WorldWideScience

Sample records for varying physical properties

  1. Direct prediction of spatially and temporally varying physical properties from time-lapse electrical resistance data

    Science.gov (United States)

    Hermans, Thomas; Oware, Erasmus; Caers, Jef

    2016-09-01

    Time-lapse applications of electrical methods have grown significantly over the last decade. However, the quantitative interpretation of tomograms in terms of physical properties, such as salinity, temperature or saturation, remains difficult. In many applications, geophysical models are transformed into hydrological models, but this transformation suffers from spatially and temporally varying resolution resulting from the regularization used by the deterministic inversion. In this study, we investigate a prediction-focused approach (PFA) to directly estimate subsurface physical properties with electrical resistance data, circumventing the need for classic tomographic inversions. First, we generate a prior set of resistance data and physical property forecast through hydrogeological and geophysical simulations mimicking the field experiment. We reduce the dimension of both the data and the forecast through principal component analysis in order to keep the most informative part of both sets in a reduced dimension space. Then, we apply canonical correlation analysis to explore the relationship between the data and the forecast in their reduced dimension space. If a linear relationship can be established, the posterior distribution of the forecast can be directly sampled using a Gaussian process regression where the field data scores are the conditioning data. In this paper, we demonstrate PFA for various physical property distributions. We also develop a framework to propagate the estimated noise level in the reduced dimension space. We validate the results by a Monte Carlo study on the posterior distribution and demonstrate that PFA yields accurate uncertainty for the cases studied.

  2. Effects of varied porosity on the physic-mechanical properties of sintered ceramic from Ifon clay

    Directory of Open Access Journals (Sweden)

    Fatai Olufemi ARAMIDE

    2017-12-01

    Full Text Available The effects of saw dust admixture on the physic-mechanical properties of sintered clay bonded carbonized palm kernel shell ceramic was investigated. Composite mixtures of powdered carbonized palm kernel shell and clay from Ifon deposit were produced using equal amount of clay and carbonized palm kernel shell. These were then mixed with varied amount of saw dust (0%, 5% and 10% in a ball mill for 6 hours. From this standard sample specimens were produced using uniaxial compression after mixing each mixture with 10% moisture of clay contents. The compressed samples were sintered at 9500C and soaked for one hour. The sintered samples were characterized for various physic-mechanical properties using state of the art equipment’s. The fired samples were also characterized using ultra-high-resolution field emission scanning electron microscope (UHR-FEGSEM equipped with energy dispersive spectroscopy (EDX. It was observed that the apparent porosity and water absorption of the clay bonded carbonized palm kernel shell ceramic increased with increased amount of saw dust admixture, cold crushing strength, Young’ modulus of elasticity and absorbed energy of the sample reduced with increased amount of saw dust admixture. It was concluded that the sample with 0% saw dust admixture is judged to possess optimum physic-mechanical properties.

  3. Determination of basalt physical and thermal properties at varying temperatures, pressures, and moisture contents. First progress report, fiscal year 1979

    International Nuclear Information System (INIS)

    Miller, R.J.; Bishop, R.C.

    1979-01-01

    This report is a summary of the rock mechanics testing done at the Earth Mechanics Institute of the Colorado School of Mines for Rockwell Hanford Operations under Subcontract SA-917. Cores were supplied from drill hole DC-6 on the Hanford Site, characterized geologically, and tested for thermal and physical properties for designing long-term underground storage of radioactive waste materials. This report presents the approved test procedures, results, and data analysis for this test series. Results indicated thermophysical properties similar to those of previously tested basalt cores from the Hanford area, but showed no significant trends; thus, generalizations are risky at this time. However, density was found to be a good guide to thermal and physical properties--higher density basalt cores showed significant improvements in physical and thermal properties

  4. Determination of basalt physical and thermal properties at varying temperatures, pressures, and moisture contents. Third progress report, fiscal year 1979

    International Nuclear Information System (INIS)

    Miller, R.J.

    1979-01-01

    The rock mechanics testing performed at the Earth Mechanics Institute of the Colorado School of Mines for Rockwell Hanford Operations under subcontract SA-917 is summarized. Cores were supplied from drill hole DC-4 on the Hanford Site, characterized geologically, and tested for thermal and physical properties for designing long-term underground storage of radioactive waste materials. The approved test procedures, results, and data analysis for this test series are presented. Uniaxial and triaxial results indicate strengths similar to drill hole DC-6, but significantly higher than drill hole DC-8. Trends with density, depth, confining pressure, and temperature, however, were similar for the three drill hole locations tested

  5. Determination of basalt physical and thermal properties at varying temperatures, pressures, and moisture contents. Second progress report, fiscal year 1979

    International Nuclear Information System (INIS)

    Miller, R.J.

    1979-01-01

    The rock mechanics testing performed at the Earth Mechanics Institute of the Colorado School of Mines for Rockwell Hanford Operations under Subcontract SA-917 is summarized. Cores were supplied from drill hole DC-8 on the Hanford Site, characterized geologically, and tested for thermal and physical properties for designing long-term underground storage of radioactive waste materials. This report presents the approved test procedures, results, and data analysis for this test series. Results indicate significantly lower strengths for drill hole DC-8 than determined for drill hole DC-6 or for the drill holes reported on in our fiscal year 1978 (FY 78) tests. Trends, however, were found to be similar between drill holes DC-6 and DC-8, and it is hoped more definitive conclusions can be found following completion of the final series of tests

  6. Physical properties

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Research activities into the physical properties of metals and ceramics at Lawrence Berkeley Laboratory during 1976 are reported. Topics covered include: high field superconductivity; microstructure and mechanical behavior of ceramics, glass-metal, and ceramic-metal systems; high temperature reactions; relation of microstructure to properties in ceramics; and structure and properties of carbon materials and composite materials

  7. Physical properties and fisheries

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, M.K.

    The physical aspects influencing the different stages of behaviour of the marine fish can be divided into two categories (1) the physical properties of the ocean like temperature, salinity, oxygen, high penetration etc.; and (2) the physical...

  8. Physical properties of nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Krahne, Roman; George, Chandramohan [Istituto Italiano di Tecnologia, Genoa (Italy). Nanostructures; Manna, Liberato [Istituto Italiano di Tecnologia, Genoa (Italy). Nanochemistry; Morello, Giovanni [CNR, Lecce (Italy). Nanoscience Institute; Figuerola, Albert [Barcelona Univ. (Spain). Inst. de Nanociencia i Nanotecnologia; Deka, Sasanka [Delhi Univ. (India). Dept. of Chemistry

    2013-06-01

    Inorganic nanoparticles are among the most investigated objects nowadays, both in fundamental science and in various technical applications. In this book the physical properties of nanowires formed by nanoparticles with elongated shape, i.e. rod-like or wire-like, are described. The transition in the physical properties is analyzed for nanorods and nanowires consisting of spherical and rod-like nanoparticles. The physical properties of nanowires and elongated inorganic nanoparticles are reviewed too. The optical, electrical, magnetic, mechanical and catalytic properties of nanowires consisting of semiconductors, noble and various other metals, metal oxides properties and metal alloys are presented. The applications of nanorods and nanowires are discussed in the book.

  9. Physical properties of solids

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Research at ORNL into the physical properties of solids is described. Topics covered include: optical, electrical, and magnetic properties of magnesium oxide; ionic conductivity and superconductivity; surface physics and catalysis; defects and impurities in insulating crystals; photovoltaic conversion of solar energy; and fracture studies

  10. Physical properties of solids

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, M. K.; Young, Jr, F. W.

    1977-10-01

    Research at ORNL into the physical properties of solids is described. Topics covered include: optical, electrical, and magnetic properties of magnesium oxide; ionic conductivity and superconductivity; surface physics and catalysis; defects and impurities in insulating crystals; photovoltaic conversion of solar energy; and fracture studies. (GHT)

  11. Student throughput variables and properties: Varying cohort sizes

    Directory of Open Access Journals (Sweden)

    Lucas C.A. Stoop

    2017-11-01

    Full Text Available A recent research paper described how student throughput variables and properties combine to explain the behaviour of stationary or simplified throughput systems. Such behaviour can be understood in terms of the locus of a point in the triangular admissible region of the H-S plane, where H represents headcounts and S successful credits, each depending on the system properties at that point. The efficiency of the student throughput process is given by the ratio S/H. Simplified throughput systems are characterised by stationary graduation and dropout patterns of students as well as by annual intakes of student cohorts of equal size. The effect of varying the size of the annual intakes of student cohorts is reported on here. The observations made lead to the establishment of a more generalised student throughput theory which includes the simplified theory as a special case. The generalised theory still retains the notion of a triangular admissible region in the H-S plane but with the size and shape of the triangle depending on the size of the student cohorts. The ratio S/H again emerges as the process efficiency measure for throughput systems in general with unchanged roles assigned to important system properties. This theory provides for a more fundamental understanding of student throughput systems encountered in real life. Significance: A generalised stationary student throughput theory through varying cohort sizes allows for a far better understanding of real student throughput systems.

  12. Time-varying properties of renal autoregulatory mechanisms

    DEFF Research Database (Denmark)

    Zou, Rui; Cupples, Will A; Yip, K P

    2002-01-01

    In order to assess the possible time-varying properties of renal autoregulation, time-frequency and time-scaling methods were applied to renal blood flow under broad-band forced arterial blood pressure fluctuations and single-nephron renal blood flow with spontaneous oscillations obtained from...... normotensive (Sprague-Dawley, Wistar, and Long-Evans) rats, and spontaneously hypertensive rats. Time-frequency analyses of normotensive and hypertensive blood flow data obtained from either the whole kidney or the single-nephron show that indeed both the myogenic and tubuloglomerular feedback (TGF) mechanisms...... have time-varying characteristics. Furthermore, we utilized the Renyi entropy to measure the complexity of blood-flow dynamics in the time-frequency plane in an effort to discern differences between normotensive and hypertensive recordings. We found a clear difference in Renyi entropy between...

  13. Scaling properties in time-varying networks with memory

    Science.gov (United States)

    Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong

    2015-12-01

    The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.

  14. Physical properties of liquid sodium

    International Nuclear Information System (INIS)

    Alberdi Primicia, J.; Martinez Piquer, T.A.

    1977-01-01

    The molten sodium has been the more accepted coolant for the first generation of FBR, by this reason the knowledge of its technology is needed for the development of the next LMFBR. A series of necessary data for designing sodium liquid systems are given. Tables and graphics about the most important physical sodium properties between 1200-1400 degC are gathered. The results have been obtained from equations that relate the properties with temperature using a Fortran IV program. (author) [es

  15. Mixed vanadates: optimization of optical properties by varying chemical composition

    Czech Academy of Sciences Publication Activity Database

    Levushkina, V.; Spassky, D.; Brik, M.G.; Zych, E.; Madej, A.; Belsky, A.N.; Bartosiewicz, Karol; Nikl, Martin

    2017-01-01

    Roč. 189, Sep (2017), s. 140-147 ISSN 0022-2313 EU Projects: European Commission(XE) 316906 - LUMINET Institutional support: RVO:68378271 Keywords : yttrium vanadate * energy-transfer * single-crystals * YVO 4 crystals * doped YVO 4 * luminescence * growth * scintillator * LuVO 4 * improvement Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.686, year: 2016

  16. Physical Properties of Liquid Crystals

    CERN Document Server

    Gray, George W; Spiess, Hans W

    1999-01-01

    This handbook is a unique compendium of knowledge on all aspects of the physics of liquid crystals. In over 500 pages it provides detailed information on the physical properties of liquid crystals as well as the recent theories and results on phase transitions, defects and textures of different types of liquid crystals. An in-depth understanding of the physical fundamentals is a prerequisite for everyone working in the field of liquid crystal research. With this book the experts as well as graduate students entering the field get all the information they need.

  17. The physical properties of glycerin

    International Nuclear Information System (INIS)

    Kimsanov, B.Kh.; Karimov, M.B.; Khuseynov, K.

    1998-01-01

    In this chapter of book authors describe physical properties of glycerin. The pure glycerin presents syrup-vivid insipid transparent solution odorless and sweet on taste. The glycerin is very hygroscopic and can absorb from air till 40% moisture against its mass

  18. Physical Properties of Latvian Clays

    OpenAIRE

    Jurgelāne, I; Stepanova, V; Ločs, J; Mālers, J; Bērziņa-Cimdiņa, L

    2012-01-01

    Physical and chemical properties of clays mostly depends on its mineral and chemical composition, particle size and pH value. The mutual influence of these parameters is complex. Illite is the most abundant clay mineral in Latvia and usually used in building materials and pottery. The viscosity and plasticity of Latvian clays from several deposits were investigated and correlated with mineral composition, particle size and pH value. Fractionated and crude clay samples were used. The p...

  19. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties.

    Science.gov (United States)

    Casale, Amanda E; Foust, Amanda J; Bal, Thierry; McCormick, David A

    2015-11-25

    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca(2+)-activated K(+) channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main

  20. Chemical and physical characteristics of phosphate rock materials of varying reactivity

    International Nuclear Information System (INIS)

    Syers, J.K.; Currie, L.D.

    1986-01-01

    Several chemical and physical properties of 10 phosphate rock (PR) materials of varying reactivity were evaluated. The highest concentrations of As and Cd were noted. Because Cd and U can accumulate in biological systems, it may be necessary to direct more attention towards the likely implications of Cd and U concentrations when evaluating a PR for direct application. Three sequential extractions with 2% citric acid may be more useful for comparing the chemical solubility of PR materials, particularly for those containing appreciable CaC0 3 . The poor relationship obtained between surface area and the solubility of the PR materials suggests that surface area plays a secondary role to chemical reactivity in controlling the solubility of a PR in a chemical extractant. A Promesh plot provided an effective method for describing the particle-size characteristics of those PR materials which occurred as sands. Fundamental characteristics, such as mean particle size and uniformity, can readily be determined from a Promesh plot. (author)

  1. Physical and Frictional Properties of NERICA

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available Some physical and frictional properties of the seeds and husks of New Rice for Africa (NERICA were studied at varying moisture contents of 13%, 17%, and 20% (w.b. In the study, four varieties of NERICA namely; FARO 44, FARO 51, FARO 52 and FARO 57 were selected to represent the different size ranges common to NERICA. The physical properties of NERICA such as shape, size, volume, moisture contents, density, weights, surface area, aspect ratio and sphericity were obtained through physical measurement of the grains samples of each of the four varieties. Results of the physical measurements indicate that the size ranges for the varieties are as follows: FARO 44; 3.653mm to 3.858mm, FARO 51; 3.685mm to 3.916mm, FARO 52; 3.674mm to 3.863mm and FARO 57; 3.924mm to 4.019mm. Results of the frictional properties, shows that plywood material has the highest value of 28.4(1.36 = 33.0(1.41, 29.9(1.38 = 35.2(1.45 and 30.4(1.28 = 37.6(1.51 at 13%, 17% and 20% (w.b respectively, while plastic material has the lowest coefficient of friction value of 20.8(1.21 = 17.7(1.14, 19.4(1.17 = 21.8(1.24 and 21.3(1.24 = 22.9(1.26 at 13%, 17% and 20% (w.b respectively.

  2. Physical properties of organic coolants

    International Nuclear Information System (INIS)

    Debbage, A.G.; Garton, D.A.; Kinneir, J.H.

    1963-03-01

    Density, viscosity, specific heat, vapour pressure and calorific value were measured within the temperature range 100 - 400 deg C for mixtures of Santowax R with pyrolytic high boiler and Santowax R with O.M.R.E. radiolytic high boiler; in addition measurements were made on Santowax OM, X-7 standard, X-7 loop coolant and O.M.R.E. coolant supplied by Atomic Energy of Canada Ltd. The accuracy of the measurements made were density (± 1/4%), viscosity (± 2%), specific heat (± 2%), vapour pressure (± 2%) and calorific value (± 1/2%). Thermal conductivity was calculated from an improved form of the Smiths equation with an accuracy within ± 6%. Equations fitted to the vapour pressure results were used to provide data outside the experimental range for burnout correlation purposes. The general effect of high boiler content on the specific heat and calorific values was small. The differences in physical property values for corresponding values of either pyrolytic or radiolytic high boiler were small for density (0.3%) and specific heat (2%), but quite large for viscosity (70%) with the pyrolytic high boiler mixture giving the higher value. The chemical analysis of all materials was based on gas chromatography and the relationship between this and an earlier distillation method established. (author)

  3. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2005-01-01

    Provides detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. This textbook emphasizes understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors and features an extensive collection of tables of material parameters, figures, and problems.

  4. Physical properties of peats as related to degree of decomposition

    Science.gov (United States)

    D.H. Boelter

    1969-01-01

    Important physical characteristics, such as water retention, water yield coefficient, and hydraulic conductivity, vary greatly for representative northern Minnesota peat materials. The differences are related to the degree of decomposition, which largely determines the porosity and pore size distribution. Fiber content (> 0.1 mm) and bulk density are properties...

  5. Physical properties of organic soils. Chapter 5.

    Science.gov (United States)

    Elon S. Verry; Don H. Boelter; Juhani Paivanen; Dale S. Nichols; Tom Malterer; Avi Gafni

    2011-01-01

    Compared with research on mineral soils, the study of the physical properties of organic soils in the United States is relatively new. A comprehensive series of studies on peat physical properties were conducted by Don Boelter (1959-1975), first at the Marcell Experimental Forest (MEF) and later throughout the northern Lakes States to investigate how to express bulk...

  6. Electroweak properties of particle physics. Volume 2

    International Nuclear Information System (INIS)

    Aleksan, R.; Ellis, N.; Falvard, A.; Fayard, L.; Frere, J.M.; Kuehn, J.H.; Le Yaouanc, A.; Roudeau, P.; Wormser, G.

    1991-01-01

    The 23th GIf school was held at Ecole Polytechnique, Palaiseau, France from 16 to 20 September 1991. The subject was large: Electroweak properties of heavy quarks. The second part has been devoted to B physics at hadron machines, search for Top, Charm particle physics and Quarkonium physics

  7. COMPARATIVE STUDY OF THE EFFECTS OF DETONATION NANODIAMONDS WITH VARIED PROPERTIES ON FUNCTIONAL STATE OF BRAIN NERVE TERMINALS

    Directory of Open Access Journals (Sweden)

    M. A. Galkin

    2016-12-01

    Full Text Available The aim of the study was to compare the effects of detonation nanodiamond preparations from different batches cleaned from impurities by diverse methods of chemical treatment on the membrane potential and glutamate transport characteristics of rat brain nerve terminals. The size of nanodiamond particles vary from 10–20 nm to 10 μm. There are carbonyl, hydroxyl and carboxyl functional groups on the surface of the particles. Physical-chemical properties such as a magnetic susceptibility and the amount of incombustible residue in samples of detonation nanodia-mond vary depending on the synthesis regime and the method of chemical cleaning of the product and therefore, the neuroactive properties of nanodiamonds from different batches can be different. It was shown by dynamic light scattering analysis that nanodiamond preparations from different batches treated by diverse technologies of chemical treatment had varied average size of particles and distribution of particles by size. Nanodiamond preparations from different batches changed the plasma membrane potential and caused membrane depolarization of nerve terminals. Analysis of the effects of nanodiamonds on transporter-mediated L-[14C]glutamate uptake by nerve terminals also revealed that all studied nanodiamond preparations decreased abovementioned parameter. Therefore, detonation nanodiamonds from different batches have similar principal effects on functional state of nerve terminals, however variability in their physical and chemical properties is associated with diverse strength of these effects.

  8. Reduced risk of breast cancer associated with recreational physical activity varies by HER2 status

    International Nuclear Information System (INIS)

    Ma, Huiyan; Xu, Xinxin; Ursin, Giske; Simon, Michael S; Marchbanks, Polly A; Malone, Kathleen E; Lu, Yani; McDonald, Jill A; Folger, Suzanne G; Weiss, Linda K; Sullivan-Halley, Jane; Deapen, Dennis M; Press, Michael F; Bernstein, Leslie

    2015-01-01

    Convincing epidemiologic evidence indicates that physical activity is inversely associated with breast cancer risk. Whether this association varies by the tumor protein expression status of the estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), or p53 is unclear. We evaluated the effects of recreational physical activity on risk of invasive breast cancer classified by the four biomarkers, fitting multivariable unconditional logistic regression models to data from 1195 case and 2012 control participants in the population-based Women’s Contraceptive and Reproductive Experiences Study. Self-reported recreational physical activity at different life periods was measured as average annual metabolic equivalents of energy expenditure [MET]-hours per week. Our biomarker-specific analyses showed that lifetime recreational physical activity was negatively associated with the risks of ER-positive (ER+) and of HER2-negative (HER2−) subtypes (both P trend ≤ 0.04), but not with other subtypes (all P trend > 0.10). Analyses using combinations of biomarkers indicated that risk of invasive breast cancer varied only by HER2 status. Risk of HER2–breast cancer decreased with increasing number of MET-hours of recreational physical activity in each specific life period examined, although some trend tests were only marginally statistically significant (all P trend ≤ 0.06). The test for homogeneity of trends (HER2– vs. HER2+) reached statistical significance only when evaluating physical activity during the first 10 years after menarche (P homogeneity = 0.03). Our data suggest that physical activity reduces risk of invasive breast cancers that lack HER2 overexpression, increasing our understanding of the biological mechanisms by which physical activity acts

  9. Physically unclonable functions constructions, properties and applications

    CERN Document Server

    Maes, Roel

    2013-01-01

    Physically unclonable functions (PUFs) are innovative physical security primitives that produce unclonable and inherent instance-specific measurements of physical objects; in many ways they are the inanimate equivalent of biometrics for human beings. Since they are able to securely generate and store secrets, they allow us to bootstrap the physical implementation of an information security system. In this book the author discusses PUFs in all their facets: the multitude of their physical constructions, the algorithmic and physical properties which describe them, and the techniques required to

  10. Thermal and physical properties of bakery products.

    Science.gov (United States)

    Baik, O D; Marcotte, M; Sablani, S S; Castaigne, F

    2001-07-01

    This article reviews the measurement techniques, prediction models, and data on thermo-physical properties of bakery products: specific heat, thermal conductivity, thermal diffusivity, and density. Over the last decade, investigation has focused more on thermo-physical properties of nonbread bakery products. Both commonly used and new measurement techniques for thermo-physical properties reported in the publication are presented with directions for their proper use. Data and prediction models are tabulated for the range of moisture content and temperature of the bakery products.

  11. Physical and chemical properties of pyrethroids.

    Science.gov (United States)

    Laskowski, Dennis A

    2002-01-01

    The physical and chemical properties of the pyrethroids bifenthrin, cyfluthrin, cypermethrin (also zetacypermethrin), deltamethrin, esfenvalerate (also fenvalerate), fenpropathrin, lambda-cyhalothrin (also cyhalothrin), permethrin, and tralomethrin have been reviewed and summarized in this paper. Physical properties included molecular weight, octanol-water partition coefficient, vapor pressure, water solubility, Henry's law constant, fish biocencentration factor, and soil sorption, desorption, and Freundlich coefficients. Chemical properties included rates of degradation in water as a result of hydrolysis, photodecomposition, aerobic or anaerobic degradation by microorganisms in the absence of light, and also rates of degradation in soil incubated under aerobic or anaerobic conditions. Collectively, the pyrethroids display a highly nonpolar nature of low water solubility, low volatility, high octanol-water partition coefficients, and have high affinity for soil and sediment particulate matter. Pyrethroids have low mobility in soil and are sorbed strongly to the sediments of natural water systems. Although attracted to living organisms because of their nonpolar nature, their capability to bioconcentrate is mitigated by their metabolism and subsequent elimination by the organisms. In fish, bioconcentration factors (BCF) ranged from 360 and 6000. Pyrethroids in water solution tend to be stable at acid and neutral pH but [table: see text] become increasingly susceptible to hydrolysis at pH values beyond neutral. Exceptions at higher pH are bifenthrin (stable), esfenvalerate (stable), and permethrin (half-life, 240 d). Pyrethroids vary in susceptibility to sunlight. Cyfluthrin and tralomethrin in water had half-lives of 0.67 and 2.5 d; lambda-cyhalothrin, esfenvalerate, deltamethrin, permethrin, and cypermethrin were intermediate with a range of 17-110 d; and bifenthrin and fenpropathrin showed the least susceptibility with half-lives of 400 and 600 d, respectively

  12. Physical properties of five grain dust types.

    OpenAIRE

    Parnell, C B; Jones, D D; Rutherford, R D; Goforth, K J

    1986-01-01

    Physical properties of grain dust derived from five grain types (soybean, rice, corn, wheat, and sorghum) were measured and reported. The grain dusts were obtained from dust collection systems of terminal grain handling facilities and were assumed to be representative of grain dust generated during the handling process. The physical properties reported were as follows: particle size distributions and surface area measurements using a Coulter Counter Model TAII; percent dust fractions less tha...

  13. Important physical properties of peat materials

    Science.gov (United States)

    D.H. Boelter

    1968-01-01

    Peat materials from 12 bogs in northern Minnesota, U.S.A., showed significant differences in physical properties. It is pointed out that 1) these properties can be related to the hydrology of organic soils only if the soils represent undisturbed field conditions, and 2) volumetric expressions of water content are necessary to correctly evaluate the amount of water in a...

  14. Quasicrystals Structure and Physical Properties

    CERN Document Server

    Trebin, Hans-Rainer

    2003-01-01

    A comprehensive and up-to-date review, covering the broad range of this outstanding class of materials among intermetallic alloys. Starting with metallurgy and characterization, the authors continue on to structure and mathematical modeling. They use this basis to move on to dealing with electronic, magnetic, thermal, dynamic and mechanical properties, before finally providing an insight into surfaces and thin films. The authors belong to a research program on quasicrystals, sponsored by the German Research Society and managed by Hans-Rainer Trebin, such that most of the latest results are pre

  15. Weather and children's physical activity; how and why do relationships vary between countries?

    Science.gov (United States)

    Harrison, Flo; Goodman, Anna; van Sluijs, Esther M F; Andersen, Lars Bo; Cardon, Greet; Davey, Rachel; Janz, Kathleen F; Kriemler, Susi; Molloy, Lynn; Page, Angie S; Pate, Russ; Puder, Jardena J; Sardinha, Luis B; Timperio, Anna; Wedderkopp, Niels; Jones, Andy P

    2017-05-30

    Globally most children do not engage in enough physical activity. Day length and weather conditions have been identified as determinants of physical activity, although how they may be overcome as barriers is not clear. We aim to examine if and how relationships between children's physical activity and weather and day length vary between countries and identify settings in which children were better able to maintain activity levels given the weather conditions they experienced. In this repeated measures study, we used data from 23,451 participants in the International Children's Accelerometry Database (ICAD). Daily accelerometer-measured physical activity (counts per minute; cpm) was matched to local weather conditions and the relationships assessed using multilevel regression models. Multilevel models accounted for clustering of days within occasions within children within study-cities, and allowed us to explore if and how the relationships between weather variables and physical activity differ by setting. Increased precipitation and wind speed were associated with decreased cpm while better visibility and more hours of daylight were associated with increased cpm. Models indicated that increases in these variables resulted in average changes in mean cpm of 7.6/h of day length, -13.2/cm precipitation, 10.3/10 km visibility and -10.3/10kph wind speed (all p European countries and Melbourne, Australia were the most active, and also better maintained their activity levels given the weather conditions they experienced compared to those in the US and Western Europe. We found variation in the relationship between weather conditions and physical activity between ICAD studies and settings. Children in Northern Europe and Melbourne, Australia were not only more active on average, but also more active given the weather conditions they experienced. Future work should consider strategies to mitigate the impacts of weather conditions, especially among young children, and

  16. Chalk: composition, diagenesis and physical properties

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2007-01-01

    Chalk is a sedimentary rock of unusually high homogeneity on the scale where physical properties are measured, but the properties fall in wide ranges. Chalk may thus be seen as the ideal starting point for a physical understanding of rocks in general. Properties as porosity, permeability, capillary...... involving clay, silica, and calcite are interlinked, but progress differently in different localities. This partly depends on primary sediment composition, including organic content, which may induce the formation of concretions by microbial action. The diagenetic processes also depend on water depth, rate...

  17. Participation of steroid hormones in providing physical activity in young people with varying degrees of physical fitness

    Directory of Open Access Journals (Sweden)

    Valeriy Levchenko

    2014-10-01

    Full Text Available Purpose: to investigate the dynamics of cortisol and testosterone in saliva of young people with varying degrees of physical fitness at an altitude stress test. Material and Methods: in a study involved 44 students – 29 girls and 15 boys, 17–20 years old. There was used immunosorbent assay to determine the level of cortisol and testosterone during tredmil-test, estimated on maximal aerobic power. Results: the relationship between the imbalance between cortisol and testosterone at an altitude under stress test in young people with low tolerance to physical activity in favor of cortisol. Conclusions: reduced tolerance to exercise, accompanied by high cortisol and testosterone index, decreased maximal aerobic power and tolerance.

  18. Tendon material properties vary and are interdependent among turkey hindlimb muscles.

    Science.gov (United States)

    Matson, Andrew; Konow, Nicolai; Miller, Samuel; Konow, Pernille P; Roberts, Thomas J

    2012-10-15

    The material properties of a tendon affect its ability to store and return elastic energy, resist damage, provide mechanical feedback and amplify or attenuate muscle power. While the structural properties of a tendon are known to respond to a variety of stimuli, the extent to which material properties vary among individual muscles remains unclear. We studied the tendons of six different muscles in the hindlimb of Eastern wild turkeys to determine whether there was variation in elastic modulus, ultimate tensile strength and resilience. A hydraulic testing machine was used to measure tendon force during quasi-static lengthening, and a stress-strain curve was constructed. There was substantial variation in tendon material properties among different muscles. Average elastic modulus differed significantly between some tendons, and values for the six different tendons varied nearly twofold, from 829±140 to 1479±106 MPa. Tendons were stretched to failure, and the stress at failure, or ultimate tensile stress, was taken as a lower-limit estimate of tendon strength. Breaking tests for four of the tendons revealed significant variation in ultimate tensile stress, ranging from 66.83±14.34 to 112.37±9.39 MPa. Resilience, or the fraction of energy returned in cyclic length changes was generally high, and one of the four tendons tested was significantly different in resilience from the other tendons (range: 90.65±0.83 to 94.02±0.71%). An analysis of correlation between material properties revealed a positive relationship between ultimate tensile strength and elastic modulus (r(2)=0.79). Specifically, stiffer tendons were stronger, and we suggest that this correlation results from a constrained value of breaking strain, which did not vary significantly among tendons. This finding suggests an interdependence of material properties that may have a structural basis and may explain some adaptive responses observed in studies of tendon plasticity.

  19. Physical Properties of Gas Hydrates: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Gabitto, Jorge [Prairie View A& M University; Tsouris, Costas [ORNL

    2010-01-01

    Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

  20. Some properties of zero power neutron noise in a time-varying medium with delayed neutrons

    International Nuclear Information System (INIS)

    Kitamura, Y.; Pal, L.; Pazsit, I.; Yamamoto, A.; Yamane, Y.

    2008-01-01

    The temporal evolution of the distribution of the number of neutrons in a time-varying multiplying system, producing only prompt neutrons, was treated recently with the master equation technique by some of the present authors. Such a treatment gives account of both the so-called zero power reactor noise and the power reactor noise simultaneously. In particular, the first two moments of the neutron number, as well as the concept of criticality for time-varying systems, were investigated and discussed. The present paper extends these investigations to the case when delayed neutrons are also taken into account. Due to the complexity of the description, only the expectation of the neutron number is calculated. The concept of criticality of a time-varying system is also generalized to systems with delayed neutrons. The temporal behaviour of the expectation of the number of neutrons and its asymptotic properties are displayed and discussed

  1. Girdler-sulfide process physical properties

    International Nuclear Information System (INIS)

    Neuburg, H.J.; Atherley, J.F.; Walker, L.G.

    1977-05-01

    Physical properties of pure hydrogen sulfide and of gaseous and liquid solutions of the H 2 S-H 2 O system have been formulated. Tables for forty-nine different properties in the pressure and temperature range of interest to the Girdler-Sulfide (GS) process for heavy water production are given. All properties are presented in SI units. A computer program capable of calculating properties of the pure components as well as gaseous mixtures and liquid solutions at saturated and non-saturated conditions is included. (author)

  2. Estimation and Properties of a Time-Varying GQARCH(1,1-M Model

    Directory of Open Access Journals (Sweden)

    Sofia Anyfantaki

    2011-01-01

    analysis of these models computationally infeasible. This paper outlines the issues and suggests to employ a Markov chain Monte Carlo algorithm which allows the calculation of a classical estimator via the simulated EM algorithm or a simulated Bayesian solution in only ( computational operations, where is the sample size. Furthermore, the theoretical dynamic properties of a time-varying GQARCH(1,1-M are derived. We discuss them and apply the suggested Bayesian estimation to three major stock markets.

  3. Time-Varying Dynamic Properties of Offshore Wind Turbines Evaluated by Modal Testing

    DEFF Research Database (Denmark)

    Damgaard, Mads; Andersen, J. K. F.; Ibsen, Lars Bo

    2014-01-01

    resonance of the wind turbine structure. In this paper, free vibration tests and a numerical Winkler type approach are used to evaluate the dynamic properties of a total of 30 offshore wind turbines located in the North Sea. Analyses indicate time-varying eigenfrequencies and damping ratios of the lowest...... structural eigenmode. Isolating the oscillation oil damper performance, moveable seabed conditions may lead to the observed time dependency....

  4. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2010-01-01

    This fourth edition of the well-established Fundamentals of Semiconductors serves to fill the gap between a general solid-state physics textbook and research articles by providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. The approach is physical and intuitive rather than formal and pedantic. Theories are presented to explain experimental results. This textbook has been written with both students and researchers in mind. Its emphasis is on understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors. The explanations are based on physical insights. Each chapter is enriched by an extensive collection of tables of material parameters, figures, and problems. Many of these problems "lead the student by the hand" to arrive at the results. The major changes made in the fourth edition include: an extensive appendix about the important and by now well-established deep center known as the DX center, additional problems...

  5. Physical properties of five grain dust types.

    Science.gov (United States)

    Parnell, C B; Jones, D D; Rutherford, R D; Goforth, K J

    1986-01-01

    Physical properties of grain dust derived from five grain types (soybean, rice, corn, wheat, and sorghum) were measured and reported. The grain dusts were obtained from dust collection systems of terminal grain handling facilities and were assumed to be representative of grain dust generated during the handling process. The physical properties reported were as follows: particle size distributions and surface area measurements using a Coulter Counter Model TAII; percent dust fractions less than 100 micron of whole dust; bulk density; particle density; and ash content. PMID:3709482

  6. Thermo-Physical Properties of Selected Inconel

    Directory of Open Access Journals (Sweden)

    Krajewski P.K.

    2014-10-01

    Full Text Available The paper brings results of examinations of main thermo-physical properties of selected Inconel alloys, i.e. their heat diffusivity, thermal conductivity and heat capacity, measured in wide temperature range of 20 – 900 oC. Themathematical relationships of the above properties vs. temperature were obtained for the IN 100 and IN 713C alloys. These data can be used when modelling the IN alloys solidification processes aimed at obtaining required structure and properties as well as when designing optimal work temperature parameters.

  7. Waste Feed Evaporation Physical Properties Modeling

    International Nuclear Information System (INIS)

    Daniel, W.E.

    2003-01-01

    This document describes the waste feed evaporator modeling work done in the Waste Feed Evaporation and Physical Properties Modeling test specification and in support of the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) project. A private database (ZEOLITE) was developed and used in this work in order to include the behavior of aluminosilicates such a NAS-gel in the OLI/ESP simulations, in addition to the development of the mathematical models. Mathematical models were developed that describe certain physical properties in the Hanford RPP-WTP waste feed evaporator process (FEP). In particular, models were developed for the feed stream to the first ultra-filtration step characterizing its heat capacity, thermal conductivity, and viscosity, as well as the density of the evaporator contents. The scope of the task was expanded to include the volume reduction factor across the waste feed evaporator (total evaporator feed volume/evaporator bottoms volume). All the physical properties were modeled as functions of the waste feed composition, temperature, and the high level waste recycle volumetric flow rate relative to that of the waste feed. The goal for the mathematical models was to predict the physical property to predicted simulation value. The simulation model approximating the FEP process used to develop the correlations was relatively complex, and not possible to duplicate within the scope of the bench scale evaporation experiments. Therefore, simulants were made of 13 design points (a subset of the points used in the model fits) using the compositions of the ultra-filtration feed streams as predicted by the simulation model. The chemistry and physical properties of the supernate (the modeled stream) as predicted by the simulation were compared with the analytical results of experimental simulant work as a method of validating the simulation software

  8. Physical properties of sunflower grains after drying

    Directory of Open Access Journals (Sweden)

    Paulo Carteri Coradi

    2015-12-01

    Full Text Available The knowledge of the physical properties of the grains is important for the optimization of post-harvest operations. This study aimed to evaluate the effects of convective drying with different air temperatures (45, 55, 65 and 75 °C the physical properties of sunflower seeds. The drying sunflower grains was performed in convection oven with forced air. In natural conditions, samples of 5 kg of pellets were used for each repetition drying. During the drying process, the grains samples were weighed periodically until they reach 10% (wet basis, w.b., then were subjected to evaluations of physical properties. According to the results it was observed that the porosity, apparent density, thousand kernel weight to the drag coefficient, roundness, sphericity and width of sunflower seed did not change with increasing temperature drying air. It was concluded that the drying air temperatures of 45 °C and 55 retained the initial physical characteristics of sunflower seeds. The temperature of the drying air of 75 °C had greater influence on changes in volumetric shrinkage of the grains.

  9. Physical Properties of Hanford Transuranic Waste

    Energy Technology Data Exchange (ETDEWEB)

    Berg, John C.

    2010-03-25

    The research described herein was undertaken to provide needed physical property descriptions of the Hanford transuranic tank sludges under conditions that might exist during retrieval, treatment, packaging and transportation for disposal. The work addressed the development of a fundamental understanding of the types of systems represented by these sludge suspensions through correlation of the macroscopic rheological properties with particle interactions occurring at the colloidal scale in the various liquid media. The results of the work have advanced existing understanding of the sedimentation and aggregation properties of complex colloidal suspensions. Bench scale models were investigated with respect to their structural, colloidal and rheological properties that should be useful for the development and optimization of techniques to process the wastes at various DOE sites.

  10. MAGNETIC WOVEN FABRICS - PHYSICAL AND MAGNETIC PROPERTIES

    Directory of Open Access Journals (Sweden)

    GROSU Marian C

    2015-05-01

    Full Text Available A coated material is a composite structure that consists of at least two components: base material and coating layer. The purpose of coating is to provide special properties to base material, with potential to be applied in EMI shielding and diverse smart technical fields. This paper reports the results of a study about some physical and magnetic properties of coated woven fabrics made from cotton yarns with fineness of 17 metric count. For this aim, a plain woven fabric was coated with a solution hard magnetic polymer based. As hard magnetic powder, barium hexaferrite (BaFe12O19 was selected. The plain woven fabric used as base has been coated with five solutions having different amounts of hard magnetic powder (15% - 45% in order to obtain five different magnetic woven fabrics. A comparison of physical properties regarding weight (g/m2, thickness (mm, degree of charging (% and magnetic properties of magnetic woven samples were presented. Saturation magnetizing (emu/g, residual magnetizing (emu/g and coercive force (kA/m of pure hard magnetic powder and woven fabrics have been studied as hysteresis characteristics. The magnetic properties of the woven fabrics depend on the mass percentage of magnetic powder from coating solution. Also, the residual magnetism and coercive field of woven fabrics represents only a part of bulk barium hexafferite residual magnetism and coercive field.

  11. Physical properties of the planet Mercury

    Science.gov (United States)

    Clark, Pamela E.

    1988-01-01

    The global physical properties of Mercury are summarized with attention given to its figure and orbital parameters. The combination of properties suggests that Mercury has an extensive iron-rich core, possibly with a still-functioning dynamo, which is 42 percent of the interior by volume. Mercury's three major axes are comparable in size, indicating that the planet is a triaxial ellipsoid rather than an oblate spheroid. In terms of the domination of its surface by an intermediate plains terrane, it is more Venus- or Mars-like; however, due to the presence of a large metallic magnetic core, its interior may be more earth-like.

  12. IMPROVING PHYSICAL PROPERTIES OF RAPE BIOFUELS

    Directory of Open Access Journals (Sweden)

    Zbigniew Kiernicki

    2012-12-01

    Full Text Available The researches on the use of biodiesel and fuel derived from waste plastics are presented in the paper. Biodiesel and fuel obtained from waste plastics were both used as fuel components. FAME is a bio-admixture in the fuel. The catalytic cracking of polyolefin was the source of second fuel admixture. The physical properties of the analyzed components of fuel have been presented. The operational parameters of direct injection in diesel engines fuelled by tested fuel blends was set out. The preparation of the fuel mixture was also described. The concept of the diesel fuel which is made from the components of opposite physical properties could have a positive practical effect and could improve the use of biofuels.

  13. F-Canyon Sludge Physical Properties

    International Nuclear Information System (INIS)

    Poirier, M. R.; Hansen, P. R.; Fink, S. D.

    2005-01-01

    The Site Deactivation and Decommissioning (SDD) Organization is evaluating options to disposition the 800 underground tanks (including removal of the sludge heels from these tanks). To support this effort, DandD requested assistance from Savannah River National Laboratory (SRNL) personnel to determine the pertinent physical properties to effectively mobilize the sludge from these tanks (Tanks 804, 808, and 809). SDD provided SRNL with samples of the sludge from Tanks 804, 808, and 809. The authors measured the following physical properties for each tank: particle settling rate, shear strength (i.e., settled solids yield stress), slurry rheology (i.e., yield stress and consistency), total solids concentration in the sludge, soluble solids concentration of the sludge, sludge density, and particle size distribution

  14. Nanoemulsions: formation, structure, and physical properties

    International Nuclear Information System (INIS)

    Mason, T G; Wilking, J N; Meleson, K; Chang, C B; Graves, S M

    2006-01-01

    We summarize procedures for producing 'nanoemulsions' comprised of nanoscale droplets, or 'nanoemulsions', methods for controlling the droplet size distribution and composition, and interesting physical properties of nanoemulsions. In contrast to more common microscale emulsions, nanoemulsions exhibit optical transparency at high droplet volume fractions, φ, surprisingly strong elasticity at low φ, and enhanced diffusive transport and shelf stability. For these reasons, nanoemulsions have great potential in a wide range of industries including pharmaceuticals, foods, and personal care products. (topical review)

  15. Chirality: a relational geometric-physical property.

    Science.gov (United States)

    Gerlach, Hans

    2013-11-01

    The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term. © 2013 Wiley Periodicals, Inc.

  16. Natural Gas : Physical Properties and Combustion Features

    OpenAIRE

    Corre, Olivier Le; Loubar, Khaled

    2010-01-01

    The actual composition of natural gas depends primarily on the production field from which it is extracted and limited variations in composition must therefore be accepted. Moreover, at a local distribution level, seasonal adjustments by the local gas distributor may cause significant variations in the gas composition. Consequently, physical properties and energy content are subject to variations and their calculation / estimation is of great importance for technical and economical aspects. I...

  17. Physical properties of sunflower seeds during drying

    Directory of Open Access Journals (Sweden)

    Thaís Adriana de Souza Smaniotto

    2017-03-01

    Full Text Available The aim of this work was to determine the effect that the moisture content has on the physical properties of sunflower seeds. The cultivar Olisun 3, with an initial moisture content of 34.1 (% wb, was used and then subjected to drying in an oven with forced air ventilation under three temperature conditions: 40, 60 and 80 °C. The reduction in the moisture content during drying was monitored by the gravimetric method until it reached a final moisture content of 8.0 ± 1.0 (% wb. The physical properties were analysed: the bulk density, true density, intergranular porosity and volumetric shrinkage of the mass and unit and terminal velocity. The reduction in the moisture content influenced the physical properties of sunflower seeds and caused a decrease in the intergranular porosity, bulk density and true density at all examined temperatures. The mass and volumetric contractions of the unit and reduction in shrinkage rates all increased with the drying of sunflower seeds at all studied temperatures. The terminal velocity increased as the moisture content of the grains increased, which was more evident at the drying temperature of 80 °C.

  18. Effects of physical properties on thermo-fluids cavitating flows

    Science.gov (United States)

    Chen, T. R.; Wang, G. Y.; Huang, B.; Li, D. Q.; Ma, X. J.; Li, X. L.

    2015-12-01

    The aims of this paper are to study the thermo-fluid cavitating flows and to evaluate the effects of physical properties on cavitation behaviours. The Favre-averaged Navier-Stokes equations with the energy equation are applied to numerically investigate the liquid nitrogen cavitating flows around a NASA hydrofoil. Meanwhile, the thermodynamic parameter Σ is used to assess the thermodynamic effects on cavitating flows. The results indicate that the thermodynamic effects on the thermo-fluid cavitating flows significantly affect the cavitation behaviours, including pressure and temperature distribution, the variation of physical properties, and cavity structures. The thermodynamic effects can be evaluated by physical properties under the same free-stream conditions. The global sensitivity analysis of liquid nitrogen suggests that ρv, Cl and L significantly influence temperature drop and cavity structure in the existing numerical framework, while pv plays the dominant role when these properties vary with temperature. The liquid viscosity μl slightly affects the flow structure via changing the Reynolds number Re equivalently, however, it hardly affects the temperature distribution.

  19. Determination of composition and physical properties of partially ionized plasmas in the function of temperature

    International Nuclear Information System (INIS)

    Zaporowski, B.

    1992-01-01

    The investigations of various kinds of partially ionized plasma were conducted for the pressure of 0.1 MPa and in the range of temperature of 298.15 K to 24000 K. The physical properties of various kinds of partially ionized plasma depend mainly of their composition and temperature. The composition of particular kinds of partially ionized plasmas varies also in the function of temperature. Simultaneous going on of physical and chemical processes in plasma is the reason of difficulties in the calculations of plasma's physical properties. The use of the laws of macroscopic thermodynamics for the calculations of physical properties of partially ionized plasma is impossible. There are enough exact methods for measuring of physical properties of partially ionized plasma. For these reasons the theoretical method using the base of statistic physics was used to calculate the composition and physical properties of various kinds of partially ionized plasma. (author) 2 refs., 2 figs

  20. Radiosensitizing and cytotoxic properties of DNA targeted phenanthridine-linked nitroheterocycles of varying electron affinities

    International Nuclear Information System (INIS)

    Cowan, D.S.M.; Rauth, A.M.; Toronto Univ., ON; Matejovic, J.F.; McClelland, R.A.; Wardman, P.

    1994-01-01

    2-Nitroimidazoles targeted to DNA via intercalation have previously been shown to be as much as 10-100 times more efficient on a molar basis than the untargeted nitroimidazole, misonidazole, in vitro as hypoxic cell selective radiosensitizers and cytotoxins based on extracellular concentrations. In this work the effect of varying the nitroaromatic group has been examined through the preparation of a DNA-targeted 4-nitroimidazole (4-MeNLP-3), a 5-nitroimidazole (5-NLP-3) and a 5-nitrofuran (FEP-2) linked to phenanthridinium ions. With the previously synthesized 2-nitroimidazoles, this provides a series of DNA targeted compounds of varying electron affinity as well as structure at the nitroaromatic position. The present series of compounds was tested for partition coefficient, DNA binding ability, reduction potentials and in vitro radiosensitizing and cytotoxic abilities. The results obtained indicate that targeting such compounds to DNA diminishes the dependency of radiosensitizing and cytotoxic properties on reduction potential and may allow significant uncoupling of toxicity from radiosensitizing ability. (author)

  1. Physical Properties of Hanford Transuranic Waste Sludge

    International Nuclear Information System (INIS)

    Poloski, A. P.

    2004-01-01

    This project has two primary objectives. The first is to understand the physical properties and behavior of the Hanford transuranic (TRU) tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at WIPP. The second primary objective is to develop a fundamental understanding of these sludge suspensions by correlating the macroscopic properties with particle interactions occurring at the colloidal scale in the various liquid media. The results of this research effort will enhance the existing understanding of agglomeration phenomena and the properties of complex colloidal suspensions. In addition, the knowledge gained and capabilities developed during this effort will aid in the development and optimization of techniques to process the wastes at various DOE sites. These objectives will be accomplished by: (1) characterizing the TRU sludges contained in the Hanford tanks that are intended for shipment to WIPP; (2) determining the physical behavior of the Hanford TRU tank sludges under conditions that might exist during treatment and packaging; (3) and modeling the retrieval, treatment, and packaging operations that will be performed at Hanford to dispose of TRU tank sludges

  2. Global properties of physically interesting Lorentzian spacetimes

    Science.gov (United States)

    Nawarajan, Deloshan; Visser, Matt

    Under normal circumstances most members of the general relativity community focus almost exclusively on the local properties of spacetime, such as the locally Euclidean structure of the manifold and the Lorentzian signature of the metric tensor. When combined with the classical Einstein field equations this gives an extremely successful empirical model of classical gravity and classical matter — at least as long as one does not ask too many awkward questions about global issues, (such as global topology and global causal structure). We feel however that this is a tactical error — even without invoking full-fledged “quantum gravity” we know that the standard model of particle physics is also an extremely good representation of some parts of empirical reality; and we had better be able to carry over all the good features of the standard model of particle physics — at least into the realm of semi-classical quantum gravity. Doing so gives us some interesting global features that spacetime should possess: On physical grounds spacetime should be space-orientable, time-orientable, and spacetime-orientable, and it should possess a globally defined tetrad (vierbein, or in general a globally defined vielbein/n-bein). So on physical grounds spacetime should be parallelizable. This strongly suggests that the metric is not the fundamental physical quantity; a very good case can be made for the tetrad being more fundamental than the metric. Furthermore, a globally-defined “almost complex structure” is almost unavoidable. Ideas along these lines have previously been mooted, but much is buried in the pre-arXiv literature and is either forgotten or inaccessible. We shall revisit these ideas taking a perspective very much based on empirical physical observation.

  3. Symmetry and physical properties of crystals

    CERN Document Server

    Malgrange, Cécile; Schlenker, Michel

    2014-01-01

    Crystals are everywhere, from natural crystals (minerals) through the semiconductors and magnetic materials in electronic devices and computers or piezoelectric resonators at the heart of our quartz watches to electro-optical devices. Understanding them in depth is essential both for pure research and for their applications. This book provides a clear, thorough presentation of their symmetry, both at the microscopic space-group level and the macroscopic point-group level. The implications of the symmetry of crystals for their physical properties are then presented, together with their mathematical description in terms of tensors. The conditions on the symmetry of a crystal for a given property to exist then become clear, as does the symmetry of the property. The geometrical representation of tensor quantities or properties is presented, and its use in determining important relationships emphasized. An original feature of this book is that most chapters include exercises with complete solutions. This all...

  4. Chemistry and physical properties of estolides

    International Nuclear Information System (INIS)

    Isbell, T.A.

    2011-01-01

    Estolides are a developing class of natural and synthetic compounds that have been synthesized from hydroxy oils like castor and lesquerella or by the condensation of fatty acids across the olefin of a second fatty acid. Castor and lesquerella estolides are derived from either their triglycerides or their free fatty acids utilizing their hydroxyl moiety to establish the estolide bond. The triglyceride estolides have pour points of 9 to -36 degrees centigrade but suffer poor oxidative stability with RPVOT times of 29 - 52 minutes even with 1% of an anti-oxidant package incorporated into the samples. In contrast to the triglyceride estolides of castor and lesquerella, the estolides from lesquerolic and ricinoleic acids have very good pour points of -36 to - 54 degrees centigrade. Estolides derived from the acid catalyzed condensation of oleic acid with a variety of fatty acids can be made in good yield and posses a wide range of physical properties. Of particular interest are the saturated capped estolides of oleic that have both good low temperature properties (pour point -5 to -39 degrees centigrade) and good oxidative stability. Estolides from meadow foam fatty acids do not have good low temperature properties but have been extensively used in cosmetics where they provide good moisturizing properties. (Author).

  5. Microstructure, mechanical, and in vitro properties of mica glass-ceramics with varying fluorine content.

    Science.gov (United States)

    Molla, Atiar Rahaman; Basu, Bikramjit

    2009-04-01

    The design and development of glass ceramic materials provide us the unique opportunity to study the microstructure development with changes in either base glass composition or heat treatment conditions as well as to understand processing-microstructure-property (mechanical/biological) relationship. In the present work, it is demonstrated how various crystal morphology can develop when F(-) content in base glass (K(2)O-B(2)O(3)-Al(2)O(3)-SiO(2)-MgO-F) is varied in the range of 1.08-3.85% and when all are heat treated at varying temperatures of 1000-1120 degrees C. For some selected heat treatment temperature, the heat treatment time is also varied over 4-24 h. It was established that with increase in fluoride content in the glass composition, the crystal volume fraction of the glass-ceramic decreases. Using 1.08% fluoride, more than 80% crystal volume fraction could be achieved in the K(2)O-B(2)O(3)-Al(2)O(3)-SiO(2)-MgO-F system. It was observed that with lower fluoride content glass-ceramic, if heated at 1040 degrees C for 12 h, an oriented microstructure with 'envelop like' crystals can develop. For glass ceramics with higher fluorine content (2.83% or 3.85%), hexagonal-shaped crystals are formed. Importantly, high hardness of around 8 GPa has been measured in glass ceramics with maximum amount of crystals. The three-point flexural strength and elastic modulus of the glass-ceramic (heat treated at 1040 degrees C for 24 h) was 80 MPa and 69 GPa of the sample containing 3.85% fluorine, whereas, similar properties obtained for the sample containing 1.08% F(-) was 94 MPa and 57 GPa, respectively. Further, in vitro dissolution study of the all three glass-ceramic composition in artificial saliva (AS) revealed that leached fluoride ion concentration was 0.44 ppm, when the samples were immersed in AS for 8 weeks. This was much lower than the WHO recommended safety limits of 1.5 ppm. Among all the investigated glass-ceramic samples, the glass ceramic with 3.85% F

  6. Ground-based forest harvesting effects on soil physical properties and Douglas-fir growth.

    Science.gov (United States)

    Adrian Ares; Thomas A. Terry; Richard E. Miller; Harry W. Anderson; Barry L. Flaming

    2005-01-01

    Soil properties and forest productivity can be affected by heavy equipment used for harvest and site preparation but these impacts vary greatly with site conditions and operational practices. We assessed the effects of ground-based logging on soil physical properties and subsequent Douglas-fir [Pseudotsuga menziesii (Mirb) Franco] growth on a highly...

  7. Gender Differences in Barriers to Physical Activity among College Students Reporting Varying Levels of Regular Physical Activity

    Science.gov (United States)

    Munford, Shawn N.

    2011-01-01

    Researchers have studied the primary determinants of physical activity in an effort to enhance health promotion initiatives nationwide. These physical activity determinants have been observed to differ among various segments of the population, suggesting a further examination of physical activity barriers among differing populations. Little…

  8. HYDRAULIC AND PHYSICAL PROPERTIES OF MCU SALTSTONE

    International Nuclear Information System (INIS)

    Dixon, K; Mark Phifer, M

    2008-01-01

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone., Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement or lime to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of MCU (Modular Caustic Side Solvent Extraction Unit) saltstone relative to two permeating fluids. These fluids included simulated groundwater equilibrated with vault concrete and simulated saltstone pore fluid. Samples of the MCU saltstone were prepared by the Savannah River National Laboratory (SRNL) and allowed to cure for twenty eight days prior to testing. These samples included two three-inch diameter by six inch long mold samples and three one-inch diameter by twelve inch long mold samples

  9. HYDRAULIC AND PHYSICAL PROPERTIES OF MCU SALTSTONE

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, K; Mark Phifer, M

    2008-03-19

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone., Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement or lime to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of MCU (Modular Caustic Side Solvent Extraction Unit) saltstone relative to two permeating fluids. These fluids included simulated groundwater equilibrated with vault concrete and simulated saltstone pore fluid. Samples of the MCU saltstone were prepared by the Savannah River National Laboratory (SRNL) and allowed to cure for twenty eight days prior to testing. These samples included two three-inch diameter by six inch long mold samples and three one-inch diameter by twelve inch long mold samples.

  10. Selected physical properties of various diesel blends

    Science.gov (United States)

    Hlaváčová, Zuzana; Božiková, Monika; Hlaváč, Peter; Regrut, Tomáš; Ardonová, Veronika

    2018-01-01

    The quality determination of biofuels requires identifying the chemical and physical parameters. The key physical parameters are rheological, thermal and electrical properties. In our study, we investigated samples of diesel blends with rape-seed methyl esters content in the range from 3 to 100%. In these, we measured basic thermophysical properties, including thermal conductivity and thermal diffusivity, using two different transient methods - the hot-wire method and the dynamic plane source. Every thermophysical parameter was measured 100 times using both methods for all samples. Dynamic viscosity was measured during the heating process under the temperature range 20-80°C. A digital rotational viscometer (Brookfield DV 2T) was used for dynamic viscosity detection. Electrical conductivity was measured using digital conductivity meter (Model 1152) in a temperature range from -5 to 30°C. The highest values of thermal parameters were reached in the diesel sample with the highest biofuel content. The dynamic viscosity of samples increased with higher concentration of bio-component rapeseed methyl esters. The electrical conductivity of blends also increased with rapeseed methyl esters content.

  11. Physical Properties of Fractured Porous Media

    Science.gov (United States)

    Mohammed, T. E.; Schmitt, D. R.

    2015-12-01

    The effect of fractures on the physical properties of porous media is of considerable interest to oil and gas exploration as well as enhanced geothermal systems and carbon capture and storage. This work represents an attempt to study the effect fractures have on multiple physical properties of rocks. An experimental technique to make simultaneous electric and ultrasonic measurements on cylindrical core plugs is developed. Aluminum end caps are mounted with ultrasonic transducers to transmit pules along the axis of the cylinder while non-polarizing electrodes are mounted on the sides of the core to make complex conductivity measurements perpendicular to the cylinder axis. Electrical measurements are made by applying a sinusoidal voltage across the measurement circuit that consist of a resister and the sample in series. The magnitude and phase of the signal across the sample is recorded relative to the input signal across a range of frequencies. Synthetic rock analogs are constructed using sintered glass beads with fractures imbedded in them. The fracture location, size and orientation are controlled and each fractured specimen has an unfractured counterpart. Porosity, Permeability, electrical conductivity and ultrasonic velocity measurements are conducted on each sample with the complex electrical conductivities recorded at frequencies from 10hz to 1 Mhz. These measurements allow us to examine the changes induced by these mesoscale fractures on the embedding porous medium. Of particular interest is the effect of fracture orientation on electrical conductivity of the rock. Seismic anisotropy caused by fractures is a well understood phenomenon with many rock physics models dedicated to its understanding. The effect of fractures on electrical conductivity is less well understood with electrical anisotropy scarcely investigated in the literature. None the less, using electrical conductivity to characterize fractures can add an extra constraint to characterization based

  12. Physical properties of beryllium oxide - Irradiation effects

    International Nuclear Information System (INIS)

    Elston, J.; Caillat, R.

    1958-01-01

    This work has been carried out in view of determining several physical properties of hot-pressed beryllium oxide under various conditions and the change of these properties after irradiation. Special attention has been paid on to the measurement of the thermal conductivity coefficient and thermal diffusivity coefficient. Several designs for the measurement of the thermal conductivity coefficient have been achieved. They permit its determination between 50 and 300 deg. C, between 400 and 800 deg. C. Some measurements have been made above 1000 deg. C. In order to measure the thermal diffusivity coefficient, we heat a perfectly flat surface of a sample in such a way that the heat flux is modulated (amplitude and frequency being adjustable). The thermal diffusivity coefficient is deduced from the variations of temperature observed on several spots. Tensile strength; compressive strength; expansion coefficient; sound velocity and crystal parameters have been also measured. Some of the measurements have been carried out after neutron irradiation. Some data have been obtained on the change of the properties of beryllium oxide depending on the integrated neutron flux. (author) [fr

  13. Physical Properties of Silicone Gel Breast Implants.

    Science.gov (United States)

    Jewell, Mark L; Bengtson, Bradley P; Smither, Kate; Nuti, Gina; Perry, TracyAnn

    2018-04-28

    Surgical applications using breast implants are individualized operations to fill and shape the breast. Physical properties beyond shape, size, and surface texture are important considerations during implant selection. Compare form stability, gel material properties, and shell thickness of textured shaped, textured round, and smooth round breast implants from 4 manufacturers: Allergan, Mentor, Sientra, and Establishment Labs through bench testing. Using a mandrel height gauge, form stability was measured by retention of dimensions on device movement from a horizontal to vertical supported orientation. Dynamic response of gel material (gel cohesivity, resistance to gel deformation, energy absorption) was measured using a synchronized target laser following application of graded negative pressure. Shell thickness was measured using digital thickness gauge calipers. Form stability, gel material properties, and shell thickness differed across breast implants. Of textured shaped devices, Allergan Natrelle 410 exhibited greater form stability than Mentor MemoryShape and Sientra Shaped implants. Allergan Inspira round implants containing TruForm 3 gel had greater form stability, higher gel cohesivity, greater resistance to gel deformation, and lower energy absorption than those containing TruForm 2 gel and in turn, implants containing TruForm 1 gel. Shell thickness was greater for textured versus smooth devices, and differed across styles. Gel cohesivity, resistance to gel deformation, and energy absorption are directly related to form stability, which in turn determines shape retention. These characteristics provide information to aid surgeons choosing an implant based on surgical application, patient tissue characteristics, and desired outcome.

