an early configuration of the XF7U-1 tailless airplane. The results of the tests indicated that for the basic configuration with undeflected ailavator, the zero-lift drag rise occurred at a Mach number of about 0.85 and that about a five-fold increase in drag occurred through the transonic speed range. The results of the tests also indicated that the drag increment produced by -8.0 degrees deflection of the ailavator increased with increase in normal-force coefficient and was smaller at speeds above than at speeds below the drag rise. The drag increment produced by 35 degree deflection of the speed brakes varied from 0.040 to 0.074 depending on the normal-force coefficient and Mach number. These values correspond to drag coefficients of about 0.40 and 0.75 based on speed-brake frontal area. Removal of the fin produced a small positive drag increment at a given normal-force coefficient at speeds during the drag rise. A large forward shift of the neutral-point location occurred at Mach numbers above about 0.90 upon removal of the fin, and also a considerable forward shift throughout the Mach number range occurred upon deflection of the speed brakes. Ailavator ineffectiveness or reversal at low deflections, similar to that determined in previous tests of the basic configuration of the model in the Mach number range from about 0.93 to 1.0, was found for the fin-off configuration and for the model equipped with skewed (more highly sweptback) hinge-line ailavators. With the speed brakes deflected, little or no loss in the incremental pitching moment produced by deflection of the ailavator from O degrees to -8.00 degrees occurred in the Mach number range from 0.85 to 1.0 in contrast to a considerable loss found in previous tests with the speed brakes off.

  12. On the Minimum Induced Drag of Wings -or- Thinking Outside the Box

    Science.gov (United States)

    Bowers, Albion H.

    2011-01-01

    Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb.

  13. Grafted natural polymer as new drag reducing agent: An experimental approach

    Directory of Open Access Journals (Sweden)

    Abdulbari Hayder A.

    2012-01-01

    Full Text Available The present investigation introduces a new natural drag reducing agent which has the ability to improve the flow in pipelines carrying aqueous or hydrocarbon liquids in turbulent flow. Okra (Abelmoschus esculentus mucilage drag reduction performance was tested in water and hydrocarbon (gas-oil media after grafting. The drag reduction test was conducted in a buildup closed loop liquid circulation system consists of two pipes 0.0127 and 0.0381 m Inside Diameter (ID, four testing sections in each pipe (0.5 to 2.0 m, tank, pump and pressure transmitters. Reynolds number (Re, additive concentration and the transported media type (water and gas-oil, were the major drag reduction variables investigated. The experimental results show that, new additive drag reduction ability is high with maximum percentage of drag reduction (%Dr up to 60% was achieved. The experimental results showed that the drag reduction ability increased by increasing the additive concentration. The %Dr was found to increase by increasing the Re by using the water-soluble additive while it was found to decrease by increasing the Re when using the oil-soluble additive. The %Dr was higher in the 0.0381 m ID pipe. Finally, the grafted and natural mucilage showed high resistance to shear forces when circulated continuously for 200 seconds in the closed-loop system.

  14. Numerical simulation of drag-reducing channel flow by using bead-spring chain model

    International Nuclear Information System (INIS)

    Fujimura, M.; Atsumi, T.; Mamori, H.; Iwamoto, K.; Murata, A.; Masuda, M.; Ando, H.

    2017-01-01

    Highlights: • Numerical simulations of drag-reduced turbulent flow by polymer additives were performed by using a discrete element model. • A decreasing pressure-strain correlation mainly contributes to drag reduction by polymer addition. • Energy transport by the polymer attenuates the turbulence. • The viscoelastic effects on the drag-reducing flow are intensified with increasing relaxation time of polymer. • The polymer energy transport is related to the orientation of the polymer. - Abstract: Numerical simulations of the drag-reducing turbulent channel flow caused by polymer addition are performed. A bead-spring chain model is employed as a model of polymer aggregation. The model consists of beads and springs to represent the polymer dynamics. Three drag-reduction cases are studied with different spring constants that correspond to the relaxation time of the polymer. The energy budget is mainly focused upon to discuss the drag-reduction mechanism. Our results show that a decreasing pressure-strain correlation mainly contributes to strengthening the anisotropy of the turbulence. Furthermore, energy transport by the polymer models attenuates the turbulence. These viscoelastic effects on the drag-reducing flow are intensified with decreasing spring constant. By visualizing the flow field, it is found that this polymer energy transport is related to the orientation of the polymer.

  15. On the Decrease of the Oceanic Drag Coefficient in High Winds

    Science.gov (United States)

    Donelan, Mark A.

    2018-02-01

    The sheltering coefficient - prefixing Jeffreys' concept of the exponential wave growth rate at a gas-liquid interface - is shown to be Reynolds number dependent from laboratory measurements of waves and Reynolds stresses. There are two turbulent flow regimes: wind speed range of 2.5 to 30 m/s where the drag coefficients increase with wind speed, and wind speed range of 30 to 50 m/s where sheltering/drag coefficients decrease/saturate with wind speed. By comparing model calculations of drag coefficients - using a fixed sheltering coefficient - with ocean observations over a wind speed range of 1 to 50 m/s a similar Reynolds number dependence of the oceanic sheltering coefficient is revealed. In consequence the drag coefficient is a function of Reynolds number and wave age, and not just wind speed as frequently assumed. The resulting decreasing drag coefficient above 30 m/s is shown to be critical in explaining the rapid intensification so prominent in the climatology of Atlantic hurricanes. The Reynolds number dependence of the sheltering coefficient, when employed in coupled models, should lead to significant improvements in the prediction of intensification and decay of tropical cyclones. A calculation of curvature at the wave crest suggests that at wind speeds above 56.15 m/s all waves-breaking or not-induce steady flow separation leading to a minimum in the drag coefficient. This is further evidence of the veracity of the observations of the oceanic drag coefficient at high winds.

