WorldWideScience

Sample records for varying soil temperature

  1. Acclimation responses to temperature vary with vertical stratification: implications for vulnerability of soil-dwelling species to extreme temperature events.

    van Dooremalen, Coby; Berg, Matty P; Ellers, Jacintha

    2013-03-01

    The occurrence of summer heat waves is predicted to increase in amplitude and frequency in the near future, but the consequences of such extreme events are largely unknown, especially for belowground organisms. Soil organisms usually exhibit strong vertical stratification, resulting in more frequent exposure to extreme temperatures for surface-dwelling species than for soil-dwelling species. Therefore soil-dwelling species are expected to have poor acclimation responses to cope with temperature changes. We used five species of surface-dwelling and four species of soil-dwelling Collembola that habituate different depths in the soil. We tested for differences in tolerance to extreme temperatures after acclimation to warm and cold conditions. We also tested for differences in acclimation of the underlying physiology by looking at changes in membrane lipid composition. Chill coma recovery time, heat knockdown time and fatty acid profiles were determined after 1 week of acclimation to either 5 or 20 °C. Our results showed that surface-dwelling Collembola better maintained increased heat tolerance across acclimation temperatures, but no such response was found for cold tolerance. Concordantly, four of the five surface-dwelling Collembola showed up to fourfold changes in relative abundance of fatty acids after 1 week of acclimation, whereas none of the soil-dwelling species showed a significant adjustment in fatty acid composition. Strong physiological responses to temperature fluctuations may have become redundant in soil-dwelling species due to the relative thermal stability of their subterranean habitat. Based on the results of the four species studied, we expect that unless soil-dwelling species can temporarily retreat to avoid extreme temperatures, the predicted increase in heat waves under climatic change renders these soil-dwelling species more vulnerable to extinction than species with better physiological capabilities. Being able to act under a larger thermal

  2. Acclimation responses to temperature vary with vertical stratification: implications for vulnerability of soil-dwelling species to extreme temperature events

    Dooremalen, van C.; Berg, M.P.; Ellers, J.

    2013-01-01

    The occurrence of summer heat waves is predicted to increase in amplitude and frequency in the near future, but the consequences of such extreme events are largely unknown, especially for belowground organisms. Soil organisms usually exhibit strong vertical stratification, resulting in more frequent

  3. Temperature Sensitivity of Soil Respiration to Nitrogen Fertilization: Varying Effects between Growing and Non-Growing Seasons

    Liu, Qingfang; Wang, Rui; Li, Rujian; Hu, Yaxian; Guo, Shengli

    2016-01-01

    Nitrogen (N) fertilization has a considerable effect on food production and carbon cycling in agro-ecosystems. However, the impacts of N fertilization rates on the temperature sensitivity of soil respiration (Q10) were controversial. Five N rates (N0, N45, N90, N135, and N180) were applied to a continuous winter wheat (Triticum aestivum L.) crop on the semi-arid Loess Plateau, and the in situ soil respiration was monitored during five consecutive years from 2008 to 2013. During the growing season, the mean soil respiration rates increased with increasing N fertilization rates, peaking at 1.53 μmol m−2s−1 in the N135 treatment. A similar dynamic pattern was observed during the non-growing season, yet on average with 7.3% greater soil respiration rates than the growing season. In general for all the N fertilization treatments, the mean Q10 value during the non-growing season was significantly greater than that during the growing season. As N fertilization rates increased, the Q10 values did not change significantly in the growing season but significantly decreased in the non-growing season. Overall, N fertilization markedly influenced soil respirations and Q10 values, in particular posing distinct effects on the Q10 values between the growing and non-growing seasons. PMID:27992576

  4. Acclimation responses to temperature vary with vertical stratification: implications for vulnerability of soil-dwelling species to climate change.

    van Dooremalen, J.A.; Berg, M.P.; Ellers, J.

    2013-01-01

    The occurrence of summer heat waves is predicted to increase in amplitude and frequency in the near future, but the consequences of such extreme events are largely unknown, especially for belowground organisms. Soil organisms usually exhibit strong vertical stratification, resulting in more frequent

  5. Stratospheric Impact of Varying Sea Surface Temperatures

    Newman, Paul A.; Nash, Eric R.; Nielsen, Jon E.; Waugh, Darryn; Pawson, Steven

    2004-01-01

    The Finite-Volume General Circulation Model (FVGCM) has been run in 50 year simulations with the: 1) 1949-1999 Hadley Centre sea surface temperatures (SST), and 2) a fixed annual cycle of SSTs. In this presentation we first show that the 1949-1999 FVGCM simulation produces a very credible stratosphere in comparison to an NCEP/NCAR reanalysis climatology. In particular, the northern hemisphere has numerous major and minor stratospheric warming, while the southern hemisphere has only a few over the 50-year simulation. During the northern hemisphere winter, temperatures are both warmer in the lower stratosphere and the polar vortex is weaker than is found in the mid-winter southern hemisphere. Mean temperature differences in the lower stratosphere are shown to be small (less than 2 K), and planetary wave forcing is found to be very consistent with the climatology. We then will show the differences between our varying SST simulation and the fixed SST simulation in both the dynamics and in two parameterized trace gases (ozone and methane). In general, differences are found to be small, with subtle changes in planetary wave forcing that lead to reduced temperatures in the SH and increased temperatures in the NH.

  6. Total C and N Pools and fluxes vary with time, soil temperature, and moisture along an elevation, precipitation, and vegetation gradient in southern Appalachian Forests

    Jennifer D. Knoepp; Craig R. See; James M. Vose; Chelcy F. Miniat; James S. Clark

    2018-01-01

    The interactions of terrestrial C pools and fluxes with spatial and temporal variation in climate are not well understood. We conducted this study in the southern Appalachian Mountains where complex topography provides variability in temperature, precipitation, and forest communities. In 1990, we established five large plots across an elevation gradient...

  7. Progress report on the varying temperature experiment

    Qualls, A.L.; Hurst, M.T.; Raby, D.G.

    1997-01-01

    A capsule has been designed that permits four specimen sets to be irradiated in an RB* location in the High Flux Isotope reactor (HFIR) with distinct temperature histories. During the reporting period critical component prototyping was completed. The results have lead to some design and operational changes from that previously reported. The primary design changes are (1) compression seals in the specimen holes of the beryllium holders, and (2) oxide-dispersion strengthened aluminum alloy (DISPAL) specimen sleeves in all holders. Details of the capsule design are presented in the previous issue of this publication. Four, axially displaced temperature zones are independently controlled. Holder temperatures are monitored by thermocouples and controlled by a combination of adjustable temperature control gas mixtures and auxiliary heaters. The high temperature holders are located in the center of the experimental region, which is centered on the reactor mid-plane, and the low temperature holders are located at the ends of the experimental region

  8. Progress report on the varying temperature experiment

    Qualls, A.L.; Hurst, M.T.; Raby, D.G. [Oak Ridge National Lab., TN (United States)] [and others

    1997-08-01

    A capsule has been designed that permits four specimen sets to be irradiated in an RB* location in the High Flux Isotope reactor (HFIR) with distinct temperature histories. During the reporting period critical component prototyping was completed. The results have lead to some design and operational changes from that previously reported. The primary design changes are (1) compression seals in the specimen holes of the beryllium holders, and (2) oxide-dispersion strengthened aluminum alloy (DISPAL) specimen sleeves in all holders. Details of the capsule design are presented in the previous issue of this publication. Four, axially displaced temperature zones are independently controlled. Holder temperatures are monitored by thermocouples and controlled by a combination of adjustable temperature control gas mixtures and auxiliary heaters. The high temperature holders are located in the center of the experimental region, which is centered on the reactor mid-plane, and the low temperature holders are located at the ends of the experimental region.

  9. Soil erosion under multiple time-varying rainfall events

    Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.

    2010-05-01

    Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.

  10. Path coefficient analysis of zinc dynamics in varying soil environment

    Rattan, R.K.; Phung, C.V.; Singhal, S.K.; Deb, D.L.; Singh, A.K.

    1994-01-01

    Influence of soil properties on labile zinc, as measured by diethylene-triamine pentaacetic acid (DTPA) and zinc-65, and self-diffusion coefficients of zinc was assessed on 22 surface soil samples varying widely in their characteristics following linear regression and path coefficient analysis techniques. DTPA extractable zinc could be predicted from organic carbon status and pH of the soil with a highly significant coefficient of determination (R 2 =0.84 ** ). Ninety seven per cent variation in isotopically exchangeable zinc was explained by pH, clay content and cation exchange capacity (CEC) of soil. The self-diffusion coefficients (DaZn and DpZn) and buffer power of zinc exhibited exponential relationship with soil properties, pH being the most dominant one. Soil properties like organic matter, clay content etc. exhibited indirect effects on zinc diffusion rates via pH only. (author). 13 refs., 6 tabs

  11. Specimen loading list for the varying temperature experiment

    Qualls, A.L.; Sitterson, R.G.

    1998-01-01

    The varying temperature experiment HFIR-RB-13J has been assembled and inserted in the reactor. Approximately 5300 specimens were cleaned, inspected, matched, and loaded into four specimen holders. A listing of each specimen loaded into the steady temperature holder, its position in the capsule, and the identification of the corresponding specimen loaded into the varying temperature holder is presented in this report

  12. Bioventing of gasoline-contaminated soil under varied laboratory conditions

    Hallman, M.; Shewfelt, K.; Lee, H.; Zytner, R.G.

    2002-01-01

    Bioventing is becoming a popular in situ soil remediation technology for the treatment of hydrocarbon-contaminated soil. Bioventing relies on enhancing the growth of indigenous microorganisms, which can mineralize the contaminant in the presence of sufficient nutrients. Although bioventing is currently being used as a remediation technology, there are some important questions that remain to be answered in order to optimize the process. These questions include the optimum soil moisture content, type and amount of nutrients necessary, and the best means of producing these conditions in the field. To address these questions, two distinct phases of experiments were conducted. The first experimental phase was designed to determine the optimum moisture content, C:N ratio and form of nitrogen supply for this soil. Using approximately 200g of contaminated soil in each of a series of sealed respirometers, microbial degradation of gasoline under bioventing conditions was quantified for C:N ratios of 5, 10 and 20:1, using varying mixtures of NH 4 + - and NO 3 - -N. The results of the studies indicated that the optimum soil moisture content was 15 wt%, with a C:N ratio of 10:1, using a 100% ammonium application. Using the results of the first phase, a second phase of laboratory research was initiated. Five mesoscale reactors have been developed to simulate the bioventing process that takes place in the field. These reactors are filled with approximately 4kg of gasoline-contaminated soil. The initial results are favourable. (author)

  13. [Soil Microbial Respiration Under Different Soil Temperature Conditions and Its Relationship to Soil Dissolved Organic Carbon and Invertase].

    Wu, Jing; Chen, Shu-tao; Hu, Zheng-hua; Zhang, Xu

    2015-04-01

    In order to investigate the soil microbial respiration under different temperature conditions and its relationship to soil dissolved organic carbon ( DOC) and invertase, an indoor incubation experiment was performed. The soil samples used for the experiment were taken from Laoshan, Zijinshan, and Baohuashan. The responses of soil microbial respiration to the increasing temperature were studied. The soil DOC content and invertase activity were also measured at the end of incubation. Results showed that relationships between cumulative microbial respiration of different soils and soil temperature could be explained by exponential functions, which had P values lower than 0.001. The coefficient of temperature sensitivity (Q10 value) varied from 1.762 to 1.895. The Q10 value of cumulative microbial respiration decreased with the increase of soil temperature for all soils. The Q10 value of microbial respiration on 27 days after incubation was close to that of 1 day after incubation, indicating that the temperature sensitivity of recalcitrant organic carbon may be similar to that of labile organic carbon. For all soils, a highly significant ( P = 0.003 ) linear relationship between cumulative soil microbial respiration and soil DOC content could be observed. Soil DOC content could explain 31.6% variances of cumulative soil microbial respiration. For the individual soil and all soils, the relationship between cumulative soil microbial respiration and invertase activity could be explained by a highly significant (P soil microbial respiration.

  14. Estimation of bare soil surface temperature from air temperature and ...

    Soil surface temperature has critical influence on climate, agricultural and hydrological activities since it serves as a good indicator of the energy budget of the earth's surface. Two empirical models for estimating soil surface temperature from air temperature and soil depth temperature were developed. The coefficient of ...

  15. Radiation damage in stainless steel under varying temperature neutron irradiation

    Yoshida, Naoaki [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics

    1998-03-01

    Microstructural evolution of model alloys of 316SS was examined by neutron irradiation at JMTR under cyclic temperature varying condition. In the case of Fe-16Cr-17Ni, formation of interstitial loops and voids are strongly suppressed by varying the temperature from 473K to 673K. By adding Ti as miner element (0.25wt%), however, abnormal accumulation of vacancies (void swelling of 11%dpa at 0.1dpa) was observed. Theoretical analysis standing on the rate theory of defect clustering and simulation irradiation experiments with heavy ions indicates that the vacancy-rich condition which appears temporally during and after changing the temperature from low to high brings these results. It was also shown that only 1 dpa pre-irradiation at low temperature changes swelling behavior at high temperature above several 10 dpa. The understanding of non-steady-state defect processes under temperature varying irradiation is very important to estimate the radiation damage under fusion environment where short-term and long-term temperature variation is expected. (author)

  16. microwave oven-induced decalcification at varying temperatures

    Uwaifoh

    2012-09-30

    Sep 30, 2012 ... This study was designed to evaluate the effect of decalcifying fluid types on bone tissue architecture and its staining properties following decalcification at varying temperatures. A decalcification methodology using Golding and. Stewards (GS) fluid, and Jenkings fluid (JK), and a modern household ...

  17. Heterogeneity of soil surface temperature induced by xerophytic ...

    The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different .... elevation of 1300 m above sea level), located at the southeastern fringe of ... cipitation is the only source of soil water replenish- ment. ...... 2001 Effects of nutrients and shade on tree-grass inter- actions in an ...

  18. Quantifying the effects of soil temperature, moisture and sterilization on elemental mercury formation in boreal soils.

    Pannu, Ravinder; Siciliano, Steven D; O'Driscoll, Nelson J

    2014-10-01

    Soils are a source of elemental mercury (Hg(0)) to the atmosphere, however the effects of soil temperature and moisture on Hg(0) formation is not well defined. This research quantifies the effect of varying soil temperature (278-303 K), moisture (15-80% water filled pore space (WFPS)) and sterilization on the kinetics of Hg(0) formation in forested soils of Nova Scotia, Canada. Both, the logarithm of cumulative mass of Hg(0) formed in soils and the reduction rate constants (k values) increased with temperature and moisture respectively. Sterilizing soils significantly (p soils and our results highlight two key processes: (i) a fast abiotic process that peaks at 45% WFPS and depletes a small pool of Hg(0) and; (ii) a slower, rate limiting biotic process that generates a large pool of reducible Hg(II). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Hysteresis of soil temperature under different soil moisture and ...

    ... in a solar greenhouse. The objective of this study was to find a simple method to estimate the hysteresis of soil temperature under three soil moisture and two fertilizer levels in solar greenhouse conditions with tomato crop (Lycopersicon esculentum Mill). The results show that the soil moisture had no significant effects on ...

  20. Soil Organic Matter Stabilization via Mineral Interactions in Forest Soils with Varying Saturation Frequency

    Possinger, A. R.; Inagaki, T.; Bailey, S. W.; Kogel-Knabner, I.; Lehmann, J.

    2017-12-01

    Soil carbon (C) interaction with minerals and metals through surface adsorption and co-precipitation processes is important for soil organic C (SOC) stabilization. Co-precipitation (i.e., the incorporation of C as an "impurity" in metal precipitates as they form) may increase the potential quantity of mineral-associated C per unit mineral surface compared to surface adsorption: a potentially important and as yet unaccounted for mechanism of C stabilization in soil. However, chemical, physical, and biological characterization of co-precipitated SOM as such in natural soils is limited, and the relative persistence of co-precipitated C is unknown, particularly under dynamic environmental conditions. To better understand the relationships between SOM stabilization via organometallic co-precipitation and environmental variables, this study compares mineral-SOM characteristics across a forest soil (Spodosol) hydrological gradient with expected differences in co-precipitation of SOM with iron (Fe) and aluminum (Al) due to variable saturation frequency. Soils were collected from a steep, well-drained forest soil transect with low, medium, and high frequency of water table intrusion into surface soils (Hubbard Brook Experimental Forest, Woodstock, NH). Lower saturation frequency soils generally had higher C content, C/Fe, C/Al, and other indicators of co-precipitation interactions resulting from SOM complexation, transport, and precipitation, an important process of Spodosol formation. Preliminary Fe X-ray Absorption Spectroscopic (XAS) characterization of SOM and metal chemistry in low frequency profiles suggest co-precipitation of SOM in the fine fraction (soils showed greater SOC mineralization per unit soil C for low saturation frequency (i.e., higher co-precipitation) soils; however, increased mineralization may be attributed to non-mineral associated fractions of SOM. Further work to identify the component of SOM contributing to rapid mineralization using 13C

  1. Estimation of thermal sensation during varied air temperature conditions.

    Katsuura, T; Tabuchi, R; Iwanaga, K; Harada, H; Kikuchi, Y

    1998-03-01

    Seven male students were exposed to four varied air temperature environments: hot (37 degrees C) to neutral (27 degrees C) (HN), neutral to hot (NH), cool (17 degrees C) to neutral (CN), and neutral to cool (NC). The air temperature was maintained at the first condition for 20 min, then was changed to the second condition after 15 min and was held there for 20 min. Each subject wore a T-shirt, briefs, trunks, and socks. Each sat on a chair and was continuously evaluated for thermal sensation, thermal comfort, and air velocity sensation. Some physiological and thermal parameters were also measured every 5 s during the experiment. The correlation between thermal sensation and skin temperature at 15 sites was found to be poor. The subjects felt much warmer during the rising phase of the air temperature (CN, NH) than during the descending phase (HN, NC) at a given mean skin temperature. However, thermal sensation at the same heat flux or at the same value of the difference between skin and air temperature (delta(Tsk - Ta)) was not so different among the four experimental conditions, and the correlation between thermal sensation and heat flux or delta(Tsk - Ta) was fairly good. The multiple regression equation of the thermal sensation (TS) on 15 sites of skin temperature (Tsk; degrees C) was calculated and the coefficient of determination (R*2) was found to be 0.656. Higher coefficients of determination were found in the equations of thermal sensation for the heat flux (H; kcal.m-2.h-1) at the right and left thighs of the subjects and on delta(Tsk - Ta) (degrees C) at 4 sites. They were as follows: TS = 2.04 - 0.016 Hright - 0.036 Hleft; R*2 = 0.717, TS = 1.649 + 0.013 delta(Tsk - Ta)UpperArm - 0.036 delta(Tsk - Ta)Chest - 0.223 delta(Tsk - Ta)Thigh-0.083 delta(Tsk - Ta)LowerLeg; R*2 = 0.752, respectively.

  2. The relationship between brightness temperature and soil moisture. Selection of frequency range for microwave remote sensing

    Rao, K.S.; Chandra, G.; Rao, P.V.N.

    1987-01-01

    The analysis of brightness temperature data acquired from field and aircraft experiments demonstrates a linear relationship between soil moisture and brightness temperature. However, the analysis of brightness temperature data acquired by the Skylab radiometer demonstrates a non-linear relationship between soil moisture and brightness temperature. In view of the above and also because of recent theoretical developments for the calculation of the dielectric constant and brightness temperature under varying soil moisture profile conditions, an attempt is made to study the theoretical relationship between brightness temperature and soil moisture as a function of frequency. Through the above analysis, the appropriate microwave frequency range for soil moisture studies is recommended

  3. Maximum temperature accounts for annual soil CO2 efflux in temperate forests of Northern China

    Zhou, Zhiyong; Xu, Meili; Kang, Fengfeng; Jianxin Sun, Osbert

    2015-01-01

    It will help understand the representation legality of soil temperature to explore the correlations of soil respiration with variant properties of soil temperature. Soil temperature at 10 cm depth was hourly logged through twelve months. Basing on the measured soil temperature, soil respiration at different temporal scales were calculated using empirical functions for temperate forests. On monthly scale, soil respiration significantly correlated with maximum, minimum, mean and accumulated effective soil temperatures. Annual soil respiration varied from 409 g C m−2 in coniferous forest to 570 g C m−2 in mixed forest and to 692 g C m−2 in broadleaved forest, and was markedly explained by mean soil temperatures of the warmest day, July and summer, separately. These three soil temperatures reflected the maximum values on diurnal, monthly and annual scales. In accordance with their higher temperatures, summer soil respiration accounted for 51% of annual soil respiration across forest types, and broadleaved forest also had higher soil organic carbon content (SOC) and soil microbial biomass carbon content (SMBC), but a lower contribution of SMBC to SOC. This added proof to the findings that maximum soil temperature may accelerate the transformation of SOC to CO2-C via stimulating activities of soil microorganisms. PMID:26179467

  4. Diel hysteresis between soil respiration and soil temperature in a biological soil crust covered desert ecosystem.

    Guan, Chao; Li, Xinrong; Zhang, Peng; Chen, Yongle

    2018-01-01

    Soil respiration induced by biological soil crusts (BSCs) is an important process in the carbon (C) cycle in arid and semi-arid ecosystems, where vascular plants are restricted by the harsh environment, particularly the limited soil moisture. However, the interaction between temperature and soil respiration remains uncertain because of the number of factors that control soil respiration, including temperature and soil moisture, especially in BSC-dominated areas. In this study, the soil respiration in moss-dominated crusts and lichen-dominated crusts was continuously measured using an automated soil respiration system over a one-year period from November 2015 to October 2016 in the Shapotou region of the Tengger Desert, northern China. The results indicated that over daily cycles, the half-hourly soil respiration rates in both types of BSC-covered areas were commonly related to the soil temperature. The observed diel hysteresis between the half-hourly soil respiration rates and soil temperature in the BSC-covered areas was limited by nonlinearity loops with semielliptical shapes, and soil temperature often peaked later than the half-hourly soil respiration rates in the BSC-covered areas. The average lag times between the half-hourly soil respiration rates and soil temperature for both types of BSC-covered areas were two hours over the diel cycles, and they were negatively and linearly related to the volumetric soil water content. Our results highlight the diel hysteresis phenomenon that occurs between soil respiration rates and soil temperatures in BSC-covered areas and the negative response of this phenomenon to soil moisture, which may influence total C budget evaluations. Therefore, the interactive effects of soil temperature and moisture on soil respiration in BSC-covered areas should be considered in global carbon cycle models of desert ecosystems.

  5. Low temperature thermophysical properties of lunar soil

    Cremers, C. J.

    1973-01-01

    The thermal conductivity and thermal diffusivity of lunar fines samples from the Apollo 11 and Apollo 12 missions, determined at low temperatures as a function of temperature and various densities, are reviewed. It is shown that the thermal conductivity of lunar soil is nearly the same as that of terrestrial basaltic rock under the same temperature and pressure conditions.

  6. Modelling suction instabilities in soils at varying degrees of saturation

    Buscarnera Giuseppe

    2016-01-01

    Full Text Available Wetting paths imparted by the natural environment and/or human activities affect the state of soils in the near-surface, promoting transitions across different regimes of saturation. This paper discusses a set of techniques aimed at quantifying the role of hydrologic processes on the hydro-mechanical stability of soil specimens subjected to saturation events. Emphasis is given to the mechanical conditions leading to coupled flow/deformation instabilities. For this purpose, energy balance arguments for three-phase systems are used to derive second-order work expressions applicable to various regimes of saturation. Controllability analyses are then performed to relate such work input with constitutive singularities that reflect the loss of strength under coupled and/or uncoupled hydro-mechanical forcing. A suction-dependent plastic model is finally used to track the evolution of stability conditions in samples subjected to wetting, thus quantifying the growth of the potential for coupled failure modes upon increasing degree of saturation. These findings are eventually linked with the properties of the field equations that govern pore pressure transients, thus disclosing a conceptual link between the onset of coupled hydro-mechanical failures and the evolution of suction with time. Such results point out that mathematical instabilities caused by a non-linear suction dependent behaviour play an important role in the advanced constitutive and/or numerical tools that are commonly used for the analysis of geomechanical problems in the unsaturated zone, and further stress that the relation between suction transients and soil deformations is a key factor for the interpretation of runaway failures caused by intense saturation events.

  7. Effect of varying temperature on growth, morphology and soluble ...

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... High temperature severely affects cell morphology (cell size, cell types, formation of filaments/minicells ... media (Anagnostopolous and Spizezen, 1961) were used. .... inactivation of fts Z (filamentous temperature sensitive).

  8. A simple model for predicting soil temperature in snow-covered and seasonally frozen soil: model description and testing

    K. Rankinen

    2004-01-01

    Full Text Available Microbial processes in soil are moisture, nutrient and temperature dependent and, consequently, accurate calculation of soil temperature is important for modelling nitrogen processes. Microbial activity in soil occurs even at sub-zero temperatures so that, in northern latitudes, a method to calculate soil temperature under snow cover and in frozen soils is required. This paper describes a new and simple model to calculate daily values for soil temperature at various depths in both frozen and unfrozen soils. The model requires four parameters: average soil thermal conductivity, specific heat capacity of soil, specific heat capacity due to freezing and thawing and an empirical snow parameter. Precipitation, air temperature and snow depth (measured or calculated are needed as input variables. The proposed model was applied to five sites in different parts of Finland representing different climates and soil types. Observed soil temperatures at depths of 20 and 50 cm (September 1981–August 1990 were used for model calibration. The calibrated model was then tested using observed soil temperatures from September 1990 to August 2001. R2-values of the calibration period varied between 0.87 and 0.96 at a depth of 20 cm and between 0.78 and 0.97 at 50 cm. R2-values of the testing period were between 0.87 and 0.94 at a depth of 20cm, and between 0.80 and 0.98 at 50cm. Thus, despite the simplifications made, the model was able to simulate soil temperature at these study sites. This simple model simulates soil temperature well in the uppermost soil layers where most of the nitrogen processes occur. The small number of parameters required means that the model is suitable for addition to catchment scale models. Keywords: soil temperature, snow model

  9. Modeling maximum daily temperature using a varying coefficient regression model

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  10. Evaluating comfort with varying temperatures: a graphic design tool

    Evans, J.M. [Research Centre Habitat and Energy, Faculty of Architecture, Design and Urbanism, University of Buenos Aires, Ciudad Universitaria (Argentina)

    2002-07-01

    This paper considers the need to define comfort of indoor and outdoor spaces in relation to the daily variations of temperature. A graphical tool is presented, which indicates the daily swings of temperature, shown as a single point on a graph representing the average temperature and the maximum temperature swing. This point can be compared with the comfort zones for different activity levels, such as sedentary activity, sleeping, indoor and outdoor circulation according to the design proposals for different spaces. The graph allows the representation of climatic variables, the definition of comfort zones, the selection of bio climatic design resources and the evaluation of indoor temperatures, measured in actual buildings or obtained from computer simulations. The development of the graph is explained and examples given with special emphasis on the use of thermal mass. (author)

  11. Performance analysis of PV panel under varying surface temperature

    Kumar Tripathi Abhishek

    2018-01-01

    Full Text Available The surface temperature of PV panel has an adverse impact on its performance. The several electrical parameters of PV panel, such as open circuit voltage, short circuit current, power output and fill factor depends on the surface temperature of PV panel. In the present study, an experimental work was carried out to investigate the influence of PV panel surface temperature on its electrical parameters. The results obtained from this experimental study show a significant reduction in the performance of PV panel with an increase in panel surface temperature. A 5W PV panel experienced a 0.4% decrease in open circuit voltage for every 1°C increase in panel surface temperature. Similarly, there was 0.6% and 0.32% decrease in maximum power output and in fill factor, respectively, for every 1°C increase in panel surface temperature. On the other hand, the short circuit current increases with the increase in surface temperature at the rate of 0.09%/°C.

  12. Calibrating soil respiration measures with a dynamic flux apparatus using artificial soil media of varying porosity

    John R. Butnor; Kurt H. Johnsen

    2004-01-01

    Measurement of soil respiration to quantify ecosystem carbon cyclingrequires absolute, not relative, estimates of soil CO2 efflux. We describe a novel, automated efflux apparatus that can be used to test the accuracy of chamber-based soil respiration measurements by generating known CO2 fluxes. Artificial soil is supported...

  13. Soil warming increases metabolic quotients of soil microorganisms without changes in temperature sensitivity of soil respiration

    Marañón-Jiménez, Sara; Soong, Jenniffer L.; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Dauwe, Steven; Fransen, Erik; Janssens, Ivan A.

    2017-04-01

    Increasing temperatures can accelerate soil organic matter (SOM) decomposition and release large amounts of CO2 to the atmosphere, potentially inducing climate change feedbacks. Alterations to the temperature sensitivity and metabolic pathways of soil microorganisms in response to soil warming can play a key role in these soil carbon (C) losses. Here, we present results of an incubation experiment using soils from a geothermal gradient in Iceland that have been subjected to different intensities of soil warming (+0, +1, +3, +5, +10 and +20 °C above ambient) over seven years. We hypothesized that 7 years of soil warming would led to a depletion of labile organic substrates, with a subsequent decrease of the "apparent" temperature sensitivity of soil respiration. Associated to this C limitation and more sub-optimal conditions for microbial growth, we also hypothesized increased microbial metabolic quotients (soil respiration per unit of microbial biomass), which is associated with increases in the relative amount of C invested into catabolic pathways along the warming gradient. Soil respiration and basal respiration rates decreased with soil warming intensity, in parallel with a decline in soil C availability. Contrasting to our first hypothesis, we did not detect changes in the temperature sensitivity of soil respiration with soil warming or on the availability of nutrients and of labile C substrates at the time of incubation. However, in agreement to our second hypothesis, microbial metabolic quotients (soil respiration per unit of microbial biomass) increased at warmer temperatures, while the C retained in biomass decreased as substrate became limiting. Long-term (7 years) temperature increases thus triggered a change in the metabolic functioning of the soil microbial communities towards increasing energy costs for maintenance or resource acquisition, thereby lowering the capacity of C retention and stabilization of warmed soils. These results highlight the need

  14. Automated Greenhouse : Temperature and soil moisture control

    Attalla, Daniela; Tannfelt Wu, Jennifer

    2015-01-01

    In this thesis an automated greenhouse was built with the purpose of investigating the watering system’s reliability and if a desired range of temperatures can be maintained. The microcontroller used to create the automated greenhouse was an Arduino UNO. This project utilizes two different sensors, a soil moisture sensor and a temperature sensor. The sensors are controlling the two actuators which are a heating fan and a pump. The heating fan is used to change the temperature and the pump is ...

  15. Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature.

    Fu, Qing-Long; Weng, Nanyan; Fujii, Manabu; Zhou, Dong-Mei

    2018-03-01

    Global warming has obtained increasing attentions due to its multiple impacts on agro-ecosystem. However, limited efforts had been devoted to reveal the temporal variability of metal speciation and phytotoxicity of heavy metal-polluted soils affected by elevated temperature under the global warming scenario. In this study, effects of elevated temperature (15 °C, 25 °C, and 35 °C) on the physicochemical properties, microbial metabolic activities, and phytotoxicity of three Cu-polluted soils were investigated by a laboratory incubation study. Soil physicochemical properties were observed to be significantly altered by elevated temperature with the degree of temperature effect varying in soil types and incubation time. The Biolog and enzymatic tests demonstrated that soil microbial activities were mainly controlled and decreased with increasing incubation temperature. Moreover, plant assays confirmed that the phytotoxicity and Cu uptake by wheat roots were highly dependent on soil types but less affected by incubation temperature. Overall, the findings in this study have highlighted the importance of soil types to better understand the temperature-dependent alternation of soil properties, Cu speciation and bioavailability, as well as phytotoxicity of Cu-polluted soils under global warming scenario. The present study also suggests the necessary of investigating effects of soil types on the transport and accumulation of toxic elements in soil-crop systems under global warming scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Soil temperature and precipitation affect the rooting ability of dormant hardwood cuttings of Populus

    R.S., Jr. Zalesny; R.B. Hall; E.O. Bauer; D.E. Riemenschneider

    2005-01-01

    In addition to genetic control, responses to environmental stimuli affect the success of rooting. Our objectives were to: 1) assess the variation in rooting ability among 21 Populus clones grown under varying soil temperatures and amounts of precipitation and 2) identify combinations of soil temperature and precipitation that promote rooting. The...

  17. Western Arctic Temperature Sensitivity Varies under Different Mean States

    Daniels, W.; Russell, J. M.; Morrill, C.; Longo, W. M.; Giblin, A. E.; Holland-Stergar, P.; Hu, A.; Huang, Y.

    2017-12-01

    The Arctic is warming faster than anywhere on earth. Predictions of future change, however, are hindered by uncertainty in the mechanisms that underpin Arctic amplification. Data from Beringia (Alaska and Eastern Siberia) are particularly inconclusive with regards to both glacial-interglacial climate change as well as the presence or absence of abrupt climate change events such as the Younger Dryas. Here we investigate temperature change in Beringia from the last glacial maximum (LGM) to present using a unique 30 kyr lacustrine record of leaf wax hydrogen isotope ratios (δDwax) from Northern Alaska. We evaluate our results in the context of PMIP3 climate simulations as well as sensitivity tests of the effects of sea level and Bering Strait closure on Arctic Alaskan climate. The amplitude of LGM cooling in Alaska (-3.2 °C relative to pre-industrial) is smaller than other parts of North America and areas proximal to LGM ice sheets, but similar to Arctic Asia and Europe. This suggests that the local feedbacks (vegetation, etc.) had limited impacts on regional temperatures during the last ice-age, and suggests most of the Arctic exhibited similar responses to global climate boundary conditions. Deglacial warming was superimposed by a series of rapid warming events that encompass most of the temperature increase. These events are largely synchronous with abrupt events in the North Atlantic, but are amplified, muted, or even reversed in comparison depending on the mean climate state. For example, we observe warming during Heinrich 1 and during the submergence of the Bering Land Bridge, which are associated with cooling in the North Atlantic. Climate modeling suggests that opening of the Bering Strait controlled the amplitude and sign of millennial-scale temperature changes across the glacial termination.

  18. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship

    In nearly all large-scale models, CO2 efflux from soil (i.e., soil respiration) is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable at the local scale, and there is often a pronounced hysteresis in the soil resp...

  19. Effects of Soil Moisture on the Temperature Sensitivity of Soil Heterotrophic Respiration: A Laboratory Incubation Study

    Zhou, Weiping; Hui, Dafeng; Shen, Weijun

    2014-01-01

    The temperature sensitivity (Q10) of soil heterotrophic respiration (Rh) is an important ecological model parameter and may vary with temperature and moisture. While Q10 generally decreases with increasing temperature, the moisture effects on Q10 have been controversial. To address this, we conducted a 90-day laboratory incubation experiment using a subtropical forest soil with a full factorial combination of five moisture levels (20%, 40%, 60%, 80%, and 100% water holding capacity - WHC) and five temperature levels (10, 17, 24, 31, and 38°C). Under each moisture treatment, Rh was measured several times for each temperature treatment to derive Q10 based on the exponential relationships between Rh and temperature. Microbial biomass carbon (MBC), microbial community structure and soil nutrients were also measured several times to detect their potential contributions to the moisture-induced Q10 variation. We found that Q10 was significantly lower at lower moisture levels (60%, 40% and 20% WHC) than at higher moisture level (80% WHC) during the early stage of the incubation, but became significantly higher at 20%WHC than at 60% WHC and not significantly different from the other three moisture levels during the late stage of incubation. In contrast, soil Rh had the highest value at 60% WHC and the lowest at 20% WHC throughout the whole incubation period. Variations of Q10 were significantly associated with MBC during the early stages of incubation, but with the fungi-to-bacteria ratio during the later stages, suggesting that changes in microbial biomass and community structure are related to the moisture-induced Q10 changes. This study implies that global warming’s impacts on soil CO2 emission may depend upon soil moisture conditions. With the same temperature rise, wetter soils may emit more CO2 into the atmosphere via heterotrophic respiration. PMID:24647610

  20. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship

    Quan Zhang; Richard P. Phillips; Stefano Manzoni; Russell L. Scott; A. Christopher Oishi; Adrien Finzi; Edoardo Daly; Rodrigo Vargas; Kimberly A. Novick

    2018-01-01

    In nearly all large-scale terrestrial ecosystem models, soil respiration is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable across sites and there is often a pronounced hysteresis in the soil respiration-temperature relationship over the course of the growing season. This...

  1. Multi-Fibre Optode Microsensors: affordable designs for monitoring oxygen in soils under varying environmental conditions

    Rezanezhad, F.; Milojevic, T.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.

    2017-12-01

    Molecular oxygen (O2) measurements in field and laboratory soil and sediment systems provide useful insight into the biogeochemical functioning of natural environments. However, monitoring soil and sediment O2 is often challenging due to high costs, analyte consumption, and limited customizability and durability of existing O2 sensors. To meet this challenge, an in-house luminescence-based Multi Fibre Optode (MuFO) microsensor system was developed to monitor O2 levels under changing moisture and temperature regimes. The design is simplified by the use of a basic DSLR camera, LED light and fibre optic cables. The technique is based on O2 quenching the luminescent light intensity emitted from a luminophore (platinum(II) meso-tetra(pentafluorophenyl)porphyrin, PtTFPP) that is dip-coated onto the tips of the fibre optic cables, where increasing O2 corresponds to decreasing light intensity, based on the classic Stern-Volmer relationship. High-resolution digital images of the sensor-emitted light are then converted into % O2 saturation. The method was successfully tested in two artificial soil (20% peat, 80% sand) column experiments designed to simulate freeze-thaw cycles (temperature cycling from -10°C to 25°C) and water table fluctuations under controlled conditions. Depth distributions of O2 levels were monitored without interruption for multiple freeze-thaw and water table cycles. No degradation of optode performance or O2 signals were observed for the duration of the column experiments, which supports the long-term deployment of the microsensors for continuous O2 monitoring in field and laboratory settings. The technical specifications of the system are fair, with a detection limit of 0.2% O2 saturation. The main advantages of the MuFO system over commercial applications are the comparatively low cost ($1,800 USD; about ¼ the cost of commercial versions) and ease of customizability. The system has been further developed for near real-time monitoring in the field

  2. Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content

    Diego A. Riveros-Iregui; Ryan E. Emanuel; Daniel J. Muth; L. McGlynn Brian; Howard E. Epstein; Daniel L. Welsch; Vincent J. Pacific; Jon M. Wraith

    2007-01-01

    Recent years have seen a growing interest in measuring and modeling soil CO2 efflux, as this flux represents a large component of ecosystem respiration and is a key determinant of ecosystem carbon balance. Process-based models of soil CO2 production and efflux, commonly based on soil temperature, are limited by nonlinearities such as the observed diurnal hysteresis...

  3. Comparison of model microbial allocation parameters in soils of varying texture

    Hagerty, S. B.; Slessarev, E.; Schimel, J.

    2017-12-01

    The soil microbial community decomposes the majority of carbon (C) inputs to the soil. However, not all of this C is respired—rather, a substantial portion of the carbon processed by microbes may remain stored in the soil. The balance between C storage and respiration is controlled by microbial turnover rates and C allocation strategies. These microbial community properties may depend on soil texture, which has the potential to influence both the nature and the fate of microbial necromass and extracellular products. To evaluate the role of texture on microbial turnover and C allocation, we sampled four soils from the University of California's Hastings Reserve that varied in texture (one silt loam, two sandy loam, and on clay soil), but support similar grassland plant communities. We added 14C- glucose to the soil and measured the concentration of the label in the carbon dioxide (CO2), microbial biomass, and extractable C pools over 7 weeks. The labeled biomass turned over the slowest in the clay soil; the concentration of labeled biomass was more than 1.5 times the concentration of the other soils after 8 weeks. The clay soil also had the lowest mineralization rate of the label, and mineralization slowed after two weeks. In contrast, in the sandier soils mineralization rates were higher and did not plateau until 5 weeks into the incubation period. We fit the 14C data to a microbial allocation model and estimated microbial parameters; assimilation efficiency, exudation, and biomass specific respiration and turnover for each soil. We compare these parameters across the soil texture gradient to assess the extent to which models may need to account for variability in microbial C allocation across soils of different texture. Our results suggest that microbial C turns over more slowly in high-clay soils than in sandy soils, and that C lost from microbial biomass is retained at higher rates in high-clay soils. Accounting for these differences in microbial allocation

  4. Interpreting diel hysteresis between soil respiration and temperature

    C. Phillips; N. Nickerson; D. Risk; B.J. Bond

    2011-01-01

    Increasing use of automated soil respiration chambers in recent years has demonstrated complex diel relationships between soil respiration and temperature that are not apparent from less frequent measurements. Soil surface flux is often lagged from soil temperature by several hours, which results in semielliptical hysteresis loops when surface flux is plotted as a...

  5. Phosphate fertilizers with varying water-solubility applied to Amazonian soils: II. Soil P extraction methods

    Muraoka, T.; Brasil, E.C.; Scivittaro, W.B.

    2002-01-01

    A pot experiment was carried out under greenhouse conditions at the Centro de Energia Nuclear na Agricultura, Piracicaba (SP, Brazil), to evaluate the phosphorus availability of different phosphate sources in five Amazonian soils. The soils utilized were: medium texture Yellow Latosol, clayey Yellow Latosol, very clayey Yellow Latosol, clayey Red-Yellow Podzolic and very clayey Red-Yellow Podzolic. Four phosphate sources were applied: triple superphosphate, ordinary Yoorin thermophosphate, coarse Yoorin termo-phosphate and North Carolina phosphate rock at P rates of 0, 40, 80 and 120 mg kg -1 soil. The dry matter yield and the amount of P taken up by cowpea and rice were correlated with the extractable P by anionic exchangeable resin, Mehlich-1, Mehlich-3 and Bray-I. The results showed that the extractable P by Mehlich-1 was higher in the soils amended with North Carolina rock phosphate. Irrespective of the phosphorus sources used, the Mehlich-3 extractant showed close correlation with plant response. The Mehlich-3 and Bray-I extractants were more sensitive to soil variations. The Mehlich-3 extractant was more suitable in predicting the P availability to plants in the different soils and phosphorus sources studied. (author)

  6. Dependence of Soil Respiration on Soil Temperature and Soil Moisture in Successional Forests in Southern China

    Xu-Li Tang; Guo-Yi Zhou; Shu-Guang Liu; De-Qiang Zhang; Shi-Zhong Liu; Jiong Li; Cun-Yu Zhou

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate in the DNR forests was (9.0±4.6) Mg CO2-C/hm2 per year, ranging from (6.1±3.2) Mg CO2-C/hm2 per year in early successional forests to (10.7±4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  7. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China

    Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, Ji; Zhou, C.-Y.

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (±SD) soil respiration rate in the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  8. Rimsulfuron in Soil: Effects on Microbiological Properties under Varying Soil Conditions

    Ljiljana Radivojević

    2011-01-01

    Full Text Available The effects of rimsulfuron a sulfonylurea herbicide on the growth and activity of soil microorganisms under laboratory conditions was investigated in two soils. The application rates were: 0.2, 2.0 and 20.0 mg a.i kg-1 soil. The lowest concentration tested was the label rate (0.2 mg a.i kg-1, and the other two were ten and hundred timeshigher. No adverse effects on microbiological processes were observed for the label rate. Decrease in microbial biomass carbon, dehydrogenase activity, fungi and bacteria in comparison with untreated control, were found at higher rates. The magnitude of these effects were generally slight and transitory.

  9. Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates.

    Vero, S E; Ibrahim, T G; Creamer, R E; Grant, J; Healy, M G; Henry, T; Kramers, G; Richards, K G; Fenton, O

    2014-12-01

    The true efficacy of a programme of agricultural mitigation measures within a catchment to improve water quality can be determined only after a certain hydrologic time lag period (subsequent to implementation) has elapsed. As the biophysical response to policy is not synchronous, accurate estimates of total time lag (unsaturated and saturated) become critical to manage the expectations of policy makers. The estimation of the vertical unsaturated zone component of time lag is vital as it indicates early trends (initial breakthrough), bulk (centre of mass) and total (Exit) travel times. Typically, estimation of time lag through the unsaturated zone is poor, due to the lack of site specific soil physical data, or by assuming saturated conditions. Numerical models (e.g. Hydrus 1D) enable estimates of time lag with varied levels of input data. The current study examines the consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates using simulated and actual soil profiles. Results indicated that: greater temporal resolution (from daily to hourly) of meteorological data was more critical as the saturated hydraulic conductivity of the soil decreased; high clay content soils failed to converge reflecting prevalence of lateral component as a contaminant pathway; elucidation of soil hydraulic properties was influenced by the complexity of soil physical data employed (textural menu, ROSETTA, full and partial soil water characteristic curves), which consequently affected time lag ranges; as the importance of the unsaturated zone increases with respect to total travel times the requirements for high complexity/resolution input data become greater. The methodology presented herein demonstrates that decisions made regarding input data and landscape position will have consequences for the estimated range of vertical travel times. Insufficiencies or inaccuracies regarding such input data can therefore mislead policy makers regarding

  10. Applicability of common stomatal conductance models in maize under varying soil moisture conditions.

    Wang, Qiuling; He, Qijin; Zhou, Guangsheng

    2018-07-01

    In the context of climate warming, the varying soil moisture caused by precipitation pattern change will affect the applicability of stomatal conductance models, thereby affecting the simulation accuracy of carbon-nitrogen-water cycles in ecosystems. We studied the applicability of four common stomatal conductance models including Jarvis, Ball-Woodrow-Berry (BWB), Ball-Berry-Leuning (BBL) and unified stomatal optimization (USO) models based on summer maize leaf gas exchange data from a soil moisture consecutive decrease manipulation experiment. The results showed that the USO model performed best, followed by the BBL model, BWB model, and the Jarvis model performed worst under varying soil moisture conditions. The effects of soil moisture made a difference in the relative performance among the models. By introducing a water response function, the performance of the Jarvis, BWB, and USO models improved, which decreased the normalized root mean square error (NRMSE) by 15.7%, 16.6% and 3.9%, respectively; however, the performance of the BBL model was negative, which increased the NRMSE by 5.3%. It was observed that the models of Jarvis, BWB, BBL and USO were applicable within different ranges of soil relative water content (i.e., 55%-65%, 56%-67%, 37%-79% and 37%-95%, respectively) based on the 95% confidence limits. Moreover, introducing a water response function, the applicability of the Jarvis and BWB models improved. The USO model performed best with or without introducing the water response function and was applicable under varying soil moisture conditions. Our results provide a basis for selecting appropriate stomatal conductance models under drought conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Seedling emergence response of rare arable plants to soil tillage varies by species.

    Torra, Joel; Recasens, Jordi; Royo-Esnal, Aritz

    2018-01-01

    Very little information is available on emergence of rare arable plants (RAP) in relation to soil disturbance and seed burial conditions in Europe. This information is essential to design conservation and soil management strategies to prevent the decline of these species in agroecosystems. The objective of this research was to investigate the effect of soil cultivation with burial time on the emergence and seed persistence of RAP. Seeds of 30 RAP species were collected from Spanish arable fields and subjected to two tillage treatments: (a) no soil disturbance, and (b) autumnal soil disturbance down to 10 cm depth every year. The treatments simulated no-till and tilled (disking), respectively. In plots under no-till, RAP seeds were sown at 1-cm depth. In the tilled plots, seeds were sown homogeneously mixed in the top 1-10 cm of soil. The trial was established every two consecutive seasons, and each trial was maintained for two years. Annual cumulative plant emergence was calculated each year; whereas the first trial was monitored for a third year to estimate seed longevity using a persistence index. The response in emergence of the 30 RAP to annual tillage varied among species. With burial time (number of years), higher emergence was observed for seeds sown in tilled soil. This was true across all species, and with strong season effects. The persistence index was correlated with seed weight, species with bigger seeds had low persistence indices while no pattern was observed for small seeded species. Most RAP species, particularly those with high persistence, showed induction of secondary dormancy processes, highlighting the importance of tillage to promote RAP emergence, and hence, seed bank replenishment. Therefore, as time passes the absence of soil tillage may represent a driver of RAP seed bank decline for those species with secondary dormancy processes. In conclusion, it is important to design soil management strategies, such as regular tillage to promote

  12. Soil Water and Temperature System (SWATS) Instrument Handbook

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  13. Effect of soil moisture on the temperature sensitivity of Northern soils

    Minions, C.; Natali, S.; Ludwig, S.; Risk, D.; Macintyre, C. M.

    2017-12-01

    Arctic and boreal ecosystems are vast reservoirs of carbon and are particularly sensitive to climate warming. Changes in the temperature and precipitation regimes of these regions could significantly alter soil respiration rates, impacting atmospheric concentrations and affecting climate change feedbacks. Many incubation studies have shown that both temperature and soil moisture are important environmental drivers of soil respiration; this relationship, however, has rarely been demonstrated with in situ data. Here we present the results of a study at six field sites in Alaska from 2016 to 2017. Low-power automated soil gas systems were used to measure soil surface CO2 flux from three forced diffusion chambers and soil profile concentrations from three soil depth chambers at hourly intervals at each site. HOBO Onset dataloggers were used to monitor soil moisture and temperature profiles. Temperature sensitivity (Q10) was determined at each site using inversion analysis applied over different time periods. With highly resolved data sets, we were able to observe the changes in soil respiration in response to changes in temperature and soil moisture. Through regression analysis we confirmed that temperature is the primary driver in soil respiration, but soil moisture becomes dominant beyond a certain threshold, suppressing CO2 flux in soils with high moisture content. This field study supports the conclusions made from previous soil incubation studies and provides valuable insights into the impact of both temperature and soil moisture changes on soil respiration.

  14. Soil respiration patterns and rates at three Taiwanese forest plantations: dependence on elevation, temperature, precipitation, and litterfall.

    Huang, Yu-Hsuan; Hung, Chih-Yu; Lin, I-Rhy; Kume, Tomonori; Menyailo, Oleg V; Cheng, Chih-Hsin

    2017-11-15

    Soil respiration contributes to a large quantity of carbon emissions in the forest ecosystem. In this study, the soil respiration rates at three Taiwanese forest plantations (two lowland and one mid-elevation) were investigated. We aimed to determine how soil respiration varies between lowland and mid-elevation forest plantations and identify the relative importance of biotic and abiotic factors affecting soil respiration. The results showed that the temporal patterns of soil respiration rates were mainly influenced by soil temperature and soil water content, and a combined soil temperature and soil water content model explained 54-80% of the variation. However, these two factors affected soil respiration differently. Soil temperature positively contributed to soil respiration, but a bidirectional relationship between soil respiration and soil water content was revealed. Higher soil moisture content resulted in higher soil respiration rates at the lowland plantations but led to adverse effects at the mid-elevation plantation. The annual soil respiration rates were estimated as 14.3-20.0 Mg C ha -1  year -1 at the lowland plantations and 7.0-12.2 Mg C ha -1  year -1 at the mid-elevation plantation. When assembled with the findings of previous studies, the annual soil respiration rates increased with the mean annual temperature and litterfall but decreased with elevation and the mean annual precipitation. A conceptual model of the biotic and abiotic factors affecting the spatial and temporal patterns of the soil respiration rate was developed. Three determinant factors were proposed: (i) elevation, (ii) stand characteristics, and (iii) soil temperature and soil moisture. The results indicated that changes in temperature and precipitation significantly affect soil respiration. Because of the high variability of soil respiration, more studies and data syntheses are required to accurately predict soil respiration in Taiwanese forests.

  15. Development of Atlantic salmon (Salmo salar) eggs and alevins under varied temperature regimes

    Peterson, R H; Spinney, H C.E.; Sreedharan, A

    1977-01-01

    Atlantic salmon (Salmo salar) eggs and alevins were raised under conditions where the temperature was systematically varied either at fertilization, at the eyed egg stage, or at hatching. Mortality was more than 20% in eggs started immediately after fertilization at constant incubation temperatures <4/sup 0/C as compared with 5% or less at temperatures >4/sup 0/C. Alevins that eyed at 8/sup 0/C and higher were progressively smaller the higher the temperature. The optimum temperature from fertilization to eye pigmentation was near 6/sup 0/C. Eyed eggs reared at lower temperatures until hatching were larger than those hatched at higher temperatures. This size differential was maintained until the yolk was completely absorbed at all posthatching temperatures investigated. Sudden decreases in temperature at the eyed egg and hatching stages induced severe edema of the alevin yolk sac, resulting in slower growth and increased mortality.

  16. Ammonia oxidizer populations vary with nitrogen cycling across a tropical montane mean annual temperature gradient

    S. Pierre; I. Hewson; J. P. Sparks; C. M. Litton; C. Giardina; P. M. Groffman; T. J. Fahey

    2017-01-01

    Functional gene approaches have been used to better understand the roles of microbes in driving forest soil nitrogen (N) cycling rates and bioavailability. Ammonia oxidation is a rate limiting step in nitrification, and is a key area for understanding environmental constraints on N availability in forests. We studied how increasing temperature affects the role of...

  17. Temperature and vegetation effects on soil organic carbon quality along a forested mean annual temperature gradient in North America

    Cinzia Fissore; Christian P. Giardina; Randall K. Kolka; Carl C. Trettin; Gary M. King; Martin F. Jurgensen; Christopher D. Barton; S. Douglas McDowell

    2008-01-01

    Both climate and plant species are hypothesized to influence soil organic carbon (SOC) quality, but accurate prediction of how SOC process rates respond to global change will require an improved understanding of how SOC quality varies with mean annual temperature (MAT) and forest type. We investigated SOC quality in paired hardwood and pine stands growing in coarse...

  18. Estimating respiration of roots in soil: interactions with soil CO2, soil temperature and soil water content

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.

    1997-01-01

    Little information is available on the variability of the dynamics of the actual and observed root respiration rate in relation to abiotic factors. In this study, we describe I) interactions between soil CO2 concentration, temperature, soil water content and root respiration, and II) the effect of

  19. Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon

    Donaldson Hanna, K. L.; Greenhagen, B. T.; Patterson, W. R.; Pieters, C. M.; Mustard, J. F.; Bowles, N. E.; Paige, D. A.; Glotch, T. D.; Thompson, C.

    2017-02-01

    Currently, few thermal infrared measurements exist of fine particulate (samples (e.g. minerals, mineral mixtures, rocks, meteorites, and lunar soils) measured under simulated lunar conditions. Such measurements are fundamental for interpreting thermal infrared (TIR) observations by the Diviner Lunar Radiometer Experiment (Diviner) onboard NASA's Lunar Reconnaissance Orbiter as well as future TIR observations of the Moon and other airless bodies. In this work, we present thermal infrared emissivity measurements of a suite of well-characterized Apollo lunar soils and a fine particulate (sample as we systematically vary parameters that control the near-surface environment in our vacuum chamber (atmospheric pressure, incident solar-like radiation, and sample cup temperature). The atmospheric pressure is varied between ambient (1000 mbar) and vacuum (radiation is varied between 52 and 146 mW/cm2, and the sample cup temperature is varied between 325 and 405 K. Spectral changes are characterized as each parameter is varied, which highlight the sensitivity of thermal infrared emissivity spectra to the atmospheric pressure and the incident solar-like radiation. Finally spectral measurements of Apollo 15 and 16 bulk lunar soils are compared with Diviner thermal infrared observations of the Apollo 15 and 16 sampling sites. This comparison allows us to constrain the temperature and pressure conditions that best simulate the near-surface environment of the Moon for future laboratory measurements and to better interpret lunar surface compositions as observed by Diviner.

  20. Impact of temperature on the biological properties of soil

    Borowik, Agata; Wyszkowska, Jadwiga

    2016-01-01

    The aim of the study was to determine the response of soil microorganisms and enzymes to the temperature of soil. The effect of the temperatures: 5, 10, 15, 20, and 25°C on the biological properties of soil was investigated under laboratory conditions. The study was performed using four different soils differing in their granulometric composition. It was found that 15°C was the optimal temperature for the development of microorganisms in soil. Typically, in the soil, the highest activity of dehydrogenases was observed at 10-15°C, catalase and acid phosphatase - at 15°C, alkaline phosphatase at 20°C, urease and β-glucosidase at 25°C. The highest colony development index for heterotrophic bacteria was recorded in soils incubated at 25°C, while for actinomycetes and fungi at 15°C. The incubation temperature of soil only slightly changed the ecophysiological variety of the investigated groups of microorganisms. Therefore, the observed climate changes might have a limited impact on the soil microbiological activity, because of the high ability of microorganisms to adopt. The response of soil microorganisms and enzymes was more dependent on the soil granulometric composition, organic carbon, and total nitrogen than on its temperature.

  1. Sensitivity of a soil-plant-atmosphere model to changes in air temperature, dew point temperature, and solar radiation

    Luxmoore, R.J. (Oak Ridge National Lab.,TN); Stolzy, J.L.; Holdeman, J.T.

    1981-01-01

    Air temperature, dew point temperature and solar radiation were independently varied in an hourly soil-plant-atmosphere model in a sensitivity analysis of these parameters. Results suggested that evapotranspiration in eastern Tennessee is limited more by meteorological conditions that determine the vapor-pressure gradient than by the necessary energy to vaporize water within foliage. Transpiration and soil water drainage were very sensitive to changes in air and dew point temperature and to solar radiation under low atmospheric vapor-pressure deficit conditions associated with reduced air temperature. Leaf water potential and stomatal conductance were reduced under conditions having high evapotranspiration. Representative air and dew point temperature input data for a particular application are necessary for satisfactory results, whereas irradiation may be less well characterized for applications with high atmospheric vapor-pressure deficit. The effects of a general rise in atmospheric temperature on forest water budgets are discussed.

  2. Effects of varying soil moisture contents and vegetation canopies on microwave emissions

    Burke, H.-H. K.; Schmugge, T. J.

    1982-01-01

    Results of NASA airborne passive microwave scans of bare and vegetated fields for comparison with ground truth tests are discussed and a model for atmospheric scattering of radiation by vegetation is detailed. On-board radiometers obtained data at 21, 2.8, and 1.67 cm during three passes over each of 46 fields, 28 of which were bare and the others having wheat or alfalfa. Ground-based sampling included moisture in five layers down to 15 cm in addition to soil temperature. The relationships among the brightness temperature and soil moisture, as well as the surface roughness and the vegetation canopy were examined. A model was developed for the dielectric coefficient and volume scattering for a vegetation medium. L- to C-band data were found useful for retrieving soil information directly. A surface moisture content of 5-35% yielded an emissivity of 0.9-0.7. The data agreed well with a combined multilayer radiative transfer model with simple roughness correction.

  3. Thresholds and interactive effects of soil moisture on the temperature response of soil respiration

    Lellei-Kovács, Eszter; Kovács-Láng, Edit; Botta-Dukát, Zoltán

    2011-01-01

    efflux is soil temperature, while soil moisture has less, although significant effect on soil respiration. Clear thresholds for moisture effects on temperature sensitivity were identified at 0.6, 4.0 and 7.0vol% by almost each model, which relate well to other known limits for biological activity......Ecosystem carbon exchange is poorly understood in low-productivity, semiarid habitats. Here we studied the controls of soil temperature and moisture on soil respiration in climate change field experiment in a sandy forest-steppe. Soil CO2 efflux was measured monthly from April to November in 2003......–2008 on plots receiving either rain exclusion or nocturnal warming, or serving as ambient control. Based on this dataset, we developed and compared empirical models of temperature and moisture effects on soil respiration. Results suggest that in this semiarid ecosystem the main controlling factor for soil CO2...

  4. The Role of Microbial Community Composition in Controlling Soil Respiration Responses to Temperature.

    Auffret, Marc D; Karhu, Kristiina; Khachane, Amit; Dungait, Jennifer A J; Fraser, Fiona; Hopkins, David W; Wookey, Philip A; Singh, Brajesh K; Freitag, Thomas E; Hartley, Iain P; Prosser, James I

    2016-01-01

    Rising global temperatures may increase the rates of soil organic matter decomposition by heterotrophic microorganisms, potentially accelerating climate change further by releasing additional carbon dioxide (CO2) to the atmosphere. However, the possibility that microbial community responses to prolonged warming may modify the temperature sensitivity of soil respiration creates large uncertainty in the strength of this positive feedback. Both compensatory responses (decreasing temperature sensitivity of soil respiration in the long-term) and enhancing responses (increasing temperature sensitivity) have been reported, but the mechanisms underlying these responses are poorly understood. In this study, microbial biomass, community structure and the activities of dehydrogenase and β-glucosidase enzymes were determined for 18 soils that had previously demonstrated either no response or varying magnitude of enhancing or compensatory responses of temperature sensitivity of heterotrophic microbial respiration to prolonged cooling. The soil cooling approach, in contrast to warming experiments, discriminates between microbial community responses and the consequences of substrate depletion, by minimising changes in substrate availability. The initial microbial community composition, determined by molecular analysis of soils showing contrasting respiration responses to cooling, provided evidence that the magnitude of enhancing responses was partly related to microbial community composition. There was also evidence that higher relative abundance of saprophytic Basidiomycota may explain the compensatory response observed in one soil, but neither microbial biomass nor enzymatic capacity were significantly affected by cooling. Our findings emphasise the key importance of soil microbial community responses for feedbacks to global change, but also highlight important areas where our understanding remains limited.

  5. Soil Temperature and Moisture Profile (STAMP) System Handbook

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.

  6. Modeling passive power generation in a temporally-varying temperature environment via thermoelectrics

    Bomberger, Cory C.; Attia, Peter M.; Prasad, Ajay K.; Zide, Joshua M.O.