  14. Patterns of association between environmental quality and physical inactivity vary across the rural-urban continuum

    Science.gov (United States)

    Physical inactivity has been associated with numerous adverse health outcomes including obesity, heart disease, and depression, and is considered a major contributor to all-cause mortality worldwide. Many studies have shown associations between specific environmental features (la...

  15. Physical Properties of Kepler's Super-Earths

    Science.gov (United States)

    Sasselov, Dimitar D.; Kepler Science Team

    2011-01-01

    Planets in the radius range from about 1.25 to 2 Re, referred to as Super-Earth-sized planets, do not exist in our Solar System. Their physical properties as determined by theoretical modeling are expected to differ in many ways from our Solar System experience. The Kepler Mission is going to discover many such planets and determine their orbits and radii. For some of them follow-up observations may determine masses, and for a few of them asteroseismology of their stars from the Kepler light curve may determine an age. I will discuss theoretical models for such planets and how they could be constrained by the anticipated Kepler Mission observations.

  16. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pickenheim, B. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); BIBLER, N. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-09

    This document has been revised to add analytical data for fresh, 1 year old, and 4 year old glycolic acid as recommended in Revision 2 of this document. This was needed to understand the concentration of formaldehyde and methoxyacetic acid, impurities present in the glycolic acid used in Savannah River National Laboratory (SRNL) experiments. Based on this information, the concentration of these impurities did not change during storage. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in the first two versions of this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends.

  17. The Physical Properties of Ceramides in Membranes.

    Science.gov (United States)

    Alonso, Alicia; Goñi, Félix M

    2018-05-20

    Ceramides are sphingolipids containing a sphingosine or a related base, to which a fatty acid is linked through an amide bond. When incorporated into a lipid bilayer, ceramides exhibit a number of properties not shared by almost any other membrane lipid: Ceramides ( a) are extremely hydrophobic and thus cannot exist in suspension in aqueous media; ( b) increase the molecular order (rigidity) of phospholipids in membranes; ( c) give rise to lateral phase separation and domain formation in phospholipid bilayers; ( d) possess a marked intrinsic negative curvature that facilitates formation of inverted hexagonal phases; ( e) make bilayers and cell membranes permeable to small and large (i.e., protein-size) solutes; and ( f) promote transmembrane (flip-flop) lipid motion. Unfortunately, there is hardly any link between the physical studies reviewed here and the mass of biological and clinical studies on the effects of ceramides in health and disease.

  18. Cell adhesion over two distinct surfaces varied with chemical and mechanical properties

    International Nuclear Information System (INIS)

    Huang, Chih-Ling; Liao, Jiunn-Der; Yang, Chia-Fen; Chang, Chia-Wei; Ju, Ming-Shaung; Lin, Chou-Ching K.

    2009-01-01

    Chitosan is widely recognized as a natural and proper scaffold material; however, as a base substrate, it shows little promotion effect for the growth of cultured fibroblast cells. In this study, chitosan in a film form was prepared and used as a cell-culturing matrix, followed by patterning the evaporated Au upon it. Micro-scale Au clusters of ∼ 150 μm in diameter and ∼ 20 nm in thickness were then patterned and adhered upon the chitosan matrix. Physical and chemical properties of Au/chitosan were characterized. In particular, nano-indentation with dynamic contact module was applied to measure the nano-hardness of the tailored surfaces on Au/chitosan. Fibroblast cells were thereafter cultured on Au/chitosan. Experimental results demonstrated that as compared with the chitosan matrix, Au clusters and their boundary area exhibited favorable to promote cell adhesion, spreading, and growth. As well, nano-hardness on the boundary area of Au/chitosan significantly enhanced, while the cultured fibroblast cells aggregated upon Au clusters and the boundary area. In combination with the possible chemical and mechanical changes resulted by the evaporation of Au clusters upon the chitosan matrix, a selectively-enhanced Au/chitosan to promote fibroblast cells proliferation was created. Such design is anticipated for enabling a surface for scaffold materials with the cell-guidable function.

  19. Skin Membrane Electrical Impedance Properties under the Influence of a Varying Water Gradient

    Science.gov (United States)

    Björklund, Sebastian; Ruzgas, Tautgirdas; Nowacka, Agnieszka; Dahi, Ihab; Topgaard, Daniel; Sparr, Emma; Engblom, Johan

    2013-01-01

    The stratum corneum (SC) is an effective permeability barrier. One strategy to increase drug delivery across skin is to increase the hydration. A detailed description of how hydration affects skin permeability requires characterization of both macroscopic and molecular properties and how they respond to hydration. We explore this issue by performing impedance experiments on excised skin membranes in the frequency range 1 Hz to 0.2 MHz under the influence of a varying gradient in water activity (aw). Hydration/dehydration induces reversible changes of membrane resistance and effective capacitance. On average, the membrane resistance is 14 times lower and the effective capacitance is 1.5 times higher when the outermost SC membrane is exposed to hydrating conditions (aw = 0.992), as compared to the case of more dehydrating conditions (aw = 0.826). Molecular insight into the hydration effects on the SC components is provided by natural-abundance 13C polarization transfer solid-state NMR and x-ray diffraction under similar hydration conditions. Hydration has a significant effect on the dynamics of the keratin filament terminals and increases the interchain spacing of the filaments. The SC lipids are organized into lamellar structures with ∼ 12.6 nm spacing and hexagonal hydrocarbon chain packing with mainly all-trans configuration of the acyl chains, irrespective of hydration state. Subtle changes in the dynamics of the lipids due to mobilization and incorporation of cholesterol and long-chain lipid species into the fluid lipid fraction is suggested to occur upon hydration, which can explain the changes of the impedance response. The results presented here provide information that is useful in explaining the effect of hydration on skin permeability. PMID:23790372

  20. The status of varying constants: a review of the physics, searches and implications.

    Science.gov (United States)

    Martins, C J A P

    2017-12-01

    The observational evidence for the recent acceleration of the universe demonstrates that canonical theories of cosmology and particle physics are incomplete-if not incorrect-and that new physics is out there, waiting to be discovered. A key task for the next generation of laboratory and astrophysical facilities is to search for, identify and ultimately characterize this new physics. Here we highlight recent developments in tests of the stability of nature's fundamental couplings, which provide a direct handle on new physics: a detection of variations will be revolutionary, but even improved null results provide competitive constraints on a range of cosmological and particle physics paradigms. A joint analysis of all currently available data shows a preference for variations of α and μ at about the two-sigma level, but inconsistencies between different sub-sets (likely due to hidden systematics) suggest that these statistical preferences need to be taken with caution. On the other hand, these measurements strongly constrain Weak Equivalence Principle violations. Plans and forecasts for forthcoming studies with facilities such as ALMA, ESPRESSO and the ELT, which should clarify these issues, are also discussed, and synergies with other probes are briefly highlighted. The goal is to show how a new generation of precision consistency tests of the standard paradigm will soon become possible.

  1. The status of varying constants: a review of the physics, searches and implications

    Science.gov (United States)

    Martins, C. J. A. P.

    2017-12-01

    The observational evidence for the recent acceleration of the universe demonstrates that canonical theories of cosmology and particle physics are incomplete—if not incorrect—and that new physics is out there, waiting to be discovered. A key task for the next generation of laboratory and astrophysical facilities is to search for, identify and ultimately characterize this new physics. Here we highlight recent developments in tests of the stability of nature’s fundamental couplings, which provide a direct handle on new physics: a detection of variations will be revolutionary, but even improved null results provide competitive constraints on a range of cosmological and particle physics paradigms. A joint analysis of all currently available data shows a preference for variations of α and μ at about the two-sigma level, but inconsistencies between different sub-sets (likely due to hidden systematics) suggest that these statistical preferences need to be taken with caution. On the other hand, these measurements strongly constrain Weak Equivalence Principle violations. Plans and forecasts for forthcoming studies with facilities such as ALMA, ESPRESSO and the ELT, which should clarify these issues, are also discussed, and synergies with other probes are briefly highlighted. The goal is to show how a new generation of precision consistency tests of the standard paradigm will soon become possible.

  2. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pickenheim, B. R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bibler, N. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hay, M. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-08

    This document has been revised due to recent information that the glycolic acid used in Savannah River National Laboratory (SRNL) experiments contains both formaldehyde and methoxyacetic acid. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in earlier revisions. Additional data concerning the properties of glycolic acid have also been added to this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in Technical Grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.033 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H2 and cause an adverse effect in the Slurry Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) process. It has been cited that glycolic acid

  3. Does Accessibility of Positive and Negative Schema Vary by Child Physical Abuse Risk?

    Science.gov (United States)

    Crouch, Julie L.; Risser, Heather J.; Skowronski, John J.; Milner, Joel S.; Farc, Magdalena M.; Irwin, Lauren M.

    2010-01-01

    Objective: To examine differences in accessibility of positive and negative schema in parents with high and low risk for child physical abuse (CPA). Methods: This study combined picture priming and lexical decision making methods to assess the accessibility of positive and negative words following presentation of child and adult faces. The child…

  4. Weather and children's physical activity; how and why do relationships vary between countries?

    DEFF Research Database (Denmark)

    Harrison, Flo; Goodman, Anna; van Sluijs, Esther M F

    2017-01-01

    more active on average, but also more active given the weather conditions they experienced. Future work should consider strategies to mitigate the impacts of weather conditions, especially among young children, and interventions involving changes to the physical environment should consider how...

  5. Marching on in anything: solving electromagnetic field equations with a varying physical parameter

    NARCIS (Netherlands)

    Tijhuis, A.G.; Zwamborn, A.P.M.; Smith, P.D.; Cloude, S.R.

    2002-01-01

    In this paper, we consider the determination of electromagnetic fields for a (large) number of values of a physical parameter. We restrict ourselves to the case where the linear system originates from one or more integral equations. We apply an iterative procedure based on the minimization of an

  6. Physical Properties of Moringa ( Moringa oleifera ) Seeds in relation ...

    African Journals Online (AJOL)

    Physical properties are very important in the design and manufacturing of processing machines. In this research work, the physical properties of Moringa were determined as design parameters for the development of an oil expeller for the crop. The properties were: length, width, thickness, arithmetic and geometric ...

  7. 40 CFR 716.50 - Reporting physical and chemical properties.

    Science.gov (United States)

    2010-07-01

    ... chemical properties. Studies of physical and chemical properties must be reported under this subpart if... they investigated one or more of the following properties: (a) Water solubility. (b) Adsorption... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reporting physical and chemical...

  8. Comparison of clinical and physics scoring of PET images when image reconstruction parameters are varied

    International Nuclear Information System (INIS)

    Walsh, C.; Johnston, C.; Sheehy, N.; Reilly, G. O.

    2013-01-01

    In this study the quantitative and qualitative image quality (IQ) measurements with clinical judgement of IQ in positron emission tomography (PET) were compared. The limitations of IQ metrics and the proposed criteria of acceptability for PET scanners are discussed. Phantom and patient images were reconstructed using seven different iterative reconstruction protocols. For each reconstructed set of images, IQ was scored based both on the visual analysis and on the quantitative metrics. The quantitative physics metrics did not rank the reconstruction protocols in the same order as the clinicians' scoring of perceived IQ (R s = -0.54). Better agreement was achieved when comparing the clinical perception of IQ to the physicist's visual assessment of IQ in the phantom images (R s = +0.59). The closest agreement was seen between the quantitative physics metrics and the measurement of the standard uptake values (SUVs) in small tumours (R s = +0.92). Given the disparity between the clinical perception of IQ and the physics metrics a cautious approach to use of IQ measurements for determining suspension levels is warranted. (authors)

  9. Impact of varying physical activity levels on airway sensitivity and bronchodilation in healthy humans.

    Science.gov (United States)

    Smith, Joshua R; Kurti, Stephanie P; Johnson, Ariel M; Kolmer, Sarah A; Harms, Craig

    2015-12-01

    The purpose of this study was to determine if the amount of physical activity influences airway sensitivity and bronchodilation in healthy subjects across a range of physical activity levels. Thirty healthy subjects (age, 21.9 ± 2.6 years; 13 men/17 women) with normal pulmonary function reported to the laboratory on 2 separate occasions where they were randomized to breathe either hypertonic saline (HS) (nebulized hypertonic saline (25%) for 20 min) or HS followed by 5 deep inspirations (DIs), which has been reported to bronchodilate the airways. Pulmonary function tests (PFTs) were performed prior to both conditions and following the HS breathing or 5 DIs. Moderate to vigorous physical activity (MVPA) level was measured via accelerometer worn for 7 days. Following the HS breathing, forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) significantly decreased from baseline by -11.8% ± 8.4% and -9.3% ± 6.7%, respectively. A 2-segment linear model determined significant relationships between MVPA and percent change in FEV1 (r = 0.50) and FVC (r = 0.55). MVPA above ∼497 and ∼500 min/week for FEV1 and FVC, respectively, resulted in minor additional improvements (p > 0.05) in PFTs following the HS breathing. Following the DIs, FEV1 and FVC decreased (p 0.05) to MVPA. In conclusion, these data demonstrate that higher MVPA levels attenuated airway sensitivity but not bronchodilation in healthy subjects.

  10. Spectra and physical properties of Taurid meteoroids

    Science.gov (United States)

    Matlovič, Pavol; Tóth, Juraj; Rudawska, Regina; Kornoš, Leonard

    2017-09-01

    Taurids are an extensive stream of particles produced by comet 2P/Encke, which can be observed mainly in October and November as a series of meteor showers rich in bright fireballs. Several near-Earth asteroids have also been linked with the meteoroid complex, and recently the orbits of two carbonaceous meteorites were proposed to be related to the stream, raising interesting questions about the origin of the complex and the composition of 2P/Encke. Our aim is to investigate the nature and diversity of Taurid meteoroids by studying their spectral, orbital, and physical properties determined from video meteor observations. Here we analyze 33 Taurid meteor spectra captured during the predicted outburst in November 2015 by stations in Slovakia and Chile, including 14 multi-station observations for which the orbital elements, material strength parameters, dynamic pressures, and mineralogical densities were determined. It was found that while orbits of the 2015 Taurids show similarities with several associated asteroids, the obtained spectral and physical characteristics point towards cometary origin with highly heterogeneous content. Observed spectra exhibited large dispersion of iron content and significant Na intensity in all cases. The determined material strengths are typically cometary in the KB classification, while PE criterion is on average close to values characteristic for carbonaceous bodies. The studied meteoroids were found to break up under low dynamic pressures of 0.02-0.10 MPa, and were characterized by low mineralogical densities of 1.3-2.5 g cm-3. The widest spectral classification of Taurid meteors to date is presented.

  11. Physical properties of highly active liquor containing molybdate solids

    International Nuclear Information System (INIS)

    Dunnett, B.; Ward, T.; Roberts, R.; Cheeseright, J.

    2016-01-01

    The reprocessing of irradiated nuclear fuel at Sellafield produces a nitric acid based Highly Active Liquor (HAL) waste. The liquor, containing fission products and process additives, is concentrated in an evaporator in order to reduce the volume and is then stored in Highly Active Storage Tanks (HASTs) prior to vitrification. Caesium phosphomolybdate (CPM) is precipitated during the evaporation process and can convert to zirconium molybdate (ZM) during storage. During Post Operational Clean Out (POCO) of the HASTs, it is expected that their highly active content will be reduced by repeated cycles of washing using nitric acid and other reagents. Initial washings are likely to have a chemical composition comparable to concentrated HAL, becoming more dilute during the wash-out process. It is expected that the wash-out process will also recover significant quantities of molybdate solids (ZM, CPM or a mixture) from the HASTs. In order to determine the processing challenges from such washings during POCO, the physical properties of varying concentrations of non-active HAL simulants containing molybdate solids have recently been measured by the UK's National Nuclear Laboratory. The following measurements are presented and discussed: Particle size distribution; Density; Settling behaviour of solids; Voidage of settled sediment beds; Viscosity; Yield stress; And influence of ZM morphology on physical properties. (authors)

  12. Physical properties of highly active liquor containing molybdate solids

    Energy Technology Data Exchange (ETDEWEB)

    Dunnett, B.; Ward, T.; Roberts, R. [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom); Cheeseright, J. [Sellafield Ltd, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom)

    2016-07-01

    The reprocessing of irradiated nuclear fuel at Sellafield produces a nitric acid based Highly Active Liquor (HAL) waste. The liquor, containing fission products and process additives, is concentrated in an evaporator in order to reduce the volume and is then stored in Highly Active Storage Tanks (HASTs) prior to vitrification. Caesium phosphomolybdate (CPM) is precipitated during the evaporation process and can convert to zirconium molybdate (ZM) during storage. During Post Operational Clean Out (POCO) of the HASTs, it is expected that their highly active content will be reduced by repeated cycles of washing using nitric acid and other reagents. Initial washings are likely to have a chemical composition comparable to concentrated HAL, becoming more dilute during the wash-out process. It is expected that the wash-out process will also recover significant quantities of molybdate solids (ZM, CPM or a mixture) from the HASTs. In order to determine the processing challenges from such washings during POCO, the physical properties of varying concentrations of non-active HAL simulants containing molybdate solids have recently been measured by the UK's National Nuclear Laboratory. The following measurements are presented and discussed: Particle size distribution; Density; Settling behaviour of solids; Voidage of settled sediment beds; Viscosity; Yield stress; And influence of ZM morphology on physical properties. (authors)

  13. Annual physical examination reports vary by gender once teenagers become sexually active

    Science.gov (United States)

    Marcell, Arik V.; Matson, Pam; Ellen, Jonathan M.; Ford, Carol A.

    2010-01-01

    Introduction Few sexually active male adolescents receive sexual/reproductive health (SRH) services. We examine whether the association between adolescents’ sexual behavior status and physical examination over time can help us understand why. Methods We conducted longitudinal cohort analysis of the National Longitudinal Study of Adolescent Health with 9239 adolescents who completed the baseline school (1994/95) and Wave 2 (1996) follow-up surveys approximately 1.5 years later (retention rate=71%). We fit logistic regression models with random effects to estimate individual odds of reporting a physical examination in the past 12 months at follow-up, as compared to baseline, stratified by sexual behavior status and gender, and adjusting for sociodemographic and healthcare access factors. Results 34.5% males and 38.2% females reported experiencing vaginal intercourse by follow-up, and 22.4% males and 24.7% females reported first experiencing intercourse during the study. Among sexually active adolescents, about half reported annual exams and one-fifth no exams. Among females, baseline to follow-up exam reports significantly increased in: sex initiators (adjusted Odds Ratio [95% confidence interval]=2.09 [1.66–2.64]); those reporting sex at both times (2.16 [1.51–3.09]); and those reporting no sex either time (2.47 [2.00–3.04]). Among males, baseline to follow-up exam reports significantly increased in those reporting no sex either time (1.57 [1.26–1.96]) and showed increasing trends in sex initiators (1.27 [0.92–1.76]). Discussion A majority of sexually active adolescents report annual physical exams over time. Providers should not miss opportunities to deliver evidence-based SRH to sexually active adolescents. Future efforts are needed to increase all adolescents’ access to SRH services. PMID:21700156

  14. Grey water impact on soil physical properties

    Directory of Open Access Journals (Sweden)

    Miguel L. Murcia-Sarmiento

    2014-01-01

    Full Text Available Due to the increasing demand for food produced by the increase in population, water as an indispensable element in the growth cycle of plants every day becomes a fundamental aspect of production. The demand for the use of this resource is necessary to search for alternatives that should be evaluated to avoid potential negative impacts. In this paper, the changes in some physical properties of soil irrigated with synthetic gray water were evaluated. The experimental design involved: one factor: home water and two treatments; without treated water (T1 and treated water (T2. The variables to consider in the soil were: electrical conductivity (EC, exchangeable sodium percentage (ESP, average weighted diameter (MWD and soil moisture retention (RHS. The water used in drip irrigation high frequency was monitored by tensiometer for producing a bean crop (Phaseolous vulgaris L. As filtration system used was employed a unit composed of a sand filter (FLA and a subsurface flow wetland artificial (HFSS. The treatments showed significant differences in the PSI and the RHS. The FLA+HFSS system is an alternative to the gray water treatment due to increased sodium retention.

  15. Physical properties of natural blue Brazilian sodalite

    International Nuclear Information System (INIS)

    Pizani, P.S.

    1983-01-01

    The aim of this work is the study of some physical properties of natural blue Brazilian sodalite (Itabuna, BA), whose ideal formula is Na 8 Al6Si 6 O 24 Cl 2 . For this purpose, we made use of electron paramagnetic resonance, nuclear magnetic resonance, ionic thermocurrent, optical absorption and electrical conductivity technics in natural, bleached and irradiated samples. We have detected three paramagnetic centers: a) an isotropic line with g = 2.011, related to the blue color of natural samples, that is, with the optical absorption bands at 600 nm and 645 nm; b) a set of thirteen lines of hyperfine interaction with g = 2.001 and A = 3.5 gauss, related to an electric dipole center responsible for two bands of dielectric relaxation at 19.9 0 K and 49.3 0 K, with activation energy of 30 MeV and 121 MeV, respectively; c) we have also detected an F center with a EPR spectrum composed of thirteen isotropic lines of hyperfine interaction with g = 2.001 and A= 32.5 gauss, related to the pink color. (Author) [pt

  16. Physical properties of molten carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, T.; Yanagida, M.; Tanimoto, K. [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  17. Identifying typical physical activity on smartphone with varying positions and orientations.

    Science.gov (United States)

    Miao, Fen; He, Yi; Liu, Jinlei; Li, Ye; Ayoola, Idowu

    2015-04-13

    Traditional activity recognition solutions are not widely applicable due to a high cost and inconvenience to use with numerous sensors. This paper aims to automatically recognize physical activity with the help of the built-in sensors of the widespread smartphone without any limitation of firm attachment to the human body. By introducing a method to judge whether the phone is in a pocket, we investigated the data collected from six positions of seven subjects, chose five signals that are insensitive to orientation for activity classification. Decision trees (J48), Naive Bayes and Sequential minimal optimization (SMO) were employed to recognize five activities: static, walking, running, walking upstairs and walking downstairs. The experimental results based on 8,097 activity data demonstrated that the J48 classifier produced the best performance with an average recognition accuracy of 89.6% during the three classifiers, and thus would serve as the optimal online classifier. The utilization of the built-in sensors of the smartphone to recognize typical physical activities without any limitation of firm attachment is feasible.

  18. Anisotropic local physical properties of human dental enamel in comparison to properties of some common dental filling materials.

    Science.gov (United States)

    Raue, Lars; Hartmann, Christiane D; Rödiger, Matthias; Bürgers, Ralf; Gersdorff, Nikolaus

    2014-11-01

    A major aspect in evaluating the quality of dental materials is their physical properties. Their properties should be a best fit of the ones of dental hard tissues. Manufacturers give data sheets for each material. The properties listed are characterized by a specific value. This assumes (but does not prove) that there is no direction dependence of the properties. However, dental enamel has direction-dependent properties which additionally vary with location in the tooth. The aim of this paper is to show the local direction dependence of physical properties like the elastic modulus or the thermal expansion in dental hard tissues. With this knowledge the 'perfect filling/dental material' could be characterized. Enamel sections of ∼400-500 μm thickness have been cut with a diamond saw from labial/buccal to palatal/lingual (canine, premolar and molar) and parallel to labial (incisor). Crystallite arrangements have been measured in over 400 data points on all types of teeth with x-ray scattering techniques, known from materials science. X-ray scattering measurements show impressively that dental enamel has a strong direction dependence of its physical properties which also varies with location within the tooth. Dental materials possess only little or no property direction dependence. Therefore, a mismatch was found between enamel and dental materials properties. Since dental materials should possess equal (direction depending) properties, worthwhile properties could be characterized by transferring the directional properties of enamel into a property 'wish list' which future dental materials should fulfil. Hereby the 'perfect dental material' can be characterized.

  19. Some Physical and Mechanical Properties of Daniellia Ogea Harms ...

    African Journals Online (AJOL)

    ADOWIE PERE

    density were the physical properties tested while the mechanical properties were the modulus of rupture ... 300kN capacity of the food laboratory of the department of Agriculture of the University. ..... Negro, F; Cremonini, C; Zanuttini, R (2013).

  20. Phase relations, crystal structures and physical properties of nuclear fuels

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki; Fujino, Takeo; Tateno, Jun

    1975-07-01

    Phase relations, crystal structures and physical properties of the compounds for nuclear fuels are presented, including melting point, thermal expansion, diffusion and magnetic and electric properties. Emphasis is on oxides, carbides and nitrides of thorium, uranium and plutonium. (auth.)

  1. Physical and Chemical Properties of Soils under Contrasting Land ...

    African Journals Online (AJOL)

    Physical and Chemical Properties of Soils under Contrasting Land Use ... the aim of understanding the response of the soil to different management practices over time. ... The soil chemical properties studied were soil pH, organic carbon, total ...

  2. Handling Interfaces and Time-varying Properties in Radionuclide Transport Models

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Peter; Watson, Claire (Quintessa Ltd., Henley-on-Thames (United Kingdom))

    2010-12-15

    This report documents studies undertaken by Quintessa during 2010 in preparation for the SR-Site review that will be initiated by SSM in 2011. The studies relate to consequence analysis calculations, that is to the calculation of radionuclide release and transport if a canister is breached. A sister report documents modelling work undertaken to investigate the coupled processes relevant to copper corrosion and buffer erosion. The Q{sub eq} concept is an important part of SKB's current methodology for radionuclide transport using one-dimensional transport modelling; it is used in particular to model transport at the buffer/fracture interface. Quintessa's QPAC code has been used to investigate the Q{sub eq} approach and to explore the importance of heterogeneity in the fracture and spalling on the deposition hole surface. The key conclusions are that: - The basic approach to calculating Q{sub eq} values is sound and can be reproduced in QPAC. - The fracture resistance dominates over the diffusive resistance in the buffer except for the highest velocity cases. - Heterogeneity in the fracture, in terms of uncorrelated random variations in the fracture aperture, tends to reduce releases, so the use of a constant average aperture approach is conservative. - Narrow channels could lead to the same release as larger fractures with the same pore velocity, so a channel enhancement factor of sq root10 should be considered. - A spalling zone that increases the area of contact between flowing water and the buffer has the potential to increase the release significantly and changes the functional dependence of Q{sub eq}frac on the flowing velocity. Quintessa's AMBER software has previously been used to reproduce SKB's one-dimensional transport calculations and AMBER allows the use of time varying properties. This capability has been used to investigate the effects of glacial episodes on radionuclide transport. The main parameters that could be affected are

  3. Handling Interfaces and Time-varying Properties in Radionuclide Transport Models

    International Nuclear Information System (INIS)

    Robinson, Peter; Watson, Claire

    2010-12-01

    This report documents studies undertaken by Quintessa during 2010 in preparation for the SR-Site review that will be initiated by SSM in 2011. The studies relate to consequence analysis calculations, that is to the calculation of radionuclide release and transport if a canister is breached. A sister report documents modelling work undertaken to investigate the coupled processes relevant to copper corrosion and buffer erosion. The Q eq concept is an important part of SKB's current methodology for radionuclide transport using one-dimensional transport modelling; it is used in particular to model transport at the buffer/fracture interface. Quintessa's QPAC code has been used to investigate the Q eq approach and to explore the importance of heterogeneity in the fracture and spalling on the deposition hole surface. The key conclusions are that: - The basic approach to calculating Q eq values is sound and can be reproduced in QPAC. - The fracture resistance dominates over the diffusive resistance in the buffer except for the highest velocity cases. - Heterogeneity in the fracture, in terms of uncorrelated random variations in the fracture aperture, tends to reduce releases, so the use of a constant average aperture approach is conservative. - Narrow channels could lead to the same release as larger fractures with the same pore velocity, so a channel enhancement factor of √10 should be considered. - A spalling zone that increases the area of contact between flowing water and the buffer has the potential to increase the release significantly and changes the functional dependence of Q eq frac on the flowing velocity. Quintessa's AMBER software has previously been used to reproduce SKB's one-dimensional transport calculations and AMBER allows the use of time varying properties. This capability has been used to investigate the effects of glacial episodes on radionuclide transport. The main parameters that could be affected are sorption coefficients and flow rates. For both

  4. Chemistry and physical properties of estolides

    Directory of Open Access Journals (Sweden)

    Isbell, Terry A.

    2011-03-01

    Full Text Available Estolides are a developing class of natural and synthetic compounds that have been synthesized from hydroxy oils like castor and lesquerella or by the condensation of fatty acids across the olefin of a second fatty acid. Castor and lesquerella estolides are derived from either their triglycerides or their free fatty acids utilizing their hydroxyl moiety to establish the estolide bond. The triglyceride estolides have pour points of 9 to –36ºC but suffer poor oxidative stability with RPVOT times of 29 – 52 minutes even with 1% of an anti-oxidant package incorporated into the samples. In contrast to the triglyceride estolides of castor and lesquerella, the estolides from lesquerolic and ricinoleic acids have very good pour points of –36 to –54ºC. Estolides derived from the acid catalyzed condensation of oleic acid with a variety of fatty acids can be made in good yield and posses a wide range of physical properties. Of particular interest are the saturated capped estolides of oleic that have both good low temperature properties (pour point –5 to – 39ºC and good oxidative stability. Estolides from meadowfoam fatty acids do not have good low temperature properties but have been extensively used in cosmetics where they provide good moisturizing properties.

    Los estólidos son una familia de compuestos sintetizados a partir de aceites hidroxilados como los de ricino o lesquerella o mediante la condensación de ácidos grasos sobre el doble enlace de un segundo ácido graso insaturado. Los estólidos de ricino y lesquerela se derivan tanto de sus triglicéridos como de sus ácidos grasos libres empleándose el residuo hidroxilo para formar los ésteres estólidos de los mismos. Los triglicéridos estólidos tienen puntos de fluidez crítica de entre 9 y -36ºC y baja estabilidad, con tiempos de oxidación en recipiente vacío a presión (RPVOT de entre 29 y 52 minutos incluso con la adición de un 1% de una mezcla antioxidante a las

  5. Comparison of adult physical activity levels in three Swiss alpine communities with varying access to motorized transportation.

    Science.gov (United States)

    Dombois, Oliver Thommen; Braun-Fahrländer, Charlotte; Martin-Diener, Eva

    2007-09-01

    To compare physical activity levels of residents of three Swiss alpine communities with varying access to motorized transport and to investigate whether socio-demographic factors, the settlement structure or means of transport affect these levels. Between January and February 2004 a computer assisted telephone interview was conducted with 901 randomly selected adults aged 18 years or older living in three Swiss alpine communities. In particular, information on moderate and vigorous intensity physical activities and on transport behaviour was collected. Respondents were categorized as 'sufficiently active' or 'insufficiently active' according to self-reported physical activity. People living in community 1 without access to motorized traffic were significantly more likely to be sufficiently active (Sex- and age-adjusted prevalences of sufficient total physical activity, 43.9% 95% CI: 38.3%-49.8%) compared to individuals living in the other two communities (community 2: 35.9%, 95% CI: 30.6%-41.6%, community 3: 32.7%, 95% CI: 27.5%-38.3%). The differences were due to higher levels of moderate physical activities. Vigorous physical activity levels did not differ between the communities. Community differences were explained by passive means of transport to work and for leisure time activities. Although the environment encountered in the three alpine communities is generally conducive to physical activity the majority of the participants did not achieve recommended activity levels. Passive mode of transport to work and during leisure time was strongly associated with insufficient total physical activity. Walking and cycling for transportation is thus a promising approach to promote health enhancing physical activity.

  6. Does accessibility of positive and negative schema vary by child physical abuse risk?

    Science.gov (United States)

    Crouch, Julie L; Risser, Heather J; Skowronski, John J; Milner, Joel S; Farc, Magdalena M; Irwin, Lauren M

    2010-11-01

    To examine differences in accessibility of positive and negative schema in parents with high and low risk for child physical abuse (CPA). This study combined picture priming and lexical decision making methods to assess the accessibility of positive and negative words following presentation of child and adult faces. The child and adult faces depicted positive, ambiguous, and negative affective valences. The sample included 67 (51 low and 16 high CPA risk) general population parents. CPA risk status was associated with accessibility of positive/negative words only following priming with faces of the opposite affective valence. More specifically, high CPA risk parents were slower to respond to positive (negative) words following priming with negative (positive) faces. Exploratory analyses indicated that this pattern of findings was more clearly apparent when picture primes involved adult faces. The present findings suggest that high and low CPA risk parents differ in how they process affectively incongruent information. Research is needed to further examine schema accessibility, as well as to examine whether processes involved in attention and affect integration play a role in CPA risk. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. The effect of varying physical and chemical characteristics of inhaled plutonium aerosols on metabolism and excretion

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Muggenburg, B.A.; McClellan, R.O.; Miglio, J.J.

    1976-01-01

    The effects of different chemical and physical parameters of plutonium aerosols on lung retention, tissue distribution and excretion patterns were evaluated in beagle dogs. Polydisperse aerosols of 239 Pu of different chemical form were produced by heating droplets nebulized from a solution of 239 PuIV in 1M HC1 to temperatures ranging from 325 0 C to 1150 0 C. Droplets containing 238 Pu(OH) 4 were treated at 1150 0 C and the resultant polydisperse aerosol used or separated into monodisperse size groups. Beagle dogs were exposed by inhalation to provide initial lung burdens in the range of 0.75 to 1.0μCi. The aerosols were characterized as to particle size and size distribution, and an in-vitro solubility measurement was made on samples of the aerosol from each animal exposure. Different production temperatures for the 239 Pu aerosols resulted in lung retention half-times that increased as the production temperature increased. The 239 Pu tissue distribution and urinary excretion patterns were correlated with lung retention. Faecal excretion was greater for aerosols produced at lower temperatures. Lung retention half-times for 238 Pu monodisperse aerosols were not greatly different from particle sizes of 0.8 and 1.9μm activity median aerodynamic diameter (AMAD). The third monodisperse aerosol intended to be 3.0μm AMAD had a bimodal particle size distribution and contained a significant fraction of readily soluble material. The 238 Pu polydisperse aerosol had a slightly lower lung retention, increased urinary excretion and translocation to tissues than the comparable 239 Pu polydisperse material. This study serves to emphasize the importance of complete analysis of the aerosol material as well as early excretion data following accidental human exposure to aerosols containing plutonium. The role of chemical form and aerosol particle size in evaluation of such cases is discussed. (author)

  8. Two-dimensional phononic crystals with time-varying properties: a multiple scattering analysis

    International Nuclear Information System (INIS)

    Wright, D W; Cobbold, R S C

    2010-01-01

    Multiple scattering theory is a versatile two- and three-dimensional method for characterizing the acoustic wave transmission through many scatterers. It provides analytical solutions to wave propagation in scattering structures, and its computational complexity grows logarithmically with the number of scatterers. In this paper we show how the 2D method can be adapted to include the effects of time-varying material parameters. Specifically, a new T-matrix is defined to include the effects of frequency modulation that occurs in time-varying phononic crystals. Solutions were verified against finite difference time domain (FDTD) simulations and showed excellent agreement. This new method enables fast characterization of time-varying phononic crystals without the need to resort to lengthy FDTD simulations. Also, the method of combining T-matrices to form the T-supermatrix remains unchanged provided that the new matrix definitions are used. The method is quite compatible with existing implementations of multiple scattering theory and could be readily extended to three-dimensional multiple scattering theory

  9. Effect of ozone gas processing on physical and chemical properties ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of ozone treatment on chemical and physical properties of wheat (Triticum aestivum L.) gluten, glutenin and gliadin. Methods: Wheat proteins isolated from wheat flour were treated with ozone gas. The physical and chemical properties of gluten proteins were investigated after treatment ...

  10. Permeation Behavior and Physical Properties of Natural Rubber Nanocomposites

    National Research Council Canada - National Science Library

    Zukas, Walter; Sennett, Michael; Welsh, Elizabeth; Rodriguez, Axel; Ziegler, David; Touchet, Paul

    2004-01-01

    .... A study was carried out to examine the effects of varying nanoparticle morphology and composition on the mechanical and barrier properties of polymer nanocomposites made with natural rubber (NR...

  11. Physical properties of honeys produced in the Northeast of Brazil

    Directory of Open Access Journals (Sweden)

    Patricia Argemira Costa

    2013-04-01

    Full Text Available The aim of this work was to study the rheological, thermal and some other physical-chemical properties of selected honeys produced in the Northeast of Brazil. Two samples were produced by native “Jandaira” bees (Melipona subnitida and ten other samples by Africanized bees (Apis mellifera. The samples were analyzed for pH, water activity (aW, soluble solids and water content. Viscosity flow curves were obtained using a rheometer (25ºC, 0-100s-1. Thermal analyses were performed on a differential scanning calorimeter, with heating rate of 10ºC/min (-100 to 100ºC. The water content and the pH of the honey samples varied from 17.2 to 27.9% and from 3.2 to 4.2, respectively, and, the aW of the samples varied from 0.57 to 0.74. Two samples were out of specification with respect to water content, according to Brazilian laws. In relation to rheology, all honey samples showed Newtonian behaviour with no thixotropy or dilatancy. The viscosity varied as an exponential function of the water content. The highest viscosity was obtained for the sample with lower values of water content and aW. Thermograms showed a glass transition (Tg occurring between -52.4 and -42.6ºC, in the samples produced by Apis mellifera and -67.6 and -57.0ºC for the other samples. A linear relationship was obtained between Tg and water content. In conclusion, the honey viscosity depended on the water content of the product. The higher the water value and therefore the greater the aw, the lower viscosity and Tg of the samples.

  12. Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china.

    Directory of Open Access Journals (Sweden)

    En-Rong Yan

    Full Text Available Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N and phosphorus (P contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA, leaf N concentration (LN, and total leaf area per twig size (TLA were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.

  13. Tuning Thermoresponsive Properties of Cationic Elastin-like Polypeptides by Varying Counterions and Side-Chains.

    Science.gov (United States)

    Petitdemange, Rosine; Garanger, Elisabeth; Bataille, Laure; Bathany, Katell; Garbay, Bertrand; Deming, Timothy J; Lecommandoux, Sébastien

    2017-05-17

    We report the synthesis of methionine-containing recombinant elastin-like polypeptides (ELPs) of different lengths that contain periodically spaced methionine residues. These ELPs were chemoselectively alkylated at all methionine residues to give polycationic derivatives. Some of these samples were found to possess solubility transitions in water, where the temperature of these transitions varied with ELP concentration, nature of the methionine alkylating group, and nature of the sulfonium counterions. These studies show that introduction and controlled spacing of methionine sulfonium residues into ELPs can be used as a means both to tune their solubility transition temperatures in water using a variety of different parameters and to introduce new side-chain functionality.

  14. Physical and chemical studies of superconduction properties of the intercalation compounds

    International Nuclear Information System (INIS)

    Eder, F.X.; Lerf, A.

    1980-01-01

    The superconducting properties of the intercalation compounds of layered dichalcogenides were studied. Our studies were concerned mainly to the alkali metal intercalation derivatives of TaS 2 and NbS 2 , and later on extended to the molecule intercalation compounds. The main difficulties with this class of superconductors result from varying material properties; these are therefore the subject of broad intensity in our investigations. The results received on the physical and chemical properties of the intercalation compounds is utilized for a phenomenological description of the factors mainly determining there superconducting properties. (orig.) [de

  15. Laser-Doppler acoustic probing of granular media with in-depth property gradient and varying pore pressures

    International Nuclear Information System (INIS)

    Bodet, L.; Dhemaied, A.; Mourgues, R.; Tournat, V.; Rejiba, F.

    2012-01-01

    Non-contacting ultrasonic techniques recently proved to be efficient in the physical modeling of seismic-wave propagation at various application scales, as for instance in the context of geological analogue and seismic modeling. An innovative experimental set-up is proposed here to perform laser-Doppler acoustic probing of unconsolidated granular media with varying pore pressures. The preliminary experiments presented here provide reproducible results and exploitable data, thus validating both the proposed medium preparation and pressure gradient generation procedure.

  16. Quantification of physical properties of dredged sediments during physical ripening

    NARCIS (Netherlands)

    Vermeulen, J.; Dijk, S.G.; Grotenhuis, J.T.C.; Rulkens, W.H.

    2005-01-01

    The soil formation process ripening can be used as a bioremediation technique for dredged sediments that are polluted with organic chemicals. Currently, data are lacking that quantify the effects of physical ripening on parameters that affect aerobic bioremediation. We quantified the effects of

  17. Physical properties of organic fullerene cocrystals

    Science.gov (United States)

    Macovez, Roberto

    2017-12-01

    The basic facts and fundamental properties of binary fullerene cocrystals are reviewed, focusing especially on solvates and salts of Buckminsterfullerene (C60), and hydrates of hydrophilic C60 derivatives. The examined properties include the lattice structure and the presence of orientational disorder and/or rotational dynamics (of both fullerenes and cocrystallizing moieties), thermodynamic properties such as decomposition enthalpies, and charge transport properties. Both thermodynamic properties and molecular orientational disorder shed light on the extent of intermolecular interactions in these binary solid-state systems. Comparison is carried out also with pristine fullerite and with the solid phases of functionalized C60. Interesting experimental findings on binary fullerene cocrystals include the simultaneous occurrence of rotations of both constituent molecular species, crystal morphologies reminiscent of quasi-crystalline behaviour, the observation of proton conduction in hydrate solids of hydrophilic fullerene derivatives, and the production of super-hard carbon materials by application of high pressures on solvated fullerene crystals.

  18. Study the effects of varying interference upon the optical properties of turbid samples using NIR spatial light modulation

    Science.gov (United States)

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David

    2018-03-01

    Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.

  19. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature.

    Science.gov (United States)

    Sedlacik, Michal; Pavlinek, Vladimir; Peer, Petra; Filip, Petr

    2014-05-14

    Magnetic nanoparticles of spinel nanocrystalline cobalt ferrite were synthesized via the sol-gel method and subsequent annealing. The influence of the annealing temperature on the structure, magnetic properties, and magnetorheological effect was investigated. The finite crystallite size of the particles, determined by X-ray diffraction and the particle size observed via transmission electron microscopy, increased with the annealing temperature. The magnetic properties observed via a vibrating sample magnetometer showed that an increase in the annealing temperature leads to the increase in the magnetization saturation and, in contrast, a decrease in the coercivity. The effect of annealing on the magnetic properties of ferrite particles has been explained by the recrystallization process at high temperatures. This resulted in grain size growth and a decrease in an imposed stress relating to defects in the crystal lattice structure of the nanoparticles. The magnetorheological characteristics of suspensions of ferrite particles in silicone oil were measured using a rotational rheometer equipped with a magnetic field generator in both steady shear and small-strain oscillatory regimes. The magnetorheological performance expressed as a relative increase in the magnetoviscosity appeared to be significantly higher for suspensions of particles annealed at 1000 °C.

  20. Utilization of turkey manure as granular activated carbon: physical, chemical and adsorptive properties.

    Science.gov (United States)

    Lima, Isabel; Marshall, Wayne E

    2005-01-01

    The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.

  1. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur.

    Science.gov (United States)

    Malo, M K H; Rohrbach, D; Isaksson, H; Töyräs, J; Jurvelin, J S; Tamminen, I S; Kröger, H; Raum, K

    2013-04-01

    Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Trc33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, pbone tissue were observed. These findings may explain in part the increase in susceptibility to suffer low energy fractures during aging and highlight the potential of ultrasound in clinical osteoporosis diagnostics. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. 10428 PHYSICAL, CHEMICAL AND SENSORY PROPERTIES OF ...

    African Journals Online (AJOL)

    user

    properties of cookies produced from sweet potato and mango mesocarp .... Moisture, fat, protein, fiber and ash contents of the cookie samples were determined ... A 9-point hedonic score system [19] was used with the following ratings: 9=Like.

  3. Structural, magnetic and transport properties of Co2FeAl Heusler films with varying thickness

    International Nuclear Information System (INIS)

    Wang, Xiaotian; Li, Yueqing; Du, Yin; Dai, Xuefang; Liu, Guodong; Liu, Enke; Liu, Zhongyuan; Wang, Wenhong; Wu, Guangheng

    2014-01-01

    We report on a systematic study of the structural, magnetic properties and the anomalous Hall effect, in the Heusler alloy Co 2 FeAl (CFA) epitaxial films on MgO (001), as a function of film thickness. It was found that the epitaxial CFA films show a highly ordered B2 structure with an in-plane uniaxial magnetic anisotropy. The electrical transport properties reveal that the lattice and magnon scattering contributions to the longitudinal resistivity. Independent on the thickness of films, the anomalous Hall resistivity of CFA films is found to be dominated by skew scattering only. Moreover, the anomalous Hall resistivity shows weakly temperature dependent behavior, and its absolute value increases as the thickness decreases. We attribute this temperature insensitivity in the anomalous Hall resistivity to the weak temperature dependent of tunneling spin-polarization in the CFA films, while the thickness dependence behavior is likely due to the increasing significance of interface or free surface electronic states. - Highlights: ●Highly ordered CFA films with various thicknesses were prepared on MgO substrates. ●The magnon scattering contributions to the longitudinal resistivity in the CFA films. ●The anomalous Hall resistivity of the CFA films shows weakly temperature dependent. ●The CFA films show weak temperature dependent of tunneling spin-polarization

  4. Structure/property relations of aluminum under varying rates and stress states

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Matthew T [Los Alamos National Laboratory; Horstemeyer, Mark F [MISSISSIPPI STATE UNIV; Whittington, Wilburn R [MISSISSIPPI STATE UNIV; Solanki, Kiran N [MISSISSIPPI STATE UNIV.

    2010-11-19

    In this work we analyze the plasticity, damage, and fracture characteristics of three different processed aluminum alloys (rolled 5083-H13, cast A356-T6, and extruded 6061-T6) under varying stress states (tension, compression, and torsion) and strain rates (0.001/, 1/s., and 1000/s). The stress state difference had more of a flow stress effect than the applied strain rates for those given in this study (0.001/sec up to 1000/sec). The stress state and strain rate also had a profound effect on the damage evolution of each aluminum alloy. Tension and torsional straining gave much greater damage nucleation rates than compression. Although the damage of all three alloys was found to be void nucleation dominated, the A356-T6 and 5083-H131 aluminum alloys incurred void damage via micron scale particles where the 6061-T6 aluminum alloy incurred void damage from two scales, micron-scale particles and nanoscale precipitates. Having two length scales of particles that participated in the damage evolution made the 6061-T6 incur a strain rate sensitive damage rate that was different than the other two aluminum alloys. Under tension, as the strain rate increased, the 6061-T6 aluminum alloy's void nucleation rate decreased, but the A356-T6 and 5083-H131 aluminum alloys void nucleation rate increased.

  5. SCANNING SPEED INFLUENCE ON THE PHYSICAL PROPERTIES ...

    African Journals Online (AJOL)

    The most commonly used aerospace titanium alloy, Ti6Al4V, was deposited on Ti6Al4V plate of dimension 72 x 72 x5mm. The laser power of 3 kW, powder flow rate of 1.44 g/min and gas flow rate of 4 l/min were used throughout the deposition process. The transverse/ scanning speed was varied between 0.005 to 0.095 ...

  6. Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties.

    Science.gov (United States)

    Vardaki, Martha Z; Gardner, Benjamin; Stone, Nicholas; Matousek, Pavel

    2015-08-07

    In this study we employed large volume liquid tissue phantoms, consisting of a scattering agent (Intralipid), an absorption agent (Indian ink) and a synthesized calcification powder (calcium hydroxyapatite (HAP)) similar to that found in cancerous tissues (e.g. breast and prostate), to simulate human tissues. We studied experimentally the magnitude and origin of Raman signals in a transmission Raman geometry as a function of optical properties of the medium and the location of calcifications within the phantom. The goal was to inform the development of future noninvasive cancer screening applications in vivo. The results provide insight into light propagation and Raman scattering distribution in deep Raman measurements, exploring also the effect of the variation of relative absorbance of laser and Raman photons within the phantoms. Most notably when modeling breast and prostate tissues it follows that maximum signals is obtained from the front and back faces of the tissue with the central region contributing less to the measured spectrum.

  7. The influence of tyre transient side force properties on vehicle lateral acceleration for a time-varying vertical force

    Science.gov (United States)

    Takahashi, Toshimichi

    2018-05-01

    The tyre model which formerly developed by the author et al. and describes the tyre transient responses of side force and aligning moment under the time-varying vertical force was implemented to the vehicle dynamics simulation software and the influence of tyre side force transient property on the vehicle behaviour was investigated. The vehicle responses with/without tyre transient property on sinusoidally undulated road surfaces were simulated and compared. It was found that the average lateral acceleration of the vehicle at the sinusoidal steering wheel angle input decreases on the undulated road of long wavelength (3 m) for both cases, but when the wavelength becomes shorter (1 m), the average lateral acceleration increases only in the case that the transient property is considered. The cause of those changes is explained by using the tyre-related variables. Also the steady-state turning behaviour of the vehicle on undulated roads are shown and discussed.

  8. Physical properties corresponding to vortical flow geometry

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, K, E-mail: nakayama@aitech.ac.jp [Department of Mechanical Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392 (Japan)

    2014-10-01

    We examine a vortical flow geometry specified by the velocity gradient tensor ∇v, and derive properties representing the symmetry (axisymmetry or skewness) of the vortical flow in the swirl plane and a property specifying inflowing (outflowing) motion in all directions around the point. We focus on the radial and azimuthal velocities in a plane nonparallel to the eigenvector corresponding to the real eigenvalue of ∇v and show that these components are expressed as specific quadratic forms. The real and imaginary parts of the complex eigenvalues of ∇v represent averages of these eigenvalues of the quadratic forms, and are inadequate to specify the detailed flow geometry uniquely. The new properties complement specifying the precise flow geometry of the vortical flow.

  9. Depth varying rupture properties during the 2015 Mw 7.8 Gorkha (Nepal) earthquake

    Science.gov (United States)

    Yue, Han; Simons, Mark; Duputel, Zacharie; Jiang, Junle; Fielding, Eric; Liang, Cunren; Owen, Susan; Moore, Angelyn; Riel, Bryan; Ampuero, Jean Paul; Samsonov, Sergey V.

    2017-09-01

    On April 25th 2015, the Mw 7.8 Gorkha (Nepal) earthquake ruptured a portion of the Main Himalayan Thrust underlying Kathmandu and surrounding regions. We develop kinematic slip models of the Gorkha earthquake using both a regularized multi-time-window (MTW) approach and an unsmoothed Bayesian formulation, constrained by static and high rate GPS observations, synthetic aperture radar (SAR) offset images, interferometric SAR (InSAR), and teleseismic body wave records. These models indicate that Kathmandu is located near the updip limit of fault slip and approximately 20 km south of the centroid of fault slip. Fault slip propagated unilaterally along-strike in an ESE direction for approximately 140 km with a 60 km cross-strike extent. The deeper portions of the fault are characterized by a larger ratio of high frequency (0.03-0.2 Hz) to low frequency slip than the shallower portions. From both the MTW and Bayesian results, we can resolve depth variations in slip characteristics, with higher slip roughness, higher rupture velocity, longer rise time and higher complexity of subfault source time functions in the deeper extents of the rupture. The depth varying nature of rupture characteristics suggests that the up-dip portions are characterized by relatively continuous rupture, while the down-dip portions may be better characterized by a cascaded rupture. The rupture behavior and the tectonic setting indicate that the earthquake may have ruptured both fully seismically locked and a deeper transitional portions of the collision interface, analogous to what has been seen in major subduction zone earthquakes.

  10. Modelling of physical properties - databases, uncertainties and predictive power

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    in the estimated/predicted property values, how to assess the quality and reliability of the estimated/predicted property values? The paper will review a class of models for prediction of physical and thermodynamic properties of organic chemicals and their mixtures based on the combined group contribution – atom......Physical and thermodynamic property in the form of raw data or estimated values for pure compounds and mixtures are important pre-requisites for performing tasks such as, process design, simulation and optimization; computer aided molecular/mixture (product) design; and, product-process analysis...

  11. Physical properties of the red giant envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, W J [Instituto de Astronomia e Geofisico da Universidade de Sao Paulo (Brazil)

    1978-12-01

    In this work, several model envelopes are calculated for cool giant stars with mass loss due to the action of stellar radiation pressure on molecules and grains. Molecular profiles as well as average values of some physical parameters of the envelopes are obtained.

  12. Physical properties of the red giant envelopes

    International Nuclear Information System (INIS)

    Maciel, W.J.

    1978-01-01

    In this work, several model envelopes are calculated for cool giant stars with mass loss due to the action of stellar radiation pressure on molecules and grains. Molecular profiles as well as average values of some physical parameters of the envelopes are obtained [pt

  13. Moisture relations and physical properties of wood

    Science.gov (United States)

    Samuel V. Glass; Samuel L. Zelinka

    2010-01-01

    Wood, like many natural materials, is hygroscopic; it takes on moisture from the surrounding environment. Moisture exchange between wood and air depends on the relative humidity and temperature of the air and the current amount of water in the wood. This moisture relationship has an important influence on wood properties and performance. Many of the challenges of using...

  14. Vibrational properties of quasi-two-dimensional colloidal glasses with varying interparticle attraction.

    Science.gov (United States)

    Gratale, Matthew D; Ma, Xiaoguang; Davidson, Zoey S; Still, Tim; Habdas, Piotr; Yodh, A G

    2016-10-01

    We measure the vibrational modes and particle dynamics of quasi-two-dimensional colloidal glasses as a function of interparticle interaction strength. The interparticle attractions are controlled via a temperature-tunable depletion interaction. Specifically, the interparticle attraction energy is increased gradually from a very small value (nearly hard-sphere) to moderate strength (∼4k_{B}T), and the variation of colloidal particle dynamics and vibrations are concurrently probed. The particle dynamics slow monotonically with increasing attraction strength, and the particle motions saturate for strengths greater than ∼2k_{B}T, i.e., as the system evolves from a nearly repulsive glass to an attractive glass. The shape of the phonon density of states is revealed to change with increasing attraction strength, and the number of low-frequency modes exhibits a crossover for glasses with weak compared to strong interparticle attraction at a threshold of ∼2k_{B}T. This variation in the properties of the low-frequency vibrational modes suggests a new means for distinguishing between repulsive and attractive glass states.

  15. The physical fibre properties of Gonometa postica after degumming

    African Journals Online (AJOL)

    user

    The physical fibre properties of Gonometa postica after degumming the ... chemical Orvus paste as degumming method ..... technological applications, it is an important .... The development of an effective ... Engineering, 54(6), 179-190. Das, S.

  16. Prediction of Solvent Physical Properties using the Hierarchical Clustering Method

    Science.gov (United States)

    Recently a QSAR (Quantitative Structure Activity Relationship) method, the hierarchical clustering method, was developed to estimate acute toxicity values for large, diverse datasets. This methodology has now been applied to the estimate solvent physical properties including sur...

  17. Varying the charge of small cations in liquid water: Structural, transport, and thermodynamical properties

    Science.gov (United States)

    Martelli, Fausto; Vuilleumier, Rodolphe; Simonin, Jean-Pierre; Spezia, Riccardo

    2012-10-01

    In this work, we show how increasing the charge of small cations affects the structural, thermodynamical, and dynamical properties of these ions in liquid water. We have studied the case of lanthanoid and actinoid ions, for which we have recently developed accurate polarizable force fields, and the ionic radius is in the 0.995-1.250 Å range, and explored the valency range from 0 to 4+. We found that the ion charge strongly structures the neighboring water molecules and that, in this range of charges, the hydration enthalpies exhibit a quadratic dependence with respect to the charge, in line with the Born model. The diffusion process follows two main regimes: a hydrodynamical regime for neutral or low charges, and a dielectric friction regime for high charges in which the contraction of the ionic radius along the series of elements causes a decrease of the diffusion coefficient. This latter behavior can be qualitatively described by theoretical models, such as the Zwanzig and the solvated ion models. However, these models need be modified in order to obtain agreement with the observed behavior in the full charge range. We have thus modified the solvated ion model by introducing a dependence of the bare ion radius as a function of the ionic charge. Besides agreement between theory and simulation this modification allows one to obtain an empirical unified model. Thus, by analyzing the contributions to the drag coefficient from the viscous and the dielectric terms, we are able to explain the transition from a regime in which the effect of viscosity dominates to one in which dielectric friction governs the motion of ions with radii of ca. 1 Å.

  18. Structural Characteristics and Physical Properties of Tectonically Deformed Coals

    OpenAIRE

    Yiwen Ju; Zhifeng Yan; Xiaoshi Li; Quanlin Hou; Wenjing Zhang; Lizhi Fang; Liye Yu; Mingming Wei

    2012-01-01

    Different mechanisms of deformation could make different influence on inner structure and physical properties of tectonically deformed coal (TDC) reservoirs. This paper discusses the relationship between macromolecular structure and physical properties of the Huaibei-Huainan coal mine areas in southern North China. The macromolecular structure and pore characteristics are systematically investigated by using techniques such as X-ray diffraction (XRD), high-resolution transmission electron mic...

  19. Physical properties of organic nuclear reactor coolants

    Energy Technology Data Exchange (ETDEWEB)

    Elberg, S.; Friz, G.

    1963-03-15

    Diphenyl and terphenyls with different high-boiler content were studied up to temperatures of 450 deg C. Data from high boiler reactors show viscosity (strong influence), thermal conductivity (medium influence), density and specific heat (small influence). The vapor pressure is rn the most affected property (important influence of low boilers). Also viscosity shows an effect. Some data for pure highboilers are also presented. New results were obtained with direct measurements of the latent heat ot vaporization. (P.C.H.)

  20. Physical transport properties of marine microplastic pollution

    Science.gov (United States)

    Ballent, A.; Purser, A.; Mendes, P. de Jesus; Pando, S.; Thomsen, L.

    2012-12-01

    Given the complexity of quantitative collection, knowledge of the distribution of microplastic pollution in many regions of the world ocean is patchy, both spatially and temporally, especially for the subsurface environment. However, with knowledge of typical hydrodynamic behavior of waste plastic material, models predicting the dispersal of pelagic and benthic plastics from land sources into the ocean are possible. Here we investigate three aspects of plastic distribution and transport in European waters. Firstly, we assess patterns in the distribution of plastics found in fluvial strandlines of the North Sea and how distribution may be related to flow velocities and distance from source. Second, we model transport of non-buoyant preproduction pellets in the Nazaré Canyon of Portugal using the MOHID system after assessing the density, settling velocity, critical and depositional shear stress characteristics of such waste plastics. Thirdly, we investigate the effect of surface turbulences and high pressures on a range of marine plastic debris categories (various densities, degradation states and shapes tested) in an experimental water column simulator tank and pressure laboratory. Plastics deposited on North Sea strandlines varied greatly spatially, as a function of material composition and distance from source. Model outputs indicated that such dense production pellets are likely transported up and down canyon as a function of tidal forces, with only very minor net down canyon movement. Behaviour of plastic fragments under turbulence varied greatly, with the dimensions of the material, as well as density, playing major determining roles. Pressure was shown to affect hydrodynamic behaviours of only low density foam plastics at pressures ≥ 60 bar.

  1. Physical and elastic properties of marine sediments off Bombay, India

    Digital Repository Service at National Institute of Oceanography (India)

    SubbaRaju, L.V.; Ramana, Y.V.