  16. Tracking Human Immunodeficiency Virus-1 Infection in the Humanized DRAG Mouse Model

    Science.gov (United States)

    Kim, Jiae; Peachman, Kristina K.; Jobe, Ousman; Morrison, Elaine B.; Allam, Atef; Jagodzinski, Linda; Casares, Sofia A.; Rao, Mangala

    2017-01-01

    Humanized mice are emerging as an alternative model system to well-established non-human primate (NHP) models for studying human immunodeficiency virus (HIV)-1 biology and pathogenesis. Although both NHP and humanized mice have their own strengths and could never truly reflect the complex human immune system and biology, there are several advantages of using the humanized mice in terms of using primary HIV-1 for infection instead of simian immunodeficiency virus or chimera simian/HIV. Several different types of humanized mice have been developed with varying levels of reconstitution of human CD45+ cells. In this study, we utilized humanized Rag1KO.IL2RγcKO.NOD mice expressing HLA class II (DR4) molecule (DRAG mice) infused with HLA-matched hematopoietic stem cells from umbilical cord blood to study early events after HIV-1 infection, since the mucosal tissues of these mice are highly enriched for human lymphocytes and express the receptors and coreceptors needed for HIV-1 entry. We examined the various tissues on days 4, 7, 14, and 21 after an intravaginal administration of a single dose of purified primary HIV-1. Plasma HIV-1 RNA was detected as early as day 7, with 100% of the animals becoming plasma RNA positive by day 21 post-infection. Single cells were isolated from lymph nodes, bone marrow, spleen, gut, female reproductive tissue, and brain and analyzed for gag RNA and strong stop DNA by quantitative (RT)-PCR. Our data demonstrated the presence of HIV-1 viral RNA and DNA in all of the tissues examined and that the virus was replication competent and spread rapidly. Bone marrow, gut, and lymph nodes were viral RNA positive by day 4 post-infection, while other tissues and plasma became positive typically between 7 and 14 days post-infection. Interestingly, the brain was the last tissue to become HIV-1 viral RNA and DNA positive by day 21 post-infection. These data support the notion that humanized DRAG mice could serve as an excellent model for studying the

  17. Tracking Human Immunodeficiency Virus-1 Infection in the Humanized DRAG Mouse Model

    Directory of Open Access Journals (Sweden)

    Jiae Kim

    2017-10-01

    Full Text Available Humanized mice are emerging as an alternative model system to well-established non-human primate (NHP models for studying human immunodeficiency virus (HIV-1 biology and pathogenesis. Although both NHP and humanized mice have their own strengths and could never truly reflect the complex human immune system and biology, there are several advantages of using the humanized mice in terms of using primary HIV-1 for infection instead of simian immunodeficiency virus or chimera simian/HIV. Several different types of humanized mice have been developed with varying levels of reconstitution of human CD45+ cells. In this study, we utilized humanized Rag1KO.IL2RγcKO.NOD mice expressing HLA class II (DR4 molecule (DRAG mice infused with HLA-matched hematopoietic stem cells from umbilical cord blood to study early events after HIV-1 infection, since the mucosal tissues of these mice are highly enriched for human lymphocytes and express the receptors and coreceptors needed for HIV-1 entry. We examined the various tissues on days 4, 7, 14, and 21 after an intravaginal administration of a single dose of purified primary HIV-1. Plasma HIV-1 RNA was detected as early as day 7, with 100% of the animals becoming plasma RNA positive by day 21 post-infection. Single cells were isolated from lymph nodes, bone marrow, spleen, gut, female reproductive tissue, and brain and analyzed for gag RNA and strong stop DNA by quantitative (RT-PCR. Our data demonstrated the presence of HIV-1 viral RNA and DNA in all of the tissues examined and that the virus was replication competent and spread rapidly. Bone marrow, gut, and lymph nodes were viral RNA positive by day 4 post-infection, while other tissues and plasma became positive typically between 7 and 14 days post-infection. Interestingly, the brain was the last tissue to become HIV-1 viral RNA and DNA positive by day 21 post-infection. These data support the notion that humanized DRAG mice could serve as an excellent model

  18. Analysis of uncertainties, associated to the calculating hypothesis, in discharge tables for high flows estimating, based on mathematics models for calculating water surface profiles fore steady gradually varied flow; Analisis de las incertidumbres, asociadas a las hipotesis de calculo, en la estimacion de curvas de gasto para crcidas, basada en el empleo de modelo matematico de calculo hidraulico en regimen permanente

    Energy Technology Data Exchange (ETDEWEB)

    Aldana Valverde, A. L.; Gonzalez Rodriguez, J. C.

    1999-08-01

    In this paper are analyzed some of the most important factors which can influence on the results of calculating water surface profiles for steady gradually varied flow. In this case, the objective of this kind of modeling, has been the estimation of discharges tables for high flows of river station gages connected to the hydrologic automatic information system (SAIH) of the Confederacion Hidrografica del Sur de Espana, system named red Hidrosur. (Author) 3 refs

  19. Departure of microscopic friction from macroscopic drag in molecular fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hanasaki, Itsuo [Institute of Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan); Fujiwara, Daiki; Kawano, Satoyuki, E-mail: kawano@me.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, Machikaneyama-cho 1-3, Toyonaka, Osaka 560-8531 (Japan)

    2016-03-07

    Friction coefficient of the Langevin equation and drag of spherical macroscopic objects in steady flow at low Reynolds numbers are usually regarded as equivalent. We show that the microscopic friction can be different from the macroscopic drag when the mass is taken into account for particles with comparable scale to the surrounding fluid molecules. We illustrate it numerically by molecular dynamics simulation of chloride ion in water. Friction variation by the atomistic mass effect beyond the Langevin regime can be of use in the drag reduction technology as well as the electro or thermophoresis.

  20. Aerodynamic Drag Reduction for a Generic Truck Using Geometrically Optimized Rear Cabin Bumps

    Directory of Open Access Journals (Sweden)

    Abdellah Ait Moussa

    2015-01-01

    Full Text Available The continuous surge in gas prices has raised major concerns about vehicle fuel efficiency, and drag reduction devices offer a promising strategy. In this paper, we investigate the mechanisms by which geometrically optimized bumps, placed on the rear end of the cabin roof of a generic truck, reduce aerodynamic drag. The incorporation of these devices requires proper choices of the size, location, and overall geometry. In the following analysis we identify these factors using a novel methodology. The numerical technique combines automatic modeling of the add-ons, computational fluid dynamics and optimization using orthogonal arrays, and probabilistic restarts. Numerical results showed reduction in aerodynamic drag between 6% and 10%.