    2013-01-01

    This paper presents a model to predict the power generation of a thermoelectric generator in a temporally-varying temperature environment. The model employs a thermoelectric plate sandwiched between two different heat exchangers to convert a temporal temperature gradient in the environment to a spatial temperature gradient within the device suitable for thermoelectric power generation. The two heat exchangers are designed such that their temperatures respond to a change in the environment's temperature at different rates which sets up a temperature differential across the thermoelectric and results in power generation. In this model, radiative and convective heat transfer between the device and its surroundings, and heat flow between the two heat exchangers across the thermoelectric plate are considered. The model is simulated for power generation in Death Valley, CA during the summer using the diurnal variation of air temperature and radiative exchange with the sun and night sky as heat sources and sinks. The optimization of power generation via scaling the device size is discussed. Additional applications of this device are considered. -- Highlights: • Thermoelectric power generation with time-varying temperature is modeled. • The ability to generate power without a natural spatial gradient is demonstrated. • Time dependent heat-transfer and differential heat flow rates are considered. • Optimization of power generation via scaling the device size is discussed

  7. Temperature response of soil respiration largely unaltered with experimental warming

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; Collins, Scott L.; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Steenberg Larsen, Klaus; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Penuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward B.; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  8. Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest

    Tana Wood; M. Detto; W.L. Silver

    2013-01-01

    Precipitation and temperature are important drivers of soil respiration. The role of moisture and temperature are generally explored at seasonal or inter-annual timescales; however, significant variability also occurs on hourly to daily time-scales. We used small (1.54 m2), throughfall exclusion shelters to evaluate the role soil moisture and temperature as temporal...

  9. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices

    Reichstein, Markus; Rey, Ana; Freibauer, Annette; Tenhunen, John; Valentini, Riccardo; Banza, Joao; Casals, Pere; Cheng, Yufu; Grünzweig, Jose M.; Irvine, James; Joffre, Richard; Law, Beverly E.; Loustau, Denis; Miglietta, Franco; Oechel, Walter; Ourcival, Jean-Marc; Pereira, Joao S.; Peressotti, Alessandro; Ponti, Francesca; Qi, Ye; Rambal, Serge; Rayment, Mark; Romanya, Joan; Rossi, Federica; Tedeschi, Vanessa; Tirone, Giampiero; Xu, Ming; Yakir, Dan

    2003-12-01

    Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, interannual and spatial variability of soil respiration as affected by water availability, temperature, and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g., leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical nonlinear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content, and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and intersite variability of soil respiration with a mean absolute error of 0.82 μmol m-2 s-1. The parameterized model exhibits the following principal properties: (1) At a relative amount of upper-layer soil water of 16% of field capacity, half-maximal soil respiration rates are reached. (2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. (3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly timescale, we employed the approach by [2002] that used monthly precipitation and air temperature to globally predict soil respiration (T&P model). While this model was able to

  10. Modelling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices

    Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valentini, R.; Soil Respiration Synthesis Team

    2003-04-01

    Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, inter-annual and spatial variability of soil respiration as affected by water availability, temperature and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g. leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical non-linear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and inter-site variability of soil respiration with a mean absolute error of 0.82 µmol m-2 s-1. The parameterised model exhibits the following principal properties: 1) At a relative amount of upper-layer soil water of 16% of field capacity half-maximal soil respiration rates are reached. 2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. 3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly time-scale we employed the approach by Raich et al. (2002, Global Change Biol. 8, 800-812) that used monthly precipitation and air temperature to globally predict soil respiration (T

  11. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid

    2012-09-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (2110°C, 3021°C, and 1030°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  12. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid

    2012-01-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  13. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    Yadav, Brijesh K

    2012-05-12

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  14. Global Trend Analysis of Multi-decade Soil Temperature Records Show Soils Resistant to Warming

    Frey, S. D.; Jennings, K.

    2017-12-01

    Soil temperature is an important determinant of many subterranean ecological processes including plant growth, nutrient cycling, and carbon sequestration. Soils are expected to warm in response to increasing global surface temperatures; however, despite the importance of soil temperature to ecosystem processes, less attention has been given to examining changes in soil temperature over time. We collected long-term (> 20 years) soil temperature records from approximately 50 sites globally, many with multiple depths (5 - 100 cm), and examined temperature trends over the last few decades. For each site and depth we calculated annual summer means and conducted non-parametric Mann Kendall trend and Sen slope analysis to assess changes in summer soil temperature over the length of each time series. The mean summer soil temperature trend across all sites and depths was not significantly different than zero (mean = 0.004 °C year-1 ± 0.033 SD), suggesting that soils have not warmed over the observation period. Of the subset of sites that exhibit significant increases in temperature over time, site location, depth of measurement, time series length, and neither start nor end date seem to be related to trend strength. These results provide evidence that the thermal regime of soils may have a stronger buffering capacity than expected, having important implications for the global carbon cycle and feedbacks to climate change.

  15. Automated general temperature correction method for dielectric soil moisture sensors

    Kapilaratne, R. G. C. Jeewantinie; Lu, Minjiao

    2017-08-01

    An effective temperature correction method for dielectric sensors is important to ensure the accuracy of soil water content (SWC) measurements of local to regional-scale soil moisture monitoring networks. These networks are extensively using highly temperature sensitive dielectric sensors due to their low cost, ease of use and less power consumption. Yet there is no general temperature correction method for dielectric sensors, instead sensor or site dependent correction algorithms are employed. Such methods become ineffective at soil moisture monitoring networks with different sensor setups and those that cover diverse climatic conditions and soil types. This study attempted to develop a general temperature correction method for dielectric sensors which can be commonly used regardless of the differences in sensor type, climatic conditions and soil type without rainfall data. In this work an automated general temperature correction method was developed by adopting previously developed temperature correction algorithms using time domain reflectometry (TDR) measurements to ThetaProbe ML2X, Stevens Hydra probe II and Decagon Devices EC-TM sensor measurements. The rainy day effects removal procedure from SWC data was automated by incorporating a statistical inference technique with temperature correction algorithms. The temperature correction method was evaluated using 34 stations from the International Soil Moisture Monitoring Network and another nine stations from a local soil moisture monitoring network in Mongolia. Soil moisture monitoring networks used in this study cover four major climates and six major soil types. Results indicated that the automated temperature correction algorithms developed in this study can eliminate temperature effects from dielectric sensor measurements successfully even without on-site rainfall data. Furthermore, it has been found that actual daily average of SWC has been changed due to temperature effects of dielectric sensors with a

  16. How and Why Does Stream Water Temperature Vary at Small Spatial Scales in a Headwater Stream?

    Morgan, J. C.; Gannon, J. P.; Kelleher, C.

    2017-12-01

    The temperature of stream water is controlled by climatic variables, runoff/baseflow generation, and hyporheic exchange. Hydrologic conditions such as gaining/losing reaches and sources of inflow can vary dramatically along a stream on a small spatial scale. In this work, we attempt to discern the extent that the factors of air temperature, groundwater inflow, and precipitation influence stream temperature at small spatial scales along the length of a stream. To address this question, we measured stream temperature along the perennial stream network in a 43 ha catchment with a complex land use history in Cullowhee, NC. Two water temperature sensors were placed along the stream network on opposite sides of the stream at 100-meter intervals and at several locations of interest (i.e. stream junctions). The forty total sensors recorded the temperature every 10 minutes for one month in the spring and one month in the summer. A subset of sampling locations where stream temperature was consistent or varied from one side of the stream to the other were explored with a thermal imaging camera to obtain a more detailed representation of the spatial variation in temperature at those sites. These thermal surveys were compared with descriptions of the contributing area at the sample sites in an effort to discern specific causes of differing flow paths. Preliminary results suggest that on some branches of the stream stormflow has less influence than regular hyporheic exchange, while other tributaries can change dramatically with stormflow conditions. We anticipate this work will lead to a better understanding of temperature patterns in stream water networks. A better understanding of the importance of small-scale differences in flow paths to water temperature may be able to inform watershed management decisions in the future.

  17. Temperature response of soil respiration largely unaltered with experimental warming

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific...... attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies......, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation...

  18. Simulation of temperature field for temperature-controlled radio frequency ablation using a hyperbolic bioheat equation and temperature-varied voltage calibration: a liver-mimicking phantom study.

    Zhang, Man; Zhou, Zhuhuang; Wu, Shuicai; Lin, Lan; Gao, Hongjian; Feng, Yusheng

    2015-12-21

    This study aims at improving the accuracy of temperature simulation for temperature-controlled radio frequency ablation (RFA). We proposed a new voltage-calibration method in the simulation and investigated the feasibility of a hyperbolic bioheat equation (HBE) in the RFA simulation with longer durations and higher power. A total of 40 RFA experiments was conducted in a liver-mimicking phantom. Four mathematical models with multipolar electrodes were developed by the finite element method in COMSOL software: HBE with/without voltage calibration, and the Pennes bioheat equation (PBE) with/without voltage calibration. The temperature-varied voltage calibration used in the simulation was calculated from an experimental power output and temperature-dependent resistance of liver tissue. We employed the HBE in simulation by considering the delay time τ of 16 s. First, for simulations by each kind of bioheat equation (PBE or HBE), we compared the differences between the temperature-varied voltage-calibration and the fixed-voltage values used in the simulations. Then, the comparisons were conducted between the PBE and the HBE in the simulations with temperature-varied voltage calibration. We verified the simulation results by experimental temperature measurements on nine specific points of the tissue phantom. The results showed that: (1) the proposed voltage-calibration method improved the simulation accuracy of temperature-controlled RFA for both the PBE and the HBE, and (2) for temperature-controlled RFA simulation with the temperature-varied voltage calibration, the HBE method was 0.55 °C more accurate than the PBE method. The proposed temperature-varied voltage calibration may be useful in temperature field simulations of temperature-controlled RFA. Besides, the HBE may be used as an alternative in the simulation of long-duration high-power RFA.

  19. Yield and nutrient composition of biochar produced from different feedstocks at varying pyrolytic temperatures

    Naeem, M.A.; Khalid, M.; Arshad, M.; Ahmad, R.

    2014-01-01

    Variation in pyrolytic temperatures and feedstocks affects the yield and nutrient composition of biochar. Selection of suitable feedstock and optimum pyrolytic temperature is crucial before using it for agricultural purposes. We compared biochars produced from two feedstocks (wheat straw and rice) at three temperatures (300, 400 and 500 degree C). Biochar yield decreased significantly (p<0.05) with increasing pyrolysis temperature, while ash contents were increased. The cation exchange capacity was significantly higher (119 cmolc kg/sup -1/) at temperature 400 degree C. The pH, electrical conductivity (EC) and carbon content of biochars increased significantly with increasing temperature and maximum pH (10.4) and EC (3.35 dS m/sup -1/) were observed in rice straw biochar (WSB) at 500 degree C and carbon content (662 g kg/sup -1/) in wheat straw biochar (RSB) at 500 degree C. Concentration of phosphorus (P) and potassium (K) increased significantly with increasing temperature, while of nitrogen (N) decreased. Overall, the maximum N (13.8 g kg/sup -1/at 300 degree C) and P (3.4 g kg/sup -1/at 500 degree C) concentrations were observed in WSB while, maximum K (48 g kg/sup -1/ at 500 degree C)in RSB. High pyrolysis temperature reduced AB-DTPA extractable nutrients (expect Mn). The highest AB-DTPA extractable nutrients such as P (113 mg kg/sup -1/) and Ca (1.07 g kg/sup -1/) were observed in WSB at 300 degree C while, K (18 g kg/sup -1/) and magnesium (Mg) (1.55 g kg/sup -1/) in RSB at 300 degree C. Selected feedstock and use of low pyrolysis temperature may produce nutrient-rich biochar, with high CEC and low pH and these could have positive effects on calcareous soils. (author)

  20. Conservation of Campomanesia adamantium (CAMB. O. berg seeds in different packaging and at varied temperatures

    Silvana de Paula Quintão Scalon

    2013-03-01

    Full Text Available This article aims at evaluating the effects of different packaging and varied storage temperatures on the germination potential of seeds of Campomanesia adamantium Camb. O. Berg. The seeds were packaged in glass, aluminum foil and plastic containers, or maintained inside intact fruits at 5, 10 and 15 ºC during 0, 7, 14 and 21 days. After these periods the seeds were sown in Germitest® germination paper and maintained in incubation chambers at 25 ºC under constant white light for 42 days. Seed moisture contents were evaluated both before and after storage, as well as germination percentages, germination speed index, root and aerial portion of seedlings lengths, and total dry weights. All possible combinations of packing materials, temperatures and storage times were tested, with four repetitions of 25 seeds for each treatment. C. adamantium seeds showed initial water contents of 31.5%. Glass and aluminum packaging were efficient at maintaining the water content of the seeds, and provided greater germination speed index than the other packaging materials. Germination percentages, seedlings lengths and dry weights did not vary among the different temperatures tested. C. adamantium seeds can be stored for up to 21 days at temperatures between 5 and 15 ºC without altering their physiological quality. In terms of cost-benefit efficiencies, these seeds can be stored without significant damage for 21 days while still inside the fruits at temperatures of 5, 10 or 15 ºC.

  1. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers

    Ren Bai

    2017-05-01

    Full Text Available Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2 techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai, an Oxisol (Leizhou, and an Ultisol (Taoyuan along four profile depths (up to 70 cm in depth in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and

  2. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers.

    Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei

    2017-01-01

    Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and

  3. Effects of meteorological models on the solution of the surface energy balance and soil temperature variations in bare soils

    Saito, Hirotaka; Šimůnek, Jiri

    2009-07-01

    SummaryA complete evaluation of the soil thermal regime can be obtained by evaluating the movement of liquid water, water vapor, and thermal energy in the subsurface. Such an evaluation requires the simultaneous solution of the system of equations for the surface water and energy balance, and subsurface heat transport and water flow. When only daily climatic data is available, one needs not only to estimate diurnal cycles of climatic data, but to calculate the continuous values of various components in the energy balance equation, using different parameterization methods. The objective of this study is to quantify the impact of the choice of different estimation and parameterization methods, referred together to as meteorological models in this paper, on soil temperature predictions in bare soils. A variety of widely accepted meteorological models were tested on the dataset collected at a proposed low-level radioactive-waste disposal site in the Chihuahua Desert in West Texas. As the soil surface was kept bare during the study, no vegetation effects were evaluated. A coupled liquid water, water vapor, and heat transport model, implemented in the HYDRUS-1D program, was used to simulate diurnal and seasonal soil temperature changes in the engineered cover installed at the site. The modified version of HYDRUS provides a flexible means for using various types of information and different models to evaluate surface mass and energy balance. Different meteorological models were compared in terms of their prediction errors for soil temperatures at seven observation depths. The results obtained indicate that although many available meteorological models can be used to solve the energy balance equation at the soil-atmosphere interface in coupled water, vapor, and heat transport models, their impact on overall simulation results varies. For example, using daily average climatic data led to greater prediction errors, while relatively simple meteorological models may

  4. Soil moisture and temperature profile effects on microwave emission at low frequencies

    Raju, S.; Chanzy, A.; Wigneron, J.P.; Calvet, J.C.; Kerr, Y.; Laguerre, L.

    1995-01-01

    Soil moisture and temperature vertical profiles vary quickly during the day and may have a significant influence on the soil microwave emission. The objective of this work is to quantify such an influence and the consequences in soil moisture estimation from microwave radiometric information. The analysis is based on experimental data collected by the ground-based PORTOS radiometer at 1.4, 5.05, and 10.65 GHz and data simulated by a coherent model of microwave emission from layered media [Wilheit model (1978)]. In order to simulate diurnal variations of the brightness temperature (TB), the Wilheit model is coupled to a mechanistic model of heat and water flows in the soil. The Wilheit model is validated on experimental data and its performances for estimating TB are compared to those of a simpler approach based on a description of the soil media as a single layer (Fresnel model). When the depth of this single layer (hereafter referred to as the sampling depth) is determined to fit the experimental data, similar accuracy in TB estimation is found with both the Wilheit and Fresnel models. The soil microwave emission is found to be strongly affected by the diurnal variations of soil moisture and temperature profiles. Consequently, the TB sensitivity to soil moisture and temperature profiles has an influence on the estimation, from microwave observations, of the surface soil moisture in a surface layer with a fixed depth (05): the accuracy of θs retrievals and the optimal sampling depth depends both on the variation in soil moisture and temperature profile shape. (author)

  5. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Vogel, M. M.; Orth, R.; Cheruy, F.; Hagemann, S.; Lorenz, R.; Hurk, B. J. J. M.; Seneviratne, S. I.

    2017-02-01

    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate the role of soil moisture-temperature feedbacks for this response based on multimodel experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of the hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America. Soil moisture trends are more important for this response than short-term soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections.

  6. Topsoil and Deep Soil Organic Carbon Concentration and Stability Vary with Aggregate Size and Vegetation Type in Subtropical China

    Fang, Xiang-Min; Chen, Fu-Sheng; Wan, Song-Ze; Yang, Qing-Pei; Shi, Jian-Min

    2015-01-01

    The impact of reforestation on soil organic carbon (OC), especially in deep layer, is poorly understood and deep soil OC stabilization in relation with aggregation and vegetation type in afforested area is unknown. Here, we collected topsoil (0–15 cm) and deep soil (30–45 cm) from six paired coniferous forests (CF) and broad-leaved forests (BF) reforested in the early 1990s in subtropical China. Soil aggregates were separated by size by dry sieving and OC stability was measured by closed-jar alkali-absorption in 71 incubation days. Soil OC concentration and mean weight diameter were higher in BF than CF. The cumulative carbon mineralization (Cmin, mg CO2-C kg-1 soil) varied with aggregate size in BF and CF topsoils, and in deep soil, it was higher in larger aggregates than in smaller aggregates in BF, but not CF. The percentage of soil OC mineralized (SOCmin, % SOC) was in general higher in larger aggregates than in smaller aggregates. Meanwhile, SOCmin was greater in CF than in BF at topsoil and deep soil aggregates. In comparison to topsoil, deep soil aggregates generally exhibited a lower Cmin, and higher SOCmin. Total nitrogen (N) and the ratio of carbon to phosphorus (C/P) were generally higher in BF than in CF in topsoil and deep soil aggregates, while the same trend of N/P was only found in deep soil aggregates. Moreover, the SOCmin negatively correlated with OC, total N, C/P and N/P. This work suggests that reforested vegetation type might play an important role in soil OC storage through internal nutrient cycling. Soil depth and aggregate size influenced OC stability, and deep soil OC stability could be altered by vegetation reforested about 20 years. PMID:26418563

  7. Temperature response of soil respiration largely unaltered with experimental warming

    Carey, J.C.; Tang, J.; Templer, P.H.; Kroeger, K.D.; Crowther, T.W.; Burton, A.J.; Dukes, J.S.; Emmett, B.; Frey, S.D.; Heskel, M.A.; Jiang, L.; Machmuller, M.B.; Mohan, J.; Panetta, A.M.; Reich, P.B.; Reinsch, S.; Wang, X.; Allison, S.D.; Bamminger, C.; Bridgham, S.; Collins, S.L.; de Dato, G.; Eddy, W.C.; Enquist, B.J.; Estiarte, M.; Harte, J.; Henderson, A.; Johnson, B.R.; Larsen, K.S.; Luo, Y.; Marhan, S.; Melillo, J.M.; Peñuelas, J.; Pfeifer-Meister, L.; Poll, C.; Rastetter, E.; Reinmann, A.B.; Reynolds, L.L.; Schmidt, I.K.; Shaver, G.R.; Strong, A.L.; Suseela, V.; Tietema, A.

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific

  8. Native temperature regime influences soil response to simulated warming

    Timothy G. Whitby; Michael D. Madritch

    2013-01-01

    Anthropogenic climate change is expected to increase global temperatures and potentially increase soil carbon (C) mineralization, which could lead to a positive feedback between global warming and soil respiration. However the magnitude and spatial variability of belowground responses to warming are not yet fully understood. Some of the variability may depend...

  9. Numerical analysis of a PCM thermal storage system with varying wall temperature

    Halawa, E.; Bruno, F.; Saman, W.

    2005-01-01

    Numerical analysis of melting and freezing of a PCM thermal storage unit (TSU) with varying wall temperature is presented. The TSU under analysis consists of several layers of thin slabs of a PCM subjected to convective boundary conditions where air flows between the slabs. The model employed takes into account the variations in wall temperature along the direction of air flow as well as the sensible heat. The paper discusses typical characteristics of the melting/freezing of PCM slabs in an air stream and presents some results of the numerical simulation in terms of air outlet temperatures and heat transfer rates during the whole periods of melting and freezing. Considerations in the design of the TSU are also given

  10. Ballistic performance of a Kevlar-29 woven fibre composite under varied temperatures

    Soykasap, O.; Colakoglu, M.

    2010-05-01

    Armours are usually manufactured from polymer matrix composites and used for both military and non-military purposes in different seasons, climates, and regions. The mechanical properties of the composites depend on temperature, which also affects their ballistic characteristics. The armour is used to absorb the kinetic energy of a projectile without any major injury to a person. Therefore, besides a high strength and lightness, a high damping capacity is required to absorb the impact energy transferred by the projectile. The ballistic properties of a Kevlar 29/polyvinyl butyral composite are investigated under varied temperatures in this study. The elastic modulus of the composite is determined from the natural frequency of composite specimens at different temperatures by using a damping monitoring method. Then, the backside deformation of composite plates is analysed experimentally and numerically employing the finite-element program Abaqus. The experimental and numeric results obtained are in good agreement.

  11. Net carbon allocation in soybean seedlings as influenced by soil water stress at two soil temperatures

    McCoy, E.L.; Boersma, L.; Ekasingh, M.

    1990-01-01

    The influence of water stress at two soil temperatures on allocation of net photoassimilated carbon in soybean (Glycine max [L.] Merr.) was investigated using compartmental analysis. The experimental phase employed classical 14 C labeling methodology with plants equilibrated at soil water potentials of -0.04, -0.25 and -0.50 MPa; and soil temperatures of 25 and 10C. Carbon immobilization in the shoot apex generally followed leaf elongation rates with decreases in both parameters at increasing water stress at both soil temperatures. However, where moderate water stress resulted in dramatic declines in leaf elongation rates, carbon immobilization rates were sharply decreased only at severe water stress levels. Carbon immobilization was decreased in the roots and nodules of the nonwater stressed treatment by the lower soil temperature. This relation was reversed with severe water stress, and carbon immobilization in the roots and nodules was increased at the lower soil temperature. Apparently, the increased demand for growth and/or carbon storage in these tissues with increased water stress overcame the low soil temperature limitations. Both carbon pool sizes and partitioning of carbon to the sink tissues increased with moderate water stress at 25C soil temperature. Increased pool sizes were consistent with whole plant osmotic adjustment at moderate water stress. Increased partitioning to the sinks was consistent with carbon translocation processes being less severely influenced by water stress than is photosynthesis

  12. Effects of Soil Temperature and Moisture on Soil Respiration on the Tibetan Plateau.

    Bao, Xiaoying; Zhu, Xiaoxue; Chang, Xiaofeng; Wang, Shiping; Xu, Burenbayin; Luo, Caiyun; Zhang, Zhenhua; Wang, Qi; Rui, Yichao; Cui, Xiaoying

    2016-01-01

    Understanding of effects of soil temperature and soil moisture on soil respiration (Rs) under future warming is critical to reduce uncertainty in predictions of feedbacks to atmospheric CO2 concentrations from grassland soil carbon. Intact cores with roots taken from a full factorial, 5-year alpine meadow warming and grazing experiment in the field were incubated at three different temperatures (i.e. 5, 15 and 25°C) with two soil moistures (i.e. 30 and 60% water holding capacity (WHC)) in our study. Another experiment of glucose-induced respiration (GIR) with 4 h of incubation was conducted to determine substrate limitation. Our results showed that high temperature increased Rs and low soil moisture limited the response of Rs to temperature only at high incubation temperature (i.e. 25°C). Temperature sensitivity (Q10) did not significantly decrease over the incubation period, suggesting that substrate depletion did not limit Rs. Meanwhile, the carbon availability index (CAI) was higher at 5°C compared with 15 and 25°C incubation, but GIR increased with increasing temperature. Therefore, our findings suggest that warming-induced decrease in Rs in the field over time may result from a decrease in soil moisture rather than from soil substrate depletion, because warming increased root biomass in the alpine meadow.

  13. Pyrolysis temperature influences ameliorating effects of biochars on acidic soil.

    Wan, Qing; Yuan, Jin-Hua; Xu, Ren-Kou; Li, Xing-Hui

    2014-02-01

    The biochars were prepared from straws of canola, corn, soybean, and peanut at different temperatures of 300, 500, and 700 °C by means of oxygen-limited pyrolysis.Amelioration effects of these biochars on an acidic Ultisol were investigated with incubation experiments, and application rate of biochars was 10 g/kg. The incorporation of these biochars induced the increase in soil pH, soil exchangeable base cations, base saturation, and cation exchange capacity and the decrease in soil exchangeable acidity and exchangeable Al. The ameliorating effects of biochars on acidic soil increased with increase in their pyrolysis temperature. The contribution of oxygen-containing functional groups on the biochars to their ameliorating effects on the acidic soil decreased with the rise in pyrolysis temperature, while the contribution from carbonates in the biochars changed oppositely. The incorporation of the biochars led to the decrease in soil reactive Al extracted by 0.5mol/L CuCl2, and the content of reactive Al was decreased with the increase in pyrolysis temperature of incorporated biochars. The biochars generated at 300 °C increased soil organically complexed Al due to ample quantity of oxygen-containing functional groups such as carboxylic and phenolic groups on the biochars, while the biochars generated at 500 and 700 °C accelerated the transformation of soil exchangeable Al to hydroxyl-Al polymers due to hydrolysis of Al at higher pH. Therefore, the crop straw-derived biochars can be used as amendments for acidic soils and the biochars generated at relatively high temperature have great ameliorating effects on the soils.

  14. SWATS: Diurnal Trends in the Soil Temperature Report

    Cook, David [Argonne National Lab. (ANL), Argonne, IL (United States); Theisen, Adam [Univ. of Oklahoma, Norman, OK (United States)

    2017-06-30

    During the processing of data for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ARMBE2D Value-Added Product (VAP), the developers noticed that the SWATS soil temperatures did not show a decreased temporal variability with increased depth with the new E30+ Extended Facilities (EFs), unlike the older EFs at ARM’s Southern Great Plains (SGP) site. The instrument mentor analyzed the data and reported that all SWATS locations have shown this behavior but that the magnitude of the problem was greatest at EFs E31-E38. The data were analyzed to verify the initial assessments of: 1. 5 cm SWATS data were valid for all EFs and 15 cm soil temperature measurements were valid at all EFs other than E31-E38, 2. Use only nighttime SWATS soil temperature measurements to calculate daily average soil temperatures, 3. Since it seems likely that the soil temperature measurements below 15cm were affected by the solar heating of the enclosure at all but E31-38, and at all depths below 5cm at E31-38, individual measurements of soil temperature at these depths during daylight hours, and daily averages of the same, can ot be trusted on most (particularly sunny) days.

  15. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale.

    Hursh, Andrew; Ballantyne, Ashley; Cooper, Leila; Maneta, Marco; Kimball, John; Watts, Jennifer

    2017-05-01

    Soil respiration (Rs) is a major pathway by which fixed carbon in the biosphere is returned to the atmosphere, yet there are limits to our ability to predict respiration rates using environmental drivers at the global scale. While temperature, moisture, carbon supply, and other site characteristics are known to regulate soil respiration rates at plot scales within certain biomes, quantitative frameworks for evaluating the relative importance of these factors across different biomes and at the global scale require tests of the relationships between field estimates and global climatic data. This study evaluates the factors driving Rs at the global scale by linking global datasets of soil moisture, soil temperature, primary productivity, and soil carbon estimates with observations of annual Rs from the Global Soil Respiration Database (SRDB). We find that calibrating models with parabolic soil moisture functions can improve predictive power over similar models with asymptotic functions of mean annual precipitation. Soil temperature is comparable with previously reported air temperature observations used in predicting Rs and is the dominant driver of Rs in global models; however, within certain biomes soil moisture and soil carbon emerge as dominant predictors of Rs. We identify regions where typical temperature-driven responses are further mediated by soil moisture, precipitation, and carbon supply and regions in which environmental controls on high Rs values are difficult to ascertain due to limited field data. Because soil moisture integrates temperature and precipitation dynamics, it can more directly constrain the heterotrophic component of Rs, but global-scale models tend to smooth its spatial heterogeneity by aggregating factors that increase moisture variability within and across biomes. We compare statistical and mechanistic models that provide independent estimates of global Rs ranging from 83 to 108 Pg yr -1 , but also highlight regions of uncertainty

  16. Specifics of soil temperature under winter oilseed rape canopy

    Krčmářová, Jana; Středa, Tomáš; Pokorný, Radovan

    2014-09-01

    The aim of this study was to evaluate the course of soil temperature under the winter oilseed rape canopy and to determine relationships between soil temperature, air temperature and partly soil moisture. In addition, the aim was to describe the dependence by means of regression equations usable for pests and pathogens prediction, crop development, and yields models. The measurement of soil and near the ground air temperatures was performed at the experimental field Žabiče (South Moravia, the Czech Republic). The course of temperature was determined under or in the winter oilseed rape canopy during spring growth season in the course of four years (2010 - 2012 and 2014). In all years, the standard varieties (Petrol, Sherpa) were grown, in 2014 the semi-dwarf variety PX104 was added. Automatic soil sensors were positioned at three depths (0.05, 0.10 and 0.20 m) under soil surface, air temperature sensors in 0.05 m above soil surfaces. The course of soil temperature differs significantly between standard (Sherpa and Petrol) and semi-dwarf (PX104) varieties. Results of the cross correlation analysis showed, that the best interrelationships between air and soil temperature were achieved in 2 hours delay for the soil temperature in 0.05 m, 4 hour delay for 0.10 m and 7 hour delay for 0.20 m for standard varieties. For semi-dwarf variety, this delay reached 6 hour for the soil temperature in 0.05 m, 7 hour delay for 0.10 m and 11 hour for 0.20 m. After the time correction, the determination coefficient (R2) reached values from 0.67 to 0.95 for 0.05 m, 0.50 to 0.84 for 0.10 m in variety Sherpa during all experimental years. For variety PX104 this coefficient reached values from 0.51 to 0.72 in 0.05 m depth and from 0.39 to 0.67 in 0.10 m depth in the year 2014. The determination coefficient in the 0.20 m depth was lower for both varieties; its values were from 0.15 to 0.65 in variety Sherpa. In variety PX104 the values of R2 from 0.23 to 0.57 were determined. When using

  17. Linear parameter-varying modeling and control of the steam temperature in a Canadian SCWR

    Sun, Peiwei, E-mail: sunpeiwei@mail.xjtu.edu.cn; Zhang, Jianmin; Su, Guanghui

    2017-03-15

    Highlights: • Nonlinearity of Canadian SCWR is analyzed based on step responses and Nyquist plots. • LPV model is derived through Jacobian linearization and curve fitting. • An output feedback H{sub ∞} controller is synthesized for the steam temperature. • The control performance is evaluated by step disturbances and wide range operation. • The controller can stabilize the system and reject the reactor power disturbance. - Abstract: The Canadian direct-cycle Supercritical Water-cooled Reactor (SCWR) is a pressure-tube type SCWR under development in Canada. The dynamics of the steam temperature have a high degree of nonlinearity and are highly sensitive to reactor power disturbances. Traditional gain scheduling control cannot theoretically guarantee stability for all operating regions. The control performance can also be deteriorated when the controllers are switched. In this paper, a linear parameter-varying (LPV) strategy is proposed to solve such problems. Jacobian linearization and curve fitting are applied to derive the LPV model, which is verified using a nonlinear dynamic model and determined to be sufficiently accurate for control studies. An output feedback H{sub ∞} controller is synthesized to stabilize the steam temperature system and reject reactor power disturbances. The LPV steam temperature controller is implemented using a nonlinear dynamic model, and step changes in the setpoints and typical load patterns are carried out in the testing process. It is demonstrated through numerical simulation that the LPV controller not only stabilizes the steam temperature under different disturbances but also efficiently rejects reactor power disturbances and suppresses the steam temperature variation at different power levels. The LPV approach is effective in solving control problems of the steam temperature in the Canadian SCWR.

  18. Soil water regulates the control of photosynthesis on diel hysteresis between soil respiration and temperature in a desert shrubland

    Wang, Ben; Zha, Tian Shan; Jia, Xin; Gong, Jin Nan; Bourque, Charles; Feng, Wei; Tian, Yun; Wu, Bin; Qing Zhang, Yu; Peltola, Heli

    2017-09-01

    Explanations for the occurrence of hysteresis (asynchronicity) between diel soil respiration (Rs) and soil temperature (Ts) have evoked both biological and physical mechanisms. The specifics of these explanations, however, tend to vary with the particular ecosystem or biome being investigated. So far, the relative degree of control of biological and physical processes on hysteresis is not clear for drylands. This study examined the seasonal variation in diel hysteresis and its biological control in a desert-shrub ecosystem in northwest (NW) China. The study was based on continuous measurements of Rs, air temperature (Ta), temperature at the soil surface and below (Tsurf and Ts), volumetric soil water content (SWC), and photosynthesis in a dominant desert shrub (i.e., Artemisia ordosica) over an entire year in 2013. Trends in diel Rs were observed to vary with SWC over the growing season (April to October). Diel variations in Rs were more closely associated with variations in Tsurf than with photosynthesis as SWC increased, leading to Rs being in phase with Tsurf, particularly when SWC > 0.08 m3 m-3 (ratio of SWC to soil porosity = 0.26). However, as SWC decreased below 0.08 m3 m-3, diel variations in Rs were more closely related to variations in photosynthesis, leading to pronounced hysteresis between Rs and Tsurf. Incorporating photosynthesis into a Q10-function eliminated 84.2 % of the observed hysteresis, increasing the overall descriptive capability of the function. Our findings highlight a high degree of control by photosynthesis and SWC in regulating seasonal variation in diel hysteresis between Rs and temperature.

  19. Soil moisture and temperature algorithms and validation

    Passive microwave remote sensing of soil moisture has matured over the past decade as a result of the Advanced Microwave Scanning Radiometer (AMSR) program of JAXA. This program has resulted in improved algorithms that have been supported by rigorous validation. Access to the products and the valida...

  20. Ideal Gas with a Varying (Negative Absolute) Temperature: an Alternative to Dark Energy?

    Saha, Subhajit; Mondal, Anindita; Corda, Christian

    2018-02-01

    The present work is an attempt to investigate whether the evolutionary history of the Universe from the offset of inflation can be described by assuming the cosmic fluid to be an ideal gas with a specific gas constant but a varying negative absolute temperature (NAT). The motivation of this work is to search for an alternative to the "exotic" and "supernatural" dark energy (DE). In fact, the NAT works as an "effective quintessence" and there is need to deal neither with exotic matter like DE nor with modified gravity theories. For the sake of completeness, we release some clarifications on NATs in Section 3 of the paper.

  1. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Vogel, Martha Marie; Orth, René; Cheruy, Frederique; Hagemann, Stefan; Lorenz, Ruth; van den Hurk, Bart; Seneviratne, Sonia Isabelle

    2017-04-01

    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate here the role of soil moisture-temperature feedbacks for this response based on multi-model experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate physical processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America and between 42%-52% in Amazonia, Northern Australia and Southern Africa. Soil moisture trends (multi-decadal soil moisture variability) are more important for this response than short-term (e.g. seasonal, interannual) soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections. Vogel, M.M. et al.,2017. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, accepted.

  2. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures

    Zheng, Hao; Wang, Zhenyu; Zhao, Jian; Herbert, Stephen; Xing, Baoshan

    2013-01-01

    Sorption of sulfonamides on biochars is poorly understood, thus sulfamethoxazole (SMX) sorption on biochars produced at 300–600 °C was determined as a function of pH and SMX concentration, as well as the inorganic fractions in the biochars. Neutral SMX molecules (SMX 0 ) were dominant for sorption at pH 1.0–6.0. Above pH 7.0, although biochars surfaces were negatively-charged, anionic SMX species sorption increased with pH and is regulated via charge-assisted H-bonds. SMX 0 sorption at pH 5.0 was nonlinear and adsorption-dominant for all the biochars via hydrophobic interaction, π–π electron donor–acceptor interaction and pore-filling. The removal of inorganic fraction reduced SMX sorption by low-temperature biochars (e.g., 300 °C), but enhanced the sorption by high-temperature biochars (e.g., 600 °C) due to the temperature-dependent inorganic fractions in the biochars. These observations are useful for producing designer biochars as engineered sorbents to reduce the bioavailability of antibiotics and/or predict the fate of sulfonamides in biochar-amended soils. -- Highlights: •Sulfamethoxazole (SMX) sorption on biochars at pH 5.0 was adsorption-dominant. •Removal of inorganic fractions in low-temperature biochars reduced SMX sorption. •Removal of inorganic fractions in high-temperature biochars enhanced SMX sorption. •Anionic SMX was adsorbed on negatively charged biochar via charge-assisted H-bond. -- Solution pH and biochar property control the sorption amount and mechanisms of antibiotic sulfamethoxazole

  3. Complex terrain alters temperature and moisture limitations of forest soil respiration across a semiarid to subalpine gradient

    Berryman, Erin Michele; Barnard, H.R.; Adams, H.R.; Burns, M.A.; Gallo, E.; Brooks, P.D.

    2015-01-01

    Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. We quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important for dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.

  4. Hydrologic characterization of desert soils with varying degrees of pedogenesis: 1. field experiments evaluating plant-relevant soil water behavior

    Nimmo, J.R.; Perkins, K.S.; Schmidt, K.M.; Miller, D.M.; Stock, J.D.; Singha, K.

    2009-01-01

    To assess the eff ect of pedogenesis on the soil moisture dynamics infl uencing the character and quality of ecological habitat, we conducted infi ltration and redistribution experiments on three alluvial deposits in the Mojave National Preserve: (i) recently deposited active wash sediments, (ii) a soil of early Holocene age, and (iii) a highly developed soil of late Pleistocene age. At each, we ponded water in a 1-m-diameter infi ltration ring for 2.3 h and monitored soil water content and matric pressure during and atier infi ltration, using probes and electrical resistivity imaging (ERI). Infi ltration and downward fl ow rates were greater in younger material, favoring deep-rooted species. Deep-rooted species tend to colonize the margins of washes, where they are unaff ected by sediment transport that inhibits colonization. The ERI results support important generalizations, for example that shallower than 0.5 m, infi ltrated water persists longer in highly developed soil, favoring shallow-rooted species. Soil moisture data for the two youngest soils suggested that saturation overshoot, which may have signifi cant but unexplored hydroecologic and pedogenic eff ects, occurred at the horizontally advancing weting front. Spatial heterogeneity of soil properties generally increased with pedogenic development. Evidence suggested that some early-stage developmental processes may promote uniformity; the intermediate- age soil appeared to have the least heterogeneity in terms of textural variation with depth, and also the least anisotropy. Lateral heterogeneity was pronounced in older soil, having a multitude of eff ects on the distribution and retention of soil water, and may facilitate certain water-conserving strategies of plants over what would be possible in a laterally homogeneous soil. ?? Soil Science Society of America.

  5. Amplification and dampening of soil respiration by changes in temperature variability

    Sierra, C.A.; Harmon, M.E.; Thomann, E.; Perakis, S.S.; Loescher, H.W.

    2011-01-01

    Accelerated release of carbon from soils is one of the most important feed backs related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature vari-ability. Anthropogenic activities are likely to modify both the average state and the variability of the climatic system; therefore, the effects of future warming on decomposition should not only focus on trends in the average temperature, but also variability expressed as a change of the probability distribution of temperature.Using analytical and numerical analyses we tested common relationships between temperature and respiration and found that the variability of temperature plays an important role determining respiration rates of soil organic matter. Changes in temperature variability, without changes in the average temperature, can affect the amount of carbon released through respiration over the long term. Furthermore, simultaneous changes in the average and variance of temperature can either amplify or dampen there release of carbon through soil respiration as climate regimes change. The effects depend on the degree of convexity of the relationship between temperature and respiration and the magnitude of the change in temperature variance. A potential consequence of this effect of variability would be higher respiration in regions where both the mean and variance of temperature are expected to increase, such as in some low latitude regions; and lower amounts of respiration where the average temperature is expected to increase and the variance to decrease, such as in northern high latitudes.

  6. Soil Temperature Triggers the Onset of Photosynthesis in Korean Pine

    Wu, Jiabing; Guan, Dexin; Yuan, Fenhui; Wang, Anzhi; Jin, Changjie

    2013-01-01

    In forest ecosystems, the onset of spring photosynthesis may have an important influence on the annual carbon balance. However, triggers for the onset of photosynthesis have yet to be clearly identified, especially for temperate evergreen conifers. The effects of climatic factors on recovery of photosynthetic capacity in a Korean pine forest were investigated in the field. No photosynthesis was detectable when the soil temperature was below 0°C even if the air temperature was far beyond 15°C. The onset of photosynthesis and sap flow was coincident with the time of soil thawing. The rates of recovery of photosynthetic capacity highly fluctuated with air temperature after onset of photosynthesis, and intermittent frost events remarkably inhibited the photosynthetic capacity of the needles. The results suggest that earlier soil thawing is more important than air temperature increases in triggering the onset of photosynthesis in Korean pine in temperate zones under global warming scenarios. PMID:23755227

  7. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.; Huntzinger, Deborah N.; Berry, Joseph A.; Ciais, Philippe; Piao, Shilong; Poulter, Benjamin; Fisher, Joshua B.; Cook, Robert B.; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul; Lei, Huimin; Lu, Chaoqun; Mao, Jiafu; Parazoo, Nicholas C.; Peng, Shushi; Ricciuto, Daniel M.; Shi, Xiaoying; Tao, Bo; Tian, Hanqin; Wang, Weile; Wei, Yaxing; Yang, Jia

    2017-05-01

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. Here, we show that the dominant driver varies with ENSO phase. Whereas tropical temperature explains sink dynamics following El Niño conditions (rTG,P=0.59, p<0.01), the post La Niña sink is driven largely by tropical precipitation (rPG,T=-0.46, p=0.04). This finding points to an ENSO-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. We further find that none of a suite of ten contemporary terrestrial biosphere models captures these ENSO-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.

  8. The Impact of Hydration and Temperature on Bacterial Diversity in Arid Soil Mesocosms

    Adam Št'ovíček

    2017-06-01

    Full Text Available Hot desert ecosystems experience rare and unpredictable rainfall events that resuscitate the arid flora and fauna. However, the effect of this sudden abundance of water on soil microbial communities is still under debate. We modeled varying rainfall amounts and temperatures in desert soil mesocosms and monitored the microbial community response over a period of 21 days. We studied two different wetting events, simulating heavy (50 mm and light (10 mm rain, as well as three different temperature regimes: constant 25° or 36°C, or a temperature diurnal cycle alternating between 36 and 10 °C. Amplicon sequencing of the bacterial ribosomal RNA revealed that rain intensity affects the soil bacterial community, but the effects are mitigated by temperature. The combination of water-pulse intensity with lower temperature had the greatest effect on the bacterial community. These experiments demonstrated that the soil microbial response to rain events is dependent not only on the intensity of the water pulse but also on the ambient temperature, thus emphasizing the complexity of bacterial responses to highly unpredictable environments.

  9. Haemolytic activity of soil from areas of varying podoconiosis endemicity in Ethiopia.

    Jennifer S Le Blond

    Full Text Available Podoconiosis, non-filarial elephantiasis, is a non-infectious disease found in tropical regions such as Ethiopia, localized in highland areas with volcanic soils cultivated by barefoot subsistence farmers. It is thought that soil particles can pass through the soles of the feet and taken up by the lymphatic system, leading to the characteristic chronic oedema of the lower legs that becomes disfiguring and disabling over time.The close association of the disease with volcanic soils led us to investigate the characteristics of soil samples in an endemic area in Ethiopia to identify the potential causal constituents. We used the in vitro haemolysis assay and compared haemolytic activity (HA with soil samples collected in a non-endemic region of the same area in Ethiopia. We included soil samples that had been previously characterized, in addition we present other data describing the characteristics of the soil and include pure phase mineral standards as comparisons.The bulk chemical composition of the soils were statistically significantly different between the podoconiosis-endemic and non-endemic areas, with the exception of CaO and Cr. Likewise, the soil mineralogy was statistically significant for iron oxide, feldspars, mica and chlorite. Smectite and kaolinite clays were widely present and elicited a strong HA, as did quartz, in comparison to other mineral phases tested, although no strong difference was found in HA between soils from the two areas. The relationship was further investigated with principle component analysis (PCA, which showed that a combination of an increase in Y, Zr and Al2O3, and a concurrent increase Fe2O3, TiO2, MnO and Ba in the soils increased HA.The mineralogy and chemistry of the soils influenced the HA, although the interplay between the components is complex. Further research should consider the variable biopersistance, hygroscopicity and hardness of the minerals and further characterize the nano-scale particles.

  10. Haemolytic activity of soil from areas of varying podoconiosis endemicity in Ethiopia

    Le Blond, Jennifer S.; Baxter, Peter J.; Bello, Dhimiter; Raftis, Jennifer; Molla, Yordanos B.; Cuadros, Javier; Davey, Gail

    2017-01-01

    Background Podoconiosis, non-filarial elephantiasis, is a non-infectious disease found in tropical regions such as Ethiopia, localized in highland areas with volcanic soils cultivated by barefoot subsistence farmers. It is thought that soil particles can pass through the soles of the feet and taken up by the lymphatic system, leading to the characteristic chronic oedema of the lower legs that becomes disfiguring and disabling over time. Methods The close association of the disease with volcanic soils led us to investigate the characteristics of soil samples in an endemic area in Ethiopia to identify the potential causal constituents. We used the in vitro haemolysis assay and compared haemolytic activity (HA) with soil samples collected in a non-endemic region of the same area in Ethiopia. We included soil samples that had been previously characterized, in addition we present other data describing the characteristics of the soil and include pure phase mineral standards as comparisons. Results The bulk chemical composition of the soils were statistically significantly different between the podoconiosis-endemic and non-endemic areas, with the exception of CaO and Cr. Likewise, the soil mineralogy was statistically significant for iron oxide, feldspars, mica and chlorite. Smectite and kaolinite clays were widely present and elicited a strong HA, as did quartz, in comparison to other mineral phases tested, although no strong difference was found in HA between soils from the two areas. The relationship was further investigated with principle component analysis (PCA), which showed that a combination of an increase in Y, Zr and Al2O3, and a concurrent increase Fe2O3, TiO2, MnO and Ba in the soils increased HA. Conclusion The mineralogy and chemistry of the soils influenced the HA, although the interplay between the components is complex. Further research should consider the variable biopersistance, hygroscopicity and hardness of the minerals and further characterize the

  11. A Gusseted Thermogradient Table to Control Soil Temperatures for Evaluating Plant Growth and Monitoring Soil Processes.

    Welbaum, Gregory E; Khan, Osamah S; Samarah, Nezar H

    2016-10-22

    Thermogradient tables were first developed in the 1950s primarily to test seed germination over a range of temperatures simultaneously without using a series of incubators. A temperature gradient is passively established across the surface of the table between the heated and cooled ends and is lost quickly at distances above the surface. Since temperature is only controlled on the table surface, experiments are restricted to shallow containers, such as Petri dishes, placed on the table. Welding continuous aluminum vertical strips or gussets perpendicular to the surface of a table enables temperature control in depth via convective heat flow. Soil in the channels between gussets was maintained across a gradient of temperatures allowing a greater diversity of experimentation. The gusseted design was evaluated by germinating oat, lettuce, tomato, and melon seeds. Soil temperatures were monitored using individual, battery-powered dataloggers positioned across the table. LED lights installed in the lids or along the sides of the gradient table create a controlled temperature chamber where seedlings can be grown over a range of temperatures. The gusseted design enabled accurate determination of optimum temperatures for fastest germination rate and the highest percentage germination for each species. Germination information from gradient table experiments can help predict seed germination and seedling growth under the adverse soil conditions often encountered during field crop production. Temperature effects on seed germination, seedling growth, and soil ecology can be tested under controlled conditions in a laboratory using a gusseted thermogradient table.

  12. Study of the tunneling effect within lattices with cubic structure on varying temperature

    Frisone, F.

    2008-01-01

    In this theoretical study, it is underlined that the presence of micro-cracks in the lattice structure increases the probability of tunneling effect between two deuterons by some orders of magnitude with respect to non-deformed lattices. We have derived an expression to compute the tunneling probability within a micro-crack, and hypothesized a D + 2 -D + 2 binding mechanism. Finally, the overall indications provided by these theoretical simulations appear to suggest that the deformation of the crystalline lattice, at varying temperature, seems able to influence the process of tunneling between the deuterons in the metal, while the forced loading with D 2 has, in general, no evident positive effects in pure metals, but in some cases could, on the contrary, condition the phenomenon negatively. (authors)

  13. Soil Temperature and Moisture Effects on Soil Respiration and Microbial Community Abundance

    2015-04-13

    Bárcenas-Moreno, G., M. Gómez-Brandón, J. Rousk, and E. Bååth. 2009. Adaptation of soil microbial communities to temperature: Comparison of fungi and...ER D C/ CR RE L TR -1 5- 6 ERDC 6.2 Geospatial Research and Engineering (GRE) ARTEMIS TSP-SA Soil Temperature and Moisture Effects on... Soil Respiration and Microbial Community Abundance Co ld R eg io ns R es ea rc h an d En gi ne er in g La bo ra to ry Robyn A. Barbato

  14. Influence of soil temperature on Globodera rostochiensis and Globodera pallida

    Agata KACZMAREK

    2015-01-01

    Full Text Available Relationships between soil temperatures and the potato cyst nematode (PCN life cycle and population multiplication were investigated to understand the risks to potato crops from PCN in relation to increasing soil temperatures associated with climate change, and to support development of the United Kingdom Potato Council`s PCN management model. The initial (hatching part of the PCN life cycle was examined for both Globodera rostochiensis and G. pallida over a range of temperatures, and the responses are then considered in relation to actual soil temperatures during the potato growing season in different sites in the United Kingdom. Hatching was stimulated by potato root diffusate over a temperature range from 5–29ºC and was monitored for 5 weeks. The greatest cumulative percentage hatch of second stage juveniles (J2 occurred between 15 and 27ºC for G. rostochiensis and 13–25ºC for G. pallida. Globodera rostochiensis hatched more quickly and had a delayed hatch at ≥25ºC while G. pallida was more efficient at these higher temperatures. From these observations, it is likely that climate change, and associated increases in soil temperatures, will result in increased rates and amounts of hatching for both species, leading to increased population levels on susceptible hosts and damage to potato crops. Currently, regions of the United Kingdom with warm soil temperatures are also expected to have high levels of hatching of PCN, and therefore greater multiplication resulting in greater challenges in the management of these nematodes in infested land.

  15. Soil carbon varies between different organic and conventional management schemes in arable agriculture

    Hu, Teng; Sørensen, Peter; Olesen, Jørgen Eivind

    2018-01-01

    The effects of organic versus conventional farming systems on changes in soil organic carbon (SOC) has long been debated. The effects of such comparisons may depend considerably on the design of the respective systems and climate and soil conditions under which they are performed. Here, we compar...

  16. Rates of Litter Decomposition and Soil Respiration in Relation to Soil Temperature and Water in Different-Aged Pinus massoniana Forests in the Three Gorges Reservoir Area, China

    Zeng, Lixiong; Huang, Zhilin; Lei, Jingpin; Zhou, Benzhi; Li, Maihe

    2014-01-01

    To better understand the soil carbon dynamics and cycling in terrestrial ecosystems in response to environmental changes, we studied soil respiration, litter decomposition, and their relations to soil temperature and soil water content for 18-months (Aug. 2010–Jan. 2012) in three different-aged Pinus massoniana forests in the Three Gorges Reservoir Area, China. Across the experimental period, the mean total soil respiration and litter respiration were 1.94 and 0.81, 2.00 and 0.60, 2.19 and 0.71 µmol CO2 m−2 s−1, and the litter dry mass remaining was 57.6%, 56.2% and 61.3% in the 20-, 30-, and 46-year-old forests, respectively. We found that the temporal variations of soil respiration and litter decomposition rates can be well explained by soil temperature at 5 cm depth. Both the total soil respiration and litter respiration were significantly positively correlated with the litter decomposition rates. The mean contribution of the litter respiration to the total soil respiration was 31.0%–45.9% for the three different-aged forests. The present study found that the total soil respiration was not significantly affected by forest age when P. masonniana stands exceed a certain age (e.g. >20 years old), but it increased significantly with increased soil temperature. Hence, forest management strategies need to protect the understory vegetation to limit soil warming, in order to reduce the CO2 emission under the currently rapid global warming. The contribution of litter decomposition to the total soil respiration varies across spatial and temporal scales. This indicates the need for separate consideration of soil and litter respiration when assessing the climate impacts on forest carbon cycling. PMID:25004164

  17. Temperature Dependence of Soil Respiration Modulated by Thresholds in Soil Water Availability Across European Shrubland Ecosystems

    Lellei-Kovács, Eszter; Botta-Dukát, Zoltán; de Dato, Giovanbattista

    2016-01-01

    that improved the model fit in all cases. The direct soil moisture effect on SR, however, was weak at the annual time scale. We conclude that the exponential soil temperature function may only be a good predictor for SR in a narrow temperature range, and that extrapolating predictions for future climate based...... on this function should be treated with caution as modelled outputs may underestimate SR. The addition of soil moisture thresholds improved the model fit at all sites, but had a far greater ecological significance in the wet Atlantic shrubland where a fundamental change in the soil CO2 efflux would likely have......Soil respiration (SR) is a major component of the global carbon cycle and plays a fundamental role in ecosystem feedback to climate change. Empirical modelling is an essential tool for predicting ecosystem responses to environmental change, and also provides important data for calibrating...

  18. Vegetation types alter soil respiration and its temperature sensitivity at the field scale in an estuary wetland.

    Guangxuan Han

    Full Text Available Vegetation type plays an important role in regulating the temporal and spatial variation of soil respiration. Therefore, vegetation patchiness may cause high uncertainties in the estimates of soil respiration for scaling field measurements to ecosystem level. Few studies provide insights regarding the influence of vegetation types on soil respiration and its temperature sensitivity in an estuary wetland. In order to enhance the understanding of this issue, we focused on the growing season and investigated how the soil respiration and its temperature sensitivity are affected by the different vegetation (Phragmites australis, Suaeda salsa and bare soil in the Yellow River Estuary. During the growing season, there were significant linear relationships between soil respiration rates and shoot and root biomass, respectively. On the diurnal timescale, daytime soil respiration was more dependent on net photosynthesis. A positive correlation between soil respiration and net photosynthesis at the Phragmites australis site was found. There were exponential correlations between soil respiration and soil temperature, and the fitted Q10 values varied among different vegetation types (1.81, 2.15 and 3.43 for Phragmites australis, Suaeda salsa and bare soil sites, respectively. During the growing season, the mean soil respiration was consistently higher at the Phragmites australis site (1.11 µmol CO2 m(-2 s(-1, followed by the Suaeda salsa site (0.77 µmol CO2 m(-2 s(-1 and the bare soil site (0.41 µmol CO2 m(-2 s(-1. The mean monthly soil respiration was positively correlated with shoot and root biomass, total C, and total N among the three vegetation patches. Our results suggest that vegetation patchiness at a field scale might have a large impact on ecosystem-scale soil respiration. Therefore, it is necessary to consider the differences in vegetation types when using models to evaluate soil respiration in an estuary wetland.

  19. Vegetation Types Alter Soil Respiration and Its Temperature Sensitivity at the Field Scale in an Estuary Wetland

    Han, Guangxuan; Xing, Qinghui; Luo, Yiqi; Rafique, Rashad; Yu, Junbao; Mikle, Nate

    2014-01-01

    Vegetation type plays an important role in regulating the temporal and spatial variation of soil respiration. Therefore, vegetation patchiness may cause high uncertainties in the estimates of soil respiration for scaling field measurements to ecosystem level. Few studies provide insights regarding the influence of vegetation types on soil respiration and its temperature sensitivity in an estuary wetland. In order to enhance the understanding of this issue, we focused on the growing season and investigated how the soil respiration and its temperature sensitivity are affected by the different vegetation (Phragmites australis, Suaeda salsa and bare soil) in the Yellow River Estuary. During the growing season, there were significant linear relationships between soil respiration rates and shoot and root biomass, respectively. On the diurnal timescale, daytime soil respiration was more dependent on net photosynthesis. A positive correlation between soil respiration and net photosynthesis at the Phragmites australis site was found. There were exponential correlations between soil respiration and soil temperature, and the fitted Q 10 values varied among different vegetation types (1.81, 2.15 and 3.43 for Phragmites australis, Suaeda salsa and bare soil sites, respectively). During the growing season, the mean soil respiration was consistently higher at the Phragmites australis site (1.11 µmol CO2 m−2 s−1), followed by the Suaeda salsa site (0.77 µmol CO2 m−2 s−1) and the bare soil site (0.41 µmol CO2 m−2 s−1). The mean monthly soil respiration was positively correlated with shoot and root biomass, total C, and total N among the three vegetation patches. Our results suggest that vegetation patchiness at a field scale might have a large impact on ecosystem-scale soil respiration. Therefore, it is necessary to consider the differences in vegetation types when using models to evaluate soil respiration in an estuary wetland. PMID:24608636

  20. The dynamics of Orimulsion in water with varying energy, salinity and temperature

    Fingas, M.F.; Fieldhouse, B.; Wang, Z.; Environment Canada, Ottawa, ON

    2004-01-01

    Orimulsion is a surfactant-stabilized oil-in-water emulsion composed of 70 per cent bitumen and 30 per cent water. Its unique composition causes it to behave differently from conventional fuel oils when spilled at sea. Earlier studies have shown that Orimulsion is driven by buoyancy to rise in salt water and sink in fresh water. This study conducted 11 experiments at lower temperature and salinity values to obtain new information on the behaviour of Orimulsion in salt, fresh and brackish water. The applied rotational field was adjusted to vary the energy. A time-series of samples of Orimulsion in a 300 litre tank of water were taken to determine depletion rates and characteristics. Oil on the surface was quantified and the concentration of bitumen and particle size distribution was determined. The study also measured changes in bitumen concentration and particle size distribution as a function of time. The data was used to develop simple equations that predict concentrations of bitumen resurfacing and remaining in the water column as a function of time. It was concluded that there is a complex interaction between salinity, time, energy and temperature. 9 refs., 5 tabs., 8 figs

  1. Canceling effect leads temperature insensitivity of hydrolytic enzymes in soil

    Razavi, Bahar S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many macromolecules abundant in soil such as cellulose, hemicelluloses and proteins (Allison et al., 2010; Chen et al., 2012). The temperature sensitivity of enzymes responsible for organic matter decomposition is the most crucial parameter for prediction of the effects of global warming on carbon cycle. Temperature responses of biological systems are often expressed as a Q10 functions; The Q10 describes how the rate of a chemical reaction changes with a temperature increase for 10 °C The aim of this study was to test how the canceling effect will change with variation in temperature interval, during short-term incubation. We additionally investigated, whether canceling effect occurs in a broad range of concentrations (low to high) and whether it is similar for the set of hydrolytic enzymes within broad range of temperatures. To this end, we performed soil incubation over a temperature range of 0-40°C (with 5°C steps). We determined the activities of three enzymes involved in plant residue decomposition: β-glucosidase and cellobiohydrolase, which are commonly measured as enzymes responsible for degrading cellulose (Chen et al., 2012), and xylanase, which degrades xylooligosaccharides (short xylene chain) in to xylose, thus being responsible for breaking down hemicelluloses (German et al., 2011). Michaelis-Menten kinetics measured at each temperature allowed to calculate Q10 values not only for the whole reaction rates, but specifically for maximal reaction rate (Vmax) and substrate affinity (Km). Subsequently, the canceling effect - simultaneous increase of Vmax and Km with temperature was analyzed within 10 and 5 degree of temperature increase. Three temperature ranges (below 10, between 15 and 25, and above 30 °C) clearly showed non-linear but stepwise increase of temperature sensitivity of all three enzymes and allowed to conclude for predominance of psychrophilic, mesophilic and thermophilic

  2. Evaluation of contaminated soil remediation by low temperature thermal desorption

    Gibbs, L.; Punt, M.

    1993-01-01

    Soil contaminated with diesel and aviation fuels has been excavated and stored at a Canadian Forces Base in Ontario. Because of the volatile nature of this contamination, it was determined that low temperature thermal desorption (LTTD) would be an effective method of remediating this soil. A full scale evaluation of LTTD technology was conducted at the base to determine its acceptability for other sites. In the LTTD process, soil enters a primary treatment unit and is heated to a sufficiently high temperature to volatilize the hydrocarbon contaminants. Offgases are treated in a secondary combustion chamber. Primary treatment kiln temperature was maintained at 260 degree C for each test during the evaluation. The LTTD unit was evaluated for two sets of operating conditions: two levels of inlet soil total petroleum hydrocarbon concentrations and two feed rates (16,000 and 22,000 kg/h). Emissions from the LTTD unit were monitored continuously for volatile organics, moisture, and gas velocity. Results of the tests and emissions analyses are presented. Outlet soil hydrocarbon concentration requirements of 100 ppM were not exceeded during the evaluation. Air hydrocarbon emissions only exceeded 100-ppM limits under upset conditions, otherwise virturally no total hydrocarbon content was observed in the stack gas. 5 refs., 6 figs., 9 tabs

  3. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates

    Convey, Peter; Abbandonato, Holly; Bergan, Frode

    2015-01-01

    The extreme polar environment creates challenges for its resident invertebrate communities and the stress tolerance of some of these animals has been examined over many years. However, although it is well appreciated that standard air temperature records often fail to describe accurately conditions...... microhabitats. To assess survival of natural High Arctic soil invertebrate communities contained in soil and vegetation cores to natural winter temperature variations, the overwintering temperatures they experienced were manipulated by deploying cores in locations with varying snow accumulation: No Snow...... and did not decrease below -12. °C. Those under deep snow were even more stable and did not decline below -2. °C. Despite these striking differences in winter thermal regimes, there were no clear differences in survival of the invertebrate fauna between treatments, including oribatid, prostigmatid...