    45'N and 21 degrees 00N. Representative core samples preserving their natural state were also retrieved from the region in the water depths ranging from 5 to 70 m for the determination of physical properties in the laboratory. Data on the physical...

  2. Evaluation of anatomical and physical properties of Khaya nthotheca

    African Journals Online (AJOL)

    The anatomical and physical properties of Khaya anthotheca (Welw.) C. DC wood from the transition forest of middle altitude (zone 1) and the humid dense forest of low altitude (zone 2) in the East of the Democratic Republic of Congo were evaluated to ascertain the effect of growth area on the anatomical and physical ...

  3. Physical properties of the chiral quantum baryon

    International Nuclear Information System (INIS)

    Mignaco, A.J.; Wulck, S.

    1989-01-01

    It is presented an account to understand the quantum chiral baryon, which a stable chiral soliton with baryon number one obtained after first quantization by collective coordinates. Starting from the exact series solution to the non-linear sigma model with the hedge-hog configuration, the values of several physical quantities (mass, axial weak coupling, gyromagnetic ratios and radii) as a function of the order of Pade approximants used as approximanted representations of the solution, are calculated. It turns out that consistent results may be obtained, but a better approximation should be developed. (author) [pt

  4. Physical and Mechanical Properties of Sorghum Grains (Sorghum Vulgare

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available The physical and mechanical properties of sorghum grains (sorghum vulgare were studied at varying moisture contents of 13%, 20% and 30% (w.b. The four varieties of sorghum grains studied include; Dura, Guinea, Faterita and Kafir. Results indicate that the size ranges were 3.94mm - 4.83mm for Dura variety; 3.75mm - 4.54mm for Guinea variety; 3.21mm - 4.42mm for Kafir variety and 2.70mm - 4.14mm for Faterita variety. Irregularities in the shapes of the grains were observed but all approximated to a sphere. In the mechanical properties, at major diameter, Dura variety had highest rupture force of 1.16kN at 13% moisture content (w.b while the Guinea variety had the lowest rupture force of 0.955kN. In minor diameter, the Dura variety also recorded highest rupture force of 1.12kN at 13% moisture content (w.b while the Kafir variety had the lowest value of 0.952kN. Also at 20% moisture content, the Dura variety had highest rupture force of 1.025kN while the Guinea variety had the lowest rupture force of 0.965kN. The same trend applies in the varieties at 30% moisture content. This is because, increase in moisture content results to decrease in rupture force. And this implies that force beyond these points at these moisture contents may cause damage to the sorghum varieties.

  5. Mechanical and physical properties of agro-based fiberboard

    Science.gov (United States)

    S. Lee; T.F. Shupe; C.Y. Hse

    2006-01-01

    In order to better utilize agricultural fibers as an alternative resource for composite panels, several variables were investigated to improve mechanical and physical properties of agm-based fiberboard. This study focused on the effect of fiber morphology, slenderness ratios (UD), and fiber mixing combinations on panel properties. The panel construction types were also...

  6. Impact of UV radiation on the physical properties of polypropylene ...

    African Journals Online (AJOL)

    The purpose of this study was to analyse the influence of simulated sun light radiation (xenon lamp) on physical properties of polypropylene (PP) nonwoven material, which is used for the production of agrotextiles. The research showed that the properties of row cover change when radiated with UV light. Tensile, tearing ...

  7. Prediction of thermo-physical properties of liquid formulated products

    DEFF Research Database (Denmark)

    Mattei, Michele; Conte, Elisa; Kontogeorgis, Georgios

    2013-01-01

    The objective of this chapter is to give an overview of the models, methods and tools that may be used for the estimation of liquid formulated products. First a classification of the products is given and the thermo-physical properties needed to represent their functions are listed. For each...... property, a collection of the available models are presented according to the property type and the model type. It should be noted, however, that the property models considered or highlighted in this chapter are only examples and are not necessarily the best and most accurate for the corresponding property....

  8. Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution

    International Nuclear Information System (INIS)

    Dongyu, Xu; Xin, Cheng; Shifeng, Huang; Banerjee, Sourav

    2014-01-01

    The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction of piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer

  9. Evaluation of properties of low activation Mn-Cr steel (2). Physical properties and aging properties

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru; Fukaya, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sato, Ikuo; Kusuhashi, Mikio; Hatakeyama, Takeshi [Japan Steel Works Ltd., Muroran, Hokkaido (Japan). Muroran Plant; Takahashi, Heishichiro [Hokkaido Univ., Sapporo (Japan); Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2000-08-01

    The JT-60SU (Super Upgrade) program is under discussion at JAERI. Its design optimization activity requires the vacuum vessel material to be non-magnetic, very strong and with low induced activation. However, there is no suitable material available to fulfill all the requirements. JAERI started to develop a new material for the vacuum vessel together with the Japan Steel Works LTD. (JSW). Chemical composition and metallurgical processes were optimized and a new steel named VC9, which has the composition of Cr :16wt%, Mn :15.5wt%, C :0.2wt%, N :0.2wt% with nonmagnetic single {gamma} phase, was selected as a candidate material. Here, physical properties and aging properties of VC9 were studied and the results were compared with those of 316L stainless steel. (author)

  10. Varying the item format improved the range of measurement in patient-reported outcome measures assessing physical function.

    Science.gov (United States)

    Liegl, Gregor; Gandek, Barbara; Fischer, H Felix; Bjorner, Jakob B; Ware, John E; Rose, Matthias; Fries, James F; Nolte, Sandra

    2017-03-21

    Physical function (PF) is a core patient-reported outcome domain in clinical trials in rheumatic diseases. Frequently used PF measures have ceiling effects, leading to large sample size requirements and low sensitivity to change. In most of these instruments, the response category that indicates the highest PF level is the statement that one is able to perform a given physical activity without any limitations or difficulty. This study investigates whether using an item format with an extended response scale, allowing respondents to state that the performance of an activity is easy or very easy, increases the range of precise measurement of self-reported PF. Three five-item PF short forms were constructed from the Patient-Reported Outcomes Measurement Information System (PROMIS®) wave 1 data. All forms included the same physical activities but varied in item stem and response scale: format A ("Are you able to …"; "without any difficulty"/"unable to do"); format B ("Does your health now limit you …"; "not at all"/"cannot do"); format C ("How difficult is it for you to …"; "very easy"/"impossible"). Each short-form item was answered by 2217-2835 subjects. We evaluated unidimensionality and estimated a graded response model for the 15 short-form items and remaining 119 items of the PROMIS PF bank to compare item and test information for the short forms along the PF continuum. We then used simulated data for five groups with different PF levels to illustrate differences in scoring precision between the short forms using different item formats. Sufficient unidimensionality of all short-form items and the original PF item bank was supported. Compared to formats A and B, format C increased the range of reliable measurement by about 0.5 standard deviations on the positive side of the PF continuum of the sample, provided more item information, and was more useful in distinguishing known groups with above-average functioning. Using an item format with an extended

  11. The effect of various sintering temperature on used refractory towards its physical properties

    Science.gov (United States)

    Sudibyo; Wulandari, Y. R.; Amin, M.; Azhar

    2018-01-01

    The used magnesia refractory from the kiln of cement industry was successfully recycled to new refractory using Kaolin as an adhesive. In this work, the temperatures of sintering were varied from 1000°C to 1500°C. The result shows that the increment temperature effects in sintering process will enhance refractory physical properties such as bulk density, cold crushing strength or pressure strength and thermal conductivity. Meanwhile, the porosity was decreased as the increase of the sintering temperature.

  12. Substrate-Versatile Approach to Robust Antireflective and Superhydrophobic Coatings with Excellent Self-Cleaning Property in Varied Environments.

    Science.gov (United States)

    Ren, Tingting; He, Junhui

    2017-10-04

    Robust antireflective and superhydrophobic coatings are highly desired in wide applications, such as optical devices, solar cell panels, architectural and automotive glasses, lab-on chip systems, and windows for electronic devices. Meanwhile, simple, low-cost, and substrate-versatile fabrication is also essential toward real applications of such coatings. Herein, we developed a substrate-versatile strategy to fabricate robust antireflective and superhydrophobic coatings with excellent self-cleaning property in varied environments, including air and oil and after oil contamination. A mixed ethanol suspension, which consists of 1H,1H,2H,2H-perfluorooctyltriethoxysilane modified dual-sized silica nanoparticles and acid-catalyzed silica precursor, was first synthesized. The acid-catalyzed silica precursor could help to form a highly cross-linked silica network by connecting the silica nanoparticles, thus significantly enhancing the robustness of coatings. The as-prepared coatings were able to withstand a water drop impact test, sand abrasion test, tape adhesion test, and knife and pencil scratching tests. More importantly, it was also found that the wettability and self-cleaning property of coatings after oil contamination were surprisingly different from those in air and oil. These observations are explainable by the alteration of interface; i.e., the alteration of interface has significant effects on the functional properties of coatings. Additionally, the mixed suspension could be sprayed onto various hard and soft substrates including glass, polyethylene terephthalate (PET), polycarbonate (PC), and poly(methyl methacrylate) (PMMA), opening up a feasible route toward varied practical applications in solar cell panels, optical devices, architectural and automotive glasses, droplet manipulators, and fluid control.

  13. Examining Explanations for the Link Between Bullying Perpetration and Physical Dating Violence Perpetration: Do They Vary by Bullying Victimization?

    Science.gov (United States)

    Foshee, Vangie A.; Benefield, Thad S.; Reyes, Heath Luz McNaughton; Eastman, Meridith; Vivolo-Kantor, Alana M.; Basile, Kathleen C.; Ennett, Susan T.; Faris, Robert

    2015-01-01

    This short-term longitudinal study examined whether the association between bullying perpetration and later physical dating violence perpetration and mediators of that association (via anger, depression, anxiety, and social status), varied depending on level of bullying victimization. Differences have been noted between those who bully but are not victims of bullying, and those who are both bullies and victims. These differences may influence dating violence risk and the explanations for why bullying leads to dating violence. Data were from dating adolescents in three rural counties who completed self-administered questionnaires in the fall semester of grades 8–10 and again in the spring semester. The sample (N =2,414) was 44.08% male and 61.31% white. Bullying perpetration in the fall semester predicted physical dating violence perpetration in the spring semester when there was no bullying victimization, but not when there was any bullying victimization. Bullying perpetration was positively associated with anger at all levels of bullying victimization and with social status when there was no or low amounts of victimization; it was negatively associated with social status at high levels of victimization. Bullying victimization was positively associated with anger, depression, and anxiety at all levels of bullying perpetration. Anger mediated the association between bullying perpetration and dating violence, regardless of level of victimization; depression, anxiety, and social status did not mediate the association at any level of bullying victimization. The findings have implications for dating violence prevention efforts and for future research on the link between bullying and dating violence. PMID:26299840

  14. Examining explanations for the link between bullying perpetration and physical dating violence perpetration: Do they vary by bullying victimization?

    Science.gov (United States)

    Foshee, Vangie A; Benefield, Thad S; McNaughton Reyes, Heath Luz; Eastman, Meridith; Vivolo-Kantor, Alana M; Basile, Kathleen C; Ennett, Susan T; Faris, Robert

    2016-01-01

    This short-term longitudinal study examined whether the association between bullying perpetration and later physical dating violence perpetration and mediators of that association (via anger, depression, anxiety, and social status), varied depending on level of bullying victimization. Differences have been noted between those who bully but are not victims of bullying, and those who are both bullies and victims. These differences may influence dating violence risk and the explanations for why bullying leads to dating violence. Data were from dating adolescents in three rural counties who completed self-administered questionnaires in the fall semester of grades 8-10 and again in the spring semester. The sample (N = 2,414) was 44.08% male and 61.31% white. Bullying perpetration in the fall semester predicted physical dating violence perpetration in the spring semester when there was no bullying victimization, but not when there was any bullying victimization. Bullying perpetration was positively associated with anger at all levels of bullying victimization and with social status when there was no or low amounts of victimization; it was negatively associated with social status at high levels of victimization. Bullying victimization was positively associated with anger, depression, and anxiety at all levels of bullying perpetration. Anger mediated the association between bullying perpetration and dating violence, regardless of level of victimization; depression, anxiety, and social status did not mediate the association at any level of bullying victimization. The findings have implications for dating violence prevention efforts and for future research on the link between bullying and dating violence. © 2015 Wiley Periodicals, Inc.

  15. SAPHYR: the Swiss Atlas of PHYsical properties of Rocks

    Science.gov (United States)

    Wenning, Q. C.; Zappone, A. S.; Kissling, E.

    2015-12-01

    The Swiss Atlas of PHYsical properties of Rocks (SAPHYR) is a multi-year project, aiming to compile a comprehensive data set on physical properties of rocks exposed in Switzerland and surrounding areas. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public, such as industrial, engineering, land and resource planning companies, as well as academic institutions. Since the early sixties worldwide geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. In combination with efforts to investigate deep structure of the continental crust by controlled source seismology, laboratories capable to reproduce pressure and temperature conditions to depth of 50km and more collected measurements of various parameters on a wide variety of rock types. In recent years, the increasing interest on non-traditional energy supply, (deep geothermal energy, shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. The idea to organize those laboratory data into a geographically referenced database (GIS) is supported by the Swiss Commission for Geophysics. The data refer to density and porosity, seismic, magnetic, thermal properties, permeability and electrical properties. An effort has been placed on collecting samples and measuring the physical properties of lithologies that are poorly documented in literature. The phase of laboratory measurements is still in progress. At present SAPHYR focuses towards developing a 3-D physical properties model of the Swiss subsurface, using the structure of the exposed geology, boreholes data and seismic surveys, combined with lab determined pressure and temperature derivatives. An early version of the final product is presented here.

  16. Investigating correlation between legal and physical property: possibilities and constraints

    Science.gov (United States)

    Dimopoulou, E.; Kitsakis, D.; Tsiliakou, E.

    2015-06-01

    Contemporary urban environment is characterized by complexity and mixed use of space, in which overlapping land parcels and different RRRs (Rights, Restrictions and Responsibilities) are frequent phenomena. Internationally, real property legislation either focuses on surface property or has introduced individual 3D real property units. The former approach merely accommodates issues related to subdivision, expropriation and transactions on part of the real property above or below surface, while the latter provides for defining and registering 3D real property units. National laws require two-dimensional real property descriptions and only a limited number of jurisdictions provide for threedimensional data presentation and recording. International awareness on 3D Cadastre may be apparent through the proposals for transition of existing cadastral systems to 3D along with legal amendments improving national 3D Cadastre legislation. Concurrently the use of appropriate data sources and the correct depiction of 3D property units' boundaries and spatial relationships need to be addressed. Spatial relations and constraints amongst real world objects could be modeled geometrically and topologically utilizing numerous modeling tools, e.g. CityGML, BIM and further sophisticated 3D software or by adapting international standards, e.g. LADM. A direct correlation between legal and physical property should be based on consistent geometry between physical and legal space, improving the accuracy that legal spaces' volumes or locations are defined. To address these issues, this paper investigates correlation possibilities and constraints between legal and physical space of typical 3D property cases. These cases comprise buildings or their interior spaces with mixed use, as well as complex structures described by explicit facade patterns, generated by procedural or by BIM ready 3D models. The 3D models presented are evaluated, regarding compliancy to physical or legal reality.

  17. Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity.

    Science.gov (United States)

    Spitzer, M W; Semple, M N

    1998-12-01

    Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity. J. Neurophysiol. 80: 3062-3076, 1998. Previous studies demonstrated that tuning of inferior colliculus (IC) neurons to interaural phase disparity (IPD) is often profoundly influenced by temporal variation of IPD, which simulates the binaural cue produced by a moving sound source. To determine whether sensitivity to simulated motion arises in IC or at an earlier stage of binaural processing we compared responses in IC with those of two major IPD-sensitive neuronal classes in the superior olivary complex (SOC), neurons whose discharges were phase locked (PL) to tonal stimuli and those that were nonphase locked (NPL). Time-varying IPD stimuli consisted of binaural beats, generated by presenting tones of slightly different frequencies to the two ears, and interaural phase modulation (IPM), generated by presenting a pure tone to one ear and a phase modulated tone to the other. IC neurons and NPL-SOC neurons were more sharply tuned to time-varying than to static IPD, whereas PL-SOC neurons were essentially uninfluenced by the mode of stimulus presentation. Preferred IPD was generally similar in responses to static and time-varying IPD for all unit populations. A few IC neurons were highly influenced by the direction and rate of simulated motion, but the major effect for most IC neurons and all SOC neurons was a linear shift of preferred IPD at high rates-attributable to response latency. Most IC and NPL-SOC neurons were strongly influenced by IPM stimuli simulating motion through restricted ranges of azimuth; simulated motion through partially overlapping azimuthal ranges elicited discharge profiles that were highly discontiguous, indicating that the response associated with a particular IPD is dependent on preceding portions of the stimulus. In contrast, PL-SOC responses tracked instantaneous IPD throughout the trajectory of simulated

  18. Comparative studies of physical properties of kinesiotapes.

    Science.gov (United States)

    Gołąb, Agnieszka; Kulesa-Mrowiecka, Małgorzata; Gołąb, Marek

    2017-01-01

    Nowadays we observe growing popularity of kinesiotaping as a supportive method in physiotherapy. In documents available on kinesiotaping we can find that mechanical properties of tapes are similar to the ones of a human skin, but usually there is hardly any numerical data characterizing these properties. Therefore, testing and comparing physical properties of commercially available kinesiotapes seems to be important. Physical properties of five commercially available kinesiotapes were examined. Strain vs. stress data was collected up to 15 N. Program Origin 9.0 was used for data analysis. The obtained results show that up to about 2 N the strain vs. stress characteristics of the tested tapes are similar while for greater stress they differ essentially. An alternative, to commonly used, way of defining relative strain is proposed. This definition could be more suitable in those cases when desired tape tensions are higher than 50% i.e. in ligament and tendon techniques.

  19. Physical properties of sidewall cores from Decatur, Illinois

    Science.gov (United States)

    Morrow, Carolyn A.; Kaven, Joern; Moore, Diane E.; Lockner, David A.

    2017-10-18

    To better assess the reservoir conditions influencing the induced seismicity hazard near a carbon dioxide sequestration demonstration site in Decatur, Ill., core samples from three deep drill holes were tested to determine a suite of physical properties including bulk density, porosity, permeability, Young’s modulus, Poisson’s ratio, and failure strength. Representative samples of the shale cap rock, the sandstone reservoir, and the Precambrian basement were selected for comparison. Physical properties were strongly dependent on lithology. Bulk density was inversely related to porosity, with the cap rock and basement samples being both least porous (

  20. Prediction of transport and other physical properties of fluids

    CERN Document Server

    Bretsznajder, S

    1971-01-01

    Prediction of Transport and Other Physical Properties of Fluids reviews general methods for predicting the transport and other physical properties of fluids such as gases and liquids. Topics covered range from the theory of corresponding states and methods for estimating the surface tension of liquids to some basic concepts of the kinetic theory of gases. Methods of estimating liquid viscosity based on the principle of additivity are also described. This volume is comprised of eight chapters and opens by presenting basic information on gases and liquids as well as intermolecular forces and con

  1. Use of ultrasound to monitor physical properties of soybean oil

    Science.gov (United States)

    Baêsso, R. M.; Oliveira, P. A.; Morais, G. C.; Alvarenga, A. V.; Costa-Félix, R. P. B.

    2016-07-01

    The study of the monitoring physical properties of soybean oil was performed. The pulse-echo method allowed measuring the density and viscosity of the oil in real time and accurately. The physical property values were related to the acoustic time of flight ratio, dimensionless parameter that can be obtained from any reference. In our case, we used the time of flight at 20°C as reference and a fixed distance between the transducer and the reflector. Ultrasonic monitoring technique employed here has shown promising in the analysis of edible oils.

  2. Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application

    Directory of Open Access Journals (Sweden)

    Lijuan Wang

    2017-02-01

    Full Text Available Dilute bismide in which a small amount of bismuth is incorporated to host III-Vs is the least studied III-V compound semiconductor and has received steadily increasing attention since 2000. In this paper, we review theoretical predictions of physical properties of bismide alloys, epitaxial growth of bismide thin films and nanostructures, surface, structural, electric, transport and optic properties of various binaries and bismide alloys, and device applications.

  3. Physical properties of charged particle beams for use in radiotherapy

    International Nuclear Information System (INIS)

    Knapp, E.A.

    1975-01-01

    The physical properties of the possible charged particle beams used for cancer radiotherapy are reviewed. Each property is discussed for all interesting particles (π, p, α, Ne ion) and the differences are emphasized. This is followed by a short discussion of the several beam delivery systems used in particle therapy today, emphasizing the differences in the problems for the several different radiations, particularly the differences between the accelerated particle beams and those of a secondary nature. Dose calculation techniques are described

  4. Physical Properties of Low-Molecular Weight Polydimethylsiloxane Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Christine Cardinal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Graham, Alan [Univ. of Colorado, Denver, CO (United States); Nemer, Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Phinney, Leslie M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Garcia, Robert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soehnel, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stirrup, Emily Kate [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Physical property measurements including viscosity, density, thermal conductivity, and heat capacity of low-molecular weight polydimethylsiloxane (PDMS) fluids were measured over a wide temperature range (-50°C to 150°C when possible). Properties of blends of 1 cSt and 20 cSt PDMS fluids were also investigated. Uncertainties in the measurements are cited. These measurements will provide greater fidelity predictions of environmental sensing device behavior in hot and cold environments.

  5. Structure and physical properties of bio membranes and model membranes

    International Nuclear Information System (INIS)

    Tibor Hianik

    2006-01-01

    Bio membranes belong to the most important structures of the cell and the cell organelles. They play not only structural role of the barrier separating the external and internal part of the membrane but contain also various functional molecules, like receptors, ionic channels, carriers and enzymes. The cell membrane also preserves non-equilibrium state in a cell which is crucial for maintaining its excitability and other signaling functions. The growing interest to the bio membranes is also due to their unique physical properties. From physical point of view the bio membranes, that are composed of lipid bilayer into which are incorporated integral proteins and on their surface are anchored peripheral proteins and polysaccharides, represent liquid s crystal of smectic type. The bio membranes are characterized by anisotropy of structural and physical properties. The complex structure of bio membranes makes the study of their physical properties rather difficult. Therefore several model systems that mimic the structure of bio membranes were developed. Among them the lipid monolayers at an air-water interphase, bilayer lipid membranes, supported bilayer lipid membranes and liposomes are most known. This work is focused on the introduction into the physical word of the bio membranes and their models. After introduction to the membrane structure and the history of its establishment, the physical properties of the bio membranes and their models are stepwise presented. The most focus is on the properties of lipid monolayers, bilayer lipid membranes, supported bilayer lipid membranes and liposomes that were most detailed studied. This lecture has tutorial character that may be useful for undergraduate and graduate students in the area of biophysics, biochemistry, molecular biology and bioengineering, however it contains also original work of the author and his co-worker and PhD students, that may be useful also for specialists working in the field of bio membranes and model

  6. Physical properties of root cementum: Part I. A new method for 3-dimensional evaluation.

    Science.gov (United States)

    Malek, S; Darendeliler, M A; Swain, M V

    2001-08-01

    Cementum is a nonuniform connective tissue that covers the roots of human teeth. Investigation of the physical properties of cementum may help in understanding or evaluating any possible connection to root resorption. A variety of engineering tests are available to investigate these properties. However, the thickness of the cementum layer varies, and this limits the applicability of these techniques in determining the physical properties of cementum. Hardness testing with Knoop and Vickers indentations overcame some of these limitations, but they prohibited the retrieval and retesting of the sample and therefore the testing was restricted to one area or section of the tooth. Another limiting factor with the existing techniques was the risk of artifacts related to the embedding material such as acrylic. A new method to investigate the physical properties of human premolar cementum was developed to obtain a 3-dimensional map of these properties with the Ultra Micro Indentation System (UMIS-2000; Commonwealth Scientific and Industrial Research Organization, Campbell, Australia). UMIS-2000 is a nano-indentation instrument for investigation of the properties of the near-surface region of materials. Premolars were harvested from orthodontic patients requiring extractions and then mounted on a newly designed surveyor that allowed sample retrieval and 3-dimensional rotation. This novel method enabled the quantitative testing of root surface cementum, on all 4 root surfaces, extending from the apex to the cementoenamel junction at 60 different sites.

  7. Impacts of land leveling on lowland soil physical properties

    Directory of Open Access Journals (Sweden)

    José Maria Barbat Parfitt

    2014-02-01

    Full Text Available The practice of land leveling alters the soil surface to create a uniform slope to improve land conditions for the application of all agricultural practices. The aims of this study were to evaluate the impacts of land leveling through the magnitudes, variances and spatial distributions of selected soil physical properties of a lowland area in the State of Rio Grande do Sul, Brazil; the relationships between the magnitude of cuts and/or fills and soil physical properties after the leveling process; and evaluation of the effect of leveling on the spatial distribution of the top of the B horizon in relation to the soil surface. In the 0-0.20 m layer, a 100-point geo-referenced grid covering two taxonomic soil classes was used in assessment of the following soil properties: soil particle density (Pd and bulk density (Bd; total porosity (Tp, macroporosity (Macro and microporosity (Micro; available water capacity (AWC; sand, silt, clay, and dispersed clay in water (Disp clay contents; electrical conductivity (EC; and weighted average diameter of aggregates (WAD. Soil depth to the top of the B horizon was also measured before leveling. The overall effect of leveling on selected soil physical properties was evaluated by paired "t" tests. The effect on the variability of each property was evaluated through the homogeneity of variance test. The thematic maps constructed by kriging or by the inverse of the square of the distances were visually analyzed to evaluate the effect of leveling on the spatial distribution of the properties and of the top of the B horizon in relation to the soil surface. Linear regression models were fitted with the aim of evaluating the relationship between soil properties and the magnitude of cuts and fills. Leveling altered the mean value of several soil properties and the agronomic effect was negative. The mean values of Bd and Disp clay increased and Tp, Macro and Micro, WAD, AWC and EC decreased. Spatial distributions of all

  8. Fat properties during homogenization, spray-drying, and storage affect the physical properties of dairy powders.

    Science.gov (United States)

    Vignolles, M L; Lopez, C; Madec, M N; Ehrhardt, J J; Méjean, S; Schuck, P; Jeantet, R

    2009-01-01

    Changes in fat properties were studied before, during, and after the drying process (including during storage) to determine the consequences on powder physical properties. Several methods were combined to characterize changes in fat structure and thermal properties as well as the physical properties of powders. Emulsion droplet size and droplet aggregation depended on the homogenizing pressures and were also affected by spray atomization. Aggregation was usually greater after spray atomization, resulting in greater viscosities. These processes did not have the same consequences on the stability of fat in the powders. The quantification of free fat is a pertinent indicator of fat instability in the powders. Confocal laser scanning microscopy permitted the characterization of the structure of fat in situ in the powders. Powders from unhomogenized emulsions showed greater free fat content. Surface fat was always overrepresented, regardless of the composition and process parameters. Differential scanning calorimetry melting experiments showed that fat was partially crystallized in situ in the powders stored at 20 degrees C, and that it was unstable on a molecular scale. Thermal profiles were also related to the supramolecular structure of fat in the powder particle matrix. Powder physical properties depended on both composition and process conditions. The free fat content seemed to have a greater influence than surface fat on powder physical properties, except for wettability. This study clearly showed that an understanding of fat behavior is essential for controlling and improving the physical properties of fat-filled dairy powders and their overall quality.

  9. Moisture dependent of some physical and morphological properties ...

    African Journals Online (AJOL)

    The static coefficients for friction of dent corn seeds were determined steel, plywood, wood, glass and galvanized sheet at various moisture contents. The highest static coefficient of friction was found on the wood and the lowest on the glass sheet among the materials tested. Key words: Dent corn, physical properties, ...

  10. Proximate Composition, Physical and Sensory Properties of Non ...

    African Journals Online (AJOL)

    Objective: The objective of the study was to investigate the possibility of preparing non-wheat cakes using acha and Bambara nut flour blends and generate base line data on the chemical, physical and sensory properties of the cakes. Materials and methods: Acha grains and Bambara nut seeds were processed into flour ...

  11. determination of some physical properties of three groundnut varieties

    African Journals Online (AJOL)

    Dr Obe

    groundnuts. Three varieties of groundnuts namely ICGV-SM-93523, RMP-9 and RMP- 12 were collected and some of the physical properties, such as weight, angle of repose, coefficient of friction, bulk density, size, shape and moisture content were determined. The angle of repose for the three varieties was found to range ...

  12. Relationship between the Physical Properties and Hand of Jean Fabric

    Directory of Open Access Journals (Sweden)

    Kawamura Atsushi

    2016-09-01

    Full Text Available We investigated the distinctive characteristics of jean fabrics (denim fabrics obtained from jeans and compared the physical properties and the hand. We used 13 kinds of jean fabric from commercial jeans and 26 other fabric types. The physical properties were measured using the Kawabata evaluation system, and the fabric hand was evaluated by 20 subjects using a semantic differential method. To characterise the hand of jean fabrics compared with other fabrics, we used principal component analysis and obtained three principal components. We found that jean fabrics were characterised by the second principal component, which was affected by feelings of thickness and weight. We further characterised the jean fabrics according to ‘softness & smoothness’ and ‘non-fullness’, depending on country of origin and type of manufacturer. The three principal components were analysed using multiple linear regression to characterise the components according to the physical properties. We explained the hand of fabrics including jean fabrics using its association with physical properties.

  13. Physical and Chemical Properties of Some Selected Rice Varieties

    African Journals Online (AJOL)

    User

    Physical and chemical properties of nine rice varieties grown and processed in Ebonyi .... Therefore, one tonne of a slender variety of rice will need more storage space than the ..... during washing and boiling of milled rice Starch 36:386-390.

  14. Physical, sensory and chemical properties of bread prepared from ...

    African Journals Online (AJOL)

    Physical, sensory and chemical properties of bread prepared from wheat and ... Different levels (0, 1, 2 and 3% w/w) of cissus gum powder was added to ... flours for bread making where 100% wheat bread without cissus gum served as control. ... serve as a gluten substitute in preparing acceptable wheat bread substituted ...

  15. Physical property characterization of 183-H Basin sludge

    International Nuclear Information System (INIS)

    Biyani, R.K.; Delegard, C.H.

    1995-01-01

    This document describes the characterization of 183-H Basin sludge physical properties, e.g. bulk density of sludge and absorbent, and determination of free liquids. Calcination of crucible-size samples of sludge was also done and the resulting 'loss-on-ignition' was compared to the theoretical weight loss based on sludge analysis obtained from Weston Labs

  16. Molecular clips based on propanediurea : synthesis and physical properties

    NARCIS (Netherlands)

    Jansen, Robertus Johannes

    2002-01-01

    This thesis describes the synthesis and physical properties of a series of molecular clips derived from the concave molecule propanediurea. These molecular clips are cavity-containing receptors that can bind a variety of aromatic guests. This binding is a result of hydrogen bonding and pi-pi

  17. Materials used to simulate physical properties of human skin.

    Science.gov (United States)

    Dąbrowska, A K; Rotaru, G-M; Derler, S; Spano, F; Camenzind, M; Annaheim, S; Stämpfli, R; Schmid, M; Rossi, R M

    2016-02-01

    For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. a comparative study of the physical and mechanical properties

    African Journals Online (AJOL)

    HP-User

    [11] British Standard Institutes, BS EN 1097-6:2000, Tests for mechanical and physical properties of aggregates. Determination of particle density and water absorption, British Standard Institution, London. [12] Adaba, C. S., Agunwamba, J. C., Nwoji, C. U., Onya, O. E.,. Oze, S, “Comparative Cost And Strength Analysis Of.

  19. Tillage effects on soil. Physical properties and sunflower ...

    African Journals Online (AJOL)

    Soil physical properties and sunflower (Helianthus annuus) yield under convectional tillage (CT) and zero-tillage (Z,TJ. was monitored for 3 consecutive years in Ilorin, Southern Guinea Savannah zone of Nigeria (SGSZN). While bulk density of CT increased slightly over the years, significant decrease of 12 and 8% were ...

  20. Investigation of the mechanical and physical properties of greywacke specimens

    Czech Academy of Sciences Publication Activity Database

    Holub, Karel; Konečný, Pavel; Knejzlík, Jaromír

    2009-01-01

    Roč. 46, č. 1 (2009), s. 188-193 ISSN 1365-1609 Institutional research plan: CEZ:AV0Z30860518 Keywords : greywacke * mechanical and physical properties Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.142, year: 2009 www.elsevier.com/locate ijrmms

  1. Assessment of physical properties of foods commonly consumed by children

    Directory of Open Access Journals (Sweden)

    G Neeraja

    2018-01-01

    Conclusion: The physical properties and texture of food can be considered to be a risk factor for evaluating the relationship between food retention and dental caries. This information can further be used as an educative tool to parents and caregivers for effective modification of diet.

  2. Investigation of the physical and mechanical properties of Shea Tree ...

    African Journals Online (AJOL)

    Investigation of the physical and mechanical properties of Shea Tree timber ( Vitellaria paradoxa ) used for structural applications in Kwara State, Nigeria. ... strength parallel to grain of 24.7 (N/mm2), compressive strength perpendicular to grain of 8.99 (N/mm2), shear strength of 2.01 (N/mm2), and tensile strength parallel to ...

  3. Physical Properties And Maize Production In A Spent Oil ...

    African Journals Online (AJOL)

    Information on the use of plant species and organic nutrients to improve the physical properties of oil-contaminated soil, with a view to making it conducive for crop production, is very important. Three legumes (Gliricidia sepium, Leucenae leucocephala and Calapogonium caeruleam) combined or not with poultry manure ...

  4. Some physical and strength properties of immature Pinus patula ...

    African Journals Online (AJOL)

    A study was conducted to determine physical and strength properties of immature Pinus patula grown in Iringa and Njombe regions of Tanzania. Sample trees aged 5 to 15 years were collected from farmers' woodlots. The trees were categorized into 5 age classes: 5 - 7, 8 - 10, 11 - 12, 13 - 14 and 15 years. Four trees from ...

  5. Evaluation of the mechanical and physical properties of a posterior ...

    African Journals Online (AJOL)

    To evaluate the mechanical and physical properties of a micro-hybrid resin composite used in adult posterior restorations A micro-hybrid, light curing resin composite Unolux BCS Composite Restorative, (UnoDent, England) was used to restore 74 carious classes I and II cavities on posterior teeth of 62 adult patients.

  6. Process depending morphology and resulting physical properties of TPU

    Energy Technology Data Exchange (ETDEWEB)

    Frick, Achim, E-mail: achim.frick@hs-aalen.de; Spadaro, Marcel, E-mail: marcel.spadaro@hs-aalen.de [Institute of Polymer Science and Processing (iPSP), Aalen University (Germany)

    2015-12-17

    Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix or of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.

  7. Aluminium effect on the physical properties of titanium

    International Nuclear Information System (INIS)

    Nazimov, O.P.; Il'in, A.A.; Zvonova, L.N.

    1977-01-01

    The effect of aluminium on the physical properties of titanium was investigated. Within the framework of the configuration model of matter it is shown that a change in physical properties with an aluminium content of up to 7.5 wt.% in alloys depends on the phase composition and electron structure. In interacting with titanium, aluminium exhibits acceptor properties, causing d→s electron transitions. The electrons which have shifted to the s-state are partly collectivized and partly localized into quasistable sp 3 configurations, with the resulting increase of the interatomic forces. An intensification of d→s transitions in alloying of titanium with aluminium stabilizes the α-phase. Predominance of d 1 configurations in the intermediate spectrum in the region of the α-solution increases the ratio of the axes of the HCP lattice and determines the electron type of conduction of alloys of the Ti-Al system

  8. Using physical properties of molten glass to estimate glass composition

    International Nuclear Information System (INIS)

    Choi, Kwan Sik; Yang, Kyoung Hwa; Park, Jong Kil

    1997-01-01

    A vitrification process is under development in KEPRI for the treatment of low-and medium-level radioactive waste. Although the project is for developing and building Vitrification Pilot Plant in Korea, one of KEPRI's concerns is the quality control of the vitrified glass. This paper discusses a methodology for the estimation of glass composition by on-line measurement of molten glass properties, which could be applied to the plant for real-time quality control of the glass product. By remotely measuring viscosity and density of the molten glass, the glass characteristics such as composition can be estimated and eventually controlled. For this purpose, using the database of glass composition vs. physical properties in isothermal three-component system of SiO 2 -Na 2 O-B 2 O 3 , a software TERNARY has been developed which determines the glass composition by using two known physical properties (e.g. density and viscosity)

  9. Determining the thermal and physicals properties of oil processing products

    Directory of Open Access Journals (Sweden)

    Viktoria I. Kryvda

    2015-03-01

    Full Text Available In the last decades both technological process’ improvement and primary energy resources saving are the main tasks of oil refineries. Using various oil products does impose an accurate knowledge of their properties. The dispersion analysis applied makes possible to construct a model simulating the primary oil refining products’ and raw materials’ thermal physical properties. As a result of data approximation there were obtained polynomials with coefficients differing from attributable to the studied oil products fractions. The research represents graphic dependences of thermal physical properties on temperature values for diesel oil fraction. The linear character of density and calorific capacity dependencies from temperature is represented with a proportional error in calculations. The relative minimum error is below 2% that confirms the implemented calculations’ adequacy. The resulting model can be used in calculations for further technological process improvements.

  10. PhySIC: a veto supertree method with desirable properties.

    Science.gov (United States)

    Ranwez, Vincent; Berry, Vincent; Criscuolo, Alexis; Fabre, Pierre-Henri; Guillemot, Sylvain; Scornavacca, Celine; Douzery, Emmanuel J P

    2007-10-01

    This paper focuses on veto supertree methods; i.e., methods that aim at producing a conservative synthesis of the relationships agreed upon by all source trees. We propose desirable properties that a supertree should satisfy in this framework, namely the non-contradiction property (PC) and the induction property (PI). The former requires that the supertree does not contain relationships that contradict one or a combination of the source topologies, whereas the latter requires that all topological information contained in the supertree is present in a source tree or collectively induced by several source trees. We provide simple examples to illustrate their relevance and that allow a comparison with previously advocated properties. We show that these properties can be checked in polynomial time for any given rooted supertree. Moreover, we introduce the PhySIC method (PHYlogenetic Signal with Induction and non-Contradiction). For k input trees spanning a set of n taxa, this method produces a supertree that satisfies the above-mentioned properties in O(kn(3) + n(4)) computing time. The polytomies of the produced supertree are also tagged by labels indicating areas of conflict as well as those with insufficient overlap. As a whole, PhySIC enables the user to quickly summarize consensual information of a set of trees and localize groups of taxa for which the data require consolidation. Lastly, we illustrate the behaviour of PhySIC on primate data sets of various sizes, and propose a supertree covering 95% of all primate extant genera. The PhySIC algorithm is available at http://atgc.lirmm.fr/cgi-bin/PhySIC.

  11. LOW-MASS GALAXY FORMATION IN COSMOLOGICAL ADAPTIVE MESH REFINEMENT SIMULATIONS: THE EFFECTS OF VARYING THE SUB-GRID PHYSICS PARAMETERS

    International Nuclear Information System (INIS)

    ColIn, Pedro; Vazquez-Semadeni, Enrique; Avila-Reese, Vladimir; Valenzuela, Octavio; Ceverino, Daniel

    2010-01-01

    We present numerical simulations aimed at exploring the effects of varying the sub-grid physics parameters on the evolution and the properties of the galaxy formed in a low-mass dark matter halo (∼7 x 10 10 h -1 M sun at redshift z = 0). The simulations are run within a cosmological setting with a nominal resolution of 218 pc comoving and are stopped at z = 0.43. For simulations that cannot resolve individual molecular clouds, we propose the criterion that the threshold density for star formation, n SF , should be chosen such that the column density of the star-forming cells equals the threshold value for molecule formation, N ∼ 10 21 cm -2 , or ∼8 M sun pc -2 . In all of our simulations, an extended old/intermediate-age stellar halo and a more compact younger stellar disk are formed, and in most cases, the halo's specific angular momentum is slightly larger than that of the galaxy, and sensitive to the SF/feedback parameters. We found that a non-negligible fraction of the halo stars are formed in situ in a spheroidal distribution. Changes in the sub-grid physics parameters affect significantly and in a complex way the evolution and properties of the galaxy: (1) lower threshold densities n SF produce larger stellar effective radii R e , less peaked circular velocity curves V c (R), and greater amounts of low-density and hot gas in the disk mid-plane; (2) when stellar feedback is modeled by temporarily switching off radiative cooling in the star-forming regions, R e increases (by a factor of ∼2 in our particular model), the circular velocity curve becomes flatter, and a complex multi-phase gaseous disk structure develops; (3) a more efficient local conversion of gas mass to stars, measured by a stellar particle mass distribution biased toward larger values, increases the strength of the feedback energy injection-driving outflows and inducing burstier SF histories; (4) if feedback is too strong, gas loss by galactic outflows-which are easier to produce in low

  12. Processing-structure-property relationships in electron beam physical vapor deposited yttria stabilized zirconia coatings

    International Nuclear Information System (INIS)

    Rao, D. Srinivasa; Valleti, Krishna; Joshi, S. V.; Janardhan, G. Ranga

    2011-01-01

    The physical and mechanical properties of yttria stabilized zirconia (YSZ) coatings deposited by the electron beam physical vapor deposition technique have been investigated by varying the key process variables such as vapor incidence angle and sample rotation speed. The tetragonal zirconia coatings formed under varying process conditions employed were found to have widely different surface and cross-sectional morphologies. The porosity, phase composition, planar orientation, hardness, adhesion, and surface residual stresses in the coated specimens were comprehensively evaluated to develop a correlation with the process variables. Under transverse scratch test conditions, the YSZ coatings exhibited two different crack formation modes, depending on the magnitude of residual stress. The influence of processing conditions on the coating deposition rate, column orientation angle, and adhesion strength has been established. Key relationships between porosity, hardness, and adhesion are also presented.

  13. Granular activated carbons from broiler manure: physical, chemical and adsorptive properties.

    Science.gov (United States)

    Lima, Isabel M; Marshall, Wayne E

    2005-04-01

    Broiler manure produced at large concentrated facilities poses risks to the quality of water and public health. This study utilizes broiler litter and cake as source materials for granular activated carbon production and optimizes conditions for their production. Pelletized manure samples were pyrolyzed at 700 degrees C for 1 h followed by activation in an inert atmosphere under steam at different water flow rates, for a period ranging from 15 to 75 min. Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant, yields varied from 18% to 28%, surface area varied from 253 to 548 m2/g and copper ion adsorption varied from 0.13 to 1.92 mmol Cu2+/g carbon. Best overall performing carbons were steam activated for 45 min at 3 ml/min. Comparative studies with commercial carbons revealed the broiler cake-based carbon as having the highest copper ion efficiency.

  14. Physicochemical and catalytic properties of Au nanorods micro-assembled in solvents of varying dipole moment and refractive index

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Rupinder; Pal, Bonamali, E-mail: bpal@thapar.edu

    2015-02-15

    Highlights: • Physicochemical activities of Au nanorods in water largely differ from organic solvents. • Au nanorods agglomeration increased with dipole moments of different polar solvents. • Refractive indexes of Au nanorods dispersion in various polar solvents are enhanced. • Electrokinetics significantly altered depending on agglomerated size of Au nanorods. • Catalysis or co-catalysis activity is varied as per the extent of Au nanorods coagulation. - Abstract: This paper deals with the impact of dipole moment (1.66–3.96 D) and refractive index (1.333–1.422) of the dispersion solvent on the plasmon absorption, surface charge, zeta potential, and adsorption properties of Au nanorods (AuNRs). AuNRs (length ≈ 53 nm and width ≈ 20 nm) undergo agglomeration (size 50–180 nm) with increase in the dipole moment of solvent (iPrOH < MeOH < DMF < DMSO). Whereas, no such coagulation occurs in H{sub 2}O and CCl{sub 4} suspension as confirmed by DLS and TEM size distribution. The electrostatic interaction of AuNRs with its surface adsorbed solvent dipoles leads to alteration of the their ionic state, absolute electronic charge and zeta potential (+49.79 mV in H{sub 2}O, +8.99 mV in DMF and −4.65 mV in MeOH dispersion) to a greater extent. This interaction distinctly modifies the adsorption behavior of polar molecules like p-nitrophenol and salicylic acid on AuNRs surface, as evidenced by the measured changes in their electro-kinetic parameters. As a result, we observe a substantial difference in catalytic and co-catalytic activities of AuNRs dispersed in various solvents as mentioned above because the catalytic properties of AuNRs are strongly dependent on the type of solvent in which they are dispersed.

  15. Physical properties of biological entities: an introduction to the ontology of physics for biology.

    Directory of Open Access Journals (Sweden)

    Daniel L Cook

    Full Text Available As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB, a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration.

  16. Physical properties of biological entities: an introduction to the ontology of physics for biology.

    Science.gov (United States)

    Cook, Daniel L; Bookstein, Fred L; Gennari, John H

    2011-01-01

    As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB), a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration. © 2011 Cook et al.

  17. Observations of NEAs at Arecibo Observatory and NASA's IRTF: Combining Radar and Thermal Measurements to Better Understand NEA Physical Properties

    NARCIS (Netherlands)

    Nolan, Michael C.; Vervack, R. J.; Howell, E. S.; Magri, C.; Fernandez, Y. R.; Taylor, P. A.; Mueller, M.; Rivkin, A. S.; Benner, L. A. M.

    2010-01-01

    As we sample ever-smaller sizes of near-Earth asteroids (NEAs), we see an increasing variation in the range of physical properties. Radar experiments show a diverse range of shapes, surface features, and rotation states among NEAs. Infrared observations of these objects are equally varied,

  18. Influence of wheat kernel physical properties on the pulverizing process.

    Science.gov (United States)

    Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula

    2014-10-01

    The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel.

  19. Physical Properties of Hanford Transuranic Waste. Final Report

    International Nuclear Information System (INIS)

    Berg, John C.

    2010-01-01

    The research described herein was undertaken to provide needed physical property descriptions of the Hanford transuranic tank sludges under conditions that might exist during retrieval, treatment, packaging and transportation for disposal. The work addressed the development of a fundamental understanding of the types of systems represented by these sludge suspensions through correlation of the macroscopic rheological properties with particle interactions occurring at the colloidal scale in the various liquid media. The results of the work have advanced existing understanding of the sedimentation and aggregation properties of complex colloidal suspensions. Bench scale models were investigated with respect to their structural, colloidal and rheological properties that should be useful for the development and optimization of techniques to process the wastes at various DOE sites.

  20. Physical Properties for Lipids Based Process and Product Design

    DEFF Research Database (Denmark)

    Ana Perederic, Olivia; Kalakul, Sawitree; Sarup, Bent

    Lipid processing covers several oil and fats technologies such as: edible oil production, biodieselproduction, oleochemicals (e.g.: food additives, detergents) and pharmaceutical product manufacturing. New demands regarding design and development of better products and more sustainable processes...... related to lipids technology, emerge according to consumers demanding improved product manufacturing from sustainable resources and new legislation regarding environmental safety [1]. Physical and thermodynamic property data and models for prediction of pure compound properties and mixtures properties...... involving lipids represent the basic and most important requirements for process product design, simulation and optimization. Experimentally measured values of involved compounds are desirable, but in most of the cases these are not available for all the compounds and properties needed. The lack...

  1. Ultrasonic evaluation of the physical and mechanical properties of granites.

    Science.gov (United States)

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization.

  2. Swiss Atlas of PHYsical properties of Rocks (SAPHYR)

    Science.gov (United States)

    Zappone, Alba; Kissling, Eduard

    2015-04-01

    The Swiss Atlas of PHYsical properties of Rocks (SAPHYR), is a multi-year project, funded entirely by Swiss Commission for Geophysics (SGPK), with the aim to compile a comprehensive data set in digital form on physical properties of rocks exposed in Switzerland and surrounding regions. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public including industrial, engineering, land and resource planning companies, as well as academic institutions, or simply people interested in geology. Since the early sixties worldwide many scientists, i.e. geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. Particularly in the years in which seismic reflection and refraction crustal scale projects were investigating the deep structures of the Alps, laboratories capable to reproduce the pressure and temperature ranges of the continental crust were collecting measurements of various rock parameters on a wide variety of lithologies, developing in the meantime more and more sophisticated experimental methodologies. In recent years, the increasing interest of European Countries on non-traditional energy supply, (i.e. Deep Geothermal Energy and shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. SAPHYR aims to organize all those laboratory data into a geographically referenced database (GIS). The data refer to density, porosity, permeability, and seismic, magnetic, thermal and electric properties. In the past years, effort has been placed on collecting samples and measuring the physical properties of lithologies that were poorly documented in literature. The phase of laboratory measurements is still in progress. Recently, SAPHYR project focused towards developing

  3. Effect of gamma radiation dose and sensitizer on the physical properties of irradiated natural rubber latex

    International Nuclear Information System (INIS)

    Komgrit, R.; Thawat, C.; B, Tripob; Wirach, T.

    2009-07-01

    Full text: The vulcanization of natural rubber latex can be induced by gamma radiation, which enhances cross-linking within the rubber matrix. The purpose of this research is to investigate the effect of gamma radiation dose and sensitizers on the physical properties of irradiated natural rubber. Three sensitizers n-butyl acrylate (n-B A), tetrachloroethylene (C 2 Cl 4 ) and trichloromethane (CHCl 3 ) were mixed with natural rubber latex before irradiation with gamma ray dose varied from 14 to 22 kGy. Results showed that the mixture of three sensitizers with specific ratios effectively induced the cross-linking of natural rubber latex. The cross-linking ratio and improved physical properties increased with increasing gamma dose. Therefore, the mixture ratios of n-B A, C 2 Cl 4 and CHCl 3 have shown to be a critical parameter in the vulcanization of natural rubber latex by gamma radiation

  4. Nuclear materials thermo-physical property database and property analysis using the database

    International Nuclear Information System (INIS)

    Jeong, Yeong Seok

    2002-02-01

    It is necessary that thermo-physical properties and understand of nuclear materials for evaluation and analysis to steady and accident states of commercial and research reactor. In this study, development of nuclear materials thermo-properties database and home page. In application of this database, it is analyzed of thermal conductivity, heat capacity, enthalpy, and linear thermal expansion of fuel and cladding material and compared thermo-properties model in nuclear fuel performance evaluation codes with experimental data in database. Results of compare thermo-property model of UO 2 fuel and cladding major performance evaluation code, both are similar

  5. Physical and performance properties of coal tar urethanes - pipe

    International Nuclear Information System (INIS)

    Hickney, J.; Hendry, M.

    1984-01-01

    The purpose of this paper is to review certain physical properties of coal tar extended urethane coatings designed specifically for use in the pipe coatings market. The blend of coal tar and urethane resins provides a novel finished product with properties cumulatively inherent in its constituents. Typically, coal tar and coal tar pitch offer exceptional water resistance and cathodic alkali resistance when blended with other resins. An example is the standard coal tar epoxies used for many years in the marine markets for shipbottoms

  6. The Effect of Moisture Content on Physical Properties of Berberis

    Directory of Open Access Journals (Sweden)

    E Velayati

    2011-03-01

    Full Text Available In order to enhance the mechanization level of harvest and post-harvest operations of Berberis fruit, as one of the major and local crops of south Khorasan province, some of its physical properties were investigated. Different dimensions, geometrical mean diameter, sphericity, surface area, mass of thousand fruit, true density, bulk density, porosity, static coefficient of friction and the repose angles were determined. The properties and the effect of moisture content on them were studied by the completely randomized designs statistical method. Analysis of data indicated that the change of moisture content caused significant difference (P

  7. Chemical and Physical Properties of Hi-Cal-2

    Science.gov (United States)

    Spakowski, A. E.; Allen, Harrison, Jr.; Caves, Robert M.

    1955-01-01

    As part of the Navy Project Zip to consider various boron-containing materials as possible high-energy fuels, the chemical and physical properties of Hi-Cal-2 prepared by the Callery Chemical Company were evaluated at the NACA Lewis laboratory. Elemental chemical analysis, heat of combustion, vapor pressure and decomposition, freezing point, density, self ignition temperature, flash point, and blow-out velocity were determined for the fuel. Although the precision of measurement of these properties was not equal to that obtained for hydrocarbons, this special release research memorandum was prepared to make the data available as soon as possible.

  8. THE PHYSICAL PROPERTIES OF HEARTWOOD AND SAPWOOD OF EUCALYPTUS GRANDIS

    Directory of Open Access Journals (Sweden)

    Bekir Cihad BAL

    2012-12-01

    Full Text Available In this study, some of the physical propertiesof heartwood and sapwood of Eucalyptus grandisgrown in Karabucak, Turkey were determined. Thephysical properties determined were air-drieddensity, oven-dried density, basic density, shrinkage,swelling, fiber saturation point, and maximummoisture content. According to the test results, thephysical properties of the heartwood samplesdiffered from those of the sapwood samples due tothe presence of high proportion of juvenile wood inthe heartwood. It can be said that the shrinkage andswelling percentages were better for heartwood thansapwood. Air-dried density, oven-dried density, andbasic density of sapwood were higher than those ofheartwood.

  9. Physical properties of self-curing concrete (SCUC

    Directory of Open Access Journals (Sweden)

    Magda I. Mousa

    2015-08-01

    The results show that the use of self-curing agent (Ch. in concrete effectively improves the physical properties compared with conventional concrete. On the other hand, up to 15% saturated leca was effective while 20% saturated leca was effective for permeability and mass loss but adversely affects the sorptivity and volumetric water absorption. Self-curing agent Ch. was more effective than self-curing agent leca. In all cases, both 2% Ch. and 15% leca were the optimum values. Higher cement content and/or lower water–cement ratio leads to more effective results of self-curing agents in concrete. Incorporation of silica fume into concrete mixtures enhances all physical properties.

  10. Physical Properties of Aten, Apollo and Amor asteroids

    International Nuclear Information System (INIS)

    McFadden, L.A.; Tholen, D.J.; Veeder, G.J.

    1989-01-01

    The physical properties of Aten, Apollo and Amor objects includeing their taxonomy, composition, size, rotation rate, shape and surface texture, are derived from observations using spectrophometry, reflectance spectroscopy, broadband photometry, radiometry, polarimetry and radar. The authors discuss how their current understanding of this population is that it is diverse in terms of all physical properties that can be studied from the ground and consists of contributions from more than one source region. Almost all taxonomic types found in the main belt are present amoung this population. Class Q objects are unique to the AAAO population. Both low-temperature assemblages, which are dark and probably carbonaceous-rich, and high-temperature, differentiated assemblages of olivine, pyroxene and metallic phases, are found amoung the AAAO. These asteroids have experienced a range of different thermal regimes in the past. Discovery biases probably create the high abundance of bright objects. A bimodal distribution of rotation rates indicates that the population is not collisionally evolved

  11. Investigation of physical imaging properties in various digital radiography systems

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hoi Woun [Dept. of Radiological Science, Baekseok Culture University, Cheonan (Korea, Republic of); Min, Jung Hwan [Dept. of Radiological technology, Shingu University, Seongnam (Korea, Republic of); Yoon, Yong Su [Dept. of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Kyushu (Japan); Kim, Jung Min [Dept. of Health and Environmental Science, College of Health Science, Korea University, Seoul (Korea, Republic of)

    2017-09-15

    We aimed to evaluate the physical imaging properties in various digital radiography systems with charged coupled device (CCD), computed radiography (CR), and indirect flat panel detector (FPD). The imaging properties measured in this study were modulation transfer function (MTF) wiener spectrum (WS), and detective quantum efficiency (DQE) to compare the performance of each digital radiography system. The system response of CCD were in a linear relationship with exposure and that of CR and FPD were proportional to the logarithm of exposure. The MTF of both CR and FPD indicated a similar tendency but in case of CCD, it showed lower MTF than that of CR and FPD. FPD showed the lowest WS and also indicated the highest DQE among three systems. According to the results, digital radiography system with different type of image receptor had its own image characteristics. Therefore, it is important to know the physical imaging characteristics of the digital radiography system accurately to obtain proper image quality.

  12. Some physical and mechanical properties of palm kernel shell (PKS ...

    African Journals Online (AJOL)

    In this study, some of the mechanical and physical properties of palm kernel shells (PKS) were evaluated. These are moisture content, 7.8325 ± 0.6672%; true density, 1.254 ± 5.292 x 10-3 g/cm3; bulk density, 1.1248g/cm3; mean rupture force along width, and thickness were 3174.52 ± 270.70N and 2806.94 ± 498.45N for ...

  13. Effects of moisture content on some physical properties of red ...

    African Journals Online (AJOL)

    The physical properties of red pepper seed were evaluated as a function of moisture content. The average length, width and thickness were 4.46, 3.66 and 0.79 mm, respectively, at 7.27% d.b. moisture content. In the moisture range of 7.27 to 20.69% dry basis (d.b.), studies on rewetted red pepper seed showed that the ...

  14. Generalized Spin Coherent States: Construction and Some Physical Properties

    International Nuclear Information System (INIS)

    Berrada, K.; El Baz, M.; Hassouni, Y.

    2009-12-01

    A generalized deformation of the su(2) algebra and a scheme for constructing associated spin coherent states is developed. The problem of resolving the unity operator in terms of these states is addressed and solved for some particular cases. The construction is carried using a deformation of Holstein-Primakoff realization of the su(2) algebra. The physical properties of these states is studied through the calculation of Mandel's parameter. (author)

  15. Physical and functional properties of breakfast cereals from maize ...

    African Journals Online (AJOL)

    The results revealed the following ranges of physical and functional properties; pH (4.70- 6.56), bulk density (0.29 - 0.71g/ml), water absorption capacity (68.31- 76.39%), oil absorption capacity (0.87- 1.32%), foam capacity (2.48- 3.49%), viscosity (19.73-31.08%), gelation temperature (121-157°C), emulsification capacity ...

  16. Physical Properties and Antibacterial Efficacy of Biodegradable Chitosan Films

    OpenAIRE

    中島, 照夫

    2009-01-01

    [Synopsis] Chitin, chitosan and quaternary chitosan films were prepared, and the physical properties and the antibacterial activities of chitosan and quaternary chitosan films were evaluated. The tensile strength of chitin films was 30~40% lower than that of chitosan films, but the crystallinity of chitin film was much higher than that of chitosan films. The crystallinity and orientation of crystallites were hardly affected by the four kinds of solvent chosen to cast chitosan films, but a de...

  17. Influence of Tillage and Mulch on Soil Physical Properties and ...

    African Journals Online (AJOL)

    User

    tillage along with plastic mulch have positive impact on soil physical properties, root growth, water use efficiency ... positive effects on crop yield (Gla & Kulig,. 2008). ... potash fertilizers were applied at 120, 100 and 60 .... 0-10. 1.57B. 1.57B. 1.57B. 1.8B. 1.7B. 1.8B. Tillage × Soil depth. CTInitial. 0-5 ...... (Brassica napus). Eur.

  18. IAEA NAPRO coordinated research project: physical properties of sodium - 15331

    International Nuclear Information System (INIS)

    Passerini, S.; Gerardi, C.; Grandy, C.; Azpitarte, O.E.; Chocron, M.; Japas, M.L.; Bubelis, E.; Perez-Martin, S.; Jayaraj, S.; Roelofs, F.; Latge, C.; Gerschenfeld, A.; Long, Bin; Selvaraj, P.; Marinenko, E.; Zagorulko, Y.; Ohira, H.; Monti, S.