  1. Determining the drag coefficient of rotational symmetric objects falling through liquids

    International Nuclear Information System (INIS)

    Houari, Ahmed

    2012-01-01

    I will propose here a kinematic approach for measuring the drag coefficient of rotational symmetric objects falling through liquids. For this, I will show that one can obtain a measurement of the drag coefficient of a rotational symmetric object by numerically solving the equation of motion describing its fall through a known liquid contained in a vertical tube. The experimental value of the drag coefficient of an object with a particular shape is obtained by measuring the fall distance of the object at any recorded time along its entire falling path. (paper)

  2. Nan Goldin: da Fotografia do Cotidiano à Visibilidade Drag Queen

    Directory of Open Access Journals (Sweden)

    Vivian Castro de Miranda

    2017-09-01

    Full Text Available Este trabalho tem como objetivo apresentar a biografia da fotógrafa americana Nan Goldin, a partir do recorte de sua produção datada entre as décadas de 1970 e 1990, em que ela fotografou a comunidade drag queen. A partir do cruzamento de informações vigentes em documentário (Série, 2004 e fontes relevantes (Guggenheim Museum, EUA; The Guardian, UK a quem a fotógrafa concedeu entrevistas ou foi notícia, procura-se explorar nesse texto a importância de uma produção que se insere no âmbito de questões caras ao contexto contemporâneo, que é a temática de gênero. Com a perspectiva teórica adotada, baseada principalmente nos apontamentos de Barthes (1984, é possível compreender o corpus analisado como resultante de um olhar sensível para o aspecto humano, com impacto para a discussão e aceitação do grupo social.

  3. Octopus-inspired drag cancelation by added mass pumping

    Science.gov (United States)

    Weymouth, Gabriel; Giorgio-Serchi, Francesco

    2016-11-01

    Recent work has shown that when an immersed body suddenly changes its size, such as a deflating octopus during rapid escape jetting, the body experiences large forces due to the variation of added-mass energy. We extend this line of research by investigating a spring-mass oscillator submerged in quiescent fluid subject to periodic changes in its volume. This system isolates the ability of the added-mass thrust to cancel the bluff body resistance (having no jet flow to confuse the analysis) and moves closer to studying how these effects would work in a sustained propulsion case by studying periodic shape-change instead of a "one-shot" escape maneuver. With a combination of analytical, numerical, and experimental results, we show that the recovery of added-mass kinetic energy can be used to completely cancel the drag of the fluid, driving the onset of sustained oscillations with amplitudes as large as four times the average body radius. Moreover, these results are fairly independent of the details of the shape-change kinematics as long as the Stokes number and shape-change number are large. In addition, the effective pumping frequency range based on parametric oscillator analysis is shown to predict large amplitude response region observed in the numerics and experiments.

  4. A probabilistic approach to the drag-based model

    Science.gov (United States)

    Napoletano, Gianluca; Forte, Roberta; Moro, Dario Del; Pietropaolo, Ermanno; Giovannelli, Luca; Berrilli, Francesco

    2018-02-01

    The forecast of the time of arrival (ToA) of a coronal mass ejection (CME) to Earth is of critical importance for our high-technology society and for any future manned exploration of the Solar System. As critical as the forecast accuracy is the knowledge of its precision, i.e. the error associated to the estimate. We propose a statistical approach for the computation of the ToA using the drag-based model by introducing the probability distributions, rather than exact values, as input parameters, thus allowing the evaluation of the uncertainty on the forecast. We test this approach using a set of CMEs whose transit times are known, and obtain extremely promising results: the average value of the absolute differences between measure and forecast is 9.1h, and half of these residuals are within the estimated errors. These results suggest that this approach deserves further investigation. We are working to realize a real-time implementation which ingests the outputs of automated CME tracking algorithms as inputs to create a database of events useful for a further validation of the approach.

  5. Drag reduction of motor vehicles by active flow control using the Coanda effect

    Science.gov (United States)

    Geropp, D.; Odenthal, H.-J.

    A test facility has been constructed to realistically simulate the flow around a two dimensional car shaped body in a wind tunnel. A moving belt simulator has been employed to generate the relative motion between model and ground. In a first step, the aerodynamic coefficients cL and cD of the model are determined using static pressure and force measurements. LDA-measurements behind the model show the large vortex and turbulence structures of the near and far wake. In a second step, the ambient flow around the model is modified by way of an active flow control which uses the Coanda effect, whereby the base-pressure increases by nearly 50% and the total drag can be reduced by 10%. The recirculating region is completely eliminated. The current work reveals the fundamental physical phenomena of the new method by observing the pressure forces on the model surface as well as the time averaged velocities and turbulence distributions for the near and far wake. A theory resting on this empirical information is developed and provides information about the effectiveness of the blowing method. For this, momentum and energy equations were applied to the flow around the vehicle to enable a validation of the theoretical results using experimental values.

  6. A Rigid Mid-Lift-to-Drag Ratio Approach to Human Mars Entry, Descent, and Landing

    Science.gov (United States)

    Cerimele, Christopher J.; Robertson, Edward A.; Sostaric, Ronald R.; Campbell, Charles H.; Robinson, Phil; Matz, Daniel A.; Johnson, Breanna J.; Stachowiak, Susan J.; Garcia, Joseph A.; Bowles, Jeffrey V.; hide

    2017-01-01

    Current NASA Human Mars architectures require delivery of approximately 20 metric tons of cargo to the surface in a single landing. A proposed vehicle type for performing the entry, descent, and landing at Mars associated with this architecture is a rigid, enclosed, elongated lifting body shape that provides a higher lift-to-drag ratio (L/D) than a typical entry capsule, but lower than a typical winged entry vehicle (such as the Space Shuttle Orbiter). A rigid Mid-L/D shape has advantages for large mass Mars EDL, including loads management, range capability during entry, and human spaceflight heritage. Previous large mass Mars studies have focused more on symmetric and/or circular cross-section Mid-L/D shapes such as the ellipsled. More recent work has shown performance advantages for non-circular cross section shapes. This paper will describe efforts to design a rigid Mid-L/D entry vehicle for Mars which shows mass and performance improvements over previous Mid-L/D studies. The proposed concept, work to date and evolution, forward path, and suggested future strategy are described.