  4. Effect of biochar produced at different pyrolysis temperature on the soil respiration of abandoned mine soil

    Kim, Yong Seong; Kim, Juhee; Hwang, Wonjae; Hyun, Seunghun

    2015-04-01

    Contaminated soils near an abandoned mine site included the high acidic mine tailing have received great interest due to potential risk to human health, because leachable elements in low pH continuously release from mine site soil with ground water and precipitation event. Biochar, which is the obtained pyrolysis process of biomass, is used as a soil amendments and carbon storage. Especially, many researchers report that the biochar application to soil show increasing soil pH, CEC, adsorption capacity of various elements, as well as, enhanced microbial activity. Therefore, biochar application to contaminated soil near abandoned mine site is expected to have a positive effects on management of these site and soils through the decreased leachability of contaminants. However, effects of biochar application to these site on the soil respiration, as a common measure of soil health, are poorly understood. The objective of this study is to evaluate the effects of biochar application to abandoned mine site soil on the microbial activity with soil respiration test. Biochar was obtained from giant Miscanthus in a slow pyrolysis process (heating rate of 10° C min-1 and N2 gas flow rate of 1.2 L min-1) at the temperature of 400° C (BC4) and 700° C (BC7), respectively. All biochar samples were prepared with grinding and sieving for particle size control (150~500μm). Soil sample was collected from abandoned mine site at Korea (36° 58'N, 128° 10'E). Main contaminants of this soil were As (12.5 g kg-1), Pb (7.3 g kg-1), and Zn (1.1 g kg-1). Biochars were applied (5% by dry weight) to the soil (final mixture weight were 800g), and then moisture contents were adjusted to 100% field capacity (-0.33 bar) in the respirometer with vacuum pump. CO2 efflux of each samples was continuously assessed using continuous aeration system (air flow rate 25 cc min-1) using air cylinder during 130hr (at 20° C and darkness condition). The CO2 emitted from the samples were carried to the

  5. On the relative roles of hydrology, salinity, temperature, and root productivity in controlling soil respiration from coastal swamps (freshwater)

    Krauss, Ken W.; Whitbeck, Julie L.; Howard, Rebecca J.

    2012-01-01

    Background and aims Soil CO2 emissions can dominate gaseous carbon losses from forested wetlands (swamps), especially those positioned in coastal environments. Understanding the varied roles of hydroperiod, salinity, temperature, and root productivity on soil respiration is important in discerning how carbon balances may shift as freshwater swamps retreat inland with sea-level rise and salinity incursion, and convert to mixed communities with marsh plants. Methods We exposed soil mesocosms to combinations of permanent flooding, tide, and salinity, and tracked soil respiration over 2 1/2 growing seasons. We also related these measurements to rates from field sites along the lower Savannah River, Georgia, USA. Soil temperature and root productivity were assessed simultaneously for both experiments. Results Soil respiration from mesocosms (22.7-1678.2 mg CO2 m-2 h-1) differed significantly among treatments during four of the seven sampling intervals, where permanently flooded treatments contributed to low rates of soil respiration and tidally flooded treatments sometimes contributed to higher rates. Permanent flooding reduced the overall capacity for soil respiration as soils warmed. Salinity did reduce soil respiration at times in tidal treatments, indicating that salinity may affect the amount of CO2 respired with tide more strongly than under permanent flooding. However, soil respiration related greatest to root biomass (mesocosm) and standing root length (field); any stress reducing root productivity (incl. salinity and permanent flooding) therefore reduces soil respiration. Conclusions Overall, we hypothesized a stronger, direct role for salinity on soil respiration, and found that salinity effects were being masked by varied capacities for increases in respiration with soil warming as dictated by hydrology, and the indirect influence that salinity can have on plant productivity.

  6. Phosphorus acquisition by barley (Hordeum vulgare L. at suboptimal soil temperature

    Kari Ylivainio

    2012-12-01

    Full Text Available We studied the effects of soil temperature (8 ºC and 15 ºC on barley growth, barley phosphorus (P uptake and soil P solubility. Barley was grown in a pot experiment in two soils with different P fertilization histories for 22 years. The availability of P was estimated by using 33P-labeled fertilizer and calculating L-values. After cultivation for 22 years at ambient soil temperature without P fertilization (-P, soil L-value had decreased compared to soil that received annual P fertilization (P+. Low soil temperature further reduced the L-values, more in the -P soil than in the +P soil. Our results demonstrated that P fertilization can only partially ameliorate poor growth at low soil temperatures. Thus, applying ample fertilization to compensate for poor growth at low soil temperatures would increase the P content and solubility in the soil, but plant uptake would remain inhibited by cold.

  7. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing

    Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...

  8. Antimicrobial properties and the influence of temperature on secondary metabolite production in cold environment soil fungi

    Yogabaanu, U.; Weber, Jean-Frederic Faizal; Convey, Peter; Rizman-Idid, Mohammed; Alias, Siti Aisyah

    2017-12-01

    The Arctic and Antarctic share environmental extremes. To survive in such environments, microbes such as soil fungi need to compete with or protect themselves effectively from other soil microbiota and to obtain the often scarce nutrients available, and many use secondary metabolites to facilitate this. We therefore (i) screened for antimicrobial properties of cold-environment Arctic and Antarctic soil fungi, and (ii) identified changes in the secreted secondary metabolite profiles of a subset of these strains in response to temperature variation. A total of 40 polar soil fungal strains from King George Island, maritime Antarctic and Hornsund, Svalbard, High Arctic, were obtained from the Malaysian National Antarctic Research Centre culture collections. The plug assay technique was used to screen for antimicrobial potential against Gram-positive and Gram-negative human pathogenic bacteria (Bacillus subtilis, B. cereus, Pseudomonas aeruginosa, Enterococcus faecalis and Escherichia coli). About 45% of the tested fungal strains showed antimicrobial activity against at least one tested microorganism. Three fungal isolates showed good bioactivity and were subjected to secondary metabolite profiling at different temperatures (4, 10, 15 and 28 °C). We observed a range of responses in fungal metabolite production when incubated at varying temperatures, confirming an influence of environmental conditions such as temperature on the production of secondary metabolites.

  9. A comparison of spatial interpolation methods for soil temperature over a complex topographical region

    Wu, Wei; Tang, Xiao-Ping; Ma, Xue-Qing; Liu, Hong-Bin

    2016-08-01

    Soil temperature variability data provide valuable information on understanding land-surface ecosystem processes and climate change. This study developed and analyzed a spatial dataset of monthly mean soil temperature at a depth of 10 cm over a complex topographical region in southwestern China. The records were measured at 83 stations during the period of 1961-2000. Nine approaches were compared for interpolating soil temperature. The accuracy indicators were root mean square error (RMSE), modelling efficiency (ME), and coefficient of residual mass (CRM). The results indicated that thin plate spline with latitude, longitude, and elevation gave the best performance with RMSE varying between 0.425 and 0.592 °C, ME between 0.895 and 0.947, and CRM between -0.007 and 0.001. A spatial database was developed based on the best model. The dataset showed that larger seasonal changes of soil temperature were from autumn to winter over the region. The northern and eastern areas with hilly and low-middle mountains experienced larger seasonal changes.

  10. Elevated temperature inelastic analysis of metallic media under time varying loads using state variable theories

    Kumar, V.; Mukherjee, S.

    1977-01-01

    In the present paper a general time-dependent inelastic analysis procedure for three-dimensional bodies subjected to arbitrary time varying mechanical and thermal loads using these state variable theories is presented. For the purpose of illustrations, the problems of hollow spheres, cylinders and solid circular shafts subjected to various combinations of internal and external pressures, axial force (or constraint) and torque are analyzed using the proposed solution procedure. Various cyclic thermal and mechanical loading histories with rectangular or sawtooth type waves with or without hold-time are considered. Numerical results for these geometrical shapes for various such loading histories are presented using Hart's theory (Journal of Engineering Materials and Technology 1976). The calculations are performed for nickel in the temperature range of 25 0 C to 400 0 C. For integrating forward in time, a method of solving a stiff system of ordinary differential equations is employed which corrects the step size and order of the method automatically. The limit loads for hollow spheres and cylinders are calculated using the proposed method and Hart's theory, and comparisons are made against the known theoretical results. The numerical results for other loading histories are discussed in the context of Hart's state variable type constitutive relations. The significance of phenomena such as strain rate sensitivity, Bauschinger's effect, crep recovery, history dependence and material softening with regard to these multiaxial problems are discussed in the context of Hart's theory

  11. Indoor measurement of photovoltaic device characteristics at varying irradiance, temperature and spectrum for energy rating

    Bliss, M; Betts, T R; Gottschalg, R

    2010-01-01

    The first three-dimensional performance matrix for use in photovoltaic (PV) energy rating is reported utilizing a novel energy rating solar simulator based on LEDs. Device characteristics are measured indoors at varying irradiance (G), temperature (T) and spectrum (E). This opens the possibility for a more accurate measurement system for energy yield prediction of PV devices, especially for devices with high spectral dependence such as wide bandgap solar cells as they take into account spectral changes in the light. The main aspects of the LED-based solar simulator used are briefly described. A measurement method is developed and detailed in the paper, which takes into account the current imperfections in the achievable spectrum. Measurement results for a crystalline silicon solar cell are used to demonstrate the measurement approach. An uncertainty analysis of the measurement system is given, resulting in an overall absolute uncertainty of 4.3% (coverage factor k = 2) in maximum power measurements at 765 W m −2 irradiance with scope for further improvements

  12. The influence of soil moisture, temperature and oxygen on the oxic decay of organic archaeological deposits

    Hollesen, Jørgen; Matthiesen, H.

    2015-01-01

    The sensitivity of organic-rich archaeological layers at Bryggen in Bergen, Norway, to changes in soil temperatures, water contents and oxygen concentrations is investigated. This is done by linking measurements of oxic decay at varying temperatures and water contents with on-site monitoring data...... using a one-pool decomposition model. The results show that the model can be used to elucidate the current in situ decay and to evaluate where and when the decay takes place. Future investigations need to include long-term incubation experiments and decay studies at zero or very low oxygen contents...

  13. Engineered, Spatially Varying Isothermal Holds: Enabling Combinatorial Studies of Temperature Effects, as Applied to Metastable Titanium Alloy β-21S

    Martin, Brian; Colorado School of Mines, Golden, CO; Samimi, Peyman; Colorado School of Mines, Golden, CO; Collins, Peter

    2017-01-01

    A novel method to systematically vary temperature and thus study the resulting microstructure of a material is presented. This new method has the potential to be used in a combinatorial fashion, allowing the rapid study of thermal holds on microstructures to be conducted. This is demonstrated on a beta titanium alloy, where the thermal history has a strong effect on microstructure. It is informed by simulation and executed using the resistive heating capabilities of a Gleeble 3800 thermomechanical simulator. Spatially varying isothermal holds of 4 h were affected, where the temperature range of the multiple isothermal holds varied by ~175 °C.

  14. Temperature adaptation of bacterial communities in experimentally warmed forest soils.

    Rousk, Johannes; Frey, Serita D; Bååth, Erland

    2012-10-01

    A detailed understanding of the influence of temperature on soil microbial activity is critical to predict future atmospheric CO 2 concentrations and feedbacks to anthropogenic warming. We investigated soils exposed to 3-4 years of continuous 5 °C-warming in a field experiment in a temperate forest. We found that an index for the temperature adaptation of the microbial community, T min for bacterial growth, increased by 0.19 °C per 1 °C rise in temperature, showing a community shift towards one adapted to higher temperature with a higher temperature sensitivity (Q 10(5-15 °C) increased by 0.08 units per 1 °C). Using continuously measured temperature data from the field experiment we modelled in situ bacterial growth. Assuming that warming did not affect resource availability, bacterial growth was modelled to become 60% higher in warmed compared to the control plots, with the effect of temperature adaptation of the community only having a small effect on overall bacterial growth (bacterial growth, most likely due to substrate depletion because of the initially higher growth in warmed plots. When this was factored in, the result was similar rates of modelled in situ bacterial growth in warmed and control plots after 3 years, despite the temperature difference. We conclude that although temperature adaptation for bacterial growth to higher temperatures was detectable, its influence on annual bacterial growth was minor, and overshadowed by the direct temperature effect on growth rates. © 2012 Blackwell Publishing Ltd.

  15. Soil and air temperatures for different habitats in Mount Rainier National Park.

    Sarah E. Greene; Mark Klopsch

    1985-01-01

    This paper reports air and soil temperature data from 10 sites in Mount Rainier National Park in Washington State for 2- to 5-year periods. Data provided are monthly summaries for day and night mean air temperatures, mean minimum and maximum air temperatures, absolute minimum and maximum air temperatures, range of air temperatures, mean soil temperature, and absolute...

  16. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance

    Goldfarb, K.C.; Karaoz, U.; Hanson, C.A.; Santee, C.A.; Bradford, M.A.; Treseder, K.K.; Wallenstein, M.D.; Brodie, E.L.

    2011-04-18

    Soils are immensely diverse microbial habitats with thousands of co-existing bacterial, archaeal, and fungal species. Across broad spatial scales, factors such as pH and soil moisture appear to determine the diversity and structure of soil bacterial communities. Within any one site however, bacterial taxon diversity is high and factors maintaining this diversity are poorly resolved. Candidate factors include organic substrate availability and chemical recalcitrance, and given that they appear to structure bacterial communities at the phylum level, we examine whether these factors might structure bacterial communities at finer levels of taxonomic resolution. Analyzing 16S rRNA gene composition of nucleotide analog-labeled DNA by PhyloChip microarrays, we compare relative growth rates on organic substrates of increasing chemical recalcitrance of >2,200 bacterial taxa across 43 divisions/phyla. Taxa that increase in relative abundance with labile organic substrates (i.e., glycine, sucrose) are numerous (>500), phylogenetically clustered, and occur predominantly in two phyla (Proteobacteria and Actinobacteria) including orders Actinomycetales, Enterobacteriales, Burkholderiales, Rhodocyclales, Alteromonadales, and Pseudomonadales. Taxa increasing in relative abundance with more chemically recalcitrant substrates (i.e., cellulose, lignin, or tannin-protein) are fewer (168) but more phylogenetically dispersed, occurring across eight phyla and including Clostridiales, Sphingomonadalaes, Desulfovibrionales. Just over 6% of detected taxa, including many Burkholderiales increase in relative abundance with both labile and chemically recalcitrant substrates. Estimates of median rRNA copy number per genome of responding taxa demonstrate that these patterns are broadly consistent with bacterial growth strategies. Taken together, these data suggest that changes in availability of intrinsically labile substrates may result in predictable shifts in soil bacterial composition.

  17. Soil Redox Dynamics Vary with Landscape Position and Hydroperiod in the Pantanal Wetland Ecosystem

    Couto, E. G.; Johnson, M. S.; Pinto-jr, O.; Leite, N. K.

    2012-12-01

    The Pantanal wetland ecosystem of central South America is the largest tropical wetland complex in the world. Nevertheless, biogeochemistry in the Pantanal is quite limited. A unimodal precipitation regime averages approximately 1200 mm y-1 during the six-month rainy season, leading to seasonal flooding on much, but not all, of the landscape. We investigated the impact of landscape position and hydroperiod on soil redox potential (Eh) in four research locations in the Northern Pantanal near Poconé, Mato Grosso: two locations subject to flooding (a flooded forest and a flooded scrub forest) and two locations with infrequent surface flooding (tree islands known as cordilheiras). Redox sensors were installed at 10 cm and 30 cm depths at each of the four locations with half-hourly data recorded over all hydro-periods (dry season, rising water, flood and falling water). Here we summarize results to date in this ongoing study. Reducing conditions were observed in response to both precipitation events saturating soil from the surface downward, as well as in response to regional flooding dynamics that saturate soil from below. These are helping to guide design of a study on methane dynamics in the Pantanal wetland complex.

  18. Regional amplification of extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Vogel, M.; Orth, R.; Seneviratne, S. I.

    2016-12-01

    Land temperatures, and in particular hot extremes, will likely increase by more than 2° C in many regions, even in the case that the global temperature increase with respect to pre-industrial levels can be limited to 2°C. We investigate here the role of soil moisture-temperature feedbacks for projected changes of extreme temperatures by comparing experiments from the GLACE-CMIP5 (Global Land-Atmosphere Coupling Experiment - Coupled Model Intercomparison Project Phase 5) project. In particular, we consider fully coupled experiments with all 6 involved GCMs and corresponding experiments where soil moisture is fixed to the local present-day seasonal cycle until the end of the 21st century. We consider the yearly hottest days and apply a scaling approach whereby we relate changes of hottest days to global mean temperature increase. We find that soil moisture-temperature coupling significantly contributes to additional future warming of extreme temperatures in many regions: In particular, it can explain more than 70% of the warming amplification of hottest days compared to global mean temperature in Central Europe, Central North America and Northern Australia, and around 50% of this signal in the Amazonian Region and Southern Africa.

  19. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model

    Du, Xinzhong; Shrestha, Narayan Kumar; Ficklin, Darren L.; Wang, Junye

    2018-04-01

    Stream temperature is an important indicator for biodiversity and sustainability in aquatic ecosystems. The stream temperature model currently in the Soil and Water Assessment Tool (SWAT) only considers the impact of air temperature on stream temperature, while the hydroclimatological stream temperature model developed within the SWAT model considers hydrology and the impact of air temperature in simulating the water-air heat transfer process. In this study, we modified the hydroclimatological model by including the equilibrium temperature approach to model heat transfer processes at the water-air interface, which reflects the influences of air temperature, solar radiation, wind speed and streamflow conditions on the heat transfer process. The thermal capacity of the streamflow is modeled by the variation of the stream water depth. An advantage of this equilibrium temperature model is the simple parameterization, with only two parameters added to model the heat transfer processes. The equilibrium temperature model proposed in this study is applied and tested in the Athabasca River basin (ARB) in Alberta, Canada. The model is calibrated and validated at five stations throughout different parts of the ARB, where close to monthly samplings of stream temperatures are available. The results indicate that the equilibrium temperature model proposed in this study provided better and more consistent performances for the different regions of the ARB with the values of the Nash-Sutcliffe Efficiency coefficient (NSE) greater than those of the original SWAT model and the hydroclimatological model. To test the model performance for different hydrological and environmental conditions, the equilibrium temperature model was also applied to the North Fork Tolt River Watershed in Washington, United States. The results indicate a reasonable simulation of stream temperature using the model proposed in this study, with minimum relative error values compared to the other two models

  20. Influence of temperature and organic matter content on soil respiration in a deciduous oak forest

    Zsolt Kotroczó

    2014-12-01

    Full Text Available The increasing temperature enhances soil respiration differently depend on different conditions (soil moisture, soil organic matter, the activity of soil microbes. It is an essential factor to predicting the effect of climate change on soil respiration. In a temperate deciduous forest (North-Hungary we added or removal aboveground and belowground litter to determine total soil respiration. We investigated the relationship between total soil CO2 efflux, soil moisture and soil temperature. Soil CO2 efflux was measured at each plot using chamber based soil respiration measurements. We determined the temperature sensitivity of soil respiration. The effect of doubled litter was less than the effect of removal. We found that temperature was more influential in the control of soil respiration than soil moisture in litter removal treatments, particularly in the wetter root exclusion treatments (NR and NI (R2: 0.49-0.61. Soil moisture (R2: 0.18-0.24 and temperature (R2: 0.18-0.20 influenced soil respiration similarly in treatments, where soil was drier (Control, Double Litter, Double Wood. A significantly greater increase in temperature induced higher soil respiration were significantly higher (2-2.5-fold in root exclusion treatments, where soil was wetter throughout the year, than in control and litter addition treatments. The highest bacterial and fungal count was at the DL treatment but the differences is not significant compared to the Control. The bacterial number at the No Litter, No Root, No Input treatment was significantly lower at the Control. Similar phenomenon can be observed at the fungal too, but the differences are not significant. The results of soil respiration suggest that the soil aridity can reduce soil respiration increases with the temperature increase. Soil bacterial and fungal count results show the higher organic matter content and soil surface cover litter favors the activity.

  1. Effects of Altered Temperature & Precipitation on Soil Bacterial & Microfaunal Communities as Mediated by Biological Soil Crusts

    Neher, Deborah A. [University of Vermont

    2004-08-31

    With increased temperatures in our original pot study we observed a decline in lichen/moss crust cover and with that a decline in carbon and nitrogen fixation, and thus a probable decline of C and N input into crusts and soils. Soil bacteria and fauna were affected negatively by increased temperature in both light and dark crusts, and with movement from cool to hot and hot to hotter desert climates. Crust microbial biomass and relative abundance of diazotrophs was reduced greatly after one year, even in pots that were not moved from their original location, although no change in diazotroph community structure was observed. Populations of soil fauna moved from cool to hot deserts were affected more negatively than those moved from hot to hotter deserts.

  2. Methanogenesis at low temperatures by microflora of tundra wetland soil.

    Kotsyurbenko, O R; Nozhevnikova, A N; Soloviova, T I; Zavarzin, G A

    1996-01-01

    Active methanogenesis from organic matter contained in soil samples from tundra wetland occurred even at 6 degrees C. Methane was the only end product in balanced microbial community with H2/CO2 as a substrate, besides acetate was produced as an intermediate at temperatures below 10 degrees C. The activity of different microbial groups of methanogenic community in the temperature range of 6-28 degrees C was investigated using 5% of tundra soil as inoculum. Anaerobic microflora of tundra wetland fermented different organic compounds with formation of hydrogen, volatile fatty acids (VFA) and alcohols. Methane was produced at the second step. Homoacetogenic and methanogenic bacteria competed for such substrates as hydrogen, formate, carbon monoxide and methanol. Acetogens out competed methanogens in an excess of substrate and low density of microbial population. Kinetic analysis of the results confirmed the prevalence of hydrogen acetogenesis on methanogenesis. Pure culture of acetogenic bacteria was isolated at 6 degrees C. Dilution of tundra soil and supply with the excess of substrate disbalanced the methanoigenic microbial community. It resulted in accumulation of acetate and other VFA. In balanced microbial community obviously autotrophic methanogens keep hydrogen concentration below a threshold for syntrophic degradation of VFA. Accumulation of acetate- and H2/CO2-utilising methanogens should be very important in methanogenic microbial community operating at low temperatures.

  3. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments

    Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao

    2016-09-01

    Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % ( P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be used as an

  4. Regional Variation in the Temperature Sensitivity of Soil Organic Matter Decomposition in China's Forests and Grasslands

    Liu, Y.; He, N.; Zhu, J.; Yu, G.; Xu, L.; Niu, S.; Sun, X.; Wen, X.

    2017-12-01

    How to assess the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regional variation in Q10 and its underlying mechanisms. We conducted a novel incubation experiment with periodically changing temperature (5-30 °C), while continuously measuring soil microbial respiration rates. The results showed that Q10 varied significantly across different ecosystems, ranging from 1.16 to 3.19 (mean 1.63). Q10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical forests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q10 of grasslands (1.90) was significantly higher than that of forests (1.54). Furthermore, Q10 significantly increased with increasing altitude and decreased with increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in Q10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q10. The general negative relationships between Q10 and substrate quality among all ecosystem types supported the C quality temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher temperature sensitivity. Furthermore, alpine grasslands, which had the highest Q10, were predicted to be more sensitive to climate change under the scenario of global warming.

  5. Analysis of the temperature effect on the water retention capacity of soil using a thermodynamic approach

    Jacinto, A.C.; Ledesma, A.; Villar, M.V.

    2012-01-01

    Document available in extended abstract form only. Soils consist of a solid skeleton (matrix) with pores in between. The pores have different sizes, shapes and spatial distributions and provide the space for storage and transport of liquid and gas. In dealing with the analysis of coupled thermo-hydro-mechanical problems in unsaturated soils, it is necessary a relationship between the water fraction in the soil and a measure of the soil capacity to hold water in its pores against forces resulting from external actions. In Geotechnical Engineering, the energy status of water in the soil has been traditionally called suction , which has unit of stress. The pores of a soil are of many different kinds and may vary in size and in shape. Each range of pore size is associated with a characteristic adsorptive behaviour. The adsorption process is a consequence of the force field at the surface of the solid, which attracts the molecules of the gas or liquid. The physical adsorption is the main mechanism of binding of water in fine soils. It includes dispersion forces and short-range repulsive forces. In addition there may be forces due to permanent dipoles within the adsorbed molecules. Adhesion is the attraction of dissimilar substances for each other while cohesion is the mutual attraction of particles of the same substance. The adhesive forces together with the cohesive forces between water molecules form the basis for capillary binding of soil water. This is the most important mechanism of binding of water in coarse soils. When a sorbate (gas or vapour) is in contact with sorbent (solid), the amount adsorbed per gram of solid depends on the equilibrium pressure, the temperature, and also on the nature of the gas and of the solid. Equilibrium pressure refers to the pressure of the vapour in thermodynamic equilibrium with the adsorbed liquid. For a given gas adsorbed on a given solid at a fixed temperature, the adsorption is only a function of the pressure. The relation

  6. A possible mechanism relating increased soil temperature to forest decline

    Tomlinson, G.H.

    1993-01-01

    Nutrient cations are removed from the soil by uptake in biomass, and by leaching as a result of soil acidification. Such acidification results from acid deposition and/or from HNO 3 formed by mineralization and nitrification of humus, when at a rate in excess of the tree's nutritional requirements. This has been found to occur during and following periods of increased temperature and reduced rainfall. The cumulative loss of either Ca 2+ , Mg 2+ or K + by one or more of these processes, if greater than the amount released from the specific minerals in that soil, leads to nutrient deficiency, fine root mortality, poor growth, and eventually to die-back. Trees growing in soils derived from specific minerals in which there is a strong imbalance in the elements from which the exchangeable nutrients are formed, are vulnerable to nutrient deficiency. This paper discusses the relevance of earlier studies, when considered in relation to more recent findings. In Hawaii there have been frequent periods of increased temperature and drought resulting from the El Nino Southern Oscillation. This fact, when considered in relation to the relatively low K content, and its imbalance with Ca and Mg in the lava and volcanic ash on which the trees have grown, could result in K deficiency in the declining ohia trees. It is possible that the unusual periods of increased temperature and drought which have occurred in certain other localized areas may have led to the decline symptoms recently observed. In view of the threat of global warming, this possibility should be investigated. 39 refs., 3 figs., 2 tabs

  7. Litter decay controlled by temperature, not soil properties, affecting future soil carbon.

    Gregorich, Edward G; Janzen, Henry; Ellert, Benjamin H; Helgason, Bobbi L; Qian, Budong; Zebarth, Bernie J; Angers, Denis A; Beyaert, Ronald P; Drury, Craig F; Duguid, Scott D; May, William E; McConkey, Brian G; Dyck, Miles F

    2017-04-01

    Widespread global changes, including rising atmospheric CO 2 concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO 2 levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices. We applied 13 C-labelled plant litter to soil at ten sites spanning a 3500-km transect across the agricultural regions of Canada and measured its decomposition over five years. Despite large differences in soil type and climatic conditions, we found that the kinetics of litter decomposition were similar once the effect of temperature had been removed, indicating no measurable effect of soil properties. A two-pool exponential decay model expressing undecomposed carbon simply as a function of thermal time accurately described kinetics of decomposition. (R 2  = 0.94; RMSE = 0.0508). Soil properties such as texture, cation exchange capacity, pH and moisture, although very different among sites, had minimal discernible influence on decomposition kinetics. Using this kinetic model under different climate change scenarios, we projected that the time required to decompose 50% of the litter (i.e. the labile fractions) would be reduced by 1-4 months, whereas time required to decompose 90% of the litter (including recalcitrant fractions) would be reduced by 1 year in cooler sites to as much as 2 years in warmer sites. These findings confirm quantitatively the sensitivity of litter decomposition to temperature increases and demonstrate how climate change may constrain future soil carbon storage, an effect apparently not influenced by soil properties. © 2016 Her Majesty

  8. Soil Temperature Moderation by Crop Residue Mulch, Grevilla Robusta Tillage Mode

    Oteng'i, S.B.B.

    2006-01-01

    The effects of mulching with crop residues and shading by Grevillea robust trees on the soil temperatures of Mt. Kenya Volcanic soils at Matanya area, Laikipia district, were studied. Soil thermistors connected to data-loggers(type Grant squirrel)were used to record soil temperaturs. The soils were mulched and minimum tilled (depths of 0.04 till 0.05m), and unmulched and deep tilled (depths 0.20till 0.25m) in plots of pruned and unpruned trees and also to cotrol (non-agroforestry) plots. The results showed that closer tp the trees, canopy differences ionfluenced changes in soil temperatures of about ≠2.0 degrees centrigrade. The dumping depth and Stigters ratio values showed soil temperatures were modified by treatment and tree canopy differences. The modified soil temperatures resulted in better crop performance when the soil water was adequate.(author)

  9. Smoothing effect of the thermal interface material on the temperature distribution in a stepwise varying width microchannel cooling device

    Riera, Sara; Barrau, Jérôme; Rosell, Joan I.; Fréchette, Luc G.; Omri, Mohamed; Vilarrubí, Montse; Laguna, Gerard

    2017-09-01

    The impact of the thermal interface material (TIM) layer on the performance of a stepwise varying width microchannel cooling device is analysed. A numerical model shows that the TIM layer, besides its well known negative impact on the temperature, also generates a smoothing effect on the temperature distribution. In this study, an analytical model is used to define a nondimensional parameter, called Smoothing Resistance ratio, as the quotient between the origin of the temperature non uniformities and the TIM thermal resistance that flatten the temperature distribution. The relationship between the temperature uniformity of the cooled device, expressed through the temperature standard deviation, and the Smoothing Resistance ratio is shown to be linear. These results lead to the definition of a new design procedure for this kind of cooling device, which aims to reduce the Smoothing Resistance ratio. Two solutions are identified and their drawbacks are analysed.

  10. Interactive Vegetation Phenology, Soil Moisture, and Monthly Temperature Forecasts

    Koster, R. D.; Walker, G. K.

    2015-01-01

    The time scales that characterize the variations of vegetation phenology are generally much longer than those that characterize atmospheric processes. The explicit modeling of phenological processes in an atmospheric forecast system thus has the potential to provide skill to subseasonal or seasonal forecasts. We examine this possibility here using a forecast system fitted with a dynamic vegetation phenology model. We perform three experiments, each consisting of 128 independent warm-season monthly forecasts: 1) an experiment in which both soil moisture states and carbon states (e.g., those determining leaf area index) are initialized realistically, 2) an experiment in which the carbon states are prescribed to climatology throughout the forecasts, and 3) an experiment in which both the carbon and soil moisture states are prescribed to climatology throughout the forecasts. Evaluating the monthly forecasts of air temperature in each ensemble against observations, as well as quantifying the inherent predictability of temperature within each ensemble, shows that dynamic phenology can indeed contribute positively to subseasonal forecasts, though only to a small extent, with an impact dwarfed by that of soil moisture.

  11. Sensor-less control of the methanol concentration of direct methanol fuel cells at varying ambient temperatures

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new algorithm is proposed for the sensor-less control of methanol concentration. • Two different strategies are used depending on the ambient temperatures. • Energy efficiency of the DMFC system has been improved by using the new algorithm. - Abstract: A new version of an algorithm is used to control the methanol concentration in the feed of DMFC systems without using methanol sensors under varying ambient temperatures. The methanol concentration is controlled indirectly by controlling the temperature of the DMFC stack, which correlates well with the methanol concentration. Depending on the ambient temperature relative to a preset reference temperature, two different strategies are used to control the stack temperature: either reducing the cooling rate of the methanol solution passing through an anode-side heat exchanger; or, lowering the pumping rate of the pure methanol to the depleted feed solution. The feasibility of the algorithm is evaluated using a DMFC system that consists of a 200 W stack and the balance of plant (BOP). The DMFC system includes a sensor-less methanol controller that is operated using a LabView system as the central processing unit. The algorithm is experimentally confirmed to precisely control the methanol concentration and the stack temperature at target values under an environment of varying ambient temperatures

  12. Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness

    Martins Bento, Celia; Yang, Xiaomei; Gort, Gerrit; Xue, Sha; Dam, van Ruud; Zomer, Paul; Mol, Hans G.J.; Ritsema, Coen J.; Geissen, Violette

    2016-01-01

    The dissipation kinetics of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) were studied in loess soil, under biotic and abiotic conditions, as affected by temperature, soil moisture (SM) and light/darkness. Nonsterile and sterile soil samples were spiked with 16 mg kg

  13. [Effects of elevated temperature on soil organic carbon and soil respiration under subalpine coniferous forest in western Sichuan Province, China].

    Pan, Xin-li; Lin, Bo; Liu, Qing

    2008-08-01

    To investigate the effects of elevated temperature on the soil organic carbon content, soil respiration rate, and soil enzyme activities in subalpine Picea asperata plantations in western Sichuan Province of China, a simulation study was conducted in situ with open-top chambers from November 2005 to July 2007. The results showed that under elevated temperature, the mean air temperature and soil temperature were 0.42 degrees C and 0.25 degrees C higher than the control, respectively. In the first and the second year, the increased temperature had somewhat decreasing effects on the soil organic carbon and the C/N ratio at the soil depths of 0-10 cm and 10-20 cm. In the first year the soil organic carbon and the C/N ratio in 0-10 cm soil layer decreased by 8.69%, and 8.52%, respectively; but in the second year, the decrements were lesser. Soil respiration rate was significantly enhanced in the first year of warming, but had no significant difference with the control in the second year. In the first year of warming, the activities of soil invertase, polyphenol oxidase, catalase, protease, and urease increased, and the invertase and polyphenol oxidase activities in 0-10 cm soil layer were significantly higher than the control. In the second year of warming, the activities of invertase, protease and urease still had an increase, but those of catalase and polyphenol oxidase had a downtrend, compared with the control.

  14. Influence of Pyrolysis Temperature and Production Conditions on Switchgrass Biochar for Use as a Soil Amendment

    Amanda Joy Ashworth

    2014-10-01

    Full Text Available Biochars form recalcitrant carbon and increase water and nutrient retention in soils; however, the magnitude is contingent upon production conditions and thermo-chemical conversion processes. Herein we aim at (i characterizing switchgrass (Panicum virgatum L.-biochar morphology, (ii estimating water-holding capacity under increasing ratios of char: soil; and, (iii determining nutrient profile variation as a function of pyrolysis conversion methodologies (i.e. continuous, auger pyrolysis system versus batch pyrolysis systems for terminal use as a soil amendment. Auger system chars produced at 600°C had the greatest lignin portion by weight among the biochars produced from the continuous system. On the other hand, a batch pyrolysis system (400 °C – 3h yielded biochar with 73.10% lignin (12 fold increases, indicating higher recalcitrance, whereas lower production temperatures (400 °C yielded greater hemicellulose (i.e. greater mineralization promoting substrate. Under both pyrolysis methods, increasing biochar soil application rates resulted in linear decreases in bulk density (g cm-3. Increases in auger-char (400 °C applications increased soil water-holding capacities; however, application rates of >2 Mt ha-1 are required. Pyrolysis batch chars did not influence water-holding abilities (P>0.05. Biochar macro and micronutrients increased, as the pyrolysis temperature increased in the auger system from 400 to 600 °C, and the residence time increased in the batch pyrolysis system from 1 to 3 h. Conversely, nitrogen levels tended to decrease under the two previously mentioned conditions. Consequently, not all chars are inherently equal, in that varying operation systems, residence times, and production conditions greatly affect uses as a soil amendment and overall rate of efficacy.

  15. Resistant starch analysis of commonly consumed potatoes: Content varies by cooking method and service temperature but not by variety

    Resistant starch (RS) has properties which may provide health benefits. We conducted a study to determine the contributions of cultivar, cooking method and service temperature on the RS contents of potatoes (Solanum tuberosum L.). We hypothesized that the RS content would vary by variety, cooking me...

  16. Bivariate functional data clustering: grouping streams based on a varying coefficient model of the stream water and air temperature relationship

    H. Li; X. Deng; Andy Dolloff; E. P. Smith

    2015-01-01

    A novel clustering method for bivariate functional data is proposed to group streams based on their water–air temperature relationship. A distance measure is developed for bivariate curves by using a time-varying coefficient model and a weighting scheme. This distance is also adjusted by spatial correlation of streams via the variogram. Therefore, the proposed...

  17. Environmental effects on fatigue of alkaline earth aluminosilicate glass with varying fictive temperature

    Striepe, Simon; Deubener, Joachim; Smedskjær, Morten Mattrup

    2013-01-01

    The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K) are comp......The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K....... The glasses with lower fictive temperature exhibit a larger change in the micromechanical properties when comparing wet and dry conditions. Finally, it is found that sub-critical crack growth is larger in the low fictive temperature glasses, indicating a diminished resistance against fatigue and stress...

  18. Summary of the U.S. specimen matrix for the HFIR 13J varying temperature irradiation capsule

    Zinkle, S.J.

    1998-01-01

    The US specimen matrix for the collaborative DOE/Monbusho HFIR 13J varying temperature irradiation capsule contains two ceramics and 29 different metals, including vanadium alloys, ferritic/martensitic steels, pure iron, austenitic stainless steels, nickel alloys, and copper alloys. This experiment is designed to provide fundamental information on the effects of brief low-temperature excursions on the tensile properties and microstructural evolution of a wide range of materials irradiated at nominal temperatures of 350 and 500 C to a dose of ∼5 dpa. A total of 340 miniature sheet tensile specimens and 274 TEM disks are included in the US-supplied matrix for the irradiation capsule

  19. Degradation of kresoxim-methyl in soil: impact of varying moisture, organic matter, soil sterilization, soil type, light and atmospheric CO2 level.

    Khandelwal, Ashish; Gupta, Suman; Gajbhiye, Vijay T; Varghese, Eldho

    2014-09-01

    In the present investigation, persistence of kresoxim-methyl (a broad spectrum strobilurin fungicide) was studied in two different soil types of India namely Inceptisol and Ultisol. Results revealed that kresoxim-methyl readily form acid metabolite in soil. Therefore, residues of kresoxim-methyl were quantified on the basis of parent molecule alone and sum total of kresoxim-methyl and its acid metabolite. Among the two soil types, kresoxim-methyl and total residues dissipated at a faster rate in Inceptisol (T1/2 0.9 and 33.8d) than in Ultisol (T1/2 1.5 and 43.6d). Faster dissipation of kresoxim-methyl and total residues was observed in submerged soil conditions (T1/2 0.5 and 5.2d) followed by field capacity (T1/2 0.9 and 33.8d) and air dry (T1/2 2.3 and 51.0d) conditions. Residues also dissipated faster in 5% sludge amended soil (T1/2 0.7 and 21.1d) and on Xenon-light exposure (T1/2 0.5 and 8.0d). Total residues of kresoxim-methyl dissipated at a faster rate under elevated CO2 condition (∼550μLL(-)(1)) than ambient condition (∼385μLL(-)(1)). The study suggests that kresoxim-methyl alone has low persistence in soil. Because of the slow dissipation of acid metabolite, the total residues (kresoxim-methyl+acid metabolite) persist for a longer period in soil. Statistical analysis using SAS 9.3 software and Duncan's Multiple Range Test (DMRT) revealed the significant effect of moisture regime, organic matter, microbial population, soil type, light exposure and atmospheric CO2 level on the dissipation of kresoxim-methyl from soil (at 95% confidence level p<0.0001). Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Assimilation of SMOS Brightness Temperatures or Soil Moisture Retrievals into a Land Surface Model

    De Lannoy, Gabrielle J. M.; Reichle, Rolf H.

    2016-01-01

    Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40 degree incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval

  1. Spatially varying small-strain stiffness in soils subjected to K0 loading

    Kim, Hyun-Ki; Santamarina, Carlos

    2017-01-01

    Grain-scale characteristics and formation history determine spatial variability in granular masses. We investigate the effect of spatially varying stiffness on the load-deformation response under zero-lateral strain conditions using numerical simulations of correlated random fields, where the granular medium is represented by a non-linear stress-dependent meso-scale model. Results show that stiffness heterogeneity results in higher global compressibility as compared to the homogeneous medium with the same arithmetic mean stiffness. Furthermore, the non-homogeneous stress field that develops inside the granular mass is characterized by focused load transfer along columnar regions, higher stress anisotropy and lower horizontal-to-vertical stress ratio K0 than in a granular medium of homogenous stiffness. As the applied stress increases, the inherent stress-dependent response of the granular material leads to a more homogenous stress field. While greater variance in stiffness causes lower global stiffness, a longer correlation length results in greater variance in global mechanical response among multiple realizations.

  2. Spatially varying small-strain stiffness in soils subjected to K0 loading

    Kim, Hyun-Ki

    2017-08-08

    Grain-scale characteristics and formation history determine spatial variability in granular masses. We investigate the effect of spatially varying stiffness on the load-deformation response under zero-lateral strain conditions using numerical simulations of correlated random fields, where the granular medium is represented by a non-linear stress-dependent meso-scale model. Results show that stiffness heterogeneity results in higher global compressibility as compared to the homogeneous medium with the same arithmetic mean stiffness. Furthermore, the non-homogeneous stress field that develops inside the granular mass is characterized by focused load transfer along columnar regions, higher stress anisotropy and lower horizontal-to-vertical stress ratio K0 than in a granular medium of homogenous stiffness. As the applied stress increases, the inherent stress-dependent response of the granular material leads to a more homogenous stress field. While greater variance in stiffness causes lower global stiffness, a longer correlation length results in greater variance in global mechanical response among multiple realizations.

  3. Resistance of superhydrophobic and oleophobic surfaces to varied temperature applications on 316L SS

    Shams, Hamza; Basit, Kanza; Saleem, Sajid; Siddiqui, Bilal A.

    316L SS also called Marine Stainless Steel is an important material for structural and marine applications. When superhydrophobic and oleophobic coatings are applied on 316L SS it shows significant resistance to wear and corrosion. This paper aims to validate the coatings manufacturer's information on optimal temperature range and test the viability of coating against multiple oil based cleaning agents. 316L SS was coated with multiple superhydrophic and oleohobic coatings and observed under SEM for validity of adhesion and thickness and then scanned under FFM to validate the tribological information. The samples were then dipped into multiple cleaning agents maintained at the range of operating temperatures specified by the manufacturer. Coating was observed for deterioration over a fixed time intervals through SEM and FFM. A comparison was drawn to validate the most critical cleaning agent and the most critical temperature at which the coating fails to leave the base substrate exposed to the environment.

  4. Analysis of the NASA AirMOSS Root Zone Soil Water and Soil Temperature from Three North American Ecosystems

    Hagimoto, Y.; Cuenca, R. H.

    2015-12-01

    Root zone soil water and temperature are controlling factors for soil organic matter accumulation and decomposition which contribute significantly to the CO2 flux of different ecosystems. An in-situ soil observation protocol developed at Oregon State University has been deployed to observe soil water and temperature dynamics in seven ecological research sites in North America as part of the NASA AirMOSS project. Three instrumented profiles defining a transect of less than 200 m are installed at each site. All three profiles collect data for in-situ water and temperature dynamics employing seven soil water and temperature sensors installed at seven depth levels and one infrared surface temperature sensor monitoring the top of the profile. In addition, two soil heat flux plates and associated thermocouples are installed at one of three profiles at each site. At each profile, a small 80 cm deep access hole is typically made, and all below ground sensors are installed into undisturbed soil on the side of the hole. The hole is carefully refilled and compacted so that root zone soil water and temperature dynamics can be observed with minimum site disturbance. This study focuses on the data collected from three sites: a) Tonzi Ranch, CA; b) Metolius, OR and c) BERMS Old Jack Pine Site, Saskatchewan, Canada. The study describes the significantly different seasonal root zone water and temperature dynamics under the various physical and biological conditions at each site. In addition, this study compares the soil heat flux values estimated by the standard installation using the heat flux plates and thermocouples installed near the surface with those estimated by resolving the soil heat storage based on the soil water and temperature data collected over the total soil profile.

  5. Response of Soil Temperature to Climate Change in the CMIP5 Earth System Models

    Phillips, C. L.; Torn, M. S.; Koven, C. D.

    2014-12-01

    Predictions of soil temperature changes are as critical to policy development and climate change adaptation as predictions of air temperature, but have received comparatively little attention. Soil temperature determines seed germination and growth of wild and agricultural plants, and impacts climate through both geophysical and carbon-cycle feedbacks. The Intergovernmental Panel on Climate Change 5th Assessment Report does not report soil temperature predictions, but focuses instead on surface air temperatures, despite the fact that mean annual soil temperatures and mean surface air temperatures are often different from each other. Here we aim to fill this important knowledge gap by reporting soil temperature and moisture predictions for 15 earth system models (ESMs) that participated in phase 5 of the Coupled Model Intercomparison 5 Project (CMIP5). Under the RCP 4.5 and 8.5 emissions scenarios, soil warming is predicted to almost keep pace with soil air warming, with about 10% less warming in soil than air, globally. The slower warming of soil compared to air is likely related to predictions of soil drying, with drier soils having reduced soil heat capacity and thermal conductivity. Mollisol soils, which are typically regarded as the most productive soil order for cultivating cereal crops, are anticipated to see warming in North America of 3.5 to 5.5 °C at the end of the 21st century (2080-2100) compared to 1986-2005. One impact of soil warming is likely to be an acceleration of germination timing, with the 3°C temperature threshold for wheat germination anticipated to advance by several weeks in Mollisol regions. Furthermore, soil warming at 1 m depth is predicted to be almost equivalent to warming at 1 cm depth in frost-free regions, indicating vulnerability of deep soil carbon pools to destabilization. To assess model performance we compare the models' predictions with observations of damping depth, and offsets between mean annual soil and air temperature

  6. Degradation of [14C]isofenphos in soil in the laboratory under different soil pH's, temperatures, and moistures

    Abou-Assaf, N.; Coats, J.R.

    1987-01-01

    The effects of three soil pH's, three soil temperatures, and three soil moistures on [ 14 C]isofenphos degradation were investigated. All three factors interacted strongly and significantly affected the persistence of isofenphos as well as the formation of the degradation products (p less than 1%). Isofenphos degradation was greatest at the higher temperatures 35 0 C greater than 25 0 C greater than 15 0 C (except under alkaline pH's), medium moisture 25% greater than 30% greater than 15%, and in both alkaline (pH = 8) and acidic soils (pH = 6) compared with neutral soil (pH = 7). Isofenphos oxon formation was greatest at higher temperatures 35 0 C compared with 25 0 C and 15 0 C, in acidic soil greater than neutral soil greater than alkaline soil, and under high moisture (30%) compared with the 15% and 22.5% moistures. The formation of soil-bound residues was greatest at higher temperatures 35 0 C greater than 25 0 C greater than 15 0 C, higher moisture 30% compared with 15% and 22.5%, and in alkaline soil compared with neutral and acidic soils

  7. Varying temperature and silicon content in nanodiamond growth: effects on silicon-vacancy centres.

    Choi, Sumin; Leong, Victor; Davydov, Valery A; Agafonov, Viatcheslav N; Cheong, Marcus W O; Kalashnikov, Dmitry A; Krivitsky, Leonid A

    2018-02-28

    Nanodidamonds containing colour centres open up many applications in quantum information processing, metrology, and quantum sensing. However, controlling the synthesis of nanodiamonds containing silicon vacancy (SiV) centres is still not well understood. Here we study nanodiamonds produced by a high-pressure high-temperature method without catalyst metals, focusing on two samples with clear SiV signatures. Different growth temperatures and relative content of silicon in the initial compound between the samples altered their nanodiamond size distributions and abundance of SiV centres. Our results show that nanodiamond growth can be controlled and optimised for different applications.

  8. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature.

    Sedlacik, Michal; Pavlinek, Vladimir; Peer, Petra; Filip, Petr

    2014-05-14

    Magnetic nanoparticles of spinel nanocrystalline cobalt ferrite were synthesized via the sol-gel method and subsequent annealing. The influence of the annealing temperature on the structure, magnetic properties, and magnetorheological effect was investigated. The finite crystallite size of the particles, determined by X-ray diffraction and the particle size observed via transmission electron microscopy, increased with the annealing temperature. The magnetic properties observed via a vibrating sample magnetometer showed that an increase in the annealing temperature leads to the increase in the magnetization saturation and, in contrast, a decrease in the coercivity. The effect of annealing on the magnetic properties of ferrite particles has been explained by the recrystallization process at high temperatures. This resulted in grain size growth and a decrease in an imposed stress relating to defects in the crystal lattice structure of the nanoparticles. The magnetorheological characteristics of suspensions of ferrite particles in silicone oil were measured using a rotational rheometer equipped with a magnetic field generator in both steady shear and small-strain oscillatory regimes. The magnetorheological performance expressed as a relative increase in the magnetoviscosity appeared to be significantly higher for suspensions of particles annealed at 1000 °C.

  9. Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quali...

  10. Enzyme catalysis captured using multiple structures from one crystal at varying temperatures

    Sam Horrell

    2018-05-01

    Full Text Available High-resolution crystal structures of enzymes in relevant redox states have transformed our understanding of enzyme catalysis. Recent developments have demonstrated that X-rays can be used, via the generation of solvated electrons, to drive reactions in crystals at cryogenic temperatures (100 K to generate `structural movies' of enzyme reactions. However, a serious limitation at these temperatures is that protein conformational motion can be significantly supressed. Here, the recently developed MSOX (multiple serial structures from one crystal approach has been applied to nitrite-bound copper nitrite reductase at room temperature and at 190 K, close to the glass transition. During both series of multiple structures, nitrite was initially observed in a `top-hat' geometry, which was rapidly transformed to a `side-on' configuration before conversion to side-on NO, followed by dissociation of NO and substitution by water to reform the resting state. Density functional theory calculations indicate that the top-hat orientation corresponds to the oxidized type 2 copper site, while the side-on orientation is consistent with the reduced state. It is demonstrated that substrate-to-product conversion within the crystal occurs at a lower radiation dose at 190 K, allowing more of the enzyme catalytic cycle to be captured at high resolution than in the previous 100 K experiment. At room temperature the reaction was very rapid, but it remained possible to generate and characterize several structural states. These experiments open up the possibility of obtaining MSOX structural movies at multiple temperatures (MSOX-VT, providing an unparallelled level of structural information during catalysis for redox enzymes.

  11. Impact of soil moisture on extreme maximum temperatures in Europe

    Kirien Whan

    2015-09-01

    Full Text Available Land-atmosphere interactions play an important role for hot temperature extremes in Europe. Dry soils may amplify such extremes through feedbacks with evapotranspiration. While previous observational studies generally focused on the relationship between precipitation deficits and the number of hot days, we investigate here the influence of soil moisture (SM on summer monthly maximum temperatures (TXx using water balance model-based SM estimates (driven with observations and temperature observations. Generalized extreme value distributions are fitted to TXx using SM as a covariate. We identify a negative relationship between SM and TXx, whereby a 100 mm decrease in model-based SM is associated with a 1.6 °C increase in TXx in Southern-Central and Southeastern Europe. Dry SM conditions result in a 2–4 °C increase in the 20-year return value of TXx compared to wet conditions in these two regions. In contrast with SM impacts on the number of hot days (NHD, where low and high surface-moisture conditions lead to different variability, we find a mostly linear dependency of the 20-year return value on surface-moisture conditions. We attribute this difference to the non-linear relationship between TXx and NHD that stems from the threshold-based calculation of NHD. Furthermore the employed SM data and the Standardized Precipitation Index (SPI are only weakly correlated in the investigated regions, highlighting the importance of evapotranspiration and runoff for resulting SM. Finally, in a case study for the hot 2003 summer we illustrate that if 2003 spring conditions in Southern-Central Europe had been as dry as in the more recent 2011 event, temperature extremes in summer would have been higher by about 1 °C, further enhancing the already extreme conditions which prevailed in that year.

  12. Comparison of creep behavior under varying load/temperature conditions between Hastelloy XR alloys with different boron content levels

    Tsuji, Hirokazu; Nakajima, Hajime; Shindo, Masami; Tanabe, Tatsuhiko; Nakasone, Yuji.

    1996-01-01

    In the design of the high-temperature components, it is often required to predict the creep rupture life under the conditions in which the stress and/or temperature may vary by using the data obtained with the constant load and temperature creep rupture tests. Some conventional creep damage rules have been proposed to meet the above-mentioned requirement. Currently only limited data are available on the behavior of Hastelloy XR, which is a developed alloy as the structural material for high-temperature components of the High-Temperature Engineering Test Reactor (HTTR), under varying stress and/or temperature creep conditions. Hence a series of constant load and temperature creep rupture tests as well as varying load and temperature creep rupture tests was carried out on two kinds of Hastelloy XR alloys whose boron content levels are different, i.e., below 10 and 60 mass ppm. The life fraction rule completely fails in the prediction of the creep rupture life of Hastelloy XR with 60 mass ppm boron under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR with below 10 mass ppm boron. The change of boron content level of the material during the tests is the most probable source of impairing the applicability of the life fraction rule to Hastelloy XR whose boron content level is 60 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the boron content level of the alloy. The modified rule successfully predicts the creep rupture life under the two stage creep test conditions from 1000 to 900degC. The trend observed in the two stage creep tests from 900 to 1000degC can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900degC plays the role of the protective barrier against the boron dissipation into the environment. (J.P.N.)

  13. Temperature effects on seaweed-sustaining top-down control vary with season.

    Werner, Franziska J; Graiff, Angelika; Matthiessen, Birte

    2016-03-01

    Rising seawater temperature and CO2 concentrations (ocean acidification) represent two of the most influential factors impacting marine ecosystems in the face of global climate change. In ecological climate change research, full-factorial experiments performed across seasons in multispecies, cross-trophic-level settings are essential as they permit a more realistic estimation of direct and indirect effects as well as the relative importance of the effects of both major environmental stressors on ecosystems. In benthic mesocosm experiments, we tested the responses of coastal Baltic Sea Fucus vesiculosus communities to elevated seawater temperature and CO2 concentrations across four seasons of one year. While increasing [CO2] levels had only minor effects, warming had strong and persistent effects on grazers, and the resulting effects on the Fucus community were found to be season dependent. In late summer, a temperature-driven collapse of grazers caused a cascading effect from the consumers to the foundation species, resulting in overgrowth of Fucus thalli by epiphytes. In fall/winter (outside the growing season of epiphytes), intensified grazing under warming resulted in a significant reduction in Fucus biomass. Thus, we were able to confirm the prediction that future increases in water temperatures will influence marine food-web processes by altering top-down control, but we were also able to show that specific consequences for food-web structure depend on the season. Since F. vesiculosus is the dominant habitat-forming brown algal system in the Baltic Sea, its potential decline under global warming implies a loss of key functions and services such as provision of nutrient storage, substrate, food, shelter, and nursery grounds for a diverse community of marine invertebrates and fish in Baltic Sea coastal waters.

  14. Universal equations of unsteady two-dimensional MHD boundary layer whose temperature varies with time

    Boričić Zoran

    2009-01-01

    Full Text Available This paper concerns with unsteady two-dimensional temperature laminar magnetohydrodynamic (MHD boundary layer of incompressible fluid. It is assumed that induction of outer magnetic field is function of longitudinal coordinate with force lines perpendicular to the body surface on which boundary layer forms. Outer electric filed is neglected and magnetic Reynolds number is significantly lower then one i.e. considered problem is in inductionless approximation. Characteristic properties of fluid are constant because velocity of flow is much lower than speed of light and temperature difference is small enough (under 50ºC . Introduced assumptions simplify considered problem in sake of mathematical solving, but adopted physical model is interesting from practical point of view, because its relation with large number of technically significant MHD flows. Obtained partial differential equations can be solved with modern numerical methods for every particular problem. Conclusions based on these solutions are related only with specific temperature MHD boundary layer problem. In this paper, quite different approach is used. First new variables are introduced and then sets of similarity parameters which transform equations on the form which don't contain inside and in corresponding boundary conditions characteristics of particular problems and in that sense equations are considered as universal. Obtained universal equations in appropriate approximation can be solved numerically once for all. So-called universal solutions of equations can be used to carry out general conclusions about temperature MHD boundary layer and for calculation of arbitrary particular problems. To calculate any particular problem it is necessary also to solve corresponding momentum integral equation.

  15. Performance Estimation of Supercritical Co2 Micro Modular Reactor (MMR) for Varying Cooling Air Temperature

    Ahn, Yoonhan; Kim, Seong Gu; Cho, Seong Kuk; Lee, Jeong Ik

    2015-01-01

    A Small Modular Reactor (SMR) receives interests for the various application such as electricity co-generation, small-scale power generation, seawater desalination, district heating and propulsion. As a part of SMR development, supercritical CO2 Micro Modular Reactor (MMR) of 36.2MWth in power is under development by the KAIST research team. To enhance the mobility, the entire system including the power conversion system is designed for the full modularization. Based on the preliminary design, the thermal efficiency is 31.5% when CO2 is sufficiently cooled to the design temperature. A supercritical CO2 MMR is designed to supply electricity to the remote regions. The ambient temperature of the area can influence the compressor inlet temperature as the reactor is cooled with the atmospheric air. To estimate the S-CO2 cycle performance for various environmental conditions, A quasi-static analysis code is developed. For the off design performance of S-CO2 turbomachineries, the experimental result of Sandia National Lab (SNL) is utilized

  16. The dynamics of Orimulsion in water with varying salinity and temperature

    Fingas, M.F.; Wang, Z.; Landriault, M.; Noonan, J.

    2002-01-01

    A study was conducted to determine the complex interaction between salinity, time and temperature when Orimulsion is spilled in a water column. Orimulsion is a surfactant-stabilized oil-in-water emulsion composed of 70 per cent bitumen and 30 per cent water. It behaves very differently from conventional fuel oils when spilled because of its composition. It behaves predictably in both salt and fresh water, but its behaviour is difficult to predict in brackish water (2 per cent salt). Temperature also has an influence on the behaviour of Orimulsion. This study focused on examining the behaviour of Orimulsion at various low temperatures (5 to 15 degrees C), and a wide range of salinity values from fresh to salt water (values ranging from 0.1 to 33 per cent). A total of 19 experiments were conducted. The objective was to determine depletion rates and characteristics of Orimulsion when it was added to a 300 L tank of water and by determining the concentration of bitumen and the particle size distribution over time. The bitumen which rose to the top of the tank was collected and weighed. Simple equations were then developed to explain and predict the concentration of bitumen in the water column as a function of time. Nomograms indicating the quantity of oil on the bottom and on the water surface were also presented. 6 refs., 4 tabs., 10 figs

  17. Modeling Water Flux at the Base of the Rooting Zone for Soils with Varying Glacial Parent Materials

    Naylor, S.; Ellett, K. M.; Ficklin, D. L.; Olyphant, G. A.

    2013-12-01

    Soils of varying glacial parent materials in the Great Lakes Region (USA) are characterized by thin unsaturated zones and widespread use of agricultural pesticides and nutrients that affect shallow groundwater. To better our understanding of the fate and transport of contaminants, improved models of water fluxes through the vadose zones of various hydrogeologic settings are warranted. Furthermore, calibrated unsaturated zone models can be coupled with watershed models, providing a means for predicting the impact of varying climate scenarios on agriculture in the region. To address these issues, a network of monitoring sites was developed in Indiana that provides continuous measurements of precipitation, potential evapotranspiration (PET), soil volumetric water content (VWC), and soil matric potential to parameterize and calibrate models. Flux at the base of the root zone is simulated using two models of varying complexity: 1) the HYDRUS model, which numerically solves the Richards equation, and 2) the soil-water-balance (SWB) model, which assumes vertical flow under a unit gradient with infiltration and evapotranspiration treated as separate, sequential processes. Soil hydraulic parameters are determined based on laboratory data, a pedo-transfer function (ROSETTA), field measurements (Guelph permeameter), and parameter optimization. Groundwater elevation data are available at three of six sites to establish the base of the unsaturated zone model domain. Initial modeling focused on the groundwater recharge season (Nov-Feb) when PET is limited and much of the annual vertical flux occurs. HYDRUS results indicate that base of root zone fluxes at a site underlain by glacial ice-contact parent materials are 48% of recharge season precipitation (VWC RMSE=8.2%), while SWB results indicate that fluxes are 43% (VWC RMSE=3.7%). Due in part to variations in surface boundary conditions, more variable fluxes were obtained for a site underlain by alluvium with the SWB model (68

  18. Measuring temperature dependence of soil respiration: importance of incubation time, soil type, moisture content and model fits

    Schipper, L. A.; Robinson, J.; O'Neill, T.; Ryburn, J.; Arcus, V. L.