    2015-01-01

    The International Atomic Energy Agency (IAEA) recently established a CRP on 'Sodium properties and safe operation of experimental facilities in support of the development and deployment of Sodium Cooled Fast Reactors - NAPRO', to be carried out in the period 2013-2017. The first phase of the CRP is focused on the collection and assessment of sodium properties, and it will lead to a consistent property data set which will be published in the form of a handbook. This work is carried out by the 11 participating organizations from 10 Member States through the review and evaluation of the existing available data, the identification of the data gaps and the development of recommendations for experimental programmes to support closing these data gaps. A specific work package (WP 1.1), under the leadership of Argonne National Laboratory, is focused on the analysis of physical properties of sodium: 19 thermodynamic properties (including gaseous state) and 12 transport properties. The expected outcome includes the improved understanding of the availability, accuracy and range of applications of sodium properties centered on fast reactors and other technological applications. The implemented methodology for WP 1.1 (including the division of work among participants and an overall overview of the collected references) is described and so the properties included in WP 1.1 and their classification. Major findings to date related to WP 1.1 are presented in this work, including detailed analysis of two selected properties. The availability of relevant data in principal and out-of-principal references is discussed. Finally, challenges encountered with the collection of references, uncertainty and lack of recent experimental investigation are also listed and adjustments to the methodological approach are proposed as future work. (authors)

  19. Tuning the Mechanical Properties of Polymer Nanocomposites Filled with Grafted Nanoparticles by Varying the Grafted Chain Length and Flexibility

    Directory of Open Access Journals (Sweden)

    Zixuan Wang

    2016-08-01

    Full Text Available By employing coarse-grained molecular dynamics simulation, we simulate the spatial organization of the polymer-grafted nanoparticles (NPs in homopolymer matrix and the resulting mechanical performance, by particularly regulating the grafted chain length and flexibility. The morphologies ranging from the agglomerate, cylinder, sheet, and string to full dispersion are observed, by gradually increasing the grafted chain length. The radial distribution function and the total interaction energy between NPs are calculated. Meanwhile, the stress–strain behavior of each morphology and the morphological evolution during the uniaxial tension are simulated. In particular, the sheet structure exhibits the best mechanical reinforcement compared to other morphologies. In addition, the change of the grafted chain flexibility to semi-flexibility leads to the variation of the morphology. We also find that at long grafted chain length, the stress–strain behavior of the system with the semi-flexible grafted chain begins to exceed that of the system with the flexible grafted chain, attributed to the physical inter-locking interaction between the matrix and grafted polymer chains. A similar transition trend is as well found in the presence of the interfacial chemical couplings between grafted and matrix polymer chains. In general, this work is expected to help to design and fabricate high performance polymer nanocomposites filled with grafted NPs with excellent and controllable mechanical properties.

  20. Investigation into relations between physical and electrical properties of rocks and concretes

    Science.gov (United States)

    Sertçelik, İbrahim; Kurtuluş, Cengiz; Sertçelik, Fadime; Pekşen, Ertan; Aşçı, Metin

    2018-02-01

    The physical and electrical properties of natural rocks, namely limestone, sandstone, amphibolite, arkose, schist, granite, basalt, and concrete were investigated in order to characterize the relationships between these properties. The measurements were conducted on 96 cylindrical specimens of limestone, sandstone, amphibolite, arkose, schist, granite, basalt, and 14 cubic concrete samples. Strong correlations between ultrasonic pulse velocity (UPV), uniaxial compressive strength (UCS), electrical resistivity, and chargeability were confirmed. High correlation coefficients were observed among the properties, varying between 0.53 and 0.92 for all the rocks and concrete. Test results show the following relations among the corresponding parameters: the UPV increases with the increase in UCS, resistivity decreases with the decrease in chargeability for all rocks and concrete, and the electrical resistivities of rock and concrete decrease with the increase in chargeability.

  1. Effect of time varying phosphorus implantation on optoelectronics properties of RF sputtered ZnO thin-films

    Science.gov (United States)

    Murkute, Punam; Ghadi, Hemant; Saha, Shantanu; Chavan, Vinayak; Chakrabarti, Subhananda

    2018-03-01

    ZnO has potential application in the field of short wavelength devices like LED's, laser diodes, UV detectors etc, because of its wide band gap (3.34 eV) and high exciton binding energy (60 meV). ZnO possess N-type conductivity due to presence of defects arising from oxygen and zinc interstitial vacancies. In order to achieve P-type or intrinsic carrier concentration an implantation study is preferred. In this report, we have varied phosphorous implantation time and studied its effect on optical as well structural properties of RF sputtered ZnO thin-films. Implantation was carried out using Plasma Immersion ion implantation technique for 10 and 20 s. These films were further annealed at 900°C for 10 s in oxygen ambient to activate phosphorous dopants. Low temperature photoluminescence (PL) spectra measured two distinct peaks at 3.32 and 3.199 eV for 20 s implanted sample annealed at 900°C. Temperature dependent PL measurement shows slightly blue shift in peak position from 18 K to 300 K. 3.199 eV peak can be attributed to donoracceptor pair (DAP) emission and 3.32 eV peak corresponds to conduction-band-to-acceptor (eA0) transition. High resolution x-ray diffraction revels dominant (002) peak from all samples. Increasing implantation time resulted in low peak intensity suggesting a formation of implantation related defects. Compression in C-axis with implantation time indicates incorporation of phosphorus in the formed film. Improvement in surface quality was observed from 20 s implanted sample which annealed at 900°C.

  2. PHYSICAL AND MECHANICAL PROPERTIES OF JUVENILE Schizolobium amazonicum WOOD

    Directory of Open Access Journals (Sweden)

    Graziela Baptista Vidaurre

    2018-03-01

    Full Text Available ABSTRACT Growth in world demand for wood implies a search for new fast growing species with silvicultural potential, and in this scenario for native species such as Paricá . Thus, the objective of this study was determining the physical and mechanical wood properties of the Schizolobium amazonicum species (known as Paricá in Brazil. Trees were collected from commercial plantations located in the north of Brazil with ages of 5, 7, 9 and 11 years. Four logs from trees of each age in the longitudinal direction of the trees were obtained, and later a diametrical plank of each log was taken to manufacture the specimens which were used to evaluate some physical and mechanical properties of the wood. The basic density of Paricá was reduced in the basetop direction and no difference between the radial positions was observed, while the average basic density of this wood was characterized as low. The region close to the bark showed less longitudinal contraction and also greater homogeneity of this property along the trunk, while for tangential contraction the smallest variation was found in the region near the pith. Paricá wood contraction was characterized as low. Age influenced most of the mechanical properties, where logs from the base had the highest values of mechanical strength.

  3. The physical and chemical properties of uranium hexafluoride

    International Nuclear Information System (INIS)

    Barber, E.J.

    1988-01-01

    This paper describes what uranium hexafluoride (UF 6 ) is, gives some of its pertinent physical properties, illustrates significant reactions between UF 6 and other substances, touches on its toxic properties, and states some of the ''do's'' and ''don't's'' of UF 6 handling. The properties of UF 6 determine how it must be handled and make direct observation impossible. To determine that the material in a container is UF 6 , one must use other instruments in addition to a scale. Because of the very large volume expanision of UF 6 upon melting, diligence must be exercised in filling cylinders in which the UF 6 is partially solidified. A cylinder of liquified UF 6 with no ullage is potentially the equivalent of a superheated hot water heater, not just a hydraulically overpressurized cylinder. Finally, UF 6 can be handled safely by careful attention to the suggested precautions. 9 refs., 2 tabs., 3 figs

  4. HYDRAULIC AND PHYSICAL PROPERTIES OF SALTSTONE GROUTS AND VAULT CONCRETES

    International Nuclear Information System (INIS)

    Dixon, K.; Harbour, J.; Phifer, M.

    2008-01-01

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone. Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement (dry premix) to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of three types of saltstone and two vault concretes. The saltstone formulations included saltstone premix batched with (1) Deliquification, Dissolution, and Adjustment (DDA) salt simulant (w/pm 0.60), (2) Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) salt simulant (w/pm 0.60), and (3) Salt Waste Processing Facility (SWPF) salt simulant (w/pm 0.60). The vault concrete formulations tested included the Vault 1/4 concrete and two variations of the Vault 2 concrete (Mix 1 and Mix 2). Wet properties measured for the saltstone formulations included yield stress, plastic viscosity, wet unit weight, bleed water volume, gel time, set time, and heat of hydration. Hydraulic and physical properties measured on the cured saltstone and concrete samples included saturated hydraulic conductivity, moisture retention, compressive strength, porosity, particle density, and dry bulk density. These properties

  5. State adaptation reserves cardiorespiratory system first-year students with varying degrees of physical fitness in terms of treadmill test

    Directory of Open Access Journals (Sweden)

    V.A. Levchenko

    2014-05-01

    Full Text Available Purpose : to examine the state of the cardiorespiratory system in terms of the stress test in first-year students with different levels of fitness. Material : the study involved 43 students, of which 18 boys and 25devushek basic medical group. The study used a treadmill, a pulse oximeter, spirometer. Results : more adjustment disorders were detected in students that are not involved in physical education at school. Decreased ability of the cardiorespiratory system to maintain proper oxygen supply of the organism in the stress test. This is not observed in students who were attending school in addition sports clubs. Found that students with low tolerance to physical exercise need a separate program of physical training, the dynamic control of the teachers and the need for additional medical examination. Conclusions : the treadmill test is an ideal way of revealing hidden maladjustment cardiorespiratory system in adolescence.

  6. Physical, mechanical, and biodegradable properties of meranti wood polymer composites

    International Nuclear Information System (INIS)

    Enamul Hoque, M.; Aminudin, M.A.M.; Jawaid, M.; Islam, M.S.; Saba, N.; Paridah, M.T.

    2014-01-01

    Highlights: • In-situ polymerization and solution casting method used to manufacture WPC. • In-situ WPC exhibited better properties compared to pure wood, 5% WPC and 20% WPC. • Lowest water absorption and least biodegradability shown by In-situ wood. - Abstract: In-situ polymerization and solution casting techniques are two effective methods to manufacture wood polymer composites (WPCs). In this study, wood polymer composites (WPCs) were manufactured from meranti sapwood by solution casting and in-situ polymerization process using methyl methacrylate (MMA) and epoxy matrix respectively. Physical, mechanical, and morphological characterizations of fabricated WPCs were then carried out to analyse their properties. Morphological properties of composites samples were analyzed through scanning electron microscopy (SEM). The result reveals that in-situ wood composite exhibited better properties compared to pure wood, 5% WPC and 20% WPC. Moreover, in-situ WPC had lowest water absorption and least biodegraded. Conversely, pure wood shown moderate mechanical strength, high biodegradation and water absorption rate. In term of biodegradation, earth-medium brought more severe effect than water in deteriorating the properties of the specimens

  7. Agroclimatic mapping of maize crop based on soil physical properties

    International Nuclear Information System (INIS)

    Dourado Neto, Durval; Sparovek, G.; Reichardt, K.; Timm, Luiz Carlos; Nielsen, D.R.

    2004-01-01

    With the purpose of estimating water deficit to forecast yield knowing productivity (potential yield), the water balance is useful tool to recommend maize exploration and to define the sowing date. The computation can be done for each region with the objective of mapping maize grain yield based on agro-climatic data and soil physical properties. Based on agro-climatic data, air temperature and solar radiation, a model was built to estimate the corn grain productivity (the energy conversion results in dry mass production). The carbon dioxide (CO 2 ) fixation by plants is related to gross carbohydrate (CH 2 O) production and solar radiation. The CO 2 assimilation by C4 plants depends on the photosynthetic active radiation and temperature. From agro-climatic data and soil physical properties, a map with region identification can be built for solar radiation, air temperature, rainfall, maize grain productivity and yield, potential and real evapo-transpiration and water deficit. The map allows to identify the agro-climatic and the soil physical restrictions. This procedure can be used in different spatial (farm to State) and temporal (daily to monthly data) scales. The statistical analysis allows to compare estimated and observed values in different situations to validate the model and to verify which scale is more appropriate

  8. Physical and rheological properties of Titanium Dioxide modified asphalt

    Science.gov (United States)

    Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Chong, Ai Ling; Haini, Rosli; Khatijah Abu Bakar, Siti

    2018-03-01

    Titanium Dioxide (TiO2) has been known as a useful photocatalytic material that is attributed to the several characteristics includes high photocatalytic activity compared with other metal oxide photocatalysts, compatible with traditional construction materials without changing any original performance. This study investigates the physical and rheological properties of modified asphalt with TiO2. Five samples of asphalt with different concentration of TiO2 were studied, namely asphalt 2%, 4%, 6% 8% and 10% TiO2. The tests includes are penetration, softening point, ductility, rotational viscosity and dynamic shear rheometer (DSR) test. From the results of this study, it is noted that addition of TiO2 has significant effect on the physical properties of asphalt. The viscosity tests revealed that asphalt 10% TiO2 has good workability among with reducing approximately 15°C compared to base asphalt. Based on the results from DSR measurements, asphalt 10% TiO2 has reduced temperature susceptibility and increase stiffness and elastic behaviour in comparison to base asphalt. As a result, TiO2 can be considered to be an additive to modify the properties of asphalt.

  9. Setting semantics: conceptual set can determine the physical properties that capture attention.

    Science.gov (United States)

    Goodhew, Stephanie C; Kendall, William; Ferber, Susanne; Pratt, Jay

    2014-08-01

    The ability of a stimulus to capture visuospatial attention depends on the interplay between its bottom-up saliency and its relationship to an observer's top-down control set, such that stimuli capture attention if they match the predefined properties that distinguish a searched-for target from distractors (Folk, Remington, & Johnston, Journal of Experimental Psychology: Human Perception & Performance, 18, 1030-1044 1992). Despite decades of research on this phenomenon, however, the vast majority has focused exclusively on matches based on low-level physical properties. Yet if contingent capture is indeed a "top-down" influence on attention, then semantic content should be accessible and able to determine which physical features capture attention. Here we tested this prediction by examining whether a semantically defined target could create a control set for particular features. To do this, we had participants search to identify a target that was differentiated from distractors by its meaning (e.g., the word "red" among color words all written in black). Before the target array, a cue was presented, and it was varied whether the cue appeared in the physical color implied by the target word. Across three experiments, we found that cues that embodied the meaning of the word produced greater cuing than cues that did not. This suggests that top-down control sets activate content that is semantically associated with the target-defining property, and this content in turn has the ability to exogenously orient attention.

  10. Improvement of physical properties of soyabeans by gamma irradiation

    International Nuclear Information System (INIS)

    Byun, M.-W.; Kwon, J.-H.; Mori, Tomohiko

    1993-01-01

    Physical properties of gamma-irradiated soybeans were evaluated at different temperatures by determining water absorption pattern and cooking characteristics of the sample. Irradiation at 2.5-10 kGy caused the reduction of soaking time in soybeans by 2-5 hours and the increase of hydration capacity by 10-20%, respectively, compared to the non-irradiated control at 20 o C. The activation energy for water absorption was lower in irradiated soybeans than in the non-irradiated control. Irradiation at 2.5-10 kGy caused the reduction of cooking time in soybeans by 30-60% compared to the non-irradiated control and the cooking rate constant of irradiated samples was higher about 2 times than that of the non-irradiated control. The irradiation efficacy on physical quality improvement was also recognized in the stored soybeans for one year at room temperature. (author)

  11. Physical properties of W gravities and W strings

    International Nuclear Information System (INIS)

    Das, S.R.; Dhar, A.; Rama, S.K.

    1991-01-01

    This paper investigates some basic physical properties of W gravities and W strings, using a free field realization. The authors argue that the configuration space of W gravities have global characteristics in addition to the Euler characteristic. The authors identify one such global quantity to be a monopole charge and show how this charge appears in the exponents. The free energy would then involve a θ parameter. Using a BRST procedure the authors find all the physical states of W 3 and W 4 gravities, and show that physical operators are nonsingular composites of the screening charge operators. (The latter are not physical operators for N ≥ 3.) For W strings we show how the W constraints lead to the emergence of a single (and not many) extra dimension coming from the W-gravity sector. By analyzing the resulting dispersion relations the authors find that both the lower and upper critical dimensions are lowered compared to ordinary two-dimensional gravity. The pure W gravity spectrum reveals an intriguing numerological connection with unitary minimal models coupled to ordinary gravity

  12. Physical properties of some Sn-based melts

    Directory of Open Access Journals (Sweden)

    Ilinykh N.

    2011-05-01

    Full Text Available The physical properties (viscosity, density, electroresistivity and magnetic susceptibility of pure tin, copper, silver, some binary (Sn - Ag, Sn - Cu, Sn - Bi, Sn - Zn and ternary (Sn-Ag-Cu, Sn-BiAg, Sn-Bi-Zn alloys with near eutectic compositions are investigated in wide temperature ranges. The irreversible decrease of viscosity in pure tin melt is discovered at 820 °С during heating. The similar anomaly with the following hysteresis of dynamic viscosity was fixed for binary and ternary alloys but at higher temperatures – 900 °С and 950 °С respectively. For all the systems it was shown that the alloys with eutectic compositions differ significantly in their electric and magnetic properties from hypo- and hypereutectic ones. Qualitative and quantitative metallographic analysis for Sn-3.8wt.%Ag-0.7wt.%Cu samples, heated low and above characteristic temperatures, showed the influence of melt overheating on crystallization kinetics.

  13. Physical properties of inorganic PMW-PNN-PZT ceramics

    Science.gov (United States)

    Sin, Sang-Hoon; Yoo, Ju-hyun; Kim, Yong-Jin; Baek, Sam-ki; Ha, Jun-Soo; No, Chung-Han; Song, Hyun-Seon; Shin, Dong-Chan

    2015-07-01

    In this work, inorganic Pb(Mg1/2W1/2)0.03(Ni1/3Nb2/3)x(Zr0.5Ti0.5)0.97-xO3 (x = 0.02 ∼ 0.12) composition ceramics were fabricated by the conventional solid state reaction method. And then their micro structure and ferroelectric properties were investigated according to the amount of PNN substitution. Small amounts of Li2CO3 and CaCO3 were used in order to decrease the sintering temperature of the ceramics. The 0.10 mol PNN-substituted PMW-PNN- PZT ceramics sintered at 920°C showed the excellent physical properties of piezoelectric constant (d33), electromechanical coupling factor (kp), mechanical quality coefficient (Qm), and dielectric constant of 566 pC/N, 0.61, 73, and 2183, respectively.

  14. Physical properties of Moving Magnetic Features observed around a pore

    Science.gov (United States)

    Criscuoli, S.; Del Moro, D.; Giannattasio, F.; Viticchié, B.; Giorgi, F.; Ermolli, I.; Zuccarello, F.; Berrilli, F.

    2012-06-01

    Movies of magnetograms of sunspots often show small-size magnetic patches that move radially away and seem to be expelled from the field of the spot. These patches are named Moving Magnetic Features (MMFs). They have been mostly observed around spots and have been interpreted as manifestations of penumbral filaments. Nevertheless, few observations of MMFS streaming out from spots without penumbra have been reported. He we investigate the physical properties of MMFs observed around the field of a pore derived by the analyses of high spectral, spatial and temporal resolution data acquired at the Dunn Solar Telescope with IBIS. We find that the main properties of the investigated features agree with those reported for MMFs observed around regular spots. These results indicate that an improvement of current numerical simulations is required to understand the generation of MMFs in the lack of penumbrae.

  15. Chemical and physical properties of bone cement for vertebroplasty

    Directory of Open Access Journals (Sweden)

    Po-Liang Lai

    2013-08-01

    Full Text Available Vertebral compression fracture is the most common complication of osteoporosis. It may result in persistent severe pain and limited mobility, and significantly impacts the quality of life. Vertebroplasty involves a percutaneous injection of bone cement into the collapsed vertebrae by fluorescent guide. The most commonly used bone cement in percutaneous vertebroplasty is based on the polymerization of methylmethacrylate monomers to polymethylmethacrylate (PMMA polymers. However, information on the properties of bone cement is mostly published in the biomaterial sciences literature, a source with which the clinical community is generally unfamiliar. This review focuses on the chemistry of bone cement polymerization and the physical properties of PMMA. The effects of altering the portions and contents of monomer liquid and polymer powders on the setting time, polymerization temperature, and compressive strength of the cement are also discussed. This information will allow spine surgeons to manipulate bone cement characteristics for specific clinical applications and improve safety.

  16. Effect of magnetic field on the physical properties of water

    Science.gov (United States)

    Wang, Youkai; Wei, Huinan; Li, Zhuangwen

    2018-03-01

    In this study, the effect of magnetic field (MF) on the partial physical properties of water are reported, tap water (TW) and 4 types of magnetized water (MW) were measured in the same condition. It was found that the properties of TW were changed following the MF treatment, shown as the increase of evaporation amount, the decrease of specific heat and boiling point after magnetization, the changes depend on the magnetization effect. In addition, magnetic field strength (MFS) has a marked influence on the magnetization effect, the optimal magnetizing condition was determined as the MFS of 300 mT. The findings of this study offered a facile approach to improve cooling and power generation efficiency in industrial.

  17. Bioinspired peptide nanotubes: Deposition technology and physical properties

    International Nuclear Information System (INIS)

    Shklovsky, J.; Beker, P.; Amdursky, N.; Gazit, E.; Rosenman, G.

    2010-01-01

    Proteins and peptides have the intrinsic ability to self-assemble into elongated solid nanofibrils, which give rise to amyloid progressive neurodegenerative diseases (Alzheimer's, Parkinson, etc.). It has been found that of the core recognition motif of Aβ peptide is the diphenylalanine element. The diphenylalanine peptide can self-assemble into well-ordered peptide nanotubes (PNT). In this paper we report on our newly developed process-vapor deposition of PNT and 'bottom-up' nanotechnological techniques of PNT patterning. Study of several physical properties of PNT such as optical and electrochemical are presented. The results may lead to the development of a new generation of PNT-based bioinspired functional nanodevices.

  18. Vanadium Doped Tungsten Oxide Material - Electrical Physical and Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shishkin N. Y.

    2008-05-01

    Full Text Available The electrical physical and sensing (to VOCs and inorganic gases properties of vanadium doped tungsten oxide in the regions of phase transition temperature were investigated. Vanadium oxide (II dimerization was observed in the doped material, corresponding to new phase transition. The extreme sensitivity and selectivity to chemically active gases and vapors in small concentrations: CO, NOx, NH3 acetone, ethanol near phase transitions temperature was found. Sensor elements were manufactured for the quantitative detection (close to 1 ppm of alcohol and ammonia.

  19. Effect of Structure on Physical Properties of Polymers.

    Science.gov (United States)

    1979-12-31

    PORT NUMBE . J ! 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER OSRT R’.-8 00 7 5 0 4_7_5_ Effecc of Structure on Physical Properties of -Final...Compatibility of Fluorosubstituted Styrene Polymers with PPO and PS. R. Vukovic , F.E. Karasz, W.J. MacKnight, (in press). (6) Compatibility of Ortho- and Para...fluorostyrene Copolymers with PPO and PS. R. Vukovic , F.E. Karasz, W.J. MacKnight, (in press). (7) Partial Miscibility in the System Poly (para

  20. Physical properties of C60 intercalated graphite films

    International Nuclear Information System (INIS)

    Nakahara, T; Hosomi, N; Taniguchi, J; Suzuki, M; Sato, T; Abe, K; Kuwahara, D; Ishikawa, M; Kato, M; Miura, K

    2007-01-01

    Recently, Miura and Tsuda have synthesized C 60 intercalated graphite film (C 60 /Gr) and reported that the C 60 /Gr consists of alternating close-packed C 60 monolayers and graphite layers. They also found that its frictional force is minimal up to the loading force of 100 nN using AFM [Miura K and Tsuda D 2005 e-J. Surf. Sci. Nanotech. 3 21] Thus, we have started to study the physical properties of C 60 /Gr and carried out NMR, Raman scattering and specific heat measurements. These results suggest that C 60 in C 60 /Gr rotates at room temperature

  1. Ab- initio investigation of physical properties of KTP and RTP

    Directory of Open Access Journals (Sweden)

    Marzieh Ghoohestani

    2017-09-01

    Full Text Available In this work,the physical properties of  KTP and RTP single-crystals have been investigated by performing accurate total energy calculations in the framework of density functional theory by using the full-potential linearized augmented plane wave method. The effects of Rb substitution on structural, electronic and optical properties of KTP are discussed. The structural properties have been calculated by using different exchange correlation including LDA, PBE, WC and PBEsol. Also PBEsol approximation and and more accurate approximation mBJ are employed to calculate the energy gap values. The Pseudoinversion values of both crystals have been calculated by using PseudoSymmetry software . Rb substitution effect on pseudosymmetry of KTP and also relation between second-order susceptibility of crystals and the Pseudoinversion values are discussed. The optical coefficients such as refractive index, birefringence values and absorption coefficients have been calculated by using the dielectric function. The anisotropy in the linear optical properties of KTP and RTP crystals have been demonstrated. Then calculated results have been compared.

  2. Ionic Liquids Incorporating Polyamide 6: Miscibility and Physical Properties

    Directory of Open Access Journals (Sweden)

    Xin Zheng

    2018-05-01

    Full Text Available The effects of 1-vinyl-3-butyl imidazole chloride (VBIM on the structure and properties of Polyamide 6 (PA6 were investigated systematically. It was found that PA6/VBIM blends were homogeneous without phase separation. The glass transition temperature (Tg of PA6 increased with small VBIM loadings followed by the decreasing in Tg with further increasing the amount of VBIM. The crystallization temperature decreased with the addition of VBIM because of the strong interactions between VBIM and the PA6 matrix, as well as the dilution effect when large amounts of VBIM was introduced to the matrix. According to rheological testing, small amounts of VBIM enhanced the storage modulus and melt viscosity of PA6. Tensile tests also show an increase in strength and modulus at relatively low loadings of VBIM. The strength of PA6 with only 1 wt % VBIM improved by 108% compared to that of neat PA6. Fourier transform infrared (FTIR investigations revealed that the ions of VBIM preferred to form hydrogen bonds with amide groups in PA6. Therefore, VBIM acts as physical connection point for the neighboring PA6 molecular chains. The specific interactions between VBIM and PA6 account not only for the enhanced melt viscosity of PA6, but also for the improved mechanical properties. Moreover, outstanding antistatic property was also observed. The surface resistivity of the sample with 1 wt % VBIM was 1.50 × 1010 Ω/sq, which means good electric dissipation property.

  3. Physical properties of Cu nanoparticles: A molecular dynamics study

    International Nuclear Information System (INIS)

    Kart, H.H.; Yildirim, H.; Ozdemir Kart, S.; Çağin, T.

    2014-01-01

    Thermodynamical, structural and dynamical properties of Cu nanoparticles are investigated by using Molecular Dynamics (MD) simulations at various temperatures. In this work, MD simulations of the Cu-nanoparticles are performed by means of the MPiSiM codes by utilizing from Quantum Sutton-Chen (Q-SC) many-body force potential to define the interactions between the Cu atoms. The diameters of the copper nanoparticles are varied from 2 nm to 10 nm. MD simulations of Cu nanoparticles are carried out at low and high temperatures to study solid and liquid properties of Cu nanoparticles. Simulation results such as melting point, radial distribution function are compared with the available experimental bulk results. Radial distribution function, mean square displacement, diffusion coefficient, Lindemann index and Honeycutt–Andersen index are also calculated for estimating the melting point of the Copper nanoparticles. - Highlights: • Solid and liquid properties of Cu nanoparticles are studied. • Molecular dynamics utilizing the Quantum Sutton Chen potential is used in this work. • Melting temperatures of nanoparticles are strongly depended on nanoparticle sizes. • Heat capacity, radial distribution function and diffusion coefficients are studied. • Structures of nanoparticles are analyzed by Lindemann and Honeycutt–Andersen index

  4. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams

    International Nuclear Information System (INIS)

    Yu, Ya-Jen; Hearon, Keith; Maitland, Duncan J; Wilson, Thomas S

    2011-01-01

    The effect of moisture absorption on the glass transition temperature (T g ) and the stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood-contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To the best of our knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the T g of the foam, with a maximum water uptake shifting the T g from 67 to 5 °C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100% increases in failure strains and 500% decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40% humidity environments for 24 h

  5. Physical-chemical property based sequence motifs and methods regarding same

    Science.gov (United States)

    Braun, Werner [Friendswood, TX; Mathura, Venkatarajan S [Sarasota, FL; Schein, Catherine H [Friendswood, TX

    2008-09-09

    A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.

  6. Physical properties of heat-treated rattan waste binderless particleboard

    Science.gov (United States)

    Tajuddin, Maisarah; Ahmad, Zuraida; Halim, Zahurin; Maleque, Md Abd; Ismail, Hanafi; Sarifuddin, Norshahida

    2017-07-01

    The objective of this study is to investigate the effects of heat treatment on the properties of binderless particleboard (BPB) fabricated via hot-pressing process with pressing temperature, pressing time and pressing pressure of 180°C, 5 minutes and 1 MPa, respectively. The fabricated BPB with density in the range of 0.8-0.95g cm-3 was heated in a temperature-controlled laboratory chamber at 80°C, 120°C and 160°C for period of 2 and 8 hours before underwent physical observation, mass loss measurement and thickness swelling test. The samples had remarkable color changes, mainly with samples of treatment temperature of 160˚C, where the color differences were 9.5 and 20.3. This changed the fabricated BPB samples from yellowish brown to dark brown color when treatment conditions increased. Darker color indicates greater mass loss due to severity of chemical component in the powder. Dimensional stability of fabricated BPB was improved with higher treatment temperature as more cellulose cross-linked and hemicellulose degraded that removed the hygroscopicity behavior of powder. These results revealed that heat treatment helped in improving the BPB physical properties, particularly in dimensional stability of boards.

  7. Study of physical properties of UO2 quality improvement result

    International Nuclear Information System (INIS)

    Rachmat-Pratomo; Hidayati; Didiek Herhady, R; Busron-Masduki

    1996-01-01

    Activation of uranium dioxide (UO 2 ) by reoxidation to U 3 O 8 and reduction to uranium dioxide (UO 2 ) by temperature reduction variation of 850 o C and 900 o C for 3 hours has been studied. The physical properties before and after treatment are compared. It proved that the oxidation-reduction cycle increased the physical properties. It can be concluded that the reoxidation of UO 2 to U 3 O 8 on fourth cycle and reduction at 900 o C for 3 hours result in a density of 1.32 gram/ml a tap density of 1.60 gram/ml, true density of 9.08 gram/ml and O/U ratio : 2.04. Reduction at 850 o C, for 3 hours result in the bulk density of 1.30 gram/ml, tap density of 1.58 gram/ml, true density of 9.04 gram/ml and O/U ratio 2.09

  8. Understanding the physical properties of hybrid perovskites for photovoltaic applications

    Science.gov (United States)

    Huang, Jinsong; Yuan, Yongbo; Shao, Yuchuan; Yan, Yanfa

    2017-07-01

    New photovoltaic materials have been searched for in the past decades for clean and renewable solar energy conversion with an objective of reducing the levelized cost of electricity (that is, the unit price of electricity over the course of the device lifetime). An emerging family of semiconductor materials — organic-inorganic halide perovskites (OIHPs) — are the focus of the photovoltaic research community owing to their use of low cost, nature-abundant raw materials, low-temperature and scalable solution fabrication processes, and, in particular, the very high power conversion efficiencies that have been achieved within the short time of their development. In this Review, we summarize and critically assess the most recent advances in understanding the physical properties of both 3D and low-dimensional OIHPs that favour a small open-circuit voltage deficit and high power conversion efficiency. Several prominent topics in this field on the unique properties of OIHPs are surveyed, including defect physics, ferroelectricity, exciton dissociation processes, carrier recombination lifetime and photon recycling. The impact of ion migration on solar cell efficiency and stability are also critically analysed. Finally, we discuss the remaining challenges in the commercialization of OIHP photovoltaics.

  9. Hypoxia alters the physical properties of the tumor microenvironment

    Science.gov (United States)

    Gilkes, Daniele

    Of all the deaths attributed to cancer, 90% are due to metastasis, or the spread of cancer cells from a primary tumor to distant organs, and treatments that prevent or cure metastasis remain elusive. Emerging data indicate that low oxygen states within a tumor, termed hypoxia, can alter the chemical and physical parameters of the extracellular matrix (ECM), or scaffold of the tumor tissue. These changes generate a microenvironment that may be more conducive for promoting metastasis. During tumor evolution, changes in the composition and the overall content of the ECM reflect both its biophysical and biological properties and these strongly influence the cells properties, such as cellular proliferation and cell motility. The talk will cover how hypoxia arises within normal tissue and also in tumors. We will cover the role of hypoxia in collagen biogenesis which influences compositional changes to the tumor microenvironment and discuss how these changes lead to a stiffer tumor stroma. The challenges in determining the influence of chemical versus physical cues on cancer progression will also be considered.

  10. The physical properties and compaction characteristics of swelling soils

    International Nuclear Information System (INIS)

    Komine, Hideo; Ogata, Nobuhide

    1990-01-01

    Expansive soils have recently attracted increasing attention as the back filling material for the repositories of high level nuclear wastes or as the material for improving extremely soft grounds. However, since very little has been known concerning the physical and mechanical properties of such materials, it is necessary to clarify the swelling, compaction and thermal characteristics of expansive soils. For this purpose, various kinds of index tests and a series of static compaction tests were performed using several kinds of swelling soils in order to investigate the relationship between the fundamental physical properties and the compaction characteristics. Since the ordinary testing method stipulated in JIS is difficult to perform for such expansive soils, the new method was proposed to obtained the reliable values of specific gravity, grain size distribution and liquid/plastic limits. By this method, some representative values were presented for various kinds of clay including bentonite. As the results of static compaction tests, the compaction characteristics of clay were strongly dependent on the plastic limit of clay. The maximum dry density and optimum water content were strongly dependent on both plastic limit and compaction pressure. (K.I.)

  11. Hanford Waste Physical and Rheological Properties: Data and Gaps - 12078

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E.; Wells, B.E.; Huckaby, J.L.; Mahoney, L.A.; Daniel, R.C.; Burns, C.A.; Tingey, J.M.; Cooley, S.K. [Pacific Northwest National Laboratory PO Box 999, Richland WA 99352 (United States)

    2012-07-01

    The retrieval, transport, treatment and disposal operations associated with Hanford Tank Wastes involve the handling of a wide range of slurries. Knowledge of the physical and rheological properties of the waste is a key component to the success of the design and implementation of the waste processing facilities. Previous efforts to compile and analyze the physical and rheological properties were updated with new results including information on solids composition and density, particle size distributions, slurry rheology, and particle settling behavior. The primary source of additional data is from a recent series of tests sponsored by the Hanford Waste Treatment and Immobilization Plant (WTP). These tests involved an extensive suite of characterization and bench-scale process testing of 8 waste groups representing approximately 75% of the high-level waste mass expected to be processed through the WTP. Additional information on the morphology of the waste solids was also included. Based on the updated results, a gap analysis to identify gaps in characterization data, analytical methods and data interpretation was completed. (authors)

  12. Correlation between some mechanical and physical properties of polycrystalline graphites

    International Nuclear Information System (INIS)

    Yoda, Shinichi; Fujisaki, Katsuo

    1982-01-01

    Mechanical and physical properties of polycrystalline graphites, tensile strength, compressive strength, flexural strength, Young's modulus, thermal expansion coefficient, electrical resistivity, volume fraction of porosity, and graphitisation were measured for ten brand graphites. Correlation between the mechanical and physical properties of the graphites were studied. Young's modulus and thermal expansion coefficient of the graphites depend on volume fraction of porosity. The Young's modulus of the graphites tended to increase with increasing the thermal expansion coefficient. For an anisotropic graphite, an interesting relationship between the Young's modulus E and the thermal expansion coefficient al pha was found in any specimen orientations; alpha E=constant. The value of alphah E was dependent upon the volume fraction of porosity. It should be noted here that the electrical resistivity increased with decreasing grain size. The flexural and the compressive strength were related with the volume fraction of porosity while the tensile strength was not, The relationships between the tensile, the compressive and the flexural strength can be approximately expressed as linear functions over a wide range of the stresses. (author)

  13. Validation and Application of Concentrated Cesium Eluate Physical Property Models

    International Nuclear Information System (INIS)

    Choi, A.S.

    2004-01-01

    This work contained two objectives. To verify the mathematical equations developed for the physical properties of concentrated cesium eluate solutions against experimental test results obtained with simulated feeds. To estimate the physical properties of the radioactive AW-101 cesium eluate at saturation using the validated models. The Hanford River Protection Project (RPP) Hanford Waste Treatment and Immobilization Plant (WTP) is currently being built to extract radioisotopes from the vast inventory of Hanford tank wastes and immobilize them in a silicate glass matrix for eventual disposal at a geological repository. The baseline flowsheet for the pretreatment of supernatant liquid wastes includes removal of cesium using regenerative ion-exchange resins. The loaded cesium ion-exchange columns will be eluted with nitric acid nominally at 0.5 molar, and the resulting eluate solution will be concentrated in a forced-convection evaporator to reduce the storage volume and to recover the acid for reuse. The reboiler pot is initially charged with a concentrated nitric acid solution and kept under a controlled vacuum during feeding so the pot contents would boil at 50 degrees Celsius. The liquid level in the pot is maintained constant by controlling both the feed and boilup rates. The feeding will continue with no bottom removal until the solution in the pot reaches the target endpoint of 80 per cent saturation with respect to any one of the major salt species present

  14. Physical and functional properties of arrowroot starch extrudates.

    Science.gov (United States)

    Jyothi, A N; Sheriff, J T; Sajeev, M S

    2009-03-01

    Arrowroot starch, a commercially underexploited tuber starch but having potential digestive and medicinal properties, has been subjected to extrusion cooking using a single screw food extruder. Different levels of feed moisture (12%, 14%, and 16%) and extrusion temperatures (140, 150, 160, 170, 180, and 190 degrees C) were used for extrusion. The physical properties--bulk density, true density, porosity, and expansion ratio; functional properties such as water absorption index, water solubility index, oil absorption index, pasting, rheological, and textural properties; and in vitro enzyme digestibility of the extrudates were determined. The expansion ratio of the extrudates ranged from 3.22 to 6.09. The water absorption index (6.52 to 8.85 g gel/g dry sample), water solubility index (15.92% to 41.31%), and oil absorption index (0.50 to 1.70 g/g) were higher for the extrudates in comparison to native starch (1.81 g gel/g dry sample, 1.16% and 0.60 g/g, respectively). The rheological properties, storage modulus, and loss modulus of the gelatinized powdered extrudates were significantly lower (P extruded at higher feed moisture and lower extrusion temperature, whereas snap force and energy were higher at lower feed moisture and temperature. There was a significant decrease in the percentage digestibility of arrowroot starch (30.07% after 30 min of incubation with the enzyme) after extrusion (25.27% to 30.56%). Extrusion cooking of arrowroot starch resulted in products with very good expansion, color, and lower digestibility, which can be exploited for its potential use as a snack food.

  15. PHYSICAL PROPERTY MEASUREMENTS OF LABORATORY PREPARED SALTSTONE GROUT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E.; Cozzi, A.; Edwards, T.

    2014-05-05

    The Saltstone Production Facility (SPF) built two new Saltstone Disposal Units (SDU), SDU 3 and SDU 5, in 2013. The variable frequency drive (VFD) for the grout transfer hose pump tripped due to high current demand by the motor during the initial radioactive saltstone transfer to SDU 5B on 12/5/2013. This was not observed during clean cap processing on July 5, 2013 to SDU 3A, which is a slightly longer distance from the SPF than is SDU 5B. Saltstone Design Authority (SDA) is evaluating the grout pump performance and capabilities to transfer the grout processed in SPF to SDU 3/5. To assist in this evaluation, grout physical properties are required. At this time, there are no rheological data from the actual SPF so the properties of laboratory prepared samples using simulated salt solution or Tank 50 salt solution will be measured. The physical properties of grout prepared in the laboratory with de-ionized water (DI) and salt solutions were obtained at 0.60 and 0.59 water to premix (W/P) ratios, respectively. The yield stress of the DI grout was greater than any salt grout. The plastic viscosity of the DI grout was lower than all of the salt grouts (including salt grout with admixture). When these physical data were used to determine the pressure drop and fluid horsepower for steady state conditions, the salt grouts without admixture addition required a higher pressure drop and higher fluid horsepower to transport. When 0.00076 g Daratard 17/g premix was added, both the pressure drop and fluid horsepower were below that of the DI grout. Higher concentrations of Daratard 17 further reduced the pressure drop and fluid horsepower. The uncertainty in the single point Bingham Plastic parameters is + 4% of the reported values and is the bounding uncertainty. Two different mechanical agitator mixing protocols were followed for the simulant salt grout, one having a total mixing time of three minutes and the other having a time of 10 minutes. The Bingham Plastic parameters

  16. A study on the effect of varying sequence of lab performance skills on lab performance of high school physics students

    Science.gov (United States)

    Bournia-Petrou, Ethel A.

    The main goal of this investigation was to study how student rank in class, student gender and skill sequence affect high school students' performance on the lab skills involved in a laboratory-based inquiry task in physics. The focus of the investigation was the effect of skill sequence as determined by the particular task. The skills considered were: Hypothesis, Procedure, Planning, Data, Graph, Calculations and Conclusion. Three physics lab tasks based on the simple pendulum concept were administered to 282 Regents physics high school students. The reliability of the designed tasks was high. Student performance was evaluated on individual student written responses and a scoring rubric. The tasks had high discrimination power and were of moderate difficulty (65%). It was found that, student performance was weak on Conclusion (42%), Hypothesis (48%), and Procedure (51%), where the numbers in parentheses represent the mean as a percentage of the maximum possible score. Student performance was strong on Calculations (91%), Data (82%), Graph (74%) and Plan (68%). Out of all seven skills, Procedure had the strongest correlation (.73) with the overall task performance. Correlation analysis revealed some strong relationships among the seven skills which were grouped in two distinct clusters: Hypothesis, Procedure and Plan belong to one, and Data, Graph, Calculations, and Conclusion belong to the other. This distinction may indicate different mental processes at play within each skill cluster. The effect of student rank was not statistically significant according to the MANOVA results due to the large variation of rank levels among the participating schools. The effect of gender was significant on the entire test because of performance differences on Calculations and Graph, where male students performed better than female students. Skill sequence had a significant effect on the skills of Procedure, Plan, Data and Conclusion. Students are rather weak in proposing a

  17. Optical and Physical Properties of ONP Deinked Pulp

    Directory of Open Access Journals (Sweden)

    Iman Akbarpoor

    2012-01-01

    Full Text Available Enzymes are protein molecules with complex structures that accelerate the biochemical reactions. Activity of these chemical compounds is accomplished at limited range of pH, temperature and concentration. In this study, the effects of different concentrations of cellulose enzyme were investigated on deinking of old newsprint. Old newsprint (ONP was repulped at 5% consistency for 10 minutes in disintegrator with total revolution number of 26500. Enzymatic treatments of recycled ONP pulp were done under constant conditions (10% consistency,treatment time of 15 minutes, pH range of 5-5.5 at different cellulose concentrations of 0.025, 0.05, 0.1 and 0.2% (based on oven-dry waste paper. The optical and physical properties of the standard paper (60g/m2 made at different concentrations of cellulose were evaluated in comparison with control pulp (untreated ONP pulp with cellulase. Overall, the results achieved by comparison the optical properties of the paper produced indicated that using cellulase in deinking of ONP led to increase the brightness and the yellowness and decrease the opacity. The brightness was improved to a maximum level of 47.5 ISO %, but the yellowness was decreased to a minimum level of 11.3 ISO %, while the brightness reduced and the yellowness increased at higher concentrations than 0.05% cellulase. The highest opacity of 99.3 ISO % was achieved using 0.1% cellulase even higher than control pulp. The results gained by comparison the physical properties of the paper showed that using cellulase resulted in decrease of paper calliper, air resistance and density and improve the freeness of pulp

  18. The plutonium: brief presentation of its nuclear, physical and chemical properties

    International Nuclear Information System (INIS)

    Madic, C.

    1993-01-01

    In this text we give a brief presentation of the nuclear properties (isotopes, isotopic composition of spent fuels, decay), of the physical properties (phase diagrams, alloys) and of the chemical properties (complexes, solvent extraction) of the plutonium

  19. Gamma irradiation influence on physical properties of milk proteins

    International Nuclear Information System (INIS)

    Ciesla, K.; Salmieri, S.; Lacroix, M.; Le Tien, C.

    2004-01-01

    Gamma irradiation was found to be an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on calcium and sodium caseinates alone or combined with some globular proteins. Our current studies concern gamma irradiation influence on the physical properties of calcium caseinate-whey protein isolate-glycerol (1:1:1) solutions and gels, used for films preparation. Irradiation of solutions was carried out with Co-60 gamma rays applying 0 and 32 kGy dose. The increase in viscosity of solutions was found after irradiation connected to induced crosslinking. Lower viscosity values were detected, however, after heating of the solutions irradiated with a 32 kGy dose than after heating of the non-irradiated ones regarding differences in the structure of gels and resulting in different temperature-viscosity curves that were recorded for the irradiated and the non-irradiated samples during heating and cooling. Creation of less stiff but better ordered gels after irradiation arises probably from reorganisation of aperiodic helical phase and β-sheets, in particular from increase of β-strands, detected by FTIR. Films obtained from these gels are characterised by improved barrier properties and mechanical resistance and are more rigid than those prepared from the non-irradiated gels. The route of gel creation was investigated for the control and the irradiated samples during heating and the subsequent cooling

  20. Assessment of physical properties of granules with paracetamol and caffeine

    Directory of Open Access Journals (Sweden)

    Michal Szumilo

    2017-09-01

    Full Text Available Caffeine increases the analgesic properties of acetaminophen and therefore it is reasonable to use both substances together in one drug form in stronger pain. Currently, there are no commercially available pharmaceutical combination products containing acetaminophen and caffeine, which is present as granules. The aim of the study was to obtain twelve different granules with these therapeutic substances and determine the effect of various excipients on the quality of the drug form. All the granules were made by wet granulation. Two types of binders were used: polyethylene glycol 6000 (PEG and polyvinylpyrrolidone K30 (PVP as well as different types of fillers. The physical properties of granules were assessed in accordance to the requirements of the European Pharmacopoeia 8th ed. The highest apparent density was found in preparations containing calcium hydrophosphate (0.609 g/mL and the lowest – containing mannitol (0.353 g/mL as a filler. The Hausner ratio of most prepared granules ranged from 1.05 to 1.11, while the compressibility index ranged from 4.59 to 10.48%. The evaluation of properties of individual granules helped to indicate formulation with good features, which perhaps will be a good alternative to currently available painkillers with caffeine and acetaminophen.

  1. Gamma irradiation influence on physical properties of milk proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ciesla, K. E-mail: kciesla@orange.ichtj.waw.pl; Salmieri, S.; Lacroix, M.; Le Tien, C

    2004-10-01

    Gamma irradiation was found to be an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on calcium and sodium caseinates alone or combined with some globular proteins. Our current studies concern gamma irradiation influence on the physical properties of calcium caseinate-whey protein isolate-glycerol (1:1:1) solutions and gels, used for films preparation. Irradiation of solutions was carried out with Co-60 gamma rays applying 0 and 32 kGy dose. The increase in viscosity of solutions was found after irradiation connected to induced crosslinking. Lower viscosity values were detected, however, after heating of the solutions irradiated with a 32 kGy dose than after heating of the non-irradiated ones regarding differences in the structure of gels and resulting in different temperature-viscosity curves that were recorded for the irradiated and the non-irradiated samples during heating and cooling. Creation of less stiff but better ordered gels after irradiation arises probably from reorganisation of aperiodic helical phase and {beta}-sheets, in particular from increase of {beta}-strands, detected by FTIR. Films obtained from these gels are characterised by improved barrier properties and mechanical resistance and are more rigid than those prepared from the non-irradiated gels. The route of gel creation was investigated for the control and the irradiated samples during heating and the subsequent cooling.

  2. Fundamentals of the Physics of Solids Volume 2: Electronic Properties

    CERN Document Server

    Sólyom, Jenő

    2009-01-01

    This book is the second of a single-authored, three-volume series that aims to deliver a comprehensive and self-contained account of the vast field of solid-state physics. It goes far beyond most classic texts in the presentation of the properties of solids and experimentally observed phenomena, along with the basic concepts and theoretical methods used to understand them and the essential features of various experimental techniques. The first volume deals with the atomic and magnetic structure and dynamics of solids, the second with those electronic properties that can be understood in the one-particle approximation, and the third with the effects due to interactions and correlations between electrons. This volume is devoted to the electronic properties of metals and semiconductors in the independent-electron approximation. After a brief discussion of the free-electron models by Drude and Sommerfeld, the methods for calculating and measuring the band structure of Bloch electrons moving in the periodic potent...

  3. Effect of water phase transition on dynamic ruptures with thermal pressurization: Numerical simulations with changes in physical properties of water

    Science.gov (United States)

    Urata, Yumi; Kuge, Keiko; Kase, Yuko

    2015-02-01

    Phase transitions of pore water have never been considered in dynamic rupture simulations with thermal pressurization (TP), although they may control TP. From numerical simulations of dynamic rupture propagation including TP, in the absence of any water phase transition process, we predict that frictional heating and TP are likely to change liquid pore water into supercritical water for a strike-slip fault under depth-dependent stress. This phase transition causes changes of a few orders of magnitude in viscosity, compressibility, and thermal expansion among physical properties of water, thus affecting the diffusion of pore pressure. Accordingly, we perform numerical simulations of dynamic ruptures with TP, considering physical properties that vary with the pressure and temperature of pore water on a fault. To observe the effects of the phase transition, we assume uniform initial stress and no fault-normal variations in fluid density and viscosity. The results suggest that the varying physical properties decrease the total slip in cases with high stress at depth and small shear zone thickness. When fault-normal variations in fluid density and viscosity are included in the diffusion equation, they activate TP much earlier than the phase transition. As a consequence, the total slip becomes greater than that in the case with constant physical properties, eradicating the phase transition effect. Varying physical properties do not affect the rupture velocity, irrespective of the fault-normal variations. Thus, the phase transition of pore water has little effect on dynamic ruptures. Fault-normal variations in fluid density and viscosity may play a more significant role.

  4. Changes in physical properties of graphene oxide with thermal reduction

    Science.gov (United States)

    Pandit, Bhishma; Jo, Chang Hee; Joo, Kwan Seon; Cho, Jaehee

    2017-08-01

    Reduced graphene oxide (rGO) has attracted significant attention as an easily fabricable twodimensional material. Depending on the oxygen-containing functional groups (OFGs) in an rGO specimen, the optical and electrical properties can vary significantly, directly affecting the performance of devices in which rGO is implemented. Here, we investigated the optical and electrical properties of GO treated with various annealing (reduction) temperatures from 350 to 950 °C in H2 ambient. Using diverse characteristic tools, we found that the transmittance, nanoscale domain size, OFGs in GO and rGO, and Schottky barrier height (SBH) measured on n-type GaN are significantly influenced by the annealing temperature. The relative intensity of the defect-induced band in Raman spectroscopy showed a minimum at the annealing temperature of approximately 350 °C, before the OFGs in rGO showed vigorous changes in relative content. When the domain size of rGO reached a minimum at the annealing temperature of 650 °C, the SBH of rGO/GaN showed the maximum value of 1.07 eV.

  5. Physical and Mechanical Properties of Jute Mat Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    S.M Sadaf

    2011-11-01

    Full Text Available Cellulose jute fibre offers a number of benefits as reinforcement for synthetic polymers since it has a high specific strength and stiffness, low hardness, relatively low density and biodegradability. To reduce moisture uptake and hence to improve the mechanical properties of the composites, bleached jute mats were incorporated as reinforcing elements in the epoxy matrix. Composites at varying volume fractions and different orientations of jute mat were fabricated by hot compression machine under specific pressures and temperatures. Tensile, flexure, impact and water absorption tests of composites were conducted. Jute mat oriented at (0 ± 45–90° composites showed reduced strength compared to (0–90° fibre mat composites. Impact strength and water uptake of high volume fraction jute mat reinforced composites was higher compared to that of lower volume fraction composites. Fracture surfaces of jute mat composites were analyzed under SEM. Fracture surface of (0–90° jute mat oriented composites showed twisted fibres, while (0 ± 45–90° jute mat oriented composites had fibre pull-out without any twisting. Overall, composites containing 52% jute mat at orientations of (0–90° showed better properties compared to other fabricated composites.

  6. Changes in Physical Properties of Graphene Oxide with Thermal Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Bhishma; Jo, Chang Hee; Joo, Kwan Seon; Cho, Jaehee [Chonbuk National University, Jeonju (Korea, Republic of)

    2017-08-15

    Reduced graphene oxide (rGO) has attracted significant attention as an easily fabricable two dimensional material. Depending on the oxygen-containing functional groups (OFGs) in an rGO specimen, the optical and electrical properties can vary significantly, directly affecting the performance of devices in which rGO is implemented. Here, we investigated the optical and electrical properties of GO treated with various annealing (reduction) temperatures from 350 to 950 ℃ in H2 ambient. Using diverse characteristic tools, we found that the transmittance, nanoscale domain size, OFGs in GO and rGO, and Schottky barrier height (SBH) measured on n-type GaN are significantly influenced by the annealing temperature. The relative intensity of the defect-induced band in Raman spectroscopy showed a minimum at the annealing temperature of approximately 350 ℃, before the OFGs in rGO showed vigorous changes in relative content. When the domain size of rGO reached a minimum at the annealing temperature of 650 ℃, the SBH of rGO/GaN showed the maximum value of 1.07 eV.

  7. Snowmobile impacts on snowpack physical and mechanical properties

    Science.gov (United States)

    Fassnacht, Steven R.; Heath, Jared T.; Venable, Niah B. H.; Elder, Kelly J.

    2018-03-01

    Snowmobile use is a popular form of winter recreation in Colorado, particularly on public lands. To examine the effects of differing levels of use on snowpack properties, experiments were performed at two different areas, Rabbit Ears Pass near Steamboat Springs and at Fraser Experimental Forest near Fraser, Colorado USA. Differences between no use and varying degrees of snowmobile use (low, medium and high) on shallow (the operational standard of 30 cm) and deeper snowpacks (120 cm) were quantified and statistically assessed using measurements of snow density, temperature, stratigraphy, hardness, and ram resistance from snow pit profiles. A simple model was explored that estimated snow density changes from snowmobile use based on experimental results. Snowpack property changes were more pronounced for thinner snow accumulations. When snowmobile use started in deeper snow conditions, there was less difference in density, hardness, and ram resistance compared to the control case of no snowmobile use. These results have implications for the management of snowmobile use in times and places of shallower snow conditions where underlying natural resources could be affected by denser and harder snowpacks.

  8. Psychometric properties of the PROMIS Physical Function item bank in patients receiving physical therapy.

    Directory of Open Access Journals (Sweden)

    Martine H P Crins

    Full Text Available The Patient-Reported Outcomes Measurement Information System (PROMIS is a universally applicable set of instruments, including item banks, short forms and computer adaptive tests (CATs, measuring patient-reported health across different patient populations. PROMIS CATs are highly efficient and the use in practice is considered feasible with little administration time, offering standardized and routine patient monitoring. Before an item bank can be used as CAT, the psychometric properties of the item bank have to be examined. Therefore, the objective was to assess the psychometric properties of the Dutch-Flemish PROMIS Physical Function item bank (DF-PROMIS-PF in Dutch patients receiving physical therapy.Cross-sectional study.805 patients >18 years, who received any kind of physical therapy in primary care in the past year, completed the full DF-PROMIS-PF (121 items.Unidimensionality was examined by Confirmatory Factor Analysis and local dependence and monotonicity were evaluated. A Graded Response Model was fitted. Construct validity was examined with correlations between DF-PROMIS-PF T-scores and scores on two legacy instruments (SF-36 Health Survey Physical Functioning scale [SF36-PF10] and the Health Assessment Questionnaire Disability-Index [HAQ-DI]. Reliability (standard errors of theta was assessed.The results for unidimensionality were mixed (scaled CFI = 0.924, TLI = 0.923, RMSEA = 0.045, 1th factor explained 61.5% of variance. Some local dependence was found (8.2% of item pairs. The item bank showed a broad coverage of the physical function construct (threshold-parameters range: -4.28-2.33 and good construct validity (correlation with SF36-PF10 = 0.84 and HAQ-DI = -0.85. Furthermore, the DF-PROMIS-PF showed greater reliability over a broader score-range than the SF36-PF10 and HAQ-DI.The psychometric properties of the DF-PROMIS-PF item bank are sufficient. The DF-PROMIS-PF can now be used as short forms or CAT to measure the level of

  9. The doping concentration and physical properties measurement of silicon water using tera hertz wave

    International Nuclear Information System (INIS)

    Park, Sung Hyeon; Oh, Gyung Hwan; Kim, Hak Sung

    2017-01-01

    In this study, a tera hertz time domain spectroscopy (THz-TDS) imaging technique was used to measure doping concentration and physical properties (such as refractive index and permittivity) of the doped silicon (Si) wafers. The transmission and reflection modes with an incidence angle of 30° were employed to determine the physical properties of the doped Si wafers. The doping concentrations of the prepared Si wafers were varied from 10"1"4 to 10"1"8 in both N-type and P-type cases. Finally, the correlation between the doping concentration and the power of the THz wave was determined by measuring the powers of the transmitted and reflected THz waves of the doped Si wafers. Additionally, the doped thickness, the refractive index, and permittivity of each doped Si wafer were calculated using the THz time domain waveform. The results indicate that the THz-TDS imaging technique is potentially a promising technique to measure the doping concentration as well as other optical properties (such as the refractive index and permittivity) of the doped Si wafer

  10. The doping concentration and physical properties measurement of silicon water using tera hertz wave

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Hyeon; Oh, Gyung Hwan; Kim, Hak Sung [Dept. of Mechanical Convergence Engineering, Hanyang University, Seoul(Korea, Republic of)

    2017-02-15

    In this study, a tera hertz time domain spectroscopy (THz-TDS) imaging technique was used to measure doping concentration and physical properties (such as refractive index and permittivity) of the doped silicon (Si) wafers. The transmission and reflection modes with an incidence angle of 30° were employed to determine the physical properties of the doped Si wafers. The doping concentrations of the prepared Si wafers were varied from 10{sup 14} to 10{sup 18} in both N-type and P-type cases. Finally, the correlation between the doping concentration and the power of the THz wave was determined by measuring the powers of the transmitted and reflected THz waves of the doped Si wafers. Additionally, the doped thickness, the refractive index, and permittivity of each doped Si wafer were calculated using the THz time domain waveform. The results indicate that the THz-TDS imaging technique is potentially a promising technique to measure the doping concentration as well as other optical properties (such as the refractive index and permittivity) of the doped Si wafer.

  11. Thermo-mechanic and sensory properties of wheat and rye breads produced with varying concentration of the additive

    Directory of Open Access Journals (Sweden)

    Demin Mirjana A.

    2013-01-01

    Full Text Available The effects of different concentrations of the complex additive containing emulsifiers, oxido-reductive substances and enzymes, on the rheological conditions of dough, and on the sensory properties of three groups of bread were investigated. The best initial quality and the lowest degree of protein network weakening had the dough obtained from mixed wheat and rye flours. The best expected baking properties were shown by the white wheat flour due to the least damage of its starch. The use of the additive has an effect on the absorption of water and on the majority of C-values of all sorts of flour. The amount of additive had a significant effect on the sensory properties of wheat bread crumb texture. Also, storage duration significantly affected (p <0.01 the sensory properties of integral wheat bread aroma-taste and the weighted mean score. The interaction of these two factors had no significant effect on any of sensory properties of the investigated groups of bread.

  12. CHANGES IN THE PHYSICAL PROPERTIES OF BREAD DURING STORAGE

    Directory of Open Access Journals (Sweden)

    Teresa Fortuna

    2012-04-01

    Full Text Available The aim of this work was to compare the physical properties of breadcrumb during five days of storage in vacuum containers and polyethylene bags. On the basis of result it was stated, that storage of baguettes in vacuum condition and in polyethylene foil did not prevent the staling of breadcrumb. Hardness of breadcrumb stored in plastic bags on the fifth day was higher than hardness of bread stored in vacuum containers. The others texture values did not differ significantly on the fifth day of storage between packaging methods. The changes in water activity values both in vacuum containers and polyethylene bags were negligible during storage. Increase in lightness and decrease in yellowness were observed over the storage period, regardless of packaging method, while the values of a* remained essentially unchanged.doi:10.5219/194

  13. Study of physical properties of the dynamic filter

    International Nuclear Information System (INIS)

    Souza, Roberto Salomon

    2004-02-01

    This paper presents a characterization of the physical properties of the dynamic filter of Clinac 2300 CD linear accelerator of Varian Medical Systems, installed at the Cancer National Institute (INCA), Rio de Janeiro. The 'dynamic filter factors' were measured for the 6 and 15 MV photons, in squared and rectangular fields, and compared with factors furnished at the accelerator manual and used by the planning system, IN and OUT positions, at the maximum dose depths, 5 cm, 10 cm and 29 cm, for the 6 and 15 MV photons energies. The results demonstrated that the 'dynamic filter factors' does not changes with depth and the PDP for the opened field are the same for the fields with dynamic filters. Last but not least the dynamic filters were measured and compared with the nominal angles of the accelerator and the planning system, where some discrepancies were reported

  14. Structural, Chemical and Physical Properties of Mn12

    Science.gov (United States)

    Sessoli, Roberta

    1997-03-01

    Recent investigations on the physical properties of the first molecular nanomagnet, Mn12ac, will be reported. Among them very high field EPR spectra (up to 25 T) (A. L. Barra, D. Gatteschi, R. Sessoli Phys. Rev. B. submitted) have provided precise information on the spin hamiltonian up to the fourth order terms. These new findings justify the irregularities in the step separations in the quantum hysteresis that we have observed performing the measurements on a single crystal (L. Thomas et al, Nature.383, 145 (1996)), and confirm that we are observing resonant quantum tunneling of the magnetization. The magnetic hysteresis has been also optically detected in collaboration with Prof. A. Thomson of the University of East Anglia, UK. Possible modifications to the Mn12 cluster as well as an iron cluster showing MQT of the magnetization (C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, D. Gatteschi, submitted) will be briefly presented.