  7. development of a new drag coefficient model for oil and gas

    African Journals Online (AJOL)

    eobe

    approximation of experimental data for e. R , from .... dynamic conditions in order to evaluate the drag and ... based on the experimental data for multiphase, water- oil-gas flow see ... Figure 6: Comparison of measured and model prediction.

  8. Experimental evaluation of the drag coefficient of water rockets by a simple free-fall test

    Energy Technology Data Exchange (ETDEWEB)

    Barrio-Perotti, R; Blanco-Marigorta, E; Argueelles-Diaz, K; Fernandez-Oro, J [Departamento de Energia, Universidad de Oviedo, Campus de Viesques, 33271 Gijon, Asturias (Spain)], E-mail: barrioraul@uniovi.es

    2009-09-15

    The flight trajectory of a water rocket can be reasonably calculated if the magnitude of the drag coefficient is known. The experimental determination of this coefficient with enough precision is usually quite difficult, but in this paper we propose a simple free-fall experiment for undergraduate students to reasonably estimate the drag coefficient of water rockets made from plastic soft drink bottles. The experiment is performed using relatively small fall distances (only about 14 m) in addition with a simple digital-sound-recording device. The fall time is inferred from the recorded signal with quite good precision, and it is subsequently introduced as an input of a Matlab (registered) program that estimates the magnitude of the drag coefficient. This procedure was tested first with a toy ball, obtaining a result with a deviation from the typical sphere value of only about 3%. For the particular water rocket used in the present investigation, a drag coefficient of 0.345 was estimated.

  9. Equations for calculating interfacial drag and shear from void fraction correlations

    International Nuclear Information System (INIS)

    Putney, J.M.

    1988-12-01

    Equations are developed for calculating interfacial drag and shear coefficients for dispersed vapour flows from void fraction correlations. The equations have a sound physical basis and lead to physically correct coefficients in all flow situations. (author)

  10. Wavelet Analysis on Turbulent Structure in Drag-Reducing Channel Flow Based on Direct Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Xuan Wu

    2013-01-01

    Full Text Available Direct numerical simulation has been performed to study a polymer drag-reducing channel flow by using a discrete-element model. And then, wavelet analyses are employed to investigate the multiresolution characteristics of velocity components based on DNS data. Wavelet decomposition is applied to decompose velocity fluctuation time series into ten different frequency components including approximate component and detailed components, which show more regular intermittency and burst events in drag-reducing flow. The energy contribution, intermittent factor, and intermittent energy are calculated to investigate characteristics of different frequency components. The results indicate that energy contributions of different frequency components are redistributed by polymer additives. The energy contribution of streamwise approximate component in drag-reducing flow is up to 82%, much more than 25% in the Newtonian flow. Feature of turbulent multiscale structures is shown intuitively by continuous wavelet transform, verifying that turbulent structures become much more regular in drag-reducing flow.

  11. Turbulent skin-friction drag on a slender body of revolution and Gray's Paradox

    International Nuclear Information System (INIS)

    Nesteruk, Igor; Cartwright, Julyan H E

    2011-01-01

    The boundary layer on a slender body of revolution differs considerably from that on a flat plate, but these two cases can be connected by the Mangler-Stepanov transformations. The presented analysis shows that turbulent frictional drag on a slender rotationally symmetric body is much smaller than the flat-plate concept gives and the flow can remain laminar at larger Reynolds numbers. Both facts are valid for an unseparated flow pattern and enable us to revise the turbulent drag estimation of a dolphin, presented by Gray 74 years ago, and to resolve his paradox, since experimental data testify that dolphins can achieve flow without separation. The small values of turbulent skin-friction drag on slender bodies of revolution have additional interest for further experimental investigations and for applications of shapes without boundary-layer separation to diminish the total drag and noise of air- and hydrodynamic hulls.

  12. Drag reduction by natural polymeric additives in PMDS microchannel: Effect of types of additives

    Directory of Open Access Journals (Sweden)

    Ling Fiona W.M.

    2017-01-01

    Full Text Available Drag reduction technology was used in medical applications to enhance the blood flow in semiclogged blood streams which can be an alternative treatment for atherosclerosis. In this present study, natural polymeric drag reducing additives (DRA was introduced to replace synthetic polymer which has the possibility of bringing side effects to human health. Three different sources, namely okra, aloe vera and hibiscus were utilized to extract the natural polymeric additives which were then tested in custom made microchannel simulating human heart blood vessels. The performance of different types of additives was evaluated using pressure measurements. The maximum drag reduction up to 63.48% is achieved using 300 ppm of hibiscus mucilage at operating pressure of 50 mbar. In this present work, hibiscus showed the best drag reduction performance, giving the highest %FI in most of the cases. This experimental results proved that these natural polymeric additives could be utilized as DRA in enhancing the blood flow in semiclogged blood streams.

  13. In-situ measurement of electroosmotic drag coefficient in Nafion membrane for the PEMFC.

    Science.gov (United States)

    Peng, Zhe; Morin, Arnaud; Huguet, Patrice; Schott, Pascal; Pauchet, Joël

    2011-11-10

    A new method based on hydrogen pump has been developed to measure the electroosmotic drag coefficient in representative PEMFC operating conditions. It allows eliminating the back-flow of water which leads to some errors in the calculation of this coefficient with previously reported electrochemical methods. Measurements have been performed on 50 μm thick Nafion membranes both extruded and recast. Contrary to what has been described in most of previous published works, the electroosmotic drag coefficient decreases as the membrane water content increases. The same trend is observed for temperatures between 25 and 80 °C. For the same membrane water content, the electroosmotic drag coefficient increases with temperature. In the same condition, there is no difference in drag coefficient for extruded Nafion N112 and recast Nafion NRE212. These results are discussed on the basis of the two commonly accepted proton transport mechanisms, namely, Grotthus and vehicular.