    2015-12-01

    Developing robust models of the temperature response and sensitivity of soil respiration is critical for determining changes carbon cycling in response to climate change and at daily to annual time scales. Currently, approaches for measuring temperature dependence of soil respiration generally use long incubation times (days to weeks and months) at a limited number of incubation temperatures. Long incubation times likely allow thermal adaptation by the microbial population so that results are poorly representative of in situ soil responses. Additionally, too few incubation temperatures allows for the fit and justification of many different predictive equations, which can lead to inaccuracies when used for carbon budgeting purposes. We have developed a method to rapidly determine the response of soil respiration rate to wide range of temperatures. An aluminium block with 44 sample slots is heated at one end and cooled at the other to give a temperature gradient from 0 to 55°C at about one degree increments. Soil respiration is measured within 5 hours to minimise the possibility of thermal adaptation. We have used this method to demonstrate the similarity of temperature sensitivity of respiration for different soils from the same location across seasons. We are currently testing whether long-term (weeks to months) incubation alter temperature response and sensitivity that occurs in situ responses. This method is also well suited for determining the most appropriate models of temperature dependence and sensitivity of soil respiration (including macromolecular rate theory MMRT). With additional testing, this method is expected to be a more reliable method of measuring soil respiration rate for soil quality and modelling of soil carbon processes.

  19. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    Edmondson, Jill L; Stott, Iain; Davies, Zoe G

    2016-01-01

    months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees...... in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce...

  20. Influence of soil pathogens on early regeneration success of tropical trees varies between forest edge and interior.

    Krishnadas, Meghna; Comita, Liza S

    2018-01-01

    Soil fungi are key mediators of negative density-dependent mortality in seeds and seedlings, and the ability to withstand pathogens in the shaded understory of closed-canopy forests could reinforce light gradient partitioning by tree species. For four species of tropical rainforest trees-two shade-tolerant and two shade-intolerant-we conducted a field experiment to examine the interactive effects of fungal pathogens, light, and seed density on germination and early seedling establishment. In a fully factorial design, seeds were sown into 1 m 2 plots containing soil collected from underneath conspecific adult trees, with plots assigned to forest edge (high light) or shaded understory, high or low density, and fungicide or no fungicide application. We monitored total seed germination and final seedling survival over 15 weeks. Shade-intolerant species were strongly constrained by light; their seedlings survived only at the edge. Fungicide application significantly improved seedling emergence and/or survival for three of the four focal species. There were no significant interactions between fungicide and seed density, suggesting that pathogen spread with increased aggregation of seeds and seedlings did not contribute to pathogen-mediated mortality. Two species experienced significant edge-fungicide interactions, but fungicide effects in edge vs. interior forest varied with species and recruitment stage. Our results suggest that changes to plant-pathogen interactions could affect plant recruitment in human-impacted forests subject to fragmentation and edge-effects.

  1. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China.

    Shen, Yan; McLaughlin, Neil; Zhang, Xiaoping; Xu, Minggang; Liang, Aizhen

    2018-03-14

    Crop residue return is imperative to maintain soil health and productivity but some farmers resist adopting conservation tillage systems with residue return fearing reduced soil temperature following planting and crop yield. Soil temperatures were measured at 10 cm depth for one month following planting from 2004 to 2007 in a field experiment in Northeast China. Tillage treatments included mouldboard plough (MP), no till (NT), and ridge till (RT) with maize (Zea mays L.) and soybean (Glycine max Merr.) crops. Tillage had significant effects on soil temperature in 10 of 15 weekly periods. Weekly average NT soil temperature was 0-1.5 °C lower than MP, but the difference was significant (P Northeast China representative of a cool to temperate zone.

  2. Climate Change Impacts on Projections of Excess Mortality at 2030 using Spatially-Varying Ozone-Temperature Risk Surfaces

    Wilson, Ander; Reich, Brian J.; Nolte, Christopher G.; Spero, Tanya L.; Hubbell, Bryan; Rappold, Ana G.

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995–2005) and near-future (2025–2035) time period while incorporating a nonlinear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate nonlinear, spatially-varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 ppb (moderate level) and 75 ppb (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 ppb and 1.94°F; however, the results varied by region. Increases in ozone due to climate change result in an increase in ozone-mortality burden. Mortality attributed to ozone exceeding 40 ppb increases by 7.7% (1.6%, 14.2%). Mortality attributed to ozone exceeding 75 ppb increases by 14.2% (1.6%, 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. PMID:27005744

  3. Temperature sensitivity of soil respiration rates enhanced by microbial community response.

    Karhu, Kristiina; Auffret, Marc D; Dungait, Jennifer A J; Hopkins, David W; Prosser, James I; Singh, Brajesh K; Subke, Jens-Arne; Wookey, Philip A; Agren, Göran I; Sebastià, Maria-Teresa; Gouriveau, Fabrice; Bergkvist, Göran; Meir, Patrick; Nottingham, Andrew T; Salinas, Norma; Hartley, Iain P

    2014-09-04

    Soils store about four times as much carbon as plant biomass, and soil microbial respiration releases about 60 petagrams of carbon per year to the atmosphere as carbon dioxide. Short-term experiments have shown that soil microbial respiration increases exponentially with temperature. This information has been incorporated into soil carbon and Earth-system models, which suggest that warming-induced increases in carbon dioxide release from soils represent an important positive feedback loop that could influence twenty-first-century climate change. The magnitude of this feedback remains uncertain, however, not least because the response of soil microbial communities to changing temperatures has the potential to either decrease or increase warming-induced carbon losses substantially. Here we collect soils from different ecosystems along a climate gradient from the Arctic to the Amazon and investigate how microbial community-level responses control the temperature sensitivity of soil respiration. We find that the microbial community-level response more often enhances than reduces the mid- to long-term (90 days) temperature sensitivity of respiration. Furthermore, the strongest enhancing responses were observed in soils with high carbon-to-nitrogen ratios and in soils from cold climatic regions. After 90 days, microbial community responses increased the temperature sensitivity of respiration in high-latitude soils by a factor of 1.4 compared to the instantaneous temperature response. This suggests that the substantial carbon stores in Arctic and boreal soils could be more vulnerable to climate warming than currently predicted.

  4. Interaction between Soil Moisture and Air Temperature in the Mississippi River Basin

    Increasing air temperatures are expected to continue in the future. The relation between soil moisture and near surface air temperature is significant for climate change and climate extremes. Evaluation of the relations between soil moisture and temperature was performed by devel...

  5. Intraspecies variation in a widely distributed tree species regulates the responses of soil microbiome to different temperature regimes.

    Zhang, Cui-Jing; Delgado-Baquerizo, Manuel; Drake, John E; Reich, Peter B; Tjoelker, Mark G; Tissue, David T; Wang, Jun-Tao; He, Ji-Zheng; Singh, Brajesh K

    2018-04-01

    Plant characteristics in different provenances within a single species may vary in response to climate change, which might alter soil microbial communities and ecosystem functions. We conducted a glasshouse experiment and grew seedlings of three provenances (temperate, subtropical and tropical origins) of a tree species (i.e., Eucalyptus tereticornis) at different growth temperatures (18, 21.5, 25, 28.5, 32 and 35.5°C) for 54 days. At the end of the experiment, bacterial and fungal community composition, diversity and abundance were characterized. Measured soil functions included surrogates of microbial respiration, enzyme activities and nutrient cycling. Using Permutation multivariate analysis of variance (PerMANOVA) and network analysis, we found that the identity of tree provenances regulated both structure and function of soil microbiomes. In some cases, tree provenances substantially affected the response of microbial communities to the temperature treatments. For example, we found significant interactions of temperature and tree provenance on bacterial community and relative abundances of Chloroflexi and Zygomycota, and inorganic nitrogen. Microbial abundance was altered in response to increasing temperature, but was not affected by tree provenances. Our study provides novel evidence that even a small variation in biotic components (i.e., intraspecies tree variation) can significantly influence the response of soil microbial community composition and specific soil functions to global warming. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Relation between soil temperature and biophysical parameters in Indian mustard seeds

    Adak, T.; Chakravarty, N. V. K.

    2013-12-01

    Temporal changes in surface soil temperature were studied in winter crop. Significant changes in bare and cropped soil temperature were revealed. Air temperature showed a statistically positive and strong relationship (R2 = 0.79** to 0.92**) with the soil temperature both at morning and afternoon hours. Linear regression analysis indicated that each unit increase in ambient temperature would lead to increase in minimum and maximum soil temperatures by 1.04 and 1.02 degree, respectively. Statistically positive correlation was revealed among biophysical variables with the cumulative surface soil temperature. Linear and non-linear regression analysis indicated 62-69, 72-86 and 72-80% variation in Leaf area index, dry matter production and heat use efficiency in Indian mustard crop as a function of soil degree days. Below 60% variation in yield in Indian mustard was revealed as a function of soil temperature. In contrast, non-significant relationship between oil content and soil temperature was found, which suggests that oil accumulation in oilseed crops was not affected significantly by the soil temperature as an independent variable.

  7. Near infrared spectroscopy to estimate the temperature reached on burned soils: strategies to develop robust models.

    Guerrero, César; Pedrosa, Elisabete T.; Pérez-Bejarano, Andrea; Keizer, Jan Jacob

    2014-05-01

    The temperature reached on soils is an important parameter needed to describe the wildfire effects. However, the methods for measure the temperature reached on burned soils have been poorly developed. Recently, the use of the near-infrared (NIR) spectroscopy has been pointed as a valuable tool for this purpose. The NIR spectrum of a soil sample contains information of the organic matter (quantity and quality), clay (quantity and quality), minerals (such as carbonates and iron oxides) and water contents. Some of these components are modified by the heat, and each temperature causes a group of changes, leaving a typical fingerprint on the NIR spectrum. This technique needs the use of a model (or calibration) where the changes in the NIR spectra are related with the temperature reached. For the development of the model, several aliquots are heated at known temperatures, and used as standards in the calibration set. This model offers the possibility to make estimations of the temperature reached on a burned sample from its NIR spectrum. However, the estimation of the temperature reached using NIR spectroscopy is due to changes in several components, and cannot be attributed to changes in a unique soil component. Thus, we can estimate the temperature reached by the interaction between temperature and the thermo-sensible soil components. In addition, we cannot expect the uniform distribution of these components, even at small scale. Consequently, the proportion of these soil components can vary spatially across the site. This variation will be present in the samples used to construct the model and also in the samples affected by the wildfire. Therefore, the strategies followed to develop robust models should be focused to manage this expected variation. In this work we compared the prediction accuracy of models constructed with different approaches. These approaches were designed to provide insights about how to distribute the efforts needed for the development of robust

  8. Microbial community responses to 17 years of altered precipitation are seasonally dependent and coupled to co-varying effects of water content on vegetation and soil C

    Sorensen, Patrick O.; Germino, Matthew J.; Feris, Kevin P.

    2013-01-01

    Precipitation amount and seasonal timing determine the duration and distribution of water available for plant and microbial activity in the cold desert sagebrush steppe. In this study, we sought to determine if a sustained shift in the amount and timing of precipitation would affect soil microbial diversity, community composition, and soil carbon (C) storage. Field plots were irrigated (+200 mm) during the dormant or growing-season for 17 years. Microbial community responses were assessed over the course of a year at two depths (15–20 cm, 95–100 cm) by terminal restriction fragment length polymorphism (T-RFLP), along with co-occurring changes in plant cover and edaphic properties. Bacterial richness, Shannon Weaver diversity, and composition in shallow soils (15–20 cm) as well as evenness in deep soils (95–100 cm) differed across irrigation treatments during July. Irrigation timing affected fungal community diversity and community composition during the dormant season and most strongly in deep soils (95–100 cm). Dormant-season irrigation increased the ratio of shrubs to forbs and reduced soil C in shallow soils by 16% relative to ambient conditions. It is unclear whether or not soil C will continue to decline with continued treatment application or if microbial adaptation could mitigate sustained soil C losses. Future changes in precipitation timing will affect soil microbes in a seasonally dependent manner and be coupled to co-varying effects of water content on vegetation and soil C.

  9. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    Junguo Hu

    Full Text Available Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK and Co-Kriging (Co-OK methods. The results indicated that the root mean squared errors (RMSEs and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193 were less than those for the OK method (1.146 and 1.539 when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  10. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi

    2016-01-01

    Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  11. Remotely monitoring evaporation rate and soil water status using thermal imaging and "three-temperatures model (3T Model)" under field-scale conditions.

    Qiu, Guo Yu; Zhao, Ming

    2010-03-01

    Remote monitoring of soil evaporation and soil water status is necessary for water resource and environment management. Ground based remote sensing can be the bridge between satellite remote sensing and ground-based point measurement. The primary object of this study is to provide an algorithm to estimate evaporation and soil water status by remote sensing and to verify its accuracy. Observations were carried out in a flat field with varied soil water content. High-resolution thermal images were taken with a thermal camera; soil evaporation was measured with a weighing lysimeter; weather data were recorded at a nearby meteorological station. Based on the thermal imaging and the three-temperatures model (3T model), we developed an algorithm to estimate soil evaporation and soil water status. The required parameters of the proposed method were soil surface temperature, air temperature, and solar radiation. By using the proposed method, daily variation in soil evaporation was estimated. Meanwhile, soil water status was remotely monitored by using the soil evaporation transfer coefficient. Results showed that the daily variation trends of measured and estimated evaporation agreed with each other, with a regression line of y = 0.92x and coefficient of determination R(2) = 0.69. The simplicity of the proposed method makes the 3T model a potentially valuable tool for remote sensing.

  12. Evaluation of factors affecting soil carbon sequestration services of stormwater wet retention ponds in varying climate zones.

    Merriman, L S; Moore, T L C; Wang, J W; Osmond, D L; Al-Rubaei, A M; Smolek, A P; Blecken, G T; Viklander, M; Hunt, W F

    2017-04-01

    The carbon sequestration services of stormwater wet retention ponds were investigated in four different climates: U.S., Northern Sweden, Southern Sweden, and Singapore, representing a range of annual mean temperatures, growing season lengths and rainfall depths: geographic factors that were not statistically compared, but have great effect on carbon (C) accumulation. A chronosequence was used to estimate C accumulations rates; C accumulation and decomposition rates were not directly measured. C accumulated significantly over time in vegetated shallow water areas (0-30cm) in the USA (78.4gCm -2 yr -1 ), in vegetated temporary inundation zones in Sweden (75.8gCm -2 yr -1 ), and in all ponds in Singapore (135gCm -2 yr -1 ). Vegetative production appeared to exert a stronger influence on relative C accumulation rates than decomposition. Comparing among the four climatic zones, the effects of increasing rainfall and growing season lengths (vegetative production) outweighed the effects of higher temperature on decomposition rates. Littoral vegetation was a significant source to the soil C pool relative to C sources draining from watersheds. Establishment of vegetation in the shallow water zones of retention ponds is vital to providing a C source to the soil. Thus, the width of littoral shelves containing this vegetation along the perimeter may be increased if C sequestration is a design goal. This assessment establishes that stormwater wet retention ponds can sequester C across different climate zones with generally annual rainfall and lengths of growing season being important general factors for C accumulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. An investigation into the use of a mixture model for simulating the electrical properties of soil with varying effective saturation levels for sub-soil imaging using ECT

    Hayes, R R; Newill, P A; Podd, F J W; York, T A; Grieve, B D; Dorn, O

    2010-01-01

    A new visualisation tool is being developed for seed breeders, providing on-line data for each individual plant in a screening programme. It will be used to indicate how efficiently each plant utilises the water and nutrients available in the surrounding soil. This will facilitate early detection of desirable genetic traits with the aim of increased efficiency in identification and delivery of tomorrow's drought tolerant food crops. Visualisation takes the form of Electrical Capacitance Tomography (ECT), a non-destructive and non-intrusive imaging technique. Measurements are to be obtained for an individual plant thus allowing water and nutrient absorption levels for an individual specimen to be inferred. This paper presents the inverse problem, discusses the inherent challenges and presents the early experimental results. Two mixture models are evaluated for the prediction of electrical capacitance measurement data for varying effective soil saturation levels using a finite element model implemented in COMSOL Multiphysics. These early studies have given the research team an understanding of the technical challenges that must now be addressed to take the current research into the world of agri-science and food supply.

  14. Carbon use efficiency (CUE) and biomass turnover of soil microbial communities as affected by bedrock, land management and soil temperature and moisture

    Zheng, Qing; Hu, Yuntao; Richter, Andreas; Wanek, Wolfgang

    2017-04-01

    Soil microbial carbon use efficiency (CUE), defined as the proportion of organic C taken up that is allocated to microbial growth, represents an important synthetic representation of microbial community C metabolism that describes the flux partitioning between microbial respiration and growth. Therefore, studying microbial CUE is critical for the understanding of soil C cycling. Microbial CUE is thought to vary with environmental conditions (e.g. temperature and soil moisture). Microbial CUE is thought to decrease with increasing temperature and declining soil moisture, as the latter may trigger stress responses (e.g. the synthesis of stress metabolites), which may consequently lower microbial community CUE. However, these effects on microbial CUE have not been adequately measured so far due to methodological restrictions. The most widely used methods for microbial CUE estimation are based on tracing 13C-labeled substrates into microbial biomass and respiratory CO2, approaches that are known to overestimate microbial CUE of native organic matter in soil. Recently, a novel substrate-independent approach based on the measurement of (i) respiration rates and (ii) the incorporation rates of 18O from labelled water into newly formed microbial DNA has been developed in our laboratory for measuring microbial CUE. This approach overcomes the shortcomings of previously used methods and has already been shown to yield realistic estimations of soil microbial CUE. This approach can also be applied to concurrently measure microbial biomass turnover rates, which also influence the sequestration of soil organic C. Microbial turnover rates are also thought to be impacted by environmental factors, but rarely have been directly measured so far. Here, we aimed at determining the short-term effects of environmental factors (soil temperature and soil moisture) on microbial CUE and microbial biomass turnover rates based on the novel 18O approach. Soils from three land-use types (arable

  15. [Dynamics of change of ureaplasma laboratory strain titers and quantity of their DNA in transport medium at varying temperature].

    Gamova, N A; Ivanova, T A

    2013-01-01

    Study of preservation dynamics of ureaplasma laboratory strain live cultures and their DNA in transport medium at varying temperature. The study was carried out in laboratory strains Ureaplasma urealyticum serotype 8 and Ureaplasma parvum serotype 1. The quantity of live ureaplasmas was determined by method of tenfold dilutions in liquid medium. The growth of ureaplasmas was registered by changes in the color of the cultivation medium due to its alkalization by metabolism products and expressed in CCU/ml. DNA quantity in samples was determined by real time PCR performed by using Florocenosis-micoplasmas-FL test system produced by ILS. Live ureaplasmas wer shown to be preserved in transport medium at 4 degrees C for 12 - 29 days, at 18 - 22 degrees C--for 9 - 20 days and at 37 degrees C--for only 2 days. In samples incubated at 37 degrees C the quantity of live ureaplasmas increased and then sharply decreased to 0, at lower temperature titers of the cells decreased smoothly. The quantity of ureaplasma DNA in the process of their incubation did not change significantly. Fundamental differences in the duration of survival of U. urealyticum strain and U. parvum strain in transport medium at varying temperature were not detected. Based on the studies performed a practical conclusion can be drawn that in cases of emergency when clinical material transportation is necessary its storage in transport medium for several days is acceptable.

  16. Simply obtained global radiation, soil temperature and soil moisture in an alley cropping system in semi-arid Kenya

    Mungai, D.N.; Stigter, C.J.; Coulson, C.L.; Ng'ang'a, J.K.

    2000-01-01

    Global radiation, soil temperature and soil moisture data were obtained from a 4-6 year old Cassia siamea/maize (CM) alley cropping (or hedgerow intercropping) system, at a semi-arid site at Machakos, Kenya, in the late eighties. With the growing need to explore and manage variations in

  17. Comparison of artificial intelligence techniques for prediction of soil temperatures in Turkey

    Citakoglu, Hatice

    2017-10-01

    Soil temperature is a meteorological data directly affecting the formation and development of plants of all kinds. Soil temperatures are usually estimated with various models including the artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models. Soil temperatures along with other climate data are recorded by the Turkish State Meteorological Service (MGM) at specific locations all over Turkey. Soil temperatures are commonly measured at 5-, 10-, 20-, 50-, and 100-cm depths below the soil surface. In this study, the soil temperature data in monthly units measured at 261 stations in Turkey having records of at least 20 years were used to develop relevant models. Different input combinations were tested in the ANN and ANFIS models to estimate soil temperatures, and the best combination of significant explanatory variables turns out to be monthly minimum and maximum air temperatures, calendar month number, depth of soil, and monthly precipitation. Next, three standard error terms (mean absolute error (MAE, °C), root mean squared error (RMSE, °C), and determination coefficient ( R 2 )) were employed to check the reliability of the test data results obtained through the ANN, ANFIS, and MLR models. ANFIS (RMSE 1.99; MAE 1.09; R 2 0.98) is found to outperform both ANN and MLR (RMSE 5.80, 8.89; MAE 1.89, 2.36; R 2 0.93, 0.91) in estimating soil temperature in Turkey.

  18. Adsorption-Desorption of Hexaconazole in Soils with Respect to Soil Properties, Temperature, and pH

    Maznah Zainol

    2016-06-01

    Full Text Available The effect of temperature and pH on adsorption-desorption of fungicide hexaconazole was studied in two Malaysian soil types; namely clay loam and sandy loam. The adsorption-desorption experiment was conducted using the batch equilibration technique and the residues of hexaconazole were analysed using the GC-ECD. The results showed that the adsorption-desorption isotherms of hexaconazole can be described with Freundlich equation. The Freundlich sorption coefficient (Kd values were positively correlated to the clay and organic matter content in the soils. Hexaconazole attained the equilibrium phase within 24 h in both soil types studied. The adsorption coefficient (Kd values obtained for clay loam soil and sandy loam soil were 2.54 mL/g and 2.27 mL/g, respectively, indicating that hexaconazole was weakly sorbed onto the soils due to the low organic content of the soils. Regarding thermodynamic parameters, the Gibb’s free energy change (ΔG analysis showed that hexaconazole adsorption onto soil was spontaneous and exothermic, plus it exhibited positive hysteresis. A strong correlation was observed between the adsorption of hexaconazole and pH of the soil solution. However, temperature was found to have no effect on the adsorption of hexaconazole onto the soils; for the range tested.

  19. Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature risk surfaces.

    Wilson, Ander; Reich, Brian J; Nolte, Christopher G; Spero, Tanya L; Hubbell, Bryan; Rappold, Ana G

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate non-linear, spatially varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 p.p.b. (moderate level) and 75 p.p.b. (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 p.p.b. and 1.94 °F; however, the results varied by region. Increases in ozone because of climate change result in an increase in ozone mortality burden. Mortality attributed to ozone exceeding 40 p.p.b. increases by 7.7% (1.6-14.2%). Mortality attributed to ozone exceeding 75 p.p.b. increases by 14.2% (1.6 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels.

  20. Analysis of silicon-based integrated photovoltaic-electrochemical hydrogen generation system under varying temperature and illumination

    Vishwa Bhatt; Brijesh Tripathi; Pankaj Yadav; Manoj Kumar

    2017-01-01

    Last decade witnessed tremendous research and development in the area of photo-electrolytic hydrogen generation using chemically stable nanostructured photo-cathode/anode materials.Due to intimately coupled charge separation and photo-catalytic processes,it is very difficult to optimize individual components of such system leading to a very low demonstrated solar-to-fuel efficiency (SFE) of less than 1%.Recently there has been growing interest in an integrated photovoltaic-electrochemical (PV-EC) system based on GaAs solar cells with the demonstrated SFE of 24.5% under concentrated illumination condition.But a high cost of GaAs based solar cells and recent price drop of poly-crystalline silicon (pc-Si) solar cells motivated researchers to explore silicon based integrated PV-EC system.In this paper a theoretical framework is introduced to model silicon-based integrated PV-EC device.The theoretical framework is used to analyze the coupling and kinetic losses of a silicon solar cell based integrated PV-EC water splitting system under varying temperature and illumination.The kinetic loss occurs in the range of 19.1%-27.9% and coupling loss takes place in the range of 5.45%-6.74% with respect to varying illumination in the range of 20-100 mW/cm2.Similarly,the effect of varying temperature has severe impact on the performance of the system,wherein the coupling loss occurs in the range of 0.84%-21.51% for the temperature variation from 25 to 50 ℃.

  1. Effects of temperature, moisture and soil type on seedling emergence and mortality of riparian plant species

    ter Heerdt, Gerard N. J.; Veen, Ciska G.F.; van der Putten, Wim H.; Bakker, Jan P.

    Restoration of riparian plant communities on bare soil requires germination of seeds and establishment of seedlings. However, species that are present in the soil seed bank do not always establish in the vegetation. Temperature, moisture conditions and soil type could play a major role in the

  2. Effects of temperature, moisture and soil type on seedling emergence and mortality of riparian plant species

    Heerdt, ter Gerard N.J.; Veen, Ciska G.F.; Putten, van der Wim H.; Bakker, Jan P.

    2017-01-01

    Restoration of riparian plant communities on bare soil requires germination of seeds and establishment of seedlings. However, species that are present in the soil seed bank do not always establish in the vegetation. Temperature, moisture conditions and soil type could play a major role in the

  3. Effects of temperature, moisture and soil type on seedling emergence and mortality of riparian plant species

    Ter Heerdt, Gerard N.J.; Veen, G.F.; Van der Putten, Wim H.; Bakker, Jan P.

    Abstract Restoration of riparian plant communities on bare soil requires germination of seeds and establishment of seedlings. However, species that are present in the soil seed bank do not always establish in the vegetation. Temperature, moisture conditions and soil type could play a major role in

  4. Estimating the Soil Temperature Profile from a single Depth Observation: A simple Empirical Heatflow Solution

    Holmes, T.R.H.; Owe, M.; de Jeu, R.A.M.; Kooi, H.

    2008-01-01

    Two field data sets are used to model near-surface soil temperature profiles in a bare soil. It is shown that the commonly used solutions to the heat flow equations by Van Wijk perform well when applied at deeper soil layers, but result in large errors when applied to near surface layers, where more

  5. Shrub encroachment alters sensitivity of soil respiration to temperature and moisture 2115

    Shrub encroachment into grasslands creates a mosaic of different soil microsites ranging from open spaces to well-developed shrub canopies, and it is unclear how this affects the spatial variability in soil respiration characteristics, such as the sensitivity to soil temperature and moisture. This i...

  6. Using soil moisture forecasts for sub-seasonal summer temperature predictions in Europe

    Orth, René; Seneviratne, Sonia I.

    2014-12-01

    Soil moisture exhibits outstanding memory characteristics and plays a key role within the climate system. Especially through its impacts on the evapotranspiration of soils and plants, it may influence the land energy balance and therefore surface temperature. These attributes make soil moisture an important variable in the context of weather and climate forecasting. In this study we investigate the value of (initial) soil moisture information for sub-seasonal temperature forecasts. For this purpose we employ a simple water balance model to infer soil moisture from streamflow observations in 400 catchments across Europe. Running this model with forecasted atmospheric forcing, we derive soil moisture forecasts, which we then translate into temperature forecasts using simple linear relationships. The resulting temperature forecasts show skill beyond climatology up to 2 weeks in most of the considered catchments. Even if forecasting skills are rather small at longer lead times with significant skill only in some catchments at lead times of 3 and 4 weeks, this soil moisture-based approach shows local improvements compared to the monthly European Centre for Medium Range Weather Forecasting (ECMWF) temperature forecasts at these lead times. For both products (soil moisture-only forecast and ECMWF forecast), we find comparable or better forecast performance in the case of extreme events, especially at long lead times. Even though a product based on soil moisture information alone is not of practical relevance, our results indicate that soil moisture (memory) is a potentially valuable contributor to temperature forecast skill. Investigating the underlying soil moisture of the ECMWF forecasts we find good agreement with the simple model forecasts, especially at longer lead times. Analyzing the drivers of the temperature forecast skills we find that they are mainly controlled by the strengths of (1) the soil moisture-temperature coupling and (2) the soil moisture memory. We

  7. Soil Temperature Manipulation to Study Global Warming Effects in Arable Land

    Patil, R H; Laegdsmand, M; Olesen, Jørgen E

    2013-01-01

    in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005℃ between heated and control......-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies....

  8. Soil temperature manipulation to study global warming effects in arable land

    Patil, Raveendra H.; Laegdsmand, Mette; Olesen, Jørgen Eivind

    2013-01-01

    in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005 oC between heated...... that of above-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies....

  9. Response of soil respiration to soil temperature and moisture in a 50-year-old oriental arborvitae plantation in China.

    Yu, Xinxiao; Zha, Tianshan; Pang, Zhuo; Wu, Bin; Wang, Xiaoping; Chen, Guopeng; Li, Chunping; Cao, Jixin; Jia, Guodong; Li, Xizhi; Wu, Hailong

    2011-01-01

    China possesses large areas of plantation forests which take up great quantities of carbon. However, studies on soil respiration in these plantation forests are rather scarce and their soil carbon flux remains an uncertainty. In this study, we used an automatic chamber system to measure soil surface flux of a 50-year-old mature plantation of Platycladus orientalis at Jiufeng Mountain, Beijing, China. Mean daily soil respiration rates (R(s)) ranged from 0.09 to 4.87 µmol CO(2) m(-2) s(-1), with the highest values observed in August and the lowest in the winter months. A logistic model gave the best fit to the relationship between hourly R(s) and soil temperature (T(s)), explaining 82% of the variation in R(s) over the annual cycle. The annual total of soil respiration estimated from the logistic model was 645±5 g C m(-2) year(-1). The performance of the logistic model was poorest during periods of high soil temperature or low soil volumetric water content (VWC), which limits the model's ability to predict the seasonal dynamics of R(s). The logistic model will potentially overestimate R(s) at high T(s) and low VWC. Seasonally, R(s) increased significantly and linearly with increasing VWC in May and July, in which VWC was low. In the months from August to November, inclusive, in which VWC was not limiting, R(s) showed a positively exponential relationship with T(s). The seasonal sensitivity of soil respiration to T(s) (Q(10)) ranged from 0.76 in May to 4.38 in October. It was suggested that soil temperature was the main determinant of soil respiration when soil water was not limiting.

  10. The Effect of Soil Temperature Seasonality on Climate Reconstructions from Paleosols

    Gallagher, T. M.; Hren, M. T.; Sheldon, N. D.

    2017-12-01

    Accurate continental temperature reconstructions provide important constraints on climate sensitivity to changes in atmospheric pCO2, the timing and rates of tectonic uplift, and the driving mechanisms and feedbacks associated with major climate events. Temperature seasonality is an important variable to consider, because not only does it exert a strong control on the biosphere, but it can obfuscate changes in mean annual air temperature (MAAT) in the geologic record. In order to better understand the effect temperature seasonality has on paleosol temperature proxies, soil temperature data was compiled from over 200 stations that comprise the NCDC Soil Climate Analysis Network. Observed soil temperature variations were then compared to predicted soil temperature values based on normal seasonal air temperature trends. Approximately one quarter of sites record less temperature variation than predicted. This reduction in soil temperature seasonality is a result of warmer than predicted cold-season temperatures, driven by cold-season processes such as snow cover insulation. The reduction in soil temperature seasonality explains why pedo-transfer functions to break down below MAAT values of 6-8 °C. Greater than predicted soil temperature seasonality is observed at nearly half of the sites, driven primarily by direct heating of the soil surface by solar radiation. Deviations larger than 2 °C are not common until mean annual precipitation falls below 300 mm, suggesting that complications introduced by ground heating are primarily restricted to paleosols that formed in more arid environments. Clumped isotope measurements of pedogenic carbonate and bulk paleosol elemental data from a stacked series of paleosols spanning the Eocene-Oligocene in Northeastern Spain are also examined to demonstrate how the documented seasonal trends in modern soils can help inform paleo-applications.

  11. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    Lara, Evelise G.; Oliveira, Arno Heeren de, E-mail: evelise.lara@gmail.com, E-mail: heeren@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Rocha, Zildete; Rios, Francisco Javier, E-mail: rochaz@cdtn.br, E-mail: javier@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The {sup 226}Ra, {sup 232}Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The {sup 226}Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to {sup 232}Th and U content. The soil permeability is 5.0 x 10{sup -12}, which is considered average. The {sup 226}Ra (22.2 ± 0.3 Bq.m{sup -3}); U content (73.4 ± 3.6 Bq.kg{sup -1}) and {sup 232}Th content (55.3 ± 4.0 Bq.kg{sup -1}) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg{sup -1}) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m{sup -3}) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m{sup -3}). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  12. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    Lara, Evelise G.; Oliveira, Arno Heeren de

    2015-01-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The 226 Ra, 232 Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The 226 Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to 232 Th and U content. The soil permeability is 5.0 x 10 -12 , which is considered average. The 226 Ra (22.2 ± 0.3 Bq.m -3 ); U content (73.4 ± 3.6 Bq.kg -1 ) and 232 Th content (55.3 ± 4.0 Bq.kg -1 ) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg -1 ) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m -3 ) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m -3 ). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  13. [Effects of variable temperature on organic carbon mineralization in typical limestone soils].

    Wang, Lian-Ge; Gao, Yan-Hong; Ding, Chang-Huan; Ci, En; Xie, De-Ti

    2014-11-01

    Soil sampling in the field and incubation experiment in the laboratory were conducted to investigate the responses of soil organic carbon (SOC) mineralization to variable temperature regimes in the topsoil of limestone soils from forest land and dry land. Two incubated limestone soils were sampled from the 0-10 cm layers of typical forest land and dry land respectively, which were distributed in Tianlong Mountain area of Puding county, Guizhou province. The soils were incubated for 56 d under two different temperature regimes including variable temperature (range: 15-25 degrees C, interval: 12 h) and constant temperature (20 degrees C), and the cumulative temperature was the same in the two temperature treatments. In the entire incubation period (56 d), the SOC cumulative mineralization (63.32 mg x kg(-1)) in the limestone soil from dry land (SH) under the variable temperature was lower than that (63.96 mg x kg(-1)) at constant 20 degrees C, and there was no significant difference in the SOC cumulative mineralization between the variable and constant temperature treatments (P variable temperature was significantly lower than that (209.52 mg x kg(-1)) at constant 20 degrees C. The results indicated that the responses of SOC mineralization to the variable temperature were obviously different between SL and SH soils. The SOC content and composition were significantly different between SL and SH soils affected by vegetation and land use type, which suggested that SOC content and composition were important factors causing the different responses of SOC mineralization to variable temperature between SL and SH soils. In addition, the dissolved organic carbon (DOC) content of two limestone soils were highly (P variable temperature mainly influenced SOC mineralization by changing microbial community activity rather than by changing microbial quantity.

  14. Soil Temperature Variability in Complex Terrain measured using Distributed a Fiber-Optic Distributed Temperature Sensing

    Seyfried, M. S.; Link, T. E.

    2013-12-01

    Soil temperature (Ts) exerts critical environmental controls on hydrologic and biogeochemical processes. Rates of carbon cycling, mineral weathering, infiltration and snow melt are all influenced by Ts. Although broadly reflective of the climate, Ts is sensitive to local variations in cover (vegetative, litter, snow), topography (slope, aspect, position), and soil properties (texture, water content), resulting in a spatially and temporally complex distribution of Ts across the landscape. Understanding and quantifying the processes controlled by Ts requires an understanding of that distribution. Relatively few spatially distributed field Ts data exist, partly because traditional Ts data are point measurements. A relatively new technology, fiber optic distributed temperature system (FO-DTS), has the potential to provide such data but has not been rigorously evaluated in the context of remote, long term field research. We installed FO-DTS in a small experimental watershed in the Reynolds Creek Experimental Watershed (RCEW) in the Owyhee Mountains of SW Idaho. The watershed is characterized by complex terrain and a seasonal snow cover. Our objectives are to: (i) evaluate the applicability of fiber optic DTS to remote field environments and (ii) to describe the spatial and temporal variability of soil temperature in complex terrain influenced by a variable snow cover. We installed fiber optic cable at a depth of 10 cm in contrasting snow accumulation and topographic environments and monitored temperature along 750 m with DTS. We found that the DTS can provide accurate Ts data (+/- .4°C) that resolves Ts changes of about 0.03°C at a spatial scale of 1 m with occasional calibration under conditions with an ambient temperature range of 50°C. We note that there are site-specific limitations related cable installation and destruction by local fauna. The FO-DTS provide unique insight into the spatial and temporal variability of Ts in a landscape. We found strong seasonal

  15. Changes in soil temperature during prescribed burns impact local arthropod communities

    Verble-Pearson, Robin; Perry, Gad

    2016-04-01

    As wildfires increase in severity and intensity globally, the development of methods to assess their effects on soils is of increasing importance. We examined soil arthropod communities in the southern United States and estimated their abundance, species richness, and composition in areas recently impacted by prescribed burns. In addition, we placed thermal probes in soils and correlated soil temperatures to arthropod responses. Longer fire residence times resulted in greater soil heating which resulted in decreases in arthropod abundance and species richness and shifts in species composition. We believe that these results may be useful in developing tools to assess fire effects on soil systems.

  16. Impact of drought and increasing temperatures on soil CO2 emissions in a Mediterranean shrubland (gariga)

    de Dato, Giovanbattista Domenico; De Angelis, Paolo; Sirca, Costantino

    2010-01-01

    the soil and air night-time temperatures and to reduce water input from precipitation. The objective was to analyze the extent to which higher temperatures and a drier climate influence soil CO2 emissions in the short term and on an annual basis. The microclimate was manipulated in field plots (about 25 m2...... temperature probe. The seasonal pattern of soil CO2 efflux was characterized by higher rates during the wet vegetative season and lower rates during the dry non-vegetative season (summer). The Warming treatment did not change SR fluxes at any sampling date. The Drought treatment decreased soil CO2 emissions...... on only three of 10 occasions during 2004. The variation of soil respiration with temperature and soil water content did not differ significantly among the treatments, but was affected by the season. The annual CO2 emissions were not significantly affected by the treatments. In the semi-arid Mediterranean...

  17. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    Dimitrov, Marin

    2014-01-01

    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.

  18. Short-Term Effect of Feedstock and Pyrolysis Temperature on Biochar Characteristics, Soil and Crop Response in Temperate Soils

    Nelissen, Victoria; Ruysschaert, Greet; Müller-Stöver, Dorette Sophie

    2014-01-01

    At present, there is limited understanding of how biochar application to soil could be beneficial to crop growth in temperate regions and which biochar types are most suitable. Biochar’s (two feedstocks: willow, pine; three pyrolysis temperatures: 450 °C, 550 °C, 650 °C) effect on nitrogen (N......) availability, N use efficiency and crop yield was studied in northwestern European soils using a combined approach of process-based and agronomic experiments. Biochar labile carbon (C) fractions were determined and a phytotoxicity test, sorption experiment, N incubation experiment and two pot trials were...... conducted. Generally, biochar caused decreased soil NO3−availability and N use efficiency, and reduced biomass yields compared to a control soil. Soil NO3−concentrations were more reduced in the willow compared to the pine biochar treatments and the reduction increased with increasing pyrolysis temperatures...

  19. Effects of biochar and elevated soil temperature on soil microbial activity and abundance in an agricultural system

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2014-05-01

    As a consequence of Global Warming, rising surface temperatures will likely cause increased soil temperatures. Soil warming has already been shown to, at least temporarily, increase microbial activity and, therefore, the emissions of greenhouse gases like CO2 and N2O. This underlines the need for methods to stabilize soil organic matter and to prevent further boost of the greenhouse gas effect. Plant-derived biochar as a soil amendment could be a valuable tool to capture CO2 from the atmosphere and sequestrate it in soil on the long-term. During the process of pyrolysis, plant biomass is heated in an oxygen-low atmosphere producing the highly stable solid matter biochar. Biochar is generally stable against microbial degradation due to its chemical structure and it, therefore, persists in soil for long periods. Previous experiments indicated that biochar improves or changes several physical or chemical soil traits such as water holding capacity, cation exchange capacity or soil structure, but also biotic properties like microbial activity/abundance, greenhouse gas emissions and plant growth. Changes in the soil microbial abundance and community composition alter their metabolism, but likely also affect plant productivity. The interaction of biochar addition and soil temperature increase on soil microbial properties and plant growth was yet not investigated on the field scale. To investigate whether warming could change biochar effects in soil, we conducted a field experiment attached to a soil warming experiment on an agricultural experimental site near the University of Hohenheim, already running since July 2008. The biochar field experiment was set up as two-factorial randomized block design (n=4) with the factors biochar amendment (0, 30 t ha-1) and soil temperature (ambient, elevated=ambient +2.5° C) starting from August 2013. Each plot has a dimension of 1x1m and is equipped with combined soil temperature and moisture sensors. Slow pyrolysis biochar from the C

  20. Amplification and dampening of soil respiration by changes in temperature variability

    C.A. Sierra; M.E. Harmon; E.A. Thomann; S.S. Perakis; H.W. Loescher

    2011-01-01

    Accelerated release of carbon from soils is one of the most important feedbacks related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature variability. Anthropogenic...

  1. The effect of temperature on the bioventing of soil contaminated with toluene and decane

    Malina, G.; Grotenhuis, J.T.C.; Rulkens, W.H.

    1999-01-01

    The effect of temperature on evaporation and biodegradation rates during soil bioventing (SBV) was studied for a mixture of toluene and decane in bench-scale soil columns at a continuous air flow and consecutively at two different flow rates. The effect of temperature on SBV was monitored by GC

  2. Soil temperature synchronisation improves estimation of daily variation of ecosystem respiration in Sphagnum peatlands

    D'Angelo, Benoît; Gogo, Sébastien; Le Moing, Franck; Jégou, Fabrice; Guimbaud, Christophe; Laggoun, Fatima

    2015-04-01

    Ecosystem respiration (ER) is a key process in the global C cycle and thus, plays an important role in the climate regulation. Peatlands contain a third of the world soil C in spite of their relatively low global area (3% of land area). Although these ecosystems represent potentially a significant source of C under global change, they are still not taken into account accordingly in global climatic models. Therefore, ER variations have to be accounted for, especially by estimating its dependence to temperature.s The relationship between ER and temperature often relies only on one soil temperature depth and the latter is generally taken in the first 10 centimetres. Previous studies showed that the temperature dependence of ER depends on the depth at which the temperature is recorded. The depth selection for temperature measurement is thus a predominant issue. A way to deal with this is to analyse the time-delay between ER and temperature. The aim of this work is to assess whether using synchronised data in models leads to a better ER daily variation estimation than using non-synchronised data. ER measurements were undertaken in 2013 in 4 Sphagnum peatlands across France: La Guette (N 47°19'44', E 2°17'04', 154m) in July, Landemarais (N 48°26'30', E -1°10'54', 145m) in August, Frasne (N 46°49'35', E 6°10'20', 836m) in September, and Bernadouze (N 42°48'09', E 1°25'24', 1500m) in October. A closed method chamber was used to measure ER hourly during 72 hours in each of the 4 replicates installed in each site. Average ER ranged from 1.75 μmol m-2 s-1 to 6.13 μmol m-2 s-1. A weather station was used to record meteorological data and soil temperature profiles (5, 10, 20 and 30 cm). Synchronised data were determined for each depth by selecting the time-delay leading to the best correlation between ER and soil temperature. The data were used to simulate ER according to commonly used equations: linear, exponential with Q10, Arrhenius, Lloyd and Taylor. Models

  3. Miscanthus establishment and overwintering in the Midwest USA: a regional modeling study of crop residue management on critical minimum soil temperatures.

    Christopher J Kucharik

    Full Text Available Miscanthus is an intriguing cellulosic bioenergy feedstock because its aboveground productivity is high for low amounts of agrochemical inputs, but soil temperatures below -3.5 °C could threaten successful cultivation in temperate regions. We used a combination of observed soil temperatures and the Agro-IBIS model to investigate how strategic residue management could reduce the risk of rhizome threatening soil temperatures. This objective was addressed using a historical (1978-2007 reconstruction of extreme minimum 10 cm soil temperatures experienced across the Midwest US and model sensitivity studies that quantified the impact of crop residue on soil temperatures. At observation sites and for simulations that had bare soil, two critical soil temperature thresholds (50% rhizome winterkill at -3.5 °C and -6.0 °C for different Miscanthus genotypes were reached at rhizome planting depth (10 cm over large geographic areas. The coldest average annual extreme 10 cm soil temperatures were between -8 °C to -11 °C across North Dakota, South Dakota, and Minnesota. Large portions of the region experienced 10 cm soil temperatures below -3.5 °C in 75% or greater for all years, and portions of North and South Dakota, Minnesota, and Wisconsin experienced soil temperatures below -6.0 °C in 50-60% of all years. For simulated management options that established varied thicknesses (1-5 cm of miscanthus straw following harvest, extreme minimum soil temperatures increased by 2.5 °C to 6 °C compared to bare soil, with the greatest warming associated with thicker residue layers. While the likelihood of 10 cm soil temperatures reaching -3.5 °C was greatly reduced with 2-5 cm of surface residue, portions of the Dakotas, Nebraska, Minnesota, and Wisconsin still experienced temperatures colder than -3.5 °C in 50-80% of all years. Nonetheless, strategic residue management could help increase the likelihood of overwintering of miscanthus rhizomes in the first few

  4. Temperature response of soil respiration is dependent on concentration of readily decomposable C

    Larionova, A. A.; Yevdokimov, I. V.; Bykhovets, S. S.

    2007-12-01

    Temperature acclimation of soil organic matter (SOM) decomposition is one of the major uncertainties in predicting soil CO2 efflux associated with the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006) based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax) and half-saturation constant (Ks) cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of data obtained in incubation experiments with forest and arable soils. Our data support the hypothesis and suggest that concentration of readily decomposable C substrate (as glucose equivalents) and temperature dependent substrate release are the important factors controlling temperature sensitivity of soil respiration. The highest temperature sensitivity of soil respiration was observed when substrate release was temperature dependent and C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant by glucose addition resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, attributing this phenomenon to changes in concentration of readily decomposable C substrate.

  5. Dynamics of soil CO2 efflux under varying atmospheric CO2 concentrations reveal dominance of slow processes.

    Kim, Dohyoung; Oren, Ram; Clark, James S; Palmroth, Sari; Oishi, A Christopher; McCarthy, Heather R; Maier, Chris A; Johnsen, Kurt

    2017-09-01

    We evaluated the effect on soil CO 2 efflux (F CO 2 ) of sudden changes in photosynthetic rates by altering CO 2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO 2 (eCO 2 ) ranging 1.0-1.8 times ambient did not affect F CO 2 . F CO 2 did not decrease until 4 months after termination of the long-term eCO 2 treatment, longer than the 10 days observed for decrease of F CO 2 after experimental blocking of C flow to belowground, but shorter than the ~13 months it took for increase of F CO 2 following the initiation of eCO 2 . The reduction of F CO 2 upon termination of enrichment (~35%) cannot be explained by the reduction of leaf area (~15%) and associated carbohydrate production and allocation, suggesting a disproportionate contraction of the belowground ecosystem components; this was consistent with the reductions in base respiration and F CO 2 -temperature sensitivity. These asymmetric responses pose a tractable challenge to process-based models attempting to isolate the effect of individual processes on F CO2 . © 2017 John Wiley & Sons Ltd.

  6. Critical shear stress for erosion of cohesive soils subjected to temperatures typical of wildfires

    Moody, J.A.; Dungan, Smith J.; Ragan, B.W.

    2005-01-01

    [1] Increased erosion is a well-known response after wildfire. To predict and to model erosion on a landscape scale requires knowledge of the critical shear stress for the initiation of motion of soil particles. As this soil property is temperature-dependent, a quantitative relation between critical shear stress and the temperatures to which the soils have been subjected during a wildfire is required. In this study the critical shear stress was measured in a recirculating flume using samples of forest soil exposed to different temperatures (40??-550??C) for 1 hour. Results were obtained for four replicates of soils derived from three different types of parent material (granitic bedrock, sandstone, and volcanic tuffs). In general, the relation between critical shear stress and temperature can be separated into three different temperature ranges (275??C), which are similar to those for water repellency and temperature. The critical shear stress was most variable (1.0-2.0 N m-2) for temperatures 2.0 N m-2) between 175?? and 275??C, and was essentially constant (0.5-0.8 N m-2) for temperatures >275??C. The changes in critical shear stress with temperature were found to be essentially independent of soil type and suggest that erosion processes in burned watersheds can be modeled more simply than erosion processes in unburned watersheds. Wildfire reduces the spatial variability of soil erodibility associated with unburned watersheds by eliminating the complex effects of vegetation in protecting soils and by reducing the range of cohesion associated with different types of unburned soils. Our results indicate that modeling the erosional response after a wildfire depends primarily on determining the spatial distribution of the maximum soil temperatures that were reached during the wildfire. Copyright 2005 by the American Geophysical Union.

  7. An observation-based assessment of the influences of air temperature and snow depth on soil temperature in Russia

    Park, Hotaek; Sherstiukov, Artem B; Fedorov, Alexander N; Polyakov, Igor V; Walsh, John E

    2014-01-01

    This study assessed trends in the variability of soil temperature (T SOIL ) using spatially averaged observation records from Russian meteorological land stations. The contributions of surface air temperature (SAT) and snow depth (SND) to T SOIL variation were quantitatively evaluated. Composite time series of these data revealed positive trends during the period of 1921–2011, with accelerated increases since the 1970s. The T SOIL warming rate over the entire period was faster than the SAT warming rate in both permafrost and non-permafrost regions, suggesting that SND contributes to T SOIL warming. Statistical analysis revealed that the highest correlation between SND and T SOIL was in eastern Siberia, which is underlain by permafrost. SND in this region accounted for 50% or more of the observed variation in T SOIL . T SOIL in the non-permafrost region of western Siberia was significantly correlated with changes in SAT. Thus, the main factors associated with T SOIL variation differed between permafrost and non-permafrost regions. This finding underscores the importance of including SND data when assessing historical and future variations and trends of permafrost in the Northern Hemisphere. (letter)

  8. A soil moisture and temperature network for SMOS validation in Western Denmark

    Bircher, Simone; Skou, Niels; Jensen, K. H.

    2011-01-01

    The Soil Moisture and Ocean Salinity Mission (SMOS) acquires surface soil moisture data globally, and thus product validation for a range of climate and environmental conditions across continents is a crucial step. For this purpose, a soil moisture and temperature network of Decagon ECH2O 5TE...... SMOS pixel (44 × 44 km), which is representative of the land surface conditions of the catchment and with minimal impact from open water (2) arrangement of three network clusters along the precipitation gradient, and (3) distribution of the stations according to respective fractions of classes...... representing the prevailing environmental conditions. Overall, measured moisture and temperature patterns could be related to the respective land cover and soil conditions. Texture-dependency of the 0–5 cm soil moisture measurements was demonstrated. Regional differences in 0–5 cm soil moisture, temperature...

  9. X-ray CT-Derived Soil Characteristics Explain Varying Air, Water, and Solute Transport Properties across a Loamy Field

    Paradelo Pérez, Marcos; Katuwal, Sheela; Møldrup, Per

    2016-01-01

    -derived parameters by using a best subsets regression analysis. The regression coefficients improved using CTmatrix, limiting macroporosity, and genus density, while the best model for t0.05 used CTmatrix only. The scanning resolution and the time for soil structure development after mechanical activities could......The characterization of soil pore space geometry is important for explaining fluxes of air, water, and solutes through soil and understanding soil hydrogeochemical functions. X-ray computed tomography (CT) can be applied for this characterization, and in this study CT-derived parameters were used...... to explain water, air, and solute transport through soil. Forty-five soil columns (20 by 20 cm) were collected from an agricultural field in Estrup, Denmark, and subsequently scanned using a medical CT scanner. Nonreactive tracer leaching experiments were performed in the laboratory along with measurements...

  10. Diuron mineralisation in a Mediterranean vineyard soil: impact of moisture content and temperature.

    El Sebaï, Talaat; Devers, Marion; Lagacherie, Bernard; Rouard, Nadine; Soulas, Guy; Martin-Laurent, Fabrice

    2010-09-01

    The diuron-mineralising ability of the microbiota of a Mediterranean vineyard soil exposed each year to this herbicide was measured. The impact of soil moisture and temperature on this microbial activity was assessed. The soil microbiota was shown to mineralise diuron. This mineralising activity was positively correlated with soil moisture content, being negligible at 5% and more than 30% at 20% soil moisture content. According to a double Gaussian model applied to fit the dataset, the optimum temperature/soil moisture conditions were 27.9 degrees C/19.3% for maximum mineralisation rate and 21.9 degrees C/18.3% for maximum percentage mineralisation. The impact of temperature and soil moisture content variations on diuron mineralisation was estimated. A simulated drought period had a suppressive effect on subsequent diuron mineralisation. This drought effect was more marked when higher temperatures were used to dry (40 degrees C versus 28 degrees C) or incubate (28 degrees C versus 20 degrees C) the soil. The diuron kinetic parameters measured after drought conditions were no longer in accordance with those estimated by the Gaussian model. Although soil microbiota can adapt to diuron mineralisation, its activity is strongly dependent on climatic conditions. It suggests that diuron is not rapidly degraded under Mediterranean climate, and that arable Mediterranean soils are likely to accumulate diuron residues. (c) 2010 Society of Chemical Industry.

  11. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

    Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R

    2016-09-19

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  12. Disruption of soil aggregates by varied amounts of ultrasonic energy in fractionation of organic matter of a clay latosol : carbon, nitrogen and 13C distribution in particle-size fractions

    Roscoe, R.; Buurman, P.; Velthorst, E.J.

    2000-01-01

    Ultrasonic energy has been widely used to disrupt soil aggregates before fractionating soil physically when studying soil organic matter (SOM). Nevertheless, there is no consensus about the optimum energy desirable to disrupt the soil. We therefore aimed (i) to quantify the effect of varied

  13. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change

    Grote, Edmund E.; Belnap, Jayne; Housman, David C.; Sparks, Jed P.

    2010-01-01

    Biological soil crusts (biocrusts) are an integral part of the soil system in arid regions worldwide, stabilizing soil surfaces, aiding vascular plant establishment, and are significant sources of ecosystem nitrogen and carbon. Hydration and temperature primarily control ecosystem CO2 flux in these systems. Using constructed mesocosms for incubations under controlled laboratory conditions, we examined the effect of temperature (5-35 1C) and water content (WC, 20-100%) on CO2 exchange in light cyanobacterially dominated) and dark cyanobacteria/lichen and moss dominated) biocrusts of the cool Colorado Plateau Desert in Utah and the hot Chihuahuan Desert in New Mexico. In light crusts from both Utah and New Mexico, net photosynthesis was highest at temperatures 430 1C. Net photosynthesis in light crusts from Utah was relatively insensitive to changes in soil moisture. In contrast, light crusts from New Mexico tended to exhibit higher rates of net photosynthesis at higher soil moisture. Dark crusts originating from both sites exhibited the greatest net photosynthesis at intermediate soil water content (40-60%). Declines in net photosynthesis were observed in dark crusts with crusts from Utah showing declines at temperatures 425 1C and those originating from New Mexico showing declines at temperatures 435 1C. Maximum net photosynthesis in all crust types from all locations were strongly influenced by offsets in the optimal temperature and water content for gross photosynthesis compared with dark respiration. Gross photosynthesis tended to be maximized at some intermediate value of temperature and water content and dark respiration tended to increase linearly. The results of this study suggest biocrusts are capable of CO2 exchange under a wide range of conditions. However, significant changes in the magnitude of this exchange should be expected for the temperature and precipitation changes suggested by current climate models.

  14. An experimental study of soil temperature regimes associated with solar disinfestation techniques under greenhouse conditions in Greece.

    Garofalakis, I; Tsiros, I; Frangoudakis, A; Chronopoulos, K; Flouri, F

    2006-01-01

    This paper deals with an experimental study of various techniques that have been applied for soil disinfestation purposes under greenhouse conditions. Various meteorological parameters and soil temperatures were measured for four different experimental soil segments (three associated with different disinfestation techniques and one as a reference) at depths varying between 0-1 m and with a time interval of 5 min in a greenhouse located in the Agricultural University of Athens Campus, Greece. Results showed that plastic polyethylene films such as covers, metallic conductors or a combination of both were able to enhance heat transfer and temperature increase in greenhouse soil. For typical disinfestation conditions, the depth-averaged temperature values for plastic covers, metallic conductors, and the combination of both were found to be higher than those for the reference of about 5 degrees C, 12 degrees C and 15 micro C, respectively. Moreover, the remained population percentages 50 days after the initiation of the experiment were found to be 19.3%, 25.3%, 37.3% Kcat 94% of the initial population, for the combination of metallic conductors and plastic covers, metallic conductors, plastic cover, and for the reference, respectively.

  15. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  16. Inferring near surface soil temperature time series from different land uses to quantify the variation of heat fluxes into a shallow aquifer in Austria

    Kupfersberger, Hans; Rock, Gerhard; Draxler, Johannes C.

    2017-09-01

    Different land uses exert a strong spatially distributed and temporal varying signal of heat fluxes from the surface in or out of the ground. In this paper we show an approach to quantify the heat fluxes into a groundwater body differentiating between near surface soil temperatures under grass, forest, asphalt, agriculture and surface water bodies and heat fluxes from subsurface structures like heated basements or sewage pipes. Based on observed time series of near surface soil temperatures we establish individual parameters (e.g. shift, moving average) of a simple empirical function that relates air temperature to soil temperature. This procedure is useful since air temperature time series are readily available and the complex energy flux processes at the soil atmosphere interface do not need to be described in detail. To quantify the heat flux from heated subsurface structures that have lesser depths to the groundwater table the 1D heat conduction module SoilTemp is developed. Based on soil temperature time series observed at different depths in a research lysimeter heat conduction and heat storage capacity values are calibrated disregarding their dependence on the water content. With SoilTemp the strong interaction between time series of groundwater temperature and groundwater level, near surface soil temperatures and the basement temperatures in heated buildings could be evaluated showing the dynamic nature of thermal gradients. The heat fluxes from urban areas are calculated considering the land use patterns within a spatial unit by mixing the heat fluxes from basements with those under grass and asphalt. The heat fluxes from sewage pipes and of sewage leakage are shown to be negligible for evaluated pipe diameters and sewage discharges. The developed methodology will allow to parameterize the upper boundary of heat transport models and to differentiate between the heat fluxes from different surface usages and their dynamics into the subsurface.

  17. Elevated-temperature benchmark tests of simply supported beams and circular plates subjected to time-varying loadings

    Corum, J.M.; Richardson, M.; Clinard, J.A.

    1977-01-01

    This report presents the measured elastic-plastic-creep responses of eight simply supported type 304 stainless steel beams and circular plates that were subjected to time-varying loadings at elevated temperature. The tests were performed to provide experimental benchmark problem data suitable for assessing inelastic analysis methods and for validating computer programs. Beams and plates exhibit the essential features of inelastic structural behavior; yet they are relatively simple and the experimental results are generally easy to interpret. The stress fields are largely uniaxial in beams, while multiaxial effects are introduced in plates. The specimens tested were laterally loaded at the center and subjected to either a prescribed load or a center deflection history. The specimens were machined from a common well-characterized heat of material, and all the tests were performed at a temperature of 593 0 C (1100 0 F). Test results are presented in terms of the load and center deflection behaviors, which typify the overall structural behavior. Additional deflection data, as well as strain gage results and mechanical properties data for the beam and plate material, are provided in the appendices

  18. Evaluation of varying ductile fracture criteria for 42CrMo steel by compressions at different temperatures and strain rates.

    Quan, Guo-zheng; Luo, Gui-chang; Mao, An; Liang, Jian-ting; Wu, Dong-sen

    2014-01-01

    Fracturing by ductile damage occurs quite naturally in metal forming processes, and ductile fracture of strain-softening alloy, here 42CrMo steel, cannot be evaluated through simple procedures such as tension testing. Under these circumstances, it is very significant and economical to find a way to evaluate the ductile fracture criteria (DFC) and identify the relationships between damage evolution and deformation conditions. Under the guidance of the Cockcroft-Latham fracture criteria, an innovative approach involving hot compression tests, numerical simulations, and mathematic computations provides mutual support to evaluate ductile damage cumulating process and DFC diagram along with deformation conditions, which has not been expounded by Cockcroft and Latham. The results show that the maximum damage value appears in the region of upsetting drum, while the minimal value appears in the middle region. Furthermore, DFC of 42CrMo steel at temperature range of 1123~1348 K and strain rate of 0.01~10 s(-1) are not constant but change in a range of 0.160~0.226; thus, they have been defined as varying ductile fracture criteria (VDFC) and characterized by a function of temperature and strain rate. In bulk forming operations, VDFC help technicians to choose suitable process parameters and avoid the occurrence of fracture.

  19. Evaluation of Varying Ductile Fracture Criteria for 42CrMo Steel by Compressions at Different Temperatures and Strain Rates

    Guo-zheng Quan

    2014-01-01

    Full Text Available Fracturing by ductile damage occurs quite naturally in metal forming processes, and ductile fracture of strain-softening alloy, here 42CrMo steel, cannot be evaluated through simple procedures such as tension testing. Under these circumstances, it is very significant and economical to find a way to evaluate the ductile fracture criteria (DFC and identify the relationships between damage evolution and deformation conditions. Under the guidance of the Cockcroft-Latham fracture criteria, an innovative approach involving hot compression tests, numerical simulations, and mathematic computations provides mutual support to evaluate ductile damage cumulating process and DFC diagram along with deformation conditions, which has not been expounded by Cockcroft and Latham. The results show that the maximum damage value appears in the region of upsetting drum, while the minimal value appears in the middle region. Furthermore, DFC of 42CrMo steel at temperature range of 1123~1348 K and strain rate of 0.01~10 s-1 are not constant but change in a range of 0.160~0.226; thus, they have been defined as varying ductile fracture criteria (VDFC and characterized by a function of temperature and strain rate. In bulk forming operations, VDFC help technicians to choose suitable process parameters and avoid the occurrence of fracture.