  15. Optical and physical properties of samarium doped lithium diborate glasses

    Science.gov (United States)

    Hanumantharaju, N.; Sardarpasha, K. R.; Gowda, V. C. Veeranna

    2018-05-01

    Sm3+ doped lithium di-borate glasses with composition 30Li2O-60B2O3-(10-x) PbO, (where 0 molar volume with samarium ion content indicates the openness of the glass structure. The gradual increase in average separation of boron-boron atoms with VmB clearly indicates deterioration of borate glass network, which in turn leads to decrease in the oxygen packing density. The replacements of Sm2O3 for PbO depolymerise the chain structure and that would increase the concentration of non-bridging oxygens. The marginal increase of optical band gap energy after 1.0 mol.% of Sm2O3 is explained by considering the structural modification in lead-borate. The influence of Sm3+ ion on physical and optical properties in lithium-lead-borate glasses is investigated and the results were discussed in view of the structure of borate glass network.

  16. Emission and null coordinates: geometrical properties and physical construction

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan J; Morales-Lladosa, Juan A

    2011-01-01

    A Relativistic Positioning System is defined by four clocks (emitters) broadcasting their proper time. Then, every event reached by the signals is naturally labeled by these four times which are the emission coordinates of this event. The coordinate hypersurfaces of the emission coordinates are the future light cones based on the emitter trajectories. For this reason the emission coordinates have been also named null coordinates or light coordinates. Nevertheless, other coordinate systems used in different relativistic contexts have the own right to be named null or light coordinates. Here we analyze when one can say that a coordinate is a null coordinate and when one can say that a coordinate system is null. Moreover, we examine the physical construction and the geometrical properties of several n ull coordinate systems : the emission and the reception coordinates, the radar coordinates, and the Bondi-Sachs coordinates, among others.

  17. Numerical and physical testing of upscaling techniques for constitutive properties

    International Nuclear Information System (INIS)

    McKenna, S.A.; Tidwell, V.C.

    1995-01-01

    This paper evaluates upscaling techniques for hydraulic conductivity measurements based on accuracy and practicality for implementation in evaluating the performance of the potential repository at Yucca Mountain. Analytical and numerical techniques are compared to one another, to the results of physical upscaling experiments, and to the results obtained on the original domain. The results from different scaling techniques are then compared to the case where unscaled point scale statistics are used to generate realizations directly at the flow model grid-block scale. Initital results indicate that analytical techniques provide upscaling constitutive properties from the point measurement scale to the flow model grid-block scale. However, no single analytic technique proves to be adequate for all situations. Numerical techniques are also accurate, but they are time intensive and their accuracy is dependent on knowledge of the local flow regime at every grid-block

  18. Dynamic simulation of flash drums using rigorous physical property calculations

    Directory of Open Access Journals (Sweden)

    F. M. Gonçalves

    2007-06-01

    Full Text Available The dynamics of flash drums is simulated using a formulation adequate for phase modeling with equations of state (EOS. The energy and mass balances are written as differential equations for the internal energy and the number of moles of each species. The algebraic equations of the model, solved at each time step, are those of a flash with specified internal energy, volume and mole numbers (UVN flash. A new aspect of our dynamic simulations is the use of direct iterations in phase volumes (instead of pressure for solving the algebraic equations. It was also found that an iterative procedure previously suggested in the literature for UVN flashes becomes unreliable close to phase boundaries and a new alternative is proposed. Another unusual aspect of this work is that the model expressions, including the physical properties and their analytical derivatives, were quickly implemented using computer algebra.

  19. Physical and chemical properties of calcium doped neodymium manganite

    International Nuclear Information System (INIS)

    Tikhonova, L.A.; Zhuk, P.P.; Tonoyan, A.A.; Vecher, A.A.

    1991-01-01

    Physical and chemical properties of calcium doped neodymium manganite were investigated. It was shown that structure of perovskite with O'-orthorhombic distortion was characteristic for solid solutions of Nd 1-x Ca x MnO 3 (x=0-0.5). Maximum of conductivity for samples with x=0.2 was determined. Inversion of conductivity from p- (x=0) to n-type (x=0.5) was observed in increase of concentration of calcium doped addition. Values of thermal expansion coefficient of studied solid solutions of Nd 1-x Ca x MnO 3 didn't depend on concentration of doped addition within the range 700 to 1200 K and were (9.9-11.3)·10 -6 K -1

  20. Physical properties of wild mango fruit and nut

    Science.gov (United States)

    Ehiem, J. C.; Simonyan, K. J.

    2012-02-01

    Physical properties of two wild mango varieties were studied at 81.9 and 24.5% moisture (w.b.) for the fruits and nuts, respectively. The shape and size of the fruit are the same while that of nuts differs at P = 0.05. The mass, density and bulk density of the fruits are statistically different at P = 0.05 but the volume is the same. The shape and size, volume and bulk density of the nuts are statistically the same at P = 0.05. The nuts of both varieties are also the same at P = 0.05 in terms of mass and density. The packing factor for both fruits and nut of the two varieties are the same at 0.95. The relevant data obtained for the two varieties would be useful for design and development of machines and equipment for processing and handling operations.

  1. Maximum Likelihood Blood Velocity Estimator Incorporating Properties of Flow Physics

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Jensen, Jørgen Arendt

    2004-01-01

    )-data under investigation. The flow physic properties are exploited in the second term, as the range of velocity values investigated in the cross-correlation analysis are compared to the velocity estimates in the temporal and spatial neighborhood of the signal segment under investigation. The new estimator...... has been compared to the cross-correlation (CC) estimator and the previously developed maximum likelihood estimator (MLE). The results show that the CMLE can handle a larger velocity search range and is capable of estimating even low velocity levels from tissue motion. The CC and the MLE produce...... for the CC and the MLE. When the velocity search range is set to twice the limit of the CC and the MLE, the number of incorrect velocity estimates are 0, 19.1, and 7.2% for the CMLE, CC, and MLE, respectively. The ability to handle a larger search range and estimating low velocity levels was confirmed...

  2. Influence of physical properties of soil on 137 Cs mobility

    International Nuclear Information System (INIS)

    Kanapickas, A.; Paulaitiene, I.; Mazeika, J.; Bauziene, I.

    2005-01-01

    A model to account for the mobility of radiocesium in soil is presented. The model requires a minimal set of coefficients that describe radiocesium migration and fixation rates, which can be related to physical soil properties. The peculiarities of experimental radiocesium profiles in soil are explained by the composition of soil, which affects the radiocesium fixation rate. It is shown that the migration of radiocesium in soil is governed by vertical convection of a mobile form, whereas diffusion is a slower process due to strong fixation. The results show that the velocity of vertical migration downward of mobile radiocesium can be set constant, because the overall migration rate depends on fixation. Modeling of experimental radiocesium soil profiles suggests that organic (humic) layers with reduced mineral content and humidity have a high radiocesium fixation rate. Soil structure that maintains high soil humidity and mineral content has an increased cesium exchangeability and. consequently, higher radiocesium mobility. (author)

  3. Physical properties of snacks made from cassava leaf flour

    Directory of Open Access Journals (Sweden)

    Adriana Cristina Ferrari

    2014-02-01

    Full Text Available The food industry is continually growing with new products becoming available every year. Extrusion combines a number of unit operations in one energy efficient rapid continuous process and can be used to produce a wide variety of snacks foods. The objective of this study was to evaluate the effect of extrusion temperature, screw speed, and amount of cassava leaf flour mixed with cassava starch on the physical properties of extruded snacks processed using a single screw extruder. A central composite rotational design, including three factors with 20 treatments, was used in the experimental design. Dependent variables included the expansion index, specific volume, color, water absorption index, and water solubility index. Among the parameters examined, the amount of cassava leaf flour and extrusion temperature showed significant effects on extruded snack characteristics. Mixtures containing 10% of cassava leaf flour extruded at 100°C and 255 rpm shows favorable levels of expansion, color, water absorption index, and water solubility index.

  4. Physical properties and chemical composition of Segamat Kaolin, Johor, Malaysia

    International Nuclear Information System (INIS)

    Umar Hamzah; Learn, K.K.; Sahibin Rahim

    2010-01-01

    Kaolin is a source of secondary mineral as a product of a weathering process of primary minerals. Its main component is fine grain kaolinite (< 2 μm) and it also contains other elements such as aluminium and iron phyllosilicate as the pigment. Aluminium rich kaolin is light in colour with high plasticity and is normally used in the ceramic, plastic, paint, paper, pesticide, pharmacology and cosmetic industries. The physical and chemical characteristics of kaolins are important for its potential application. In this study, about 25 kaolin samples were hand-augered from depths of 1-2 m at Buloh Kasap Segamat, Johor, Malaysia. Chemical analysis carried out included determination of oxides and types of minerals by X-ray diffraction and X-ray fluorescence. Shrinkage rate, rupture modulus and water absorption rate tests were carried out in the physical properties analysis. Plastic and liquid limits of the kaolin were also measured for plastic index. The Segamat kaolin was light in colour due to its high silicate composition. The highest mineral content in the kaolin was kaolinite and quartz occurred as impurities. The low shrinkage rate showed that the kaolin was dense with little voids, hence very suitable for use in the ceramic industry. This kaolin has low water absorption, plasticity and durable according to the rupture modulus test. (author)

  5. Physical Properties of Intermetallic FE2VA1

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ye [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Fe2VAl has recently been discovered to have a negative temperature coefficient of resistivity, moderately enhanced specific heat coefficient, and a large DOS at the Fermi level by photoemission. This triggered a round of heated research to understand the ground state of this material, both theoretically and experimentally. here they report a comprehensive characterization of Fe2VAl. X-ray diffraction exhibited appreciable antisite disorder in all of our samples. FTIR spectroscopy measurements showed that the carrier density and scattering time had little sample-to-sample variation or temperature dependence for near-stoichiometric samples. FTIR and DC resistivity suggest that the transport properties of Fe2VAl are influenced by both localized and delocalized carriers, with the former primarily responsible for the negative temperature coefficient of resistivity. Magnetization measurements reveal that near-stoichiometric samples have superparamagnetic clusters with at least two sizes of moments. X-ray photoemission from Fe core level showed localized magnetic moments on site-exchanged Fe. They conclude that in Fe2VAl, antisite disorder causes significant modification to the semi-metallic band structure proposed by LDA calculations. With antisite disorder considered, they are now able to explain most of the physical properties of Fe2VAl.

  6. Physical and structural properties of polyaniline/microcrystalline cellulose nanocomposite

    Science.gov (United States)

    Abdi, Mahnaz M.; Liyana, Rawaida; Tahir, Paridah Md; Heng, Lee Yook; Sulaiman, Yusran; Waheeda, Nur Farhana; Hassan, Nabihah Abu

    2017-12-01

    A composite of Polyaniline/Microcrystalline Cellulose (PAni/MCC) was prepared via a chemical polymerization method in the presence of ammonium persulfate (NH4)2S2O8 as oxidant and cetyltrimethylammonium bromide (CTAB) as a cationic surfactant. The results of FESEM showed that the morphology of nanocomposite depends on the monomer concentration. Wire-like and porous nanostructure was observed for PAni/MCC/CTAB composite that could be suitable for enzyme immobilization and sensor applications. The electrochemical properties of the composites were studied using Cyclic Voltammetry (CV) and it was shown that PAni/MCC/CTAB composite generated a higher current response compared to the pure PAni. The synergy effect of MCC and CTAB on the physical and electrochemical properties of composite resulted in higher electron transferring in PAni/MCC/CTAB. The presence of significant peaks of PAni and MCC in FT-IR spectrum of nanocomposite indicating polymerization of aniline on the surface of MCC. Characteristic peaks of crystalline cellulose were observed at 22.8 and 14.7 2theta in XRD pattern.

  7. Physical Properties of Intermetallic FE2VA1

    International Nuclear Information System (INIS)

    Ye Feng

    2002-01-01

    Fe 2 VAl has recently been discovered to have a negative temperature coefficient of resistivity, moderately enhanced specific heat coefficient, and a large DOS at the Fermi level by photoemission. This triggered a round of heated research to understand the ground state of this material, both theoretically and experimentally. here they report a comprehensive characterization of Fe 2 VAl. X-ray diffraction exhibited appreciable antisite disorder in all of our samples. FTIR spectroscopy measurements showed that the carrier density and scattering time had little sample-to-sample variation or temperature dependence for near-stoichiometric samples. FTIR and DC resistivity suggest that the transport properties of Fe 2 VAl are influenced by both localized and delocalized carriers, with the former primarily responsible for the negative temperature coefficient of resistivity. Magnetization measurements reveal that near-stoichiometric samples have superparamagnetic clusters with at least two sizes of moments. X-ray photoemission from Fe core level showed localized magnetic moments on site-exchanged Fe. They conclude that in Fe 2 VAl, antisite disorder causes significant modification to the semi-metallic band structure proposed by LDA calculations. With antisite disorder considered, they are now able to explain most of the physical properties of Fe 2 VAl

  8. Hardrock Elastic Physical Properties: Birch's Seismic Parameter Revisited

    Science.gov (United States)

    Wu, M.; Milkereit, B.

    2014-12-01

    Identifying rock composition and properties is imperative in a variety of fields including geotechnical engineering, mining, and petroleum exploration, in order to accurately make any petrophysical calculations. Density is, in particular, an important parameter that allows us to differentiate between lithologies and estimate or calculate other petrophysical properties. It is well established that compressional and shear wave velocities of common crystalline rocks increase with increasing densities (i.e. the Birch and Nafe-Drake relationships). Conventional empirical relations do not take into account S-wave velocity. Physical properties of Fe-oxides and massive sulfides, however, differ significantly from the empirical velocity-density relationships. Currently, acquiring in-situ density data is challenging and problematic, and therefore, developing an approximation for density based on seismic wave velocity and elastic moduli would be beneficial. With the goal of finding other possible or better relationships between density and the elastic moduli, a database of density, P-wave velocity, S-wave velocity, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio was compiled based on a multitude of lab samples. The database is comprised of isotropic, non-porous metamorphic rock. Multi-parameter cross plots of the various elastic parameters have been analyzed in order to find a suitable parameter combination that reduces high density outliers. As expected, the P-wave velocity to S-wave velocity ratios show no correlation with density. However, Birch's seismic parameter, along with the bulk modulus, shows promise in providing a link between observed compressional and shear wave velocities and rock densities, including massive sulfides and Fe-oxides.

  9. Recovering physical properties from narrow-band photometry

    Science.gov (United States)

    Schoenell, W.; Cid Fernandes, R.; Benítez, N.; Vale Asari, N.

    2013-05-01

    Our aim in this work is to answer, using simulated narrow-band photometry data, the following general question: What can we learn about galaxies from these new generation cosmological surveys? For instance, can we estimate stellar age and metallicity distributions? Can we separate star-forming galaxies from AGN? Can we measure emission lines, nebular abundances and extinction? With what precision? To accomplish this, we selected a sample of about 300k galaxies with good S/N from the SDSS and divided them in two groups: 200k objects and a template library of 100k. We corrected the spectra to z = 0 and converted them to filter fluxes. Using a statistical approach, we calculated a Probability Distribution Function (PDF) for each property of each object and the library. Since we have the properties of all the data from the STARLIGHT-SDSS database, we could compare them with the results obtained from summaries of the PDF (mean, median, etc). Our results shows that we retrieve the weighted average of the log of the galaxy age with a good error margin (σ ≈ 0.1 - 0.2 dex), and similarly for the physical properties such as mass-to-light ratio, mean stellar metallicity, etc. Furthermore, our main result is that we can derive emission line intensities and ratios with similar precision. This makes this method unique in comparison to the other methods on the market to analyze photometry data and shows that, from the point of view of galaxy studies, future photometric surveys will be much more useful than anticipated.

  10. Physical properties of smectic C liquid crystal cells

    International Nuclear Information System (INIS)

    Dunn, P.E.

    1998-01-01

    The aim of this work was to investigate some of the fundamental physical properties of surface stabilised ferroelectric liquid crystal devices (SSFLCDs) using optical, electrical and x-ray diffraction techniques. The measured physical parameters are then related to the performance of display devices. Refractometry measurements on homeotropically aligned FLC samples are used to accurately determine the smectic cone angle and information is also gained on FLC biaxial order. Propagation of optically excited guided modes along liquid crystalline layers is then used to obtain detailed director configuration information. Wavelength dependent extinction angle spectroscopy is also used to extract smectic C director profiles, albeit with a slightly lower accuracy than the guided mode method. A triangular director profile model is found to describe the wavelength dependent extinction angle properties of achiral samples, and examination of the cell spacing dependence of the director profile enables a ratio of bulk elasticity to surface anchoring energy to be determined. Information is obtained on the behaviour of smectic C materials under high frequency electric fields using a continuum director profile model, providing a novel measurement of bend and splay elastic constants. Additionally an extension of the wavelength dependent extinction angle technique allows half splayed states to be characterised. A variety of simple electro-optic techniques are used to characterise several key material parameters. Polarisation reversal current is used to measure both the spontaneous polarisation and an effective FLC switching viscosity. Monochromatic extinction angle measurements under applied d.c. fields are used to determine the cone and layer tilt angles, whilst a comparison of d.c. and a.c. extinction angle characteristics provides an estimate of the dielectric biaxiality. An automated measurement technique is used to determine FLC response time characteristics, which are described

  11. Physical properties of smectic C liquid crystal cells

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, P E

    1998-07-01

    The aim of this work was to investigate some of the fundamental physical properties of surface stabilised ferroelectric liquid crystal devices (SSFLCDs) using optical, electrical and x-ray diffraction techniques. The measured physical parameters are then related to the performance of display devices. Refractometry measurements on homeotropically aligned FLC samples are used to accurately determine the smectic cone angle and information is also gained on FLC biaxial order. Propagation of optically excited guided modes along liquid crystalline layers is then used to obtain detailed director configuration information. Wavelength dependent extinction angle spectroscopy is also used to extract smectic C director profiles, albeit with a slightly lower accuracy than the guided mode method. A triangular director profile model is found to describe the wavelength dependent extinction angle properties of achiral samples, and examination of the cell spacing dependence of the director profile enables a ratio of bulk elasticity to surface anchoring energy to be determined. Information is obtained on the behaviour of smectic C materials under high frequency electric fields using a continuum director profile model, providing a novel measurement of bend and splay elastic constants. Additionally an extension of the wavelength dependent extinction angle technique allows half splayed states to be characterised. A variety of simple electro-optic techniques are used to characterise several key material parameters. Polarisation reversal current is used to measure both the spontaneous polarisation and an effective FLC switching viscosity. Monochromatic extinction angle measurements under applied d.c. fields are used to determine the cone and layer tilt angles, whilst a comparison of d.c. and a.c. extinction angle characteristics provides an estimate of the dielectric biaxiality. An automated measurement technique is used to determine FLC response time characteristics, which are described

  12. Physical characterization of functionalized spider silk: electronic and sensing properties

    Directory of Open Access Journals (Sweden)

    Eden Steven, Jin Gyu Park, Anant Paravastu, Elsa Branco Lopes, James S Brooks, Ongi Englander, Theo Siegrist, Papatya Kaner and Rufina G Alamo

    2011-01-01

    Full Text Available This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline and amorphous (helical structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 °C, has a strong effect on the morphology of silk bundles (increasing their size, on the process of pyrolization (suppressing mass loss rates and on the resulting carbonized fiber structure (that becomes more robust against bending and strain. The effects of iodine doping and other functional parameters (vacuum and thin film coating motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof

  13. Physical characterization of functionalized spider silk: electronic and sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Steven, Eden; Brooks, James S [Department of Physics and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac, Tallahassee, FL 32310 (United States); Park, Jin Gyu [FAMU-FSU Department of Industrial and Manufacturing Engineering, High-Performance Materials Institute, Florida State University, 2005 Levy Ave., Tallahassee, FL 32310 (United States); Paravastu, Anant; Siegrist, Theo; Kaner, Papatya; Alamo, Rufina G [FAMU-FSU Department of Chemical and Biomedical Engineering and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac, Tallahassee, FL 32310 (United States); Branco Lopes, Elsa [Departamento de Quimica, Instituto Tecnologico e Nuclear/CFMC-UL, P-2686-953 Sacavem (Portugal); Englander, Ongi, E-mail: esteven@magnet.fsu.edu [FAMU-FSU Department of Mechanical Engineering and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac, Tallahassee, Florida 32310 (United States)

    2011-10-15

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of {beta}-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 deg. C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and {beta}-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of {beta}-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof

  14. Physical characterization of functionalized spider silk: electronic and sensing properties

    International Nuclear Information System (INIS)

    Steven, Eden; Brooks, James S; Park, Jin Gyu; Paravastu, Anant; Siegrist, Theo; Kaner, Papatya; Alamo, Rufina G; Branco Lopes, Elsa; Englander, Ongi

    2011-01-01

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 deg. C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof-of-concept applications of

  15. Physical properties of dense, low-temperature plasmas

    International Nuclear Information System (INIS)

    Redmer, R.

    1997-01-01

    Plasmas occur in a wide range of the density-temperature plane. The physical quantities can be expressed by Green's functions which are evaluated by means of standard quantum statistical methods. The influences of many-particle effects such as dynamic screening and self-energy, structure factor and local-field corrections, formation and decay of bound states, degeneracy and Pauli exclusion principle are studied. As a basic concept for partially ionized plasmas, a cluster decomposition is performed for the self-energy as well as for the polarization function. The general model of a partially ionized plasma interpolates between low-density, nonmetallic systems such as atomic vapors and high-density, conducting systems such as metals or fully ionized plasmas. The equations of state, including the location of the critical point and the shape of the coexistence curve, are determined for expanded alkali-atom and mercury fluids. The occurrence of a metal-nonmetal transition near the critical point of the liquid-vapor phase transition leads in these materials to characteristic deviations from the behavior of nonconducting fluids such as the inert gases. Therefore, a unified approach is needed to describe the drastic changes of the electronic properties as well as the variation of the physical properties with the density. Similar results are obtained for the hypothetical plasma phase transition in hydrogen plasma. The transport coefficients (electrical and thermal conductivity, thermopower) are studied wthin linear response theory given here in the formulation of Zubarev which is valid for arbitrary degeneracy and yields the transport coefficients for the limiting cases of nondegenerate, weakly coupled plasmas (Spitzer theory) as well as degenerate, strongly coupled plasmas (Ziman theory). mercury within the MHNC scheme via effective ion-ion potentials which are derived from the polarization function within an extended RPA. The optical properties of dense plasmas, the shift

  16. The anomalous physical and chemical properties of gold nano-particles

    International Nuclear Information System (INIS)

    Cortie, M.B.

    2003-01-01

    Full text: Although gold is the most inert of all metallic elements, it has been discovered during the last two decades that it has interesting properties as a nano-particle. Some of the properties of interest include its activity as a heterogeneous catalyst, particularly at low temperatures, its optical properties, and the tendency of its nano-particles to adopt non-crystallographic structures. There are a number of curious aspects to catalysis by gold that are attracting academic and industrial investigation and much is still not understood about the mechanism by which they work. For example, apparently similar preparation techniques result in activities of hugely varying magnitude. In the present talk I assess the what is known about gold nano-particles, with particular reference to their physical, electronic, crystallographic and catalytic properties. It is shown that there is much evidence in favour of the belief that it is the unique electronic structure of these particles that imbues them with catalytic activity. If this is true then tighter control of the electronic structure would allow for the design of more specific and more active catalysts

  17. TUNABLE MAGNETIC AND ELECTRICAL PROPERTIES OF Co-DOPED ZnO FILMS BY VARYING OXYGEN PARTIAL PRESSURE

    OpenAIRE

    L. G. WANG; H. W. ZHANG; X. L. TANG; Y. X. LI; Z. Y. ZHONG

    2011-01-01

    High quality Co-doped ZnO films with good reproducibility have been prepared under different oxygen partial pressure by radio-frequency magnetron sputtering. These films were characterized using numerous characterization techniques including X-ray diffraction, electrical transport, and magnetization measurements. The effect of oxygen partial pressure on the structural, magnetic, and electrical properties of Co-doped ZnO films has been systematically studied. It was found that the structural, ...

  18. Physical characteristics, mineral analysis and antioxidant properties of some apricot varieties grown in North India

    Directory of Open Access Journals (Sweden)

    S.M. Wani

    2015-12-01

    Full Text Available Eleven apricot varieties (Chinese, Rival, Tilton, Cuminis Haley, Harcot, Margulam, Narmu, Khante, Halman, Badam Chuli, and Cuban were studied for their mineral analysis, physical characteristics, and antioxidant properties. The physical characteristics varied significantly (p ≤ 0.05 among the apricot varieties. Cuban and Harcot showed a comparatively larger fruit size. However, Cuminis Haley and Harcot showed the highest edible bulk. Nine minerals (Zn, Ca, Cu, Fe, Mg, Na, Mn, P, and K were analyzed and were found to vary significantly (p ≤ 0.05 among the apricot varieties. Mn, Cu, and Zn elements were present in micro amounts, while K, Mg, Ca, P, and Fe levels were present in macro amounts. Halman and Margulam showed significantly (p ≤ 0.05 higher amount of the minerals. All the varieties showed lower amounts of Cu as compared to the recommended daily intake, ranging from 0–0.82 ppm. All the varieties proved to be rich sources of polyphenols, with significant (p ≤ 0.05 varietal difference. Khante and Halman showed the significantly (p ≤ 0.05 highest methanolic 1,1-diphenyl-2-picrylhydrazyl (DPPH• radical scavenging activity.

  19. Annealing effect on thermodynamic and physical properties of mesoporous silicon: A simulation and nitrogen sorption study

    Science.gov (United States)

    Kumar, Pushpendra; Huber, Patrick

    2016-04-01

    Discovery of porous silicon formation in silicon substrate in 1956 while electro-polishing crystalline Si in hydrofluoric acid (HF), has triggered large scale investigations of porous silicon formation and their changes in physical and chemical properties with thermal and chemical treatment. A nitrogen sorption study is used to investigate the effect of thermal annealing on electrochemically etched mesoporous silicon (PS). The PS was thermally annealed from 200˚C to 800˚C for 1 hr in the presence of air. It was shown that the pore diameter and porosity of PS vary with annealing temperature. The experimentally obtained adsorption / desorption isotherms show hysteresis typical for capillary condensation in porous materials. A simulation study based on Saam and Cole model was performed and compared with experimentally observed sorption isotherms to study the physics behind of hysteresis formation. We discuss the shape of the hysteresis loops in the framework of the morphology of the layers. The different behavior of adsorption and desorption of nitrogen in PS with pore diameter was discussed in terms of concave menisci formation inside the pore space, which was shown to related with the induced pressure in varying the pore diameter from 7.2 nm to 3.4 nm.

  20. Study on the physical properties of the dynamic filter: unidimensional modulation

    International Nuclear Information System (INIS)

    Souza, Roberto Salomon de

    2005-10-01

    The present work shows an characterization of the Varian linear accelerator EDW physical properties, through experimental determinations, comparing them with calculations made by CadPlan treatment planning system, under the same conditions. The following parameters were determined: EDW factor for square and rectangular fields on the central axis and off-axis, EDW factor dependency with the static collimator, percentage depth dose, EDW factor dependency with the depth on the central axis and off-axis, EDW angles and field profiles on several depths. It was verified that the EDW factor diminishes with the field size increment and with EDW nominal angle increment, and increases with energy increment. It is independent of the X collimator and dynamic collimator, except for small field sizes. It doesn't vary with depth on the central axis, but varies on the off-axis distances. A difference between EDW nominal angles and the EDW obtained experimentally was found, but it doesn't interfere in the treatment results. At the end of this work, a set of physical parameters to be determined for the commissioning, clinical implementation and quality assurance of the EDW is suggested. (author)

  1. Physical properties of organic and biomaterials: Fundamentals and applications

    Science.gov (United States)

    Steven, Eden

    Silk materials are natural protein-based materials with an exceptional toughness. In addition to their toughness, silk materials also possess complex physical properties and functions resulting from a particular set of amino-acid arrangement that produces structures with crystalline beta-sheets connected by amorphous chains. Extensive studies have been performed to study their structure-function relationship leading to recent advancements in bio-integrated devices. Applications to fields other than textiles and biomedicine, however, have been scarce. In this dissertation, an investigation of the electronic properties, functionalization, and role of silk materials (spider silk and Bombyx mori cocoon silk) in the field of organic materials research is presented. The investigation is conducted from an experimental physics point of view where correlations with charge transport mechanisms in disordered, semiconducting, and insulating materials are made when appropriate. First, I present the electronic properties of spider silk fibers under ambient, humidified, iodized, polar solvent exposure, and pyrolized conditions. The conductivity is exponentially dependent on relative humidity changes and the solvent polarity. Iodine doping increases the conductivity only slightly but has pronounced effects on the pyrolization process, increasing the yield and flexibility of the pyrolized silk fibers. The iodized samples were further studied using magic angle spinning nuclear magnetic resonance (MAS-NMR) and Fourier transform infrared spectroscopy (FTIR) revealing non-homogenous iodine doping and I2 induced hydrogenation that are responsible for the minimal conductivity improvement and the pyrolization effects, respectively. Next, I present the investigation of silk fiber functionalization with gold and its role in electrical measurements. The gold functionalized silk fiber (Au-SS) is metallic down to cryogenic temperatures, has a certain amount of flexibility, and possesses

  2. 41 CFR 109-1.5110 - Physical inventories of personal property.

    Science.gov (United States)

    2010-07-01

    ...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of... items indicates that this action is necessary for effective property accounting, utilization, or control... property records, and with applicable financial control accounts. (j) The results of physical inventories...

  3. Thermo-physical Properties and Mechanical Properties of Burn-resistant Titanium Alloy Ti40

    Directory of Open Access Journals (Sweden)

    LAI Yunjin

    2017-10-01

    Full Text Available As a functional material of burn-resistant titanium alloy, the physical properties of Ti40 alloy were first reported. The chemical compositions of Ti40 alloy ingots by VAR were uniform. The microstructures of Ti40 alloy slab manufactured by HEFF+WPF were uniform. The results show that the room temperature tensile strength of Ti40 alloy is 950 MPa degree. The properties of high temperature heat exposure, creep resistance and lasting time are good at 500 ℃. In the range from room temperature to 600 ℃, Young's modulus and shear modulus are decreased linearly with increasing the temperature, Poisson's ratio is increases slowly as the temperature rises, and linear thermal expansion coefficient and average linear expansion coefficient is increase as the temperature rises.

  4. Structural, magnetic and transport properties of Co{sub 2}FeAl Heusler films with varying thickness

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaotian [School of Material Sciences and Engineering, Hebei University Technology, Tianjin 300130 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Yueqing [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); State Key Laboratory of Metastable Material Sciences and Technology, Yanshan University, Qinhuangdao 066004 (China); Du, Yin [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Dai, Xuefang; Liu, Guodong [School of Material Sciences and Engineering, Hebei University Technology, Tianjin 300130 (China); Liu, Enke [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Zhongyuan [State Key Laboratory of Metastable Material Sciences and Technology, Yanshan University, Qinhuangdao 066004 (China); Wang, Wenhong, E-mail: wenhong.wang@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Guangheng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-08-01

    We report on a systematic study of the structural, magnetic properties and the anomalous Hall effect, in the Heusler alloy Co{sub 2}FeAl (CFA) epitaxial films on MgO (001), as a function of film thickness. It was found that the epitaxial CFA films show a highly ordered B2 structure with an in-plane uniaxial magnetic anisotropy. The electrical transport properties reveal that the lattice and magnon scattering contributions to the longitudinal resistivity. Independent on the thickness of films, the anomalous Hall resistivity of CFA films is found to be dominated by skew scattering only. Moreover, the anomalous Hall resistivity shows weakly temperature dependent behavior, and its absolute value increases as the thickness decreases. We attribute this temperature insensitivity in the anomalous Hall resistivity to the weak temperature dependent of tunneling spin-polarization in the CFA films, while the thickness dependence behavior is likely due to the increasing significance of interface or free surface electronic states. - Highlights: ●Highly ordered CFA films with various thicknesses were prepared on MgO substrates. ●The magnon scattering contributions to the longitudinal resistivity in the CFA films. ●The anomalous Hall resistivity of the CFA films shows weakly temperature dependent. ●The CFA films show weak temperature dependent of tunneling spin-polarization.

  5. Physical properties and comparative strength of a bioactive luting cement.

    Science.gov (United States)

    Jefferies, Steven; Lööf, Jesper; Pameijer, Cornelis H; Boston, Daniel; Galbraith, Colin; Hermansson, Leif

    2013-01-01

    New dental cement formulations require testing to determine physical and mechanical laboratory properties. To test an experimental calcium aluminate/glass-ionomer cement, Ceramir C and B (CC and B), regarding compressive strength (CS), film thickness (FT), net setting time (ST) and Vickers hardness. An additional test to evaluate potential dimensional change/expansion properties of this cement was also conducted. CS was measured according to a slightly modified ISO 9917:2003 for the CC and B specimens. The samples were not clamped while being exposed to relative humidity of great than 90 percent at 37 degrees C for 10 minutes before being stored in phosphate-buffered saline at 37 degrees C. For the CS, four groups were tested: Group 1-CC and B; Group 2-RelyX Luting Cement; Group 3-Fuji Plus; and Group 4-RelyX Unicem. Samples from all groups were stored for 24 hours before testing. Only CCandB was tested for ST and FT according to ISO 9917:2003. The FT was tested 2 minutes after mixing. Vickers hardness was evaluated using the CSM Microhardness Indentation Tester using zinc phosphate cement as a comparison material. Expansion testing included evaluating potential cracks in feldspathic porcelain jacket crowns (PJCs). The mean and standard deviation after 24 hours were expressed in MPa: Group 1 equals 160 plus or equal to 27; Group 2 equals 96 plus or equal to 10; Group 3 equals 138 plus or equal to 15; Group 4 equals 157 plus or equal to 10. A single-factor ANOVA demonstrated statistically significant differences between the groups (P less than 0.001). Pair-wise statistical comparison demonstrated a statistically significant difference between Groups 1 and 2. No statistically significant differences were found between other groups. The FT was 16.8 plus or equal to 0.9 and the ST was 4.8 plus or equal to 0.1 min. Vickers hardness for Ceramir C and B was 68.3 plus or equal to 17.2 and was statistically significantly higher (P less than 0.05) than Fleck's Zinc Phosphate

  6. Effect of polyacrylamide on soil physical and hydraulic properties

    Science.gov (United States)

    Albalasmeh, Ammar; Gharaibeh, Mamoun; Hamdan, Enas

    2017-04-01

    The effect of polyacrylamide (PAM), as a soil conditioner, on selected soil physical and hydraulic properties (infiltration rate (f(t)), hydraulic conductivity (HC), soil moisture content, aggregate stability (AS), and soil aggregation) was studied. Two types of anionic PAM were used: Low molecular weight (LPAM) (1×105 g/mol) with medium charge density (33-43) and high molecular weight (HPAM) (1-6×106 g/mol) with medium charge density (33-43). Sandy loam soil was packed into plastic columns; PAM solutions at different concentrations (100, 250, 500, and 1000 mg L-1) were used every two weeks in four wetting and drying cycles. The highest infiltration rate value was 0.16 mm s-1 at 1000 mg/L low molecular weight PAM while the highest value of infiltration rate in high PAM molecular weight was 0.11 mm s-1 compared to the control (0.01 mm s-1). Soil HC was about 3.00 cm h-1 for LPAM at 1000 mg L-1 PAM, while the highest value for HPAM was about 2 cm h-1 for the same concentration, compared to the control. The amount of water that can be held by soil increased with the addition of PAM compared to the control. Differences in water content were more pronounced in LPAM compared to HPAM. The addition of LPAM increased aggregate stability proportional to PAM concentration. Moreover, 1000 mg L-1 produced the highest aggregate stability (19{%}) compared to HPAM and control (7{%} and 5{%}), respectively. As PAM concentration increased, the geometric mean diameter (GMD) increased for both PAM molecular weights compared to control (0.4 mm). At 1000 mg L-1 the GMD values were 0.88 mm and 0.79 mm for LPAM and HPAM, respectively. The addition of PAM improved soil physical and hydraulic properties, with an advantage to LPAM owing that to its ability to penetrate soil aggregates and therefore stabilizing them.

  7. Glycolic Acid Physical Properties, Impurities, And Radiation Effects Assessment

    International Nuclear Information System (INIS)

    Pickenheim, B.; Bibler, N.

    2010-01-01

    The DWPF is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H 2 and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O 2 when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be hindered. A

  8. Accelerator physics and radiometric properties of superconducting wavelength shifters

    International Nuclear Information System (INIS)

    Scheer, Michael

    2008-01-01

    Subject of this thesis is the operation of wave-length shifters at electron storage rings and their use in radiometry. The basic aspects of the radiometry, the technical requirements, the influence of wave-length shifters on the storage ring, and results of first measurements are presented for a device installed at BESSY. Most of the calculations are carried out by the program WAVE, which has been developed within this thesis. WAVE allows to calculate the synchrotron radiation spectra of wavelength shifters within an relative uncertainty of 1/100000. The properties of wave-length shifters in terms of accelerator physics as well as a generating function for symplectic tracking calculations can also be calculated by WAVE. The later was implemented in the tracking code BETA to investigate the influence of insertion devices on the dynamic aperture and emittance of the storage ring. These studies led to the concept of alternating low- and high-beta-sections at BESSY-II, which allow to operate superconducting insertion devices without a significant distortion of the magnetic optics. To investigate the experimental aspects of the radiometry at wave-length shifters, a program based on the Monte-Carlo-code GEANT4 has been developed. It allows to simulate the radiometrical measurements and the absorption properties of detectors. With the developed codes first radiometrical measurements by the PTB have been analysed. A comparison of measurements and calculations show a reasonable agreement with deviations of about five percent in the spectral range of 40-60 keV behind a 1-mm-Cu filter. A better agreement was found between 20 keV and 80 keV without Cu filter. In this case the measured data agreed within a systematic uncertainty of two percent with the results of the calculations. (orig.)

  9. Effect of temperature on physical and mechanical properties of concrete containing silica fume

    International Nuclear Information System (INIS)

    Saad, M.; Hanna, G.B.; Abo-El-Enein, S.A.; Kotkata, M.F.

    1996-01-01

    Heat-resistant materials are usually used for structural purposes. The need for such building materials is particularly important in the chemical and metallurgical industries and for the thermal shieldings of nuclear power plants. Thus the effect of high temperatures on physical and mechanical properties of concrete was investigated. In this study ordinary Portland cement has been partially replaced by ratios of silica fume. The heat treatment temperature varied from 100 to 600 C by increments of 100 C for three hours without any load. Concrete specimens were treated at each temperature level. The specimens were heated under the same condition for each temperature level. Comparison between physical and mechanical properties during heat treatment were investigated. All specimens were moist-cured for 28 days after casting. Tests were carried out on specimens cooled slowly to room temperature after heating. Results of this investigation indicated that the replacement of ordinary Portland cement by 10% silica fume by weight improved the compressive strength by about 64.6%, but replacement of ordinary Portland cement by silica fume by ratios 20 and 30% improved the compressive strength by only 28% at 600 C. This could be attributed to the additional tobermorite gel (CSH phase) which formed due to the reaction of silica fume with Ca(OH) 2

  10. Annealing effect on physical properties of evaporated molybdenum oxide thin films for ethanol sensing

    Energy Technology Data Exchange (ETDEWEB)

    Touihri, S., E-mail: s_touihri@yahoo.fr [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Arfaoui, A.; Tarchouna, Y. [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Labidi, A. [Laboratoire Matériaux, Molécules et Applications, IPEST, BP 51 La Marsa 2070, Tunis (Tunisia); Amlouk, M. [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Bernede, J.C. [LUNAM, Universite de Nantes, Moltech Anjou, CNRS, UMR 6200, FSTN, 2 Rue de la houssiniere, BP 92208, Nantes F-44322 (France)

    2017-02-01

    Highlights: • Thermally grown molybdenum oxide films are amorphous, oxygen deficient and gas sensing. • Air or vacuum annealing transforms them into a sub-stoichiometric MoO{sub 3−x} phase. • The samples annealed at 500 °C in oxygen were crystallized and identified as pure orthorhombic MoO{sub 3} phase. • The conduction process and sensing mechanism of MoO{sub 3-x} to ethanol have been studied. - Abstract: This paper deals with some physical investigations on molybdenum oxide thin films growing on glass substrates by the thermal evaporation method. These films have been subjected to an annealing process under vacuum, air and oxygen at various temperatures 673, 723 and 773 K. First, the physical properties of these layers were analyzed by means of X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM) and optical measurements. These techniques have been used to investigate the oxygen index in MoO{sub x} properties during the heat treatment. Second, from the reflectance and transmittance optical measurements, it was found that the direct band gap energy value increased from 3.16 to 3.90 eV. Finally, the heat treatments reveal that the oxygen index varies in such molybdenum oxides showing noticeably sensitivity toward ethanol gas.

  11. Soil Physical and Chemical Properties in Epigeal Termite Mounds in Pastures

    Directory of Open Access Journals (Sweden)

    Sandra Santana de Lima

    2018-03-01

    Full Text Available ABSTRACT We characterized soil physical and chemical properties and soil organic matter in epigeal termite mounds in pastures to evaluate the changes promoted by termites in comparison to an adjacent area. We selected seven active epigeal termite mounds in the municipality of Seropédica, state of Rio de Janeiro, Brazil. Soil samples were collected from top, center and base positions of each mound, at 0.50 and 1.50 m distance from the base of the mound. We identified individuals of the genus Embiratermes, Velocitermes, and Orthognathotermes. The humin fraction predominated over the humic and fulvic acid fractions both in mounds and adjacent soil. The amount of organic matter and the mineral fractions (mineral-associated organic carbon - MOC varied among builder species. The studied chemical attributes point to a higher concentration of nutrients in the mounds than in the adjacent soil.

  12. Physical Properties of Granulates Used in Analogue Experiments of Caprock Failure and Sediment Remobilisation

    Science.gov (United States)

    Kukowski, N.; Warsitzka, M.; May, F.

    2014-12-01

    Geological systems consisting of a porous reservoir and a low-permeable caprock are prone to hydraulic fracturing, if pore pressure rises to the effective stress. Under certain conditions, hydraulic fracturing is associated with sediment remobilisation, e.g. sand injections or pipes, leading to reduced seal capacity of the caprock. In dynamically scaled analogue experiments using granular materials and air pressure, we intent to investigate strain patterns and deformation mechanisms during caprock failure and fluidisation of shallow over-pressured reservoirs. The aim of this study is to improve the understanding of leakage potential of a sealing formation and the fluidisation potential of a reservoir formation depending on rock properties and effective stress. For reliable interpretation of analogue experiments, physical properties of analogue materials, e.g. frictional strength, cohesion, density, permeability etc., have to be correctly scaled according to those of their natural equivalents. The simulation of caprock requires that the analogue material possess a low permeability and is capable to shear failure and tensional failure. In contrast, materials representing the reservoir have to possess high porosity and low shear strength. In order to find suitable analogue materials, we measured the stress-strain behaviour and the permeability of over 25 different types of natural and artificial granular materials, e.g. glass powder, siliceous microspheres, diatomite powder, loess, or plastic granulate. Here, we present data of frictional parameters, compressibility and permeability of these granular materials characterized as a function of sphericity, grain size, and density. The repertoire of different types of granulates facilitates the adjustment of accurate mechanical properties in the analogue experiments. Furthermore, conditions during seal failure and fluidisation can be examined depending on the wide range of varying physical properties.

  13. Influence of Rock Properties on Wear of M and SR Grade Rubber with Varying Normal Load and Sliding Speed

    Directory of Open Access Journals (Sweden)

    Pal Samir Kumar

    2017-09-01

    Full Text Available Rubbers are interesting materials and are extensively used in many mining industries for material transportation. Wear of rubber is a very complex phenomenon to understand. The present study aims to explain the influence of rock properties on wear of M and SR grade rubber used in top cover of conveyor belts. Extensive laboratory experiments were conducted under four combinations of normal load and sliding speed. The wear of both the rubber types were analyzed based on the rock properties like shear strength, abrasivity index and fractal dimension. A fully instrumented testing set up was used to study the wear of rubber samples under different operating conditions. In general, wear was higher for M grade rubber compared to SR grade rubber. Increase in shear strength of rocks depicts decreasing trend for the wear of M and SR grade rubber at lower load conditions. Moreover, a higher load combination displays no definite trend in both the rubbers. The strong correlation between the wear of rubber and frictional power for all rubber-rock combinations has given rise to the parameter A, which reflects the relative compatibility between the rubber and rock. Increase of Cerchar’s Abrasivity Index of rocks shows gradual enhancement in wear for M grade rubber in all the load and speed combinations whereas, it fails in SR grade rubber due to its higher strength. The wear of rubber tends to decrease marginally with the surface roughness of rocks at highest normal load and sliding speed in M grade rubber. However, the wear of M and SR grade rubber is influenced by the surface roughness of rocks.

  14. Influence of moisture content on physical properties of minor millets.

    Science.gov (United States)

    Balasubramanian, S; Viswanathan, R

    2010-06-01

    Physical properties including 1000 kernel weight, bulk density, true density, porosity, angle of repose, coefficient of static friction, coefficient of internal friction and grain hardness were determined for foxtail millet, little millet, kodo millet, common millet, barnyard millet and finger millet in the moisture content range of 11.1 to 25% db. Thousand kernel weight increased from 2.3 to 6.1 g and angle of repose increased from 25.0 to 38.2°. Bulk density decreased from 868.1 to 477.1 kg/m(3) and true density from 1988.7 to 884.4 kg/m(3) for all minor millets when observed in the moisture range of 11.1 to 25%. Porosity decreased from 63.7 to 32.5%. Coefficient of static friction of minor millets against mild steel surface increased from 0.253 to 0.728 and coefficient of internal friction was in the range of 1.217 and 1.964 in the moisture range studied. Grain hardness decreased from 30.7 to 12.4 for all minor millets when moisture content was increased from 11.1 to 25% db.

  15. Avian magnetic compass: Its functional properties and physical basis

    Directory of Open Access Journals (Sweden)

    Roswitha WILTSCHKO, Wolfgang WILTSCHKO

    2010-06-01

    Full Text Available The avian magnetic compass was analyzed in bird species of three different orders – Passeriforms, Columbiforms and Galliforms – and in three different behavioral contexts, namely migratory orientation, homing and directional conditioning. The respective findings indicate similar functional properties: it is an inclination compass that works only within a functional window around the ambient magnetic field intensity; it tends to be lateralized in favor of the right eye, and it is wavelength-dependent, requiring light from the short-wavelength range of the spectrum. The underlying physical mechanisms have been identified as radical pair processes, spin-chemical reactions in specialized photopigments. The iron-based receptors in the upper beak do not seem to be involved. The existence of the same type of magnetic compass in only very distantly related bird species suggests that it may have been present already in the common ancestors of all modern birds, where it evolved as an all-purpose compass mechanism for orientation within the home range [Current Zoology 56 (3: 265–276, 2010].

  16. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties

    Science.gov (United States)

    Sukhanova, Alyona; Bozrova, Svetlana; Sokolov, Pavel; Berestovoy, Mikhail; Karaulov, Alexander; Nabiev, Igor

    2018-02-01

    Studies on the methods of nanoparticle (NP) synthesis, analysis of their characteristics, and exploration of new fields of their applications are at the forefront of modern nanotechnology. The possibility of engineering water-soluble NPs has paved the way to their use in various basic and applied biomedical researches. At present, NPs are used in diagnosis for imaging of numerous molecular markers of genetic and autoimmune diseases, malignant tumors, and many other disorders. NPs are also used for targeted delivery of drugs to tissues and organs, with controllable parameters of drug release and accumulation. In addition, there are examples of the use of NPs as active components, e.g., photosensitizers in photodynamic therapy and in hyperthermic tumor destruction through NP incorporation and heating. However, a high toxicity of NPs for living organisms is a strong limiting factor that hinders their use in vivo. Current studies on toxic effects of NPs aimed at identifying the targets and mechanisms of their harmful effects are carried out in cell culture models; studies on the patterns of NP transport, accumulation, degradation, and elimination, in animal models. This review systematizes and summarizes available data on how the mechanisms of NP toxicity for living systems are related to their physical and chemical properties.

  17. CHEMENGL/CHIMISTE, Chemical and Physical Properties of Elements

    International Nuclear Information System (INIS)

    Levart, Eugene

    2007-01-01

    Description of program or function: Data Base on basic chemical, physical, and nuclear properties of the elements in the Mendeleev Table (118 elements, 4435 nuclides comprising isotopes and isomers). Example: density electric and thermal conductivity, masses of isotopes and isomers, ionisation potential, etc. from H to Ei (Z=118). Both French and English versions are available. In addition, the French version (513 pages) contains other general information about the elements such as mineralogy, industrial applications, toxicity, historical information on discovery of the elements, etc. The latest version contains updates of atomic masses, the names of symbols of transuranium elements have been updated in accordance with the IUPAC recommendations. The values of the abundance of elements in the sun have been corrected according to Grevesse et al. The price of the different elements have been updated, some minor errors have been corrected and the presentation of the cover page has been improved. Several pages have been added to the last chapter of the French version (CHIMISTE), this chapter is not available in the English version (CHEMENGL)

  18. Optical investigation of niobium properties: Electrical- and physical constants

    Science.gov (United States)

    Singh, Nageshwar; Deo, M. N.; Roy, S. B.

    2017-08-01

    In this paper, we report optical (reflectance) measurements and investigations of optical properties of electropolished (EP), buffered chemical polished (BCP), and as-received (AR) from vendor niobium (Nb) samples typically used for fabrication of superconducting radio frequency (SCRF) cavities. Optical conductivity (σ(0), approximated near zero frequency) of EP (σ(0) ∼ 9 × 103 Ω-1 cm-1) sample is one order of magnitude higher than that of BCP (σ(0) ∼ 7 × 102 Ω-1 cm-1) and AR (σ(0) ∼ 3 × 102 Ω-1 cm-1) niobium samples. Furthermore, physical constants of electropolished Nb-SCRF materials such as concentration of conduction electrons (∼ 1.8 × 1022 electrons/cm3), average velocity (∼ 5.9 × 107 cm/s) of the electrons on the Fermi surface, and mean free path (∼ 0.53 nm) were also found to be considerably higher than that of the BCP and the AR samples. The depth of electric field penetration (in low frequency region) in the electropolished Nb sample (∼ 80 nm) is appreciably lesser than the BCP (∼ 450 nm) and the AR (∼ 400 nm) samples.

  19. Flow-specific physical properties of coconut flours

    Science.gov (United States)

    Manikantan, Musuvadi R.; Kingsly Ambrose, Rose P.; Alavi, Sajid

    2015-10-01

    Coconut milk residue and virgin coconut oil cake are important co-products of virgin coconut oil that are used in the animal feed industry. Flour from these products has a number of potential human health benefits and can be used in different food formulations. The objective of this study was to find out the flow-specific physical properties of coconut flours at three moisture levels. Coconut milk residue flour with 4.53 to 8.18% moisture content (w.b.) had bulk density and tapped density of 317.37 to 312.65 and 371.44 to 377.23 kg m-3, respectively; the corresponding values for virgin coconut oil cake flour with 3.85 to 7.98% moisture content (wet basis) were 611.22 to 608.68 and 663.55 to 672.93 kg m-3, respectively. The compressibility index and Hausner ratio increased with moisture. The angle of repose increased with moisture and ranged from 34.12 to 36.20 and 21.07 to 23.82° for coconut milk residue flour and virgin coconut oil cake flour, respectively. The coefficient of static and rolling friction increased with moisture for all test surfaces, with the plywood offering more resistance to flow than other test surfaces. The results of this study will be helpful in designing handling, flow, and processing systems for coconut milk residue and virgin coconut oil cake flours.

  20. Characterisation of gaharu hydrosol: Physical, chemical and microbiological properties

    International Nuclear Information System (INIS)

    Nur Humaira Lau Abdullah; Salmah Moosa

    2010-01-01

    Gaharu hydrosol is produced during the hydro distillation of resinous wood part of Aquilaria sp. This aromatic water is being considered as a by-product in the industry. There is interest to turn this aromatic by-product into aroma therapy products. The present study is carried out in order to understand the properties of gaharu hydrosol, physically, chemically and microbiologically. Gaharu hydrosol from two different extraction facilities for example at Kedaik Agar wood Sdn. Bhd. and Malaysian Nuclear Agency were characterised in this study. All the gaharu hydrosol samples displayed acidic nature, with pH in the range of 3.62 - 4.53. Four antioxidant assays were carried out to ascertain the antioxidant capabilities of two gaharu hydrosol samples through the total phenolic content assay, ABTS + radical scavenging activity, DPPH· radical scavenging activity and ferric reducing activity (FRAP). The results revealed that the samples exhibited lower antioxidant capabilities as compared to the positive control. For microbial population study, fungi was not present in the samples as there was no growth observed on the Plate Sabouraud Dextrose Agar (SDA) using membrane filtration technique. The antibacterial activity of the gaharu hydrosol against Staphylococcus aureus and Pseudomonas aeruginosa was determined using agar dilution method and disk diffusion method. The results showed that the gaharu hydrosol did not inhibit the growth of both the bacteria. The results obtained from this study will be further evaluated for the development of new products using this aromatic gaharu by-product. (author)

  1. Effects of gamma rays on the physical and mechanical properties of hide

    International Nuclear Information System (INIS)

    Sutrisno Puspodikoro.

    1976-01-01

    The effect of gamma rays on the physical and mechanical properties of hide has been studied, using Gammacell 220 as an irradiator. The determination of the physical and mechanical properties of the irradiated hide was carried out by Balai Penelitian Kulit (Leather Research Institute) at Yogyakarta. Experiments show that up to a certain dose of irradiation, favourable effects can be obtained, while higher doses impair the physical and mechanical properties of the leather raw materials. (author)

  2. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    The total vegetated land area of the earth is about 11,500 hectare. Of this, about 12% is in South America. Of this, about 14% is degraded area. Water erosion, chemical degradation, wind erosion, and physical degradation have been reported as main types of degradation. In South America water erosion is a major process for soil degradation. Nevertheless, water erosion can be a consequence of degradation of the soil structure, especially the functional attributes of soil pores to transmit and retain water, and to facilitate root growth. Climate, soil and topographic characteristics determine runoff and erosion potential from agricultural lands. The main factors causing soil erosion can be divided into three groups: Energy factors: rainfall erosivity, runoff volume, wind strength, relief, slope angle, slope length; Protection factors: population density, plant cover, amenity value (pressure for use) and land management; and resistance factors: soil erodibility, infiltration capacity and soil management. The degree of soil erosion in a particular climatic zone, with particular soils, land use and socioeconomic conditions, will always result from a combination of the above mentioned factors. It is not easy to isolate a single factor. However, the soil physical properties that determine the soil erosion process, because the deterioration of soil physical properties is manifested through interrelated problems of surface sealing, crusting, soil compaction, poor drainage, impeded root growth, excessive runoff and accelerated erosion. When an unprotected soil surface is exposed to the direct impact of raindrops it can produce different responses: Production of smaller aggregates, dispersed particles, particles in suspension and translocation and deposition of particles. When this has occurred, the material is reorganized at the location into a surface seal. Aggregate breakdown under rainfall depends on soil strength and a certain threshold kinetic energy is needed to start

  3. The physical properties of peat: a key factor for modern growing media

    Directory of Open Access Journals (Sweden)

    J-C. Michel

    2010-04-01

    Full Text Available This article identifies criteria for assessing the physical properties (water retention characteristics, wettability and physical stability of growing media which influence the availability of air and water to plant roots. The various materials that are currently in use are assessed for these properties. The analysis of physical properties indicates that weakly decomposed (H1–H5, generally referred to as white Sphagnum peat is still indispensable for soil-less horticulture. Whilst a number of materials can be used as peat additives, especially to improve aeration, no alternative products with equivalent physical properties are available at present.

  4. Ni-SiO2 Catalysts for the Carbon Dioxide Reforming of Methane: Varying Support Properties by Flame Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    Emma C. Lovell

    2015-03-01

    Full Text Available Silica particles were prepared by flame spray pyrolysis (FSP as a support for nickel catalysts. The impact of precursor feed rate (3, 5 and 7 mL/min during FSP on the silica characteristics and the ensuing effect on catalytic performance for the carbon dioxide, or dry, reforming of methane (DRM was probed. Increasing the precursor feed rate: (i progressively lowered the silica surface area from ≈340 m2/g to ≈240 m2/g; (ii altered the silanol groups on the silica surface; and (iii introduced residual carbon-based surface species to the sample at the highest feed rate. The variations in silica properties altered the (5 wt % nickel deposit characteristics which in turn impacted on the DRM reaction. As the silica surface area increased, the nickel dispersion increased which improved catalyst performance. The residual carbon-based species also appeared to improve nickel dispersion, and in turn catalyst activity, although not to the same extent as the change in silica surface area. The findings illustrate both the importance of silica support characteristics on the catalytic performance of nickel for the DRM reaction and the capacity for using FSP to control these characteristics.

  5. Effect of cooking time on the physical, chemical and thermal properties of acha seeds

    Directory of Open Access Journals (Sweden)

    Akeem O. Raji

    2017-10-01

    Full Text Available Acha is a less utilized cereal grain in Africa. Scaling up of the processing technology of acha seeds is desirable if accurate information on effect of processing on its properties is available. This study investigated the effect of cooking duration on the chemical and physical properties of acha seeds. Cooking times (2.5, 5, 7.5 and 10 minutes at 100oC were used. The volume, length, breadth, thickness, porosity, density, sphericity, aspect ratio, specific heat capacity, thermal conductivity, thermal diffusivity, moisture, protein, fat, ash, crude fibre and carbohydrate were determined using standard methods. Data were analysed using ANOVA at p = 0.05. The results obtained revealed that varietal difference had a significant effect on volume, length, breadth, thickness, true density, bulk density, porosity, sphericity and aspect ratio. The moisture content, ash, protein, crude fibre, fat, carbohydrate, specific heat capacity, thermal conductivity and thermal diffusivity varied from 8.80 - 56.17 %, 0.32 - 1.87%, 1.92 - 11.50%, 0.29 - 1.58%, 0.32 - 2.81%, 40.94 - 76.26%, 1.66 -2.97 kJkg-1K-1, 0.26 -0.43 Wm-1K-1 and 0.85 x 10-7 - 1.17 x 10-7 ms-2 respectively, as significantly influenced by cooking time. Cooking for 7.5 minutes was appropriate using the moisture uptakes and thermal properties as criteria. 