  14. A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization

    DEFF Research Database (Denmark)

    Luo, Hao; Lu, Bona; Zhang, Jingyuan

    2017-01-01

    The EMMS/bubbling drag model takes the effects of meso-scale structures (i.e. bubbles) into modeling of drag coefficient and thus improves coarse-grid simulation of bubbling and turbulent fluidized beds. However, its dependence on grid size has not been fully investigated. In this article, we adopt...... a two-step scheme to extend the EMMS/bubbling model to the sub-grid level. Thus the heterogeneity index, HD, which accounts for the hydrodynamic disparity between homogeneous and heterogeneous fluidization, can be correlated as a function of both local voidage and slip velocity. Simulations over...... a periodic domain show the new drag model is less sensitive to grid size because of the additional dependence on local slip velocity. When applying the new drag model to simulations of realistic bubbling and turbulent fluidized beds, we find grid-independent results are easier to obtain for high...

  15. Variational and symplectic integrators for satellite relative orbit propagation including drag

    Science.gov (United States)

    Palacios, Leonel; Gurfil, Pini

    2018-04-01

    Orbit propagation algorithms for satellite relative motion relying on Runge-Kutta integrators are non-symplectic—a situation that leads to incorrect global behavior and degraded accuracy. Thus, attempts have been made to apply symplectic methods to integrate satellite relative motion. However, so far all these symplectic propagation schemes have not taken into account the effect of atmospheric drag. In this paper, drag-generalized symplectic and variational algorithms for satellite relative orbit propagation are developed in different reference frames, and numerical simulations with and without the effect of atmospheric drag are presented. It is also shown that high-order versions of the newly-developed variational and symplectic propagators are more accurate and are significantly faster than Runge-Kutta-based integrators, even in the presence of atmospheric drag.

  16. Drag of evaporating or condensing droplets in low Reynolds number flow

    International Nuclear Information System (INIS)

    Dukowicz, J.K.

    1984-01-01

    The steady-state drag of evaporating or condensing droplets in low Reynolds number flow is computed. Droplet drag in air is obtained for five representative liquids (water, methanol, benzene, heptane, octane) for a range of ambient temperatures, pressures, and vapor concentrations. The drag is in general increased for a condensing droplet, and decreased for an evaporating droplet. The changes in drag can be quite large and depend in detail on the degree of evaporation or condensation, and on the individual liquid and vapor properties. The present results are used to test the existing experimentally derived correlations of Eisenklam and Yuen and Chen in the low Reynolds number regime. The Yuen and Chen correlation is found to be quite successful, but only in the case of condensation or mild evaporation. An improved correlation is suggested for evaporating droplets

  17. Drag &Drop, Multiphysics & Neural Net-based Lab-on-Chip Optimization Software, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this project is to develop a drag and drop, component library (fluidic lego) based, system simulation and optimization software for entire...

  18. Drag &Drop, Mixed-Methodology-based Lab-on-Chip Design Optimization Software, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective is to develop a ?mixed-methodology?, drag and drop, component library (fluidic-lego)-based, system design and optimization tool for complex...

  19. The Locus of the apices of projectile trajectories under constant drag

    OpenAIRE

    Hernández-Saldaña, H.

    2017-01-01

    We present an analytical solution for the projectile coplanar motion under constant drag parametrised by the velocity angle. We found the locus formed by the apices of the projectile trajectories. The range and time of flight are obtained numerically and we find that the optimal launching angle is smaller than in the free drag case. This is a good example of problems with constant dissipation of energy that includes curvature, and it is proper for intermediate courses of mechanics.

  20. Drag reduction by natural polymeric additives in PMDS microchannel: Effect of types of additives

    OpenAIRE

    Ling Fiona W.M.; Abdulbari Hayder A.

    2017-01-01

    Drag reduction technology was used in medical applications to enhance the blood flow in semiclogged blood streams which can be an alternative treatment for atherosclerosis. In this present study, natural polymeric drag reducing additives (DRA) was introduced to replace synthetic polymer which has the possibility of bringing side effects to human health. Three different sources, namely okra, aloe vera and hibiscus were utilized to extract the natural polymeric additives which were then tested ...

  1. Influence of Blocker Distance Variations in form of Triangle in Front of Cylinder toward Drag Coefficien

    Directory of Open Access Journals (Sweden)

    Si Putu Gede Gunawan Tista

    2012-11-01

    Full Text Available One of the ways to reduce energy consumption on the air plane and the other bluff bodies are by decreasing the drag. Drag isclosely related to the flow separation. The earlier separation, then the drag will increase more. Based of the fact the effort todecrease drag is conducted by manipulating the field of fluid flow. Stream manipulation was be done by installing Triangleobstacle in front of cylinder. The purpose of this research is to analyze the effect of various distance triangle obstacle in front ofcylinder on drag. The present experiment was done by placing triangle rod in front of the cylinder. In the present research, theexperiment was conducted in the wind tunnel, which consisted of blower, pitot pipe, manometer, cylinder pipe, and triangle rod.The triangle was positioned at L/D = 1.19, L/D = 1.43, L/D = 1.67, L/D = 1.9, L/D = 2.14, L/D = 2.38, L/D = 2.62, and L/D =2.86 by upstream from the cylinder. The triangle was 8 mm uniform side. The Reynolds number based on the cylinder diameter (D= 42 mm was Re = 1.81 x 104. The research results showed that the triangle rod could decrease the drag of cylinder. Coefficientdrag for cylinder without triangle rod was 0.1276 while the biggest decrease of coefficient of drag with triangle rod washappened at L/D = 1.43 which was 0.0188. It means that the drag of cylinder with triangle rod was 85.25% lower than thecylinder alone.

  2. Optimal control of lift/drag ratios on a rotating cylinder

    Science.gov (United States)

    Ou, Yuh-Roung; Burns, John A.

    1992-01-01

    We present the numerical solution to a problem of maximizing the lift to drag ratio by rotating a circular cylinder in a two-dimensional viscous incompressible flow. This problem is viewed as a test case for the newly developing theoretical and computational methods for control of fluid dynamic systems. We show that the time averaged lift to drag ratio for a fixed finite-time interval achieves its maximum value at an optimal rotation rate that depends on the time interval.

  3. Use of a pitot probe for determining wing section drag in flight

    Science.gov (United States)

    Saltzman, E. J.

    1975-01-01

    A wake traversing probe was used to obtain section drag and wake profile data from the wing of a sailplane. The transducer sensed total pressure defect in the wake as well as freestream total pressure on both sides of the sensing element when the probe moved beyond the wake. Profiles of wake total pressure defects plotted as a function of distance above and below the trailing edge plane were averaged for calculating section drag coefficients for flights at low dynamic pressures.