  20. Active Distribute Temperature Sensing to Estimate Vertical Water Content Variations in a Loamy-Sandy Soil

    Ciocca, F.; Van De Giesen, N.; Assouline, S.; Huwald, H.; Hopmans, J. W.; Lunati, I.; Parlange, M. B.

    2011-12-01

    Optical fibers in combination with Raman scattering measurements (Distributed Temperature Sensor: DTS) have recently become more standard for the measurement of soil temperature. A recently developed technique to measure soil moisture called Active DTS (ADTS) is investigated in this study. ADTS consists of an application of a heat pulse for a fixed duration and power along the metal sheath covering the optical fiber placed in the soil. Soil moisture can be inferred from the increased temperature measured during the heating phase and the subsequent temperature decrease during the cooling phase. We assess this technique for a loamy-sandy soil as part of a field campaign that took place during the 2011 summer at EPFL. The measurements were taken within a weighing lysimeter (2.5 m depth and 1.2 m diameter) using an optical fiber arranged in 15 loops for a total measurement length of 52 m in the top 80 cm of the soil profile. Local soil moistures were simultaneously measured using capacity-based probes. Thermocouples, wrapped around the fiber, are used to account for the effects of the insulating cover surrounding the cable. Heat pulses of various duration and power have been applied for a range of soil moistures. Measurements were taken during periods of drainage and evaporation. The accuracy of the technique for the EPFL 2011 field campaign and the experiment are discussed and the soil moisture measurements are presented.

  1. Effect of Water Quality and Temperature on the Efficiency of Two Kinds of Hydrophilic Polymers in Soil.

    Dehkordi, Davoud Khodadadi

    2018-06-01

      In this study, evaluation of two-superabsorbent effects, Super-AB-A-300 and Super-AB-A-200 in a sandy soil on the water retention capability and saturated hydraulic conductivity (Ks) at different water quality and soil temperature were done. The Super-AB-A-200 was less effective in water uptake than Super-AB-A-300. The efficiency of these polymers in water retention was negatively influenced by the water quality and temperature. The efficiency of these polymer treatments in water uptake reduced significantly (P < 0.05) with increasing soil temperature. In the control soil, the Ks stayed nearly constant with increasing soil temperature. As compared to the untreated control, the treated soil demonstrated a significant (P < 0.05) linear increase of Ks with increasing soil temperature. In the control soil, the water holding properties curve did not change with increasing soil temperature.

  2. An Operational In Situ Soil Moisture & Soil Temperature Monitoring Network for West Wales, UK: The WSMN Network.

    Petropoulos, George P; McCalmont, Jon P

    2017-06-23

    This paper describes a soil moisture dataset that has been collecting ground measurements of soil moisture, soil temperature and related parameters for west Wales, United Kingdom. Already acquired in situ data have been archived to the autonomous Wales Soil Moisture Network (WSMN) since its foundation in July 2011. The sites from which measurements are being collected represent a range of conditions typical of the Welsh environment, with climate ranging from oceanic to temperate and a range of the most typical land use/cover types found in Wales. At present, WSMN consists of a total of nine monitoring sites across the area with a concentration of sites in three sub-areas around the region of Aberystwyth located in Mid-Wales. The dataset of composed of 0-5 (or 0-10) cm soil moisture, soil temperature, precipitation, and other ancillary data. WSMN data are provided openly to the public via the International Soil Moisture Network (ISMN) platform. At present, WSMN is also rapidly expanding thanks to funding obtained recently which allows more monitoring sites to be added to the network to the wider community interested in using its data.

  3. Western US high June 2015 temperatures and their relation to global warming and soil moisture

    Philip, Sjoukje Y.; Kew, Sarah F.; Hauser, Mathias; Guillod, Benoit P.; Teuling, Adriaan J.; Whan, Kirien; Uhe, Peter; Oldenborgh, Geert Jan van

    2018-04-01

    The Western US states Washington (WA), Oregon (OR) and California (CA) experienced extremely high temperatures in June 2015. The temperature anomalies were so extreme that they cannot be explained with global warming alone. We investigate the hypothesis that soil moisture played an important role as well. We use a land surface model and a large ensemble from the weather@home modelling effort to investigate the coupling between soil moisture and temperature in a warming world. Both models show that May was anomalously dry, satisfying a prerequisite for the extreme heat wave, and they indicate that WA and OR are in a wet-to-dry transitional soil moisture regime. We use two different land surface-atmosphere coupling metrics to show that there was strong coupling between temperature, latent heat flux and the effect of soil moisture deficits on the energy balance in June 2015 in WA and OR. June temperature anomalies conditioned on wet/dry conditions show that both the mean and extreme temperatures become hotter for dry soils, especially in WA and OR. Fitting a Gaussian model to temperatures using soil moisture as a covariate shows that the June 2015 temperature values fit well in the extrapolated empirical temperature/drought lines. The high temperature anomalies in WA and OR are thus to be expected, given the dry soil moisture conditions and that those regions are in the transition from a wet to a dry regime. CA is already in the dry regime and therefore the necessity of taking soil moisture into account is of lower importance.

  4. Soil respiration sensitivities to water and temperature in a revegetated desert

    Zhang, Zhi-Shan; Dong, Xue-Jun; Xu, Bing-Xin; Chen, Yong-Le; Zhao, Yang; Gao, Yan-Hong; Hu, Yi-Gang; Huang, Lei

    2015-04-01

    Soil respiration in water-limited ecosystems is affected intricately by soil water content (SWC), temperature, and soil properties. Eight sites on sand-fixed dunes that revegetated in different years since 1950s, with several topographical positions and various biological soil crusts (BSCs) and soil properties, were selected, as well as a moving sand dune (MSD) and a reference steppe in the Tengger Desert of China. Intact soil samples of 20 cm in depth were taken and incubated randomly at 12 levels of SWC (0 to 0.4 m3 m-3) and at 9 levels of temperature (5 to 45°C) in a growth chamber; additionally, cryptogamic and microbial respirations (RM) were measured. Total soil respiration (RT, including cryptogamic, microbial, and root respiration) was measured for 2 years at the MSD and five sites of sand-fixed dunes. The relationship between RM and SWC under the optimal SWC condition (0.25 m3 m-3) is linear, as is the entire range of RT and SWC. The slope of linear function describes sensitivity of soil respiration to water (SRW) and reflects to soil water availability, which is related significantly to soil physical properties, BSCs, and soil chemical properties, in decreasing importance. Inversely, Q10 for RM is related significantly to abovementioned factors in increasing importance. However, Q10 for RT and respiration rate at 20°C are related significantly to soil texture and depth of BSCs and subsoil only. In conclusion, through affecting SRW, soil physical properties produce significant influences on soil respiration, especially for RT. This indicates that a definition of the biophysical meaning of SRW is necessary, considering the water-limited and coarse-textured soil in most desert ecosystems.

  5. Potential denitrification in arable soil samples at winter temperatures - measurements by 15N gas analysis

    Lippold, H.; Foerster, I.; Matzel, W.

    1989-01-01

    In samples from the plough horizon of five soils taken after cereal harvest, denitrification was measured as volatilization of N 2 and N 2 O from 15 N nitrate in the absence of O 2 . Nitrate contents lower than 50 ppm N (related to soil dry matter) had only a small effect on denitrification velocity in four of the five soils. In a clay soil dependence on nitrate concentration corresponded to a first-order reaction. Available C was no limiting factor. Even at zero temperatures remarkable N amounts (on average 0.2 ppm N per day) were still denitrified. The addition of daily turnover rates in relation to soil temperatures prevailing from December to March revealed potential turnovers in the 0-to-30-cm layer of the soils to average 28 ± 5 ppm N. (author)

  6. The effect of elevated CO2 and temperature on nutrient uptake by plants grown in basaltic soil

    Villasenor Iribe, E.; Dontsova, K.; Juarez, S.; Le Galliard, J. F.; Chollet, S.; Llavata, M.; Massol, F.; Barré, P.; Gelabert, A.; Daval, D.; Troch, P.; Barron-Gafford, G.; Van Haren, J. L. M.; Ferrière, R.

    2017-12-01

    Mineral weathering is an important process in soil formation. The interactions between the hydrologic, geologic and atmospheric cycles often determine the rate at which weathering occurs. Elements and nutrients weathered from the soil by water can be removed from soils in the runoff and seepage, but they can also remain in situ as newly precipitated secondary minerals or in biomass as a result of plant uptake. Here we present data from an experiment that was conducted at the controlled environment facility, Ecotron Ile-de-France (Saint-Pierre-les-Nemours, France) that studied mineral weathering and plant growth in granular basaltic material with high glass content that is being used to simulate soil in large scale Biosphere 2 Landscape Evolution Observatory (LEO) project. The experiment used 3 plant types: velvet mesquite (Prosopis velutina), green spangletop (Leptochloa dubia), and alfalfa (Medicago sativa), which were grown under varying temperature and CO2 conditions. We hypothesized that plants grown under warmer, higher CO2 conditions would have larger nutrient concentrations as more mineral weathering would occur. Results of plant digestions and analysis showed that plant concentrations of lithogenic elements were significantly influenced by the plant type and were different between above- and below-ground parts of the plant. Temperature and CO2 treatment effects were less pronounced, but we observed significant temperature effect on plant uptake. A number of major and trace elements showed increase in concentration with increase in temperature at elevated atmospheric CO2. Effect was observed both in the shoots and in the roots, but more significant differences were observed in the shoots. Results presented here indicate that climate change would have strong effect on plant uptake and mobility of weathered elements during soil formation and give further evidence of interactions between abiotic and biological processes in terrestrial ecosystems.

  7. Improved Seasonal Prediction of European Summer Temperatures With New Five-Layer Soil-Hydrology Scheme

    Bunzel, Felix; Müller, Wolfgang A.; Dobrynin, Mikhail; Fröhlich, Kristina; Hagemann, Stefan; Pohlmann, Holger; Stacke, Tobias; Baehr, Johanna

    2018-01-01

    We evaluate the impact of a new five-layer soil-hydrology scheme on seasonal hindcast skill of 2 m temperatures over Europe obtained with the Max Planck Institute Earth System Model (MPI-ESM). Assimilation experiments from 1981 to 2010 and 10-member seasonal hindcasts initialized on 1 May each year are performed with MPI-ESM in two soil configurations, one using a bucket scheme and one a new five-layer soil-hydrology scheme. We find the seasonal hindcast skill for European summer temperatures to improve with the five-layer scheme compared to the bucket scheme and investigate possible causes for these improvements. First, improved indirect soil moisture assimilation allows for enhanced soil moisture-temperature feedbacks in the hindcasts. Additionally, this leads to improved prediction of anomalies in the 500 hPa geopotential height surface, reflecting more realistic atmospheric circulation patterns over Europe.

  8. Growing season soil moisture following restoration treatments of varying intensity in semi-arid ponderosa pine forests

    O'Donnell, F. C.; Springer, A. E.; Sankey, T.; Masek Lopez, S.

    2014-12-01

    Forest restoration projects are being planned for large areas of overgrown semi-arid ponderosa pine forests of the Southwestern US. Restoration involves the thinning of smaller trees and prescribed or managed fire to reduce tree density, restore a more natural fire regime, and decrease the risk of catastrophic wildfire. The stated goals of these projects generally reduced plant water stress and improvements in hydrologic function. However, little is known about how to design restoration treatments to best meet these goals. As part of a larger project on snow cover, soil moisture, and groundwater recharge, we measured soil moisture, an indicator of plant water status, in four pairs of control and restored sites near Flagstaff, Arizona. The restoration strategies used at the sites range in both amount of open space created and degree of clustering of the remaining trees. We measured soil moisture using 30 cm vertical time domain reflectometry probes installed on 100 m transects at 5 m intervals so it would be possible to analyze the spatial pattern of soil moisture. Soil moisture was higher and more spatially variable in the restored sites than the control sites with differences in spatial pattern among the restoration types. Soil moisture monitoring will continue until the first snow fall, at which point measurements of snow depth and snow water equivalent will be made at the same locations.

  9. Roots affect the response of heterotrophic soil respiration to temperature in tussock grass microcosms.

    Graham, Scott L; Millard, Peter; Hunt, John E; Rogers, Graeme N D; Whitehead, David

    2012-07-01

    While the temperature response of soil respiration (R(S)) has been well studied, the partitioning of heterotrophic respiration (R(H)) by soil microbes from autotrophic respiration (R(A)) by roots, known to have distinct temperature sensitivities, has been problematic. Further complexity stems from the presence of roots affecting R(H), the rhizosphere priming effect. In this study the short-term temperature responses of R(A) and R(H) in relation to rhizosphere priming are investigated. Temperature responses of R(A), R(H) and rhizosphere priming were assessed in microcosms of Poa cita using a natural abundance δ(13)C discrimination approach. The temperature response of R(S) was found to be regulated primarily by R(A), which accounted for 70 % of total soil respiration. Heterotrophic respiration was less sensitive to temperature in the presence of plant roots, resulting in negative priming effects with increasing temperature. The results emphasize the importance of roots in regulating the temperature response of R(S), and a framework is presented for further investigation into temperature effects on heterotrophic respiration and rhizosphere priming, which could be applied to other soil and vegetation types to improve models of soil carbon turnover.

  10. Temperature sensitivity of soil respiration is dependent on readily decomposable C substrate concentration

    Larionova, A. A.; Yevdokimov, I. V.; Bykhovets, S. S.

    2007-06-01

    Temperature acclimation of soil organic matter (SOM) decomposition is one of the major uncertainties in predicting soil CO2 efflux by the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006) based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax) and half- saturation constant (Ks) cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of the data obtained in the incubation experiments with forest and arable soils. Our data confirm the hypothesis and suggest that concentration of readily decomposable C substrate as glucose equivalent is an important factor controlling temperature sensitivity. The highest temperature sensitivity was observed when C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, explaining this phenomenon by changes in concentration of readily decomposable C substrate. It is worth noting that this pattern works regardless of the origin of C substrate: production by SOM decomposition, release into the soil by rhizodeposition, litter fall or drying-rewetting events.

  11. Dynamics and characteristics of soil temperature and moisture of active layer in central Tibetan Plateau

    Zhao, L.; Hu, G.; Wu, X.; Tian, L.

    2017-12-01

    Research on the hydrothermal properties of active layer during the thawing and freezing processes was considered as a key question to revealing the heat and moisture exchanges between permafrost and atmosphere. The characteristics of freezing and thawing processes at Tanggula (TGL) site in permafrost regions on the Tibetan Plateau, the results revealed that the depth of daily soil temperature transmission was about 40 cm shallower during thawing period than that during the freezing period. Soil warming process at the depth above 140 cm was slower than the cooling process, whereas they were close below 140 cm depth. Moreover, the hydro-thermal properties differed significantly among different stages. Precipitation caused an obviously increase in soil moisture at 0-20 cm depth. The vertical distribution of soil moisture could be divided into two main zones: less than 12% in the freeze state and greater than 12% in the thaw state. In addition, coupling of moisture and heat during the freezing and thawing processes also showed that soil temperature decreased faster than soil moisture during the freezing process. At the freezing stage, soil moisture exhibited an exponential relationship with the absolute soil temperature. Energy consumed for water-ice conversion during the freezing process was 149.83 MJ/m2 and 141.22 MJ/m2 in 2011 and 2012, respectively, which was estimated by the soil moisture variation.

  12. Assesment of a soil moisture retrieval with numerical weather prediction model temperature

    The effect of using a Numerical Weather Prediction (NWP) soil temperature product instead of estimates provided by concurrent 37 GHz data on satellite-based passive microwave retrieval of soil moisture retrieval was evaluated. This was prompted by the change in system configuration of preceding mult...

  13. Phenophases alter the soil respiration-temperature relationship in an oak-dominated forest

    Jared L. DeForest; Askoo Noormets; Steve G. McNulty; Ge Sun; Gwen Teeney; Jiquan Chen

    2006-01-01

    Soil respiration (SR) represents a major component of forest ecosystem respiration and is influenced seasonally by environmental factors such as temperature, soil moisture, root respiration, and litter fall. Changes in these environmental factors correspond with shifts in plant phenology. In this study, we examined the relationship between canopy phenophases @re-growth...

  14. Soil Temperature Station Data from Permafrost Regions of Russia (Selection of Five Stations), 1880s - 2000

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set includes soil temperature data from boreholes located at five stations in Russia: Yakutsk, Verkhoyansk, Pokrovsk, Isit', and Churapcha. The data have...

  15. Time series modelling of increased soil temperature anomalies during long period

    Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar

    2015-10-01

    Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.

  16. Soil and vegetation changes after clear-felling coniferous forests: effects of varying removal of logging residues

    Olsson, Bengt.

    1995-01-01

    Effects of the intensity of logging residue harvesting on soil nutrient status and ground vegetation cover were examined over a 16-year period in two series of field experiments in Sweden. Short-term effects of slash harvesting and stump removal on soil water chemistry were studied after clear-felling a Norway spruce (Picea abies (L.) Karst.) stand in SW Sweden. Soil water concentrations of NH4 + , and NO 3 - and K + were lower shortly after whole-tree harvesting (i.e. stem and slash harvesting) than shortly after conventional stem-only harvesting or complete tree harvesting (i.e. stem, slash and stump removal). However, 5 years later there were no longer differences in nutrient concentrations detected between treatments, and nutrient levels approached those normally found in drainage water from forest land. Similar studies focussed on long-term (16 years) effects were conducted on four coniferous forest sites in Sweden, two in north and the other two in the south. In each region one site was situated in a pure Scots pine stand (Pinus sylvestris L.) and the other in a pure Norway spruce stand. In general, the intensity of slash harvesting had no effect on the total pools of nitrogen or carbon in the soil. Furthermore, this study showed experimentally that the harvesting of logging residues results in long-term soil acidification and depletions of exchangeable base cations, manganese and zinc pools, which lead in turn to a reduction in base saturation levels. A major implication for practical forestry was that guidelines and recommendations concerning the large-scale utilization of logging residues should be based more on the nutritional and soil acidifying consequences of this practice than on its potential effect on soil organic matter storage. It would also be possible to mitigate the detrimental effects that slash harvesting has on site conditions by applying wood-ash or other nutrients in inorganic form. 53 refs, 4 figs, 4 tabs

  17. Soil and vegetation changes after clear-felling coniferous forests: effects of varying removal of logging residues

    Olsson, Bengt

    1995-11-01

    Effects of the intensity of logging residue harvesting on soil nutrient status and ground vegetation cover were examined over a 16-year period in two series of field experiments in Sweden. Short-term effects of slash harvesting and stump removal on soil water chemistry were studied after clear-felling a Norway spruce (Picea abies (L.) Karst.) stand in SW Sweden. Soil water concentrations of NH4{sup +}, and NO{sub 3}{sup -} and K{sup +} were lower shortly after whole-tree harvesting (i.e. stem and slash harvesting) than shortly after conventional stem-only harvesting or complete tree harvesting (i.e. stem, slash and stump removal). However, 5 years later there were no longer differences in nutrient concentrations detected between treatments, and nutrient levels approached those normally found in drainage water from forest land. Similar studies focussed on long-term (16 years) effects were conducted on four coniferous forest sites in Sweden, two in north and the other two in the south. In each region one site was situated in a pure Scots pine stand (Pinus sylvestris L.) and the other in a pure Norway spruce stand. In general, the intensity of slash harvesting had no effect on the total pools of nitrogen or carbon in the soil. Furthermore, this study showed experimentally that the harvesting of logging residues results in long-term soil acidification and depletions of exchangeable base cations, manganese and zinc pools, which lead in turn to a reduction in base saturation levels. A major implication for practical forestry was that guidelines and recommendations concerning the large-scale utilization of logging residues should be based more on the nutritional and soil acidifying consequences of this practice than on its potential effect on soil organic matter storage. It would also be possible to mitigate the detrimental effects that slash harvesting has on site conditions by applying wood-ash or other nutrients in inorganic form. 53 refs, 4 figs, 4 tabs

  18. CO2, Temperature, and Soil Moisture Interactions Affect NDVI and Reproductive Phenology in Old-Field Plant Communities

    Engel, C.; Weltzin, J.; Norby, R.

    2004-12-01

    Plant community composition and ecosystem function may be altered by global atmospheric and climate change, including increased atmospheric [CO2], temperature, and varying precipitation regimes. We are conducting an experiment at Oak Ridge National Laboratory (ORNL) utilizing open-top chambers to administer experimental treatments of elevated CO2 (+300 ppm), warming (+ 3 degrees Celsius), and varying soil moisture availability to experimental plant communities constructed of seven common old-field species, including C3 and C4 grasses, forbs, and legumes. During 2004 we monitored plant community phenology (NDVI) and plant reproductive phenology. Early in the year, NDVI was greater in wet treatment plots, and was unaffected by main effects of temperature or CO2. This result suggests that early in the season warming is insufficient to affect early canopy development. Differences in soil moisture sustained throughout the winter and into early spring may constitute an important control on early canopy greenup. Elevated CO2 alleviated detrimental effects of warming on NDVI, but only early in the season. As ambient temperatures increased, elevated temperatures negatively impacted NDVI only in the dry plots. Wetter conditions ameliorate the effects of warming on canopy greenness during the warmer seasons of the year. Warming increased rates of bolting, number of inflorescences, and time to reproductive maturity for Andropogon virginicus (a C4 bunchgrass). Solidago Canadensis (a C3 late-season forb) also produced flowers earlier in elevated temperatures. Conversely, none of the C3 grasses and forbs that bolt or flower in late spring or early summer responded to temperature or CO2. Results indicate that warming and drought may impact plant community phenology, and plant species reproductive phenology. Clearly community phenology is driven by complex interactions among temperature, water, and CO2 that change throughout the season. Our data stresses the importance of

  19. Effect of Sowing Quantity on Soil Temperature and Yield of Winter Wheat under Straw Strip Mulching in Arid Region of Northwest China

    Lan, Xuemei; Chai, Yuwei; Li, Rui; Li, Bowen; Cheng, Hongbo; Chang, Lei; Chai, Shouxi

    2018-01-01

    In order to explore the characteristics and relationship between soil temperature and yield of winter wheat, under different sowing quantities conditions of straw mulching conventional drilling in Northwest China, this study took Lantian 26 as material, under the whole corn mulching conventional drilling in Changhe town and Pingxiang town, setting up 3 different seeding quantities of 270 kg/ha (SSMC1), 324 kg/ha (SSMC2) and 405 kg/ha (SSMC3), to study the difference of soil temperature during the growth period of winter wheat and its correlation with yield components. Results showed: the average soil temperature of 0∼25cm in two ecological zones in the whole growth period have a significant change with the increase of sowing quantities; too much seeding had a sharp drop in soil temperature; the highest temperature of SSMC in Changhe town was the middle quantity of SSMC 2; the highest temperature of SSMC in Pingxiang town was the lowest sowing quantity of SSMC1. Diurnal variation of soil temperature at all growth stages showed: with the increase of SSMC, in the morning it increased with the increase of soil depth, noon and evening reducing with the depth of the soil. The average soil temperature of SSMC2 was higher than that of in all the two ecological zones in the whole growth period of SSMC.The maximum day temperature difference of each treatment was at noon. With the increase of SSMC, the yield increase varied with two ecological zones. SSMC of the local conventional sowing quantity of 270kg/ha SSMC1 yield was the highest in Changhe Town. SSMC of the middle sowing quantity SSMC2 of 324kg/ha yield was the highest in Pingxiang town. The difference of grain number per spike was the main cause of yield difference among these 3 treatments. Correlation analysis showed: the correlation among the yield and yield components, growth index and soil temperature varied with different ecological zones; thousand kernel weight and grain number per ear (.964** and.891**) had a

  20. Fate of cadmium at the soil-solution interface: a thermodynamic study as influenced by varying pH at South 24 Parganas, West Bengal, India.

    Karak, Tanmoy; Paul, Ranjit Kumar; Das, Sampa; Das, Dilip K; Dutta, Amrit Kumar; Boruah, Romesh K

    2015-11-01

    A study on the sorption kinetics of Cd from soil solution to soils was conducted to assess the persistence of Cd in soil solution as it is related to the leaching, bioavailability, and potential toxicity of Cd. The kinetics of Cd sorption on two non-contaminated alkaline soils from Canning (22° 18' 48.02″ N and 88° 39' 29.0″ E) and Lakshmikantapur (22° 06' 16.61″ N and 88° 19' 08.66″ E) of South 24 Parganas, West Bengal, India, were studied using conventional batch experiment. The variable soil suspension parameters were pH (4.00, 6.00, 8.18, and 9.00), temperatures (308, 318, and 328 K) and Cd concentrations (5-100 mg L(-1)). The average rate coefficient (kavg) and half-life (t1/2) values indicate that the persistence of Cd in soil solution is influenced by both temperature and soil suspension pH. The concentration of Cd in soil solution decreases with increase of temperature; therefore, Cd sorption on the soil-solution interface is an endothermic one. Higher pH decreases the t 1/2 of Cd in soil solution, indicating that higher pH (alkaline) is not a serious concern in Cd toxicity than lower pH (acidic). Based on the energy of activation (Ea) values, Cd sorption in acidic pH (14.76±0.29 to 64.45±4.50 kJ mol(-1)) is a surface control phenomenon and in alkaline pH (9.33±0.09 to 44.60±2.01 kJ mol(-1)) is a diffusion control phenomenon The enthalpy of activation (ΔH∓) values were found to be between 7.28 and 61.73 kJ mol(-1). Additionally, higher positive energy of activation (ΔG∓) values (46.82±2.01 to 94.47±2.36 kJ mol(-1)) suggested that there is an energy barrier for product formation.

  1. Soil application of ash produced by low-temperature fluidized bed gasification: effects on soil nutrient dynamics and crop response

    Müller-Stöver, Dorette Sophie; Ahrenfeldt, Jesper; Holm, Jens Kai

    2012-01-01

    not significantly altered after ash application. SA was generally able to increase the levels of Olsen-P and of the ammonium acetate/acetic acid-extractable K in soil as well as to improve the yield of barley and maize, whereas faba bean did not react positively to ash amendment. CP did not show beneficial effects......Recycling of residual products of bioenergy conversion processes is important for adding value to the technologies and as a potential beneficial soil fertility amendment. In this study, two different ash materials originating from low temperature circulating fluidized bed (LT-CFB) gasification...... of either wheat straw (SA) or residue fibers mainly from citrus peels (CP) were tested regarding their potential to be used as fertilizer on agricultural soils. A soil incubation study, a greenhouse experiment with barley and faba bean, and an accompanying outdoor experiment with maize were carried out...

  2. Effects of temperature and copper pollution on soil community--extreme temperature events can lead to community extinction.

    Menezes-Oliveira, Vanessa B; Scott-Fordsmand, Janeck J; Soares, Amadeu M V M; Amorim, Monica J B

    2013-12-01

    Global warming affects ecosystems and species' diversity. The physiology of individual species is highly influenced by changes in temperature. The effects on species communities are less studied; they are virtually unknown when combining effects of pollution and temperature. To assess the effects of temperature and pollution in the soil community, a 2-factorial soil mesocosms multispecies experiment was performed. Three exposure periods (28 d, 61 d, and 84 d) and 4 temperatures (19 °C, 23 °C, 26 °C, and 29 °C) were tested, resembling the mean annual values for southern Europe countries and extreme events. The soil used was from a field site, clean, or spiked with Cu (100 mg Cu/kg). Results showed clear differences between 29 °C treatment and all other temperature treatments, with a decrease in overall abundance of organisms, further potentiated by the increase in exposure time. Folsomia candida was the most abundant species and Enchytraeus crypticus was the most sensitive to Cu toxicity. Differences in species optimum temperatures were adequately covered: 19 °C for Hypoaspis aculeifer or 26 °C for E. crypticus. The temperature effects were more pronounced the longer the exposure time. Feeding activity decreased with higher temperature and exposure time, following the decrease in invertebrate abundance, whereas for the same conditions the organic matter turnover increased. Hence, negative impacts on ecosystem services because of temperature increase can be expected by changes on soil function and as consequence of biodiversity loss. © 2013 SETAC.

  3. Microbial activities in boreal soils: Biodegradation of organic contaminants at low temperature and ammonia oxidation

    Kurola, J. (University of Helsinki, Faculty of Biosciences, Department of Ecological and Environmental Sciences, Lahti (FI))

    2006-07-01

    This thesis deals with the response of biodegradation of selected anthropogenic organic contaminants and natural autochthonous organic matter to low temperature in boreal surface soils. Furthermore, the thesis describes activity, diversity and population size of autotrophic ammonia-oxidizing bacteria (AOB) in a boreal soil used for landfarming of oil-refinery wastes, and presents a new approach, in which the particular AOB were enriched and cultivated in situ from the landfarming soil onto cation exchange membranes. This thesis demonstrates that rhizosphere fraction of natural forest humus soil and agricultural clay loam soil from Helsinki Metropolitan area were capable of degrading of low to moderate concentrations (0.2 - 50 mug cm-3) of PCP, phenanthrene and 2,4,5-TCP at temperatures realistic to boreal climate (-2.5 to +15 deg C). At the low temperatures, the biodegradation of PCP, phenanthrene and 2,4,5-TCP was more effective (Q10-values from 1.6 to 7.6) in the rhizosphere fraction of the forest soil than in the agricultural soil. Q10-values of endogenous soil respiration (carbon dioxide evolution) and selected hydrolytic enzyme activities (acetate-esterase, butyrate-esterase and beta-glucosidase) in acid coniferous forest soil were 1.6 to 2.8 at temperatures from -3 to +30 deg C. The results indicated that the temperature dependence of decomposition of natural autochthonous soil organic matter in the studied coniferous forest was only moderate. The numbers of AOB in the landfarming (sandy clay loam) soil were determined with quantitative polymerase chain reaction (real-time PCR) and with Most Probable Number (MPN) methods, and potential ammonium oxidation activity was measured with the chlorate inhibition technique. The results indicated presence of large and active AOB populations in the heavily oil-contaminated and urea-fertilised landfarming soil. Assessment of the populations of AOB with denaturing gradient gel electrophoresis (DGGE) profiling and sequence

  4. Chromate removal as influenced by the structural changes of soil components upon carbonization at different temperatures

    Chen, K.Y.; Liu, J.C.; Chiang, P.N.; Wang, S.L.; Kuan, W.H.; Tzou, Y.M.; Deng, Y.; Tseng, K.J.; Chen, C.C.; Wang, M.K.

    2012-01-01

    Surface fire could induce heat transferring into the soil, creating a carbonized environment, which may alter the chemical compositions of soil organic matters (SOM). In the study, a surface soil was carbonized at up to 600 °C with limited air to simulate soils experiencing a surface fire, and Cr(VI) removal on the carbonized soils was investigated. NMR and FTIR analyses demonstrated a remarkable change of SOM structures at 300–400 °C. TGA-MS spectra indicated that (e.g. C 2 H 4 , CH 3 OH and C 3 H 8 ) were the major components in the evolved gases from the pyrolyzed soil. A maximum amount of Cr(VI) removal (ca. 4 mg g −1 soil) occurred for the 200 °C-carbonized soils, attributed mainly to a significant increase of Cr(VI) reduction by 0.1 M KCl extractable organic carbon (EOC) with abundant carboxylic groups. Nonetheless, the formation of aromatic C upon carbonization of the soil at >400 °C may be responsible for Cr(VI) reduction. - Highlights: ► A maximum amount of Cr(VI) removal occurred for the 200 °C-carbonized soil. ► Extractable organic carbon (EOC) was increased upon carbonization of soil. ► EOC, enriched with carboxylic groups, enhances Cr(VI) reduction by the soil. ► The formation of aromatic C on a carbonized soil may be responsible for Cr(VI) reduction. ► Reductive product of Cr(III) tends to bond on high-temperature-modified soil. - This study first addresses the importance of surface fire-induced heat transferring into the soil to the transformations of environmental pollutants, i.e. chromium.

  5. Temperature response of soil respiration is dependent on concentration of readily decomposable C

    A. A. Larionova

    2007-12-01

    Full Text Available Temperature acclimation of soil organic matter (SOM decomposition is one of the major uncertainties in predicting soil CO2 efflux associated with the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006 based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax and half-saturation constant (Ks cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of data obtained in incubation experiments with forest and arable soils. Our data support the hypothesis and suggest that concentration of readily decomposable C substrate (as glucose equivalents and temperature dependent substrate release are the important factors controlling temperature sensitivity of soil respiration. The highest temperature sensitivity of soil respiration was observed when substrate release was temperature dependent and C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant by glucose addition resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, attributing this phenomenon to changes in concentration of readily decomposable C substrate.

  6. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site.

    Chang, Wonjae; Klemm, Sara; Beaulieu, Chantale; Hawari, Jalal; Whyte, Lyle; Ghoshal, Subhasis

    2011-02-01

    Several studies have shown that biostimulation in ex situ systems such as landfarms and biopiles can facilitate remediation of petroleum hydrocarbon contaminated soils at sub-Arctic sites during summers when temperatures are above freezing. In this study, we examine the biodegradation of semivolatile (F2: C10-C16) and nonvolatile (F3: C16-C34) petroleum hydrocarbons and microbial respiration and population dynamics at post- and presummer temperatures ranging from -5 to 14 °C. The studies were conducted in pilot-scale tanks with soils obtained from a historically contaminated sub-Arctic site in Resolution Island (RI), Canada. In aerobic, nutrient-amended, unsaturated soils, the F2 hydrocarbons decreased by 32% during the seasonal freeze-thaw phase where soils were cooled from 2 to -5 °C at a freezing rate of -0.12 °C d(-1) and then thawed from -5 to 4 °C at a thawing rate of +0.16 °C d(-1). In the unamended (control) tank, the F2 fraction only decreased by 14% during the same period. Biodegradation of individual hydrocarbon compounds in the nutrient-amended soils was also confirmed by comparing their abundance over time to that of the conserved diesel biomarker, bicyclic sesquiterpanes (BS). During this period, microbial respiration was observed, even at subzero temperatures when unfrozen liquid water was detected during the freeze-thaw period. An increase in culturable heterotrophs and 16S rDNA copy numbers was noted during the freezing phase, and the (14)C-hexadecane mineralization in soil samples obtained from the nutrient-amended tank steadily increased. Hydrocarbon degrading bacterial populations identified as Corynebacterineae- and Alkanindiges-related strains emerged during the freezing and thawing phases, respectively, indicating there were temperature-based microbial community shifts.

  7. Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils

    Brzostek, Edward R.; Finzi, Adrien C.

    2012-03-01

    Increasing soil temperature has the potential to alter the activity of the extracellular enzymes that mobilize nitrogen (N) from soil organic matter (SOM) and ultimately the availability of N for primary production. Proteolytic enzymes depolymerize N from proteinaceous components of SOM into amino acids, and their activity is a principal driver of the within-system cycle of soil N. The objectives of this study were to investigate whether the soils of temperate forest tree species differ in the temperature sensitivity of proteolytic enzyme activity over the growing season and the role of substrate limitation in regulating temperature sensitivity. Across species and sampling dates, proteolytic enzyme activity had relatively low sensitivity to temperature with a mean activation energy (Ea) of 33.5 kJ mol-1. Ea declined in white ash, American beech, and eastern hemlock soils across the growing season as soils warmed. By contrast, Eain sugar maple soil increased across the growing season. We used these data to develop a species-specific empirical model of proteolytic enzyme activity for the 2009 calendar year and studied the interactive effects of soil temperature (ambient or +5°C) and substrate limitation (ambient or elevated protein) on enzyme activity. Declines in substrate limitation had a larger single-factor effect on proteolytic enzyme activity than temperature, particularly in the spring. There was, however, a large synergistic effect of increasing temperature and substrate supply on proteolytic enzyme activity. Our results suggest limited increases in N availability with climate warming unless there is a parallel increase in the availability of protein substrates.

  8. Modelling the effect of low soil temperatures on transpiration by Scots pine

    Mellander, Per-Erik; Stähli, Manfred; Gustafsson, David; Bishop, Kevin

    2006-06-01

    For ecosystem modelling of the Boreal forest it is important to include processes associated with low soil temperature during spring-early summer, as these affect the tree water uptake. The COUP model, a physically based SVAT model, was tested with 2 years of soil and snow physical measurements and sap flow measurements in a 70-year-old Scots pine stand in the boreal zone of northern Sweden. During the first year the extent and duration of soil frost was manipulated in the field. The model was successful in reproducing the timing of the soil warming after the snowmelt and frost thaw. A delayed soil warming, into the growing season, severely reduced the transpiration. We demonstrated the potential for considerable overestimation of transpiration by the model if the reduction of the trees' capacity to transpire due to low soil temperatures is not taken into account. We also demonstrated that the accumulated effect of aboveground conditions could be included when simulating the relationship between soil temperature and tree water uptake. This improved the estimated transpiration for the control plot and when soil warming was delayed into the growing season. The study illustrates the need of including antecedent conditions on root growth in the model in order to catch these effects on transpiration. The COUP model is a promising tool for predicting transpiration in high-latitude stands.

  9. Differences in SOM decomposition and temperature sensitivity among soil aggregate size classes in a temperate grasslands.

    Qing Wang

    Full Text Available The principle of enzyme kinetics suggests that the temperature sensitivity (Q10 of soil organic matter (SOM decomposition is inversely related to organic carbon (C quality, i.e., the C quality-temperature (CQT hypothesis. We tested this hypothesis by performing laboratory incubation experiments with bulk soil, macroaggregates (MA, 250-2000 μm, microaggregates (MI, 53-250 μm, and mineral fractions (MF, MF>bulk soil >MI(P <0.05. The Q10 values were highest for MA, followed (in decreasing order by bulk soil, MF, and MI. Similarly, the activation energies (Ea for MA, bulk soil, MF, and MI were 48.47, 33.26, 27.01, and 23.18 KJ mol-1, respectively. The observed significant negative correlations between Q10 and C quality index in bulk soil and soil aggregates (P<0.05 suggested that the CQT hypothesis is applicable to soil aggregates. Cumulative C emission differed significantly among aggregate size classes (P <0.0001, with the largest values occurring in MA (1101 μg g-1, followed by MF (976 μg g-1 and MI (879 μg g-1. These findings suggest that feedback from SOM decomposition in response to changing temperature is closely associated withsoil aggregation and highlights the complex responses of ecosystem C budgets to future warming scenarios.

  10. Application of Modular Modeling System to Predict Evaporation, Infiltration, Air Temperature, and Soil Moisture

    Boggs, Johnny; Birgan, Latricia J.; Tsegaye, Teferi; Coleman, Tommy; Soman, Vishwas

    1997-01-01

    Models are used for numerous application including hydrology. The Modular Modeling System (MMS) is one of the few that can simulate a hydrology process. MMS was tested and used to compare infiltration, soil moisture, daily temperature, and potential and actual evaporation for the Elinsboro sandy loam soil and the Mattapex silty loam soil in the Microwave Radiometer Experiment of Soil Moisture Sensing at Beltsville Agriculture Research Test Site in Maryland. An input file for each location was created to nut the model. Graphs were plotted, and it was observed that the model gave a good representation for evaporation for both plots. In comparing the two plots, it was noted that infiltration and soil moisture tend to peak around the same time, temperature peaks in July and August and the peak evaporation was observed on September 15 and July 4 for the Elinsboro Mattapex plot respectively. MMS can be used successfully to predict hydrological processes as long as the proper input parameters are available.

  11. Temperature effects on protein depolymerization and amino acid immobilization rates in soils.

    Noll, Lisa; Hu, Yuntao; Zhang, Shasha; Zheng, Qing; Wanek, Wolfgang

    2017-04-01

    Increasing N deposition, land use change, elevated atmospheric CO2 concentrations and global warming have altered soil nitrogen (N) cycling during the last decades. Those changes affected ecosystem services, such as C and N sequestration in soils, which calls for a better understanding of soil N transformation processes. The cleavage of macromolecular organic N by extracellular enzymes maintains an ongoing flow of new bioavailable organic N into biotic systems and is considered to be the bottle neck of terrestrial N cycling in litter and soils. Recent studies showed that protein depolymerization is susceptible to changes in C and N availabilities. Based on general biological observations the temperature sensitivity of soil organic N processes is expected to depend on whether they are rather enzyme limited (i.e. Q10=2) or diffusion limited (i.e. Q10= 1.0 - 1.3). However, temperature sensitivities of protein depolymerization and amino acid immobilization are still unknown. We therefore here report short-term temperature effects on organic N transformation rates in soils differing in physicochemical parameters but not in climate. Soil samples were collected from two geologically distinct sites close to the LFZ Raumberg-Gumpenstein, Styria, Austria, each from three different management types (arable land, grassland, forest). Four replicates of mineral soil were taken from every site and management type. The area provides a unique opportunity to study geological and management controls in soils without confounding effects of climate and elevation. The soils differ in several soil chemical parameters, such as soil pH, base saturation, soil C: N ratio and SOM content as well as in soil physical parameters, such as soil texture, bulk density and water holding capacity. Soils were pre-incubated at 5, 15 and 25˚ C for one day. Protein depolymerization rates and amino acid immobilization rates were assessed by an isotope pool dilution assay with 15N labeled amino acids at

  12. Selection of soil hydraulic properties in a land surface model using remotely-sensed soil moisture and surface temperature

    Shellito, P. J.; Small, E. E.; Gutmann, E. D.

    2013-12-01

    Synoptic-scale weather is heavily influenced by latent and sensible heating from the land surface. The partitioning of available energy between these two fluxes as well as the distribution of moisture throughout the soil column is controlled by a unique set of soil hydraulic properties (SHPs) at every location. Weather prediction systems, which use coupled land surface and atmospheric models in their forecasts, must therefore be parameterized with estimates of SHPs. Currently, land surface models (LSMs) obtain SHP values by assuming a correlation exists between SHPs and the soil type, which the USDA maps in 12 classes. This method is spurious because texture is only one control of many that affects SHPs. Alternatively, SHPs can be obtained by calibrating them within the framework of an LSM. Because remotely-sensed data have the potential for continent-wide application, there is a critical need to understand their specific role in calibration efforts and the extent to which such calibrated SHPs can improve model simulations. This study focuses on SHP calibration with soil moisture content (SMC) and land surface temperature (Ts), data that are available from the SMOS and MODIS satellite missions, respectively. The scientific goals of this study are: (1) What is the model performance tradeoff between weighting SMC and Ts differently during the calibration process? (2) What can the tradeoff between calibration using in-situ and remotely-sensed SMC reveal about SHP scaling? (3) How are these relationships influenced by climatic regime and vegetation type? (4) To what extent can calibrated SHPs improve model performance over that of texture-based SHPs? Model calibrations are carried out within the framework of the Noah LSM using the Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm in five different climatic regimes. At each site, a five-dimensional parameter space of SHPs is searched to find the location that minimizes the difference between observed and

  13. Soil carbon, after 3 years, under short-rotation woody crops grown under varying nutrient and water availability

    Felipe G. Sanchez; Mark Coleman; Charles T. Garten; Robert J. Luxmoore; John A. Stanturf; Carl Trettin; Stan D. Wullschleger

    2007-01-01

    Soil carbon contents were measured on a short-rotation woody crop study located on the US Department of Energy's Savannah River Site outside Aiken, SC. This study included fertilization and irrigation treatments on five tree genotypes (sweetgum, loblolly pine, sycamore and two eastern cottonwood clones). Prior to study installation, the previous pine stand was...

  14. Phosphate fertilizers with varying water-solubilities applied to Amazonian soils: I. agronomic efficiency of P sources

    Brasil, E.C.; Muraoka, T.; Boaretto, A.E.; Scivittaro, W.B.

    2002-01-01

    The relative agronomic efficiency of four phosphate sources (triple superphosphate, ordinary Yoorin thermophosphate, coarse Yoorin thermophosphate and North Carolina phosphate rock) were evaluated, in a pot experiment carried out under greenhouse conditions, using five soils (medium texture Yellow Latosol, clayey Yellow Latosol, very clayey Yellow Latosol, clayey Red-Yellow Podzolic and very clayey Red-Yellow Podzolic) from Para State, Brazil. The soils received three rates of phosphorus (40, 80 and 120 mg P/kg of soil) plus the control (0P) treatment. A randomized block design with three replicates was used. Two consecutive crops (cowpea and rice) were used as test plants. The results showed that the best dry matter yield and P uptake for cowpea were obtained in soils fertilized with triple superphosphate. The agronomic efficiency index of ordinary Yoorin was superior to the coarse Yoorin and North Carolina phosphate rock for the cowpea grown as first crop. The indices were similar for all phosphate sources for the subsequent rice crop. The best residual effect was obtained with North Carolina phosphate rock and coarse Yoorin. The larger particle size of coarse thermophosphate resulted in a decreased P efficiency. (author)

  15. Using Plant Temperature to Evaluate the Response of Stomatal Conductance to Soil Moisture Deficit

    Ming-Han Yu

    2015-10-01

    Full Text Available Plant temperature is an indicator of stomatal conductance, which reflects soil moisture stresses. We explored the relationship between plant temperature and soil moisture to optimize irrigation schedules in a water-stress experiment using Firmiana platanifolia (L. f. Marsili in an incubator. Canopy temperature, leaf temperature, and stomatal conductance were measured using thermal imaging and a porometer. The results indicated that (1 stomatal conductance decreased with declines in soil moisture, and reflected average canopy temperature; (2 the variation of the leaf temperature distribution was a reliable indicator of soil moisture stress, and the temperature distribution in severely water-stressed leaves exhibited greater spatial variation than that in the presence of sufficient irrigation; (3 thermal indices (Ig and crop water stress index (CWSI were theoretically proportional to stomatal conductance (gs, Ig was certified to have linearity relationship with gs and CWSI have a logarithmic relationship with gs, and both of the two indices can be used to estimate soil moisture; and (4 thermal imaging data can reflect water status irrespective of long-term water scarcity or lack of sudden rainfall. This study applied thermal imaging methods to monitor plants and develop adaptable irrigation scheduling, which are important for the formulation of effective and economical agriculture and forestry policy.

  16. Remote Multi-layer Soil Temperature Monitoring System Based on GPRS

    Ming Kuo CHEN

    2014-02-01

    Full Text Available There is the temperature difference between the upper and lower layer of the shallow soil in the forest. It is a potential energy that can be harvested by thermoelectric generator for the electronic device in the forest. The temperature distribution at different depths of the soil is the first step for thermoelectric generation. A remote multi-layer soil temperature monitoring system based on GPRS is proposed in this paper. The MSP430F149 MCU is used as the main controller of multi-layer soil temperature monitoring system. A temperature acquisition module is designed with DS18B20 and 4 core shielded twisted-pair cable. The GPRS module sends the measured data to remote server through wireless communication network. From the experiments in the campus of Beijing Forestry University, the maximum error of measured temperature in this system is 0.2°C by comparing with professional equipment in the same condition. The results of the experiments show that the system can accurately realize real-time monitoring of multi-layer soil temperature, and the data transmission is stable and reliable.

  17. GCOM-W soil moisture and temperature algorithms and validation

    Passive microwave remote sensing of soil moisture has matured over the past decade as a result of the Advanced Microwave Scanning Radiometer (AMSR) program of JAXA. This program has resulted in improved algorithms that have been supported by rigorous validation. Access to the products and the valida...

  18. Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water availability and varies little among provenances.

    Du, Baoguo; Kreuzwieser, Jürgen; Dannenmann, Michael; Junker, Laura Verena; Kleiber, Anita; Hess, Moritz; Jansen, Kirstin; Eiblmeier, Monika; Gessler, Arthur; Kohnle, Ulrich; Ensminger, Ingo; Rennenberg, Heinz; Wildhagen, Henning

    2018-01-01

    The coniferous forest tree Douglas-fir (Pseudotsuga menziesii) is native to the pacific North America, and is increasingly planted in temperate regions worldwide. Nitrogen (N) metabolism is of great importance for growth, resistance and resilience of trees. In the present study, foliar N metabolism of adult trees of three coastal and one interior provenance of Douglas-fir grown at two common gardens in southwestern Germany (Wiesloch, W; Schluchsee, S) were characterized in two subsequent years. Both the native North American habitats of the seed sources and the common garden sites in Germany differ in climate conditions. Total and mineral soil N as well as soil water content were higher in S compared to W. We hypothesized that i) provenances differ constitutively in N pool sizes and composition, ii) N pools are affected by environmental conditions, and iii) that effects of environmental factors on N pools differ among interior and coastal provenances. Soil water content strongly affected the concentrations of total N, soluble protein, total amino acids (TAA), arginine and glutamate. Foliar concentrations of total N, soluble protein, structural N and TAA of trees grown at W were much higher than in trees at S. Provenance effects were small but significant for total N and soluble protein content (interior provenance showed lowest concentrations), as well as arginine, asparagine and glutamate. Our data suggest that needle N status of adult Douglas-fir is independent from soil N availability and that low soil water availability induces a re-allocation of N from structural N to metabolic N pools. Small provenance effects on N pools suggest that local adaptation of Douglas-fir is not dominated by N conditions at the native habitats.

  19. Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback

    Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing

    2017-04-01

    A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM

  20. Elevated CO2 and temperature increase soil C losses from a soybean-maize ecosystem.

    Black, Christopher K; Davis, Sarah C; Hudiburg, Tara W; Bernacchi, Carl J; DeLucia, Evan H

    2017-01-01

    Warming temperatures and increasing CO 2 are likely to have large effects on the amount of carbon stored in soil, but predictions of these effects are poorly constrained. We elevated temperature (canopy: +2.8 °C; soil growing season: +1.8 °C; soil fallow: +2.3 °C) for 3 years within the 9th-11th years of an elevated CO 2 (+200 ppm) experiment on a maize-soybean agroecosystem, measured respiration by roots and soil microbes, and then used a process-based ecosystem model (DayCent) to simulate the decadal effects of warming and CO 2 enrichment on soil C. Both heating and elevated CO 2 increased respiration from soil microbes by ~20%, but heating reduced respiration from roots and rhizosphere by ~25%. The effects were additive, with no heat × CO 2 interactions. Particulate organic matter and total soil C declined over time in all treatments and were lower in elevated CO 2 plots than in ambient plots, but did not differ between heat treatments. We speculate that these declines indicate a priming effect, with increased C inputs under elevated CO 2 fueling a loss of old soil carbon. Model simulations of heated plots agreed with our observations and predicted loss of ~15% of soil organic C after 100 years of heating, but simulations of elevated CO 2 failed to predict the observed C losses and instead predicted a ~4% gain in soil organic C under any heating conditions. Despite model uncertainty, our empirical results suggest that combined, elevated CO 2 and temperature will lead to long-term declines in the amount of carbon stored in agricultural soils. © 2016 John Wiley & Sons Ltd.

  1. Structural and electrical characterization of AuPtAlTi ohmic contacts to AlGaN/GaN with varying annealing temperature and Al content

    Fay, Mike W.; Han, Y.; Brown, Paul D.; Harrison, Ian; Hilton, K.P.; Munday, A.; Wallis, D.; Balmer, R.S.; Uren, M.J.; Martin, T.

    2008-01-01

    The effect of varying annealing temperature and Al layer thickness on the structural and electrical characteristics of AuPtAlTi/AlGaN/GaN ohmic contact structures has been systematically investigated. The relationship between annealing temperature, Al content, interfacial microstructure, surface planarity and contact resistance is\\ud examined. In particular, the presence of a detrimental low temperature Pt-Al reaction is identified. This is implicated in both the requirement for a higher Al:T...

  2. Measurements of soil respiration and simple models dependent on moisture and temperature for an Amazonian southwest tropical forest

    Zanchi, F.B.; Rocha, Da H.R.; Freitas, De H.C.; Kruijt, B.; Waterloo, M.J.; Manzi, A.O.

    2009-01-01

    Soil respiration plays a significant role in the carbon cycle of Amazonian tropical forests, although in situ measurements have only been poorly reported and the dependence of soil moisture and soil temperature also weakly understood. This work investigates the temporal variability of soil

  3. Carbon storage potential in size–density fractions from semi-natural grassland ecosystems with different productivities over varying soil depths

    Breulmann, Marc; Boettger, Tatjana; Buscot, François; Gruendling, Ralf; Schulz, Elke

    2016-01-01

    Researchers have increasingly recognised a profound need for more information on SOC stocks in the soil and the factors governing their stability and dynamics. Many questions still remain unanswered about the interplay between changes in plant communities and the extent to which changes in aboveground productivity affect the carbon dynamics in soils through changes in its quantity and quality. Therefore, the main aim of this research was to examine the SOC accumulation potential of semi-natural grasslands of different productivities and determine the distribution of SOM fractions over varying soil depth intervals (0–10, 10–20, 20–30 30–50 50–80 and 80 + cm). SOM fractionation was considered as a relative measure of stability to separate SOM associated with clay minerals from SOM of specific light densities less than 2 g cm"−"3 (size-density fractionation). Two clay-associated fractions (CF1, < 1 μm; and CF2, 1–2 μm) and two light fractions (LF1, < 1.8 g cm"−"3; and LF2, 1.8–2.0 g cm"−"3) were separated. The stability of these fractions was characterised by their carbon hot water extractability (C_H_W_E) and stable carbon isotope composition. In the semi-natural grasslands studied, most OC was stored in the top 30 cm, where turnover is rapid. Effects of low productivity grasslands became only significantly apparent when fractional OC contributions of total SOM was considered (CF1 and LF1). In deeper soil depths OC was largely attributed to the CF1 fraction of low productivity grasslands. We suggest that the majority of OM in deeper soil depth intervals is microbially-derived, as evidenced by decreasing C/N ratios and decreasing δ"1"3C values. The hot water extraction and natural δ"1"3C abundance, employed here allowed the characterisation of SOM stabilisation properties, however how climatic changes affect the fate of OM within different soil depth intervals is still unknown. - Highlights: • OC stocks over varying soil depths in extensively

  4. Carbon storage potential in size–density fractions from semi-natural grassland ecosystems with different productivities over varying soil depths

    Breulmann, Marc [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany); Helmholtz-Centre for Environmental Research – UFZ, Environmental and Biotechnology Centre (UBZ), Permoserstraße 15, 04318 Leipzig (Germany); Boettger, Tatjana [Helmholtz-Centre for Environmental Research – UFZ, Department of Isotope Hydrology, Theodor-Lieser-Str. 4, D-06120 Halle (Germany); Buscot, François [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany); German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig (Germany); Gruendling, Ralf [Helmholtz-Centre for Environmental Research – UFZ, Department, Department of Soil Physics, Theodor-Lieser-Str. 4, D-06120 Halle (Germany); Schulz, Elke [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany)

    2016-03-01

    Researchers have increasingly recognised a profound need for more information on SOC stocks in the soil and the factors governing their stability and dynamics. Many questions still remain unanswered about the interplay between changes in plant communities and the extent to which changes in aboveground productivity affect the carbon dynamics in soils through changes in its quantity and quality. Therefore, the main aim of this research was to examine the SOC accumulation potential of semi-natural grasslands of different productivities and determine the distribution of SOM fractions over varying soil depth intervals (0–10, 10–20, 20–30 30–50 50–80 and 80 + cm). SOM fractionation was considered as a relative measure of stability to separate SOM associated with clay minerals from SOM of specific light densities less than 2 g cm{sup −3} (size-density fractionation). Two clay-associated fractions (CF1, < 1 μm; and CF2, 1–2 μm) and two light fractions (LF1, < 1.8 g cm{sup −3}; and LF2, 1.8–2.0 g cm{sup −3}) were separated. The stability of these fractions was characterised by their carbon hot water extractability (C{sub HWE}) and stable carbon isotope composition. In the semi-natural grasslands studied, most OC was stored in the top 30 cm, where turnover is rapid. Effects of low productivity grasslands became only significantly apparent when fractional OC contributions of total SOM was considered (CF1 and LF1). In deeper soil depths OC was largely attributed to the CF1 fraction of low productivity grasslands. We suggest that the majority of OM in deeper soil depth intervals is microbially-derived, as evidenced by decreasing C/N ratios and decreasing δ{sup 13}C values. The hot water extraction and natural δ{sup 13}C abundance, employed here allowed the characterisation of SOM stabilisation properties, however how climatic changes affect the fate of OM within different soil depth intervals is still unknown. - Highlights: • OC stocks over varying

  5. Soil biogeochemistry properties vary between two boreal forest ecosystems in Quebec: significant differences in soil carbon, available nutrients and iron and aluminium crystallinity

    Bastianelli, Carole; Ali, Adam A.; Beguin, Julien; Bergeron, Yves; Grondin, Pierre; Hély, Christelle; Paré, David

    2017-04-01

    At the northernmost extent of the managed forest in Quebec, the boreal forest is currently undergoing an ecological transition from closed-canopy black spruce-moss forests towards open-canopy lichen woodlands, which spread southward. Our study aim was to determine whether this shift could impact soil properties on top of its repercussions on forest productivity or carbon storage. We studied the soil biogeochemical composition of three pedological layers in moss forests (MF) and lichen woodlands (LW) north of the Manicouagan crater in Quebec. The humus layer (FH horizons) was significantly thicker and held more carbon, nitrogen and exchangeable Ca and Mg in MF plots than in LW plots. When considering mineral horizons, we found that the deep C horizon had a very close composition in both ecosystem plots, suggesting that the parent material was of similar geochemical nature. This was expected as all selected sites developed from glacial deposit. Multivariate analysis of surficial mineral B horizon showed however that LW B horizon displayed higher concentrations of Al and Fe oxides than MF B horizon, particularly for inorganic amorphous forms. Conversely, main exchangeable base cations (Ca, Mg) were higher in B horizon of MF than that of LW. Ecosystem types explained much of the variations in the B horizon geochemical composition. We thus suggest that the differences observed in the geochemical composition of the B horizon have a biological origin rather than a mineralogical origin. We also showed that total net stocks of carbon stored in MF soils were three times higher than in LW soils (FH + B horizons, roots apart). Altogether, we suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the of vegetation structure (stand density) and composition (ground cover type) and their subsequent consequences on soil environmental

  6. Effects of Temperature on Solute Transport Parameters in Differently-Textured Soils at Saturated Condition

    Hamamoto, S.; Arihara, M.; Kawamoto, K.; Nishimura, T.; Komatsu, T.; Moldrup, P.

    2014-12-01

    Subsurface warming driven by global warming, urban heat islands, and increasing use of shallow geothermal heating and cooling systems such as the ground source heat pump, potentially causes changes in subsurface mass transport. Therefore, understanding temperature dependency of the solute transport characteristics is essential to accurately assess environmental risks due to increased subsurface temperature. In this study, one-dimensional solute transport experiments were conducted in soil columns under temperature control to investigate effects of temperature on solute transport parameters, such as solute dispersion and diffusion coefficients, hydraulic conductivity, and retardation factor. Toyoura sand, Kaolin clay, and intact loamy soils were used in the experiments. Intact loamy soils were taken during a deep well boring at the Arakawa Lowland in Saitama Prefecture, Japan. In the transport experiments, the core sample with 5-cm diameter and 4-cm height was first isotropically consolidated, whereafter 0.01M KCl solution was injected to the sample from the bottom. The concentrations of K+ and Cl- in the effluents were analyzed by an ion chromatograph to obtain solute breakthrough curves. The solute transport parameters were calculated from the breakthrough curves. The experiments were conducted under different temperature conditions (15, 25, and 40 oC). The retardation factor for the intact loamy soils decreased with increasing temperature, while water permeability increased due to reduced viscosity of water at higher temperature. Opposite, the effect of temperature on solute dispersivity for the intact loamy soils was insignificant. The effects of soil texture on the temperature dependency of the solute transport characteristics will be further investigated from comparison of results from differently-textured samples.

  7. Temperature dependency of electrical resistivity of soils; Tsuchi no hiteiko no ondo izonsei ni kansuru kenkyu

    Park, S; Matsui, T [Osaka University, Osaka (Japan). Faculty of Engineering; Park, M; Fujiwara, H [Osaka University, Osaka (Japan)

    1997-10-22

    Kinds of ground materials, porosity, electrical resistivity of pores, degree of saturation, and content of clays are the factors affecting the electrical resistivity of soils. In addition to these factors, the electrical resistivity of soils around hot spring water and geothermal areas depends on the temperature due to fluctuation of cation mobility in the pore water with the temperature. In this paper, the temperature dependency of electrical resistivity of groundwater and soils is investigated by recognizing that of groundwater as that of pore water. As a result, it was found that the electrical resistivity of groundwater becomes lower as increasing the amount of dissolved cation, and that the temperature dependency of electrical resistivity is not significant because of the small mobility of cation. The electrical resistivity of soils was significantly affected by that of pore water, in which the mobility of cation was changed with temperature changes. Accordingly, the temperature dependency of electrical resistivity of soils has a similar tendency as that of groundwater. 5 refs., 9 figs., 2 tabs.

  8. Western US high June 2015 temperatures and their relation to global warming and soil moisture

    Philip, Sjoukje Y.; Kew, Sarah F.; Hauser, Mathias; Guillod, Benoit P.; Teuling, Adriaan J.; Whan, Kirien; Uhe, Peter; Oldenborgh, van Geert Jan

    2018-01-01

    The Western US states Washington (WA), Oregon (OR) and California (CA) experienced extremely high temperatures in June 2015. The temperature anomalies were so extreme that they cannot be explained with global warming alone. We investigate the hypothesis that soil moisture played an important role

  9. Clemson final report: High temperature formulations for SRS soils

    Schumacher, R.F.