  6. The Effect of Varying Ultrafast Pulse Laser Energies on the Electrical Properties of Reduced Graphene Oxide Sheets in Solution

    Science.gov (United States)

    Ibrahim, Khaled H.; Irannejad, Mehrdad; Wales, Benjamin; Sanderson, Joseph; Musselman, Kevin P.; Yavuz, Mustafa

    2018-02-01

    Laser treatment of graphene oxide solution among other techniques is a well-established technique for producing reduced graphene sheets. However, production of high-quality ultra-low sheet resistance reduced graphene oxide (rGO) sheets in solution has been a challenge due to their high degree of randomness, defect-rich medium, and lack of controlability. Recent studies lack an in-depth analytic comparison of laser treatment parameters that yield the highest quality rGO sheets with a low defect ratio. Hence, in this study, we implement a comprehensive comparison of laser treatment parameters and their effect on the yielded rGO sheets from an electronic and physical standpoint. Ultra-low sheet resistance graphene oxide sheets were fabricated using ultrafast laser irradiation with different laser pulse energies in the range of 0.25-2 mJ. Laser treatment for 10 min using a pulse energy of 1 mJ resulted in an increase in the defect spacing, accompanied by a large red shift in the optical absorption of the C=C bond, indicating significant restoration of the s p 2 carbon bonds. These enhancements resulted in a significant reduction in the electrical resistance of the rGO flakes (up to 2 orders of magnitude), raising the electron mobility of the films produced using the irradiated graphene oxide a step closer to that of pristine graphene films. From this study, we can also deduce which exposure regimes result in the fabrication of quantum dots and continuous defect-free films.

  7. Physical properties of magnesium affected soils in Colombia

    International Nuclear Information System (INIS)

    Garcia-Ocampo, A.

    2004-01-01

    Magnesium has some capacity to develop higher exchangeable sodium levels in clays and soil materials. The Mg +2 accumulation on the exchange complex of soils to a very high saturation levels affect their physical, chemical and biological properties. Colombia has a large area of these soils, located mainly in the main rivers valleys and in the Caribbean Region. In the Cauca River Valley there are about 117,000 hectares affected. There is a lack of information about the soil forming processes, the Mg +2 effects on soils, the type and source of compounds responsible for the magnesium enrichment, their relationship with the landscape and the way this accumulation occurs. To identify and quantify soil Mg +2 enriched areas over 2500 soil profiles from different landscape positions of the Cauca River Valley were studied. The information was processed to generate Mg-saturation maps, to identify the different soil profile types and to estimate the affected area. A topographic sequence from the alluvial inundation plain to the hills was used to explore the presence of diagnostic horizons and to determine the main soil characteristics and genetic, mineralogical or chemical evidences of soil forming processes. Two 180 kilometer transects parallel to the river were used to: a) study the type and source of Mg-compounds responsible for the Mg-enrichment and the way this accumulation occurs. b) the soil hydraulic properties like infiltration, saturated hydraulic conductivity and matrix potential at different depths were also measured. Samples of nine profiles were collected and the porosity and soil volume changes at different water content were examined. The program RETC was used for prediction of the hydraulic properties of non saturated soils. These properties involved the retention curve, the function of hydraulic conductivity and the diffusivity of the water in the soil. By grouping together the soil profiles, five main type of Mg-affected soils were identified as being

  8. Material physical properties of 12 chromium ferritic steel

    International Nuclear Information System (INIS)

    Ando, Masanori; Wakai, Takashi; Aoto, Kazumi

    2003-09-01

    High chromium ferritic steel is an attractive candidate for structural material of the next Fast Breeder Reactor, since both of thermal properties and high temperature strength of the steel are superior to those of conventional austenitic stainless steels. In this study, physical properties of 12Cr steels are measured and compared to those obtained in the previous studies to discuss about stochastic dispersions. The effect of measurement technique on Young's modulus and the influence of the specimen size on coefficient of thermal expansion are also investigated. The following conclusions are obtained. (1) Young's modulus of 12Cr steels obtained in this study tends to larger than those obtained in the previous studies especially in high temperature. Such a discrepancy is resulted from the difference in measurement technique. It was clarified that Young's modulus obtained by free vibration method is more adequate those obtained by the cantilever characteristic vibration method. Therefore, the authors recommend using the values obtained by free vibration method as Young's modulus of 12Cr steels. (2) Both instant and mean coefficient of thermal expansion of 12Cr steels obtained in this study is in a good agreement with those obtained in the previous studies. However, the obviously different values are obtained from the measurement by large size specimens. Such a discrepancy is resulted from heterogeneous during heating process of the specimens. Therefore, the authors recommend using the values obtained by φ4 x 20 mm specimens as instant and mean coefficient of thermal expansion of 12Cr steels. (3) Specific heat of 12Cr steels obtained in this study agree with those obtained in the previous studies with a few exceptions. (4)Thermal conductivity of 12Cr steels obtained in this study agree with those obtained in the previous studies. (5) It was confirmed that instant and mean coefficient of thermal expansion, density, specific heat and thermal conductivity of 12Cr steels

  9. Crystal growth and physical properties of Ferro-pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Aswartham, Saicharan

    2012-11-08

    . Single crystals of KFe{sub 2}As{sub 2} were grown with two different fluxes, namely, FeAs-flux and KAs-flux. The superconducting transition is found to be at 3.8 K in both the crystals. The influence of doping with selected elements like Na, Rh, Co and Cr has been investigated systematically in KFe{sub 2}As{sub 2} single crystals. With Na-doping at the K-site, yield (K{sub 1-x}Na{sub x})Fe{sub 2}As{sub 2}; superconductivity is suppressed to lower temperatures. Substitution of Co and Cr at Fe site, yield K(Fe{sub 0.95}Co{sub 0.05}){sub 2}As{sub 2}, K(Fe{sub 0.95}Cr{sub 0.05}){sub 2}As{sub 2} superconductivity is rapidly killed. Single crystals of (Ba{sub 0.6}Eu{sub 0.4})(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} with x = 0, 0.05, 0.1, 0.15 and 0.2 were grown with solution growth technique using Fe-As flux and investigated with several physical measurements. The growth conditions are highly optimized to grow flux free large single crystals especially in case of BaFe{sub 2}As{sub 2} family. The high quality of the crystals were revealed by several physical properties, for e.g. single crystals of Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} are of the highest quality which was confirmed by the magnetic ac susceptibility which showed a very sharp superconducting transition.

  10. ION SERIES AND THE PHYSICAL PROPERTIES OF PROTEINS. II.

    Science.gov (United States)

    Loeb, J

    1920-11-20

    1. Our results show clearly that the Hofmeister series is not the correct expression of the relative effect of ions on the swelling of gelatin, and that it is not true that chlorides, bromides, and nitrates have "hydrating," and acetates, tartrates, citrates, and phosphates "dehydrating," effects. If the pH of the gelatin is taken into considertion, it is found that for the same pH the effect on swelling is the same for gelatin chloride, nitrate, trichloracetate, tartrate, succinate, oxalate, citrate, and phosphate, while the swelling is considerably less for gelatin sulfate. This is exactly what we should expect on the basis of the combining ratios of the corresponding acids with gelatin since the weak dibasic and tribasic acids combine with gelatin in molecular proportions while the strong dibasic acid H(2)SO(4) combines with gelatin in equivalent proportions. In the case of the weak dibasic acids he anion in combination with gelatin is therefore monovalent and in the case of the strong H(2)SO(4) it is bivalent. Hence it is only the valency and not the nature of the ion in combination with gelatin which affects the degree of swelling. 2. This is corroborated in the experiments with alkalies which show that LiOH, NaOH, KOH, and NH(4)OH cause the same degree of swelling at the same pH of the gelatin solution and that this swelling is considerably higher than that caused by Ca(OH)(2) and Ba(OH)(2) for the same pH. This agrees with the results of the titration experiments which prove that Ca(OH)(2) and Ba(OH)(2) combine with gelatin in equivalent proportions and that hence the cation in combination with the gelatin salt with these two latter bases is bivalent. 3. The fact that proteins combine with acids and alkalies on the basis of the forces of primary valency is therefore not only in full agreement with the influence of ions on the physical properties of proteins but allows us to predict this influence qualitatively and quantitatively. 4. What has been stated in

  11. Temperature dependence of the physical properties of Bose–Einstein condensed gases and liquids

    International Nuclear Information System (INIS)

    Mayers, J

    2014-01-01

    It is shown that in the presence of Bose–Einstein condensation (BEC) in any N particle system, the N particle Schrödinger wave functions of thermally occupied states are the sum of a ‘localized’ component and a ‘delocalized’ component, identical to the ground state wave function. It is shown that if N is sufficiently large, this implies that all physical properties of the system are the sum of two independent contributions from these two components. These results are used here to provide quantitative explanations of fundamental properties of BE condensed liquid 4 He, unexplained even qualitatively by existing theory; why BE condensed liquid 4 He is the only known physical system in which pair correlations between atomic positions reduce as it is cooled, why it is the only known liquid with sharp peaks in its dynamic structure factor, why the liquid expands with cooling and how the condensate fraction is related to the superfluid fraction. It is shown that these results also provide a relatively simple, physically transparent and quantitative explanation from first principles of macroscopic quantum effects. A new algorithm is given for the calculation of the time development of the macroscopic density of any BE condensed liquid or gas at any temperature. Unlike the Gross–Pitaevskii equation, this algorithm is valid for both strongly and weakly interacting systems. It is used here to show that macroscopic quantum interference fringes, observed between overlapping clouds of BE condensed atoms, are a necessary consequence of BEC and the N particle Schrödinger equation for the atoms in the clouds. It follows that the widely held view that these fringes are created by measurement is unnecessary. New, experimentally testable predictions are made of how the visibility of these fringes will vary with temperature. (paper)

  12. A 'range test' for determining scatterers with unknown physical properties

    Science.gov (United States)

    Potthast, Roland; Sylvester, John; Kusiak, Steven

    2003-06-01

    We describe a new scheme for determining the convex scattering support of an unknown scatterer when the physical properties of the scatterers are not known. The convex scattering support is a subset of the scatterer and provides information about its location and estimates for its shape. For convex polygonal scatterers the scattering support coincides with the scatterer and we obtain full shape reconstructions. The method will be formulated for the reconstruction of the scatterers from the far field pattern for one or a few incident waves. The method is non-iterative in nature and belongs to the type of recently derived generalized sampling schemes such as the 'no response test' of Luke-Potthast. The range test operates by testing whether it is possible to analytically continue a far field to the exterior of any test domain Omegatest. By intersecting the convex hulls of various test domains we can produce a minimal convex set, the convex scattering support of which must be contained in the convex hull of the support of any scatterer which produces that far field. The convex scattering support is calculated by testing the range of special integral operators for a sampling set of test domains. The numerical results can be used as an approximation for the support of the unknown scatterer. We prove convergence and regularity of the scheme and show numerical examples for sound-soft, sound-hard and medium scatterers. We can apply the range test to non-convex scatterers as well. We can conclude that an Omegatest which passes the range test has a non-empty intersection with the infinity-support (the complement of the unbounded component of the complement of the support) of the true scatterer, but cannot find a minimal set which must be contained therein.

  13. Soil physical properties of high mountain fields under bauxite mining

    Directory of Open Access Journals (Sweden)

    Dalmo Arantes de Barros

    2013-10-01

    Full Text Available Mining contributes to the life quality of contemporary society, but can generate significant impacts, these being mitigated due to environmental controls adopted. This study aimed to characterize soil physical properties in high-altitude areas affected by bauxite mining, and to edaphic factors responses to restoration techniques used to recover mined areas in Poços de Caldas plateau, MG, Brazil. The experiment used 3 randomized block design involving within 2 treatments (before mining intervention and after environmental recovery, and 4 replicates (N=24. In each treatment, soil samples with deformed structures were determined: granulometry, water-dispersible clay content, flocculation index, particle density, stoniness level, water aggregate stability, and organic matter contend. Soil samples with preserved structures were used to determine soil density and the total volume of pores, macropores, and micropores. Homogenization of stoniness between soil layers as a result of soil mobilization was observed after the mined area recovery. Stoniness decreased in 0.10-0.20 m layer after recovery, but was similar in the 0-0.10 m layer in before and after samples. The recovery techniques restored organic matter levels to pre-mining levels. However, changes in soil, including an increase in soil flocculation degree and a decrease in water-dispersible clays, were still apparent post-recovery. Furthermore, mining operations caused structural changes to the superficial layer of soil, as demonstrated by an increase in soil density and a decrease in total porosity and macroporosity. Decreases in the water stability of aggregates were observed after mining operations.

  14. Studies on certain physical properties of modified smectite nanocatalysts

    International Nuclear Information System (INIS)

    Wu, Ming Ching; Kuo, Shu Lung; Lin, Jao Chuan; Ma, Chih Ming; Hong, Gui Bing; Chang, Chang Tang

    2011-01-01

    Most volatile organic compounds (VOCs) are toxic to humans in some manner. Generally, transitional metal catalysts have better conversion rates for controlling VOCs. However, catalyst activity will decay at high temperature, though the oxidizing catalyst is cheap. This study used smectite as the carrier to exchange with Ag + , Zn 2+ and Ti 4+ to modify the surface and form smectite catalysts. In addition, the transmission electron microscopy (TEM), FT-IR spectrum, and DSC-TGA instrument were applied to characterize their physical properties. After the FT-IR analysis of the modified smectite catalyst (smectite-Ag, smectite-Zn and smectite-Ti), both smectite and smectite catalyst had significant and complicated wave crests between the fingerprint area with the wave numbers of 415-600 cm -1 and 750-1170 cm -1 , that indicated the existence of a strong bond between impure silicates (Si-O) and silicates (O-Si-O). TEM observation proved that sintering at 350 deg. C results in the distribution of catalyst ions on clay carrier with a nanoscale. As thermal analysis reveals, the smectite reached endothermic peaks at the temperatures of 920 deg. C and 1057 deg. C, respectively, and shows the decomposition in a non-crystal form. Besides, the disappearance of the endothermic peak of smectite-Ag occurs at 920.5 deg. C and the exothermic peak occurs at 950 deg. C. The results indicating crystals formed of smectite-Ag are more comprehensive and stable than the other smectite or modified smectite catalysts at high temperature.

  15. Physical and chemical properties for sandstone and bentonites

    International Nuclear Information System (INIS)

    Sato, Haruo

    2004-01-01

    Physical and chemical properties such as porosity, pore-size distribution, dry density, solid density, mineralogy and chemical composition, which are important parameters for the understanding and analysis of the diffusion phenomena of radionuclides and ions in bentonite and in the geosphere, were measured. The measurements were performed for sandstone, of which fundamental data and information are limited. For bentonite, 3 kinds of bentonites with different smectite contents (Kunigel-V1, Kunipia-F, MX80) were used. In the measurements of the physical and chemical properties of rock, the measurements of solid density by pychnometer, the measurements of porosity, dry density and solid density by water saturation method, the measurements of porosity, dry density, solid density, pore-size distribution and specific surface area of pores by Hg porosimetry, the identifications of constituent minerals by X-ray Diffractometry (XRD), the measurement of chemical composition by whole rock analysis, the observations of micropore structure by Laser Confocal Microscope (LCM), the measurements of water vaporization curves and the measurements of the homogeneity of the rock by penetration of KMnO 4 were performed. While, in the measurements of the physical and chemical properties for bentonite, water basis water content, water content, porosity, dry density, solid density and their distributions in samples were measured, and the degree of inhomogeneity was quantitatively evaluated by comparing with data and information reported up to date. The porosities of sandstone are 15.6±0.21% for water saturation method and 15.5±0.2% for Hg porosimetry, and similar values were obtained in both methods. The solid densities ranged 2.65-2.69 Mg/m 3 for 3 methods, and the average value was 2.668±0.012 Mg/m 3 . The average pore size was 88.8±0.5nm, and pore sizes ≤10μm shared 80% of total pore volume and pore sizes ≤1μm shared 40%. The specific surface area of the pores is 4.09±0.017 m

  16. Effects of Varying Epoch Lengths, Wear Time Algorithms, and Activity Cut-Points on Estimates of Child Sedentary Behavior and Physical Activity from Accelerometer Data.

    Science.gov (United States)

    Banda, Jorge A; Haydel, K Farish; Davila, Tania; Desai, Manisha; Bryson, Susan; Haskell, William L; Matheson, Donna; Robinson, Thomas N

    2016-01-01

    To examine the effects of accelerometer epoch lengths, wear time (WT) algorithms, and activity cut-points on estimates of WT, sedentary behavior (SB), and physical activity (PA). 268 7-11 year-olds with BMI ≥ 85th percentile for age and sex wore accelerometers on their right hips for 4-7 days. Data were processed and analyzed at epoch lengths of 1-, 5-, 10-, 15-, 30-, and 60-seconds. For each epoch length, WT minutes/day was determined using three common WT algorithms, and minutes/day and percent time spent in SB, light (LPA), moderate (MPA), and vigorous (VPA) PA were determined using five common activity cut-points. ANOVA tested differences in WT, SB, LPA, MPA, VPA, and MVPA when using the different epoch lengths, WT algorithms, and activity cut-points. WT minutes/day varied significantly by epoch length when using the NHANES WT algorithm (p algorithms. Minutes/day and percent time spent in SB, LPA, MPA, VPA, and MVPA varied significantly by epoch length for all sets of activity cut-points tested with all three WT algorithms (all p algorithms (all p algorithms and activity cut-point definitions to match different epoch lengths may introduce significant errors. Estimates of SB and PA from studies that process and analyze data using different epoch lengths, WT algorithms, and/or activity cut-points are not comparable, potentially leading to very different results, interpretations, and conclusions, misleading research and public policy.

  17. Analysis of physical properties controlling steady-state infiltration rates on tropical savannah soils

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.

    1993-10-01

    A knowledge of physical properties influencing the steady-state infiltration rates (ic) of soils is needed for the hydrologic modelling of the infiltration process. In this study evidence is provided to show that effective porosity (Pe) (i.e. the proportion of macro pore spaces with equivalent radius of > 15 μm) and dry bulk density are the most important soil physical properties controlling the steady-state infiltration rates on a tropical savannah with varying land use histories. At a macro porosity value of ≤ 5.0% the steady-state infiltration rate is zero. Total porosity and the proportion of water-retaining pores explained only a small fraction of the variation in this property. Steady-state infiltration rates can also be estimated from either the saturated hydraulic conductivity (Ks) by the equation, i c = 31.1 + 1.06 (Ks), (R 2 = 0.8104, p ≤ 0.001) or the soil water transmissivity (A) by the equation, i c = 30.0 + 29.9(A), (R 2 = 0.8228, ρ ≤ 0.001). The Philip two-parameter model under predicted steady-state infiltration rates generally. Considering the ease of determination and reliability it is suggested that effective porosity be used to estimate the steady-state infiltration rates of these other soils with similar characteristics. The model is, i c 388.7(Pe) - 10.8(R 2 = 0.7265, p ≤ 0.001) where i c is in (cm/hr) and Pe in (cm 3 /cm 3 ). (author). 20 refs, 3 figs, 4 tabs

  18. Retrieval of Macro- and Micro-Physical Properties of Oceanic Hydrosols from Polarimetric Observations

    Science.gov (United States)

    Ibrahim, Amir; Gilerson, Alexander; Chowdhary, Jacek; Ahmed, Samir

    2016-01-01

    Remote sensing has mainly relied on measurements of scalar radiance and its spectral and angular features to retrieve micro- and macro-physical properties of aerosols/hydrosols. However, it is recognized that measurements that include the polarimetric characteristics of light provide more intrinsic information about particulate scattering. To take advantage of this, we used vector radiative transfer (VRT) simulations and developed an analytical relationship to retrieve the macro and micro-physical properties of the oceanic hydrosols. Specifically, we investigated the relationship between the observed degree of linear polarization (DoLP) and the ratio of attenuation-to- absorption coefficients (c/a) in water, from which the scattering coefficient can be readily computed (b equals c minus a), after retrieving a. This relationship was parameterized for various scattering geometries, including sensor zenith/azimuth angles relative to the Sun's principal plane, and for varying Sun zenith angles. An inversion method was also developed for the retrieval of the microphysical properties of hydrosols, such as the bulk refractive index and the particle size distribution. The DoLP vs c/a relationship was tested and validated against in-situ measurements of underwater light polarization obtained by a custom-built polarimeter and measurements of the coefficients a and c, obtained using an in-water WET (Western Environmental Technologies) Labs ac-s (attenuation coefficients In-Situ Spectrophotometer) instrument package. These measurements confirmed the validity of the approach, with retrievals of attenuation coefficients showing a high coefficient of determination depending on the wavelength. We also performed a sensitivity analysis of the DoLP at the Top of Atmosphere (TOA) over coastal waters showing the possibility of polarimetric remote sensing application for ocean color.

  19. Summary of tank waste physical properties at the Hanford Site

    International Nuclear Information System (INIS)

    Nguyen, Q.H.

    1994-04-01

    This report summarizes the physical parameters measured from Hanford Site tank wastes. Physical parameters were measured to determine the physical nature of the tank wastes to develop simulants and design in-tank equipment. The physical parameters were measured mostly from core samples obtained directly below tank risers. Tank waste physical parameters were collected through a database search, interviewing and selecting references from documents. This report shows the data measured from tank waste but does not describe how the analyses wee done. This report will be updated as additional data are measured or more documents are reviewed

  20. Physical and Digital Security Mechanisms: Properties, Combinations and Trade-offs

    NARCIS (Netherlands)

    van Cleeff, A.

    2015-01-01

    The usage of information technology implies the replacement of physical systems with digital systems: we use information technology because some properties of software, such as high speed, low cost and high accuracy, are more desirable than the corresponding properties of physical systems.

  1. Physical, mechanical, and fire properties of oriented strandboard with fire retardant treated veneers

    Science.gov (United States)

    Nadir Ayrilmis; Zeki Candan; Robert White

    2007-01-01

    This study evaluated physical, mechanical and fire properties of oriented strand boards (OSB) covered with fire retardant treated veneers. The beech (Fagus orientalis Lipsky) veneers were treated with either monoammonium phosphate, diammonium phosphate, lime water or a borax/boric acid (1 : 1 by weight) mixture. Physical and mechanical properties of the specimens were...

  2. Study on Physical Properties and Chemical Composition of Some Myanmar Gems

    International Nuclear Information System (INIS)

    Kyaw Myint Htoo; Tun Khin; Sein Htoon

    2004-05-01

    Physical properties of some Myanmar gems were studied by using refractometer, dichroscope, polariscope, SG test, UV test and microscope. Then, chemical composition were investigated by XRF-technique. After that, gem identification, evaluation, colour improvement were studied according to these physical properties and chemical composition

  3. Ga-doped ZnO films deposited with varying sputtering powers and substrate temperatures by pulsed DC magnetron sputtering and their property improvement potentials

    International Nuclear Information System (INIS)

    Lee, Sanghun; Cheon, Dongkeun; Kim, Won-Jeong; Ham, Moon-Ho; Lee, Woong

    2012-01-01

    Ga-doped ZnO (GZO) transparent conductive oxide (TCO) films were deposited on glass substrates by pulsed DC magnetron sputtering with varying sputtering power and substrate temperature while fixing the Ga concentration in the sputtering target. The application of higher sputtering power by pulsed DC magnetrons sputtering at a moderate temperature of 423 K results in increased carrier concentration and mobility which accompanied improved doping efficiency and crystalline quality. Substrate temperature was found to be the more dominant parameter in controlling the electrical properties and crystallinity, while the sputtering power played synergistic auxiliary roles. Electrical and optical properties of the GZO TCO films fulfilled requirements for transparent electrodes, despite relatively low substrate temperature (423 K) and small thickness (100 nm). In an attempt to improve the electrical properties of the GZO films by hydrogen-treatment, it was observed that the substitutional Ga plays the complex role of carrier generator as donor and carrier suppressor deactivating the oxygen vacancy simultaneously, which would complicate the property improvement by increasing doping efficiency.

  4. Italian Physical Society Beyond the Standard Model physics to be observed in precisely measured top quark properties

    CERN Document Server

    Franceschini, R

    2017-01-01

    In this contribution I will highlight the new challenges for top quark physics at LHC Run II, focusing in particular on the interplay between precision studies on the top quark and searches for new physics. A new strategy to search for subtle scenarios of new physics is envisaged. The ability to very accurately compute and measure top quark properties such as its production rate, decay rates and distributions, and specific features in the distribution of variables sensitive to the top quark mass is put at the center of this strategy to probe new physics.

  5. Study of chemical and physical properties of irradiated Guar Gum

    International Nuclear Information System (INIS)

    Hussein, H. A. S.

    2012-07-01

    This study was carried out to evaluate the effect of different gamma radiation doses to decontamination of micro-organisms present in Guar Gum powder. As well as to study the effect of radiation on the chemical and physical properties of the carbohydrate components of the Gum's material. Two types of samples were used in this study (powder and liquid). All samples were collected from commercially available Guar Gum (G G), which were obtained from the company (Sudanese Guar Gum ltd). Samples putted in polyethylene tightly closed container, then irradiated by applying different doses (2.5, 5, 7.5, 10, 20,30,40,and 50 kGy) from Co-60 source at room temperature in air. And take zero kGy as control. Irradiated powder samples of (2.5, 5, 7.5, 10 kGy) were investigated for contamination by using growth media agar and the result showed that 2.5 kGy is appropriate dose to remove the contamination of the samples. And then analyzed using fourier transform infrared (FTTR) x-ray fluorescence (X RF) and spectroscopy. The FTIR spectroscopy results suggested that there were no major chemical functional group transformation during irradiation. No change occurs by using low dose as 2.5 kGy. Also evaluation impact of radiation on liquid Samples (Aqueous solutions prepared in tow concentration of 1% and 5% wv that is by exposing the samples to the same dose of gamma rays) the effect of irradiation on it were investigated by using ultra violet spectroscopy ( UV.Vis), results showed that low dose has steeply effect in solutions specially in low concentration, it was more pronoun than that in high concentration, high dose has made change similar to that it made in powder. Also for both concentrations of liquid samples and for solutions made of irradiated powder pH measured and viscosity which used in investigations of molecular weight of liquid and powder, comparing the results of impact in the form of powder with the results of effects in the solutions found that the effects of

  6. Physical properties of the Saturn's rings with the opposition effect.

    Science.gov (United States)

    Deau, E.

    2012-04-01

    We use the Cassini/ISS images from the early prime mission to build lit phase curves data from 0.01 degrees to 155 degrees at a solar elevation of 23-20 degrees. All the main rings exhibit on their phase curves a prominent surge at small phase angles. We use various opposition effect models to explain the opposition surge of the rings, including the coherent backscattering, the shadow hiding and a combination of the two (Kawata & Irvine 1974 In: Exploration of the planetary system Book p441; Shkuratov et al. 1999, Icarus, 141, p132; Poulet et al. 2002 Icarus, 158, p224 ; Hapke et al. 2002 Icarus, 157, p523). Our results show that either the coherent backscattering alone or a combination of the shadow hiding and the coherent backscattering can explain the observations providing physical properties (albedo, filling factor, grain size) consistent with previous other studies. However, they disagree with the most recent work of Degiorgio et al. 2011 (EPSC-DPS Abstract #732). We think that their attempt to use the shadow hiding alone lead to unrealistic values of the filling factor of the ring particles layer. For example they found 10^-3 in one of the thickest regions of the C ring (a plateau at R=88439km with an optical depth tau=0.22). We totally disagree with their conclusions stating that these values are consistent for the C ring plateaux and did not found any references that are consistent with theirs, as they claimed. We believe that their unrealistic values originated from the assumptions of the models they used (Kawata & Irvine and Hapke), which are basically an uniform size distribution. Any model using an uniform size distribution force the medium to be very diluted to reproduce the opposition surge. Our modeling that uses a power law size distribution provides realistic values. All these results have been already published previously (http://adsabs.harvard.edu/abs/2007PhDT........25D) and are summarized in a forthcoming manuscript submitted to publication so

  7. Associating Physical and Chemical Properties to Evaluate Buffer Materials by Th and U Sorption

    Energy Technology Data Exchange (ETDEWEB)

    Jan, Yi-Lin; Chen, Tzu-Yun; Cheng, Hwai-Ping; Hsu, Chun-Nan; Tseng, Chia-Liang; Wei,Yuan-Yaw; Yang, Jen-Yan; Ke, Cheng-Hsiung; Chuang, Jui-Tang; Teng, Shi-Ping

    2003-02-27

    The physical and chemical properties of buffer materials to be used for a radwaste disposal repository should be evaluated prior to use. In a conventional approach, independent studies of physical and/or chemical characteristics are conducted. This study investigated the relationship between the plastic index (PI) and distribution ratio (Rd) of buffer materials composed of varying ratios of quartz sand and bentonite. Thorium (Th) and Uranium (U) were the nuclides of interest, and both synthetic groundwater and seawater were used as the liquid phases to simulate conditions representative of deep geological disposal within an island. Atterberg tests were used to determine PI values, and batch sorption experiments were employed to measure Rd values. The results show that Th reached maximum sorption behavior when the bentonite content exceeded 30 % of the mixture. Contrariwise, the sorption of U increased linearly with bentonite content, up to bentonite contents of 100%, and this correlation was present regardless of the liquid phase used. A further result is that U has a better additivity with respect to Rd than Th in both synthetic groundwater and synthetic seawater. These results will allow a determination of more effective buffer material composition, and improved estimates of the overall Rd of the buffer material mixture from the Rd of each mineral component.

  8. Impact of local symmetry breaking on the physical properties of tetrahedral liquids.

    Science.gov (United States)

    Shi, Rui; Tanaka, Hajime

    2018-02-27

    Water and silica are the most important materials with local tetrahedral symmetry. They have similar crystalline polymorphs and exhibit anomalous density maximum in the liquid state. However, water and silica also show very different characteristics. For instance, the density of water varies much more sharply than that of liquid silica near the maximum as temperature changes. More notably, silica is a very good glass-former, but water is an extremely poor one. The physical origins of these similarities and differences still remain elusive, due to the lack of a microscopic understanding of the structural ordering in these two important liquids. Here, by accessing microscopic structural information by computer simulations, we reveal that local translational symmetry breaking is responsible for the density anomalies. On the other hand, the difference in the degree of local orientational symmetry breaking between water and silica, which originates from the difference in their bonding nature, causes not only the difference in the sharpness of density anomalies, but also their distinct glass-forming abilities. Our work not only shows the crucial roles of local translational and orientational symmetry breaking in the physical properties of the two extremely important materials, water and silica, but also provides a unified scenario applicable for other tetrahedral liquids such as Si, Ge, C, BeF 2 , and GeO 2 .

  9. Construction of database server system for fuel thermo-physical properties

    International Nuclear Information System (INIS)

    Park, Chang Je; Kang, Kwon Ho; Song, Kee Chan

    2003-12-01

    To perform the evaluation of various fuels in the nuclear reactors, not only the mechanical properties but also thermo-physical properties are required as one of most important inputs for fuel performance code system. The main objective of this study is to make a database system for fuel thermo-physical properties and a PC-based hardware system has been constructed for ease use for the public with visualization such as web-based server system. This report deals with the hardware and software which are used in the database server system for nuclear fuel thermo-physical properties. It is expected to be highly useful to obtain nuclear fuel data without such a difficulty through opening the database of fuel properties to the public and is also helpful to research of development of various fuel of nuclear industry. Furthermore, the proposed models of nuclear fuel thermo-physical properties will be enough utilized to the fuel performance code system

  10. Electronic structure and physical properties of ScN in pressure: density-functional theory calculations

    International Nuclear Information System (INIS)

    Guan Pengfei; Wang Chongyu; Yu Tao

    2008-01-01

    Local density functional is investigated by using the full-potential linearized augmented plane wave (FP-LAPW) method for ScN in the hexagonal structure and the rocksalt structure and for hexagonal structures linking a layered hexagonal phase with wurtzite structure along a homogeneous strain transition path. It is found that the wurtzite ScN is unstable and the layered hexagonal phase, labelled as h o , in which atoms are approximately fivefold coordinated, is metastable, and the rocksalt ScN is stable. The electronic structure, the physical properties of the intermediate structures and the energy band structure along the transition are presented. It is found that the band gaps change from 4.0 to 1.0 eV continuously when c/a value varies from 1.68 to 1.26. It is noticeable that the study of ScN provides an opportunity to apply this kind of material (in wurtzite[h]-derived phase). (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Physical properties evolution of sputtered zirconium oxynitride films: effects of the growth temperature

    International Nuclear Information System (INIS)

    Rizzo, A; Signore, M A; Mirenghi, L; Piscopiello, E; Tapfer, L

    2009-01-01

    Zirconium oxynitride (ZrNO) films were deposited by RF reactive magnetron sputtering in water vapour-nitrogen atmosphere varying the deposition temperature from RT to 600 0 C. Optical analysis, x-ray diffraction, x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) are the employed characterization techniques to investigate the influence of the substrate temperature on the films physical properties. It was found that the variation of the substrate temperature from RT to 600 0 C caused a structural transition from cubic phase of Zr 2 ON 2 to ZrN one, as confirmed by TEM observations too. In particular, Forouhi-Bloomer dispersion equations for optical parameters (n and k) and deconvolution of XPS spectra allowed further chemical properties be elucidated. They also permitted identification of two oxynitride phases, γ phase (E g = 1.94 eV) and β phase (E g = 1.7 eV), and an over-stoichiometric nitride one. The use of [E c - E v ] values helped to confirm further the distinction between (γ, β)-phases and N-rich zirconium nitride compound, which is unachievable by using only E g values.

  12. Soil physical and hydrological properties under three biofuel crops in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Catherine; Lal, Rattan [The Ohio State Univ., School of Environment and Natural Resources, Carbon Management and Sequestration Center, Columbus, OH (United States); Schmitz, Matthias [Rheinische Friedrich/Wilhelms-Universitaet Bonn, Steinmann Institut fuer Geologie, Mineralogie und Palaeontologie, Bonn (Germany); Wullschleger, S. [The Oakridge National Lab., Oakridge, TN (United States)

    2012-10-15

    While biofuel crops are widely studied and compared for their energy and carbon footprints, less is known about their effects on other soil properties, particularly hydrologic characteristics. Soils under three biofuel crops, corn (Zea mays), switchgrass (Panicum virgatum), and willow (Salix spp.), were analyzed seven years after establishment to assess the effects on soil bulk density ({rho}{sub b}), penetration resistance (PR), water-holding capacity, and infiltration characteristics. The PR was the highest under corn, along with the lowest associated water content, while PR was 50-60 % lower under switchgrass. In accordance with PR data, surface (0-10 cm) bulk density also tended to be lower under switchgrass. Both water infiltration rates and cumulative infiltration amounts varied widely among and within the three crops. Because the Philip model did not fit the data, results were analyzed using the Kostiakov model instead. Switchgrass plots had an average cumulative infiltration of 69 cm over 3 hours with a constant infiltration rate of 0.28 cm min{sup -1}, compared with 37 cm and 0.11 cm min{sup -1} for corn, and 26 cm and 0.06 cm min{sup -1} for willow, respectively. Results suggest that significant changes in soil physical and hydrologic properties may require more time to develop. Soils under switchgrass may have lower surface bulk density, higher field water capacity, and a more rapid water infiltration rate than those under corn or willow.

  13. Soil physical and hydrological properties under three biofuel crops in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Catherine [Ohio State University; Lal, Dr. Rattan [Ohio State University; Schmitz, Matthias [Rheinsche Friedrich/Wilhelms Universitaet Boon; Wullschleger, Stan D [ORNL

    2012-01-01

    While biofuel crops are widely studied and compared for their energy and carbon footprints, less is known about their effects on other soil properties, particularly hydrologic characteristics. Soils under three biofuel crops, corn (Zea mays), switchgrass (Panicum virgatum), and willow (Salix spp.), were analyzed seven years after establishment to assess the effects on soil bulk density ({rho}{sub b}), penetration resistance (PR), water-holding capacity, and infiltration characteristics. The PR was the highest under corn, along with the lowest associated water content, while PR was 50-60% lower under switchgrass. In accordance with PR data, surface (0-10 cm) bulk density also tended to be lower under switchgrass. Both water infiltration rates and cumulative infiltration amounts varied widely among and within the three crops. Because the Philip model did not fit the data, results were analyzed using the Kostiakov model instead. Switchgrass plots had an average cumulative infiltration of 69 cm over 3 hours with a constant infiltration rate of 0.28 cm min{sup -1}, compared with 37 cm and 0.11 cm min{sup -1} for corn, and 26 cm and 0.06 cm min{sup -1} for willow, respectively. Results suggest that significant changes in soil physical and hydrologic properties may require more time to develop. Soils under switchgrass may have lower surface bulk density, higher field water capacity, and a more rapid water infiltration rate than those under corn or willow.

  14. Physical properties evolution of sputtered zirconium oxynitride films: effects of the growth temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, A; Signore, M A; Mirenghi, L; Piscopiello, E; Tapfer, L [ENEA, Department of Physical Technologies and New Materials, SS7, Appia, km 706, 72100 Brindisi (Italy)

    2009-12-07

    Zirconium oxynitride (ZrNO) films were deposited by RF reactive magnetron sputtering in water vapour-nitrogen atmosphere varying the deposition temperature from RT to 600 {sup 0}C. Optical analysis, x-ray diffraction, x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) are the employed characterization techniques to investigate the influence of the substrate temperature on the films physical properties. It was found that the variation of the substrate temperature from RT to 600 {sup 0}C caused a structural transition from cubic phase of Zr{sub 2}ON{sub 2} to ZrN one, as confirmed by TEM observations too. In particular, Forouhi-Bloomer dispersion equations for optical parameters (n and k) and deconvolution of XPS spectra allowed further chemical properties be elucidated. They also permitted identification of two oxynitride phases, {gamma} phase (E{sub g} = 1.94 eV) and {beta} phase (E{sub g} = 1.7 eV), and an over-stoichiometric nitride one. The use of [E{sub c} - E{sub v}] values helped to confirm further the distinction between ({gamma}, {beta})-phases and N-rich zirconium nitride compound, which is unachievable by using only E{sub g} values.

  15. Effect of barium doping on the physical properties of zinc oxide ...

    Indian Academy of Sciences (India)

    2015-11-27

    Home; Journals; Pramana – Journal of Physics; Volume 87; Issue 1. Effect of barium doping on the physical properties of zinc oxide ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: ...

  16. Tailoring the physical properties of manganite thin films by tuning the epitaxial strain

    International Nuclear Information System (INIS)

    Zhang, P.X.; Zhang, H.; Cha, L.M.; Habermeier, H.-U.

    2003-01-01

    Through a proper choice of the mismatch between substrate and films, the physical properties of manganite thin films can be tailored We show that two types of manganite thin films of the Ruddlesden-Popper family, n=∞ and n=2, demonstrate a dramatic variation of their physical properties. It is proved that the property variation can be tuned precisely by controlling the lattice mismatch and/or the film thickness

  17. Physical and strength properties of Azadirachta indica , (a. Juss ...

    African Journals Online (AJOL)

    A total of 160 test samples were used from three trees randomly selected from the study area. Preparations of test samples, actual testing and determination of different properties were carried out following standard methods. All strength property values were adjusted to 12% moisture content. Results showed A. indica to ...

  18. Design, synthesis and physical properties of poly(styrene ...

    Indian Academy of Sciences (India)

    Administrator

    tance in the commodity plastics field because of their advantages as balanced properties and cost-effectiveness. ... Polymers and polymer-based materials with electro- conductive properties are materials with potential appli- ... BIO-RAD (4 cm–1 resolution). The number and weight- average molecular weight (Mn and Mw) ...

  19. Soil chemical and physical properties that differentiate urban land-use and cover types

    Science.gov (United States)

    R.V. Pouyat; I.D. Yesilonis; J. Russell-Anelli; N.K. Neerchal

    2007-01-01

    We investigated the effects of land use and cover and surface geology on soil properties in Baltimore, MD, with the objectives to: (i) measure the physical and chemical properties of surface soils (0?10 cm) by land use and cover; and (ii) ascertain whether land use and cover explain differences in these properties relative to surface geology. Mean and median values of...

  20. Physics understanding the properties of matter and energy

    CERN Document Server

    2015-01-01

    Without physics, modern life would not exist. Instead of electric light, we would read by the light of candles. We couldn''t build skyscrapers. We could not possibly bridge rivers, much less build a jet or interplanetary craft. Computers and smartphones would be unimaginable. Physics is concerned with the most fundamental aspects of matter and energy and how they interact to make the physical universe work. In accessible language and with explanatory graphics and visual aids, this book introduces readers to the science that is at the very center of all other sciences and essential to our very

  1. Relationships between some soil physical and chemical properties with magnetic properties in different soil moisture regimes in Golestan province

    Directory of Open Access Journals (Sweden)

    M. Valaee

    2016-09-01

    Full Text Available Introduction: Soil moisture regime refers to the presence or absence either of ground water or of water held at a tension of less than 1500 kPa in the soil or in specific horizons during periods of the year. It is the most important factor in soil formation, soil evolution and fertility affecting on crop production and management. Also, it widely is practical in soil classification and soil mapping. The soil moisture regime depends on the soil properties, climatic and weather conditions, characteristics of natural plant formations and, in cultivated soils, is affected by the characteristics of crops grown, as well as the cultivation practices. Determination of soil moisture regime within a landscape scale requires high information and data about moisture balance of soil profile during some years according to Soil Survey Manual (2010. This approach is very expensive, labor, time and cost consuming. Therefore, achievement to an alternative approach is seems essential to overcome these problems. The main hypothesis of this study was to use capability of magnetic susceptibility as a cheap and rapid technique could determine the soil moisture regimes. Magnetic properties of soils reflect the impacts of soil mineral composition, particularly the quantity of ferrimagnetic minerals such as maghemite and magnetite. Magnetic susceptibility measurements can serve a variety of applications including the changes in soil forming processes and ecological services, understanding of lithological effects, insight of sedimentation processes and soil drainage. Materials and Methods: This study was conducted in an area located between 36°46َ 10˝ and 37° 2’ 28˝ N latitudes, and 54° 29’ 31˝ and 55° 12’ 47˝ E longitudes in Golestan province, northern Iran. In the study region mean annual temperature varies from 12.4 to 19.4 °C. The average annual rainfall and evapotranspiration varies from 230 mm and 2335 mm in Inchebrun district (Aridic regime, to 732

  2. Analysis of Chemical and Physical Properties of Biochar from Rice Husk Biomass

    Science.gov (United States)

    Armynah, Bidayatul; Atika; Djafar, Zuryati; Piarah, Wahyu H.; Tahir, Dahlang

    2018-03-01

    Chemical and physical properties of Rice Husk as a potential energy resource were analyzed by means Fourier transform infrared (FTIR), x-ray diffraction (XRD), scanning electron microscope (SEM), and energy disperse spectroscopy (EDS). Rice husk is heated with varied temperature of 250°C, 350°C, 450°C and 30, 60, 90 minutes respectively combine with time variation. The results show that the calorific value decreases whenever the temperature and time increase. The heating time of 30 minutes at 250 °C of temperature gives calorific value of 10.4 MJ/Kg. While at the 450°C of temperature, the calorific value decrease to 4.7 MJ/Kg. The EDS shows that the time of heating is an important parameter where carbon and nitrogen were decreasing with the increment of the heating time while the oxygen increase when the heating time increase. The XRD shows that the broad (002) reflections between 20° and 30° indicate carbon disordered with small domains of coherent and parallel stacking of the graphene sheets, which consists of surface morphology from SEM. FTIR shows that the O-H stretching pronounced at around 3452 cm-1 and 3412 cm-1 and pronounced clearly at the highest temperature. The aromatic group from lignin gives rise to C=C asymmetric stretching at cm-1 as a G band corresponds to the sp2-hybradization bonding of carbon atoms and C-H bending modes at 2927 at 796 cm-1. This results of the characteristic of chemical and physical properties of the rice husk examination provide the prominent source of useful energy that can eventually replace the fossil fuel.

  3. Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties

    Directory of Open Access Journals (Sweden)

    C. Bastianelli

    2017-07-01

    Full Text Available At the northernmost extent of the managed forest in Quebec, Canada, the boreal forest is currently undergoing an ecological transition between two forest ecosystems. Open lichen woodlands (LW are spreading southward at the expense of more productive closed-canopy black spruce–moss forests (MF. The objective of this study was to investigate whether soil properties could distinguish MF from LW in the transition zone where both ecosystem types coexist. This study brings out clear evidence that differences in vegetation cover can lead to significant variations in soil physical and geochemical properties.Here, we showed that soil carbon, exchangeable cations, and iron and aluminium crystallinity vary between boreal closed-canopy forests and open lichen woodlands, likely attributed to variations in soil microclimatic conditions. All the soils studied were typical podzolic soil profiles evolved from glacial till deposits that shared a similar texture of the C layer. However, soil humus and the B layer varied in thickness and chemistry between the two forest ecosystems at the pedon scale. Multivariate analyses of variance were used to evaluate how soil properties could help distinguish the two types at the site scale. MF humus (FH horizons horizons composing the O layer showed significantly higher concentrations of organic carbon and nitrogen and of the main exchangeable base cations (Ca, Mg than LW soils. The B horizon of LW sites held higher concentrations of total Al and Fe oxides and particularly greater concentrations of inorganic amorphous Fe oxides than MF mineral soils, while showing a thinner B layer. Overall, our results show that MF store three times more organic carbon in their soils (B+FH horizons, roots apart than LW. We suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the vegetation

  4. Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties

    Science.gov (United States)

    Bastianelli, Carole; Ali, Adam A.; Beguin, Julien; Bergeron, Yves; Grondin, Pierre; Hély, Christelle; Paré, David

    2017-07-01

    At the northernmost extent of the managed forest in Quebec, Canada, the boreal forest is currently undergoing an ecological transition between two forest ecosystems. Open lichen woodlands (LW) are spreading southward at the expense of more productive closed-canopy black spruce-moss forests (MF). The objective of this study was to investigate whether soil properties could distinguish MF from LW in the transition zone where both ecosystem types coexist. This study brings out clear evidence that differences in vegetation cover can lead to significant variations in soil physical and geochemical properties.Here, we showed that soil carbon, exchangeable cations, and iron and aluminium crystallinity vary between boreal closed-canopy forests and open lichen woodlands, likely attributed to variations in soil microclimatic conditions. All the soils studied were typical podzolic soil profiles evolved from glacial till deposits that shared a similar texture of the C layer. However, soil humus and the B layer varied in thickness and chemistry between the two forest ecosystems at the pedon scale. Multivariate analyses of variance were used to evaluate how soil properties could help distinguish the two types at the site scale. MF humus (FH horizons horizons composing the O layer) showed significantly higher concentrations of organic carbon and nitrogen and of the main exchangeable base cations (Ca, Mg) than LW soils. The B horizon of LW sites held higher concentrations of total Al and Fe oxides and particularly greater concentrations of inorganic amorphous Fe oxides than MF mineral soils, while showing a thinner B layer. Overall, our results show that MF store three times more organic carbon in their soils (B+FH horizons, roots apart) than LW. We suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the vegetation structure (stand density

  5. An ontology on property for physical, chemical, and biological systems.

    Science.gov (United States)

    Dybkaer, René

    2004-01-01

    Current metrological literature, including the International vocabulary of basic and general terms in metrology (VIM 1993), presents a special language slowly evolved without consistent use of the procedures of terminological work; furthermore, nominal properties are excluded by definition. Both deficiencies create problems in fields, such as laboratory medicine, which have to report results of all types of property, preferably in a unified systematic format. The present text aims at forming a domain ontology around "property", with intensional definitions and systematic terms, mainly using the terminological tools--with some additions--provided by the International Standards ISO 704, 1087-1, and 10241. "System" and "component" are defined, "quantity" is discussed, and the generic concept "property" is given as 'inherent state- or process-descriptive feature of a system including any pertinent components'. Previously, the term 'kind-of-quantity' and quasi-synonyms have been used as primitives; the proposed definition of "kind-of-property" is 'common defining aspect of mutually comparable properties'. "Examination procedure", "examination method", "examination principle", and "examination" are defined, avoiding the term 'test'. The need to distinguish between instances of "characteristic", "property", "type of characteristic", "kind-of-property", and "property value" is emphasized; the latter is defined together with "property value scale". These fundamental concepts are presented in a diagram, and the effect of adding essential characteristics to give expanded definitions is exemplified. Substitution usually leads to unwieldy definitions, but reveals circularity as does exhaustive consecutive listing of defining concepts. The top concept may be generically divided according to many terminological dimensions, especially regarding which operators are allowed among the four sets =, not equal to; ; +, -; and x, :. The coordinate concepts defined are termed by the

  6. Geophysical testing of rock and its relationships to physical properties

    Science.gov (United States)

    2011-02-01

    Testing techniques were designed to characterize spatial variability in geotechnical engineering physical parameters of : rock formations. Standard methods using seismic waves, which are routinely used for shallow subsurface : investigation, have lim...

  7. Physical properties of seeds of African walnut ( Plukenetia ...

    African Journals Online (AJOL)

    Principal Components Analysis (PCA) results identified five physical traits ... Location × processing interaction had no remarkable effect on the proximate ... the sampled zone have adequate nutritional content to qualify as a protein-rich oilseed ...

  8. The Composition and Physical Properties of Some Clays of Cross ...

    African Journals Online (AJOL)

    ... and quartz as the main subsidiary non-clay mineral. The high plasticity index of the clays corresponds to the more transported clays of the tertiary- to –recent environment. The percentage of linear shrinkage varied from 11-16% with the lowest shrinkage (11%), having the coarsest features. Silica (SiO2) content of the clays ...

  9. A Subsurface Soil Composition and Physical Properties Experiment to Address Mars Regolith Stratigraphy

    Science.gov (United States)

    Richter, L.; Sims, M.; Economou, T.; Stoker, C.; Wright, I.; Tokano, T.

    2004-01-01

    Previous in-situ measurements of soil-like materials on the surface of Mars, in particular during the on-going Mars Exploration Rover missions, have shown complex relationships between composition, exposure to the surface environment, texture, and local rocks. In particular, a diversity in both compositional and physical properties could be established that is interpreted to be diagnostic of the complex geologic history of the martian surface layer. Physical and chemical properties vary laterally and vertically, providing insight into the composition of rocks from which soils derive, and environmental conditions that led to soil formation. They are central to understanding whether habitable environments existed on Mars in the distant past. An instrument the Mole for Soil Compositional Studies and Sampling (MOCSS) - is proposed to allow repeated access to subsurface regolith on Mars to depths of up to 1.5 meters for in-situ measurements of elemental composition and of physical and thermophysical properties, as well as for subsurface sample acquisition. MOCSS is based on the compact PLUTO (PLanetary Underground TOol) Mole system developed for the Beagle 2 lander and incorporates a small X-ray fluorescence spectrometer within the Mole which is a new development. Overall MOCSS mass is approximately 1.4 kilograms. Taken together, the MOCSS science data support to decipher the geologic history at the landing site as compositional and textural stratigraphy if they exist - can be detected at a number of places if the MOCSS were accommodated on a rover such as MSL. Based on uncovered stratigraphy, the regional sequence of depositional and erosional styles can be constrained which has an impact on understanding the ancient history of the Martian near-surface layer, considering estimates of Mars soil production rates of 0.5... 1.0 meters per billion years on the one hand and Mole subsurface access capability of approximately 1.5 meters. An overview of the MOCSS, XRS

  10. Structural Dependence of Physical Properties in Sodium Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, Marcel; Mauro, John C.

    Boroaluminosilicate glasses have found applications in many fields. The extent and nature of the mixing of network formers like SiO2, B2O3, and Al2O3 play an important role in controlling the macroscopic properties. To understand the structure-property correlations in these glasses, we study...... a series of sodium boroaluminosilicate glasses with various [Al2O3]/[SiO2] ratios to access different regimes of sodium behavior. We determine dynamic properties, elastic moduli, and hardness of these glasses. The results reveal an existence of local minimum for density, fragility index, Young’s and shear...

  11. Sensitivity analyses of biodiesel thermo-physical properties under diesel engine conditions

    DEFF Research Database (Denmark)

    Cheng, Xinwei; Ng, Hoon Kiat; Gan, Suyin

    2016-01-01

    This reported work investigates the sensitivities of spray and soot developments to the change of thermo-physical properties for coconut and soybean methyl esters, using two-dimensional computational fluid dynamics fuel spray modelling. The choice of test fuels made was due to their contrasting...... saturation-unsaturation compositions. The sensitivity analyses for non-reacting and reacting sprays were carried out against a total of 12 thermo-physical properties, at an ambient temperature of 900 K and density of 22.8 kg/m3. For the sensitivity analyses, all the thermo-physical properties were set...... as the baseline case and each property was individually replaced by that of diesel. The significance of individual thermo-physical property was determined based on the deviations found in predictions such as liquid penetration, ignition delay period and peak soot concentration when compared to those of baseline...

  12. Some Physical and Mechanical Properties of African Birch ...

    African Journals Online (AJOL)

    PROF HORSFALL

    Also, strength properties of African birch timber perpendicular to grain ... Air dried African birch (Anogeissus leiocarpus) ..... Forest Product Research Labouratory. ... America. 001 – 589. Ikram Mohamed, EE; Abdel Khalig, M; Hiba, AA;. Saad ...

  13. Effect of ozone gas processing on physical and chemical properties ...

    African Journals Online (AJOL)

    chemical properties of gluten proteins were investigated after treatment with .... differences in most of the visible bands among all samples. Figure 1: SDS-PAGE analysis of protein patterns in wheat gluten and glutenin, with and without ozone.

  14. Synthesis, microstructure, and physical properties of metallic barcode nanowires

    Science.gov (United States)

    Park, Bum Chul; Kim, Young Keun

    2017-05-01

    With rapid progress in nanotechnology, nanostructured materials have come closer to our life. Single-component nanowires are actively investigated because of their novel properties, attributed to their nanoscale dimensions and adjustable aspect ratio, but their technical limitations cannot be resolved easily. Heterostructured nanomaterials gained attention as alternatives because they can improve the existing single-component structure or add new functions to it. Among them, barcode nanowires (BNWs), comprising at least two different functional segments, can perform multiple functions for use in biomedical sensors, information encoding and security, and catalysts. BNW applications require reliable response to the external field. Hence, researchers have been attempting to improve the reliability of synthesis and regulate the properties precisely. This article highlights the recent progress and prospects for the synthesis, properties, and applications of metallic BNWs with focus on the dependence of the magnetic, optical, and mechanical properties on material, composition, shape, and microstructure.

  15. Electronic structure and physical properties of 13C carbon composite

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in science and technology. Structure and electrical properties, as so technological aspects of producing of high-strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry. Author was focused on the properties of graphite composites based on carbon isotope 13C. Generally, the review relies on the original results and concentrates...

  16. SIFAT FISIK, KIMIA, DAN FUNGSIONAL DAMAR [Brief Review on: Physical, Chemical and Functional Properties of Dammar

    Directory of Open Access Journals (Sweden)

    Noryawati Mulyono1

    2004-12-01

    Full Text Available Dammar is one of Indonesian forestry products which is abundant. It has unique physical, chemical and functional properties. The important physical properties of dammar include its solubility in some organic solvents, softening temperature, viscosity and its absorbance. The important chemical properties reviewed here include its properties as resin, composition of terpenoid compounds present in dammar, and essential oil yielded from distillation of fresh dammar. Physical and chemical properties of dammar need to be studied further in order to optimize its functional properties. So far, dammar is widely used as weighting agent and source of essential oil. However, now, some species of dammar are being explored and developed for sal flour, fat source, triacylglycerol substituent for cocoa butter and wood preservatives.

  17. Structural and electrical properties of co-evaporated Cu(In,Ga)Se{sub 2} thin films with varied Cu contents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Young; Kim, Girim; Kim, Jongwan; Park, Jae Hwan; Lim, Donggun, E-mail: dglim@ut.ac.kr

    2013-11-01

    Cu(In,Ga)Se{sub 2} (CIGS) thin films were fabricated with varying Cu contents. Cu/(Ga + In) ratios were varied between 0.4 and 1.02. Solar cells were then fabricated by co-evaporation using the CIGS layers as absorbers. The influences of Cu content on the cells' structural, optical and electrical properties were studied. The CIGS thin films were characterized by X-ray diffractometer, scanning electron microscopy, energy-dispersive spectroscopy, four-point probe measurement and Hall measurement. Grain size in the films increased with increasing Cu content. At a Cu/(Ga + In) ratio of 0.86, the (220/204) peak was stronger than the (112) peak and carrier concentration was 1.49 × 10{sup 16} cm{sup −3}. Optimizing the Cu content resulted in a CIGS solar cell with an efficiency of 16.5%. - Highlights: • Improvement of technique to form Cu(In,Ga)Se{sub 2} (CIGS) film by co-evaporation method • Cu/(In + Ga) ratio to improve the efficiency for CIGS thin film solar cell • Cu content effects have been analyzed. • Optimum condition of CIGS layer as an absorber of thin film solar cells.

  18. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    A remarkable amount of progress has been made in Physics since the last CMS Week in June given the exponential growth in the delivered LHC luminosity. The first major milestone was the delivery of a variety of results to the ICHEP international conference held in Paris this July. For this conference, CMS prepared 15 Physics Analysis Summaries on physics objects and 22 Summaries on new and interesting physics measurements that exploited the luminosity recorded by the CMS detector. The challenge was incorporating the largest batch of luminosity that was delivered only days before the conference (300 nb-1 total). The physics covered from this initial running period spanned hadron production measurements, jet production and properties, electroweak vector boson production, and even glimpses of the top quark. Since then, the accumulated integrated luminosity has increased by a factor of more than 100, and all groups have been working tremendously hard on analysing this dataset. The September Physics Week was held ...

  19. STP: A mathematically and physically consistent library of steam properties

    International Nuclear Information System (INIS)

    Aguilar, F.; Hutter, A.C.; Tuttle, P.G.

    1982-01-01

    A new FORTRAN library of subroutines has been developed from the fundamental equation of Keenan et al. to evaluate a large set of water properties including derivatives such as sound speed and isothermal compressibility. The STP library uses the true saturation envelope of the Keenan et al. fundamental equation. The evaluation of the true envelope by a continuation method is explained. This envelope, along with other design features, imparts an exceptionally high degree of thermodynamic and mathematical consistency to the STP library, even at the critical point. Accuracy and smoothness, library self-consistency, and designed user convenience make the STP library a reliable and versatile water property package

  20. Physical and mechanical properties of unidirectional plant fibre composites

    DEFF Research Database (Denmark)

    Madsen, B.; Lilholt, H.

    2003-01-01

    Unidirectional composites were made from filament wound non-treated flax yarns and polypropylene foils. With increasing composite fibre weight fractions from 0.56 to 0.72, porosity fractions increased from 0.04 to 0.08; a theoretical model was fitted to the data in order to describe the composite...... version of the "rule-of-mixtures", supplemented with parameters of composite porosity content and anisotropy of fibre properties, were developed to improve the prediction of composite tensile properties. (C) 2003 Elsevier Science Ltd. All rights reserved....

  1. Nanoemulsions produced with varied type of emulsifier and oil content: An influence of formulation and process parameters on the characteristics and physical stability

    Directory of Open Access Journals (Sweden)

    Đorđević Sanela M.

    2013-01-01

    Full Text Available The aim of the present study was to prepare oil-in-water nanoemulsions stabilized with a novel natural alkyl polyglucoside surfactant and to compare them with corresponding lecithin/polysorbate 80 - based nanoemulsions in terms of physicochemical properties and physical stability. Nanoemulsions were prepared by high pressure homogenization, using 20, 30 and 40% (w/w medium chain triglyceride as oil phase, and 4, 6 and 8% (w/w lecithin/polysorbate 80 mixture (1/1 or caprylyl/capryl glucoside as emulsifiers. The influence of emulsifier type, emulsifier concentration and oil content was investigated with respect to changes in particle size, particle size distribution, surface charge and physical stability. The influence of production parameters (number of homogenization cycles, type of homogenization process, homogenization pressure on particle size was also investigated. Analysis was performed by photon correlation spectroscopy, laser diffraction, zeta potential, pH and electrical conductivity measurements. All formulations produced revealed a small droplet size ranging from 147 to 228 nm and a very narrow size distribution (polydispersity index range 0,072-0,124. Zeta potentials were about -20 mV and -50 mV for nanoemulsions stabilized with lecithin/polysorbate 80 and caprylyl/capryl glucoside, respectively. The results obtained during the stability studies (6 months at 25°C and 1 month at 40°C indicated that nanoemulsion stability was influenced by their composition. Acquired results also suggested the most appropriate production parameters: 9 homogenization cycles, homogenization pressure of 500 bar and discontinuous process of homogenization.

  2. Synthesis, characterization, and physical properties of 1D nanostructures

    Science.gov (United States)

    Marley, Peter Mchael

    framework is facilitated by the nanometer-sized dimensions of the materials, which leads to accommodation of strain without amorphization. The topotactic approach demonstrated here indicates not just novel intercalation chemistry accessible at nanoscale dimensions but also suggests a facile synthetic route to ternary vanadium oxide bronzes (MxV2O 5) exhibiting intriguing physical properties that range from electronic phase transitions to charge ordering and superconductivity.