  4. Kevlar/PMR-15 reduced drag DC-9 reverser stang fairing

    Science.gov (United States)

    Kawai, R. T.

    1982-01-01

    A reduced drag fairing for the afterbody enclosing the thrust reverser actuators on the DC-9 has been developed with Kevlar-49/PMR-15 advanced composite material. The improved fairing reduces airplane drag 1% compared to the production baseline. Use of composites reduces weight 40% compared to an equivalent metal fairing. The Kevlar-49/PMR-15 advanced composite is an organic matrix material system that can be used at temperatures up to 500 F.

  5. Venus thermosphere and exosphere - First satellite drag measurements of an extraterrestrial atmosphere

    Science.gov (United States)

    Keating, G. M.; Tolson, R. H.; Hinson, E. W.

    1979-01-01

    Atmospheric drag measurements obtained from the study of the orbital decay of Pioneer Venus I indicate that atomic oxygen predominates in the Venus atmosphere above 160 kilometers. Drag measurements give evidence that conditions characteristic of a planetary thermosphere disappear near sundown, with inferred exospheric temperatures sharply dropping from approximately 300 K to less than 150 K. Observed densities are generally lower than given by theoretical models.

  6. Computational investigations of blunt body drag-reduction spikes in hypersonic flows

    International Nuclear Information System (INIS)

    Kamran, N.; Zahir, S.; Khan, M.A.

    2003-01-01

    Drag is an important parameter in the designing of high-speed vehicles. Such vehicles include hypervelocity projectiles, reentry modules, and hypersonic aircrafts. Therefore, there exists an active or passive technique to reduce drag due to the high pressures at nosetip region of the vehicle. Drag can be reduced by attaching a forward facing spike on the nose of the vehicle. The present study reviews and deals with the CFD analysis made on a standard blunt body to reduce aerodynamic drag due to the attachment of forward facing spikes for High-Speed vehicles. Different spike lengths have been examined to study the forebody flowfield. The investigation concludes that spikes are an effective way to reduce the aerodynamic drag due to reduced dynamic pressure on the nose caused by the separated flow on the spikes. With the accomplishment of confidence on computational data, study was extended in hypersonic Mach range with a drag prediction accuracy of ± 10%. In the present work, viscous fluid dynamics studies were performed for a complete freestream Mach number range of 5.0, 6.0, 7.0 and 8.0 for different spike lengths and zero degree angle of attack. (author)

  7. Experimental study on the minimum drag coefficient of supercritical pressure water in horizontal tubes

    International Nuclear Information System (INIS)

    Lei, Xianliang; Li, Huixiong; Guo, YuMeng; Zhang, Qing; Zhang, Weiqiang; Zhang, Qian

    2016-01-01

    Highlights: • The minimum drag coefficient phenomenon (MDC) has been observed and further investigated. • Effects of heat flux, mass flux and pressure to MDC have been discussed. • A series of comparisons between existing correlations and data have been conducted. • Two correlations of drag coefficient are proposed for isothermal and nonisothermal flow. - Abstract: Hydraulic resistance and its components are of great importance for understanding the turbulence nature of supercritical fluid and establishing prediction methods. Under supercritical pressures, the hydraulic resistance of the fluid exhibits a “pit” in the regions near its pseudo-critical point, which is hereafter called the minimum drag coefficient phenomenon. However, this special phenomenon was paid a little attention before. Hence systematical experiments have been carried out to investigate the hydraulic resistance of supercritical pressure water in both adiabatic and heated horizontal tubes. Parametric effects of heat flux, pressure and mass fluxes to drag coefficient are further compared. It is found that almost all of the existing correlations don’t agree well with the experimental data due to the insufficient consideration of thermal-properties near the pseudocritical point. Two correlations of the drag coefficients are finally proposed by introducing the new variable of the derivative of density with respect to temperature or Prandtl number, which can better predict the drag coefficient of isothermal and nonisothermal flow respectively.

  8. Analysis of Zero Reynolds Shear Stress Appearing in Dilute Surfactant Drag-Reducing Flow

    Directory of Open Access Journals (Sweden)

    Weiguo Gu

    2011-01-01

    Full Text Available Dilute surfactant solution of 25 ppm in the two-dimensional channel is investigated experimentally compared with water flow. Particle image velocimetry (PIV system is used to take 2D velocity frames in the streamwise and wall-normal plane. Based on the frames of instantaneous vectors and statistical results, the phenomenon of zero Reynolds shear stress appearing in the drag-reducing flow is discussed. It is found that 25 ppm CTAC solution exhibits the highest drag reduction at Re = 25000 and loses drag reduction completely at Re = 40000. When drag reduction lies in the highest, Reynolds shear stress disappears and reaches zero although the RMS of the velocity fluctuations is not zero. By the categorization in four quadrants, the fluctuations of 25 ppm CTAC solution are distributed in all four quadrants equally at Re = 25000, which indicates that turnaround transportation happens in drag-reducing flow besides Reynolds shear stress transportation. Moreover, the contour distribution of streamwise velocity and the fluctuations suggests that turbulence transportation is depressed in drag-reducing flow. The viscoelasticity is possible to decrease the turbulence transportation and cause the turnaround transportation.

  9. Using the power balance model to simulate cross-country skiing on varying terrain.

    Science.gov (United States)

    Moxnes, John F; Sandbakk, Oyvind; Hausken, Kjell

    2014-01-01

    The current study adapts the power balance model to simulate cross-country skiing on varying terrain. We assumed that the skier's locomotive power at a self-chosen pace is a function of speed, which is impacted by friction, incline, air drag, and mass. An elite male skier's position along the track during ski skating was simulated and compared with his experimental data. As input values in the model, air drag and friction were estimated from the literature based on the skier's mass, snow conditions, and speed. We regard the fit as good, since the difference in racing time between simulations and measurements was 2 seconds of the 815 seconds racing time, with acceptable fit both in uphill and downhill terrain. Using this model, we estimated the influence of changes in various factors such as air drag, friction, and body mass on performance. In conclusion, the power balance model with locomotive power as a function of speed was found to be a valid tool for analyzing performance in cross-country skiing.