    1997-01-01

    This study was undertaken to demonstrate the application of a DC arc melter to in-situ vitrification of SRS soils. The melter that was available at the DOE/Industrial Vitrification Laboratory at Clemson University was equipped with opposing solid electrodes. To simulate field conditions, two hollow electrode configurations were evaluated which allowed fluxes to be injected into the melter while the soils were being vitrified. the first 4 runs utilized pre-blended flux (two runs) and attempted flux injection (two runs). These runs were terminated prematurely due to offgas sampling problems and melt freezing. The remaining four runs utilized a different electrode geometry, and the runs were not interrupted to change out the offgas sampling apparatus. These runs were conducted successfully

  10. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas

    Ko, T.-H.; Chu Hsin; Lin, H.-P.; Peng, C.-Y.

    2006-01-01

    In this study, hydrogen sulfide (H 2 S) was removed from coal gas by red soil under high temperature in a fixed-bed reactor. Red soil powders were collected from the northern, center and southern of Taiwan. They were characterized by XRPD, porosity analysis and DCB chemical analysis. Results show that the greater sulfur content of LP red soils is attributed to the higher free iron oxides and suitable sulfidation temperature is around 773 K. High temperature has a negative effect for use red soil as a desulfurization sorbent due to thermodynamic limitation in a reduction atmosphere. During 10 cycles of regeneration, after the first cycle the red soil remained stable with a breakthrough time between 31 and 36 min. Hydrogen adversely affects sulfidation reaction, whereas CO exhibits a positive effect due to a water-shift reaction. COS was formed during the sulfidation stage and this was attributed to the reaction of H 2 S and CO. Results of XRPD indicated that, hematite is the dominant active species in fresh red soil and iron sulfide (FeS) is a product of the reaction between hematite and hydrogen sulfide in red soils. The spinel phase FeAl 2 O 4 was found during regeneration, moreover, the amount of free iron oxides decreased after regeneration indicating the some of the free iron oxide formed a spinel phase, further reducting the overall desulfurization efficiency

  11. Assimilation of microwave brightness temperatures for soil moisture estimation using particle filter

    Bi, H Y; Ma, J W; Qin, S X; Zeng, J Y

    2014-01-01

    Soil moisture plays a significant role in global water cycles. Both model simulations and remote sensing observations have their limitations when estimating soil moisture on a large spatial scale. Data assimilation (DA) is a promising tool which can combine model dynamics and remote sensing observations to obtain more precise ground soil moisture distribution. Among various DA methods, the particle filter (PF) can be applied to non-linear and non-Gaussian systems, thus holding great potential for DA. In this study, a data assimilation scheme based on the residual resampling particle filter (RR-PF) was developed to assimilate microwave brightness temperatures into the macro-scale semi-distributed Variance Infiltration Capacity (VIC) Model to estimate surface soil moisture. A radiative transfer model (RTM) was used to link brightness temperatures with surface soil moisture. Finally, the data assimilation scheme was validated by experimental data obtained at Arizona during the Soil Moisture Experiment 2004 (SMEX04). The results show that the estimation accuracy of soil moisture can be improved significantly by RR-PF through assimilating microwave brightness temperatures into VIC model. Both the overall trends and specific values of the assimilation results are more consistent with ground observations compared with model simulation results

  12. Differences in SOM decomposition and temperature sensitivity among soil aggregate size classes in a temperate grasslands.

    Wang, Qing; Wang, Dan; Wen, Xuefa; Yu, Guirui; He, Nianpeng; Wang, Rongfu

    2015-01-01

    The principle of enzyme kinetics suggests that the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition is inversely related to organic carbon (C) quality, i.e., the C quality-temperature (CQT) hypothesis. We tested this hypothesis by performing laboratory incubation experiments with bulk soil, macroaggregates (MA, 250-2000 μm), microaggregates (MI, 53-250 μm), and mineral fractions (MF, temperature and aggregate size significantly affected on SOM decomposition, with notable interactive effects (Ptemperature in the following order: MA>MF>bulk soil >MI(P classes (P temperature is closely associated withsoil aggregation and highlights the complex responses of ecosystem C budgets to future warming scenarios.

  13. Effects of increased temperature and CO{sub 2} on soil quality

    Ogner, G.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. The Norwegian Forest Research Institute has studied the effects of increased CO{sub 2} and temperature on forest soil, soil leachate and plants in an open top chamber experiment. The purpose was to analyze the changes in soil parameters and the leaching of elements. Nitrate and aluminium received special attention. The growth of Norway spruce and birch was followed, and its impact on the soil parameters. Preliminary results indicate that the temperature increase of the soil and consequently an increased turnover of soil organic matter had the major effect on the quality of soil leachates. CO{sub 2} was less important. Leaching of NO{sub 3}{sup -} was high from control lysimeters with moss cover. Lysimeters with birch hardly leached NO{sub 3}{sup -} at all. Spruce is in an intermediate position. Increased leaching of Al{sup n+} is found for moss lysimeters. Leachates from birch lysimeters have high concentrations of Al{sup n+} only at the end of the growth seasons. Plant growth is to some extent increased by the CO{sub 2} treatment. Birch grew well in all lysimeters and all treatments, spruce developed clear symptoms of stress. This result does not fit with the increased availability of nutrients in soil solution

  14. Incorporation of Passive Microwave Brightness Temperatures in the ECMWF Soil Moisture Analysis

    Joaquín Muñoz-Sabater

    2015-05-01

    Full Text Available For more than a decade, the European Centre for Medium-Range Weather Forecasts (ECMWF has used in-situ observations of 2 m temperature and 2 m relative humidity to operationally constrain the temporal evolution of model soil moisture. These observations are not available everywhere and they are indirectly linked to the state of the surface, so under various circumstances, such as weak radiative forcing or strong advection, they cannot be used as a proxy for soil moisture reinitialization in numerical weather prediction. Recently, the ECMWF soil moisture analysis has been updated to be able to account for the information provided by microwave brightness temperatures from the Soil Moisture and Ocean Salinity (SMOS mission of the European Space Agency (ESA. This is the first time that ECMWF uses direct information of the soil emission from passive microwave data to globally adjust the estimation of soil moisture by a land-surface model. This paper presents a novel version of the ECMWF Extended Kalman Filter soil moisture analysis to account for remotely sensed passive microwave data. It also discusses the advantages of assimilating direct satellite radiances compared to current soil moisture products, with a view to an operational implementation. A simple assimilation case study at global scale highlights the potential benefits and obstacles of using this new type of information in a global coupled land-atmospheric model.

  15. Amplification and dampening of soil respiration by changes in temperature variability

    C. A. Sierra

    2011-04-01

    Full Text Available Accelerated release of carbon from soils is one of the most important feedbacks related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature variability. Anthropogenic activities are likely to modify both the average state and the variability of the climatic system; therefore, the effects of future warming on decomposition should not only focus on trends in the average temperature, but also variability expressed as a change of the probability distribution of temperature. Using analytical and numerical analyses we tested common relationships between temperature and respiration and found that the variability of temperature plays an important role determining respiration rates of soil organic matter. Changes in temperature variability, without changes in the average temperature, can affect the amount of carbon released through respiration over the long-term. Furthermore, simultaneous changes in the average and variance of temperature can either amplify or dampen the release of carbon through soil respiration as climate regimes change. These effects depend on the degree of convexity of the relationship between temperature and respiration and the magnitude of the change in temperature variance. A potential consequence of this effect of variability would be higher respiration in regions where both the mean and variance of temperature are expected to increase, such as in some low latitude regions; and lower amounts of respiration where the average temperature is expected to increase and the variance to decrease, such as in northern high latitudes.

  16. Toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus changes under a global warming perspective: Variations in air temperature and soil moisture content

    Gonzalez Alcaraz, M.N.; van Gestel, C.A.M.

    2016-01-01

    This study aimed to assess how the current global warming perspective, with increasing air temperature (20 °C vs. 25 °C) and decreasing soil moisture content (50% vs. 30% of the soil water holding capacity, WHC), affected the toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus

  17. The Impact of Wet Soil and Canopy Temperatures on Daytime Boundary-Layer Growth.

    Segal, M.; Garratt, J. R.; Kallos, G.; Pielke, R. A.

    1989-12-01

    The impact of very wet soil and canopy temperatures on the surface sensible heat flux, and on related daytime boundary-layer properties is evaluated. For very wet soils, two winter situations are considered, related to significant changes in soil surface temperature: (1) due to weather perturbations at a given location, and (2) due to the climatological north-south temperature gradient. Analyses and scaling of the various boundary-layer properties, and soil surface fluxes affecting the sensible beat flux, have been made; related evaluations show that changes in the sensible heat flux at a given location by a factor of 2 to 3 due to temperature changes related to weather perturbations is not uncommon. These changes result in significant alterations in the boundary-layer depth; in the atmospheric boundary-layer warming; and in the break-up time of the nocturnal surface temperature inversion. Investigation of the impact of the winter latitudinal temperature gradient on the above characteristics indicated that the relative increase in very wet soil sensible heat flux, due to the climatological reduction in the surface temperature in northern latitudes, moderates to some extent its reduction due to the corresponding decrease in solar radiation. Numerical model simulations confirmed these analytical evaluations.In addition, the impact of synoptic temperature perturbations during the transition seasons (fall and spring) on canopy sensible heal fluxes, and the related boundary-layer characteristics mentioned above, was evaluated. Analogous features to those found for very wet soil surfaces occurred also for the canopy situations. Likewise, evaluations were also carried out to explore the impact of high midlatitude foreste areas on the boundary-layer characteristics during the winter as compared to those during the summer. Similar impacts were found in both seasons, regardless of the substantial difference in the daily total solar radiation.

  18. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production.

    Heitkötter, Julian; Marschner, Bernd

    2015-04-01

    Biochar is suggested for soil amelioration and carbon sequestration, based on its assumed role as the key factor for the long-term fertility of Terra preta soils. Several studies have shown that certain biochar properties can undergo changes through ageing processes, especially regarding charge characteristics. However, only a few studies determined the changes of different biochars under the same incubation conditions and in different soils. The objective of this study was to characterize the changes of pine chip (PC)- and corn digestate (CD)-derived biochars pyrolyzed at 400 or 600 °C during 100 days of laboratory incubation in a historical kiln soil and an adjacent control soil. Separation between soil and biochar was ensured by using mesh bags. Especially, changes in charge characteristics depended on initial biochar properties affected by feedstock and pyrolysis temperature and on soil properties affected by historic charcoal production. While the cation exchange capacity (CEC) markedly increased for both CD biochars during incubation, PC biochars showed no or only slight increases in CEC. Corresponding to the changes in CEC, ageing of biochars also increased the amount of acid functional groups with increases being in average about 2-fold higher in CD biochars than in PC biochars. Further and in contrast to other studies, the surface areas of biochars increased during ageing, likely due to ash leaching and degradation of tar residues. Changes in CEC and surface acidity of CD biochars were more pronounced after incubation in the control soil, while surface area increase was higher in the kiln soil. Since the two acidic forest soils used in this this study did not greatly differ in physical or chemical properties, the main process for inducing these differences in the buried biochar most likely is related to the differences in dissolved organic carbon (DOC). Although the kiln soil contained about 50% more soil organic carbon due to the presence of charcoal

  19. Evaluation of a Linear Mixing Model to Retrieve Soil and Vegetation Temperatures of Land Targets

    Yang, Jinxin; Jia, Li; Cui, Yaokui; Zhou, Jie; Menenti, Massimo

    2014-01-01

    A simple linear mixing model of heterogeneous soil-vegetation system and retrieval of component temperatures from directional remote sensing measurements by inverting this model is evaluated in this paper using observations by a thermal camera. The thermal camera was used to obtain multi-angular TIR (Thermal Infra-Red) images over vegetable and orchard canopies. A whole thermal camera image was treated as a pixel of a satellite image to evaluate the model with the two-component system, i.e. soil and vegetation. The evaluation included two parts: evaluation of the linear mixing model and evaluation of the inversion of the model to retrieve component temperatures. For evaluation of the linear mixing model, the RMSE is 0.2 K between the observed and modelled brightness temperatures, which indicates that the linear mixing model works well under most conditions. For evaluation of the model inversion, the RMSE between the model retrieved and the observed vegetation temperatures is 1.6K, correspondingly, the RMSE between the observed and retrieved soil temperatures is 2.0K. According to the evaluation of the sensitivity of retrieved component temperatures on fractional cover, the linear mixing model gives more accurate retrieval accuracies for both soil and vegetation temperatures under intermediate fractional cover conditions

  20. Dynamics of soil CO 2 efflux under varying atmospheric CO 2 concentrations reveal dominance of slow processes

    Dohyoung Kim; Ram Oren; James S. Clark; Sari Palmroth; A. Christopher Oishi; Heather R. McCarthy; Chris A. Maier; Kurt Johnsen

    2017-01-01

    We evaluated the effect on soil CO2 efflux (FCO2) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO2 (eCO2) ranging 1.0–1.8 times ambient did not affect FCO2. FCO2 did not decrease until 4 months after termination of the long-term eCO2 treatment, longer...

  1. Local Versus Remote Contributions of Soil Moisture to Near-Surface Temperature Variability

    Koster, R.; Schubert, S.; Wang, H.; Chang, Y.

    2018-01-01

    Soil moisture variations have a straightforward impact on overlying air temperatures, wetter soils can induce higher evaporative cooling of the soil and thus, locally, cooler temperatures overall. Not known, however, is the degree to which soil moisture variations can affect remote air temperatures through their impact on the atmospheric circulation. In this talk we describe a two-pronged analysis that addresses this question. In the first segment, an extensive ensemble of NASA/GSFC GEOS-5 atmospheric model simulations is analyzed statistically to isolate and quantify the contributions of various soil moisture states, both local and remote, to the variability of air temperature at a given local site. In the second segment, the relevance of the derived statistical relationships is evaluated by applying them to observations-based data. Results from the second segment suggest that the GEOS-5-based relationships do, at least to first order, hold in nature and thus may provide some skill to forecasts of air temperature at subseasonal time scales, at least in certain regions.

  2. Increasing temperature reduces the coupling between available nitrogen and phosphorus in soils of Chinese grasslands

    Geng, Yan; Baumann, Frank; Song, Chao; Zhang, Mi; Shi, Yue; Kühn, Peter; Scholten, Thomas; He, Jin-Sheng

    2017-03-01

    Changes in climatic conditions along geographical gradients greatly affect soil nutrient cycling processes. Yet how climate regimes such as changes in temperature influence soil nitrogen (N) and phosphorus (P) concentrations and their stoichiometry is not well understood. This study investigated the spatial pattern and variability of soil N and P availability as well as their coupling relationships at two soil layers (0-10 and 10-20 cm) along a 4000-km climate transect in two grassland biomes of China, the Inner Mongolian temperate grasslands and the Tibetan alpine grasslands. Our results found that in both grasslands, from cold to warm sites the amounts of soil total N, total P and available P all decreased. By contrast, the amount of available N was positively related to mean annual temperature in the Tibetan grasslands. Meanwhile, with increasing temperature ratio of available N to P significantly increased but the linear relationship between them was considerably reduced. Thus, increasing temperature may not only induce a stoichiometric shift but also loose the coupling between available N and P. This N-P decoupling under warmer conditions was more evident in the Tibetan alpine grasslands where P limitation might become more widespread relative to N as temperatures continue to rise.

  3. The effect of Soil Temperature on Electrodialytic Remediation

    Kristensen, Iben Vernegren

    1999-01-01

    The electrodialytic remediation of copper, zinc and lead contaminated kaolin was studied at three different temperatures (0-39 degrees centrigrate). It is shown that an increase in temperature increases the rate of remediation for all three metals. Copper and zinc shows similar rate constants......, while for lead, the rate constant obtained are significantly smaller. The increased remediation rate is presumed to be due mainly to the lowering of the viscosity....

  4. Physiological and foliar injury responses of Prunus serotina, Fraxinus americana, and Acer rubrum seedlings to varying soil moisture and ozone

    Schaub, M.; Skelly, J.M.; Steiner, K.C.; Davis, D.D.; Pennypacker, S.P.; Zhang, J.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.

    2003-01-01

    High soil water availability favors ozone uptake, increases foliar injury, and exacerbates the negative ozone effect on gas exchange of seedlings of deciduous tree species. - Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O 3 ; non-filtered air: 98% ambient O 3 ; charcoal-filtered air: 50% ambient O 3 ) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons. During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data, ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (<34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures

  5. Peat decomposability in managed organic soils in relation to land use, organic matter composition and temperature

    Bader, Cédric; Müller, Moritz; Schulin, Rainer; Leifeld, Jens

    2018-02-01

    Organic soils comprise a large yet fragile carbon (C) store in the global C cycle. Drainage, necessary for agriculture and forestry, triggers rapid decomposition of soil organic matter (SOM), typically increasing in the order forest accrual of labile crop residues. A comparison with published CO2 rates from incubated mineral soils indicated no difference in SOM decomposability between these soil classes, suggesting that accumulation of recent, labile plant materials that presumably account for most of the evolved CO2 is not systematically different between mineral and organic soils. In our data set, temperature sensitivity of decomposition (Q10 on average 2.57 ± 0.05) was the same for all land uses but lowest below 60 cm in croplands and grasslands. This, in turn, indicates a relative accumulation of recalcitrant peat in topsoils.

  6. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions. [south Texas

    Wiegand, C. L.; Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J. (Principal Investigator)

    1981-01-01

    Emissive and reflective data for 10 days, and IR data for 6 nights in south Texas scenes were analyzed after procedures were developed for removing cloud-affected data. HCMM radiometric temperatures were: within 2 C of dewpoint temperatures on nights when air temperature approached dewpoint temperatures; significantly correlated with variables important in evapotranspiration; and, related to freeze severity and planting depth soil temperatures. Vegetation greenness indexes calculated from visible and reflective IR bands of NOAA-6 to -9 meteorological satellites will be useful in the AgRISTARS program for seasonal crop development, crop condition, and drought applications.

  7. [Strategies and mechanisms of soil springtails in adapting lower temperature environment: research progress].

    Liu, Jing; Wang, Yun-Biao; Wu, Dong-Hui

    2012-12-01

    Low temperature and drought are the main environmental factors threatening the animals living in arctic area and cold temperate regions. To adapt the severe environment, the animals should adopt appropriate strategies. As a group of arthopods with freeze-avoiding strategy, soil springtails have the similar ecological mechanisms and modes of cold resistance/tolerance as insects, manifesting in the cold acclimation and drought tolerance to decrease the damage of ice crystal formation. During cold acclimation, there are a rapid increase of glycerol, a rapid decrease of fucose and glucose, and the production of anti-freeze proteins (AFP) , and exists the inter-transformation of different kinds of lipids to improve the flow of cell membrane to protect the cell from low temperature injury. In addition, soil springtails have their own specific modes and mechanisms to tolerate low temperature stress, mainly the vertical migration under the protection of snow cover and the excretion of ice nucleator from haemolymph, illustrating that it's of significance to research the cryobiology of soil springtails. This paper summarized the modes and mechanisms of soil springtails in tolerating low temperature environment, reviewed the research progress on the eco-physiology of the springtails, discussed the existing problems of the researches on the low temperature tolerance of the springtails, and prospected the research directions of the springtails low temperature ecology under the background of global change.

  8. Wettability of poultry litter biochars at variable pyrolysis temperatures and their impact on soil wettability and water retention relationships

    Yi, S. C.; Witt, B.; Guo, M.; Chiu, P.; Imhoff, P. T.

    2012-12-01

    To reduce the impact of poultry farming on greenhouse gas emissions, poultry farming waste - poultry litter - can be converted to biofuel and biochar through slow-pyrolysis, with the biochar added to agricultural soil for nutrient enrichment and carbon sequestration. While biochars from source materials other than poultry litter have been shown to sequester carbon and increase soil fertility, there is considerable variability in biochar behavior - even with biochars created from the same source material. This situation is exacerbated by our limited understanding of how biochars alter physical, chemical, and biological processes in agricultural soils. The focus of this work is to develop a mechanistic understanding of how poultry litter (PL) biochars affect the hydrology, microbial communities, N2O emissions, and nitrogen cycling in agricultural soils. The initial focus is on the impact of PL biochar on soil hydrology. PL from Perdue AgriRecycle, LLC (Seaford, Delaware) was used to produce biochars at pyrolysis temperatures from 300°C to 600°C. To explore the impact of these biochars on soil wettability, the PL biochars were mixed with a 30/40 Accusand in mass fractions from 0% to 100%. The water contact angle was then measured using a goniometer on these sand/biochar mixtures using the sessile drop method and a single layer of sample particles. The PL biochars produced at temperatures between 300°C to 400°C were hydrophobic, while those pyrolized at > 400°C were hydrophilic. Water contact angles for samples with 100% biochar varied systematically with pyrolysis temperature, decreasing from 101.12° to 20.57° as the pyrolysis temperature increased from 300 to 600°C. Even for small amounts of hydrophobic biochar added to the hydrophilic sand, the contact angle of the mixture was altered: for sand/biochar mixtures containing only 2% hydrophobic PL biochar by weight, the contact angle of the mixture increased from ~ 8° (0% biochar) to 20° (2% biochar). For

  9. Plant growth response to direct and indirect temperature effects varies by vegetation type and elevation in a subarctic tundra

    De Long, Jonathan R.; Kardol, P.; Sundqvist, Maja K.; Veen, G. F.; Wardle, David A.

    2015-01-01

    There has been growing recent use of elevational gradients as tools for assessing effects of temperature changes on vegetation properties, because these gradients enable temperature effects to be considered over larger spatial and temporal scales than is possible through conventional experiments.

  10. Soil respiration patterns and rates at three Taiwanese forest plantations: dependence on elevation, temperature, precipitation, and litterfall

    Huang, Yu-Hsuan; Hung, Chih-Yu; Lin, I-Rhy; Kume, Tomonori; Menyailo, Oleg V.; Cheng, Chih-Hsin

    2017-01-01

    Background Soil respiration contributes to a large quantity of carbon emissions in the forest ecosystem. In this study, the soil respiration rates at three Taiwanese forest plantations (two lowland and one mid-elevation) were investigated. We aimed to determine how soil respiration varies between lowland and mid-elevation forest plantations and identify the relative importance of biotic and abiotic factors affecting soil respiration. Results The results showed that the temporal patterns of so...

  11. An isotopic investigation of the temperature response of young and old soil organic matter respiration

    Burns, Nancy; Cloy, Joanna; Garnett, Mark; Reay, David; Smith, Keith; Otten, Wilfred

    2010-05-01

    The effect of temperature on rates of soil respiration is critical to our understanding of the terrestrial carbon cycle and potential feedbacks to climate change. The relative temperature sensitivity of labile and recalcitrant soil organic matter (SOM) is still controversial; different studies have produced contrasting results, indicating limited understanding of the underlying relationships between stabilisation processes and temperature. Current global carbon cycle models still rely on the assumption that SOM pools with different decay rates have the same temperature response, yet small differences in temperature response between pools could lead to very different climate feedbacks. This study examined the temperature response of soil respiration and the age of soil carbon respired from radiocarbon dated fractions of SOM (free, intra-aggregate and mineral-bound) and whole soils (organic and mineral layers). Samples were collected from a peaty gley soil from Harwood Forest, Northumberland, UK. SOM fractions were isolated from organic layer (5 - 17 cm) material using high density flotation and ultrasonic disaggregation - designated as free (aggregate (aggregates > 1.8 g cm-3) and mineral-bound (> 1.8 g cm-3) SOM. Fractions were analysed for chemical composition (FTIR, CHN analysis, ICP-OES), 14C (AMS), δ13C and δ15N (MS) and thermal properties (DSC). SOM fractions and bulk soil from the organic layer and the mineral layer (20 - 30 cm) were incubated in sealed vessels at 30 ° C and 10 ° C for 3 or 9 months to allow accumulation of CO2 sufficient for sampling. Accumulated respired CO2 samples were collected on zeolite molecular sieve cartridges and used for AMS radiocarbon dating. In parallel, material from the same fractions and layers were incubated at 10 ° C, 15 ° C, 25 ° C and 30 ° C for 6 months and sampled weekly for CO2 flux measurements using GC chromatography. Initial data have shown radiocarbon ages ranging from modern to 219 y BP in bulk soil from

  12. Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils

    Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa

    2016-12-01

    Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO2 and CH4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected to two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity (Q10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH4 fluxes. The cumulative production of C from CO2 was over 6 orders of magnitude higher than that from CH4; cumulative CO2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52-73 % lower C. Cumulative CH4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Deep but unfrozen high-latitude soils have been shown to be

  13. Effect of temperature on kinetics of phosphorus isotope sorption by soils

    Osztoics, E.; Konya, J.; Nagy, N.; Varallyay, L.

    1994-01-01

    Sorption of water soluble P by soils may be approximated by a rapid plus a slow processes. The rapid process of P sorption was studied on samples of five characteristic Hungarian soil types (meadow soil from Hajduboszormeny, brown forest soil from Keszthely, chernozem soil from Oroshaza and sandy soil from Orbottyan), using 32 P isotope technique. Kinetics of 32 P sorption and the effect of temperature (0, 25, and 40 o C) on the processes were investigated. The kinetic data were evaluated using the Christiansen equation. The activation energy and activation entropy of the processes were calculated from the temperature-dependence of the kinetic constants. The following conclusions were drawn: 1. The amount of sorbed P increases with increasing temperature, the increase is different in different soil types depending on soil characteristics. 2. Two processes of different velocity may be distinguished in the rapid P sorption under our experimental conditions. 3. The activation energy of the faster process is 25-50 kJ/mol. This suggests that film diffusion of phosphorus is the rate-limiting process in the first step of P sorption. 4. The activation energy of the slower process of rapid sorption is less than that of the faster process. 5. In contrast, the activation entropy of the slower process is twice as high (in absolute values) as that of the first, instantaneous process. The slower process is probably connected with a structural rearrangement of the sorption layer, i.e. the phosphorus becomes more firmly held. 6. This rearrangement is supported also by our previous studies on the reversibility of 32 P sorption. (author)

  14. Predicting soil-water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls by desorption with methanol-water mixtures at different temperatures.

    Krauss, M; Wilcke, W

    2001-06-01

    We evaluated a method to determine organic carbon-normalized soil-water partition coefficients (Koc) of 20 PAHs and 12 PCBs by desorption in the presence of a cosolvent (methanol fractions of 0.1-0.9) and at different temperatures (20-80 degrees C). The Koc values, the deviation factor from ideal sorption alpha, and the desorption enthalpies delta Hdes were estimated by nonlinear regression of log Koc on the methanol fractions and on T. The Koc values of individual compounds varied up to a factor of 100 among the studied 11 urban soils. The calculated alpha and delta Hdes of individual compounds varied considerably among the soils (coefficients of variation 5-20% and 20-30%, respectively), alpha increased with increasing hydrophobicity of the compounds. A sequential extraction with four temperature/methanol fraction combinations followed by a nonlinear regression allowed for the direct determination of the Koc, alpha, and delta Hdes. The use of less temperature/methanol fraction combinations requires a suitable estimation of alpha and delta Hdes, as their choice may change the obtained Koc values by up to a factor of 10. The proposed method is suitable for a routine determination of Koc values of PAHs and PCBs for small soil samples (2-6 g) and low concentrations (down to 0.3 mg kg-1 of sigma 20 PAHs and 1.2 micrograms kg-1 of sigma 12 PCBs).

  15. Water Redistribution, Temperature Change and CO2 Diffusion of Reconstruction Soil Profiles Filled with Gangue in Coal Mining Areas

    Wang, S.; Zhan, H.; Chen, X.; Hu, Y.

    2017-12-01

    There were a great many projects of reconstruction soil profile filled with gangue to restore ecological environment and land resources in coal mining areas. A simulation experimental system in laboratory was designed for studying water transport and gas-heat diffusion of the reconstruction soil as to help the process of engineering and soil-ripening technology application. The system could be used for constantly measuring soil content, temperature and soil CO2 concentration by laid sensors and detectors in different depth of soil column. The results showed that soil water infiltration process was slowed down and the water-holding capacity of the upper soil was increased because of good water resistance from coal gangue layer. However, the water content of coal gangue layer, 10% approximately, was significantly lower than that of topsoil for the poor water-holding capacity of gangue. The temperature of coal gangue layer was also greater than that of soil layer and became easily sustainable temperature gradient under the condition with heating in reconstruction soil due to the higher thermal diffusivity from gangue, especially being plenty of temperature difference between gangue and soil layers. The effects of heated from below on topsoil was small, which it was mainly influenced from indoor temperature in the short run. In addition, the temperature changing curve of topsoil is similar with the temperature of laboratory and its biggest fluctuation range was for 2.89°. The effects of aerating CO2 from column bottom on CO2 concentration of topsoil soil was also very small, because gas transport from coal gangue layers to soil ones would easily be cut off as so to gas accumulated below the soil layer. The coal gangue could have a negative impact on microbial living environment to adjacent topsoil layers and declined microorganism activities. The effects of coal gangue on topsoil layer were brought down when the cove soil thickness was at 60 cm. And the influences

  16. Temperature dependence of the activity of polyphenol peroxidases and polyphenol oxidases in modern and buried soils

    Yakushev, A. V.; Kuznetsova, I. N.; Blagodatskaya, E. V.; Blagodatsky, S. A.

    2014-05-01

    Under conditions of the global climate warming, the changes in the reserves of soil humus depend on the temperature sensitivities of polyphenol peroxidases (PPPOs) and polyphenol oxidases (PPOs). They play an important role in lignin decomposition, mineralization, and humus formation. The temperature dependence of the potential enzyme activity in modern and buried soils has been studied during incubation at 10 or 20°C. The experimental results indicate that it depends on the availability of the substrate and the presence of oxygen. The activity of PPOs during incubation in the absence of oxygen for two months decreases by 2-2.5 times, which is balanced by an increase in the activity of PPPOs by 2-3 times. The increase in the incubation temperature to 20°C and the addition of glucose accelerates this transition due to the more abrupt decrease in the activity of PPOs. The preincubation of the soil with glucose doubles the activity of PPPOs but has no significant effect on the activity of PPOs. The different effects of temperature on two groups of the studied oxidases and the possibility of substituting enzymes by those of another type under changing aeration conditions should be taken into consideration in predicting the effect of the climate warming on the mineralization of the soil organic matter. The absence of statistically significant differences in the enzymatic activity between the buried and modern soil horizons indicates the retention by the buried soil of some of its properties (soil memory) and the rapid restoration of high enzymatic activity during the preincubation.

  17. Shrub encroachment alters sensitivity of soil respiration to temperature and moisture

    Cable, Jessica M.; Barron-Gafford, Greg A.; Ogle, Kiona; Pavao-Zuckerman, Mitchell; Scott, Russell L.; Williams, David G.; Huxman, Travis E.

    2012-03-01

    A greater abundance of shrubs in semiarid grasslands affects the spatial patterns of soil temperature, moisture, and litter, resulting in fertile islands with potentially enhanced soil metabolic activity. The goal of this study was to quantify the microsite specificity of soil respiration in a semiarid riparian ecosystem experiencing shrub encroachment. We quantified the response of soil respiration to different microsite conditions created by big mesquite shrubs (near the trunk and the canopy edge), medium-sized mesquite, sacaton bunchgrasses, and open spaces. We hypothesized that soil respiration would be more temperature sensitive and less moisture sensitive and have a greater magnitude in shrub microsites compared with grass and open microsites. Field and incubation soil respiration data were simultaneously analyzed in a Bayesian framework to quantify the microsite-specific temperature and moisture sensitivities and magnitude of respiration. The analysis showed that shrub expansion increases the heterogeneity of respiration. Respiration has greater temperature sensitivity near the shrub canopy edge, and respiration rates are higher overall under big mesquite compared with those of the other microsites. Respiration in the microsites beneath medium-sized mesquites does not behave like a downscaled version of big mesquite microsites. The grass microsites show more similarity to big mesquite microsites than medium-sized shrubs. This study shows there can be a great deal of fine-scale spatial heterogeneity that accompanies shifts in vegetation structure. Such complexity presents a challenge in scaling soil respiration fluxes to the landscape for systems experiencing shrub encroachment, but quantifying this complexity is significantly important in determining overall ecosystem metabolic behavior.

  18. Research on the Effects of Drying Temperature on Nitrogen Detection of Different Soil Types by Near Infrared Sensors.

    Nie, Pengcheng; Dong, Tao; He, Yong; Xiao, Shupei

    2018-01-29

    Soil is a complicated system whose components and mechanisms are complex and difficult to be fully excavated and comprehended. Nitrogen is the key parameter supporting plant growth and development, and is the material basis of plant growth as well. An accurate grasp of soil nitrogen information is the premise of scientific fertilization in precision agriculture, where near infrared sensors are widely used for rapid detection of nutrients in soil. However, soil texture, soil moisture content and drying temperature all affect soil nitrogen detection using near infrared sensors. In order to investigate the effects of drying temperature on the nitrogen detection in black soil, loess and calcium soil, three kinds of soils were detected by near infrared sensors after 25 °C placement (ambient temperature), 50 °C drying (medium temperature), 80 °C drying (medium-high temperature) and 95 °C drying (high temperature). The successive projections algorithm based on multiple linear regression (SPA-MLR), partial least squares (PLS) and competitive adaptive reweighted squares (CARS) were used to model and analyze the spectral information of different soil types. The predictive abilities were assessed using the prediction correlation coefficients (R P ), the root mean squared error of prediction (RMSEP), and the residual predictive deviation (RPD). The results showed that the loess (R P = 0.9721, RMSEP = 0.067 g/kg, RPD = 4.34) and calcium soil (R P = 0.9588, RMSEP = 0.094 g/kg, RPD = 3.89) obtained the best prediction accuracy after 95 °C drying. The detection results of black soil (R P = 0.9486, RMSEP = 0.22 g/kg, RPD = 2.82) after 80 °C drying were the optimum. In conclusion, drying temperature does have an obvious influence on the detection of soil nitrogen by near infrared sensors, and the suitable drying temperature for different soil types was of great significance in enhancing the detection accuracy.

  19. Forest harvesting effects on soil temperature, moisture, and respiration in a bottomland hardwood forest

    Londo, A.J.; Messina, M.G.; Schoenholtz, S.H.

    1999-01-01

    The effect of forest disturbance on C cycling has become an issue, given concerns about escalating atmospheric C content. The authors examined the effects of harvest intensity on in situ and laboratory mineral soil respiration in an East Texas bottomland hardwood forest between 6 and 22 mo after harvesting. Treatments included a clearcut, a partial cut wherein approximately 58% of the basal area was removed, and an unharvested control. The soda-lime absorption technique was used for in situ respiration (CO 2 efflux) and the wet alkali method (NaOH) was used for laboratory mineral soil respiration. Soil temperature and moisture content were also measured. Harvesting significantly increased in situ respiration during most sampling periods. This effect was attributed to an increase in live root and microflora activity associated with postharvesting revegetation. In situ respiration increased exponentially (Q 10 relationship) as treatment soil temperatures increased, but followed a parabolic-type pattern through the range of soil moisture measured (mean range 10.4--31.5%). Mean rates of laboratory mineral soil respiration measured during the study were unaffected by cutting treatment for most sampling sessions. Overall, the mean rate of CO 2 efflux in the clearcuts was significantly higher than that in the partial cuts, which in turn was significantly higher than that in the controls. Mass balance estimates indicate that these treatment differences will have little or no long-term effect on C sequestration of these managed forests

  20. Influx of CO2 from Soil Incubated Organic Residues at Constant Temperature

    Shoukat Ali Abro

    2016-06-01

    Full Text Available Temperature induced CO2 from genotypic residue substances is still less understood. Two types of organic residues (wheat- maize were incubated at a constant temperature (25°C to determine the rate and cumulative influx of CO2 in laboratory experiment for 40 days. Further, the effect of surface and incorporated crop residues with and without phosphorus addition was also studied. Results revealed that mixing of crop residues increased CO2-C evolution significantly & emission rare was 37% higher than that of control. At constant temperature, soil mixed residues, had higher emission rates CO2-C than the residues superimposed. There was linear correlation of CO2-C influxed for phosphorus levels and residue application ways with entire incubation at constant temperature. The mixing of organic residues to soil enhanced SOC levels and biomass of microbially bound N; however to little degree ammonium (NH4-N and nitrate NO3-N nitrogen were decreased.

  1. Copper desorption in a soil with variable charge Dessorção de cobre em solo com carga variável

    José Carlos Casagrande

    2004-04-01

    Full Text Available Adsorption processes of heavy metals in soils have been more extensively studied than desorption, in spite of this latter process being related to nutrient bioavailability in the soil solution. Copper desorption from surface (0-0.2 m and subsurface (1.0 - 1.2 m samples of an Anionic Acrudox was studied at two pH values (4.5 and 7.5. Soil samples were incubated with Cu rates varying from 0 to 400 mg kg-1, during 4 and 12 weeks, in the presence of CaCl2 as support electrolyte at concentrations of 0.01 and 0.001 mol L-1. Complete soil adsorption of added Cu was observed at pH 7.5 in all incubation periods, indicating that a 24h-shaking period was enough to reach equilibrium and maximum adsorption. Copper adsorption varied with the incubation period and was much lower at pH 4.5 than at pH 7.5, after the 24 hour-incubation period. After 4 and 12 weeks, Cu adsorption values were higher and similar for all soil samples, irrespective of pH or depth of sampling. The effect of the incubation period on soil Cu adsorption surpassed the pH effect for all Cu rates. The hysteresis was expressive, suggesting that Cu enhances high-energy bonds with the soil colloids. Calcium chloride was not efficient in promoting native soil Cu desorption in the studied concentrations.A adsorção de metais pesados aos solos é mais estudada do que sua dessorção. No entanto, o processo de dessorção está diretamente relacionado à disponibilidade dos elementos às plantas. A dessorção de cobre em amostras superficiais (0-0,2 m e subsuperficiais (1,0-1,2 m de um Latossolo Vermelho acriférrico foi estudada em dois valores de pH (4,5 e 7,5. Foram adicionados até 400 mg kg-1 de Cu em amostras incubadas por 4 e 12 semanas, tendo o CaCl2 como eletrólito suporte nas concentrações de 0,01 e 0,001 mol L-1. No pH mais elevado (7,5, em todos os períodos de incubação, as amostras adsorveram praticamente todo o cobre adicionado, indicando que o tempo de 24 h de agitação para

  2. Overstory removal and residue treatments affect soil surface, air, and soil temperature: implications for seedling survival

    Roger D. Hungerford; Ronald E. Babbitt

    1987-01-01

    Potentially lethal ground surface temperatures were measured at three locations in the Northern Rocky Mountains but occurred more frequently under treatments with greater overstory removal. Observed maximum and minimum temperatures of exposed surfaces are directly related to the thermal properties of the surface materials. Survival of planted seedlings was consistent...

  3. A numerical study of diurnally varying surface temperature on flow patterns and pollutant dispersion in street canyons

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-03-01

    The impacts of the diurnal variation of surface temperature on street canyon flow pattern and pollutant dispersion are investigated based on a two-dimensional street canyon model under different thermal stratifications. Uneven distributed street temperature conditions and a user-defined wall function representing the heat transfer between the air and the street canyon are integrated into the current numerical model. The prediction accuracy of this model is successfully validated against a published wind tunnel experiment. Then, a series of numerical simulations representing four time scenarios (Morning, Afternoon, Noon and Night) are performed at different Bulk Richardson number (Rb). The results demonstrate that uneven distributed street temperature conditions significantly alters street canyon flow structure and pollutant dispersion characteristics compared with conventional uniform street temperature assumption, especially for the morning event. Moreover, air flow patterns and pollutant dispersion are greatly influenced by diurnal variation of surface temperature under unstable stratification conditions. Furthermore, the residual pollutant in near-ground-zone decreases as Rb increases in noon, afternoon and night events under all studied stability conditions.

  4. Influence of Soil Temperature on Meloidogyne incognita Resistant and Susceptible Cotton, Gossypium hirsutum

    Carter, William W.

    1982-01-01

    The degree of resistance by a cotton plant to Meloidogyne incognita is affected by soil temperature, particularly in moderately resistant cultivars, The total number of nematodes in the resistant and moderately resistant rools at 35 C was equal to, or greater than, the number in susceptible roots at 20, 25, or 30 C. A shift in numbers to developing and egg-bearing forms of nematodes in the susceptible cultivar as tentperature increased indicates development was affected by temperature rather ...

  5. Increasing soil temperature in a northern hardwood forest: effects on elemental dynamics and primary productivity

    Patrick J. McHale; Myron J. Mitchell; Dudley J. Raynal; Francis P. Bowles

    1996-01-01

    To investigate the effects of elevated soil temperatures on a forest ecosystem, heating cables were buried at a depth of 5 cm within the forest floor of a northern hardwood forest at the Huntington Wildlife Forest (Adirondack Mountains, New York). Temperature was elevated 2.5, 5.0 and 7.5?C above ambient, during May - September in both 1993 and 1994. Various aspects of...

  6. The Effects of Organic Manures, Soil Cover and Drying Temperature on Some Growth and Phytochemical Characteristics of Calendula officinalis

    Lamia Vojodi Mehrabani

    2017-01-01

    Full Text Available Two separate experiments were conducted to evaluate the effects of some pre and post -harvest treatments on growth characteristics of Calendula officinalis. The first experiment as RCBD with three replication studied the effects of organic fertilizers as vermicompost, cow and poultry manure with control plus soil cover (plastic white and black. Organic manure application +mulch had positive effects on flower fresh weight. The greatest amount for chlorophyll b content was recorded in vermicompost + black plastic cover. In the second experiment, the effects of nutrition with organic manure +soil cover and post-harvest flower drying temperature (natural drying in shade condition and oven drying at 40 and 60 0C as a factorial based on RCBD were evaluated. The highest methanolic extract amount and total anthocyanin content were recorded with vermicompost + black cover + natural drying. For essential oil content and carotenoids gross amount poultry manure + black cover and drying at 60 0C was the preferred treatments. The highest recorded data for total flavonoids was traced in vermicompot and cow manure with white cover at natural drying condition. For total phenolics content, cow manure + black cover at 40 0C used for drying was selected as the treatment of choice. Also, vermicompost+ black mulch and natural drying were nice treatment combinations for the highest total phenolics content. In total, all the treatment applied i.e. organic manures, soil covers and drying methods at varying levels and combinations had suitable effectiveness on the growth characteristics and phytochemicals content of Calendula officinalis.

  7. Influence of temperature and hydraulic conductivity of soil on electrokinetic decontamination

    Kim, Gye-Nam; Kim, Seung-Soo; Jeong, Jung-Whan; Choi, Jong-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The electrokinetic process holds great promise for the decontamination of contaminated soil because it has a high removal efficiency and is time-effective for low permeability. Electrokinetic decontamination can be used to treat soil contaminated with inorganic species and radionuclides. The main mechanisms of a contaminant's movement in an electrical field involved in electrokinetic technology are the electro-migration of the ionic species and electro-osmosis. Electro-migration probably contributes significantly to the removal of contaminants, especially at high concentrations of ionic contaminants and/or a high hydraulic permeability of soil. The cathode reaction should be depolarized to avoid the generation of hydroxides and their transport in soil. The selected liquid, also known as a purging reagent, should induce favorable pH conditions in soil, and/or interact with the incorporated heavy metals so that these heavy metals are removed from the soil. The removal efficiencies of uranium from contaminated soil in manufactured laboratory electrokinetic decontamination equipment were proportional to the elapsed time. The removal efficiencies of uranium for 2 days were 77-87%. In addition, the removal efficiencies according to the elapsed time after 2 days were reduced. When 75, 80, and 85℃ electrolyte temperatures in the cathode chamber were applied, the time required for the removal efficiency of uranium to reach 92% was 6, 5 and 4 days.

  8. Influence of temperature and hydraulic conductivity of soil on electrokinetic decontamination

    Kim, Gye-Nam; Kim, Seung-Soo; Jeong, Jung-Whan; Choi, Jong-Won

    2016-01-01

    The electrokinetic process holds great promise for the decontamination of contaminated soil because it has a high removal efficiency and is time-effective for low permeability. Electrokinetic decontamination can be used to treat soil contaminated with inorganic species and radionuclides. The main mechanisms of a contaminant's movement in an electrical field involved in electrokinetic technology are the electro-migration of the ionic species and electro-osmosis. Electro-migration probably contributes significantly to the removal of contaminants, especially at high concentrations of ionic contaminants and/or a high hydraulic permeability of soil. The cathode reaction should be depolarized to avoid the generation of hydroxides and their transport in soil. The selected liquid, also known as a purging reagent, should induce favorable pH conditions in soil, and/or interact with the incorporated heavy metals so that these heavy metals are removed from the soil. The removal efficiencies of uranium from contaminated soil in manufactured laboratory electrokinetic decontamination equipment were proportional to the elapsed time. The removal efficiencies of uranium for 2 days were 77-87%. In addition, the removal efficiencies according to the elapsed time after 2 days were reduced. When 75, 80, and 85℃ electrolyte temperatures in the cathode chamber were applied, the time required for the removal efficiency of uranium to reach 92% was 6, 5 and 4 days

  9. Variáveis relacionadas à estabilidade de complexos organo-minerais em solos tropicais e subtropicais brasileiros Selected soil-variables related to the stability of organo-minerals complexes in tropical and subtropical brazilian soils

    Alberto Vasconcellos Inda Junior

    2007-10-01

    Full Text Available A estabilidade de complexos organo-minerais é uma característica importante quanto à química e física de solos tropicais e subtropicais. O objetivo deste estudo foi identificar variáveis relacionadas à estabilidade de complexos organo-minerais, avaliada pela energia de ultra-som necessária para a dispersão total do solo em partículas primárias, em seis solos das regiões Sul e Centro-Oeste do Brasil com textura e mineralogia distintas. A energia de ultra-som necessária para dispersão total dos solos variou de 239 a 2.389J mL-1, sendo diretamente relacionada aos teores de carbono orgânico (R²=0,799, PThe stability of organo-mineral complexes is an important characteristic related to the soil chemistry and physics of tropical and subtropical soils. This study was aimed at identifing the variables related to the stability of organo-mineral complexes, evaluated by ultrasonic energy necessary to complete soil dispersion, of six soils from South and West-Center regions of Brazil with distint texture and mineralogy. The ultrasonic energy to complete soil dispersion varied from 239 a 2389J mL-1, and was positively related to the soil organic carbon concentrations (R²=0.799, P<0.05. The clay mineralogy had an important role to the stability of organo-mineral complexes, which were related to the content of low cristalinity iron oxides (R²=0.586, P<0.10, but did not had relationship with the total pedogenic iron oxides. The qualitative analysis of the clay mineralogy, by X-ray diffraction, evidenced that gibbsite and goethite are the main clay minerals related to the stability of organo-mineral complexes, reinforcing the importance of these minerals on the physical protection and coloidal stability of the soil organic matter in the tropical and subtropical soils.

  10. Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature

    Jones, Chris D.; Cox, Peter; Huntingford, Chris

    2003-01-01

    Carbon-cycle feedbacks have been shown to be very important in predicting climate change over the next century, with a potentially large positive feedback coming from the release of carbon from soils as global temperatures increase. The magnitude of this feedback and whether or not it drives the terrestrial carbon cycle to become a net source of carbon dioxide during the next century depends particularly on the response of soil respiration to temperature. Observed global atmospheric CO 2 concentration, and its response to naturally occurring climate anomalies, is used to constrain the behaviour of soil respiration in our coupled climate-carbon-cycle GCM. This constraint is used to quantify some of the uncertainties in predictions of future CO 2 levels. The uncertainty is large, emphasizing the importance of carbon-cycle research with respect to future climate change predictions

  11. Soil inertia and shallow basement envelope impact on cellar internal temperature

    Naima Sakami

    2016-06-01

    Full Text Available This work deals with a three dimensional numerical study of heat transfer by conduction between the soil and the shallow basement in the city of Marrakech (Morocco. The heat transfer equation is solved by the finite difference method using the implicit alternative direction (ADI. The internal temperature of the cellar is computed by using energy balance equation in the cellar. The objective of this work is to evaluate the effects of the nature of the soil, the nature of the walls, the thickness of the walls of the cellar and the distance L far from the cellar on the internal temperature and the heat exchanged between the soil and the shallow basement

  12. Temperature response of denitrification rate and greenhouse gas production in agricultural river marginal wetland soils.

    Bonnett, S A F; Blackwell, M S A; Leah, R; Cook, V; O'Connor, M; Maltby, E

    2013-05-01

    Soils are predicted to exhibit significant feedback to global warming via the temperature response of greenhouse gas (GHG) production. However, the temperature response of hydromorphic wetland soils is complicated by confounding factors such as oxygen (O2 ), nitrate (NO3-) and soil carbon (C). We examined the effect of a temperature gradient (2-25 °C) on denitrification rates and net nitrous oxide (N2 O), methane (CH4 ) production and heterotrophic respiration in mineral (Eutric cambisol and Fluvisol) and organic (Histosol) soil types in a river marginal landscape of the Tamar catchment, Devon, UK, under non-flooded and flooded with enriched NO3- conditions. It was hypothesized that the temperature response is dependent on interactions with NO3--enriched flooding, and the physicochemical conditions of these soil types. Denitrification rate (mean, 746 ± 97.3 μg m(-2)  h(-1) ), net N2 O production (mean, 180 ± 26.6 μg m(-2)  h(-1) ) and net CH4 production (mean, 1065 ± 183 μg m(-2)  h(-1) ) were highest in the organic Histosol, with higher organic matter, ammonium and moisture, and lower NO3- concentrations. Heterotrophic respiration (mean, 127 ± 4.6 mg m(-2)  h(-1) ) was not significantly different between soil types and dominated total GHG (CO2 eq) production in all soil types. Generally, the temperature responses of denitrification rate and net N2 O production were exponential, whilst net CH4 production was unresponsive, possibly due to substrate limitation, and heterotrophic respiration was exponential but limited in summer at higher temperatures. Flooding with NO3- increased denitrification rate, net N2 O production and heterotrophic respiration, but a reduction in net CH4 production suggests inhibition of methanogenesis by NO3- or N2 O produced from denitrification. Implications for management and policy are that warming and flood events may promote microbial interactions in soil between distinct microbial communities and increase

  13. Soil respiration in Tibetan alpine grasslands: belowground biomass and soil moisture, but not soil temperature, best explain the large-scale patterns.

    Yan Geng

    Full Text Available The Tibetan Plateau is an essential area to study the potential feedback effects of soils to climate change due to the rapid rise in its air temperature in the past several decades and the large amounts of soil organic carbon (SOC stocks, particularly in the permafrost. Yet it is one of the most under-investigated regions in soil respiration (Rs studies. Here, Rs rates were measured at 42 sites in alpine grasslands (including alpine steppes and meadows along a transect across the Tibetan Plateau during the peak growing season of 2006 and 2007 in order to test whether: (1 belowground biomass (BGB is most closely related to spatial variation in Rs due to high root biomass density, and (2 soil temperature significantly influences spatial pattern of Rs owing to metabolic limitation from the low temperature in cold, high-altitude ecosystems. The average daily mean Rs of the alpine grasslands at peak growing season was 3.92 µmol CO(2 m(-2 s(-1, ranging from 0.39 to 12.88 µmol CO(2 m(-2 s(-1, with average daily mean Rs of 2.01 and 5.49 µmol CO(2 m(-2 s(-1 for steppes and meadows, respectively. By regression tree analysis, BGB, aboveground biomass (AGB, SOC, soil moisture (SM, and vegetation type were selected out of 15 variables examined, as the factors influencing large-scale variation in Rs. With a structural equation modelling approach, we found only BGB and SM had direct effects on Rs, while other factors indirectly affecting Rs through BGB or SM. Most (80% of the variation in Rs could be attributed to the difference in BGB among sites. BGB and SM together accounted for the majority (82% of spatial patterns of Rs. Our results only support the first hypothesis, suggesting that models incorporating BGB and SM can improve Rs estimation at regional scale.

  14. Determination of total carbonates in soil archaeometry using a new pressure method with temperature compensation

    Barouchas, Pantelis; Koulos, Vasilios; Melfos, Vasilios

    2017-04-01

    For the determination of total carbonates in soil archaeometry a new technique was applied using a multi-sensor philosophy, which combines simultaneous measurement of pressure and temperature. This technology is innovative and complies with EN ISO 10693:2013, ASTM D4373-02(2007) and Soil Science Society of America standard test methods for calcium carbonate content in soils and sediments. The total carbonates analysis is based on a pressure method that utilizes the FOGII Digital Soil CalcimeterTM, which is a portable apparatus. The total carbonate content determined by treating a 1.000 g (+/- 0.001 g) dried sample specimens with 6N hydrochloric acid (HCL) reagent grade, in an enclosed reaction vessel. Carbon dioxide gas evolved during the reaction between the acid and carbonate fraction of the specimen, was measured by the resulting pressure generated, taking in account the temperature conditions during the reaction. Prior to analysis the procedure was validated with Sand/Soil mixtures from BIPEA proficiency testing program with soils of different origins. For applying this new method in archaeometry a total number of ten samples were used from various rocks which are related with cultural constructions and implements in Greece. They represent a large range of periods since the Neolithic times, and were selected because there was an uncertainty about their accurate mineralogical composition especially regarding the presence of carbonate minerals. The results were compared to the results from ELTRA CS580 inorganic carbon analyzer using an infrared cell. The determination of total carbonates for 10 samples from different ancient sites indicated a very good correlation (R2 >0.97) between the pressure method with temperature compensation and the infrared method. The proposed method is quickly and accurate in archaeometry and can replace easily other techniques for total carbonates testing. The FOGII Digital Soil CalcimeterTM is portable and easily can be carried for

  15. Laboratory Measured Emission Losses of Methyl Isothiocyanate at Pacific Northwest Soil Surface Fumigation Temperatures.

    Lu, Zhou; Hebert, Vincent R; Miller, Glenn C

    2017-02-01

    Temperature is a major environmental factor influencing land surface volatilization at the time of agricultural field fumigation. Cooler fumigation soil temperatures relevant to Pacific Northwest (PNW) application practices with metam sodium/potassium should result in appreciably reduced methyl isothiocyanate (MITC) emission rates, thus minimizing off target movement and bystander inhalation exposure. Herein, a series of laboratory controlled flow-through soil column assessments were performed evaluating MITC emissions over the range of cooler temperatures (2-13°C). Assessments were also conducted at the maximum allowed label application temperature of 32°C. All assessments were conducted at registration label-specified field moisture capacity, and no more than 50% cumulative MITC loss was observed over the 2-day post-fumigation timeframe. Three-fold reductions in MITC peak fluxes at cooler PNW application temperatures were observed compared to the label maximum temperature. This study supports current EPA metam sodium/potassium label language that indicates surface fumigations during warmer soil conditions should be discouraged.

  16. Evaluation of a Linear Mixing Model to Retrieve Soil and Vegetation Temperatures of Land Targets

    Yang, J.; Jia, L.; Cui, Y.; Zhou, J.; Menenti, M.

    2014-01-01

    A simple linear mixing model of heterogeneous soil-vegetation system and retrieval of component temperatures from directional remote sensing measurements by inverting this model is evaluated in this paper using observations by a thermal camera. The thermal camera was used to obtain multi-angular TIR

  17. Effect of Polylactic Acid-Degradable Film Mulch on Soil Temperature and Cotton Yield

    ZHANG Ni

    2016-03-01

    Full Text Available Concern on biodegradable plastic film is increasing because of pollution problems caused by the plastic films currently used. The objective of this field experiment is to evaluate the effect of two thicknesses of polyactic acid-degradable film on soil temperature and cotton yield. The results showed that small holes appeared in the polyactic acid-degradable film at 17~22 d after it was installed. Burst period appeared about 60 d after installation. Splits were observed in the polyactic acid-degradable film at 130 d after installation. Soil temperatures rose slowly under polyactic acid-degradable film during the cotton seedling stage. Daytime soil temperatures were 0.8℃ and 6.2℃ lower under 18μm and 15μm thick polyactic acid-degradable film than non-degradable plastic film(CK, respectively. Nighttime soil temperatures under the polyactic acid-degradable film were about 1℃ warmer than CK. There was no significant difference in cotton yields between the 18μm polyactic acid degradable film treatment and CK. In contrast, yields in the 15μm degradable plastic film treatment were 8.9% less than that in CK. This study indicated that 18μm polyactic acid degradable plastic film had good degradability and no negative effect on cotton growth. The 18μm polyactic acid degradable plastic film can replace ordinary plastic film in agricultural production.

  18. Biodegradation of Toluene under seasonal and diurnal fluctuations of soil-water temperature

    Yadav, B.K.; Shrestha, S.R.; Hassanizadeh, S.M.

    2012-01-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of

  19. Reduced substrate supply limits the temperature response of soil organic carbon decomposition

    Cinzia Fissore; Christian P. Giardina; Randall K. Kolka

    2013-01-01

    Controls on the decomposition rate of soil organic carbon (SOC), especially the more stable fraction of SOC, remain poorly understood, with implications for confidence in efforts to model terrestrial C balance under future climate. We investigated the role of substrate supply in the temperature sensitivity of SOC decomposition in laboratory incubations of coarse-...

  20. Variable temperature sensitivity of soil organic carbon in North American forests

    Cinzia Fissore; Christian P. Giardina; Christopher W. Swanston; Gary M. King; Randall K. Kolka

    2009-01-01

    We investigated mean residence time (MRT) for soil organic carbon (SOC) sampled from paired hardwood and pine forests located along a 22 °C mean annual temperature (MAT) gradient in North America. We used acid hydrolysis fractionation, radiocarbon analyses, long-term laboratory incubations (525-d), and a three-pool model to describe the size and kinetics of...

  1. Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe

    Hurk, Bart van den; Camargo, Helio [Royal Netherlands Meteorological Institute, KNMI, PO Box 201, AE De Bilt (Netherlands); Doblas-Reyes, Francisco [Catalan Institute of Climate Sciences (IC3), Barcelona (Spain); European Centre for Medium-range Weather Forecasts (ECMWF), Reading (United Kingdom); Balsamo, Gianpaolo [European Centre for Medium-range Weather Forecasts (ECMWF), Reading (United Kingdom); Koster, Randal D. [NASA/Goddard Space Flight Center, Global Modeling and Assimilation Office, Greenbelt, MD (United States); Seneviratne, Sonia I. [Institute for Atmospheric and Climate Science, Zurich (Switzerland)

    2012-01-15

    The Second Global Land Atmosphere Coupling Experiment (GLACE2) is designed to explore the improvement of forecast skill of summertime temperature and precipitation up to 8 weeks ahead by using realistic soil moisture initialization. For the European continent, we show in this study that for temperature the skill does indeed increase up to 6 weeks, but areas with (statistically significant) lower skill also exist at longer lead times. The skill improvement is smaller than shown earlier for the US, partly because of a lower potential predictability of the European climate at seasonal time scales. Selection of extreme soil moisture conditions or a subset of models with similar initial soil moisture conditions does improve the forecast skill, and sporadic positive effects are also demonstrated for precipitation. Using realistic initial soil moisture data increases the interannual variability of temperature compared to the control simulations in the South-Central European area at longer lead times. This leads to better temperature forecasts in a remote area in Western Europe. However, the covered range of forecast dates (1986-1995) is too short to isolate a clear physical mechanism for this remote correlation. (orig.)

  2. BOREAS TF-3 NSA-OBS Tower Flux, Meteorological, and Soil Temperature Data

    Wofsy, Steven; Sutton, Doug; Goulden, Mike; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Tower Flux (BOREAS TF-3) team collected tower flux, surface meteorological, and soil temperature data at the BOREAS Northern Study Area-Old Black Spruce (NSA-OBS) site continuously from the March 1994 through October 1996. The data are available in tabular ASCII files.

  3. Temperature measurement error due to the effects of time varying magnetic fields on thermocouples with ferromagnetic thermoelements

    McDonald, D.W.

    1977-01-01

    Thermocouples with ferromagnetic thermoelements (iron, Alumel, Nisil) are used extensively in industry. We have observed the generation of voltage spikes within ferromagnetic wires when the wires are placed in an alternating magnetic field. This effect has implications for thermocouple thermometry, where it was first observed. For example, the voltage generated by this phenomenon will contaminate the thermocouple thermal emf, resulting in temperature measurement error

  4. Finite element modeling for integrated solid-solid PCM-building material with varying phase change temperatures

    Zhang, D.; Fung, A.S.; Siddiqui, O. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2008-08-15

    Solid-solid phase change materials (SSPCMs) are used to enhance thermal storage performance and reduce indoor temperature fluctuations in buildings. In this study, a finite element model (FEM) was used to investigate the thermal properties of different types of SSPCMs. An effective heat capacity method was used to develop the model. An integrated PCM-building material was analyzed in relation to temperature and heat flux profiles. Governing equations for the heat transfer process were composed of Navier-Stokes momentum equations; a mass conservation equation; and an energy conservation equation. Effective heat capacity was described as a linear function of the latent heat of fusion on both the heating and cooling processes. Data from the simulation were then compared with an experiment suing drywall, concrete and gypcrete samples. Heat flux across the surfaces and temperatures on the surfaces of the materials were measured. Data were used to validate the finite element model (FEM). Results of the study suggested that heat flux profiles are an effective means of understanding phase change processes. It was concluded that PCMs with lower phase change temperatures lengthened energy releases and improved thermal comfort in the building. 12 refs., 2 tabs., 14 figs.