  3. Soil physical and hydraulic properties modification under Arachis ...

    African Journals Online (AJOL)

    A field study was carried out to determine the effects of 3 plant densities (33333, 66667 and 83333 plants/ha)on soil properties and water loss through evaporation from soils under 2 cultivars of Arachis hypogaeaL. (SAMNUT 10 and SAMNUT 21) and Arachis pintoi(PINTOI) in Ibadan, south western Nigeria. The experiment ...

  4. Physical properties of compact toroids generated by a coaxial source

    Energy Technology Data Exchange (ETDEWEB)

    Henins, I.; Hoida, H.W.; Jarboe, T.R.; Linford, R.K.; Marshall, J.; McKenna, K.F.; Platts, D.A.; Sherwood, A.R.

    1980-01-01

    In the CTX experiments we have been studying CTs generated with a magnetized coaxial plasma gun. CTs have been generated in prolate and oblate cylindrically symmetric metallic flux conservers. The plasma and magnetic field properties are studied through the use of magnetic probes, Thomson scattering, interferometry, and spectroscopy.

  5. Physical Properties of 3D Interconnected Graphite Networks - Aerographite

    Science.gov (United States)

    2015-10-30

    resistance could be observed. The dielectric properties are studied using AC impedance spectroscopy. A low capacitance can be measured that refers to...current frequency ..................................................... 17 Figure 3.11: Parallel circuit of resistance and capacitor (left) and...release; distribution is unlimited. Figure 3.11: Parallel circuit of resistance and capacitor (left) and Nyquist plot of reactance against re- sistance

  6. Phase equilibrium and physical properties of biobased ionic liquid mixtures.

    Science.gov (United States)

    Toledo Hijo, Ariel A C; Maximo, Guilherme J; Cunha, Rosiane L; Fonseca, Felipe H S; Cardoso, Lisandro P; Pereira, Jorge F B; Costa, Mariana C; Batista, Eduardo A C; Meirelles, Antonio J A

    2018-02-28

    Protic ionic liquid crystals (PILCs) obtained from natural sources are promising compounds due to their peculiar properties and sustainable appeal. However, obtaining PILCs with higher thermal and mechanical stabilities for product and process design is in demand and studies on such approaches using this new IL generation are still scarce. In this context, this work discloses an alternative way for tuning the physicochemical properties of ILCs by mixing PILs. New binary mixtures of PILs derived from fatty acids and 2-hydroxy ethylamines have been synthesized here and investigated through the characterization of the solid-solid-[liquid crystal]-liquid thermodynamic equilibrium and their rheological and critical micellar concentration profiles. The mixtures presented a marked nonideal melting profile with the formation of solid solutions. This work revealed an improvement of the PILCs' properties based on a significant increase in the ILC temperature domain and the obtainment of more stable mesophases at high temperatures when compared to pure PILs. In addition, mixtures of PILs also showed significant changes in their non-Newtonian and viscosity profile up to 100 s -1 , as well as mechanical stability over a wide temperature range. The enhancement of the physicochemical properties of PILs here disclosed by such an approach leads to more new possibilities of their industrial application at high temperatures.

  7. Physical and chemical properties of San Francisco Bay waters, 1969-1976 (NODC Accession 8400194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — One magnetic tape containing the physical and chemical properties of San Francisco Bay waters was forwarded to NODC by Mr. Richard Smith of the U.S Geological Survey...

  8. Evaluation of correlation between physical properties and ultrasonic pulse velocity of fired clay samples.

    Science.gov (United States)

    Özkan, İlker; Yayla, Zeliha

    2016-03-01

    The aim of this study is to establish a correlation between physical properties and ultrasonic pulse velocity of clay samples fired at elevated temperatures. Brick-making clay and pottery clay were studied for this purpose. The physical properties of clay samples were assessed after firing pressed clay samples separately at temperatures of 850, 900, 950, 1000, 1050 and 1100 °C. A commercial ultrasonic testing instrument (Proceq Pundit Lab) was used to evaluate the ultrasonic pulse velocity measurements for each fired clay sample as a function of temperature. It was observed that there became a relationship between physical properties and ultrasonic pulse velocities of the samples. The results showed that in consequence of increasing densification of the samples, the differences between the ultrasonic pulse velocities were higher with increasing temperature. These findings may facilitate the use of ultrasonic pulse velocity for the estimation of physical properties of fired clay samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Theoretical study of physical properties and oxygen incorporation effect in nanolaminated ternary carbides 211-MAX phases

    KAUST Repository

    Kanoun, Mohammed; Goumri-Said, Souraya

    2012-01-01

    In this chapter, we employ ab initio approaches to review some important physical properties of nanolaminated ternary carbides MAX phases. We fi rstly use an all electron full-potential linearized augmented plane-wave method within the generalized

  10. Material designs and new physical properties in MX- and MMX-chain compounds

    CERN Document Server

    Yamashita, Masahiro

    2014-01-01

    This book details the structures, physical properties, theoretical treatments, applications, and perspectives of MX and MMX chain compounds for chemists and physicists. It also examines various photoinduced phase transitions and their dynamics.

  11. Effect of decompression drying treatment on physical properties of solid foods.

    Science.gov (United States)

    Morikawa, Takuya; Takada, Norihisa; Miura, Makoto

    2017-04-01

    This study used a decompression drying instrument to investigate the effects of a drying treatment on the physical properties of solid foods. Commercial tofu was used as a model food and was treated at different temperature and pressure conditions in a drying chamber. Overall, high temperatures resulted in better drying. Additionally, pressure in the chamber influenced the drying conditions of samples. Differences in physical properties, such as food texture, shrinkage, and color were observed among some samples, even with similar moisture content. This was caused by differences in moisture distribution in the food, which seems to have manifested as a thin, dried film on the surfaces of samples. It caused inefficient drying and changes in physical properties. Control of the drying conditions (i.e. pressure and heat supply) has relations with not only physical properties, but also the drying efficiency of solid foods.

  12. Role of Ge incorporation in the physical and dielectric properties of ...

    Indian Academy of Sciences (India)

    It is inferred that on adding Ge, the physical properties ..... over a considerable distance, and the contribution to dielectric response can therefore be ... 1 and 103 Hz. The sum of these four types of polarization represents the total polarization.

  13. The effect of mixing order of fillers on the physical properties of EPDM

    International Nuclear Information System (INIS)

    Gul, J.; Saleemi, A.R.

    2007-01-01

    In this research the effect of mixing order of fillers on the physical properties of EPDM (Ethylene Propylene Diene Monomer) vulcanizates was studied. EPDM was compounded with other ingredients i.e. fillers, process aid, curing package etc in order to get the needed physical properties for thermal insulation. All the factors, which could affect the physical properties of EPDM vulcanizates such as quality and quantity of raw materials, storage conditions of ingredients and vulcanizates, compounding and testing facilities, mixing time, process parameters etc were kept constant except mixing order of addition of filler to EPDM. Different batches of EPDM vulcanizates with different mixing order/sequence of filler to EPDM were prepared and tested for physical properties like density, hardness, tensile strength and elongation. It was concluded that mixing order of filler to EPDM affects tensile strength, elongation and hardness and does not affect density of the EPDM vulcanizate. (author)

  14. Physical properties of a sediment core from the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Khadge, N.H.

    A box core of 7.5 m was collected from the Central Indian Basin for the purpose of geotechnical studies and depthwise variation of physical properties and clay mineralogy. Water content, Atterberg limits, specific gravity are measured at regular...

  15. Substrate dependent physical properties of evaporated CdO thin films for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Anuradha; Chander, S.; Patel, S.L. [Department of Physics, Mohanlal Sukhadia University, Udaipur-313001 (India); Rangra, K.J. [Sensors and Transducers Group, CSIR-CEERI, Pilani-333031 (India); Dhaka, M.S., E-mail: msdhaka75@yahoo.co.in [Department of Physics, Mohanlal Sukhadia University, Udaipur-313001 (India)

    2017-06-15

    Highlights: • Substrate dependent physical properties of CdO thin films are carried out. • XRD patterns reveal that the films have cubic structure of space group Fm3m. • Optical direct band gap is found to vary with the substrates. • SEM images show that the films are compact and homogeneous. • I–V characteristics show ohmic behavior of the deposited CdO films. - Abstract: In this study, CdO thin films were grown by e-beam evaporation technique on glass, indium tin oxide (ITO), fluorine-doped tin oxide (FTO) and silicon (Si) wafer. The deposited films were analyzed by X-ray diffraction (XRD), UV–Vis spectrophotometer, scanning electron microscopy, energy dispersive spectroscopy (EDS) and source meter (current–voltage) for structural, optical, surface morphological, elemental and electrical analysis, respectively. The films have single phase of cubic structure (space group Fm3m) with (200) preferred orientation. The structural parameters viz. inter-planar spacing, grain size, lattice constant, internal strain and dislocation density are calculated and found to vary with the nature of the substrates. The optical band gap was found in the range 2.24–3.95 eV and strongly dependents on the substrates. The SEM analysis shows that the films are compact, homogeneous and have granular structure without any defects like pin holes and cracks. The EDS spectra confirmed the presence of cadmium (Cd) and oxygen (O) in the films deposited on different substrates. The current–voltage characteristics of the films show ohmic behavior.

  16. Mixture Design Approach on the Physical Properties of Lignin-Resorcinol-Formaldehyde Xerogels

    Directory of Open Access Journals (Sweden)

    Chris D. Castro

    2015-01-01

    Full Text Available Organic xerogels were functionalized by incorporating sugarcane bagasse lignin from soda pulping black liquor, not used so far in this materials, with the aim of introducing new functional groups on traditional gels that could improve its adsorptive capacity. Two mixing designs were applied to identify the reactive combinations that allow a well gel formation and to adjust models that predict physical properties. The designs study five components: resorcinol (R, 0.04–0.3, lignin (L, 0.004–0.14, formaldehyde (F, 0.08–0.17, water (W, 0.45–0.8, and NaOH (C, 0.0003–0.0035. The first experimental design was an extreme vertices design and its results showed shrinkage between 4.3 and 59.7 and a bulk density from 0.54 to 1.3; a mass ratio LR/F near 1.5 was required for gel formation. In the second design a D-Optimal was used to achieve better adjusted coefficients and incorporate the largest possible amount of lignin in the gels. Bulk density varies from 0.42 to 0.9, shrinkage varies from 3.42 to 25.35, and specific surface area reaches values of 451.86 m2/g with 13% lignin and 270 m2/g with 27% lignin. High catalyst content improves lignin dissolution and increase shrinkage and bulk density of xerogels and bulk density. Lignin contributes to reducing shrinkage and specific surface area due to his compact and rigid structure.

  17. Effect of arc suppression on the physical properties of low temperature dc magnetron sputtered tantalum thin films

    International Nuclear Information System (INIS)

    Subrahmanyam, A.; Valleti, Krishna; Joshi, Srikant V.; Sundararajan, G.

    2007-01-01

    Arcing is a common phenomenon in the sputtering process. Arcs and glow discharges emit electrons which may influence the physical properties of films. This article reports the properties of tantalum (Ta) thin films prepared by continuous dc magnetron sputtering in normal and arc-suppression modes. The substrate temperature was varied in the range of 300-673 K. The tantalum films were ∼1.8 μm thick and have good adherence to 316 stainless steel and single-crystal silicon substrates. The phase of the Ta thin film determines the electrical and tribological properties. The films deposited at 300 K using both methods were crystallized in a tetragonal structure (β phase) with a smooth surface (grain size of ∼10 nm) and exhibited an electrical resistivity of ∼194 μΩ cm and a hardness of ∼20 GPa. When the substrate temperature was 473 K and higher, the arc-suppression mode appears to influence the films to crystallize in the α phase with a grain size of ∼40 nm, whereas the normal power mode gave mixed phases β and α beyond 473 K, the arc-suppression mode yields larger grain sizes in the Ta thin films and the hardness decreases. These changes in the physical properties in arc-suppression mode are attributed to either the change in plasma characteristics or the energetic particle bombardment onto the substrate, or both

  18. Gold processing residue from Jacobina Basin: chemical and physical properties

    OpenAIRE

    Lima, Luiz Rogério Pinho de Andrade; Bernardez, Letícia Alonso; Barbosa, Luís Alberto Dantas

    2007-01-01

    p. 848-852 Gold processing residues or tailings are found in several areas in the Itapicuru River region (Bahia, Brazil), and previous studies indicated significant heavy metals content in the river sediments. The present work focused on an artisanal gold processing residue found in a site from this region. Samples were taken from the processing residue heaps and used to perform a physical and chemical characterization study using X-ray diffraction, scanning electron microscopy, neutron...

  19. Dobinski-type relations: some properties and physical applications

    International Nuclear Information System (INIS)

    Blasiak, P; Horzela, A; Penson, K A; Solomon, A I

    2006-01-01

    We introduce a generalization of the Dobinski relation through which we define a family of Bell-type numbers and polynomials. For all these sequences, we find the weight function of the moment problem and give their generating functions. We provide a physical motivation of this extension in the context of the boson normal ordering problem and its relation to an extension of the Kerr Hamiltonian

  20. Toxicity and physical properties of atrazine and its degradation products: A literature survey

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, K.C.

    1994-10-01

    The Tennessee Valley Authority`s Environmental Research Center has been developing a means of detoxifying atrazine waste waters using TiO{sub 2} photocatalysis. The toxicity and physical properties of atrazine and its degradation products will probably be required information in obtaining permits from the United States Environmental Protection Agency for the demonstration of any photocatalytic treatment of atrazine waste waters. The following report is a literature survey of the toxicological and physical properties of atrazine and its degradation products.

  1. Comments on Thermal Physical Properties Testing Methods of Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Jingchao Xie

    2013-01-01

    Full Text Available There is no standard testing method of the thermal physical properties of phase change materials (PCM. This paper has shown advancements in this field. Developments and achievements in thermal physical properties testing methods of PCM were commented, including differential scanning calorimetry, T-history measurement, the water bath method, and differential thermal analysis. Testing principles, advantages and disadvantages, and important points for attention of each method were discussed. A foundation for standardized testing methods for PCM was made.

  2. Dominance of physical and chemical gases properties on kinetics of gassing in NPP's circulation contours

    International Nuclear Information System (INIS)

    Piontkovskij, A.I.

    2001-01-01

    Is seen out a dominance analysis of physical and chemical matter properties on gases solubility in circulation contour NPP's heat-transfer. Is represented a concentration computation methods of gas dissolved in heat-transfer with use of in lying pressure in matter. Are analysed the computation results for diverse gases in wide range of operating parameters, and also dominance of physical and chemical gas properties on intensity of heat-exchange processes in heat-transfer with dissolved gase

  3. Physical properties of Kentucky's AML landslides: Case studies analyzed

    International Nuclear Information System (INIS)

    Iannacchione, A.T.; Vallejo, L.E.

    1994-01-01

    Once an abandoned mined land (AML) landslide occurs and is identified as an emergency, engineers must rapidly implement a slope stabilization design. Correct slope remediation solutions are generally derived from well-executed geotechnical examinations. This paper summarizes a large body of geotechnical data compiled by the US office of Surface Mining Reclamation and Enforcement (OSM) from AML landslides in eastern Kentucky. Special attention is placed on the examination of subsurface failures, phreatic water levels, soil profiles, and soil composition information from numerous borehole exploration programs. Strength properties calculated from laboratory procedures and stability analysis techniques were also reviewed. Laboratory-determined soil shear strength values were found to be higher than those inferred from stability analysis. This suggests that postfailure determinations of the phreatic surface may be largely inappropriate when used in stability analysis or that laboratory-measured shear strengths are ineffective in replicating in situ colluvium/spoil slope properties

  4. Determination of physical properties of fibrous thermal insulation

    Directory of Open Access Journals (Sweden)

    Jeandel G.

    2012-10-01

    Full Text Available The objective of this study is to characterize both experimentally and theoretically, conductive and radiative heat transfer within polyester batting. This material is derived from recycled bottles (PET with fibres of constant diameters. Two other mineral and plant fibrous insulation materials, (glass wool and hemp wool are also characterized for comparative purposes. To determine the overall thermophysical properties of the tested materials, heat flux measurement are carried out using a device developed in house. The radiative properties of the material are determined by an inverse method based on measurements of transmittance and reflectance using a FTIR spectrometer and by solving the equation of radiative heat transfer. These measures are compared to results of numerical simulations.

  5. Physical properties of drawn very low density polyethylene films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.S. [Yeungnam University, Kyongsan (Korea, Republic of); Lee, J.Y. [Korea Institute of Footwear and Leather Technology, Pusan (Korea, Republic of)

    1998-05-01

    Very low density polyethylene (VLDPE) films were prepared by quenching the pressed melt in ice water. The films were drawn with universal testing machine under constant temperature at four different temperatures, 30, 60, 80, and 110 {sup o} C. Thermal, mechanical properties, grossity, and gas permeability of the drawn VLDPE films as a function of draw ratio were investigated to examine their applicability to packaging. The films showed tow melting peaks, i.e., low temperature endotherm (LTE) and high temperature endotherm (HTE). The melting temperatures were increased with the draw ratio and the drawing temperature. The mechanical properties of the VLDPE film drawn at 80 {sup o} C were superior to those drawn at 110 {sup o} C. The grossity and gas permeability of the VLDPE film drawn at 110 {sup o} C were found to be best among the drawn films.

  6. Physical properties of kraft black liquor. Final report. Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, A.L.

    1983-12-01

    Methods were selected, equipment installed, and procedures developed for determining rheological properties; for determining thermal properties (stability, density, thermal expansion, and heat capacity); for purification and characterization of lignin (glass transition, stability, weight average molecular weight, and number average molecular weight); and for performing chemical analyses (negative inorganic ions, positive inorganic ions, acid organic salts, lignin, and total solids). A strategy for pulping to supply test liquors was developed, and a statistically designed pulping experiment was specified for a Southern softwood species. Arrangements were made for performing initial pulping work in an industrial pilot plant, and a preliminary set of pulping experiments were conducted. Liquors from the preliminary pulping experiments were used to test procedures and to determine reproducibility of the experiment. Literature was also surveyed and preliminary selection of designs for a pilot digester, and for equipment to determine surface tension were made.

  7. Physical properties of the Schur complement of local covariance matrices

    International Nuclear Information System (INIS)

    Haruna, L F; Oliveira, M C de

    2007-01-01

    General properties of global covariance matrices representing bipartite Gaussian states can be decomposed into properties of local covariance matrices and their Schur complements. We demonstrate that given a bipartite Gaussian state ρ 12 described by a 4 x 4 covariance matrix V, the Schur complement of a local covariance submatrix V 1 of it can be interpreted as a new covariance matrix representing a Gaussian operator of party 1 conditioned to local parity measurements on party 2. The connection with a partial parity measurement over a bipartite quantum state and the determination of the reduced Wigner function is given and an operational process of parity measurement is developed. Generalization of this procedure to an n-partite Gaussian state is given, and it is demonstrated that the n - 1 system state conditioned to a partial parity projection is given by a covariance matrix such that its 2 x 2 block elements are Schur complements of special local matrices

  8. Spatial variability of physical properties of tropical soil

    International Nuclear Information System (INIS)

    Reichardt, K.; Libardi, P.L.; Queiroz, S.V.; Grohmann, F.

    1976-04-01

    A basic study with objectives of improving the use of soil and water resources under a particular condition and of developing means for controlling the dynamics of soil-water movement are presented. Special emphasis is given to the variability in space of geometric soil properties such as bulk density, particle density and texture in order to make it possible to define representative means which ideed will be usable to describe the movement of water and of salt in the entire field

  9. Physical and electrochemical properties of ZnO films fabricated from highly cathodic electrodeposition potentials

    Science.gov (United States)

    Ismail, Abdul Hadi; Abdullah, Abdul Halim; Sulaiman, Yusran

    2017-03-01

    The physical and electrochemical properties of zinc oxide (ZnO) film electrode that were prepared electrochemically were studied. ZnO was electrodeposited on ITO glass substrate by applying three different highly cathodic potentials (-1.3 V, -1.5 V, -1.7 V) in a solution containing 70 mM of Zn(NO3)2.xH2O and 0.1 M KCl with bath temperatures of 70 °C and 80 °C. The presence of ZnO was asserted from XRD analysis where the corresponding peaks in the spectra were assigned. SEM images revealed the plate-like hexagonal morphology of ZnO which is in agreement with the XRD analysis. The areal capacitance of the ZnO was observed to increase when the applied electrodeposition potential is increased from -1.3 V to -1.5 V. However, the areal capacitance is found to decrease when the applied electrodeposition potential is further increased to -1.7 V. The resistance of charge transfer (Rct) of the ZnO decreased when the applied electrodeposition potential varies from -1.3 V to -1.7 V due to the decreased particle size of ZnO when more cathodic electrodeposition potential is applied.

  10. Diamond-like carbon prepared by pulsed laser deposition with ion bombardment: physical properties

    Science.gov (United States)

    Písařík, P.; Mikšovský, J.; Remsa, J.; Zemek, J.; Tolde, Z.; Jelínek, M.

    2018-01-01

    Diamond-like carbon (DLC) and titanium-doped DLC thin films were prepared by unique hybrid system consisting of pulsed laser deposition, ion source (bombardment) and magnetron sputtering. The influence of deposition parameters (ion energies, deposition pressures and magnetron power) on composition and physical properties was studied. Composition and sp 3/ sp 2 ratio were determined by XPS. sp 3/ sp 2 ratio was in the range from 1.4 to 2.2 for undoped DLC and from 3.4 to 4.8 for Ti-DLC. AFM showed that the layers were smooth, but with small amounts of random droplets. The measurements of the contact angle and determination of surface free energy were made for water, diiodomethane and ethylene glycol. Hardness and reduced Young's modulus varied from 20 to 31 GPa and from 182 to 276 GPa, respectively. Film adhesion was determined by scratch test; L C3 reached 23 N for DLC and 27 N for TiDLC. Optimization of sp 3/ sp 2 ratio, hardness and adhesion to biomedical alloys will advance the DLC coatings usability in the field of implantology.

  11. Investigation of cryogenic irradiation influence on mechanical and physical properties of ITER magnetic system insulation materials

    International Nuclear Information System (INIS)

    Kozlov, A.V.; Scherbacov, E.N.; Dudchenko, N.A.; Shihalev, V.S.; Bedin, V.V.; Paltusov, N.A.; Korsunskiy, V.E.

    1998-01-01

    A set of methods of cryogenic irradiation influence test on mechanical and physical properties of insulation of ITER magnetic system are presented in this paper. Investigations are carried out without intermediate warming up of samples. A Russian insulating composite material was irradiated in the IVV-2M reactor. The ratio of energy absorbed by insulation materials from neutron irradiation to that from gamma irradiation can be varied from ∝(25:75)% to ∝(50:50)% in the reactor. The test results on the thermal expansion, thermal conductivity and gas evolution of the above material are presented. It was shown, that cryogenic irradiation up to the fluence ∝2 x 10 22 n/m 2 (E ≥ 0.1 MeV) leads to 0.27% linear size changes along layers of fiber-glass, the thermal conductivity coefficient is decreased on 15% at 100 k in perpendicular direction to fiber-glass plane, and thermal coefficient of linear expansion (TCLE) has anomalous temperature dependence. (orig.)

  12. Physical properties of compressive knits compound with different matters impregnated by microcapsules moisturizing

    Directory of Open Access Journals (Sweden)

    Fadhel Jaâfar

    2011-01-01

    Full Text Available The compressive knits include a very varied group of different device functions, from the more merely (protection to the more developed (scars improvement, skin hydration…. We combined two therapy forms the pressure and the hydration of burned skin. We essayed to reunite the advantages of two techniques pressure and hydration in only one and the same instrument in the form of compressive knit with microencapsulated surface. The compressive knits are elaborated with different textile matters such us Cotton/Spandex, Polyester/Spandex, Polyamide/Spandex, Viscose/Spandex and Cotton/Polyester/Spandex. The hydration product chosen in this application is the Jojoba Oil. The microcapsules were prepared according to the Phase Separation Method. The physical properties such us the Pressure, the Mass per Area, the Thickness, the Air Permeability and the Adiathermic Power are tested. According to the results, we conclude that the knits are compressive, comfort, smooth, no allergen, thinness and washable. The raw materials selected for the samples studied are biocompatible with human skin.

  13. Effect of delignification process on physical properties of sugarcane baggase paper

    Science.gov (United States)

    Suseno, Natalia; Sapei, Lanny; Purwanto, Edy; Adiarto, Tokok

    2017-05-01

    Wood fiber derived cellulose has been mainly used as the raw material in the papermaking. However, currently the paper production capacity is greater than the availability of wood. To overcome this problem, there have been many attempts to use non-wood fibers as substitutes for papermaking such as the fibrous materials derived from agriculture wastes. In this research, the paper was made from sugarcane bagasse which was previously delignified using soda process. The research was conducted by varying NaOH concentrations of 8 -16%, delignification temperatures of 60- 100°C and times of 30 -150 min. The aim of the research was to study the effect of delignification process on physical properties of sugarcane baggase soda pulping. The results showed the increase in tensile strengths as the NaOH concentrations increased. Tensile strength was increasing up to optimum temperature and time and then decreased. The water uptake results showed the opposite tendencies with those of tensile strength. The optimum condition was achieved at the NaOH concentration of 10 %, delignification temperature of 80 °C, and time of 90 min. Tensile strength and water uptake achieved at this optimum condition were 27.42 N/mm2 and 240 g/m2, respectively.

  14. Physical, mechanical and antimicrobial properties of starch films incorporated with ε-poly-L-lysine.

    Science.gov (United States)

    Zhang, Liming; Li, Ruichao; Dong, Feng; Tian, Aiying; Li, Zhengjun; Dai, Yujie

    2015-01-01

    Starch/ε-poly-L-lysine (ε-PL) composite films were prepared by combining 4% (w/v) gelatinized cornstarch and varying the level of ε-PL. The physical, mechanical and antimicrobial properties of these films were investigated. Fourier-transform infrared spectra (FT-IR) showed that the carbonyl group stretching vibration band of the ε-PL molecule shifted from 1646 cm(-1) to 1673 cm(-1) in the composite films. Differential scanning calorimetry (DSC) results indicated that there were sharp endothermal peaks at 215-230 °C for the composite films. These results indicated that there was an intense interaction between the two components. The films incorporated with ε-PL showed a higher tensile strength (TS) and elongation-at-break (E) than those of the starch film alone. These composite films exhibited effective inhibition against Escherichia coli and Bacillus subtilis, films containing 2% (w/w) ε-PL effectively suppressed the growth of the tested microbes (Pstarch/ε-PL films showed a low inhibitory effect on Aspergillus niger. This antimicrobial trend of the composite films was in agreement with the results of free ε-PL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Physical properties of molybdenum monoboride: Ab-initio study

    Science.gov (United States)

    Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.

    2018-02-01

    The Ab initio investigations on structural, electronic, optical and thermal properties of MoB have been reported using full potential linearised-augmented plane wave method within the framework of density functional theory. The exchange and correlation potentials were calculated using the Perdew-Burke-Ernzerhof-Sol generalised gradient approximation. The calculated equilibrium lattice constants and cell volume are in excellent agreement with the experimental results as compared to the available theoretical data. Electronic band structure shows that MoB is metallic in nature. From the partial densities of states of MoB it has been found that major contribution on the Fermi level is due to Mo-4d states. Among the reported optical parameters the large value of reflectivity at low energy shows that MoB can be used as a coating material in IR region. Maximum absorption in extreme UV region shows that it can be used in production of electricity through solar power in space vehicles. Various thermal properties have been calculated in a wide temperature range at high pressures. Change in thermal expansion coefficient with respect to temperature shows that anharmonic effect in MoB is very weak at high temperature. The optical and thermal properties of MoB are presented for the first time in this work.

  16. Detailed physical properties prediction of pure methyl esters for biodiesel combustion modeling

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Maghbouli, A.; Chou, S.K.; Chua, K.J.

    2013-01-01

    Highlights: ► Group contribution methods from molecular level have been used for the prediction. ► Complete prediction of the physical properties for 5 methyl esters has been done. ► The predicted results can be very useful for biodiesel combustion modeling. ► Various models have been compared and the best model has been identified. ► Predicted properties are over large temperature ranges with excellent accuracies. -- Abstract: In order to accurately simulate the fuel spray, atomization, combustion and emission formation processes of a diesel engine fueled with biodiesel, adequate knowledge of biodiesel’s physical properties is desired. The objective of this work is to do a detailed physical properties prediction for the five major methyl esters of biodiesel for combustion modeling. The physical properties considered in this study are: normal boiling point, critical properties, vapor pressure, and latent heat of vaporization, liquid density, liquid viscosity, liquid thermal conductivity, gas diffusion coefficients and surface tension. For each physical property, the best prediction model has been identified, and very good agreements have been obtained between the predicted results and the published data where available. The calculated results can be used as key references for biodiesel combustion modeling.

  17. Integrating soil physical and biological properties in contrasting tillage systems in organic and conventional farming

    NARCIS (Netherlands)

    Crittenden, S.J.; Goede, de R.G.M.

    2016-01-01

    Though soil physical and soil biological properties are intrinsically linked in the soil environment they are often studied separately. This work adds value to analyses of soil biophysical quality of tillage systems under organic and conventional farming systems by correlating physical and

  18. NATO Advanced Research Workshop on Physical Properties of Nano systems

    CERN Document Server

    Bonca, Janez

    2011-01-01

    Recent advances in nanoscience have demonstrated that fundamentally new physical phenomena are found when systems are reduced to sizes comparable to the fundamental microscopic length scales of the material investigated. There has been great interest in this research due, in particular, to its role in the development of spintronics, molecular electronics and quantum information processing. The contributions to this volume describe new advances in many of these fundamental and fascinating areas of nanophysics, including carbon nanotubes, graphene, magnetic nanostructures, transport through coupled quantum dots, spintronics, molecular electronics, and quantum information processing.

  19. Physical properties of the Creutzfeldt-Jakob disease agent

    Energy Technology Data Exchange (ETDEWEB)

    Sklaviadis, T.K.; Manuelidis, L.; Manuelidis, E.E.

    1989-03-01

    In this report, the authors present the first physical characterization of the Creutzfeld-Jakob disease agent. Preparations with high yields of infectivity (assayed infectious units) were obtained by a novel, gentle procedure in which initially sedimenting Gp34 (prion protein) was disaggregated by a variety of criteria with no subsequent loss of infectivity. Studies with this preparation indicate that most of the Creutzfeldt-Jakob disease agent has both a viruslike size and density. In velocity sedimentation and isopycnic sucrose gradients, infectivity comigrated with nucleic acid-protein complexes of appreciable size.

  20. Physical properties of the Creutzfeldt-Jakob disease agent

    International Nuclear Information System (INIS)

    Sklaviadis, T.K.; Manuelidis, L.; Manuelidis, E.E.

    1989-01-01

    In this report, the authors present the first physical characterization of the Creutzfeld-Jakob disease agent. Preparations with high yields of infectivity (assayed infectious units) were obtained by a novel, gentle procedure in which initially sedimenting Gp34 (prion protein) was disaggregated by a variety of criteria with no subsequent loss of infectivity. Studies with this preparation indicate that most of the Creutzfeldt-Jakob disease agent has both a viruslike size and density. In velocity sedimentation and isopycnic sucrose gradients, infectivity comigrated with nucleic acid-protein complexes of appreciable size

  1. Interactive information system on the nuclear physics properties of nuclides and radioactive decay chains

    International Nuclear Information System (INIS)

    Plyaskin, V.I.; Kosilov, R.A.; Manturov, G.N.

    2001-01-01

    A brief review is given of a computerized information system on the nuclear physics properties of nuclides and radioactive decay chains. The main difference between the system presented here and those already in existence is that these evaluated databases of nuclear physics constants are linked to a set of programs, thus enabling analysis of a wide range of problems regarding various nuclear physics applications. (author)

  2. Effect of hydrogen on Fe and Pd alloying and physical properties

    Czech Academy of Sciences Publication Activity Database

    Jirásková, Yvonna; Buršík, Jiří; Zemanová, Adéla; Čízek, J.; Hruška, P.; Životský, O.

    2017-01-01

    Roč. 42, č. 10 (2017), s. 6885-6901 ISSN 0360-3199 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : positron-lifetime spectroscopy * neutron-diffraction * magnetic-properties * palladium-hydrogen * induced defects * iron Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.582, year: 2016

  3. Physical properties, structure and fracturing of the Chelyabinsk LL5 meteorite body

    Czech Academy of Sciences Publication Activity Database

    Grokhovsky, V. I.; Kohout, Tomáš; Gritsevich, M.; Koneva, E. V.

    2014-01-01

    Roč. 49, Special issue 1 (2014), pdf 5364-pdf 5364 ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /77./. 08.09.2014-13.09.2014, Casablanca] Institutional support: RVO:67985831 Keywords : Chelyabinsk * LL chondrite * physical properties * structure * mechanical properties * stress Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://www.hou.usra.edu/meetings/metsoc2014/pdf/5364.pdf

  4. The Spectrophotometer II: A Module on the Spectral Properties of Light. Tech Physics Series.

    Science.gov (United States)

    Frank, Nathaniel; And Others

    This module is designed to give the learner an understanding of the nature of light and how its properties are used in the design of spectrophotometers. Problems promote the use of spectrophotometers in qualitative analysis, the optical elements used in a monochromator, and the physical properties of the prism and the diffraction grating. Other…

  5. Impact of petroleum products on soil composition and physical-chemical properties

    OpenAIRE

    Brakorenko, Nataliya Nikolaevna; Korotchenko, Tatiana Valerievna

    2016-01-01

    The article describes the grain-size distribution, physical and mechanical properties, swelling and specific electrical resistivity of soils before and after the contact with petroleum products. The changes in mechanical properties of soils contaminated with petroleum products have been stated. It leads to the increase in compressibility values, decline in internal friction angle and cohesion.

  6. Impact of petroleum products on soil composition and physical-chemical properties

    Science.gov (United States)

    Brakorenko, N. N.; Korotchenko, T. V.

    2016-03-01

    The article describes the grain-size distribution, physical and mechanical properties, swelling and specific electrical resistivity of soils before and after the contact with petroleum products. The changes in mechanical properties of soils contaminated with petroleum products have been stated. It leads to the increase in compressibility values, decline in internal friction angle and cohesion.

  7. Estimation of Physical Properties for Hydrogen Isotopes Using Aspen Plus Simulator

    International Nuclear Information System (INIS)

    Cho, Jung Ho; Yun, Sei Hun; Cho, Seung Yon; Chang, Min Ho; Kang, Hyun Goo; Jung, Ki Jung; Kim, Dong Min

    2009-01-01

    Hydrogen isotopes are H 2 , HD, D 2 , H 2 , HD, D 2 , HT, DT and T 2 . Among the hydrogen isotopes, the physical properties of H2, HD and D+2 are included in the Aspen Plus, however HT, D T and T 2 are not included. In this study, various thermodynamic properties were estimated for six components of isotopes by use of the fixed properties and temperature-dependent properties. To estimate thermodynamic properties, Soave modified Redlich-Kwong equation of state and Aspenplus simulator was used. The results were verified and compared with by PRO/II with PROVISION of Invensys

  8. Physical and chemical properties of calcium doped gadolinium cobaltite

    International Nuclear Information System (INIS)

    Zhuk, P.P.; Kharton, V.V.; Tonoyan, A.A.; Naumovich, E.N.

    1991-01-01

    The effect of calcium doping additions on electrical and tharmal properties of gadolinium cobaltite was investigated. It was established that solid solutions of Gd 1-x Ca x CoO 3 (x=0-0.5) composition had cubic perovskite structure with orthorhombic distortion. Calcium doping of gadolinium cobaltite increases its conductivity by two orders. Parameter of resistance of electronic layer of ρ/d for a sample of Gd 0.9 Ca 0.1 CoO 3 composition at d≥40mg/sm 2 was by an order higher than in compact samples

  9. Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine.

    Science.gov (United States)

    Samadishadlou, Mehrdad; Farshbaf, Masoud; Annabi, Nasim; Kavetskyy, Taras; Khalilov, Rovshan; Saghfi, Siamak; Akbarzadeh, Abolfazl; Mousavi, Sepideh

    2017-10-18

    Magnetic carbon nanotubes (MCNTs) have been widely studied for their potential applications in medicine, diagnosis, cell biology, analytical chemistry, and environmental technology. Introduction of MCNTs paved the way for the emergence of new approaches in nanobiotechnology and biomedicine as a result of their multifarious properties embedded within either the carbon nanotubes (CNTs) or magnetic parts. Numerous preparation techniques exists for functionalizing CNTs with magnetic nanoparticles, and these versatile strategies lay the ground for the generation of novel and versatile systems which are applicable to many industries and biological areas. Here, we review and discuss the recent papers dealing with MCNTs and their application in biomedical and industrial fields.

  10. Physical properties of superbubbles in the Antennae galaxies

    Science.gov (United States)

    Camps-Fariña, A.; Zaragoza-Cardiel, J.; Beckman, J. E.; Font, J.; Velázquez, P. F.; Rodríguez-González, A.; Rosado, M.

    2017-07-01

    Mass outflow generated by the dynamical feedback from massive stars is currently a topic of great interest. Using a purpose-developed analysis technique, and taking full advantage of the high kinematic and angular resolution of our instrument, we have detected a number of expanding superbubbles in the interacting pair of galaxies Arp 244 (NGC 4038/9), commonly known as the Antennae. We used a Fabry-Pérot interferometer GHαFaS to measure the profile of H α in emission over the full extent of the object, except for the extended H I tails. The superbubbles are found to be centred on most of the brightest H II regions, especially in the overlap area of the two merging galaxies. We use measured sizes, expansion velocities and luminosities of the shells to estimate most of the physical parameters of the bubbles, including the kinetic energy of the expansion. In order to assess the validity of our results and approximations, we perform a hydrodynamic simulation and manage to reproduce well our best measured superbubble with reasonable physical input assumptions. We also study the sources of ionization of the shells, finding that at the current, quite late stage of expansion, radiation from the remaining stars dominates, although the effect of supernova shocks can still be observed.

  11. Physical Properties of the LMC Eclipsing Binary Stars

    Science.gov (United States)

    Prsa, Andrej; Devinney, E. J.; Guinan, E. F.; Engle, S. G.; DeGeorge, M.

    2009-01-01

    To date, three independent studies have devised an automatic procedure to analyse and extract the principal parameters of 2581 detached eclipsing binary stars from the OGLE photometric survey of the Large Magellanic Cloud (LMC): Devor (2005), Tamuz et al. (2006), and Prsa et al. (2008). For time efficiency, Devor used a simple model of two spherical, limb-darkened stars without tidal or reflection physics. Tamuz et al.'s approach employs a more realistic EBOP model, which is still limited in handling proximity physics. Our study used a back-propagating neural network that was trained on the light curves computed by a modern Wilson-Devinney code. The three approaches are confronted and correlations in the results are sought that indicate the degree of reliability of the obtained results. A database of solutions consistent across all three studies is presented. We assess the suitability of each method for other morphology types (i.e. semi-detached and overcontact binaries) and we overview the practical limitations of these methods for the upcoming survey data. This research is supported by NFS/RUI Grant No. AST-05-07542, which we gratefully acknowledge.

  12. The interaction of physical properties of seawater via statistical approach

    Science.gov (United States)

    Hamzah, Firdaus Mohamad; Jaafar, Othman; Sabri, Samsul Rijal Mohd; Ismail, Mohd Tahir; Jaafar, Khamisah; Arbin, Norazman

    2015-09-01

    It is of importance to determine the relationships between physical parameters in marine ecology. Model and expert opinion are needed for exploration of the form of relationship between two parameters due to the complexity of the ecosystems. These need justification with observed data over a particular periods. Novel statistical techniques such as nonparametric regression is presented to investigate the ecological relationships. These are achieved by demonstrating the features of pH, salinity and conductivity at in Straits of Johor. The monthly data measurements from 2004 until 2013 at a chosen sampling location are examined. Testing for no-effect followed by linearity testing for the relationships between salinity and pH; conductivity and pH, and conductivity and salinity are carried out, with the ecological objectives of investigating the evidence of changes in each of the above physical parameters. The findings reveal the appropriateness of smooth function to explain the variation of pH in response to the changes in salinity whilst the changes in conductivity with regards to different concentrations of salinity could be modelled parametrically. The analysis highlights the importance of both parametric and nonparametric models for assessing ecological response to environmental change in seawater.

  13. Physical properties of encapsulate spent fuel in canisters

    International Nuclear Information System (INIS)

    1999-01-01

    Spent fuel and high-level wastes will be permanently stored in a deep geological repository (AGP). Prior to this, they will be encapsulated in canisters. The present report is dedicated to the study of such canisters under the different physical demands that they may undergo, be those in operating or accident conditions. The physical demands of interest include mechanical demands, both static and dynamic, and thermal demands. Consideration is given to the complete file of the canister, from the time when it is empty and without lid to the final conditions expected in the repository. Thermal analyses of canisters containing spent fuel are often carried out in two dimensions, some times with hypotheses of axial symmetry and some times using a plane transverse section through the centre of the canister. The results obtained in both types of analyses are compared here to those of complete three-dimensional analyses. The latter generate more reliable information about the temperatures that may be experienced by the canister and its contents; they also allow calibrating the errors embodied in the two-dimensional calculations. (Author)

  14. Basic Physical Properties of Ammonia-Rich Ice

    Science.gov (United States)

    Shandera, S. E.; Lorenz, R. D.

    2000-10-01

    We report simple measurements of the thermal conductivity, mechanical strength and microwave absorptivity of ammonia hydrate ices, which are likely to be abundant in the Saturnian system. Understanding the dielectric properties of ammonia ice could play an important role in interpreting data from the Cassini spacecraft, which will image Titan's surface by radar in 2004. Thermal conductivity measurements were made by freezing a thin copper wire in the center of ice samples. The wire acted as both heater and temperature sensor, calibrated by a thermocouple also frozen in the sample. Ices with concentrations of 5- 30% ammonia were compared to pure water ice and ices containing salts. Thermal conductivity was found to decrease with increasing concentration of ammonia - a factor of 3 or 4 less than pure water ice for the 30% peritectic composition. Microwave absorptivity was measured by placing insulated ice samples and calibration materials in a conventional microwave oven. The microwave absorptivity was found to increase with increasing concentration of ammonia, although the effect is strongly temperature dependent, and heat leak from the room made quantitative measurement difficult. Mechanical strength was estimated using a ball bearing/accelerometer indentation method. For temperatures 100-150K, ammonia-rich ice has a Young's modulus about 10x smaller than pure ice. These properties affect tidal dissipation and the likelihood and style of cryovolcanism on (and the radar appearance of) the icy satellites and Titan. This work was supported by the Cassini RADAR team and the Arizona Space Grant Consortium.

  15. Si96: A New Silicon Allotrope with Interesting Physical Properties

    Directory of Open Access Journals (Sweden)

    Qingyang Fan

    2016-04-01

    Full Text Available The structural mechanical properties and electronic properties of a new silicon allotrope Si96 are investigated at ambient pressure by using a first-principles calculation method with the ultrasoft pseudopotential scheme in the framework of generalized gradient approximation. The elastic constants and phonon calculations reveal that Si96 is mechanically and dynamically stable at ambient pressure. The conduction band minimum and valence band maximum of Si96 are at the R and G point, which indicates that Si96 is an indirect band gap semiconductor. The anisotropic calculations show that Si96 exhibits a smaller anisotropy than diamond Si in terms of Young’s modulus, the percentage of elastic anisotropy for bulk modulus and shear modulus, and the universal anisotropic index AU. Interestingly, most silicon allotropes exhibit brittle behavior, in contrast to the previously proposed ductile behavior. The void framework, low density, and nanotube structure make Si96 quite attractive for applications such as hydrogen storage and electronic devices that work at extreme conditions, and there are potential applications in Li-battery anode materials.

  16. The sdA problem - I. Physical properties

    Science.gov (United States)

    Pelisoli, Ingrid; Kepler, S. O.; Koester, D.

    2018-04-01

    The so-called sdA stars are defined by having H-rich spectra and surface gravities similar to hot subdwarf stars, but effective temperature below the zero-age horizontal branch. Their evolutionary history is an enigma: their surface gravity is too high for main-sequence stars, but too low for single evolution white dwarfs. They are most likely byproducts of binary evolution, including blue-stragglers, extremely-low mass white dwarf stars (ELMs) and their precursors (pre-ELMs). A small number of ELMs with similar properties to sdAs is known. Other possibilities include metal-poor A/F dwarfs, second generation stars, or even stars accreted from dwarf galaxies. In this work, we analyse colours, proper motions, and spacial velocities of a sample of sdAs from the Sloan Digital Sky Survey to assess their nature and evolutionary origin. We define a probability of belonging to the main sequence and a probability of being a (pre-)ELM based on these properties. We find that 7 per cent of the sdAs are more likely to be (pre-)ELMs than main-sequence stars. However, the spacial velocity distribution suggests that over 35 per cent of them cannot be explained as single metal-poor A/F stars.

  17. Physical-mechanical and electrical properties of aluminium anodic films

    Energy Technology Data Exchange (ETDEWEB)

    Dima, L. [Research and Design Inst. for Electr. Eng., Bucharest (Romania); Anicai, L. [Research and Design Inst. for Electr. Eng., Bucharest (Romania)

    1995-11-01

    Mechanical, thermal and electrical properties of aluminium anodic films obtained by continuously anodization of Al wires of 4.5 mm diameter and Al sheets of 40 x 0.2 mm (Al min.99.5% purity), using an electrolyte based on oxalic acid, citric acid, boric acid, isopropilic alcohol, were investigated. The thickness of Al anodic oxide layers was 5 {+-} 1{mu}, 10 {+-} 1{mu}, for Al sheet, respectively 5 {+-} 1{mu}, 10 {+-} 1{mu}, 15 {+-} 1{mu}, for Al wire. To establish the influence of anodic film formation on mechanical parameters, measurements of breaking strength and relative elongation at break for anodized and non-anodized Al conductors, were made. In order to electrically characterize the anodic films, the breakdown voltage for different curvature radii of the conductor, between 50 - 12.5 mm, were measured. The influence of the layer thickness, as well as of the cracking during its bending, was established, too. To test the thermal resistance of the insulating anodic films, the Al conductors were subjected to 1 - 5 cyclic thermal shocks at 500 C. After the experimentals were done, it was found that Al anodic films of 5 {+-} 1{mu} may assure a breakdown voltage of minimum 200 V, for coils having a curvature radius greater than 12.5 mm and operating temperatures up to 500 C. From mechanical point of view, anodic oxide film determines a relatively reinforcing of Al conductor, but it doesn`t influence its functional properties. (orig.)

  18. Swelling and mechanical properties of physically crosslinked poly(vinyl alcohol) hydrogels.

    Science.gov (United States)

    Suzuki, Atsushi; Sasaki, Saori

    2015-12-01

    Physically crosslinked poly(vinyl alcohol) gels are versatile biomaterials due to their excellent biocompatibility. In the past decades, physically crosslinked poly(vinyl alcohol) and poly(vinyl alcohol)-based hydrogels have been extensively studied for biomedical applications. However, these materials have not yet been implemented due to their mechanical strength. Physically crosslinked poly(vinyl alcohol) gels consist of a swollen amorphous network of poly(vinyl alcohol) physically crosslinked by microcrystallites. Although the mechanical properties can be improved to some extent by controlling the distribution of microcrystallites on the nano- and micro-scales, enhancing the mechanical properties while maintaining high water content remains very difficult. It may be technologically impossible to significantly improve the mechanical properties while keeping the gel's high water absorbance ability using conventional fabrication methods. Physical and chemical understandings of the swelling and mechanical properties of physically crosslinked poly(vinyl alcohol) gels are considered here; some promising strategies for their practical applications are presented. This review focuses more on the recent studies on swelling and mechanical properties of poly(vinyl alcohol) hydrogels, prepared using only poly(vinyl alcohol) and pure water with no other chemicals, as potential biomedical materials. © IMechE 2015.

  19. Mechanical and thermal properties of physically-blended-plastic films

    International Nuclear Information System (INIS)

    Abu Issa, M. S.

    1983-10-01

    Low density polyethylene (LDPE) and isotactic polypropylene (PP) blend were produced in film form and were characterized by a number of techniques such as wide-angle x-ray diffraction (WAXD), differential thermal analysis (DTA), scanning electron microscopy (SEM), and instron tensile testing. Results of WAXD and DTA showed conclusively that the two components in the blend are incompatible. SEM micrographs indicated that the 60/40 and 40/60 PP/PE blends show approximately fine homogeneous dispersion of the minor component into the matrix of the major component. The mechanical properties of the blend films improved with respect to the PE homo polymer. The improvement was more remarkable with the increase of the PP component in the blend. Results obtained in this work were explained in terms of crystallinity and the crystallite orientation. 28 refs., 29 figs., 5 tabs. (A.M.H.)

  20. Effect of polybutenes on mechanical and physical properties of polypropylene

    International Nuclear Information System (INIS)

    Nascimento, Uedson A. do; Timoteo, Gustavo Arante V.; Rabello, Marcelo S.

    2009-01-01

    This study investigated the effect of polybutene (PIB) of molecular weights ranging from 480 the 1.600 g/mol in polypropylene homopolymer. Compositions with 0, 3, 5 and 7% of PIB were prepared in internal mixer and compression moulded. The properties evaluated were: tensile strength, scanning electron microscopy (SEM), FTIR, X-ray diffraction (XRD) and melt flow index (IF). The results of mechanical tests showed that the presence of the plasticizer reduced the tensile strength, elastic modulus and hardness. The analysis of XRD showed a drop in the degree of crystallinity of PP/PIB blends. The micrographs obtained by SEM did not reveal the occurrence of the phase separation. The IF analysis confirm the effect of PIB as internal lubricant's, by increasing the rate of flow. (author)

  1. Physical properties of chemical vapour deposited nanostructured carbon thin films

    International Nuclear Information System (INIS)

    Mahadik, D.B.; Shinde, S.S.; Bhosale, C.H.; Rajpure, K.Y.

    2011-01-01

    Research highlights: In the present paper, nanostructured carbon films are grown using a natural precursor 'turpentine oil (C 10 H 16 )' as a carbon source in the simple thermal chemical vapour deposition method. The influence of substrate surface topography (viz. stainless steel, fluorine doped tin oxide coated quartz) and temperature on the evolution of carbon allotropes surfaces topography/microstructural and structural properties are investigated and discussed. - Abstract: A simple thermal chemical vapour deposition technique is employed for the deposition of carbon films by pyrolysing the natural precursor 'turpentine oil' on to the stainless steel (SS) and FTO coated quartz substrates at higher temperatures (700-1100 deg. C). In this work, we have studied the influence of substrate and deposition temperature on the evolution of structural and morphological properties of nanostructured carbon films. The films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle measurements, Fourier transform infrared (FTIR) and Raman spectroscopy techniques. XRD study reveals that the films are polycrystalline exhibiting hexagonal and face-centered cubic structures on SS and FTO coated glass substrates respectively. SEM images show the porous and agglomerated surface of the films. Deposited carbon films show the hydrophobic nature. FTIR study displays C-H and O-H stretching vibration modes in the films. Raman analysis shows that, high ID/IG for FTO substrate confirms the dominance of sp 3 bonds with diamond phase and less for SS shows graphitization effect with dominant sp 2 bonds. It reveals the difference in local microstructure of carbon deposits leading to variation in contact angle and hardness, which is ascribed to difference in the packing density of carbon films, as observed also by Raman.

  2. Estimation of Physical Properties of Amino Acids by Group-Contribution Method

    DEFF Research Database (Denmark)

    Jhamb, Spardha Virendra; Liang, Xiaodong; Gani, Rafiqul

    2018-01-01

    In this paper, we present group-contribution (GC) based property models for estimation of physical properties of amino acids using their molecular structural information. The physical properties modelled in this work are normal melting point (Tm), aqueous solubility (Ws), and octanol....../water partition coefficient (Kow) of amino acids. The developed GC-models are based on the published GC-method by Marrero and Gani (J. Marrero, R. Gani, Fluid Phase Equilib. 2001, 183-184, 183-208) with inclusion of new structural parameters (groups and molecular weight of compounds). The main objective...... of introducing these new structural parameters in the GC-model is to provide additional structural information for amino acids having large and complex structures and thereby improve predictions of physical properties of amino acids. The group-contribution values were calculated by regression analysis using...

  3. Investigation of a piezoelectric droplet delivery method for fuel injection and physical property evaluation

    Science.gov (United States)

    Zhao, Wei; Menon, Shyam

    2017-11-01

    A piezoelectric droplet generator is investigated to deliver liquid hydrocarbon fuels to a micro-combustor application. Besides fuel delivery, the setup is intended to measure fuel physical properties such as viscosity and surface tension. These properties are highly relevant to spray generation in internal combustion engines. Accordingly, a drop-on-demand piezoelectric dispenser is used to generate fuel droplet trains, which are studied using imaging and Phase Doppler Particle Anemometry (PDPA). The diagnostics provide information regarding droplet size and velocity and their evolution over time. The measurements are correlated with results from one-dimensional (1D) models that incorporate sub-models for piezo-electric actuation and droplet vaporization. By validating the 1D models for fuels with known physical properties, a technique is developed that has the capability to meter low-vapor pressure liquid fuels to the microcombustor and use information from the droplet train to calculate physical properties of novel fuels.

  4. Thermal treatment of natural goethite: Thermal transformation and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haibo [Laboratory for Nanomineralogy and Environmental Material, School of Resources and Environmental Engineering, Hefei University of Technology (China); School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (Australia); Chen, Tianhu, E-mail: chentianhu@hfut.edu.cn [Laboratory for Nanomineralogy and Environmental Material, School of Resources and Environmental Engineering, Hefei University of Technology (China); Zou, Xuehua; Qing, Chengsong [Laboratory for Nanomineralogy and Environmental Material, School of Resources and Environmental Engineering, Hefei University of Technology (China); Frost, Ray L., E-mail: r.frost@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (Australia)

    2013-09-20

    Highlights: • We have characterized the thermal transformation of natural goethite. • The heated products showed a topotactical relationship to the original mineral. • The N2 adsorption isotherm provided the variation of surface area and pore size distribution with temperature. • The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores. • The hematite derived from heating goethite has application as an adsorbent and catalyst. - Abstract: XRD (X-ray diffraction), XRF (X-ray fluorescence), TG (thermogravimetry), FT-IES (Fourier transform infrared emission spectroscopy), FESEM (field emission scanning electron microscope), TEM (transmission electron microscope) and nitrogen–adsorption–desorption analysis were used to characterize the composition and thermal evolution of the structure of natural goethite. The in situ FT-IES demonstrated the start temperature (250 °C) of the transformation of natural goethite to hematite and the thermodynamic stability of protohematite between 250 and 600 °C. The heated products showed a topotactic relationship to the original mineral based on SEM analysis. Finally, the nitrogen–adsorption–desorption isotherm provided the variation of surface area and pore size distribution as a function of temperature. The surface area displayed a remarkable increase up to 350 °C, and then decreased above this temperature. The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores running parallel to elongated direction of hematite microcrystal. The main pore size varied from 0.99 nm to 3.5 nm when heating temperature increases from 300 to 400 °C. The hematite derived from heating goethite possesses high surface area and favors the possible application of hematite as an adsorbent as well as catalyst carrier.

  5. Thermal treatment of natural goethite: Thermal transformation and physical properties

    International Nuclear Information System (INIS)

    Liu, Haibo; Chen, Tianhu; Zou, Xuehua; Qing, Chengsong; Frost, Ray L.

    2013-01-01

    Highlights: • We have characterized the thermal transformation of natural goethite. • The heated products showed a topotactical relationship to the original mineral. • The N2 adsorption isotherm provided the variation of surface area and pore size distribution with temperature. • The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores. • The hematite derived from heating goethite has application as an adsorbent and catalyst. - Abstract: XRD (X-ray diffraction), XRF (X-ray fluorescence), TG (thermogravimetry), FT-IES (Fourier transform infrared emission spectroscopy), FESEM (field emission scanning electron microscope), TEM (transmission electron microscope) and nitrogen–adsorption–desorption analysis were used to characterize the composition and thermal evolution of the structure of natural goethite. The in situ FT-IES demonstrated the start temperature (250 °C) of the transformation of natural goethite to hematite and the thermodynamic stability of protohematite between 250 and 600 °C. The heated products showed a topotactic relationship to the original mineral based on SEM analysis. Finally, the nitrogen–adsorption–desorption isotherm provided the variation of surface area and pore size distribution as a function of temperature. The surface area displayed a remarkable increase up to 350 °C, and then decreased above this temperature. The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores running parallel to elongated direction of hematite microcrystal. The main pore size varied from 0.99 nm to 3.5 nm when heating temperature increases from 300 to 400 °C. The hematite derived from heating goethite possesses high surface area and favors the possible application of hematite as an adsorbent as well as catalyst carrier

  6. Influence of aluminium content on the physical, mechanical and sliding wear properties of zinc-based alloys

    International Nuclear Information System (INIS)

    Prasad, B.K.; Patwardhan, A.K.; Yegneswaran, A.H.

    1997-01-01

    Attention has been focussed on the influence of Al content on the physical, mechanical and sliding wear properties of Zn-based alloys. Aspects studied include microstructure, density, electrical conductivity, hardness, tensile strength and elongation as well as sliding wear response of the alloys. Microstructural features of the alloys showed the presence of primary α, eutectic/eutectoid α + η (depending on whether the alloy was hypereutectic/hypereutectoid with regard to the concentration of Al) along with the meta stable ε phase. The study suggests that it is possible to design and develop Zn-based alloys with a wide range of concentration of Al. The alloys in turn attain different combinations of physical, mechanical and wear properties which could suit a variety of engineering applications. Increasing the Al content in the alloy system proves beneficial within limits. In other words, there exists an optimum quantity of Al which could reap its advantage to the maximum extent. This of course varies with reference to a specific property of the alloy(s). The changing response of the alloys has been explained in terms of their microstructural features and the effects produced as a result of the test conditions maintained while characterizing the specimens. (orig.)