  10. Flux-flow drag in coupled Josephson junctions

    International Nuclear Information System (INIS)

    Parmentier, R.D.; Barbara, P.; Costabile, G.; DAnna, A.; Malomed, B.A.; Soriano, C.

    1997-01-01

    We present a detailed analysis of the interaction between two fluxon chains in parallel magnetically coupled long Josephson junctions, one of which is biased (open-quotes generatorclose quotes) while another is unbiased (open-quotes detectorclose quotes). The main effect is that the driven fluxon chain in the generator may drag the chain in the detector. We note that five different regimes of the interaction are possible: both chains may be pinned by the external magnetic field; both may move in a locked state, inducing the same dc voltage in both junctions; in an unlocked state they may move at different velocities; the chain in the detector may remain pinned while the one in the generator is moving; and, finally, in a limited range of parameters the mean detector voltage may be negative, which implies that the detector chain is moving in the direction opposite to that of the chain in the generator. We consider a simplified model based on the assumptions that the fluxon chains are dense and rigid, and that their motion is nonrelativistic. In this model, each chain is represented by a single degree of freedom (its coordinate). Numerical and analytical consideration of the simplified model demonstrates that it is able to reproduce correctly all the dynamical regimes except for the negative-voltage one. To explain the existence of the latter regime, we introduce another model, suggested by the simulations, which is based on the presence of two fluxons and one antifluxon in the generator, and a single fluxon in the detector. The negative voltage is produced by motion of the antifluxon in a bound state with the detector close-quote s fluxon. The existence region of this state is limited by its collisions with free fluxons in the generator. copyright 1997 The American Physical Society

  11. Facile preparation of surface-exchangeable core@shell iron oxide@gold nanoparticles for magnetic solid-phase extraction: Use of gold shell as the intermediate platform for versatile adsorbents with varying self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaping [Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School, University of Chinese Academy of Sciences, Beijing 100049 (China); Qi, Li, E-mail: qili@iccas.ac.cn [Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Ying [Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School, University of Chinese Academy of Sciences, Beijing 100049 (China); Ma, Huimin [Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-06

    Graphical abstract: -- Highlights: •The core@shell Fe{sub 3}O{sub 4}@Au nanoparticles functionalized with SAMs were successfully constructed. •The SAMs could be transformed from one kind to another via thiol exchange process. •The developed nanomaterials could be applied in mode switching MSPE. -- Abstract: The core@shell Fe{sub 3}O{sub 4}@Au nanoparticles (NPs) functionalized with exchangeable self-assembled monolayers have been developed for mode switching magnetic solid-phase extraction (MSPE) using high performance liquid chromatography with ultraviolet detection. The adsorbents were synthesized by chemical coprecipitation to prepare magnetic cores followed by sonolysis to produce gold shells. Functionalization of Fe{sub 3}O{sub 4}@Au NPs surface was realized through self-assembly of commercially available low molecular weight thiol-containing ligands using gold shells as intermediate platform and the dynamic nature of Au–S chemistry allowed substituent of one thiol-containing ligand with another simply by thiol exchange process. The resultant adsorbents were characterized by transmission electronic microscopy, Fourier transform infrared spectroscopy, elemental analysis, contact angle measurement, and vibrating sample magnetometry. To evaluate the versatile performance of the developed MSPE adsorbents, they were applied for normal-phase SPE followed by reversed-phase SPE. A few kinds of diphenols and polycyclic aromatic hydrocarbons (PAHs) were employed as model analytes, respectively. The predominant parameters affecting extraction efficiency were investigated and optimized. Under the optimum experimental conditions, wide dynamic linear range (6.25–1600 μg L{sup −1} for diphenols and 1.56–100 μg L{sup −1} for PAHs) with good linearity (r{sup 2} ≥ 0.989) and low detection limits (0.34–16.67 μg L{sup −1} for diphenols and 0.26–0.52 μg L{sup −1} for PAHs) were achieved. The advantage of the developed method is that the Fe{sub 3}O

  12. The Thermal Collector With Varied Glass Covers

    International Nuclear Information System (INIS)

    Luminosu, I.; Pop, N.

    2010-01-01

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.

  13. Time-varying Crash Risk

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    We estimate a continuous-time model with stochastic volatility and dynamic crash probability for the S&P 500 index and find that market illiquidity dominates other factors in explaining the stock market crash risk. While the crash probability is time-varying, its dynamic depends only weakly on re...

  14. Eestlased Karlovy Varys / J. R.

    Index Scriptorium Estoniae

    J. R.

    2007-01-01

    Ilmar Raagi mängufilm "Klass" osaleb 42. Karlovy Vary rahvusvahelise filmifestivali võistlusprogrammis "East of the West" ja Asko Kase lühimängufilm "Zen läbi prügi" on valitud festivali kõrvalprogrammi "Forum of Independents"

  15. Esmaklassiline Karlovy Vary / Jaanus Noormets

    Index Scriptorium Estoniae

    Noormets, Jaanus

    2007-01-01

    Ilmar Raagi mängufilm "Klass" võitis 42. Karlovy Vary rahvusvahelise filmifestivalil kaks auhinda - ametliku kõrvalvõistlusprogrammi "East of the West" eripreemia "Special mention" ja Euroopa väärtfilmikinode keti Europa Cinemas preemia. Ka Asko Kase lühifilmi "Zen läbi prügi linastumisest ning teistest auhinnasaajatest ning osalejatest

  16. Optimistlik Karlovy Vary / Jaan Ruus

    Index Scriptorium Estoniae

    Ruus, Jaan, 1938-2017

    2007-01-01

    42. Karlovy Vary rahvusvahelise filmifestivali auhinnatud filmidest (žürii esimees Peter Bart). Kristallgloobuse sai Islandi-Saksamaa "Katseklaasilinn" (režii Baltasar Kormakur), parimaks režissööriks tunnistati norralane Bard Breien ("Negatiivse mõtlemise kunst"). Austraallase Michael James Rowlandi "Hea õnne teekond" sai žürii eripreemia

  17. Effects of Different Cutting Patterns and Experimental Conditions on the Performance of a Conical Drag Tool

    Science.gov (United States)