  5. Ecosystem carbon storage does not vary with increasing mean annual temperature in Hawaiian tropical montane wet forests

    Paul Selmants; Creighton Litton; Christian P. Giardina; Greg P. Asner

    2014-01-01

    Theory and experiment agree that climate warming will increase carbon fluxes between terrestrial ecosystems and the atmosphere. The effect of this increased exchange on terrestrial carbon storage is less predictable, with important implications for potential feedbacks to the climate system. We quantified how increased mean annual temperature (MAT) affects ecosystem...

  6. AgRISTARS: Early warning and crop condition assessment. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions

    Wiegand, C. L. (Principal Investigator); Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J.

    1981-01-01

    Emissive (10.5 to 12.5 microns) and reflective (0.55 to 1.1 microns) data for ten day scenes and infrared data for six night scenes of southern Texas were analyzed for plant cover, soil temperature, freeze, water stress, and evapotranspiration. Heat capacity mapping mission radiometric temperatures were: within 2 C of dewpoint temperatures, significantly correlated with variables important in evapotranspiration, and related to freeze severity and planting depth soil temperatures.

  7. Creep rupture properties under varying load/temperature conditions on a nickel-base heat-resistant alloy strengthened by boron addition

    Tsuji, Hirokazu; Tanabe, Tatsuhiko; Nakajima, Hajime

    1994-01-01

    A series of constant load and temperature creep rupture tests and varying load and temperature creep rupture tests was carried out on Hastelloy XR whose boron content level is 60 mass ppm at 900 and 1000 C in order to examine the behavior of the alloy under varying load and temperature conditions. The life fraction rule completely fails in the prediction of the creep rupture life under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR whose boron content level is below 10 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the boron content level of the alloy. The modified rule successfully predicts the creep rupture life under the test conditions from 1000 to 900 C. The trend observed in the tests from 900 to 1000 C can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900 C plays the role of the protective barrier against the boron dissipation into the environment. (orig.)

  8. Creep rupture properties under varying load/temperature conditions on a nickel-base heat-resistant alloy strengthened by boron addition

    Tsuji, Hirokazu; Nakajima, Hajime; Tanabe, Tatsuhiko.

    1993-09-01

    A series of constant load and temperature creep rupture tests and varying load and temperature creep rupture tests was carried out on Hastelloy XR whose boron content level is 60 mass ppm at 900 and 1000degC in order to examine the behavior of the alloy under varying load and temperature conditions. The life fraction rule completely fails in the prediction of the creep rupture life under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR whose boron content level is below 10 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the born content level of the alloy. The modified rule successfully predicts the creep rupture life under the test conditions from 1000degC to 900degC. The trend observed in the tests from 900degC to 1000degC can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900degC plays the role of the protective barrier against the boron dissipation into the environment. (author)

  9. Temperature response of permafrost soil carbon is attenuated by mineral protection.

    Gentsch, Norman; Wild, Birgit; Mikutta, Robert; Čapek, Petr; Diáková, Katka; Schrumpf, Marion; Turner, Stephanie; Minnich, Cynthia; Schaarschmidt, Frank; Shibistova, Olga; Schnecker, Jörg; Urich, Tim; Gittel, Antje; Šantrůčková, Hana; Bárta, Jiři; Lashchinskiy, Nikolay; Fuß, Roland; Richter, Andreas; Guggenberger, Georg

    2018-05-18

    Climate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral-organic associations (MOA) on the microbial accessibility of OM in permafrost soils and it is not clear which factors control its temperature sensitivity. In order to investigate if and how permafrost soil OC turnover is affected by mineral controls, the heavy fraction (HF) representing mostly MOA was obtained by density fractionation from 27 permafrost soil profiles of the Siberian Arctic. In parallel laboratory incubations, the unfractionated soils (bulk) and their HF were comparatively incubated for 175 days at 5 and 15°C. The HF was equivalent to 70 ± 9% of the bulk CO 2 respiration as compared to a share of 63 ± 1% of bulk OC that was stored in the HF. Significant reduction of OC mineralization was found in all treatments with increasing OC content of the HF (HF-OC), clay-size minerals and Fe or Al oxyhydroxides. Temperature sensitivity (Q10) decreased with increasing soil depth from 2.4 to 1.4 in the bulk soil and from 2.9 to 1.5 in the HF. A concurrent increase in the metal-to-HF-OC ratios with soil depth suggests a stronger bonding of OM to minerals in the subsoil. There, the younger 14 C signature in CO 2 than that of the OC indicates a preferential decomposition of the more recent OM and the existence of a MOA fraction with limited access of OM to decomposers. These results indicate strong mineral controls on the decomposability of OM after permafrost thaw and on its temperature sensitivity. Thus, we here provide evidence that OM temperature sensitivity can be attenuated by MOA in permafrost soils. © 2018 John Wiley & Sons Ltd.

  10. Evaluation of Integrated Time-Temperature Effect in Pyrolysis Process of Historically Contaminated Soils with Cadmium (Cd) and Lead (Pb)

    Bulmău C; Cocârță D. M.; Reșetar-Deac A. M.

    2013-01-01

    It is already known that heavy metals pollution causes important concern to human and ecosystem health. Heavy metals in soils at the European level represents 37.3% between main contaminates affecting soils (EEA, 2007). This paper illustrates results obtained in the framework of laboratory experiments concerning the evaluation of integrated time-temperature effect in pyrolysis process applied to contaminated soil by two different ways: it is about heavy metals historically contaminated soil f...

  11. Influence of snow cover distribution on soil temperature and nutrient dynamics in alpine pedoenvironments

    Ermanno Zanini

    Full Text Available In Alpine sites snow is present on the ground from six to eight months per year in relation to elevation and exposure. Water is therefore immobilized into the solid state for the greater part of the winter season and released to the ground in a short period during spring snowmelt. In these areas, snow distribution exercises a fundamental role in influencing soil temperature and nutrient dynamics, in particular of nitrogen, with great consequences on plant nutrition. The dormant vegetation period, the low temperatures and the persistent snow cover suggest that soil biological activity is only concentrated during summer. As a matter of fact, soils covered with a consistent snow cover are isolated from the air temperature and can not freeze during winter. A snowpack of sufficient thickness, accumulated early in winter, insulates the ground from the surrounding atmosphere maintaining soil temperature closed to 0 °C during the whole winter season. The elevation of the snow line and the shorter permanence of snow on the ground, as a result of global warming (IPCC, 1996, 2001, might reduce the insulation effect of the snowpack, exposing soils of the mountain belt to lower temperatures and to a greater frequency of freeze/thaw cycles, which might alter organic matter dynamics and soil nutrient availability. Such thermal stresses may determine the lysis of microbial cells and the consequent increase of nitrogen and carbon mineralization by the survived microorganisms. Moreover, the freeze/thaw cycles can determine the exposure of exchange surfaces not available before, with release of organic matter of non-microbial origin, which may become available to surviving microorganisms for respiration. The reduced or absent microbial immobilization may cause the accumulation of remarkable amounts of inorganic nitrogen in soil, potentially leachable during spring snowmelt, when plants have not still started the growing season. Changes of snow distribution in

  12. A dynamic growth model of vegetative soya bean plants: model structure and behaviour under varying root temperature and nitrogen concentration

    Lim, J. T.; Wilkerson, G. G.; Raper, C. D. Jr; Gold, H. J.

    1990-01-01

    A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.

  13. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Hart, John; Adam, Thomas; Kim, Yihwan; Huang, Yi-Chiau; Reznicek, Alexander; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James

    2016-03-01

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl4 precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  14. Microsatellite frequencies vary with body mass and body temperature in mammals, suggesting correlated variation in mutation rate

    William Amos

    2014-11-01

    Full Text Available Substitution rate is often found to correlate with life history traits such as body mass, a predictor of population size and longevity, and body temperature. The underlying mechanism is unclear but most models invoke either natural selection or factors such as generation length that change the number of mutation opportunities per unit time. Here we use published genome sequences from 69 mammals to ask whether life history traits impact another form of genetic mutation, the high rates of predominantly neutral slippage in microsatellites. We find that the length-frequency distributions of three common dinucleotide motifs differ greatly between even closely related species. These frequency differences correlate with body mass and body temperature and can be used to predict the phenotype of an unknown species. Importantly, different length microsatellites show complicated patterns of excess and deficit that cannot be explained by a simple model where species with short generation lengths have experienced more mutations. Instead, the patterns probably require changes in mutation rate that impact alleles of different length to different extents. Body temperature plausibly influences mutation rate by modulating the propensity for slippage. Existing hypotheses struggle to account for a link between body mass and mutation rate. However, body mass correlates inversely with population size, which in turn predicts heterozygosity. We suggest that heterozygote instability, HI, the idea that heterozygous sites show increased mutability, could provide a plausible link between body mass and mutation rate.

  15. Effects of altered temperature and precipitation on desert protozoa associated with biological soil crusts.

    Darby, Brian J; Housman, David C; Zaki, Amr M; Shamout, Yassein; Adl, Sina M; Belnap, Jayne; Neher, Deborah A

    2006-01-01

    Biological soil crusts are diverse assemblages of bacteria, cyanobacteria, algae, fungi, lichens, and mosses that cover much of arid land soils. The objective of this study was to quantify protozoa associated with biological soil crusts and test the response of protozoa to increased temperature and precipitation as is predicted by some global climate models. Protozoa were more abundant when associated with cyanobacteria/lichen crusts than with cyanobacteria crusts alone. Amoebae, flagellates, and ciliates originating from the Colorado Plateau desert (cool desert, primarily winter precipitation) declined 50-, 10-, and 100-fold, respectively, when moved in field mesocosms to the Chihuahuan Desert (hot desert, primarily summer rain). However, this was not observed in protozoa collected from the Chihuahuan Desert and moved to the Sonoran desert (hot desert, also summer rain, but warmer than Chihuahuan Desert). Protozoa in culture began to encyst at 37 degrees C. Cysts survived the upper end of daily temperatures (37-55 degrees C), and could be stimulated to excyst if temperatures were reduced to 15 degrees C or lower. Results from this study suggest that cool desert protozoa are influenced negatively by increased summer precipitation during excessive summer temperatures, and that desert protozoa may be adapted to a specific desert's temperature and precipitation regime.

  16. Temperature-dependent residual shear strength characteristics of smectite-rich landslide soils

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2015-04-01

    On gentle clayey slopes in weathered argillaceous rock areas, there exist many landslides which repeatedly reactivate with slow movement. The slip surface soils of these landslides are sometimes composed dominantly of swelling clay mineral (smectite) which is well known to show extremely low residual friction angle. From field data monitored at landslide sites in Japan, it has become clear that some landslides with relatively shallow slip surface begin to move and become active in late autumn or early winter every year. In such cases, the triggering mechanisms of landslides have not been understood well enough, because landslide initiation and movement are not always clearly linked with rises in pore water pressures (ground water levels). In this study, we focus on the influence of seasonal variation in ground temperature on slope stability and have investigated the effect of temperature on the shear strength of slip surface soils. Undisturbed soil samples were collected by boring from the Busuno landslide in Japan. We performed box shear experiments on undisturbed slip surface soils at low temperature ranges (approximately 5-25 °C). XRD analysis revealed that these soils contain high fraction of smectite. Slickensided slip surface within test specimen was coincided with the shearing plane of the shear box and shear displacement was applied precisely along the localized slip surface. Experiments were performed under slow shearing rate condition (0.005mm/min) and the results showed that shear strength decreased with decreasing temperature. Temperature effect was rather significant on frictional angle than on cohesion. Ring shear experiments were also performed on normally-consolidated remoulded samples. Under residual strength condition, temperature-change experiments (cooling-event tests) ranging approximately from 5 to 25 °C were performed on smectite-rich landslide soils and commercial bentonites. As well as the results by box shear test, shear weakening

  17. The influence of rolled erosion control systems on soil temperature and surface albedo: part I. A greenhouse experiment

    Sutherland, R.A.; Menard, T.; Perry, J.L.; Penn, D.C.

    1998-01-01

    A greenhouse study examined the influences of various surface covers (a bare control soil and seven rolled erosion control systems—RECS) on surface radiative properties, and soil temperature. In our companion paper we examine relationships with soil moisture, biomass production, and nutrient assimilation. Randomization and replication were key components to our study of microclimate under tropical radiation conditions. The bare Oxisol control soil exhibited the most extreme microclimatic conditions with the lowest albedo (not significantly different from that of P300© North American Green, a dark green polypropylene system), and the highest mean and maximum hourly temperatures recorded at depths of 5 and 8 cm. This hostile climatic environment was not conducive to biomass production or moisture storage and it is likely that the observed soil surface crusts impeded plant emergence. Rolled erosion control systems, on the other hand, generally moderated soil temperatures by reflecting more shortwave radiation, implying less heat energy at the surface for conduction to the soil. The result was that RECS exhibited lower mean soil temperatures, higher minimum temperatures and lower maximum soil temperatures. An aspen excelsior system (Curlex I© Excelsior) had the highest albedo and the soil beneath this system exhibited the greatest temperature modulation. Open-weave systems composed of jute (Geojute© Price & Pictures) and coconut fibers (BioD-Mat 70© RoLanka) were the RECS most similar in temperature response to the bare control soil. Other systems examined were intermediate in their temperature response and surface albedo (i.e., SC150BN© North American Green, C125© North American Green and Futerra© Conwed Fibers). (author)

  18. Impact of temperature and soil type on Mycobacterium bovis survival in the environment.

    Barbier, Elodie; Rochelet, Murielle; Gal, Laurent; Boschiroli, Maria Laura; Hartmann, Alain

    2017-01-01

    Mycobacterium bovis, the causative agent of the bovine tuberculosis (bTB), mainly affects cattle, its natural reservoir, but also a wide range of domestic and wild mammals. Besides direct transmission via contaminated aerosols, indirect transmission of the M. bovis between wildlife and livestock might occur by inhalation or ingestion of environmental substrates contaminated through infected animal shedding. We monitored the survival of M. bovis in two soil samples chosen for their contrasted physical and-chemical properties (i.e. pH, clay content). The population of M. bovis spiked in sterile soils was enumerated by a culture-based method after 14, 30, 60, 90, 120 and 150 days of incubation at 4°C and 22°C. A qPCR based assay targeting the IS1561' locus was also performed to monitor M. bovis in both sterile and biotic spiked soils. The analysis of survival profiles using culture-based method showed that M. bovis survived longer at lower temperature (4°C versus 22°C) whereas the impact of soil characteristics on M. bovis persistence was not obvious. Furthermore, qPCR-based assay detected M. bovis for a longer period of time than the culture based method with higher gene copy numbers observed in sterile soils than in biotic ones. Impact of soil type on M. bovis persistence need to be deepened in order to fill the gap of knowledge concerning indirect transmission of the disease.

  19. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Hart, John; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James [Department of Electrical Engineering, University of Delaware, 140 Evans Hall, Newark, Delaware 19716 (United States); Adam, Thomas [College of Nanoscale Science and Engineering, SUNY, Albany, New York 12203 (United States); Kim, Yihwan; Huang, Yi-Chiau [Applied Materials, Sunnyvale, California 94085 (United States); Reznicek, Alexander [IBM Research at Albany Nanotech, Albany, New York 12203 (United States)

    2016-03-07

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl{sub 4} precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  20. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Hart, John; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James; Adam, Thomas; Kim, Yihwan; Huang, Yi-Chiau; Reznicek, Alexander

    2016-01-01

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl 4 precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  1. Determination of basalt physical and thermal properties at varying temperatures, pressures, and moisture contents. Third progress report, fiscal year 1979

    Miller, R.J.

    1979-01-01

    The rock mechanics testing performed at the Earth Mechanics Institute of the Colorado School of Mines for Rockwell Hanford Operations under subcontract SA-917 is summarized. Cores were supplied from drill hole DC-4 on the Hanford Site, characterized geologically, and tested for thermal and physical properties for designing long-term underground storage of radioactive waste materials. The approved test procedures, results, and data analysis for this test series are presented. Uniaxial and triaxial results indicate strengths similar to drill hole DC-6, but significantly higher than drill hole DC-8. Trends with density, depth, confining pressure, and temperature, however, were similar for the three drill hole locations tested

  2. Watershed Analysis of Nitrate Transport as a Result of Agricultural Inputs for Varying Land Use/Land Cover and Soil Type

    Scott, M. E.; Sykes, J. F.

    2006-12-01

    The Grand River Watershed is one of the largest watersheds in southwestern Ontario with an area of approximately 7000 square kilometers. Ninety percent of the watershed is classified as rural, and 80 percent of the watershed population relies on groundwater as their source of drinking water. Management of the watershed requires the determination of the effect of agricultural practices on long-term groundwater quality and to identify locations within the watershed that are at a higher risk of contamination. The study focuses on the transport of nitrate through the root zone as a result of agricultural inputs with attenuation due to biodegradation. The driving force for transport is spatially and temporally varying groundwater recharge that is a function of land use/land cover, soil and meteorological inputs that yields 47,229 unique soil columns within the watershed. Fertilizer sources are determined from Statistics Canada's Agricultural Census and include livestock manure and a popular commercial fertilizer, urea. Accounting for different application rates yields 60,066 unique land parcels of which 22,809 are classified as croplands where manure and inorganic fertilizes are directly applied. The transport for the croplands is simulated over a 14-year period to investigate the impact of seasonal applications of nitrate fertilizers on the concentration leaching from the root zone to the water table. Based on land use/land cover maps, ArcView GIS is used to define the location of fertilizer applications within the watershed and to spatially visualize data and analyze results. The large quantity of input data is stored and managed using MS-Access and a relational database management system. Nitrogen transformations and ammonium and nitrate uptake by plants and transport through the soil column are simulated on a daily basis using Visual Basic for Applications (VBA) within MS-Access modules. Nitrogen transformations within the soil column were simplified using

  3. Paleotemperatures derived from noble gases dissolved in groundwater and in relation to soil temperature

    Stute, M.; Sonntag, C.

    1992-01-01

    Measurements of He, Ne, Ar, Kr and Xe dissolved in groundwater at two sites (Bocholt, Germany, and the Great Hungarian Plain) were taken to prove the reliability of noble gas temperatures as indicators of paleotemperatures. Noble gas temperatures of groundwater of Holocene age were found to reflect the annual mean soil temperature in the recharge are with an accuracy close to the precision of measurement (1σ approx. ±0.5 deg. C). Noble gas temperature data demonstrate the influence of vegetation cover on the soil temperature in the infiltration area. Groundwater formed in forests at the Bocholt site shows noble gas temperatures that are 2.2 deg. C lower than the groundwater formed in fields or meadows. The temperature data obtained from groundwater of the Great Hungarian Plain for the last glaciation are ≥ 8.6 deg. C lower than data from recent groundwater for maximum glaciation (approx. 18,000 years ago) and 4.7 ± 1 deg. C lower for the preceding interstadial (approx. 28,000-35,000 years ago). These data permit independent reconstruction of paleoclimatic conditions. (author). 19 refs, 3 figs, 1 tab

  4. Practical high temperature (80 °C) storage study of industrially manufactured Li-ion batteries with varying electrolytes

    Genieser, R.; Loveridge, M.; Bhagat, R.

    2018-05-01

    A previous study is focused on high temperature cycling of industrially manufactured Li-ion pouch cells (NMC-111/Graphite) with different electrolytes at 80 °C [JPS 373 (2018) 172-183]. Within this article the same test set-up is used, with cells stored for 30 days at different open circuit potentials and various electrolytes instead of electrochemical cycling. The most pronounced cell degradation (capacity fade and resistance increase) happens at high potentials. However appropriate electrolyte formulations are able to suppress ageing conditions by forming passivating surface films on both electrodes. Compared with electrochemical cycling at 80 °C, cells with enhanced electrolytes only show a slight resistance increase during storage and the capacity fade is much lower. Additionally it is shown for the first time, that the resistance is decreasing and capacity is regained once these cells are cycled again at room temperature. This is not the case for electrolytes without additives or just vinylene carbonate (VC) as an additive. It is further shown that the resistance increase of cells with the other electrolytes is accompanied by a reduction of the cell volume during further cycling. This behaviour is likely related to the reduction of CO2 at the anode to form additional SEI layer components.

  5. Peat decomposability in managed organic soils in relation to land use, organic matter composition and temperature

    C. Bader

    2018-02-01

    Full Text Available Organic soils comprise a large yet fragile carbon (C store in the global C cycle. Drainage, necessary for agriculture and forestry, triggers rapid decomposition of soil organic matter (SOM, typically increasing in the order forest < grassland < cropland. However, there is also large variation in decomposition due to differences in hydrological conditions, climate and specific management. Here we studied the role of SOM composition on peat decomposability in a variety of differently managed drained organic soils. We collected a total of 560 samples from 21 organic cropland, grassland and forest soils in Switzerland, monitored their CO2 emission rates in lab incubation experiments over 6 months at two temperatures (10 and 20 °C and related them to various soil characteristics, including bulk density, pH, soil organic carbon (SOC content and elemental ratios (C / N, H / C and O / C. CO2 release ranged from 6 to 195 mg CO2-C g−1 SOC at 10 °C and from 12 to 423 mg g−1 at 20 °C. This variation occurring under controlled conditions suggests that besides soil water regime, weather and management, SOM composition may be an underestimated factor that determines CO2 fluxes measured in field experiments. However, correlations between the investigated chemical SOM characteristics and CO2 emissions were weak. The latter also did not show a dependence on land-use type, although peat under forest was decomposed the least. High CO2 emissions in some topsoils were probably related to the accrual of labile crop residues. A comparison with published CO2 rates from incubated mineral soils indicated no difference in SOM decomposability between these soil classes, suggesting that accumulation of recent, labile plant materials that presumably account for most of the evolved CO2 is not systematically different between mineral and organic soils. In our data set, temperature sensitivity of decomposition (Q10 on average 2.57

  6. Application of TAM III to study sensitivity of soil organic matter degradation to temperature

    Vikegard, Peter; Barros, Nieves; Piñeiro, Verónica

    2014-05-01

    Traditionally, studies of soil biodegradation are based on CO2 dissipation rates. CO2 is a product of aerobic degradation of labile organic substrates like carbohydrates. That limits the biodegradation concept to just one of the soil organic matter fractions. This feature is responsible for some problems to settle the concept of soil organic matter (SOM) recalcitrance and for controversial results defining sensitivity of SOM to temperature. SOM consists of highly complex macromolecules constituted by fractions with different chemical nature and redox state affecting the chemical nature of biodegradation processes. Biodegradation of fractions more reduced than carbohydrates take place through metabolic pathways that dissipate less CO2 than carbohydrate respiration, that may not dissipate CO2, or that even may uptake CO2. These compounds can be considered more recalcitrant and with lower turnover times than labile SOM just because they are degraded at lower CO2 rates that may be just a consequence of the metabolic path. Nevertheless, decomposition of every kind of organic substrate always releases heat. For this reason, the measurement of the heat rate by calorimetry yields a more realistic measurement of the biodegradation of the SOM continuum. TAM III is one of the most recent calorimeters designed for directly measuring in real time the heat rate associated with any degradation process. It is designed as a multichannel system allowing the concomitant measurement of to up 24 samples at isothermal conditions or through a temperature scanning mode from 18 to 100ºC, allowing the continous measure of any sample at controlled non-isothermal conditions. The temperature scanning mode was tested in several soil samples collected at different depths to study their sensitivity to temperature changes from 18 to 35 ºC calculating the Q10 and the activation energy (EA) by the Arrhenius equation. It was attempted to associate the obtained EA values with the soil thermal

  7. EXPERIMENTAL DETERMINATION OF VARIABILITY IN PERMEABILITY OF SANDY SILT SOIL MIXED WITH FLY ASH IN PROPORTIONATE

    Rasna Sharma*, Dr. M.K. Trivedi

    2016-01-01

    This paper presents the experimental determination of variability in permeability of sandy silt soil by blending with fly ash. The grain size, porosity, structure of the soil, specific gravity of the soil, viscosity and temperature are important factors in varying the permeability of the soil. Permeability is the flow conduction property of the soil. The void ratio with in the soil plays a vital role in varying the permeability. By blending with finer grains like fly ash in the soil with sand...

  8. Velocity distribution of electrons in time-varying low-temperature plasmas: progress in theoretical procedures over the past 70 years

    Makabe, Toshiaki

    2018-03-01

    A time-varying low-temperature plasma sustained by electrical powers with various kinds of fRequencies has played a key role in the historical development of new technologies, such as gas lasers, ozonizers, micro display panels, dry processing of materials, medical care, and so on, since World War II. Electrons in a time-modulated low-temperature plasma have a proper velocity spectrum, i.e. velocity distribution dependent on the microscopic quantum characteristics of the feed gas molecule and on the external field strength and the frequency. In order to solve and evaluate the time-varying velocity distribution, we have mostly two types of theoretical methods based on the classical and linear Boltzmann equations, namely, the expansion method using the orthogonal function and the procedure of non-expansional temporal evolution. Both methods have been developed discontinuously and progressively in synchronization with those technological developments. In this review, we will explore the historical development of the theoretical procedure to evaluate the electron velocity distribution in a time-varying low-temperature plasma over the past 70 years.

  9. Development of SiC Nanoparticles and Second Phases Synergistically Reinforced Mg-Based Composites Processed by Multi-Pass Forging with Varying Temperatures

    Kaibo Nie

    2018-01-01

    Full Text Available In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg17Al12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases.

  10. Identification of a dynamic temperature threshold for soil moisture freeze/thaw (F/T) state classification using soil real dielectric constant derivatives.

    Pardo, R.; Berg, A. A.; Warland, J. S.

    2017-12-01

    The use of microwave remote sensing for surface ground ice detection has been well documented using both active and passive systems. Typical validation of these remotely sensed F/T state products relies on in-situ air or soil temperature measurements and a threshold of 0°C to identify frozen soil. However, in soil pores, the effects of capillary and adsorptive forces combine with the presence of dissolved salts to depress the freezing point. This is further confounded by the fact that water over this temperature range releases/absorbs latent heat of freezing/fusion. Indeed, recent results from SLAPEx2015, a campaign conducted to evaluate the ability to detect F/T state and examine the controls on F/T detection at multiple resolutions, suggest that using a soil temperature of 0°C as a threshold for freezing may not be appropriate. Coaxial impedance sensors, like Steven's HydraProbeII (HP), are the most widely used soil sensor in water supply forecast and climatological networks. These soil moisture probes have recently been used to validate remote sensing F/T products. This kind of validation is still relatively uncommon and dependent on categorical techniques based on seasonal reference states of frozen and non-frozen soil conditions. An experiment was conducted to identify the correlation between the phase state of the soil moisture and the probe measurements. Eight soil cores were subjected to F/T transitions in an environmental chamber. For each core, at a depth of 2.5 cm, the temperature and real dielectric constant (rdc) were measured every five minutes using HPs while two heat pulse probes captured the apparent heat capacity 24 minutes apart. Preliminary results show the phase transition of water is bounded by inflection points in the soil temperature, attributed to latent heat. The rdc, however, appears to be highly sensitive to changes in the water preceding the phase change. This opens the possibility of estimating a dynamic temperature threshold for

  11. Thermal damage study on diamond tools at varying laser heating time and temperature by Raman spectroscopy and SEM

    Masina, BN

    2011-07-01

    Full Text Available 1400 G O B I c a m e r a t e m p e r a t u r e ( K e l v i n ) Blackbody object temperature (Kelvin) y = 0.96 x Slide 10 Physical changes on the diamond tool samples due to the laser heating Initial 5 min – 895 K 15 min – 968 K 25 min – 979 K... stream_source_info Masina_2011_ABSTRACT ONLY.pdf.txt stream_content_type text/plain stream_size 3683 Content-Encoding UTF-8 stream_name Masina_2011_ABSTRACT ONLY.pdf.txt Content-Type text/plain; charset=UTF-8 Thermal...

  12. Effect of Static Soaking Under Different Temperatures on the Lime Stabilized Gypseous Soil

    Abdulrahman Al-Zubaydi

    2013-04-01

    Full Text Available This study concerns with the effect of long-term soaking on the unconfined compressive strength, loss in weight and gypsum dissolution of gypseous soil stabilized with (4% lime, take into account the following variables: initial water content, water temperature, soaking duration. The results reveals that, the unconfined compressive strength was dropped, and the reduction in values was different according to the initial water content and water temperature, so that the reduction of the unconfined compressive strength of samples soaked in water at low temperatures (50 and 250 C was greater than those soaked in water temperatures  at (490 and 600 C. The results obtained shows that the increase in soaking period decreases the percentage amount of gypsum and loss in weight for all water temperatures and soaking durations.

  13. Non-stationary temporal characterization of the temperature profile of a soil exposed to frost in south-eastern Canada

    F. Anctil

    2008-05-01

    Full Text Available The objective of this work was to compare time and frequency fluctuations of air and soil temperatures (2-, 5-, 10-, 20- and 50-cm below the soil surface using the continuous wavelet transform, with a particular emphasis on the daily cycle. The analysis of wavelet power spectra and cross power spectra provided detailed non-stationary accounts with respect to frequencies (or periods and to time of the structure of the data and also of the relationships that exist between time series. For this particular application to the temperature profile of a soil exposed to frost, both the air temperature and the 2-cm depth soil temperature time series exhibited a dominant power peak at 1-d periodicity, prominent from spring to autumn. This feature was gradually damped as it propagated deeper into the soil and was weak for the 20-cm depth. Influence of the incoming solar radiation was also revealed in the wavelet power spectra analysis by a weaker intensity of the 1-d peak. The principal divergence between air and soil temperatures, besides damping, occurred in winter from the latent heat release associated to the freezing of the soil water and the insulation effect of snowpack that cease the dependence of the soil temperature to the air temperature. Attenuation and phase-shifting of the 1-d periodicity could be quantified through scale-averaged power spectra and time-lag estimations. Air temperature variance was only partly transferred to the 2-cm soil temperature time series and much less so to the 20-cm soil depth.

  14. Impacts of snow on soil temperature observed across the circumpolar north

    Zhang, Yu; Sherstiukov, Artem B.; Qian, Budong; Kokelj, Steven V.; Lantz, Trevor C.

    2018-04-01

    Climate warming has significant impacts on permafrost, infrastructure and soil organic carbon at the northern high latitudes. These impacts are mainly driven by changes in soil temperature (TS). Snow insulation can cause significant differences between TS and air temperature (TA), and our understanding about this effect through space and time is currently limited. In this study, we compiled soil and air temperature observations (measured at about 0.2 m depth and 2 m height, respectively) at 588 sites from climate stations and boreholes across the northern high latitudes. Analysis of this circumpolar dataset demonstrates the large offset between mean TS and TA in the low arctic and northern boreal regions. The offset decreases both northward and southward due to changes in snow conditions. Correlation analysis shows that the coupling between annual TS and TA is weaker, and the response of annual TS to changes in TA is smaller in boreal regions than in the arctic and the northern temperate regions. Consequently, the inter-annual variation and the increasing trends of annual TS are smaller than that of TA in boreal regions. The systematic and significant differences in the relationship between TS and TA across the circumpolar north is important for understanding and assessing the impacts of climate change and for reconstruction of historical climate based on ground temperature profiles for the northern high latitudes.

  15. Effect of a controlled burn on the thermophysical properties of a dry soil using a new model of soil heat flow and a new high temperature heat flux sensor

    W. J. Massman; J. M. Frank

    2004-01-01

    Some fires can be beneficial to soils but, if a fire is sufficiently intense, soil can be irreversible altered. We measured soil temperatures and heat fluxes at several soil depths before, during, and after a controlled surface burn at Manitou Experimental Forest (southern Colorado, USA) to evaluate its effects on the soil's thermophysical properties (thermal...

  16. Space-Time Dynamics of Soil Moisture and Temperature: Scale issues

    Mohanty, Binayak P.; Miller, Douglas A.; Th.vanGenuchten, M.

    2003-01-01

    The goal of this project is to gain further understanding of soil moisture/temperature dynamics at different spatio-temporal scales and physical controls/parameters.We created a comprehensive GIS database, which has been accessed extensively by NASA Land Surface Hydrology investigators (and others), is located at the following URL: http://www.essc.psu.edu/nasalsh. For soil moisture field experiments such as SGP97, SGP99, SMEX02, and SMEX03, cartographic products were designed for multiple applications, both pre- and post-mission. Premission applications included flight line planning and field operations logistics, as well as general insight into the extent and distribution of soil, vegetation, and topographic properties for the study areas. The cartographic products were created from original spatial information resources that were imported into Adobe Illustrator, where the maps were created and PDF versions were made for distribution and download.

  17. The Effects of Soil Type, Particle Size, Temperature, and Moisture on Reproduction of Belonolaimus longicaudatus.

    Robbins, R T; Barker, K R

    1974-01-01

    Effects of soil type, particle size, temperature, and moisture on the reproduction of Belonolaimus longicaudatus were investigated under greenhouse conditions. Nematode increases occurred only in soils with a minimum of 80% sand and a maximum of 10% clay. Optimum soil particle size for reproduction of the Tarboro, N.C. and Tifton, Ga. populations of the nematode was near that of 120-370 mum (65-mesh) silica sand. Reproduction was greatest at 25-30 C. Some reproduction by the Tifton, Ga. population occurred at 35 C, whereas the Tarboro, N.C. population declined, as compared to the initial inoculum. Both populations reproduced slightly at 20 C. Nematode reproduction was greater at a moisture level of 7% than at a high of 30% or a low of 2%. Reproduction occurred at the high moisture level only when the nutrient solution was aerated.

  18. Temperature peaks affect fire-induced soil water repellency, infiltration and erosion risk of Mediterranean shrublands. Implications for water and sediment connectivity

    Jordán, Antonio; Zavala, Lorena M.; Gordillo-Rivero, Ángel J.; Miriam, Miriam; Keesstra, Saskia; Cerdà, Artemi

    2017-04-01

    We know that the impact of fire on soil water repellency varies largely with the availability of water and physical and chemical soil properties, as well as the intensity of pre-existing hydrophobicity. However, there are few studies that relate the intensity of post-fire soil hydrophobicity and its persistence to the intensity and duration of thermal peaks occurring during fire. Fundamentally, this is due to the difficulty of quantifying these factors in situ, so that experimental fires are an extremely useful tool. The objective of this work was to study the impact of the intensity and duration of the thermal peaks observed during an experimental fire in the hydrophobicity of previously wet or slightly hydrophobic soils and the consequences of these changes on infiltration, runoff and soil loss (through rainfall simulation) in the immediate (30 days) and medium-term (1 year) post-fire period. In general, soil water repellency increased in all cases, although high temperatures and residence times of moderate thermal peaks caused the greatest impact. Although infiltration rates determined by mini-disk infiltrometer with water generally declined, no significant changes were observed in the same measurement with ethanol (which negates the effect of hydrophobicity).

  19. Cargas elétricas estruturais e variáveis de solos tropicais altamente intemperizados Structural and variable electric charges of highly weathered tropical soils

    Oscarlina Lucia dos Santos Weber

    2005-12-01

    Full Text Available Os solos tropicais altamente intemperizados apresentam teor significativo de colóides com carga elétrica variável. Entretanto, são poucas as referências em relação à quantificação destas cargas, principalmente em solos ácricos, que representam o extremo na escala de intemperismo. Neste estudo, foram determinadas as cargas permanentes e as variáveis de dois Latossolos Vermelhos acriférricos, um Latossolo Amarelo ácrico e um Latossolo Amarelo acriférrico, que foram comparados a um Nitossolo Vermelho eutroférrico, com carga predominantemente permanente. As amostras foram investigadas pelo método da adsorção do íon césio (Cs+, que mede a carga estrutural permanente (sigmao e baseia-se na preferência do Cs+ sobre o Li+ na superfície da siloxana de grupos de superfície ionizáveis de menor seletividade ao íon Cs+. A carga variável representou mais que 50 % da carga total dos solos estudados. Dois dos quatro Latossolos com propriedades ácricas exibiram quantidade significativa de carga permanente, provavelmente em razão da presença de vermiculita com hidróxi entrecamadas e clorita. A quantidade de carga permanente apresentada pelo Nitossolo foi até cinco vezes maior se comparada à dos Latossolos, o que pode ser atribuído à diferença na constituição mineralógica. O método da adsorção de Cs foi capaz de identificar teores significativos de carga permanente estrutural, mesmo em solos com baixo teor de minerais 2:1.Highly weathered tropical soils present high amount of colloids with variable electrical charge. However, there are few references related to the quantification of such charges, mainly in soils with acric attributes, which represent one of the extremes in the weathering scale. In this study permanent and variable charges were determined in four Oxisols and compared to an Alfisol with predominantly permanent charge. Samples were investigated using the Cs+ adsorption method, which measures the structural

  20. Modelling of Dynamic Transmission Cable Temperature Considering Soil-Specific Heat, Thermal Resistivity, and Precipitation

    Olsen, Rasmus; Anders, George J.; Holboell, Joachim

    2013-01-01

    This paper presents an algorithm for the estimation of the time-dependent temperature evolution of power cables, when real-time temperature measurements of the cable surface or a point within its vicinity are available. The thermal resistivity and specific heat of the cable surroundings are varied...... as functions of the moisture content which is known to vary with time. Furthermore, issues related to the cooling effect during rainy weather are considered. The algorithm is based on the lumped parameters model and takes as input distributed temperature sensing measurements as well as the current and ambient...... temperature. The concept is verified by studying a laboratory setup of a 245 kV cable system....

  1. Elevated-temperature tests of simply-supported beams and circular plates subjected to time-varying loadings

    Corum, J.M.; Richardson, M.

    1975-01-01

    The measured elastic-plastic and elastic-plastic-creep responses of a number of simply-supported type 304 stainless steel beams and circular plates are presented. Beams and plates exhibit the essential features of inelastic structural behavior; yet they are relatively simple. In beams, the stress fields are largely uniaxial, while multiaxial effects are introduced in plates. The specimens were laterally loaded at the center, and the tests were performed by subjecting the specimens to either a prescribed load or center-deflection history. The specimens were machined from a common, well-characterized heat of material, and all of the tests were performed at a temperature of 1100 F. The elastic-plastic tests consisted of short-time cycling of the center load, or deflection, between fixed limits. In the elastic-plastic-creep tests the center load, or deflection, was held constant for periods of time, but was periodically subjected to a step increase or decrease, including reversals. The test results are presented in terms of the load and center-deflection behaviors, which typify the overall structural behavior. (U.S.)

  2. Behavior of a PCM at Varying Heating Rates: Experimental and Theoretical Study with an Aim at Temperature Moderation in Radionuclide Concrete Encasements

    Medved', Igor; Trník, Anton

    2018-07-01

    Phase-change materials (PCMs) can store/release thermal energy within a small temperature range. This is of interest in various industrial applications, for example, in civil engineering (heating/cooling of buildings) or cold storage applications. Another application may be the moderation of temperature increases in concrete encasements of radionuclides during their decay. The phase-change behavior of a material is determined by its heat capacity and the peak it exhibits near a phase change. We analyze the behavior of such peaks for a selected PCM at heating rates varying between 0.1°C\\cdot min^{-1} and 1°C\\cdot min^{-1}, corresponding in real situations to different decay rates of radionuclides. We show that experimentally measured peaks can be plausibly described by an equilibrium theory that enables us to calculate the latent heat and phase-change temperature from experimental data.

  3. Development of bearing capacity of fine grained permafrost deposits in western greenland urban areas subject to soil temperature changes

    Agergaard, Frederik Ancker; Ingeman-Nielsen, Thomas

    2012-01-01

    The bearing capacity of frozen soils is high, compared to non-frozen soils of same composition. Projected climatic warming in the Arctic will increase the soil temperature, thus affecting the bearing capacity and the deformation properties. Western Greenland temperatures are projected to increase...... free samples. Unfrozen water contents are seen to be directly inversely proportional to the undrained shear strength when both are normalized, which may reduce costs for establishing reliable soil strength parameters. It is suggested that a relation to deformation parameters are investigated as well...

  4. Aging and temperature effects on DOC and elemental release from a metal contaminated soil

    Martinez, C.E.; Jacobson, A.R.; McBride, M.B.

    2003-01-01

    Increased aging and temperatures may affect DOC element complexes and their release. - The combined effect of time and temperature on elemental release and speciation from a metal contaminated soil (Master Old Site, MOS) was investigated. The soil was equilibrated at 10, 28, 45, 70 and 90 deg. C for 2 days, 2 weeks, and 2 months in the laboratory. Dissolved organic carbon (DOC), total soluble elements (by ICP), and labile metals (by DPASV) were determined in the filtered (0.22 μm) supernatants. For the samples equilibrated at 90 deg. C, DOC fractions were size fractionated by filtration and centrifugation; a subsample was only centrifuged while another was also filtered through a 0.45 μm filter. Analyses of the supernatants (ICP, DPASV, DOC) were performed on all size fraction subsamples. Dissolved organic carbon (DOC) increased both with temperature and incubation time; however, metal behavior was not as uniform. In general, total soluble metal release (ICP) paralleled the behavior of DOC, increasing with both time and temperature, and confirming the importance of soil organic matter (SOM) in metal retention. Voltammetric analysis (dpasv) of Cu and Zn showed that very little of these metals remains labile in solution due, presumably, to complexation with dissolved organic matter. Labile concentrations of Cd, on the other hand, constituted a significant portion (50%) of total soluble Cd. Copper and Al increased in solution with time (up to 2 months) and temperature up to 70 deg. C; however, at 90 deg. C the soluble concentration declined sharply. The same behavior was observed after equilibration for longer periods of time (550 days) at lower temperatures (23 and 70 deg. C). While concentrations of labile Cu and total soluble Cu and Al increased in the unfiltered samples, the trend remained the same. DPASV analysis showing shifts in labile Cu complexes with temperature and time, together with the results from the unfiltered samples, lead to the hypothesis that Cu

  5. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  6. Correction of temperature and bulk electrical conductivity effects on soil water content measurements using ECH2O EC-5, TE and 5TE sensors

    Rosenbaum, Ulrike; Huisman, Sander; Vrba, Jan; Vereecken, Harry; Bogena, Heye

    2010-05-01

    For a monitoring of dynamic spatiotemporal soil moisture patterns at the catchment scale, automated and continuously measuring systems that provide spatial coverage and high temporal resolution are needed. Promising techniques like wireless sensor networks (e.g. SoilNet) have to integrate low-cost electromagnetic soil water content sensors [1], [2]. However, the measurement accuracy of such sensors is often deteriorated by effects of temperature and soil bulk electrical conductivity. The objective of this study is to derive and validate correction functions for such temperature and electrical conductivity effects for the ECH2O EC-5, TE and 5TE sensors. We used dielectric liquids with known dielectric properties for two different laboratory experiments. In the first experiment, the temperature of eight reference liquids with permittivity ranging from 7 to 42 was varied from 5 to 40°C. All sensor types showed an underestimation of permittivity for low temperatures and an overestimation for high temperatures. In the second experiment, the conductivity of the reference liquids was increased by adding NaCl. The highest deviations occurred for high permittivity and electrical conductivity between ~0.8 and 1.5 dS/m (underestimation from 8 to 16 permittivity units depending on sensor type). For higher electrical conductivity (2.5 dS/m), the permittivity was overestimated (10 permittivity units for the EC-5 and 7 for the 5TE sensor). Based on these measurements on reference liquids, we derived empirical correction functions that are able to correct thermal and conductivity effects on measured sensor response. These correction functions were validated using three soil samples (coarse sand, silty clay loam and bentonite). For the temperature correction function, the results corresponded better with theoretical predictions after correction for temperature effects on the sensor circuitry. It was also shown that the application of the conductivity correction functions improved

  7. Dependence of the Q10 values on the depth of the soil temperature measuring point

    Pavelka, Marian; Acosta, Manuel; Marek, Michal V.; Kutsch, W.; Janouš, Dalibor

    2007-01-01

    Roč. 292, - (2007), s. 171-179 ISSN 0032-079X R&D Projects: GA ČR GD526/03/H036; GA MŽP SM/640/18/03 Grant - others:EU(XE) GOCE-CT-2003-505572 Institutional research plan: CEZ:AV0Z60870520 Keywords : respiration * soil * temperature * Q10 * Norway spruce * grassland Subject RIV: EH - Ecology, Behaviour Impact factor: 1.821, year: 2007

  8. Effects of short-term variability of meteorological variables on soil temperature in permafrost regions

    Beer, Christian; Porada, Philipp; Ekici, Altug; Brakebusch, Matthias

    2018-03-01

    Effects of the short-term temporal variability of meteorological variables on soil temperature in northern high-latitude regions have been investigated. For this, a process-oriented land surface model has been driven using an artificially manipulated climate dataset. Short-term climate variability mainly impacts snow depth, and the thermal diffusivity of lichens and bryophytes. These impacts of climate variability on insulating surface layers together substantially alter the heat exchange between atmosphere and soil. As a result, soil temperature is 0.1 to 0.8 °C higher when climate variability is reduced. Earth system models project warming of the Arctic region but also increasing variability of meteorological variables and more often extreme meteorological events. Therefore, our results show that projected future increases in permafrost temperature and active-layer thickness in response to climate change will be lower (i) when taking into account future changes in short-term variability of meteorological variables and (ii) when representing dynamic snow and lichen and bryophyte functions in land surface models.

  9. Soil temperature response to 21st century global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America

    D. Wisser

    2011-06-01

    Full Text Available Northern peatlands contain a large terrestrial carbon pool that plays an important role in the Earth's carbon cycle. A considerable fraction of this carbon pool is currently in permafrost and is biogeochemically relatively inert; this will change with increasing soil temperatures as a result of climate warming in the 21st century. We use a geospatially explicit representation of peat areas and peat depth from a recently-compiled database and a geothermal model to estimate northern North America soil temperature responses to predicted changes in air temperature. We find that, despite a widespread decline in the areas classified as permafrost, soil temperatures in peatlands respond more slowly to increases in air temperature owing to the insulating properties of peat. We estimate that an additional 670 km3 of peat soils in North America, containing ~33 Pg C, could be seasonally thawed by the end of the century, representing ~20 % of the total peat volume in Alaska and Canada. Warming conditions result in a lengthening of the soil thaw period by ~40 days, averaged over the model domain. These changes have potentially important implications for the carbon balance of peat soils.

  10. Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960-2014

    Fang, Xuewei; Luo, Siqiong; Lyu, Shihua

    2018-01-01

    Soil temperature, an important indicator of climate change, has rarely explored due to scarce observations, especially in the Tibetan Plateau (TP) area. In this study, changes observed in five meteorological variables obtained from the TP between 1960 and 2014 were investigated using two non-parametric methods, the modified Mann-Kendall test and Sen's slope estimator method. Analysis of annual series from 1960 to 2014 has shown that surface (0 cm), shallow (5-20 cm), deep (40-320 cm) soil temperatures (ST), mean air temperature (AT), and precipitation (P) increased with rates of 0.47 °C/decade, 0.36 °C/decade, 0.36 °C/decade, 0.35 °C/decade, and 7.36 mm/decade, respectively, while maximum frozen soil depth (MFD) as well as snow cover depth (MSD) decreased with rates of 5.58 and 0.07 cm/decade. Trends were significant at 99 or 95% confidence level for the variables, with the exception of P and MSD. More impressive rate of the ST at each level than the AT indicates the clear response of soil to climate warming on a regional scale. Monthly changes observed in surface ST in the past decades were consistent with those of AT, indicating a central place of AT in the soil warming. In addition, with the exception of MFD, regional scale increasing trend of P as well as the decreasing MSD also shed light on the mechanisms driving soil trends. Significant negative-dominated correlation coefficients (α = 0.05) between ST and MSD indicate the decreasing MSD trends in TP were attributable to increasing ST, especially in surface layer. Owing to the frozen ground, the relationship between ST and P is complicated in the area. Higher P also induced higher ST, while the inhibition of freeze and thaw process on the ST in summer. With the increasing AT, P accompanied with the decreasing MFD, MSD should be the major factors induced the conspicuous soil warming of the TP in the past decades.

  11. Characterization of high temperature-tolerant rhizobia isolated from Prosopis juliflora grown in alkaline soil.

    Kulkarni, Suneeta; Nautiyal, Chandra Shekhar

    1999-10-01

    A method was developed for the fast screening and selection of high-temperature tolerant rhizobial strains from root nodules of Prosopis juliflora growing in alkaline soils. The high-temperature tolerant rhizobia were selected from 2,500 Rhizobium isolates with similar growth patterns on yeast mannitol agar plates after 72 h incubation at 30 and 45 degrees C, followed by a second screening at 47.5 degrees C. Seventeen high-temperature tolerant rhizobial strains having distinguishable protein band patterns were finally selected for further screening by subjecting them to temperature stress up to 60 degrees C in yeast mannitol broth for 6 h. The high-temperature tolerant strains were NBRI12, NBRI329, NBRI330, NBRI332, and NBRI133. Using this procedure, a large number of rhizobia from root nodules of P. juliflora were screened for high-temperature tolerance. The assimilation of several carbon sources, tolerance to high pH and salt stress, and ability to nodulate P. juliflora growing in a glasshouse and nursery of the strains were studied. All five isolates had higher plant dry weight in the range of 29.9 to 88.6% in comparison with uninoculated nursery-grown plants. It was demonstrated that it is possible to screen in nature for superior rhizobia exemplified by the isolation of temperature-tolerant strains, which established effective symbiosis with nursery-grown P. juliflora. These findings indicate a correlation between strain performance under in vitro stress in pure culture and strain behavior under symbiotic conditions. Pure culture evaluation may be a useful tool in search for Rhizobium strains better suited for soil environments where high temperature, pH, and salt stress constitutes a limitation for symbiotic biological nitrogen fixation.

  12. Urban Soil: Assessing Ground Cover Impact on Surface Temperature and Thermal Comfort.

    Brandani, Giada; Napoli, Marco; Massetti, Luciano; Petralli, Martina; Orlandini, Simone

    2016-01-01

    The urban population growth, together with the contemporary deindustrialization of metropolitan areas, has resulted in a large amount of available land with new possible uses. It is well known that urban green areas provide several benefits in the surrounding environment, such as the improvement of thermal comfort conditions for the population during summer heat waves. The purpose of this study is to provide useful information on thermal regimes of urban soils to urban planners to be used during an urban transformation to mitigate surface temperatures and improve human thermal comfort. Field measurements of solar radiation, surface temperature (), air temperature (), relative humidity, and wind speed were collected on four types of urban soils and pavements in the city of Florence during summer 2014. Analysis of days under calm, clear-sky condition is reported. During daytime, sun-to-shadow differences for , apparent temperature index (ATI), and were significantly positive for all surfaces. Conversely, during nighttime, differences among all surfaces were significantly negative, whereas ATI showed significantly positive differences. Moreover, was significantly negative for grass and gravel. Relative to the shaded surfaces, was higher on white gravel and grass than gray sandstone and asphalt during nighttime, whereas gray sandstone was always the warmest surface during daytime. Conversely, no differences were found during nighttime for ATI and measured over surfaces that were exposed to sun during the day, whereas showed higher values on gravel than grass and asphalt during nighttime. An exposed surface warms less if its albedo is high, leading to a significant reduction of during daytime. These results underline the importance of considering the effects of surface characteristics on surface temperature and thermal comfort. This would be fundamental for addressing urban environment issues toward the heat island mitigation considering also the impact of urban

  13. Numerical and experimental determination of surface temperature and moisture evolution in a field soil

    Akinyemi, Olukayode D.; Mendes, Nathan

    2007-03-01

    Knowledge about the dynamics of soil moisture and heat, especially at the surface, provides important insights into the physical processes governing their interactions with the atmosphere, thereby improving the understanding of patterns of climate dynamics. In this context the paper presents the numerical and field experimental results of temperature and moisture evolution, which were measured on the surface of a sandy soil at Abeokuta, south-western Nigeria. An unconditionally stable numerical method was used, which linearizes the vapour concentration driving-potential term giving the moisture exchanged at the boundaries in terms of temperature and moisture content, and simultaneously solves the governing equations for each time step. The model avoids stability problems and limitations to low moisture contents and the usual assumption of constant thermal conductivity. Instantaneous temperature measurements were made at the surface using a thermocouple, while the gravimetric method was employed to determine the volumetric water contents at some specific hours of the experimental period. The observed experimental data compared fairly well with the predicted values, with both having correlation coefficients greater than 0.9 and consequently following a common diurnal trend. The sensitivity of the model was very high to the choice of simulation parameters, especially grid size refinement and time step. While the model underestimated the soil moisture content at 6 a.m. and 10 p.m., the measured temperatures were however overestimated. When compared to moisture content, average errors for temperature were low resulting in a minimal absolute difference in amplitude of 0.81 °C.

  14. Temperature versus plant effects on diel dynamics of soil CO2 production and efflux: a controlled environment study

    Reinthaler, David; Roy, Jacques; Landais, Damien; Piel, Clement; Resco de Dios, Victor; Bahn, Michael

    2015-04-01

    Soil respiration (Rs) is the biggest source of CO2 emitted from terrestrial ecosystems to the atmosphere. Therefore the understanding of its drivers is of major importance for models of carbon cycling. Next to temperature as a major abiotic factor, photosynthesis has been suggested as an important driver influencing diel patterns in Rs. Under natural conditions it is difficult to disentangle abiotic and biotic effects on soil CO2 production, as fluctuating light intensity affects both photosynthetic activity and soil temperature. To analyse individual and combined effects of soil temperature and light on the dynamics of soil CO2 production and efflux, we performed a controlled environment study at the ECOTRON facility in Montpellier. The study manipulated temperature and photosynthetically active radiation independently and was carried out in large macrocosms, hosting canopies of either a woody (cotton) or a herbaceous (bean) crop. In each macrocosm membrane tubes had been installed across the soil profile for continuous measurement of soil CO2 concentrations. In addition, an automated soil respiration system was installed in each macrocosm, whose data were also used for validating a model of soil CO2 production and transport based on the concentration profiles. Both for cotton and for bean canopies, under conditions of naturally fluctuating temperature and light conditions, soil CO2 production and efflux followed a clear diel pattern. Under constantly dark conditions (excluding immediate effects of photosynthesis) and constant temperature, no significant diel changes in Rs could be observed. Furthermore, soil CO2 production and efflux did not increase significantly upon exposure of previously darkened macrocosms to light. Under constant temperature and fluctuating light conditions, we observed a dampened diel pattern of Rs, which did not match diurnal solar cycles. A detailed residual analysis accounting for temporal trends in soil moisture suggested a significant

  15. Old and stable soil organic matter is not necessarily chemically recalcitrant: Implications for modeling concepts and temperature sensitivity

    Kleber, M.; Nico, P.S.; Plante, A.; Filley, T.; Kramer, M.; Swanston, C.; Sollins, P.

    2010-03-01

    Soil carbon turnover models generally divide soil carbon into pools with varying intrinsic decomposition rates. Although these decomposition rates are modified by factors such as temperature, texture, and moisture, they are rationalized by assuming chemical structure is a primary controller of decomposition. In the current work, we use near edge X-ray absorption fine structure (NEXAFS) spectroscopy in combination with differential scanning calorimetry (DSC) and alkaline cupric oxide (CuO) oxidation to explore this assumption. Specifically, we examined material from the 2.3-2.6 kg L{sup -1} density fraction of three soils of different type (Oxisol, Alfisol, Inceptisol). The density fraction with the youngest {sup 14}C age (Oxisol, 107 years) showed the highest relative abundance of aromatic groups and the lowest O-alkyl C/aromatic C ratio as determined by NEXAFS. Conversely, the fraction with the oldest C (Inceptisol, 680 years) had the lowest relative abundance of aromatic groups and highest O-alkyl C/aromatic C ratio. This sample also had the highest proportion of thermally labile materials as measured by DSC, and the highest ratio of substituted fatty acids to lignin phenols as indicated by CuO oxidation. Therefore, the organic matter of the Inceptisol sample, with a {sup 14}C age associated with 'passive' pools of carbon (680 years), had the largest proportion of easily metabolizable organic molecules with low thermodynamic stability, whereas the organic matter of the much younger Oxisol sample (107 years) had the highest proportion of supposedly stable organic structures considered more difficult to metabolize. Our results demonstrate that C age is not necessarily related to molecular structure or thermodynamic stability, and we suggest that soil carbon models would benefit from viewing turnover rate as codetermined by the interaction between substrates, microbial actors, and abiotic driving variables. Furthermore, assuming that old carbon is composed

  16. Investigation of electric fields for low-temperature treatment of soils and liquids

    Heath, W.O.; Goheen, S.C.; Miller, M.C.; Richardson, R.L.

    1992-02-01

    Work was performed to assess the feasibility of an in situ technology for decomposing and removing hazardous organic waste compounds from soils. The technology is based on conductive soil heating and partial electrical discharges (corona) combined with soil-vapor extraction. A pilot-scale facility was developed and used to evaluate the ability to heat and dry soils using polyphase electricity applied through inserted pipes. Uniform heating (100 ± 2 degrees C) and drying to 1.2-wt % moisture were observed. Heating and resultant in situ steam formation have been demonstrated in previous studies to be effective in removing volatile and semivolatile compounds. Corona reactors were constructed to investigate decomposition of organic compounds by oxidants produced in a point-to-liquid corona discharge in ambient air at room temperature and pressure. Point-to-liquid corona was found to be capable of destroying a wide variety of organics, including three aromatics, two polyaromatics, a pcp, a pcb, an alkane, an alkene, an amide, a complexant, a chelator, and an organic dye. Tests with trichloroethylene demonstrated a decontamination factor of 2 x 10 5 (equal to a destruction efficiency of 99.999995%) and nearly complete (99.7%) mineralization, with the main byproduct being aqueous chloride ions. Real-time data on the decolorization kinetics of aqueous methylene blue were obtained using in situ probe colorimetry. Reaction rates were directly proportional to the amount of unreacted dye present and the square of electrode current. Other exploratory tests were performed to investigate concepts for generating ac corona discharges in soil and the ability of those discharges to decompose adsorbed organic compounds. All findings are discussed in relation to a conceptual soil-treatment scenario that includes a description of the basic hardware requirements

  17. An Investigation into the Effects of Temperature Gradient on the Soil Water–Salt Transfer with Evaporation

    Rong Ren

    2017-06-01

    Full Text Available Temperature gradients exist in the field under brackish water irrigation conditions, especially in northern semi–arid areas of China. Although there are many investigators dedicated to studying the mechanism of brackish water irrigation and the effect of brackish water irrigation on crops, there are fewer investigations of the effects of temperature gradient on the water–salt transport. Based on the combination of a physical experiment and a mathematical model, this study was conducted to: (a build a physical model and observe the redistribution of soil water–heat–salt transfer; (b develop a mathematical model focused on the influence of a temperature gradient on soil water and salt redistribution based on the physical model and validate the proposed model using the measured data; and (c analyze the effects of the temperature gradient on the soil water–salt transport by comparing the proposed model with the traditional water–salt model in which the effects of temperature gradient on the soil water–salt transfer are neglected. Results show that the soil temperature gradient has a definite influence on the soil water–salt migration. Moreover, the effect of temperature gradient on salt migration was greater than that of water movement.

  18. Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology.

    Wagai, Rota; Kishimoto-Mo, Ayaka W; Yonemura, Seiichiro; Shirato, Yasuhito; Hiradate, Syuntaro; Yagasaki, Yasumi

    2013-04-01

    Temperature sensitivity of soil organic matter (SOM) decomposition may have a significant impact on global warming. Enzyme-kinetic hypothesis suggests that decomposition of low-quality substrate (recalcitrant molecular structure) requires higher activation energy and thus has greater temperature sensitivity than that of high-quality, labile substrate. Supporting evidence, however, relies largely on indirect indices of substrate quality. Furthermore, the enzyme-substrate reactions that drive decomposition may be regulated by microbial physiology and/or constrained by protective effects of soil mineral matrix. We thus tested the kinetic hypothesis by directly assessing the carbon molecular structure of low-density fraction (LF) which represents readily accessible, mineral-free SOM pool. Using five mineral soil samples of contrasting SOM concentrations, we conducted 30-days incubations (15, 25, and 35 °C) to measure microbial respiration and quantified easily soluble C as well as microbial biomass C pools before and after the incubations. Carbon structure of LFs (soil was measured by solid-state (13) C-NMR. Decomposition Q10 was significantly correlated with the abundance of aromatic plus alkyl-C relative to O-alkyl-C groups in LFs but not in bulk soil fraction or with the indirect C quality indices based on microbial respiration or biomass. The warming did not significantly change the concentration of biomass C or the three types of soluble C despite two- to three-fold increase in respiration. Thus, enhanced microbial maintenance respiration (reduced C-use efficiency) especially in the soils rich in recalcitrant LF might lead to the apparent equilibrium between SOM solubilization and microbial C uptake. Our results showed physical fractionation coupled with direct assessment of molecular structure as an effective approach and supported the enzyme-kinetic interpretation of widely observed C quality-temperature relationship for short-term decomposition. Factors

  19. Autointoxication mechanism ofOryza sativa : III. Effect of temperature on phytotoxin production during rice straw decomposition in soil.