  7. The study of some physical properties of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Atif Mahmoud

    2008-07-01

    The phenomenon of superconductivity, the discovery of high temperature superconductivity in the Cuprates and the properties of these materials is described in the introductory chapter. It also includes a discussion of the pseudogap, which has remained a mystery as has the high transition temperature. Possible applications of high temperature superconductivity are reviewed before the theories by Bardeen, Cooper, and Schrieffer (BCS) and Ginzburg and Landau are briefly sketched. The last section gives excerpts of the by now vast literature on this subject, focussing on the role impurities play in this context. The second chapter develops the mathematical tools and the theoretical background for the description of many-body systems. Various Green's functions are introduced which are then used to describe scattering of quasiparticles off defects of arbitrary strength. They are also required to calculate the a.c. conductivity, for which an expression is derived using linear response theory. The convergence problems one encounters when actually calculating the conductivity are briefly discussed. Detailed calculations for the normal state are presented in the third chapter and in the appendix. The third Chapter begins with a detailed presentation of the tight binding model for the energy dispersion because this model appears to give a more accurate description of the electronic properties of high temperature superconductors than the nearly free electron model. The shape of the two-dimensional Fermi surface is calculated and displayed as function of band filling and the next-nearest neighbor hopping integral B, assuming a rigid band. B plays an important role in the formation of so-called hot spots. The quasiparticle density of states and its Hilbert transform F({omega}) are solved by means of complete elliptic integrals formalism. These results are used to obtain impurity bound states. A simple model for the superconductivity in the cuprate materials is developed on the

  8. The study of some physical properties of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Atif Mahmoud

    2008-07-01

    The phenomenon of superconductivity, the discovery of high temperature superconductivity in the Cuprates and the properties of these materials is described in the introductory chapter. It also includes a discussion of the pseudogap, which has remained a mystery as has the high transition temperature. Possible applications of high temperature superconductivity are reviewed before the theories by Bardeen, Cooper, and Schrieffer (BCS) and Ginzburg and Landau are briefly sketched. The last section gives excerpts of the by now vast literature on this subject, focussing on the role impurities play in this context. The second chapter develops the mathematical tools and the theoretical background for the description of many-body systems. Various Green's functions are introduced which are then used to describe scattering of quasiparticles off defects of arbitrary strength. They are also required to calculate the a.c. conductivity, for which an expression is derived using linear response theory. The convergence problems one encounters when actually calculating the conductivity are briefly discussed. Detailed calculations for the normal state are presented in the third chapter and in the appendix. The third Chapter begins with a detailed presentation of the tight binding model for the energy dispersion because this model appears to give a more accurate description of the electronic properties of high temperature superconductors than the nearly free electron model. The shape of the two-dimensional Fermi surface is calculated and displayed as function of band filling and the next-nearest neighbor hopping integral B, assuming a rigid band. B plays an important role in the formation of so-called hot spots. The quasiparticle density of states and its Hilbert transform F({omega}) are solved by means of complete elliptic integrals formalism. These results are used to obtain impurity bound states. A simple model for the superconductivity in the cuprate materials is developed on

  9. The study of some physical properties of high temperature superconductors

    International Nuclear Information System (INIS)

    Ismail, Atif Mahmoud

    2008-01-01

    The phenomenon of superconductivity, the discovery of high temperature superconductivity in the Cuprates and the properties of these materials is described in the introductory chapter. It also includes a discussion of the pseudogap, which has remained a mystery as has the high transition temperature. Possible applications of high temperature superconductivity are reviewed before the theories by Bardeen, Cooper, and Schrieffer (BCS) and Ginzburg and Landau are briefly sketched. The last section gives excerpts of the by now vast literature on this subject, focussing on the role impurities play in this context. The second chapter develops the mathematical tools and the theoretical background for the description of many-body systems. Various Green's functions are introduced which are then used to describe scattering of quasiparticles off defects of arbitrary strength. They are also required to calculate the a.c. conductivity, for which an expression is derived using linear response theory. The convergence problems one encounters when actually calculating the conductivity are briefly discussed. Detailed calculations for the normal state are presented in the third chapter and in the appendix. The third Chapter begins with a detailed presentation of the tight binding model for the energy dispersion because this model appears to give a more accurate description of the electronic properties of high temperature superconductors than the nearly free electron model. The shape of the two-dimensional Fermi surface is calculated and displayed as function of band filling and the next-nearest neighbor hopping integral B, assuming a rigid band. B plays an important role in the formation of so-called hot spots. The quasiparticle density of states and its Hilbert transform F(ω) are solved by means of complete elliptic integrals formalism. These results are used to obtain impurity bound states. A simple model for the superconductivity in the cuprate materials is developed on the basis

  10. Physical and biochemical properties of green banana flour.

    Science.gov (United States)

    Suntharalingam, S; Ravindran, G

    1993-01-01

    Banana flour prepared from two cooking banana varieties, namely 'Alukehel' and 'Monthan', were evaluated for their physical and biochemical characteristics. The yields of flour averaged 31.3% for 'Alukehel' and 25.5% for 'Monthan'. The pH of the flour ranged from 5.4 to 5.7. The bulk density and particle size distribution were also measured. The average chemical composition (% dry matter) of the flours were as follows: crude protein, 3.2; crude fat, 1.3; ash, 3.7; neutral detergent fiber, 8.9; acid detergent fiber, 3.8; cellulose, 3.1; lignin, 1.0 and hemicellulose, 5.0. Carbohydrate composition indicated the flour to contain 2.8% soluble sugars, 70.0% starch and 12.0% non-starch polysaccharides. Potassium is the predominant mineral in banana flour. Fresh green banana is a good source of vitamin C, but almost 65% is lost during the preparation of flour. Oxalate content (1.1-1.6%) of banana flour is probably nutritionally insignificant. The overall results are suggestive of the potential of green bananas as a source of flour.

  11. Study of The Physical Properties of Some Semiconductor Materials

    International Nuclear Information System (INIS)

    Abdel-Wahab, A.A.

    2012-01-01

    The present paper reports the effect of replacement of selenium by indium on the optical gap and some other physical parameters of new quaternary chalcogenide InxSn 20 Se (60-x) Bi 20 (x = 0, 0.1, 0.2 and 0.3 at. %) thin films. Thin films with thickness 100 nm of InxSn 20 Se (60-x) Bi 20 were prepared by thermal evaporation of the bulk samples. Increasing indium content is found to affect the average heat of atomization, the average coordination number, the number of constraints and the cohesive energy of the InxSn 20 Se (60-x) Bi 20 alloys. Optical absorption measurements showed that the fundamental absorption edge is a function of composition. The optical absorption is due to allowed non-direct transition and the energy gap decreases with the increase of indium content. The chemical bond approach has been applied successfully to interpret the decrease of the optical gap with increasing indium content. The prepared films were irradiated by gamma rays at doses up to 15 Mrad. It was found that the compositions were almost stable against gamma radiation.

  12. Effect of pressure on the physical properties of magnetorheological fluids

    Directory of Open Access Journals (Sweden)

    A. Spaggiari

    2013-01-01

    Full Text Available To date, several applications of magnetorheological (MR fluids are present in the industrial world, nonetheless system requirements often needs better material properties. In technical literature a previous work shows that MR fluids exhibit a pressure dependency called squeeze strengthen effect. Since a lot of MR fluid based devices are rotary devices, this paper investigates the behaviour of MR fluids under pressure when a rotation is applied to shear the fluid. The system is designed in order to apply both the magnetic field and the pressure and follows a Design of Experiment approach. The experimental apparatus comprises a cylinder in which a piston is used both to apply the pressure and to shear the fluid. The magnetic circuit is designed to provide a nearly constant induction field in the MR fluid. The experimental apparatus measures the torque as a function of the variables considered and the yield shear stress is computed. The analysis of the results shows that there is a positive interaction between magnetic field and pressure, which enhances the MR fluid performances more than twice.

  13. Chemical stability and physical properties of Caesium uranates

    International Nuclear Information System (INIS)

    Berton, J.P.; Baron, D.; Coquerelle, M.

    1998-01-01

    Caesium is one of the most abundant fission products in PWR nuclear fuel or in fast reactor fuel as well. A work program has been started at the TUI Karlsruhe, in collaboration with EDF Etudes et Recherches, to determine the thermal stability and conductivity, the mechanical properties and the thermal expansion coefficient of Cs 2 UO 4 . The Caesium mono-uranate was obtained by a chemical reaction between Cs 2 O 3 and U 3 O 8 powders mixed together, pressed and heated at 670 deg. C for 24 hours. The compound was found stable up to 830 deg. C. Mechanical compressive hardening tests allowed to evaluate the elastic modulus versus temperature in the range 200 to 800 deg. C. Furthermore the viscous behaviour of the compound above 400 deg. C was confirmed. The thermal expansion coefficient of Cs 2 UO 4 was found somewhat 40% higher than the thermal expansion coefficient of UO 2 . The thermal conductivity is about 1.5 to 1.8 W/m/K for temperatures ranging from 100 to 700 deg. C, a value very similar to the UO 2 fuel thermal conductivity at high burnup in the same temperature range. (author)

  14. Synthesis, structure, and physical properties of new rare earth ferrocenoylacetonates.

    Science.gov (United States)

    Koroteev, Pavel S; Dobrokhotova, Zhanna V; Ilyukhin, Andrey B; Efimov, Nikolay N; Rouzières, Mathieu; Kiskin, Mikhail A; Clérac, Rodolphe; Novotortsev, Vladimir M

    2016-04-21

    New ferrocenoylacetonate complexes of several rare earth elements, [Ln(fca)3(bpy)]·MeC6H5 (Ln = Pr (), Eu (), Gd (), Tb (), Dy (), Ho (), Y (); bpy - 2,2'-bipyridine; Hfca - FcCOCH2COMe) as well as scandium ferrocenoylacetonate [Sc(fca)3]·0.5MeC6H5 (), were synthesized and characterized by single crystal X-ray diffraction analysis. In the crystal lattice of the isostructural complexes , two [Ln(fca)3(bpy)] molecules form a pair due to stacking interactions between the bpy ligands. The Ln(3+) ions are coordinated in a square antiprism geometry with a coordination number of 8. The Sc(3+) ions in complex are coordinated in an octahedral geometry. Thermolysis of complexes was studied under air and argon atmospheres; in the first case, it affords perovskites LnFeO3 as one of the products. Complexes display single-molecule magnet properties, and the effective relaxation barrier for the Dy complex , was found to be Δeff/kB = 241 K, which is one of the highest values obtained for a mononuclear β-diketonate lanthanide complex.

  15. Photocrosslinked PLA-PEO-PLA Hydrogels from Self-Assembled Physical Networks: Mechanical Properties and Influence of Assumed Constitutive Relationships

    Science.gov (United States)

    Sanabria-DeLong, Naomi; Crosby, Alfred J.; Tew, Gregory N.

    2014-01-01

    Poly(lactide) – block – poly(ethylene oxide) – block – poly(lactide) [PLA-PEO-PLA] triblock copolymers are known to form physical hydrogels in water, due to the polymer's amphiphilicity. Their mechanical properties, biocompatibility, and biodegradability have made them attractive for use as soft tissue scaffolds. However, the network junction points are not covalently crosslinked and in a highly aqueous environment these hydrogels adsorb more water, transform from gel to sol, and lose the designed mechanical properties. In this report, a hydrogel was formed by using a novel two step approach. In the first step end-functionalized PLA-PEOPLA triblock was self-assembled into a physical hydrogel through hydrophobic micelle network junctions, and then, in the second step, this self-assembled physical network structure was locked into place by photocrosslinking the terminal acrylate groups. In contrast to physical hydrogels, the photocrosslinked gels remained intact in phosphate buffered solution at body temperature. The swelling, degradation, and mechanical properties were characterized and demonstrated extended degradation time (~ 65 days), exponential decrease in modulus with degradation time, and tunable shear modulus (1.6 – 133 kPa) by varying concentration. We also discuss the various constitutive relationships (Hookean, Neo-Hookean, and Mooney-Rivlin) that can be used to describe the stress-strain behavior of these hydrogels. The chosen model and assumptions used for data fitting influences the obtained modulus values by as much as a factor of 3.5, demonstrating the importance of clearly stating one's data fitting parameters so that accurate comparisons can be made within the literature. PMID:18817440

  16. Thermo-Physical Properties of Kenaf-Filled Acrylonitrile Butadiene Styrene Composites

    Directory of Open Access Journals (Sweden)

    Nikmatin Siti

    2017-01-01

    Full Text Available Studies on advantageous of natural fillers incorporated into polymer composites on thermo-physical and mechanical properties are still intensively investigated. Several evidences suggest that the natural fillers with small contents combined with polymer increase their composite properties. We thus investigate thermo-physical properties of kenaf-filled acrylonitrile butadiene styrene (ABS composites. ABS with 5% kenaf microparticle size (ABS/K5, ABS with 5% kenaf short fiber (ABS/KSF5, and recycled ABS with 5% kenaf microparticle size (RABS/K5 were manufactured. Granular composites were manufactured by the twin screw extruder. Composite properties in terms of X-ray diffractions, surface morphologies, and thermal behaviors were investigated. The present work found that ABS/KSF5 has the highest degree of crystallinity compared to others. No significant difference was found in terms of thermal properties of the composites.

  17. The effect of andiroba oil and chitosan concentration on the physical properties of chitosan emulsion film

    Directory of Open Access Journals (Sweden)

    Vanessa Tiemi Kimura

    Full Text Available Abstract Chitosan film is used as a dressing to heal burns. The physical and biological properties of the film can be modified by the addition of phytotherapic compounds. This work used the casting -solvent evaporation technique to prepare chitosan film containing andiroba oil (Carapa guianensis which has anti-inflammatory, antibiotic, and healing properties. The objective of this study was to determine the effect of the concentrations of chitosan and andiroba oil on the physical properties of chitosan films. The emulsion films were evaluated concerning the mechanical properties and fluid handling capacity. Additionally, scanning electron microscopy and thermal analysis were performed. The results showed that the barrier and mechanical properties were affected by the addition of andiroba oil, and these may be modulated as a function of the concentration of oil added to the film. The thermal analysis showed no evidence of chemical interactions between the oil and chitosan.

  18. Physical properties of Martian meteorites: Porosity and density measurements

    Science.gov (United States)

    Coulson, Ian M.; Beech, Martin; Nie, Wenshuang

    Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet's surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability. In comparison with the limited existing data for Martian meteorites we find fairly good agreement, although our porosity values typically lie at the low end of published values. Surprisingly, despite the increased data set, there is little by way of correlation between either porosity or density with parameters such as shock effect or terrestrial residency. Further data collection on additional meteorite samples is required before more definitive statements can be made concerning the validity of these observations.

  19. The Study on the Physical Properties of Blazar Jets

    Science.gov (United States)

    Kang, S. J.

    2017-09-01

    Active galactic nuclei (AGNs) belong to a special class of active galaxies, and have violent active phenomena and intense physical processes in the nuclei. Blazar is a subclass of AGNs, and has a relativistic jet with a small jet viewing angle. Therefore, the boosting effect is very important, and almost all the observed radiation is dominated by the jet. The relativistic jet physics is not very clear yet, such as the jet formation, collimation, and matter content etc. The multi-waveband radiation of blazar is dominated by jet, which provides an ideal laboratory for studying the jet physics. The first chapter of this thesis introduces the recent progress of AGNs and blazars. We further introduce the jet model that commonly used in blazars in the second chapter. In the third chapter, we fit simultaneously (or quasi-simultaneously) the multi-waveband spectral energy distributions (SEDs) for a sample of low-synchrotron-peaked (LSP) blazars with the jet model and χ2 procedure, which takes into account different soft photon fields (broad line region or a molecular torus). We find that the SED fitting with an external soft photon from IR torus is systematically better than that from the broad line region (BLR) based on a χ2 test, which suggests that the γ-ray emitting region most possibly stays outside the BLR. The minimum electron Lorentz factor, γmin, is constrained from the modeling of these LSP blazars with good soft X-ray data, and in a range from 5 to 160 (with a median value of 55), which plays a key role in jet power estimation. Assuming one-to-one ratio of proton and electron, we find that the jet power for LSP blazars is systematically higher than that of Fanaroff-Riley type II (FR II) radio galaxies. A possible reason for this is that there are some positrons in the jets of these blazars. If this is the case, the jet power will be reduced. Therefore, we propose a mixed composition of e±-p in the jets of these LSP blazars. If we assume that the jet power

  20. Effect of Uncertainties in Physical Property Estimates on Process Design - Sensitivity Analysis

    DEFF Research Database (Denmark)

    Hukkerikar, Amol; Jones, Mark Nicholas; Sin, Gürkan

    for performing sensitivity of process design subject to uncertainties in the property estimates. To this end, first uncertainty analysis of the property models of pure components and their mixtures was performed in order to obtain the uncertainties in the estimated property values. As a next step, sensitivity......Chemical process design calculations require accurate and reliable physical and thermodynamic property data and property models of pure components and their mixtures in order to obtain reliable design parameters which help to achieve desired specifications. The uncertainties in the property values...... can arise from the experiments itself or from the property models employed. It is important to consider the effect of these uncertainties on the process design in order to assess the quality and reliability of the final design. The main objective of this work is to develop a systematic methodology...

  1. Thermal properties of bodies in fractal and cantorian physics

    International Nuclear Information System (INIS)

    Zmeskal, Oldrich; Buchnicek, Miroslav; Vala, Martin

    2005-01-01

    Fundamental laws describing the heat diffusion in fractal environment are discussed. It is shown that for the three-dimensional space the heat radiation process occur in structures with fractal dimension D element of heat conduction and convection have the upper hand (generally in the real gases). To describe the heat diffusion a new law has been formulated. Its validity is more general than the Plank's radiation law based on the quantum heat diffusion theory. The energy density w = f (K, D), where K is the fractal measure and D is the fractal dimension exhibit typical dependency peaking with agreement with Planck's radiation law and with the experimental data for the absolutely black body in the energy interval kT m m kT m ∼ 1.5275. The agreement of the fractal model with the experimental outcomes is documented for the spectral characteristics of the Sun. The properties of stellar objects (black holes, relict radiation, etc.) and the elementary particles fields and interactions between them (quarks, leptons, mesons, baryons, bosons and their coupling constants) will be discussed with the help of the described mathematic apparatus in our further contributions. The general gas law for real gases in its more applicable form than the widely used laws (e.g. van der Waals, Berthelot, Kammerlingh-Onnes) has been also formulated. The energy density, which is in this case represented by the gas pressure p = f (K, D), can gain generally complex value and represents the behaviour of real (cohesive) gas in interval D element of (1,3>. The gas behaves as the ideal one only for particular values of the fractal dimensions (the energy density is real-valued). Again, it is shown that above the critical temperature (kT > K h c) and for fractal dimension D m > 2.0269 the results are comparable to the kinetics theory of real (ideal) gas (van der Waals equation of state, compressibility factor, Boyle's temperature). For the critical temperature (K h c = kT r ) the compressibility

  2. Synthesis of Large Molecules in Cometary Ice Analogs: Physical Properties

    Science.gov (United States)

    Dworkin, Jason; Sandford, S. A.; Allamandola, L. J.; Deamer, D. W.; Gillette, S. J.; Zare, R. N.

    Comets and carbonaceous micrometeorites may have been important sources of volatiles on the early Earth; their organic composition may therefore be related to the origin of life. Ices on grains in molecular clouds contain a variety of simple molecules. Within the cloud and especially the presolar nebula, these icy grains would have been photoprocessed by ultraviolet light to produce more complex molecules. We are investigating the molecules that could have been generated in precometary ices. Experiments were conducted by forming a realistic interstellar ice (H_2^O, CH_3H, NH_3 and CO) at ~10 K under high vacuum irradiated UV by a hydrogen plasma lamp. The residue remaining after warming to room temperature was analyzed by HPLC and by several mass spectrometric methods. This material contains a variety of complex compounds with MS profiles resembling those found in IDPs and meteorites. Surface tension measurements show that an amphiphilic component is also present. These species do not appear in various controls or in unphotolyzed samples. In other experiments, the residues were dispersed in aqueous media for microscopy. The organic material forms 10-40 micrometer droplets that fluoresce (300-450 nm) under UV excitation and appear strikingly similar to those produced by extracts of the Murchison meteorite. Together, these results suggest a link between organic material synthesized on cold grains photochemically and compounds that may have contributed to the organic inventory of the primitive Earth. The amphiphilic properties of such compounds permit self-assembly into the membranous boundary structures required for the first forms of cellular life.

  3. Correlation between fibroin amino acid sequence and physical silk properties.

    Science.gov (United States)

    Fedic, Robert; Zurovec, Michal; Sehnal, Frantisek

    2003-09-12

    The fiber properties of lepidopteran silk depend on the amino acid repeats that interact during H-fibroin polymerization. The aim of our research was to relate repeat composition to insect biology and fiber strength. Representative regions of the H-fibroin genes were sequenced and analyzed in three pyralid species: wax moth (Galleria mellonella), European flour moth (Ephestia kuehniella), and Indian meal moth (Plodia interpunctella). The amino acid repeats are species-specific, evidently a diversification of an ancestral region of 43 residues, and include three types of regularly dispersed motifs: modifications of GSSAASAA sequence, stretches of tripeptides GXZ where X and Z represent bulky residues, and sequences similar to PVIVIEE. No concatenations of GX dipeptide or alanine, which are typical for Bombyx silkworms and Antheraea silk moths, respectively, were found. Despite different repeat structure, the silks of G. mellonella and E. kuehniella exhibit similar tensile strength as the Bombyx and Antheraea silks. We suggest that in these latter two species, variations in the repeat length obstruct repeat alignment, but sufficiently long stretches of iterated residues get superposed to interact. In the pyralid H-fibroins, interactions of the widely separated and diverse motifs depend on the precision of repeat matching; silk is strong in G. mellonella and E. kuehniella, with 2-3 types of long homogeneous repeats, and nearly 10 times weaker in P. interpunctella, with seven types of shorter erratic repeats. The high proportion of large amino acids in the H-fibroin of pyralids has probably evolved in connection with the spinning habit of caterpillars that live in protective silk tubes and spin continuously, enlarging the tubes on one end and partly devouring the other one. The silk serves as a depot of energetically rich and essential amino acids that may be scarce in the diet.

  4. Physical properties of monolithic U8 wt.%-Mo

    Science.gov (United States)

    Hengstler, R. M.; Beck, L.; Breitkreutz, H.; Jarousse, C.; Jungwirth, R.; Petry, W.; Schmid, W.; Schneider, J.; Wieschalla, N.

    2010-07-01

    As a possible high density fuel for research reactors, monolithic U8 wt.%-Mo ("U8Mo") was examined with regard to its structural, thermal and electric properties. X-ray diffraction by the Bragg-Brentano method was used to reveal the tetragonal lattice structure of rolled U8Mo. The specific heat capacity of cast U8Mo was determined by differential scanning calorimetry, its thermal diffusivity was measured by the laser flash method and its mass density by Archimedes' principle. From these results, the thermal conductivity of U8Mo in the temperature range from 40 °C to 250 °C was calculated; in the measured temperature range, it is in good accordance with literature data for UMo with 8 and 9 wt.% Mo, is higher than for 10 wt.% Mo and lower than for 5 wt.% Mo. The electric conductivity of rolled and cast U8Mo was measured by a four-wire method and the electron based part of the thermal conductivity calculated by the Wiedemann-Frantz law. Rolled and cast U8Mo was irradiated at about 150 °C with 80 MeV 127I ions to receive the same iodine ion density in the damage peak region as the fission product density in the fuel of a typical high flux reactor after the targeted nuclear burn-up. XRD analysis of irradiated U8Mo showed a change of the lattice parameters as well as the creation of UO 2 in the superficial sample regions; however, a phase change by irradiation was not observed. The determination of the electron based part of the thermal conductivity of the irradiated samples failed due to high measurement errors which are caused by the low thickness of the damage region in the ion irradiated samples.

  5. Physical, thermal and structural properties of Calcium Borotellurite glass system

    Energy Technology Data Exchange (ETDEWEB)

    Paz, E.C. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Açailândia, MA (Brazil); Dias, J.D.M. [CCSST – UFMA, Imperatriz, MA (Brazil); Melo, G.H.A. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Imperatriz, MA (Brazil); Lodi, T.A. [CCSST – UFMA, Imperatriz, MA (Brazil); Carvalho, J.O. [CCSST – UFMA, Imperatriz, MA (Brazil); IFTO, Araguaína, TO (Brazil); Façanha Filho, P.F.; Barboza, M.J.; Pedrochi, F. [CCSST – UFMA, Imperatriz, MA (Brazil); Steimacher, A., E-mail: steimacher@hotmail.com [CCSST – UFMA, Imperatriz, MA (Brazil)

    2016-08-01

    In this work the glass forming ability in Calcium Borotellurite (CBTx) glass system was studied. Six glass samples were prepared by melt-quenching technique and the obtained samples are transparent, lightly yellowish, with no visible crystallites. The structural studies were carried out by using XRD, FTIR, Raman Spectra, density measurements, and the thermal analysis by using DTA and specific heat. The results are discussed in terms of tellurium oxide content and their changes in structural and thermal properties of glass samples. The addition of TeO{sub 2} increased the density and thermal stability values and decreased glass transition temperature (Tg). Raman and FTIR spectroscopies indicated that the network structure of CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. CBTx system showed good glass formation ability and good thermal stability, which make CBTx glasses suitable for manufacturing process and a candidate for rare-earth doping for several optical applications. - Highlights: • Glass forming ability on Calcium Borotellurite system was studied. • The glass structure was investigated by XRD, Raman and FTIR. • The glass network structure of the CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. • The density and thermal stability of the CBTx glass decreases with TeO{sub 2} while the Cp and the Tg decreases. • The obtained CBTx glasses are suitable for manufacturing process and rare-earth doping for several optical applications.

  6. Novel instrument for characterizing comprehensive physical properties under multi-mechanical loads and multi-physical field coupling conditions

    Science.gov (United States)

    Liu, Changyi; Zhao, Hongwei; Ma, Zhichao; Qiao, Yuansen; Hong, Kun; Ren, Zhuang; Zhang, Jianhai; Pei, Yongmao; Ren, Luquan

    2018-02-01

    Functional materials represented by ferromagnetics and ferroelectrics are widely used in advanced sensor and precision actuation due to their special characterization under coupling interactions of complex loads and external physical fields. However, the conventional devices for material characterization can only provide a limited type of loads and physical fields and cannot simulate the actual service conditions of materials. A multi-field coupling instrument for characterization has been designed and implemented to overcome this barrier and measure the comprehensive physical properties under complex service conditions. The testing forms include tension, compression, bending, torsion, and fatigue in mechanical loads, as well as different external physical fields, including electric, magnetic, and thermal fields. In order to offer a variety of information to reveal mechanical damage or deformation forms, a series of measurement methods at the microscale are integrated with the instrument including an indentation unit and in situ microimaging module. Finally, several coupling experiments which cover all the loading and measurement functions of the instrument have been implemented. The results illustrate the functions and characteristics of the instrument and then reveal the variety in mechanical and electromagnetic properties of the piezoelectric transducer ceramic, TbDyFe alloy, and carbon fiber reinforced polymer under coupling conditions.

  7. Optimization of the sampling scheme for maps of physical and chemical properties estimated by kriging

    Directory of Open Access Journals (Sweden)

    Gener Tadeu Pereira

    2013-10-01

    Full Text Available The sampling scheme is essential in the investigation of the spatial variability of soil properties in Soil Science studies. The high costs of sampling schemes optimized with additional sampling points for each physical and chemical soil property, prevent their use in precision agriculture. The purpose of this study was to obtain an optimal sampling scheme for physical and chemical property sets and investigate its effect on the quality of soil sampling. Soil was sampled on a 42-ha area, with 206 geo-referenced points arranged in a regular grid spaced 50 m from each other, in a depth range of 0.00-0.20 m. In order to obtain an optimal sampling scheme for every physical and chemical property, a sample grid, a medium-scale variogram and the extended Spatial Simulated Annealing (SSA method were used to minimize kriging variance. The optimization procedure was validated by constructing maps of relative improvement comparing the sample configuration before and after the process. A greater concentration of recommended points in specific areas (NW-SE direction was observed, which also reflects a greater estimate variance at these locations. The addition of optimal samples, for specific regions, increased the accuracy up to 2 % for chemical and 1 % for physical properties. The use of a sample grid and medium-scale variogram, as previous information for the conception of additional sampling schemes, was very promising to determine the locations of these additional points for all physical and chemical soil properties, enhancing the accuracy of kriging estimates of the physical-chemical properties.

  8. Effect of physical, chemical and electro-kinetic properties of pumice samples on radiation shielding properties of pumice material

    International Nuclear Information System (INIS)

    Tapan, Mücip; Yalçın, Zeynel; İçelli, Orhan; Kara, Hüsnü; Orak, Salim; Özvan, Ali; Depci, Tolga

    2014-01-01

    Highlights: • Radiation shielding properties of pumice materials are studied. • The relationship between physical, chemical and electro-kinetic properties pumice samples is identified. • The photon atomic parameters are important for the absorber peculiarity of the pumices. - Abstract: Pumice has been used in cement, concrete, brick, and ceramic industries as an additive and aggregate material. In this study, some gamma-ray photon absorption parameters such as the total mass attenuation coefficients, effective atomic number and electronic density have been investigated for six different pumice samples. Numerous values of energy related parameters from low energy (1 keV) to high energy (100 MeV) were calculated using WinXCom programme. The relationship between radiation shielding properties of the pumice samples and their physical, chemical and electro-kinetic properties was evaluated using simple regression analysis. Simple regression analysis indicated a strong correlation between photon energy absorption parameters and density and SiO 2 , Fe 2 O 3 , CaO, MgO, TiO 2 content of pumice samples in this study. It is found that photon energy absorption parameters are not related to electro-kinetic properties of pumice samples

  9. State of gas exchange in recumbent and orthostatic positions and under physical load in healthy persons of varying age, sex and body build

    Science.gov (United States)

    Glezer, G. A.; Charyyev, M.; Zilbert, N. L.

    1980-01-01

    Age effect on gas exchange was studied in the recumbent and orthostatic positions and under physical load. In the case of the older age group and for normal as compared with hypersthenic persons, oxygen consumption during rest and during moderate physical overload diminishes. When the vertical position is assumed oxygen consumption in persons of various age groups is distinctly increased, particularly in the elderly group. There is a reduction in the amount of oxygen consumption, oxygen pulse, recovery coefficient, and work efficiency under moderate overload. In persons over 50, physical labor induces a large oxygen requirement and a sharp rise in the level of lactic acid and the blood's lactate/pyruvate ratio. No distinct difference was noted in the amount of oxygen consumed during rest and during physical overload in men and women of the same physical development and age.

  10. Investigation of Structural and Electronic Properties of CH3NH3PbI3 Stabilized by Varying Concentrations of Poly(Methyl Methacrylate (PMMA

    Directory of Open Access Journals (Sweden)

    Celline Awino

    2017-08-01

    Full Text Available Studies have shown that perovskites have a high potential of outdoing silicon based solar cells in terms of solar energy conversion, but their rate of degradation is also high. This study reports on improvement on the stability of CH3NH3PbI3 by passivating it with polymethylmethacrylate (PMMA. Structural and electronic properties of CH3NH3PbI3 stabilized by polymethylmethacrylate (PMMA were investigated by varying concentrations of PMMA in the polymer solutions. Stability tests were performed over a period of time using modulated surface photovoltage (SPV spectroscopy, X-ray diffraction (XRD, and photoluminescence (PL measurements. The XRD patterns confirm the tetragonal structure of the deposited CH3NH3PbI3 for every concentration of PMMA. Furthermore, CH3NH3PbI3 coated with 40 mg/mL of PMMA did not show any impurity phase even after storage in air for 43 days. The Tauc gap (ETauc determined on the basis of the in-phase SPV spectra was found in the range from 1.585 to 1.62 eV for the samples stored during initial days, but shifted towards lower energies as the storage time increased. This can be proposed to be due to different chemical reactions between CH3NH3PbI3/PMMA interfaces and air. PL intensity increased with increasing concentration of PMMA except for the perovskite coated with 40 mg/mL of PMMA. PL quenching in the perovskite coated with 40 mg/mL of PMMA can be interpreted as fast electron transfer towards the substrate in the sample. This study shows that, with an optimum concentration of PMMA coating on CH3NH3PbI3, the lifetime and hence stability on electrical and structural behavior of CH3NH3PbI3 is improved.

  11. Development and studies of Cd_1_−_xMg_xTe thin films with varying band gaps to understand the Mg incorporation and the related material properties

    International Nuclear Information System (INIS)

    Palomera, Roger C.; Martínez, Omar S.; Pantoja-Enriquez, J.; Mathews, N.R.; Reyes-Banda, Martín G.; Krishnan, B.; Mathew, X.

    2017-01-01

    Highlights: • Cd_1_−_xMg_xTe films with band gap in the range 1.47–2.41 eV is obtained. • Cd substitution by Mg was confirmed with SIMS and XPS analysis. • Cd_1_−_xMg_xTe films maintained CdTe structural features but with higher band gap. • Mg incorporation in CdTe inhibited grain growth. - Abstract: In this paper we report a systematic work involving the development of Cd_1_−_xMg_xTe thin films by co-evaporation of CdTe and Mg. The evaporation rate of both materials were adjusted to obtain ternary films of varying stoichiometry and hence the band gap. We have deposited films with band gap ranging from 1.47 to 2.41 eV. The films were characterized for structural, morphological, optical, opto-electronic, and spectroscopic properties. The film stoichiometry was studied across the thickness using SIMS data. SEM images showed that the grain size has a dependence on Mg content in the film, which inhibits the grain growth. The structural parameters showed a systematic dependence on Mg content in the film, however, there was no noticeable change in the XRD reflections with respect that of pure CdTe for lower concentrations of Mg. XPS analysis shed light on the incorporation of Mg further supporting the band gap variations observed with the UV–Vis spectroscopic studies. The photoresponse of the film was affected by Mg incorporation. Prototype devices of the type Cd_1_−_XMg_xTe/CdS were fabricated and the results are discussed.

  12. Selected Physical Properties of Andisols under Different Land Use Condition in Gunung Kerinci Subdistrict, Jambi

    Directory of Open Access Journals (Sweden)

    Endriani

    2010-05-01

    Full Text Available Objective of the research was to study the effect of different land use at some land slopecondition on some physical properties of Andisols in Gunung Kerinci Subdistrict, Jambi.. The research was conductusing field survey and purposive random sampling methods to collect soil. The land use which was using in this studywere: forest, cultivation, cinnamon, and coffee plantation, while land slope level weres: 3-8%, 8-15%, 15-25 %, and> 25%. The results showed that among land use types, the rank of soil physical properties, such as: soil organicmatter, bulk density, porosity, percentage of agregation, stability of agregate, pore distribution and permeability werein order of : forest > cultivation > cinnamon > coffee. Land conversion from forest to agricultural land causeddecreasing in the soil physical properties. The higher level of land slope caused the decreasing of soil physicalproperties at all type of land use.

  13. Long-Term Effects of Legacy Copper Contamination on Microbial Activity and Soil Physical Properties

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Holmstrup, Martin

    Soils heavily contaminated with copper (Cu) are considered unsuitable for agricultural use due to adverse impacts on microbial activity, soil physical properties, and direct toxicity to crops. This study investigated effects of Cu pollution from timber preservation activities between 1911 and 1924...... on soil micro-organisms and subsequent effects on physical properties of a sandy loam soil. Tillage operations over the last 70 years have caused spreading of the initially localized contamination and have created a Cu concentration gradient from 20 to 3800 mg kg-1 across an agricultural field in Hygum......, Denmark. Soil samples obtained from the fallow field were used to determine total microbial activity using fluorescein diacetate and dehydrogenase assays. The physical properties measured included water-dispersible clay, bulk density, air permeability and air-filled porosity. Significant differences...

  14. Estimation of Physical Properties of AN-107 Cesium and Technetium Eluate Blend

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.

    2001-06-12

    The objective of this study, as defined in the associated test specifications and task technical and quality assurance plan, was to estimate all the physical properties that are required to design the storage and transport facilities for the concentrated cesium and technetium eluates. Specifically, the scope of this study included: (1) modeling of the aqueous electrolyte chemistry of Tank 241-AN-107 Cs and Tc eluate evaporators, (2) process modeling of semi-batch and continuous evaporation operations, (3) determination of the operating vacuum and target endpoint of each evaporator, (4) calculation of the physical properties of the concentrated Cs and Tc eluate blend, and (5) development of the empirical correlations for the physical properties thus estimated.

  15. Physical Property Modeling of Concentrated Cesium Eluate Solutions, Part I - Derivation of Models

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.; Pierce, R. A.; Edwards, T. B.; Calloway, T. B.

    2005-09-15

    Major analytes projected to be present in the Hanford Waste Treatment Plant cesium ion-exchange eluate solutions were identified from the available analytical data collected during radioactive bench-scale runs, and a test matrix of cesium eluate solutions was designed within the bounding concentrations of those analytes. A computer model simulating the semi-batch evaporation of cesium eluate solutions was run in conjunction with a multi-electrolyte aqueous system database to calculate the physical properties of each test matrix solution concentrated to the target endpoints of 80% and 100% saturation. The calculated physical properties were analyzed statistically and fitted into mathematical expressions for the bulk solubility, density, viscosity, heat capacity and volume reduction factor as a function of temperature and concentration of each major analyte in the eluate feed. The R{sup 2} of the resulting physical property models ranged from 0.89 to 0.99.

  16. Role of differential physical properties in emergent behavior of 3D cell co-cultures

    Science.gov (United States)

    Kolbman, Dan; Das, Moumita

    2015-03-01

    The biophysics of binary cell populations is of great interest in many biological processes, whether the formation of embryos or the initiation of tumors. During these processes, cells are surrounded by other cell types with different physical properties, often with important consequences. For example, recent experiments on a co-culture of breast cancer cells and healthy breast epithelial cells suggest that the mechanical mismatch between the two cell types may contribute to enhanced migration of the cancer cells. Here we explore how the differential physical properties of different cell types may influence cell-cell interaction, aggregation, and migration. To this end, we study a proof of concept model- a three-dimensional binary system of interacting, active, and deformable particles with different physical properties such as elastic stiffness, contractility, and particle-particle adhesion, using Langevin Dynamics simulations. Our results may provide insights into emergent behavior such as segregation and differential migration in cell co-cultures in three dimensions.

  17. PHYSICAL PROPERTIES OF KAOLIN/SAND SLURRY USED DURING SUBMERSIBLE MIXER PUMP TESTS AT TNX

    International Nuclear Information System (INIS)

    HANSEN, ERICH

    2005-01-01

    The purpose of this task is to characterize the physical properties of the kaolin/sand slurries used during the testing of a new submersible mixer pump (SMP) which had undergone performance testing at the TNX Waste Tank mockup facility from July 2004 through May 2005. During this time period, four identical SMPs were subjected to various water tests and four different tests using different batches of kaolin/sand slurries. The physical properties of the kaolin/sand slurries were measured for three of the four tests. In these tests, three different sample locations were used to pull samples, the SMP cooling water exit (CWE), the SMP fluid flow field (FFF), and SMP effective cleaning radius (ECR). The physical properties measured, though not for each sample, included rheology, weight percent total solids (wt% TS), density, kaolin/sand slurry particle size distribution (PSD), weight percent and particles size distribution of material greater than 45 microns

  18. Study on the physical properties of the dynamic filter: unidimensional modulation; Estudo das propriedades fisicas do filtro dinamico: modulacao unidimensional

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Roberto Salomon de

    2005-10-15

    The present work shows an characterization of the Varian linear accelerator EDW physical properties, through experimental determinations, comparing them with calculations made by CadPlan treatment planning system, under the same conditions. The following parameters were determined: EDW factor for square and rectangular fields on the central axis and off-axis, EDW factor dependency with the static collimator, percentage depth dose, EDW factor dependency with the depth on the central axis and off-axis, EDW angles and field profiles on several depths. It was verified that the EDW factor diminishes with the field size increment and with EDW nominal angle increment, and increases with energy increment. It is independent of the X collimator and dynamic collimator, except for small field sizes. It doesn't vary with depth on the central axis, but varies on the off-axis distances. A difference between EDW nominal angles and the EDW obtained experimentally was found, but it doesn't interfere in the treatment results. At the end of this work, a set of physical parameters to be determined for the commissioning, clinical implementation and quality assurance of the EDW is suggested. (author)

  19. The effect of cetyl palmitate crystallinity on physical properties of gamma-oryzanol encapsulated in solid lipid nanoparticles.

    Science.gov (United States)

    Ruktanonchai, Uracha; Limpakdee, Surachai; Meejoo, Siwaporn; Sakulkhu, Usawadee; Bunyapraphatsara, Nuntavan; Junyaprasert, Varaporn; Puttipipatkhachorn, Satit

    2008-03-05

    This present study was aimed at investigating the effect of the crystallinity of cetyl palmitate based solid lipid nanoparticles (SLNs) on the physical properties of γ-oryzanol-loaded SLNs. SLNs consisting of varying ratios of cetyl palmitate and γ-oryzanol were prepared. Their hydrodynamic diameters were in the range 210-280 nm and the zeta potentials were in the range -27 to -35 mV. The size of SLNs increased as the amount of cetyl palmitate decreased whereas no significant change of zeta potentials was found. Atomic force microscopy pictures indicated the presence of disc-like particles. The crystallinity of SLNs, determined by differential scanning calorimetry and powder x-ray diffraction, was directly dependent on the ratio of cetyl palmitate to γ-oryzanol and decreased with decreasing cetyl palmitate content in the lipid matrix. Varying this ratio in the lipid mix resulted in a shift in the melting temperature and enthalpy, although the SLN structure remained unchanged as an orthorhombic lamellar lattice. This has been attributed to a potential inhibition by γ-oryzanol during lipid crystal growth as well as a less ordered structure of the SLNs. The results revealed that the crystallinity of the SLNs was mainly dependent on the solid lipid, and that the crystallinity has an important impact on the physical characteristics of active-loaded SLNs.

  20. Study on the physical properties of the dynamic filter: unidimensional modulation; Estudo das propriedades fisicas do filtro dinamico: modulacao unidimensional

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Roberto Salomon de

    2005-10-15

    The present work shows an characterization of the Varian linear accelerator EDW physical properties, through experimental determinations, comparing them with calculations made by CadPlan treatment planning system, under the same conditions. The following parameters were determined: EDW factor for square and rectangular fields on the central axis and off-axis, EDW factor dependency with the static collimator, percentage depth dose, EDW factor dependency with the depth on the central axis and off-axis, EDW angles and field profiles on several depths. It was verified that the EDW factor diminishes with the field size increment and with EDW nominal angle increment, and increases with energy increment. It is independent of the X collimator and dynamic collimator, except for small field sizes. It doesn't vary with depth on the central axis, but varies on the off-axis distances. A difference between EDW nominal angles and the EDW obtained experimentally was found, but it doesn't interfere in the treatment results. At the end of this work, a set of physical parameters to be determined for the commissioning, clinical implementation and quality assurance of the EDW is suggested. (author)

  1. The effect of cetyl palmitate crystallinity on physical properties of gamma-oryzanol encapsulated in solid lipid nanoparticles

    International Nuclear Information System (INIS)

    Ruktanonchai, Uracha; Sakulkhu, Usawadee; Limpakdee, Surachai; Meejoo, Siwaporn; Bunyapraphatsara, Nuntavan; Junyaprasert, Varaporn; Puttipipatkhachorn, Satit

    2008-01-01

    This present study was aimed at investigating the effect of the crystallinity of cetyl palmitate based solid lipid nanoparticles (SLNs) on the physical properties of γ-oryzanol-loaded SLNs. SLNs consisting of varying ratios of cetyl palmitate and γ-oryzanol were prepared. Their hydrodynamic diameters were in the range 210-280 nm and the zeta potentials were in the range -27 to -35 mV. The size of SLNs increased as the amount of cetyl palmitate decreased whereas no significant change of zeta potentials was found. Atomic force microscopy pictures indicated the presence of disc-like particles. The crystallinity of SLNs, determined by differential scanning calorimetry and powder x-ray diffraction, was directly dependent on the ratio of cetyl palmitate to γ-oryzanol and decreased with decreasing cetyl palmitate content in the lipid matrix. Varying this ratio in the lipid mix resulted in a shift in the melting temperature and enthalpy, although the SLN structure remained unchanged as an orthorhombic lamellar lattice. This has been attributed to a potential inhibition by γ-oryzanol during lipid crystal growth as well as a less ordered structure of the SLNs. The results revealed that the crystallinity of the SLNs was mainly dependent on the solid lipid, and that the crystallinity has an important impact on the physical characteristics of active-loaded SLNs

  2. Selection and Physical Properties of High-redshift Galaxies

    Science.gov (United States)

    Fang, G. W.

    2014-09-01

    Extremely Red Objects (EROs) and BzKs continue to attract considerable interest. It has been suggested that they may be the direct progenitors of present-day massive E/S0 galaxies, and can provide crucial constraints on the current galaxy formation and evolution models. Therefore, the key question is to measure the relative fraction of OGs (old galaxies) and DGs (young, and dusty starburst galaxies) in the sample of EROs. Many groups have been currently investigating the fractions of these two ERO populations using a variety of observational approaches, but the fraction of OGs and DGs from different surveys is different. In the meantime, a number of observations suggest that the epoch of z˜2 also plays an important role in galaxy formation and evolution for various reasons: the cosmic star formation rate density (SFRD) begins to drop at z˜2 from a flat plateau at higher redshifts; the morphological type mix of field galaxies changes remarkably at z˜2; the number density of QSOs has a peak at z˜2; and about 50% to 70% of the stellar mass assembly of galaxies took place in the redshift range 1distribution (SED), [3.6]-[8.0] color, and the nonparametric measures of galaxy morphology, we classify EROs into two classes: DGs and OGs. We find that the fraction of OGs and DGs in our sample (COSMOS) is similar, about 52% of them are DGs, and the other 48% are OGs. For 24 EROs in the UDF, 16 fall into DGs, while 8 are OGs. To reduce the redundancy of these three different classification methods, we perform a principal component analysis on the measurements of EROs, and find that the nonparametric measures and SEDs are efficient in segregating DGs and OGs. We investigate the dependence of the fraction of EROs on their observational properties, and the results suggest that DGs become increasingly important toward fainter magnitudes, redder colors, and higher redshifts. Moreover, we find that the clustering of EROs is much stronger than that of full K-limited samples of

  3. Moisture Dependence of physical Properties and Specific Heat Capacity of Neem (Azadirachta Indica A. Juss Kernels

    Directory of Open Access Journals (Sweden)

    A. Dauda

    2017-02-01

    Full Text Available This study investigated the effect of moisture content on the physical properties and specific heat capacity of Neem (Azadirachta Indica A. Juss nut kernels. The major, intermediate and minor axial dimensions of the kernels increased from 1.04 to 1.23cm, 0.42 to 0.6cm, and 0.32 to 0.45cm respectively, as the moisture content increased from 5.2 to 44.9 % (db. The arithmetic and geometric mean diameters determined at the same moisture level were significantly different from each other, with the arithmetic mean diameter being higher. In the above moisture range, one thousand kernel weight, true density, porosity, sphericity, roundness and surface area all increased linearly from 0.0987 to 0.1755kg, 632 to 733kgm-3, 6.42 to 32.14%, 41.3 to 47.5%, 22 to 36% and 13 to 24cm2 respectively, while bulk density decreased from 591.4 to 497.4kgm-3 with increase in moisture content. Angle of repose increased from 21.22 to 29.8o with increase in moisture content. The Static coefficient of friction on ply wood with grains parallel to the direction of movement ranged from 0.41 to 0.61, it ranged from 0.19 to 0.24 on on fiber glass, 0.28 to .038 on hessian bag material and 0.25 to 0.33 on galvanized steel sheet. The specific heat of the seed varied from 2738.1- 4345.4J/kg/oC in the above moisture range.

  4. Structural, Thermal, Physical, Mechanical, and Barrier Properties of Chitosan Films with the Addition of Xanthan Gum.

    Science.gov (United States)

    de Morais Lima, Maria; Carneiro, Lucia Cesar; Bianchini, Daniela; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa; Prentice, Carlos; Moreira, Angelita da Silveira

    2017-03-01

    Films based on chitosan and xanthan gum were prepared using casting technique aiming to investigate the potential of these polymers as packaging materials. Six formulations of films were studied varying the proportion of chitosan and xanthan gum: 100:0 (chitosan:xanthan gum, w/w, C100XG0 film); 90:10 (chitosan:xanthan gum, w/w, C90XG10 film); 80:20 (chitosan:xanthan gum, w/w, C80XG20 film); 70:30 (chitosan:xanthan gum, w/w, C70XG30 film); 60:40 (chitosan:xanthan gum, w/w, C60XG40 film); and 50:50 (chitosan:xanthan gum, w/w, C50XG50 film). The total quantity of solids (chitosan and xanthan gum) in the filmogenic solution was 1.5 g per 100 mL of aqueous solution for all treatments, according to the proportion of each polymer. The films were evaluated by their functional groups, structural, thermal, morphological, physical, mechanical, and barrier properties. All films have presented endothermic peaks in the range of 122 to 175 °C and broad exothermic peaks above 200 °C, which were assigned to the melting temperature and thermal decomposition, respectively. These results demonstrated that films with xanthan gum have the highest T m and Δ m H. The films containing higher content of xanthan gum show also the highest tensile strength and the lowest elongation. Xanthan gum addition did not affect the water vapor permeability, solubility, and moisture of films. This set of data suggests the formation of chitosan-xanthan complexes in the films. © 2017 Institute of Food Technologists®.

  5. Physical properties of pizza Mozzarella cheese manufactured under different cheese-making conditions.

    Science.gov (United States)

    Banville, V; Morin, P; Pouliot, Y; Britten, M

    2013-08-01

    The effect of manufacturing factors on the shreddability and meltability of pizza Mozzarella cheese was studied. Four experimental cheeses were produced with 2 concentrations of denatured whey protein added to milk (0 or 0.25%) and 2 renneting pH values (6.4 or 6.5). The cheeses were aged 8, 22, or 36d before testing. Shreddability was assessed by the presence of fines, size of the shreds, and adhesion to the blade after shredding at 4, 13, or 22°C. A semi-empirical method was developed to measure the matting behavior of shreds by simulating industrial bulk packaging. Rheological measurements were performed on cheeses with and without a premelting treatment to assess melt and postmelt cheese physical properties. Lowering the pH of milk at renneting and aging the cheeses generally decreased the fines production during shredding. Adding whey protein to the cheeses also altered the fines production, but the effect varied depending on the renneting and aging conditions. The shred size distribution, adhesion to the blade, and matting behavior of the cheeses were adversely affected by increased temperature at shredding. The melting profiles obtained by rheological measurements showed that better meltability can be achieved by lowering the pH of milk at renneting or aging the cheese. The premelted cheeses were found to be softer at low temperatures (50°C) compared with the cheeses that had not undergone the premelting treatment. Understanding and controlling milk standardization, curd acidification, and cheese aging are essential for the production of Mozzarella cheese with desirable shreddability and meltability. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Mutual associations among microstructural, physical and mechanical properties of human cancellous bone

    DEFF Research Database (Denmark)

    Ding, Ming; Odgaard, A; Danielsen, CC

    2002-01-01

    structure and mechanical properties. In this study, 160 cancellous bone specimens were produced from 40 normal human tibiae aged from 16 to 85 years at post-mortem. The specimens underwent micro-CT and the microstructural properties were calculated using unbiased three-dimensional methods. The specimens...... were tested to determine the mechanical properties and the physical/compositional properties were evaluated. The type of structure together with anisotropy correlated well with Young's modulus of human tibial cancellous bone. The plate-like structure reflected high mechanical stress and the rod......-like structure low mechanical stress. There was a strong correlation between the type of trabecular structure and the bone-volume fraction. The most effective microstructural properties for predicting the mechanical properties of cancellous bone seem to differ with age....

  7. Computational studies of physical properties of Nb-Si based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Lizhi [Middle Tennessee State Univ., Murfreesboro, TN (United States)

    2015-04-16

    The overall goal is to provide physical properties data supplementing experiments for thermodynamic modeling and other simulations such as phase filed simulation for microstructure and continuum simulations for mechanical properties. These predictive computational modeling and simulations may yield insights that can be used to guide materials design, processing, and manufacture. Ultimately, they may lead to usable Nb-Si based alloy which could play an important role in current plight towards greener energy. The main objectives of the proposed projects are: (1) developing a first principles method based supercell approach for calculating thermodynamic and mechanic properties of ordered crystals and disordered lattices including solid solution; (2) application of the supercell approach to Nb-Si base alloy to compute physical properties data that can be used for thermodynamic modeling and other simulations to guide the optimal design of Nb-Si based alloy.

  8. Order-of-magnitude physics of neutron stars. Estimating their properties from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Reisenegger, Andreas; Zepeda, Felipe S. [Pontificia Universidad Catolica de Chile, Instituto de Astrofisica, Facultad de Fisica, Macul (Chile)

    2016-03-15

    We use basic physics and simple mathematics accessible to advanced undergraduate students to estimate the main properties of neutron stars. We set the stage and introduce relevant concepts by discussing the properties of ''everyday'' matter on Earth, degenerate Fermi gases, white dwarfs, and scaling relations of stellar properties with polytropic equations of state. Then, we discuss various physical ingredients relevant for neutron stars and how they can be combined in order to obtain a couple of different simple estimates of their maximum mass, beyond which they would collapse, turning into black holes. Finally, we use the basic structural parameters of neutron stars to briefly discuss their rotational and electromagnetic properties. (orig.)

  9. Material physical properties of 11Cr-ferritic/martensitic steel (PNC-FMS) wrapper tube materials

    International Nuclear Information System (INIS)

    Yano, Yasuhide; Kaito, Takeji; Ohtsuka, Satoshi; Tanno, Takashi; Uwaba, Tomoyuki; Koyama, Shinichi

    2012-09-01

    It is necessary to develop core materials for fast reactors in order to achieve high-burnup. Ferritic steels are expected to be good candidate core materials to achieve this objective because of their excellent void swelling resistance. Therefore, oxide dispersion strengthened (ODS) ferritic steel and 11Cr-ferritic/martensitic steel (PNC-FMS) have been respectively developed for cladding and wrapper tube materials in Japan Atomic Energy Agency. In this study, various physical properties of PNC-FMS wrapper materials were measured and equations and future standard measurement technique of physical properties for the design and evaluation were conducted. (author)

  10. Physical properties and fiber dimension in Stem, Branch and root of Alder Wood

    OpenAIRE

    Moya-Roque, Roger; Kiaei, Majid

    2015-01-01

    The aim of this study was to determine physical properties and fiber dimensions in stem, branch and root wood for alder (Alnus glutinosa L) species. For this purpose, three normal alder trees were selected from Khanican forest in north of Iran. Disks were taken from three parts such as stem, branch and root of trees. Testing samples were randomly taken at disk surfaces to examine the physical properties (according to the ISO standard for oven-dry density and volumetric shrinkage) and fiber di...

  11. Effects of radiation on the physical properties of PP membrane for the removal of dissolved oxygen

    International Nuclear Information System (INIS)

    Kang, D. W.; Song, Y. W.; Kim, M. S.; Ji, J. H.; Kim, S. I.

    2003-01-01

    The physical properties of polypropylene (PP) hollow fiber membranes and its deoxygenation efficiency were investigated. We supposed the conditions of PP hollow fiber membranes under radiation field and irradiated the PP membranes using differential scanning calorimetry(DSC), thermal gravimetric analyzer (TGA), fourier transform infrared (FT-IR), and contact angle. In addition, the deoxygenation efficiency of the exposed PP membranes was estimated by using an oxygen removal test kit. From the results, we found that the physical properties and deoxygenation efficiency of PP membrane was still keep good condition under the simulated radiation field

  12. Physical and mechanical properties of gamma radiation cross-linked polyethylene

    International Nuclear Information System (INIS)

    Gonzalez, Maria E.; Romero, G.; Smolko, Eduardo E.

    1999-01-01

    Granulated LDPE 2003 polyethylene was extruded and irradiated under nitrogen with 150, 200 and 300 kGy gamma rays doses to produce cross-linking. The study of the physical and mechanical properties shows that the product has a high degree of molecular cross-linking, can be heated up to 200 C for 2 hours without deformation and that the mechanical properties improve. Preliminary aging tests indicate that after heating at 60 C for 4 weeks no physical or mechanical deterioration can be observed. (author)

  13. Estimation of physical properties of laminated composites via the method of inverse vibration problem

    Energy Technology Data Exchange (ETDEWEB)

    Balci, Murat [Dept. of Mechanical Engineering, Bayburt University, Bayburt (Turkmenistan); Gundogdu, Omer [Dept. of Mechanical Engineering, Ataturk University, Erzurum (Turkmenistan)

    2017-01-15

    In this study, estimation of some physical properties of a laminated composite plate was conducted via the inverse vibration problem. Laminated composite plate was modelled and simulated to obtain vibration responses for different length-to-thickness ratio in ANSYS. Furthermore, a numerical finite element model was developed for the laminated composite utilizing the Kirchhoff plate theory and programmed in MATLAB for simulations. Optimizing the difference between these two vibration responses, inverse vibration problem was solved to obtain some of the physical properties of the laminated composite using genetic algorithms. The estimated parameters are compared with the theoretical results, and a very good correspondence was observed.

  14. Mechanical and Physical Properties of Hydrophobized Lightweight Aggregate Concrete with Sewage Sludge.

    Science.gov (United States)

    Suchorab, Zbigniew; Barnat-Hunek, Danuta; Franus, Małgorzata; Łagód, Grzegorz

    2016-04-27

    This article is focused on lightweight aggregate-concrete modified by municipal sewage sludge and lightweight aggregate-concrete obtained from light aggregates. The article presents laboratory examinations of material physical parameters. Water absorptivity of the examined material was decreased by the admixture of water emulsion of reactive polysiloxanes. Water transport properties were determined using Time Domain Reflectometry, an indirect technique for moisture detection in porous media. Together with basic physical parameters, the heat conductivity coefficient λ was determined for both types of lightweight aggregate-concrete. Analysis of moisture and heat properties of the examined materials confirmed the usefulness of light aggregates supplemented with sewage sludge for prospective production.

  15. A study on physical properties of concrete and reinforcement at elevated temperatures

    International Nuclear Information System (INIS)

    Kanazu, Tsutomu

    2002-01-01

    Reinforced concrete structures such as a containment vessel, a support of the reactor, piping systems and facilities for storing high level radioactive waste in a nuclear power plant are exposed to a high temperature condition. Changes of physical properties of concrete and reinforcement caused by high temperature influence on mechanical behavior of these structures and internal stresses are induced by difference of thermal coefficients between concrete and reinforcement that was reported in the previous paper by the author. These are the special features in high temperature conditions. Temperature dependence of physical properties of concrete and reinforcement are summarized in the paper based on the experimental results. (author)

  16. Estimation of physical properties of laminated composites via the method of inverse vibration problem

    International Nuclear Information System (INIS)

    Balci, Murat; Gundogdu, Omer

    2017-01-01

    In this study, estimation of some physical properties of a laminated composite plate was conducted via the inverse vibration problem. Laminated composite plate was modelled and simulated to obtain vibration responses for different length-to-thickness ratio in ANSYS. Furthermore, a numerical finite element model was developed for the laminated composite utilizing the Kirchhoff plate theory and programmed in MATLAB for simulations. Optimizing the difference between these two vibration responses, inverse vibration problem was solved to obtain some of the physical properties of the laminated composite using genetic algorithms. The estimated parameters are compared with the theoretical results, and a very good correspondence was observed

  17. Comparative Evaluation of Physical and Structural Properties of Water Retted and Non-retted Flax Fibers

    Directory of Open Access Journals (Sweden)

    Vijaya Raghavan

    2013-10-01

    Full Text Available Flax stems of Modran variety were subjected to water retting under laboratory conditions and its physical properties were compared with non-retted fibers. Physical properties including percentage of impurities, weighted average length, linear density, tenacity and elongation were analyzed and the results were compared. The analysis of retted and non-retted flax fibers showed that retting is the most important step in the processing of flax fibers and it directly affects quality attributes like strength, fineness, and homogeneity. Scanning Electron microscope images of fibers were also analyzed and the retted fibers showed much cleaner surface when compared to decorticated non-retted fibers.

  18. Measurement properties of performance-based measures to assess physical function in hip and knee osteoarthritis

    DEFF Research Database (Denmark)

    Dobson, F; Hinman, R S; Hall, M

    2012-01-01

    OBJECTIVES: To systematically review the measurement properties of performance-based measures to assess physical function in people with hip and/or knee osteoarthritis (OA). METHODS: Electronic searches were performed in MEDLINE, CINAHL, Embase, and PsycINFO up to the end of June 2012. Two...... investigating measurement properties of performance measures, including responsiveness and interpretability in people with hip and/or knee OA, is needed. Consensus on which combination of measures will best assess physical function in people with hip/and or knee OA is urgently required....

  19. Physical models for the hypothesized F(nu) varies as the inverse of nu infrared to X-ray continuum of quasi-stellar objects

    International Nuclear Information System (INIS)

    Stein, W.A.

    1991-01-01

    Models for producing the large ultraviolet bump, low-energy X-rays and the hypothesized F(nu) varies as the inverse of nu IR to X-ray continua of QSOs are investigated. Thermal Comptonization in a hot corona of an accretion disk appears to offer the best potential. However, under the energy input conditions in QSOs a corona will reach T above 100 million K. It must be optically thin, so as to not Comptonize the accretion disk ultraviolet emission to an unacceptable extent. However, it then cannot Comptonize a low-frequency source to an F(nu) varies as the inverse of nu continuum extending from the infrared to X-rays. An inner corona, possibly optically thick because of n varies as the sq rt of r density increase, is required for the F(nu) varies as the inverse of nu continuum, but it cannot therefore cover the UV-emitting accretion disk. However, then a Wien peak associated with this inner volume may be implied at 10 keV, contrary to observations. 42 refs

  20. Effects of gamma radiation on the physical properties of some South African varieties of potatoes

    International Nuclear Information System (INIS)

    Winchester, R.V.

    1975-01-01

    Effects of gamma irradiation on the mass loss, specific gravity, firmness, sprouting, and rotting of five varieties of potatoes grown in South Africa have been studied. Doses of up to 15 krad inhibit sprouting without detrimental effects on other physical properties, and the culinary properties are expected to be unaffected. Excessive mass loss, shrinkage, and rotting found in some varieties are ascribed to unsuitable storage conditions rather than to irradiation. (orig.) [de