    Copur, Hanifi; Bilgin, Nuh; Balci, Cemal; Tumac, Deniz; Avunduk, Emre

    2017-06-01

    This study aims at determining the effects of single-, double-, and triple-spiral cutting patterns; the effects of tool cutting speeds on the experimental scale; and the effects of the method of yield estimation on cutting performance by performing a set of full-scale linear cutting tests with a conical cutting tool. The average and maximum normal, cutting and side forces; specific energy; yield; and coarseness index are measured and compared in each cutting pattern at a 25-mm line spacing, at varying depths of cut per revolution, and using two cutting speeds on five different rock samples. The results indicate that the optimum specific energy decreases by approximately 25% with an increasing number of spirals from the single- to the double-spiral cutting pattern for the hard rocks, whereas generally little effect was observed for the soft- and medium-strength rocks. The double-spiral cutting pattern appeared to be more effective than the single- or triple-spiral cutting pattern and had an advantage of lower side forces. The tool cutting speed had no apparent effect on the cutting performance. The estimation of the specific energy by the yield based on the theoretical swept area was not significantly different from that estimated by the yield based on the muck weighing, especially for the double- and triple-spiral cutting patterns and with the optimum ratio of line spacing to depth of cut per revolution. This study also demonstrated that the cutterhead and mechanical miner designs, semi-theoretical deterministic computer simulations and empirical performance predictions and optimization models should be based on realistic experimental simulations. Studies should be continued to obtain more reliable results by creating a larger database of laboratory tests and field performance records for mechanical miners using drag tools.

  18. Diffusion of Drag-Reducing Polymers within a High-Reynolds-Number, Rough-Wall Turbulent Boundary Layer

    Science.gov (United States)

    Elbing, Brian; Perlin, Marc; Dowling, David; Solomon, Michael; Ceccio, Steven

    2008-11-01

    Two experiments were conducted to investigate polymer drag reduction (PDR) within high Reynolds number (to 200 million based on downstream distance), rough-wall turbulent boundary layers. The first experiment was conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate at speeds to 20 m/s with the surface hydraulically smooth and fully rough. Local skin-friction measurements on the smooth and rough surfaces had maximum PDR levels of 65 and 75 percent, respectively. However, PDR decreased with increasing downstream distance and flow speed more rapidly on the rough surface, and at the top speed no measureable level of PDR was observed. The roughness-induced increased diffusion was quantified with near-wall concentration measurements and the second experiment, which measured concentration profiles on a 0.94 m long flat-plate with three surface conditions: smooth, 240-grit, and 60-grit sandpaper. The increased diffusion does not fully explain the smooth-rough PDR differences observed in the first experiment. Rheological analysis of drawn samples from the first experiment indicates that polymer degradation (chain scission) could be responsible for the remaining loss of rough-wall PDR. These results have implications for the cost effectiveness of PDR for surface ships.

  19. Riblet drag reduction in mild adverse pressure gradients: A numerical investigation

    International Nuclear Information System (INIS)

    Boomsma, Aaron; Sotiropoulos, Fotis

    2015-01-01

    Highlights: • We model several differently sized scalloped riblets using LES. • Riblets were modeled in both ZPG and mild APG and compared to each other and to a baseline (flat plate) case. • Scalloped riblets in the mild APG reduce drag only slightly more than those in ZPG. • Maximum values of streamwise turbulence intensities, streamwise vorticity, and TKE are proportional to riblet width. • Primary Reynolds shear stresses and turbulence energy production scale with riblet drag reduction. - Abstract: Riblet films are a passive method of turbulent boundary layer control that can reduce viscous drag. They have been studied with great detail for over 30 years. Although common riblet applications include flows with Adverse Pressure Gradients (APG), nearly all research thus far has been performed in channel flows. Recent research has provided motivation to study riblets in more complicated turbulent flows with claims that riblet drag reduction can double in mild APG common to airfoils at moderate angles of attack. Therefore, in this study, we compare drag reduction by scalloped riblet films between riblets in a zero pressure gradient and those in a mild APG using high-resolution large eddy simulations. In order to gain a fundamental understanding of the relationship between drag reduction and pressure gradient, we simulated several different riblet sizes that encompassed a broad range of s"+ (riblet width in wall units), similarly to many previously published experimental studies. We found that there was only a slight improvement in drag reduction for riblets in the mild APG. We also observed that peak values of streamwise turbulence intensity, turbulent kinetic energy, and streamwise vorticity scale with riblet width. Primary Reynolds shear stresses and turbulence kinetic energy production however scale with the ability of the riblet to reduce skin-friction.

  20. Investigation of Tractor Base Bleeding for Heavy Vehicle Aerodynamic Drag Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J; Salari, K; Storms, B

    2007-10-25

    One of the main contributors to the aerodynamic drag of a heavy vehicle is tractor-trailer gap drag, which arises when the vehicle operates within a crosswind. Under this operating condition, freestream flow is entrained into the tractor-trailer gap, imparting a momentum exchange to the vehicle and subsequently increasing the aerodynamic drag. While a number of add-on devices, including side extenders, splitter plates, vortex stabilizers, and gap sealers, have been previously tested to alleviate this source of drag, side extenders remain the primary add-on device of choice for reducing tractor-trailer gap drag. However, side extenders are not without maintenance and operational issues. When a heavy vehicle pivots sharply with respect to the trailer, as can occur during loading or unloading operations, the side extenders can become crushed against the trailer. Consequently, fleet operators are forced to incur additional costs to cover the repair or replacement of the damaged side extenders. This issue can be overcome by either shortening the side extenders or by devising an alternative drag reduction concept that can perform just as effectively as side extenders. To explore such a concept, we investigate tractor base bleeding as a means of reducing gap drag. Wind tunnel measurements are made on a 1:20 scale heavy vehicle model at a vehicle width-based Reynolds number of 420,000. The tractor bleeding flow, which is delivered through a porous material embedded within the tractor base, is introduced into the tractor-trailer gap at bleeding coefficients ranging from 0.0-0.018. To determine the performance of tractor base bleeding under more realistic operating conditions, computational fluid dynamics simulations are performed on a full-scale heavy vehicle within a crosswind for bleeding coefficients ranging from 0.0-0.13.