    Chou, C H; Chiang, Y C; Chfng, H H

    1981-07-01

    The phytotoxicity produced during decomposition of rice straw in soil was evaluated under both constant and changing temperature conditions. Bioassay tests showed that the aqueous extract from a soilstraw mixture after incubation at constant temperature was more than twice as phytotoxic as the extract from soil incubated alone. The phytotoxicity was highest at 20-25 ° C. Temperatures above 25 ° C enhanced rice straw decomposition and also degraded the phytotoxic substances more rapidly. After incubation of soil mixtures under changing temperature regimes in a phytotron, the phytotoxicy of the soil aqueous extracts increased in the following order: soil alone lettuce or rice seedlings was also at the highest at the temperature range of 25-30 ° C irrespective of the direction of temperature changes from either low to high or vice versa. Five phytotoxic phenolics,p-hydroxybenzoic, vanillic,p-coumaric, syringic, and ferulic acids, were obtained from both the aqueous extract and residue of the incubated soil samples and were quantitatively estimated by chromatography. The amount of phytotoxins found in various soil mixtures followed the same increasing order as that found by the seed bioassay test. Although no definite distribution pattern of the phenolics in the incubated soil samples can be attributed to temperature variations, the amount of the phenolics was likely higher in the samples incubated at 25 ° C than at either 15 ° C or 35 ° C. The quantity of toxins released during decomposition of rice straw in soil reached highest levels six weeks after incubation and gradually disappeared after twelve weeks.

  20. Soil Temperature Station Data from Permafrost Regions of Russia (Selection of Five Stations), 1880s - 2000, Version 1

    National Aeronautics and Space Administration — This data set includes soil temperature data from boreholes located at five stations in Russia: Yakutsk, Verkhoyansk, Pokrovsk, Isit', and Churapcha. The data have...

  1. Application of a three-dimensional model for assessing effects of small clear-cuttings on radiation and soil temperature

    Olchev, A.; Radler, K.; Sogachev, Andrey

    2009-01-01

    , solar radiation, wind speed and direction, soil temperatures at 10 and 20 cm depth were measured by five automatic stations within the clear-cut area. One reference station was placed about 100 m from the clear-cut inside the forest stand. Comparisons of modelled and measured solar radiation fluxes...... and soil temperature profiles showed that the model adequately describes the spatial heterogeneity and dynamics of these variables under different weather conditions. The model can be used to explore solar radiation and soil temperature patterns within heterogeneous forest plots, with applications......A three-dimensional model Mixfor-3D of soil–vegetation–atmosphere transfer (SVAT) was developed and applied to estimate possible effects of tree clear-cutting on radiation and soil temperature regimes of a forest ecosystem. The Mixfor-3D model consists of several closely coupled 3D sub...

  2. Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates

    Lievens, H.; Martens, B.; Verhoest, N.E.C.; Hahn, S.; Reichle, R.H.; Gonzalez Miralles, D.

    2016-01-01

    Active radar backscatter (σ°) observations from the Advanced Scatterometer (ASCAT) and passive radiometer brightness temperature (TB) observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated either individually or jointly into the Global Land Evaporation Amsterdam Model

  3. Ga-doped ZnO films deposited with varying sputtering powers and substrate temperatures by pulsed DC magnetron sputtering and their property improvement potentials

    Lee, Sanghun; Cheon, Dongkeun; Kim, Won-Jeong; Ham, Moon-Ho; Lee, Woong

    2012-01-01

    Ga-doped ZnO (GZO) transparent conductive oxide (TCO) films were deposited on glass substrates by pulsed DC magnetron sputtering with varying sputtering power and substrate temperature while fixing the Ga concentration in the sputtering target. The application of higher sputtering power by pulsed DC magnetrons sputtering at a moderate temperature of 423 K results in increased carrier concentration and mobility which accompanied improved doping efficiency and crystalline quality. Substrate temperature was found to be the more dominant parameter in controlling the electrical properties and crystallinity, while the sputtering power played synergistic auxiliary roles. Electrical and optical properties of the GZO TCO films fulfilled requirements for transparent electrodes, despite relatively low substrate temperature (423 K) and small thickness (100 nm). In an attempt to improve the electrical properties of the GZO films by hydrogen-treatment, it was observed that the substitutional Ga plays the complex role of carrier generator as donor and carrier suppressor deactivating the oxygen vacancy simultaneously, which would complicate the property improvement by increasing doping efficiency.

  4. [Oil degradation by basidiomycetes in soil and peat at low temperatures].

    Kulikova, N A; Klein, O I; Pivchenko, D V; Landesman, E O; Pozdnyakova, N N; Turkovskaya, O V; Zaichik, B Ts; Ruzhitskii, A O; Koroleva, O V

    2016-01-01

    A total of 17 basidiomycete strains causing white rot and growing on oil-contaminated substrates have been screened. Three strains with high (Steccherinum murashkinskyi), average (Trametes maxima), and low (Pleurotus ostreatus) capacities for the colonization of oil-contaminated substrates have been selected. The potential for degrading crude oil hydrocarbons has been assessed with the use of fungi grown on nonsterile soil and peat at low temperatures. Candida sp. and Rhodococcus sp. commercial strains have been used as reference organisms with oil-degrading ability. All microorganisms introduced in oil-contaminated soil have proved to be ineffective, whereas the inoculation of peat with basidiomycetes and oil-degrading microorganisms accelerated the destruction of oil hydrocarbons. The greatest degradation potential of oil-aliphatic hydrocarbons has been found in S. murashlinskyi. T. maxima turned out to be the most successful in degrading aromatic hydrocarbons. It has been suggested that aboriginal microflora contributes importantly to the effectiveness of oil-destructing microorganisms. T. maxima and S. murashkinskyi strains are promising for further study as oil-oxidizing agents during bioremediation of oil-contaminated peat soil under conditions of low temperatures.

  5. Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes

    M. Bahn

    2010-07-01

    Full Text Available Soil respiration (SR constitutes the largest flux of CO2 from terrestrial ecosystems to the atmosphere. However, there still exist considerable uncertainties as to its actual magnitude, as well as its spatial and interannual variability. Based on a reanalysis and synthesis of 80 site-years for 57 forests, plantations, savannas, shrublands and grasslands from boreal to tropical climates we present evidence that total annual SR is closely related to SR at mean annual soil temperature (SRMAT, irrespective of the type of ecosystem and biome. This is theoretically expected for non water-limited ecosystems within most of the globally occurring range of annual temperature variability and sensitivity (Q10. We further show that for seasonally dry sites where annual precipitation (P is lower than potential evapotranspiration (PET, annual SR can be predicted from wet season SRMAT corrected for a factor related to P/PET. Our finding indicates that it can be sufficient to measure SRMAT for obtaining a well constrained estimate of its annual total. This should substantially increase our capacity for assessing the spatial distribution of soil CO2 emissions across ecosystems, landscapes and regions, and thereby contribute to improving the spatial resolution of a major component of the global carbon cycle.

  6. Physical, Mineralogical, and Micromorphological Properities of Expansive Soil Treated at Different Temperature

    Jian Li

    2014-01-01

    Full Text Available Different characterizations were carried out on unheated expansive soil and samples heated at different temperature. The samples are taken from the western outskirts of Nanning of Guangxi Province, China. In the present paper, the mineral and chemical composition and several essential physical parameters of unheated expansive soil are indicated by XRD and EDX analysis. Moreover, the structural transition and change of mechanical properties of samples heated in the range of room temperature to 140°C are proved by TG-DTA and SEM observation. The mean particle diameter, density, hydraulic behaviors, and bond strength also have been investigated. The results indicate that, along with the loss of free water, physical absorbed water, and chemically bound water, the microstructure experiences some obvious change. In addition, the particle size and density both will increase rapidly before 100°C and undertake a slow growth or decline when higher than 100°C. The hydraulic behaviors and strength performance of unheated samples and the one heated at 100°C are given out as well. All these researches play fundamental role in the pollution prevention, modification, and engineering application of expansive soil.

  7. Effect of varying temperature on growth, morphology and soluble protein content of div I and div II mutant strains of bacillus sub tills

    Ahmed, A.; Sabri, A.N.

    2004-01-01

    In B.subtilis, cell division is controlled by div-genes which have been mapped on its circular chromosome. In the present work, div-mutant strains 1A316(div II), 1A317 and 1A318 (div I) were studied. These strains exhibited temperature sensitive cell division mutations. Colony morphology, cell morphology, staining behavior, growth rate and protein content of PY79 (wild type) and div-mutant strains (1A316, 1A317, 1A318) was studied at different temperatures ( 25 deg. Centi grade and 42 deg. with varying incubation periods(4, 16, 24, 48, 72,96 hrs). div-mutants differ from wild type (PY79) in colony morphology. Colony margin in PY79 was entire while in the div strains it is undulate. Staining behavior of cells as well as cell morphology i.e., cell size, cell types, formation of filaments/minicells were affected by high temperature. At higher temperature (42 deg. Centi grade), div-mutants undergo more severe lysis and degeneration as compare to wild type (PY79). Defective spores were produced by div-mutants at 25 deg. Centi grade and 42 deg. Centi grade. Tetrazolium overlay test was performed at 37 deg. Centi grade and 42 deg. Centi grade to check the spore germination ability of wild type and div-mutants. In 1A318, defective spores were produced at 37 deg. Centi grade, div-mutant was checked after 24 and 96 hrs at different temperatures (25, 37 and 42 deg. Centi grade). At all temperatures protein content were more in PY79 as compare to div-mutants. Also at 25 and 42 deg. Centi grade, protein content was more as compare to 37 deg. Centi grade. Protein contents was reduced at sporulation stages. Thus cell division mutations affect cell morphology, sporulation and germination processes in B.subtilis and thus are multifaceted mutations. (author)

  8. BOREAS TE-6 1994 Soil and Air Temperatures in the NSA

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Norman, John; Wilson, Tim

    2000-01-01

    The BOREAS TE-6 team collected several data sets to examine the influence of vegetation, climate, and their interactions on the major carbon fluxes for boreal forest species. This data set contains measurements of the air temperature at a single height and soil temperature at several depths in the NSA from 25-May to 08-Oct- 1994. Chromel-Constantan thermocouple wires run by a miniprogrammable data logger (Model 21X, Campbell Scientific, Inc., Logan, UT) provided direct measurements of temperature. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  9. The use of automatic weather stations to measure the soil temperature in the Mordovia State Nature Reserve (Russia) in 2016

    Oleg G. Grishutkin

    2017-01-01

    The article presents the soil temperature data obtained using two automatic weather stations located in the Mordovia State Nature Reserve (Russia). Measurements were carried out at the soil surface and at depths of 20 cm, 40 cm and 60 cm. The meteorological stations are located 15 km apart, in general, in similar landscapes. This caused similar results of meteorological measurements. Differences in the average of the daily temperature at corresponding depths are less than 2°C. The average ann...

  10. Soils

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  11. Higher temperature sensitivity for stable than for labile soil organic carbon - Evidence from incubations of long-term bare fallow soils

    Lefèvre, Romain; Barré, Pierre; Moyano, Fernando E.

    2014-01-01

    The impact of climate change on the stability of soil organic carbon (SOC)remains a major source of uncertainty in predicting future changes in atmospheric CO2 levels. One unsettled issue is whether the mineralization response to temperature depends on SOC mineralization rate. Long-term (>25 years......) bare fallow experiments (LTBF) in which the soil is kept free of any vegetation and organic inputs, and their associated archives of soil samples represent a unique research platform to examine this issue as with increasing duration of fallow, the lability of remaining total SOC decreases. We retrieved...... soils from LTBF experiments situated at Askov (Denmark), Grignon (France), Ultuna (Sweden), and Versailles (France) and sampled at the start of the experiments and after 25, 50, 52, and 79 years of bare fallow, respectively. Soils were incubated at 4, 12, 20, and 35 °C and the evolved CO2 monitored...

  12. Tolerance to high soil temperature in foxtail millet (Setaria italica L.) is related to shoot and root growth and metabolism.

    Aidoo, Moses Kwame; Bdolach, Eyal; Fait, Aaron; Lazarovitch, Naftali; Rachmilevitch, Shimon

    2016-09-01

    Roots play important roles in regulating whole-plant carbon and water relations in response to extreme soil temperature. Three foxtail millet (Setaria italica L.) lines (448-Ames 21521, 463-P1391643 and 523-P1219619) were subjected to two different soil temperatures (28 and 38 °C). The gas exchange, chlorophyll fluorescence, root morphology and central metabolism of leaves and roots were studied at the grain-filling stage. High soil temperature (38 °C) significantly influenced the shoot transpiration, stomatal conductance, photosynthesis, root growth and metabolism of all lines. The root length and area were significantly reduced in lines 448 and 463 in response to the stress, while only a small non-specific reduction was observed in line 523 in response to the treatment. The shift of root metabolites in response to high soil temperature was also genotype specific. In response to high soil temperature, glutamate, proline and pyroglutamate were reduced in line 448, and alanine, aspartate, glycine, pyroglutamate, serine, threonine and valine were accumulated in line 463. In the roots of line 523, serine, threonine, valine, isomaltose, maltose, raffinose, malate and itaconate were accumulated. Root tolerance to high soil temperature was evident in line 523, in its roots growth potential, lower photosynthesis and stomatal conductance rates, and effective utilization and assimilation of membrane carbon and nitrogen, coupled with the accumulation of protective metabolites. Copyright © 2016. Published by Elsevier Masson SAS.

  13. Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: A multi-model comparison

    Tucker, Colin; Reed, Sasha C.

    2016-01-01

    Arid and semiarid ecosystems (drylands) may dominate the trajectory of biosphere-to-atmosphere carbon (C) flux over the coming century. Accordingly, understanding dryland CO2 efflux controls is important for understanding C cycling at the global-scale: key unknowns regarding how temperature and moisture interact to regulate dryland C cycling remain. Further, the patchiness of dryland vegetation can create ‘islands of fertility’, with spatially heterogeneous rates of soil respiration (Rs). At our study site in southeastern Utah, USA we added or removed litter (0 to 650% of control) in paired plots that were either associated with a shrub or with interspaces between vascular plants. We measured Rs, soil temperature, and water content (θ) on eight sampling dates between October 2013 and November 2014. Rs was highest following monsoon rains in late summer when soil temperature was ~30°C. During mid-summer, Rs was low, associated with high soil temperatures (>40°C), resulting in an apparent negative temperature sensitivity of Rs at high temperatures, and positive temperature sensitivity at low-moderate temperatures. We used Bayesian statistical methods to compare multiple competing models capturing a wide range of hypothesized relationships between temperature, moisture, and Rs. The best fit model indicates apparent negative temperature sensitivity of soil respiration at high temperatures reflects the control of soil moisture – not high temperatures – in limiting Rs. The modeled Q10 ranged from 2.7 at 5°C to 1.4 at 45°C. Litter addition had no effect on temperature sensitivity or reference respiration (Rref = Rs at 20°C and optimum moisture) beneath shrubs, and little effect on Rref in interspaces, yet Rref was 1.5 times higher beneath shrubs than in interspaces. Together, these results suggest reduced Rs often observed at high temperatures in drylands is dominated by the control of moisture, and that variable litter inputs – at least over the short

  14. Simulated Effects of Soil Temperature and Salinity on Capacitance Sensor Measurements

    Timothy R. Green

    2007-04-01

    Full Text Available Dielectric measurement techniques are used widely for estimation of water contentin environmental media. However, factors such as temperature and salinity affecting thereadings require further quantitative investigation and explanation. Theoretical sensitivities ofcapacitance sensors to liquid salinity and temperature of porous media were derived andcomputed using a revised electrical circuit analogue model in conjunction with a dielectricmixing model and a finite element model of Maxwell’s equation to compute electrical fielddistributions. The mixing model estimates the bulk effective complex permittivities of solid-water-air media. The real part of the permittivity values were used in electric field simulations,from which different components of capacitance were calculated via numerical integration forinput to the electrical circuit analogue. Circuit resistances representing the dielectric losses werecalculated from the complex permittivity of the bulk soil and from the modeled fields. Resonantfrequencies from the circuit analogue were used to update frequency-dependent variables in aniterative manner. Simulated resonant frequencies of the capacitance sensor display sensitivitiesto both temperature and salinity. The gradients in normalized frequency with temperatureranged from negative to positive values as salinity increased from 0 to 10 g L-1. The modeldevelopment and analyses improved our understanding of processes affecting the temperatureand salinity sensitivities of capacitance sensors in general. This study provides a foundation forfurther work on inference of soil water content under field conditions.

  15. A Robust Inversion Algorithm for Surface Leaf and Soil Temperatures Using the Vegetation Clumping Index

    Zunjian Bian

    2017-07-01

    Full Text Available The inversion of land surface component temperatures is an essential source of information for mapping heat fluxes and the angular normalization of thermal infrared (TIR observations. Leaf and soil temperatures can be retrieved using multiple-view-angle TIR observations. In a satellite-scale pixel, the clumping effect of vegetation is usually present, but it is not completely considered during the inversion process. Therefore, we introduced a simple inversion procedure that uses gap frequency with a clumping index (GCI for leaf and soil temperatures over both crop and forest canopies. Simulated datasets corresponding to turbid vegetation, regularly planted crops and randomly distributed forest were generated using a radiosity model and were used to test the proposed inversion algorithm. The results indicated that the GCI algorithm performed well for both crop and forest canopies, with root mean squared errors of less than 1.0 °C against simulated values. The proposed inversion algorithm was also validated using measured datasets over orchard, maize and wheat canopies. Similar results were achieved, demonstrating that using the clumping index can improve inversion results. In all evaluations, we recommend using the GCI algorithm as a foundation for future satellite-based applications due to its straightforward form and robust performance for both crop and forest canopies using the vegetation clumping index.

  16. Temperature sensitivity indicates that chlorination of organic matter in forest soil is primarily biotic.

    Bastviken, David; Svensson, Teresia; Karlsson, Susanne; Sandén, Per; Oberg, Gunilla

    2009-05-15

    Old assumptions that chloride is inert and that most chlorinated organic matter in soils is anthropogenic have been challenged by findings of naturally formed organochlorines. Such natural chlorination has been recognized for several decades, but there are still very few measurements of chlorination rates or estimates of the quantitative importance of terrestrial chlorine transformations. While much is known about the formation of specific compounds, bulk chlorination remains poorly understood in terms of mechanisms and effects of environmental factors. We quantified bulk chlorination rates in coniferous forest soil using 36Cl-chloride in tracer experiments at different temperatures and with and without molecular oxygen (O2). Chlorination was enhanced by the presence of O2 and had a temperature optimum at 20 degrees C. Minimum rates were found at high temperatures (50 degrees C) or under anoxic conditions. The results indicate (1) that most of the chlorination between 4 and 40 degrees C was biotic and driven by O2 dependent enzymes, and (2) that there is also slower background chlorination occurring under anoxic conditions at 20 degrees C and under oxic conditions at 50 degrees C. Hence, while oxic and biotic chlorination clearly dominated, chlorination by other processes including possible abiotic reactions was also detected.

  17. Water, Rather than Temperature, Dominantly Impacts How Soil Fauna Affect Dissolved Carbon and Nitrogen Release from Fresh Litter during Early Litter Decomposition

    Shu Liao

    2016-10-01

    Full Text Available Longstanding observations suggest that dissolved materials are lost from fresh litter through leaching, but the role of soil fauna in controlling this process has been poorly documented. In this study, a litterbag experiment employing litterbags with different mesh sizes (3 mm to permit soil fauna access and 0.04 mm to exclude fauna access was conducted in three habitats (arid valley, ecotone and subalpine forest with changes in climate and vegetation types to evaluate the effects of soil fauna on the concentrations of dissolved organic carbon (DOC and total dissolved nitrogen (TDN during the first year of decomposition. The results showed that the individual density and community abundance of soil fauna greatly varied among these habitats, but Prostigmata, Isotomidae and Oribatida were the dominant soil invertebrates. At the end of the experiment, the mass remaining of foliar litter ranged from 58% for shrub litter to 77% for birch litter, and the DOC and TDN concentrations decreased to 54%–85% and increased to 34%–269%, respectively, when soil fauna were not present. The effects of soil fauna on the concentrations of both DOC and TDN in foliar litter were greater in the subalpine forest (wetter but colder during the winter and in the arid valley (warmer but drier during the growing season, and this effect was positively correlated with water content. Moreover, the effects of fauna on DOC and TDN concentrations were greater for high-quality litter and were related to the C/N ratio. These results suggest that water, rather than temperature, dominates how fauna affect the release of dissolved substances from fresh litter.

  18. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua

    2015-09-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  19. Field-measured, hourly soil water evaporation stages in relation to reference evapotranspiration rate and soil to air temperature ratio

    Soil water evaporation takes critical water supplies away from crops, especially in areas where both rainfall and irrigation water are limited. This study measured bare soil water evaporation from clay loam, silt loam, sandy loam, and fine sand soils. It found that on average almost half of the ir...

  20. Permafrost soil characteristics and microbial community structure across a boreal forest watershed vary over short spatial scales and dictate community responses to thaw.

    Stegen, J.; Bottos, E. M.; Kennedy, D.; Romero, E. B.; Fansler, S.; Chu, R. K.; Tfaily, M.; Jansson, J.; Bernstein, H. C.; Brown, J. M.; Markillie, L. M.

    2017-12-01

    Understanding drivers of permafrost microbial community structure and function is critical for understanding permafrost microbiology and predicting ecosystem responses to thaw; however, studies describing ecological controls on these communities are lacking. We hypothesize that permafrost communities are uniquely shaped by constraints imposed by prolonged freezing, and decoupled from the selective factors that influence non-permafrost soil communities, but that pre-thaw environmental and community characteristics will be strong determinants of community structure and function post-thaw. We characterized patterns of environmental variation and microbial community composition in sixty permafrost samples spanning landscape gradients in a boreal forest watershed, and monitored community responses to thaw. Consistent with our hypothesis, we found that, proportionally, the strongest process influencing permafrost community composition was dispersal limitation (0.36), exceeding the influence of homogenous selection (0.21) and variable selection (0.16), and that deterministic selection arose primarily from energetic constraints of the permafrost environment. Our data supported a structural equation model in which organic carbon thermodynamics and organic acid content, influenced redox conditions and total selection. Post-thaw community composition was found to be driven primarily by pre-thaw community composition, indicating a strong influence of historical conditions. Together, these results suggest that community responses to thaw may be highly varied over short distances and that changes in community structure and function are likely to be drastic, as changes to system hydrology mobilize organisms and nutrients, thereby relieving the primary constraints on the system. These findings are being integrated with metabolomic and metatranscriptomic analyses to improve understanding of how pre-thaw conditions can be used to predict microbial activity post-thaw.

  1. Increased temperature and altered summer precipitation have differential effects on biological soil crusts in a dryland ecosystem

    Johnson, Shannon L.; Kuske, Cheryl R.; Carney, Travis D.; Housman, David C.; Gallegos-Graves, La Verne; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts) are common and ecologically important members of dryland ecosystems worldwide, where they stabilize soil surfaces and contribute newly fixed C and N to soils. To test the impacts of predicted climate change scenarios on biocrusts in a dryland ecosystem, the effects of a 2–3 °C increase in soil temperature and an increased frequency of smaller summer precipitation events were examined in a large, replicated field study conducted in the cold desert of the Colorado Plateau, USA. Surface soil biomass (DNA concentration), photosynthetically active cyanobacterial biomass (chlorophyll a concentration), cyanobacterial abundance (quantitative PCR assay), and bacterial community composition (16S rRNA gene sequencing) were monitored seasonally over 2 years. Soil microbial biomass and bacterial community composition were highly stratified between the 0–2 cm depth biocrusts and 5–10 cm depth soil beneath the biocrusts. The increase in temperature did not have a detectable effect on any of the measured parameters over 2 years. However, after the second summer of altered summer precipitation pattern, significant declines occurred in the surface soil biomass (avg. DNA concentration declined 38%), photosynthetic cyanobacterial biomass (avg. chlorophyll a concentration declined 78%), cyanobacterial abundance (avg. gene copies g−1 soil declined 95%), and proportion of Cyanobacteria in the biocrust bacterial community (avg. representation in sequence libraries declined 85%). Biocrusts are important contributors to soil stability, soil C and N stores, and plant performance, and the loss or reduction of biocrusts under an altered precipitation pattern associated with climate change could contribute significantly to lower soil fertility and increased erosion and dust production in dryland ecosystems at a regional scale.

  2. Implementation monitoring temperature, humidity and mositure soil based on wireless sensor network for e-agriculture technology

    Sumarudin, A.; Ghozali, A. L.; Hasyim, A.; Effendi, A.

    2016-04-01

    Indonesian agriculture has great potensial for development. Agriculture a lot yet based on data collection for soil or plant, data soil can use for analys soil fertility. We propose e-agriculture system for monitoring soil. This system can monitoring soil status. Monitoring system based on wireless sensor mote that sensing soil status. Sensor monitoring utilize soil moisture, humidity and temperature. System monitoring design with mote based on microcontroler and xbee connection. Data sensing send to gateway with star topology with one gateway. Gateway utilize with mini personal computer and connect to xbee cordinator mode. On gateway, gateway include apache server for store data based on My-SQL. System web base with YII framework. System done implementation and can show soil status real time. Result the system can connection other mote 40 meters and mote lifetime 7 hours and minimum voltage 7 volt. The system can help famer for monitoring soil and farmer can making decision for treatment soil based on data. It can improve the quality in agricultural production and would decrease the management and farming costs.

  3. Hydration structure and dynamics of a hydroxide ion in water clusters of varying size and temperature: Quantum chemical and ab initio molecular dynamics studies

    Bankura, Arindam; Chandra, Amalendu

    2012-01-01

    Highlights: ► A theoretical study of hydroxide ion-water clusters is carried for varying cluster size and temperature. ► The structures of OH − (H 2 O) n are found out through quantum chemical calculations for n = 4, 8, 16 and 20. ► The finite temperature behavior of the clusters is studied through ab initio dynamical simulations. ► The spectral features of OH modes (deuterated) and their dependence on hydrogen bonding states of water are discussed. ► The mechanism and kinetics of proton transfer processes in these anionic clusters are also investigated. - Abstract: We have investigated the hydration structure and dynamics of OH − (H 2 O) n clusters (n = 4, 8, 16 and 20) by means of quantum chemical and ab initio molecular dynamics calculations. Quantum chemical calculations reveal that the solvation structure of the hydroxide ion transforms from three and four-coordinated surface states to five-coordinated interior state with increase in cluster size. Several other isomeric structures with energies not very different from the most stable isomer are also found. Ab initio simulations show that the most probable configurations at higher temperatures need not be the lowest energy isomeric structure. The rates of proton transfer in these clusters are found to be slower than that in bulk water. The vibrational spectral calculations reveal distinct features for free OH (deuterated) stretch modes of water in different hydrogen bonding states. Effects of temperature on the structural and dynamical properties are also investigated for the largest cluster considered here.

  4. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

    Han, Xiao; Xu, Cong; Dungait, Jennifer A. J.; Bol, Roland; Wang, Xiaojie; Wu, Wenliang; Meng, Fanqiao

    2018-01-01

    Loss of soil organic carbon (SOC) from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI) has gradually been implemented across China in the context of agricultural intensification and rural liveliho...

  5. A dynamic model and an experimental study for the internal air and soil temperatures in an innovative greenhouse

    Joudi, Khalid A.; Farhan, Ammar A.

    2015-01-01

    Highlights: • Simulation model for internal Greenhouse temperature including soil reflectance. • Greenhouse soil heat exchange affects internal temperature by approximately 12%. • Solar air heaters as greenhouse roof maintain better internal temperature year round. - Abstract: An innovative greenhouse which integrates a conventional greenhouse with roof mounted solar air heaters is used in this investigation. This design reduces the solar radiation incoming to the greenhouse in summer which reduced the load and cost of greenhouse cooling and provides a means of solar heating. Experimental measurements of the internal air and internal soil sub-layer temperatures in the greenhouse, without crops, were performed in Baghdad University, Baghdad, Iraq (33.3 °N, 44.4 °E). Measurements were recorded for clear and partly cloudy winter days. A dynamic model was developed to predict the all internal temperatures of the greenhouse. This model includes soil surface heat exchange with the greenhouse air which was found to give a more accurate prediction of the internal temperatures. Soil surface heat exchange has a positive contribution to the internal environment. The input parameters of the model were the measured meteorological conditions and the thermo-physical properties of the greenhouse components which include the cover, inside air, and soil. Comparisons between the predicted and measured results show good agreement. Also, results show that soil sub-layers inside the greenhouse at 50 cm depth are the best place for heat storage elements. The integrated system rendered maximum differences between ambient and internal air temperatures of 16 °C in February and 10 °C in June without operating any heating or cooling system

  6. EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON SOIL CARBON DENSITY FRACTIONS IN A DOUGLAS FIR MESOCOSM STUDY

    We conducted a 4-year full-factorial study of the effects of elevated atmospheric CO2 and temperature on Douglas fir seedlings growing in reconstructed native forest soils in mesocosms. The elevated CO2 treatment was ambient CO2 plus 200 ppm CO2. The elevated temperature treatm...

  7. Effects of bryophyte and lichen cover on permafrost soil temperature at large scale

    P. Porada

    2016-09-01

    Full Text Available Bryophyte and lichen cover on the forest floor at high latitudes exerts an insulating effect on the ground. In this way, the cover decreases mean annual soil temperature and can protect permafrost soil. Climate change, however, may change bryophyte and lichen cover, with effects on the permafrost state and related carbon balance. It is, therefore, crucial to predict how the bryophyte and lichen cover will react to environmental change at the global scale. To date, current global land surface models contain only empirical representations of the bryophyte and lichen cover, which makes it impractical to predict the future state and function of bryophytes and lichens. For this reason, we integrate a process-based model of bryophyte and lichen growth into the global land surface model JSBACH (Jena Scheme for Biosphere–Atmosphere Coupling in Hamburg. The model simulates bryophyte and lichen cover on upland sites. Wetlands are not included. We take into account the dynamic nature of the thermal properties of the bryophyte and lichen cover and their relation to environmental factors. Subsequently, we compare simulations with and without bryophyte and lichen cover to quantify the insulating effect of the organisms on the soil. We find an average cooling effect of the bryophyte and lichen cover of 2.7 K on temperature in the topsoil for the region north of 50° N under the current climate. Locally, a cooling of up to 5.7 K may be reached. Moreover, we show that using a simple, empirical representation of the bryophyte and lichen cover without dynamic properties only results in an average cooling of around 0.5 K. This suggests that (a bryophytes and lichens have a significant impact on soil temperature in high-latitude ecosystems and (b a process-based description of their thermal properties is necessary for a realistic representation of the cooling effect. The advanced land surface scheme, including a dynamic bryophyte and lichen model, will

  8. Effect of measurement time of the day on the relationship between temperature and soil CO2 efflux

    Eva Dařenová

    2011-01-01

    Full Text Available In this study we investigated effect of the time of the day when manual measurements of soil CO2 efflux are performed on estimates of seasonal sums of released carbon from the soil. We subsampled continuous measurement of soil CO2 efflux into six sets of data in accordance to the time of the day when the measurements were taken – 0 h, 4 h, 8 h, 12 h, 16 h and 20 h. To estimate seasonal carbon flux from the soil we used continuously measured soil temperature and parameters R10 (soil CO2 efflux normalized for temperature of 10 °C and Q10 (the proportional change in CO2 efflux caused by 10 °C increase in temperature calculated from continuous measurements and from measurements taken at individual hours. Values of Q10 calculated from 12 h and 16 h data were lower than Q10 calculated from continuous measurements. On the contrary, Q10 at 0 h, 4 h, 8 h and 20 h were higher. Seasonal carbon flux from the soil based on 0 h, 4 h and 8 h measurements was overestimated compare to the flux calculated from continuous measurements. On the contrary, measurements at 12 h, 16 h and 20 h measurements underestimated the carbon flux. The under- or overestimation was significant for 0 h, 4 h, 8 h and 20 h data sub-sets.

  9. Toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus changes under a global warming perspective: Variations in air temperature and soil moisture content.

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2016-12-15

    This study aimed to assess how the current global warming perspective, with increasing air temperature (20°C vs. 25°C) and decreasing soil moisture content (50% vs. 30% of the soil water holding capacity, WHC), affected the toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus. Enchytraeids were exposed for 21d to a dilution series of the agricultural soil with Lufa 2.2 control soil under four climate situations: 20°C+50% WHC (standard conditions), 20°C+30% WHC, 25°C+50% WHC, and 25°C+30% WHC. Survival, reproduction and bioaccumulation of As, Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn were obtained as endpoints. Reproduction was more sensitive to both climate factors and metal(loid) pollution. High soil salinity (electrical conductivity~3dSm -1 ) and clay texture, even without the presence of high metal(loid) concentrations, affected enchytraeid performance especially at drier conditions (≥80% reduction in reproduction). The toxicity of the agricultural soil increased at drier conditions (10% reduction in EC10 and EC50 values for the effect on enchytraeid reproduction). Changes in enchytraeid performance were accompanied by changes in As, Fe, Mn, Pb and Zn bioaccumulation, with lower body concentrations at drier conditions probably due to greater competition with soluble salts in the case of Fe, Mn, Pb and Zn. This study shows that apart from high metal(loid) concentrations other soil properties (e.g. salinity and texture) may be partially responsible for the toxicity of metal(loid)-polluted soils to soil invertebrates, especially under changing climate conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Temperature Knowledge and Model Correlation for the Soil Moisture Active and Passive (SMAP) Reflector Mesh

    Mikhaylov, Rebecca; Dawson, Douglas; Kwack, Eug

    2014-01-01

    NASA's Earth observing Soil Moisture Active & Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 km near-polar, sun synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its 3 year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 rpm, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within 3 days. In order to make the necessary precise surface emission measurements from space, a temperature knowledge of 60 deg C for the mesh reflector is required. In order to show compliance, a thermal vacuum test was conducted using a portable solar simulator to illuminate a non flight, but flight-like test article through the quartz window of the vacuum chamber. The molybdenum wire of the antenna mesh is too fine to accommodate thermal sensors for direct temperature measurements. Instead, the mesh temperature was inferred from resistance measurements made during the test. The test article was rotated to five separate angles between 10 deg and 90 deg via chamber breaks to simulate the maximum expected on-orbit solar loading during the mission. The resistance measurements were converted to temperature via a resistance versus temperature calibration plot that was constructed from data collected in a separate calibration test. A simple thermal model of two different representations of the mesh (plate and torus) was created to correlate the mesh temperature predictions to within 60 deg C. The on-orbit mesh

  11. Histopathologic evaluation of postmortem autolytic changes in bluegill (Lepomis macrohirus and crappie (Pomoxis anularis at varied time intervals and storage temperatures

    Jami George

    2016-04-01

    Full Text Available Information is lacking on preserving fish carcasses to minimize postmortem autolysis artifacts when a necropsy cannot be performed immediately. The purpose of this study was to qualitatively identify and score histologic postmortem changes in two species of freshwater fish (bluegill—Lepomis macrochirus; crappie—Pomoxis annularis, at varied time intervals and storage temperatures, to assess the histologic quality of collected samples. A pooled sample of 36 mix sex individuals of healthy bluegill and crappie were euthanized, stored either at room temperature, refrigerated at 4 °C, or frozen at −20 °C, and then necropsied at 0, 4, 24, and 48 h intervals. Histologic specimens were evaluated by light microscopy. Data showed that immediate harvesting of fresh samples provides the best quality and refrigeration would be the preferred method of storage if sample collection had to be delayed for up to 24 h. When sample collection must be delayed more than 24 h, the preferred method of storage to minimize autolysis artifacts is freezing if evaluation of the gastrointestinal tract is most important, or refrigeration if gill histology is most important. The gill arch, intestinal tract, followed by the liver and kidney were the most sensitive organs to autolysis.

  12. Automatic Traffic Data Collection under Varying Lighting and Temperature Conditions in Multimodal Environments: Thermal versus Visible Spectrum Video-Based Systems

    Ting Fu

    2017-01-01

    Full Text Available Vision-based monitoring systems using visible spectrum (regular video cameras can complement or substitute conventional sensors and provide rich positional and classification data. Although new camera technologies, including thermal video sensors, may improve the performance of digital video-based sensors, their performance under various conditions has rarely been evaluated at multimodal facilities. The purpose of this research is to integrate existing computer vision methods for automated data collection and evaluate the detection, classification, and speed measurement performance of thermal video sensors under varying lighting and temperature conditions. Thermal and regular video data was collected simultaneously under different conditions across multiple sites. Although the regular video sensor narrowly outperformed the thermal sensor during daytime, the performance of the thermal sensor is significantly better for low visibility and shadow conditions, particularly for pedestrians and cyclists. Retraining the algorithm on thermal data yielded an improvement in the global accuracy of 48%. Thermal speed measurements were consistently more accurate than for the regular video at daytime and nighttime. Thermal video is insensitive to lighting interference and pavement temperature, solves issues associated with visible light cameras for traffic data collection, and offers other benefits such as privacy, insensitivity to glare, storage space, and lower processing requirements.

  13. Temperature effect on tert-butyl alcohol (TBA) biodegradation kinetics in hyporheic zone soils.

    Greenwood, Mark H; Sims, Ronald C; McLean, Joan E; Doucette, William J

    2007-09-19

    Remediation of tert-butyl alcohol (TBA) in subsurface waters should be taken into consideration at reformulated gasoline contaminated sites since it is a biodegradation intermediate of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-butyl formate (TBF). The effect of temperature on TBA biodegradation has not been not been published in the literature. Biodegradation of [U 14C] TBA was determined using hyporheic zone soil microcosms. First order mineralization rate constants of TBA at 5 degrees C, 15 degrees C and 25 degrees C were 7.84 +/- 0.14 x 10-3, 9.07 +/- 0.09 x 10-3, and 15.3 +/- 0.3 x 10-3 days-1, respectively (or 2.86 +/- 0.05, 3.31 +/- 0.03, 5.60 +/- 0.14 years-1, respectively). Temperature had a statistically significant effect on the mineralization rates and was modelled using the Arrhenius equation with frequency factor (A) and activation energy (Ea) of 154 day-1 and 23,006 mol/J, respectively. Results of this study are the first to determine mineralization rates of TBA for different temperatures. The kinetic rates determined in this study can be used in groundwater fate and transport modelling of TBA at the Ronan, MT site and provide an estimate for TBA removal at other similar shallow aquifer sites and hyporheic zones as a function of seasonal change in temperature.

  14. Preliminary data on growth and enzymatic abilities of soil fungus Humicolopsis cephalosporioides at different incubation temperatures.

    Elíades, Lorena Alejandra; Cabello, Marta N; Pancotto, Verónica; Moretto, Alicia; Rago, María Melisa; Saparrat, Mario C N

    2015-01-01

    Nothofagus pumilio (Poepp & Endl.) Krasser, known as "lenga" is the most important timber wood species in southernmost Patagonia (Argentina). Humicolopsis cephalosporioides Cabral & Marchand is a soil fungus associated with Nothofagus pumilio forests, which has outstanding cellulolytic activity. However, there is no information about the ability of this fungus to use organic substrates other than cellulose, and its ability to produce different enzyme systems, as well as its response to temperature. The aim of this study was to examine the role of H. cephalosporioides in degradation processes in N. pumilio forests in detail by evaluating the in vitro ability of four isolates of this fungus to grow and produce different lytic enzyme systems, and their response to incubation temperature. The ability of the fungi to grow and produce enzyme systems was estimated by inoculating them on agar media with specific substrates, and the cultures were incubated at three temperatures. A differential behavior of each strain in levels of growth and enzyme activity was found according to the medium type and/or incubation temperature. A intra-specific variability was found in H. cephalosporioides. Likewise a possible link between the saprotrophic role of this fungus in N. pumilio forests and the degradation of organic matter under stress conditions, such as those from frosty environments, was also discussed. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  15. The relative controls of temperature, soil moisture, and plant functional group on soil CO2 efflux at diel, seasonal, and annual scales

    Soil respiration (Rsoil) is a dominant, but variable, contributor to ecosystem CO2 efflux. Understanding how variations in major environmental drivers, like temperature and available moisture, might regulate Rsoil has become extremely relevant. Plant functional-type diversity makes such assessments ...

  16. Soil temperature response to 21st century global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America

    Wisser, D.; Marchenko, S.; Talbot, J.; Treat, C.; Frolking, S.

    2011-01-01

    Northern peatlands contain a large terrestrial carbon pool that plays an important role in the Earth’s carbon cycle. A considerable fraction of this carbon pool is currently in permafrost and is biogeochemically relatively inert; this will change with increasing soil temperatures as a result

  17. Contrasting responses of soil respiration and temperature sensitivity to land use types: Cropland vs. apple orchard on the Chinese Loess Plateau.

    Wang, Rui; Sun, Qiqi; Wang, Ying; Zheng, Wei; Yao, Lunguang; Hu, Yaxian; Guo, Shengli

    2018-04-15

    Land use plays an essential role in regional carbon cycling, potentially influencing the exchange rates of CO 2 flux between soil and the atmosphere in terrestrial ecosystems. Temperature sensitivity of soil respiration (Q 10 ), as an efficient parameter to reflect the possible feedback between the global carbon cycle and climate change, has been extensively studied. However, very few reports have assessed the difference in temperature sensitivity of soil respiration under different land use types. In this study, a three-year field experiment was conducted in cropland (winter wheat, Triticum aestivum L.) and apple orchard (Malus domestica Borkh) on the semi-arid Loess Plateau from 2011 to 2013. Soil respiration (measured using Li-Cor 8100), bacterial community structure (represented by 16S rRNA), soil enzyme activities, and soil physicochemical properties of surface soil were monitored. The average annual soil respiration rate in the apple orchard was 12% greater than that in the cropland (2.01 vs. 1.80μmolm -2 s -1 ), despite that the average Q 10 values in the apple orchard was 15% lower than that in the cropland (ranging from 1.63 to 1.41). As to the differences among predominant phyla, Proteobacteria was 26% higher in the apple orchard than that in the cropland, whereas Actinobacteria and Acidobacteria were 18% and 36% lower in the apple orchard. The β-glucosidase and cellobiohydrolase activity were 15% (44.92 vs. 39.09nmolh -1 g -1 ) and 22% greater (21.39 vs. 17.50nmolh -1 g -1 ) in the apple orchard than that in the cropland. Compared to the cropland, the lower Q 10 values in the apple orchard resulted from the variations of bacterial community structure and β-glucosidase and cellobiohydrolase activity. In addition, the lower C: N ratios in the apple orchard (6.50 vs. 8.40) possibly also contributed to its lower Q 10 values. Our findings call for further studies to include the varying effects of land use types into consideration when applying Q 10 values

  18. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture

    Sierra, Carlos A.; Trumbore, Susan E.; Davidson, Eric A.; Vicca, Sara; Janssens, I.

    2015-03-01

    The sensitivity of soil organic matter decomposition to global environmental change is a topic of prominent relevance for the global carbon cycle. Decomposition depends on multiple factors that are being altered simultaneously as a result of global environmental change; therefore, it is important to study the sensitivity of the rates of soil organic matter decomposition with respect to multiple and interacting drivers. In this manuscript, we present an analysis of the potential response of decomposition rates to simultaneous changes in temperature and moisture. To address this problem, we first present a theoretical framework to study the sensitivity of soil organic matter decomposition when multiple driving factors change simultaneously. We then apply this framework to models and data at different levels of abstraction: (1) to a mechanistic model that addresses the limitation of enzyme activity by simultaneous effects of temperature and soil water content, the latter controlling substrate supply and oxygen concentration for microbial activity; (2) to different mathematical functions used to represent temperature and moisture effects on decomposition in biogeochemical models. To contrast model predictions at these two levels of organization, we compiled different data sets of observed responses in field and laboratory studies. Then we applied our conceptual framework to: (3) observations of heterotrophic respiration at the ecosystem level; (4) laboratory experiments looking at the response of heterotrophic respiration to independent changes in moisture and temperature; and (5) ecosystem-level experiments manipulating soil temperature and water content simultaneously.

  19. The global SMOS Level 3 daily soil moisture and brightness temperature maps

    A. Al Bitar

    2017-06-01

    Full Text Available The objective of this paper is to present the multi-orbit (MO surface soil moisture (SM and angle-binned brightness temperature (TB products for the SMOS (Soil Moisture and Ocean Salinity mission based on a new multi-orbit algorithm. The Level 3 algorithm at CATDS (Centre Aval de Traitement des Données SMOS makes use of MO retrieval to enhance the robustness and quality of SM retrievals. The motivation of the approach is to make use of the longer temporal autocorrelation length of the vegetation optical depth (VOD compared to the corresponding SM autocorrelation in order to enhance the retrievals when an acquisition occurs at the border of the swath. The retrieval algorithm is implemented in a unique operational processor delivering multiple parameters (e.g. SM and VOD using multi-angular dual-polarisation TB from MO. A subsidiary angle-binned TB product is provided. In this study the Level 3 TB V310 product is showcased and compared to SMAP (Soil Moisture Active Passive TB. The Level 3 SM V300 product is compared to the single-orbit (SO retrievals from the Level 2 SM processor from ESA with aligned configuration. The advantages and drawbacks of the Level 3 SM product (L3SM are discussed. The comparison is done on a global scale between the two datasets and on the local scale with respect to in situ data from AMMA-CATCH and USDA ARS Watershed networks. The results obtained from the global analysis show that the MO implementation enhances the number of retrievals: up to 9 % over certain areas. The comparison with the in situ data shows that the increase in the number of retrievals does not come with a decrease in quality, but rather at the expense of an increased time lag in product availability from 6 h to 3.5 days, which can be a limiting factor for applications like flood forecast but reasonable for drought monitoring and climate change studies. The SMOS L3 soil moisture and L3 brightness temperature products are delivered using an

  20. N2O emission from urine in the soil in the beef production in Southeast Brazil: soil moisture content and temperature effects

    Simões Barneze, Arlete; Mancebo Mazzetto, Andre; Fernandes Zani, Caio; Siqueira Neto, Marcos; Clemente Cerri, Carlos

    2014-05-01

    Pasture expansion in Brazil has shown an increase in 4.5% per year, and a total cattle herd of about 200 millions in 2010. Associated to animal husbandry there are emissions of N2O (nitrous oxide) and other gases to the atmosphere. The liquid manure contributes to emitte 5% of the total N2O emissions. The urea content of cattle urine will readily hydrolyze to form ammonium after deposition to the soil. Nitrous oxide may then be emitted through the microbiological processes of nitrification and denitrification. Important factors can influence on these processes and consequently in nitrous oxide emissions, as soil water content and temperature (Bolan et al., 2004; Luo et al., 2008). The main goal of this research was to determine the soil water content and temperature influence on N2O emissions from urine depositions on the soil. In order to achieve the objective, soil incubation experiment was conducted in laboratory conditions at three levels of water-filled pore space (40%, 60% and 80% WFPS) and two temperatures (25ºC and 35ºC) with and without urine, with five replicates each. The soil used in this study was collected from the 0-10 cm layer of a grassland field in Southeast of Brazil and classified as Nitisols. For each measurement, the Kilner jar was hermetically sealed by replacing the lid and a first gas sample was immediately taken (time-zero, t0 sample) using a syringe and stored in a pre-evacuated gas vial. After 30 minutes the headspace of each jar was sampled again (time-thirty, t_30 sample). The lids were then removed and kept off until the next sampling day. Nitrous oxide concentrations in the sampled air were measured using a SRI Gas Chromatograph (Model 8610C). Gas fluxes were calculated by fitting linear regressions through the data collected at t0 and t_30 and were corrected for temperature and amount of soil incubated. Gas measurements were carried out up to 55 days. To determine the statistical significance, Tukey tests were carried out at 0

  1. Easy and fast extraction methods to determine organochlorine pesticides in sewage sludge, soil, and water samples based at low temperature.

    Mesquita, Tayane C R; Santos, Rizia R; Cacique, Ane P; De Sá, Ludimara J; Silvério, Flaviano O; Pinho, Gevany P

    2018-03-04

    Organochlorine pesticides present in sewage sludge can contaminate soil and water when they are used as either fertilizer or agricultural soil conditioner. In this study, the technique solid-liquid extraction with low temperature purification was optimized and validated for determination of ten organochlorine pesticides in sewage sludge and soil samples. Liquid-liquid extraction with low temperature purification was also validated for the same compounds in water. Analyses were performed by gas chromatography-mass spectrometry operating in the selective ion monitoring mode. After optimization, the methods showed recoveries between 70% and 115% with relative standard deviation lower than 13% for all target analytes in the three matrices. The linearity was demonstrated in the range of 20 to 70 µg L -1 , 0.5 to 60 µg L -1 , and 3 to 13 µg L -1 , for sludge, soil, and acetonitrile, respectively. The limit of quantification ranged between 2 and 40 µg kg -1 , 1 and 6 µg kg -1 , and 0.5 µg L -1 for sludge, soil, and water, respectively. The methods were used in the study of pesticide lixiviation carried out in a poly vinyl chlorine column filled with soil, which had its surface layer mixed with sludge. The results showed that pesticides are not leached into soil, part of them is adsorbed by the sewage sludge (4-40%), and most pesticides are lost by volatilization.

  2. Evaluation of Integrated Time-Temperature Effect in Pyrolysis Process of Historically Contaminated Soils with Cadmium (Cd and Lead (Pb

    Bulmău C

    2013-04-01

    Full Text Available It is already known that heavy metals pollution causes important concern to human and ecosystem health. Heavy metals in soils at the European level represents 37.3% between main contaminates affecting soils (EEA, 2007. This paper illustrates results obtained in the framework of laboratory experiments concerning the evaluation of integrated time-temperature effect in pyrolysis process applied to contaminated soil by two different ways: it is about heavy metals historically contaminated soil from one of the most polluted areas within Romania, and artificially contaminated with PCB-containing transformer oil. In particular, the authors focused on a recent evaluation of pyrolysis efficiency on removing lead (Pb and cadmium (Cd from the contaminated soil. The experimental study evaluated two important parameters related to the studied remediation methodology: thermal process temperature and the retention time in reactor of the contaminated soils. The remediation treatments were performed in a rotary kiln reactor, taking into account three process temperatures (400°C, 600°C and 800°C and two retention times: 30 min. and 60 min. Completed analyses have focused on pyrolysis solids and gas products. Consequently, both ash and gas obtained after pyrolysis process were subjected to chemical analyses.

  3. Soil Moisture and Sea Surface Temperatures equally important for Land Climate in the Warm Season

    Orth, R.; Seneviratne, S. I.

    2015-12-01

    Both sea surface temperatures (SSTs) and soil moisture (SM) are important drivers of climate variability over land. In this study we present a comprehensive comparison of SM versus SST impacts on land climate in the warm season. We perform ensemble experiments with the Community Earth System Model (CESM) where we set SM or SSTs to median conditions, respectively, to remove their inter-annual variability, whereby the other component - SST or SM - is still interactively computed. In contrast to earlier experiments performed with prescribed SSTs, our experiments suggest that SM is overall as important as SSTs for land climate, not only in the midlatitudes but also in the tropics and subtropics. Mean temperature and precipitation are reduced by 0.1-0.5 K and 0-0.2 mm, respectively, whereas their variability at different time scales decreases by 10-40% (temperature) and 0-10% (precipitation) when either SM or SSTs are prescribed. Also drought occurrence is affected, with mean changes in the maximum number of cumulative dry days of 0-0.75 days. Both SM and SST-induced changes are strongest for hot temperatures (up to 0.7 K, and 50%), extreme precipitation (up to 0.4 mm, and 20%), and strong droughts (up to 2 days). Local climate changes in response to removed SM variability are controlled - to first order - by the land-atmosphere coupling and the natural SM variability. SST-related changes are partly controlled by the relation of local temperature or precipitation with the El Niño-Southern Oscillation. Moreover removed SM or SST variabilities both induce remote effects by impacting the atmospheric circulation. Our results are similar for the present day and the end of the century. We investigate the inter-dependency between SM and SST and find a sufficient degree of independence for the purpose of this study. The robustness of our findings is shown by comparing the response of CESM to removed SM variability with four other global climate models. In summary, SM and SSTs

  4. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro

    Blagodatskaya, Еvgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov

    2016-02-01

    Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers (14C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.

  5. Effects of Low-Temperature Plasma-Sterilization on Mars Analog Soil Samples Mixed with Deinococcus radiodurans

    Janosch Schirmack

    2016-05-01

    Full Text Available We used Ar plasma-sterilization at a temperature below 80 °C to examine its effects on the viability of microorganisms when intermixed with tested soil. Due to a relatively low temperature, this method is not thought to affect the properties of a soil, particularly its organic component, to a significant degree. The method has previously been shown to work well on spacecraft parts. The selected microorganism for this test was Deinococcus radiodurans R1, which is known for its remarkable resistance to radiation effects. Our results showed a reduction in microbial counts after applying a low temperature plasma, but not to a degree suitable for a sterilization of the soil. Even an increase of the treatment duration from 1.5 to 45 min did not achieve satisfying results, but only resulted in in a mean cell reduction rate of 75% compared to the untreated control samples.

  6. Estimation of the soil temperature from the AVHRR-NOAA satellite data applying split window algorithms

    Parra, J.C.; Acevedo, P.S.; Sobrino, J.A.; Morales, L.J.

    2006-01-01

    Four algorithms based on the technique of split-window, to estimate the land surface temperature starting from the data provided by the sensor Advanced Very High Resolution radiometer (AVHRR), on board the series of satellites of the National Oceanic and Atmospheric Administration (NOAA), are carried out. These algorithms consider corrections for atmospheric characteristics and emissivity of the different surfaces of the land. Fourteen images AVHRR-NOAA corresponding to the months of October of 2003, and January of 2004 were used. Simultaneously, measurements of soil temperature in the Carillanca hydro-meteorological station were collected in the Region of La Araucana, Chile (38 deg 41 min S; 72 deg 25 min W). Of all the used algorithms, the best results correspond to the model proposed by Sobrino and Raussoni (2000), with a media and standard deviation corresponding to the difference among the temperature of floor measure in situ and the estimated for this algorithm, of -0.06 and 2.11 K, respectively. (Author)

  7. Efficiency of ammonium nitrate phosphates of varying water-soluble phosphorous content for wheat and succeeding maize crop on different soil types

    Chapke, V.G.; Bhujbal, B.M.; Mistry, K.B.

    1988-01-01

    Efficiency of 32 P labelled ammonium nitrate phosphate (ANP) containding 30, 50 and 90 per cent of water-soluble phosphorus (WSP) vis-a-vis that of entirely water soluble monoammonium orthophosphate (MAP) for wheat and succeeding maize crop on deep black (vertisol), calcareous black (vertisol), alluvial-Tarai (mollisol) and grey brown alluvial (aridisol) soils was examined in greenhouse experiments. Data on wheat indicated that ANP (50 per cent WSP) was, in general, equally efficient to MAP and ANP (90 per cent WSP) in terms of drymatter yield and total uptake of phosphorus in all soils examined, however, the per cent utilization of applied fertilizer was significantly higher for MAP and ANP (90 per cent WSP) than those for ANP (50 per cent WSP) in all soils. In general, ANP (30 per cent WSP) was significantly inferior to MAP and ANP (90 per cent WSP) in all soils. Data on the succeeding maize crop grown to flowering indicated that residual value of ANP (30 per cent WSP) was equal to that of MAP and ANP (90 per cent WSP) in terms of drymatter yield and phosphorus uptake by the four soils examined. Complementary incubation studies conducted upto 60 days on the above four soils at field capacity moisture status indicated highest 0.5 M NaHCO 3 (pH 8.5) extractable phosphorus levels in MAP treatments followed by ANP (50 per cent WSP) and least in ANP (30 per cent WSP) treatments. (author). 4 tables, 4 figures, 19 refs

  8. Toxicokinetics of Zn and Cd in the earthworm Eisenia andrei exposed to metal-contaminated soils under different combinations of air temperature and soil moisture content.

    González-Alcaraz, M Nazaret; Loureiro, Susana; van Gestel, Cornelis A M

    2018-04-01

    This study evaluated how different combinations of air temperature (20 °C and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC), reflecting realistic climate change scenarios, affect the bioaccumulation kinetics of Zn and Cd in the earthworm Eisenia andrei. Earthworms were exposed for 21 d to two metal-contaminated soils (uptake phase), followed by 21 d incubation in non-contaminated soil (elimination phase). Body Zn and Cd concentrations were checked in time and metal uptake (k 1 ) and elimination (k 2 ) rate constants determined; metal bioaccumulation factor (BAF) was calculated as k 1 /k 2 . Earthworms showed extremely fast uptake and elimination of Zn, regardless of the exposure level. Climate conditions had no major impacts on the bioaccumulation kinetics of Zn, although a tendency towards lower k 1 and k 2 values was observed at 25 °C + 30% WHC. Earthworm Cd concentrations gradually increased with time upon exposure to metal-contaminated soils, especially at 50% WHC, and remained constant or slowly decreased following transfer to non-contaminated soil. Different combinations of air temperature and soil moisture content changed the bioaccumulation kinetics of Cd, leading to higher k 1 and k 2 values for earthworms incubated at 25 °C + 50% WHC and slower Cd kinetics at 25 °C + 30% WHC. This resulted in greater BAFs for Cd at warmer and drier environments which could imply higher toxicity risks but also of transfer of Cd within the food chain under the current global warming perspective. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Modelling soil temperature and moisture and corresponding seasonality of photosynthesis and transpiration in a boreal spruce ecosystem

    Wu, S. H.; Jansson, P.-E.

    2013-02-01

    Recovery of photosynthesis and transpiration is strongly restricted by low temperatures in air and/or soil during the transition period from winter to spring in boreal zones. The extent to which air temperature (Ta) and soil temperature (Ts) influence the seasonality of photosynthesis and transpiration of a boreal spruce ecosystem was investigated using a process-based ecosystem model (CoupModel) together with eddy covariance (EC) data from one eddy flux tower and nearby soil measurements at Knottåsen, Sweden. A Monte Carlo-based uncertainty method (GLUE) provided prior and posterior distributions of simulations representing a wide range of soil conditions and performance indicators. The simulated results showed sufficient flexibility to predict the measured cold and warm Ts in the moist and dry plots around the eddy flux tower. Moreover, the model presented a general ability to describe both biotic and abiotic processes for the Norway spruce stand. The dynamics of sensible heat fluxes were well described by the corresponding latent heat fluxes and net ecosystem exchange of CO2. The parameter ranges obtained are probably valid to represent regional characteristics of boreal conifer forests, but were not easy to constrain to a smaller range than that produced by the assumed prior distributions. Finally, neglecting the soil temperature response function resulted in fewer behavioural models and probably more compensatory errors in other response functions for regulating the seasonality of ecosystem fluxes.

  10. Silicon supported lipid-DNA thin film structures at varying temperature studied by energy dispersive X-ray diffraction and neutron reflectivity.

    Domenici, F; Castellano, C; Dell'Unto, F; Albinati, A; Congiu, A

    2011-11-01

    Non-viral gene transfection by means of lipid-based nanosystems, such as solid supported lipid assemblies, is often limited due to their lack of stability and the consequent loss of efficiency. Therefore not only a detailed thermo-lyotropic study of these DNA-lipid complexes is necessary to understand their interaction mechanisms, but it can also be considered as a first step in conceiving and developing new transfection biosystems. The aim of our study is a structural characterization of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC)-dimethyl-dioctadecyl-ammonium bromide (DDAB)-DNA complex at varying temperature using the energy dispersive X-ray diffraction (EDXD) and neutron reflectivity (NR) techniques. We have shown the formation of a novel thermo-lyotropic structure of DOPC/DDAB thin film self-organized in multi-lamellar planes on (100)-oriented silicon support by spin coating, thus enlightening its ability to include DNA strands. Our NR measurements indicate that the DOPC/DDAB/DNA complex forms temperature-dependent structures. At 65°C and relative humidity of 100% DNA fragments are buried between single lamellar leaflets constituting the hydrocarbon core of the lipid bilayers. This finding supports the consistency of the hydrophobic interaction model, which implies that the coupling between lipid tails and hypo-hydrated DNA single strands could be the driving force of DNA-lipid complexation. Upon cooling to 25°C, EDXD analysis points out that full-hydrated DOPC-DDAB-DNA can switch in a different metastable complex supposed to be driven by lipid heads-DNA electrostatic interaction. Thermotropic response analysis also clarifies that DOPC has a pivotal role in promoting the formation of our observed thermophylic silicon supported lipids-DNA assembly. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Technical operations procedure for assembly and emplacement of the soil temperature test--test assembly

    Weber, A.P.

    1978-01-01

    A description is given of the plan for assembly, instrumentation, emplacement, and operational checkout of the soil temperature test assembly and dry well liner. The activities described cover all operations necessary to accomplish the receiving inspection, instrumentation and pre-construction handling of the dry well liner, plus all operations performed with the test article. Actual details of construction work are not covered by this procedure. Each part and/or section of this procedure is a separate function to be accomplished as required by the nature of the operation. The organization of the procedure is not intended to imply a special operational sequence or schedular requirement. Specific procedure operational sections include: receiving inspection; liner assembly operations; construction operations (by others); prepare shield plug; test article assembly and installation; and operational checkout

  12. Immobilization of simulated radioactive soil waste containing cerium by self-propagating high-temperature synthesis

    Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling

    2013-11-01

    A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl11O18 and Ce2SiO5. The leaching rate of cerium over a period of 28 days was 10-5-10-6 g/(m2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products.

  13. Immobilization of simulated radioactive soil waste containing cerium by self-propagating high-temperature synthesis

    Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling

    2013-01-01

    A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl 11 O 18 and Ce 2 SiO 5 . The leaching rate of cerium over a period of 28 days was 10 −5 –10 −6 g/(m 2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products

  14. Soil organic carbon and particle sizes mapping using vis–NIR, EC and temperature mobile sensor platform

    Knadel, Maria; Thomsen, Anton Gårde; Schelde, Kirsten

    2015-01-01

    Soil organic carbon (SOC) is an important parameter in the climate change mitigation strategies and it is crucial for the function of ecosystems and agriculture. Particle size fractions affect strongly the physical and chemical properties of soil and thus